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Truncated Quantile Regression

Jose Carvalho T

January 18, 2004

Abstract

This paper deals with the estimation of conditional quantiles of
linear truncated regression models with known truncation point. The
truncated quantile model is shown to posses an important property
related to O,, € (0, 1), a set of quantiles of the original latent model:
truncation-invariance. Truncation-invariance means that there is a
one-to-one function F : O, — Oy, Oy € (0,1) and where Oy, is a set
of quantiles of the truncated variable. That property turns out to be
fundamental to identification of the model, as well as estimation and
inference. In fact, simplicity is a major appeal of our semi-parametric
approach compared to alternatives estimator of truncated models, as
it does not require any modification of available software.

1 Introduction

Since the seminal paper of Koenker and Bassett (1978), the literature on
quantile regression has experienced a steady growth. This semi-parametric
approach to estimation has influenced many aspects of econometrics both
at theoretical and applied grounds. While Koenker and Bassett (1978) set
the theoretical foundations of quantile regression, an assessment about the
type of possible applications of that technique can be found on Buchinsky
(1994), Buchinsky (1998) and the special edition about quantile regression
on Empirical Economics, volume 26, 2001. See, specially, Ribeiro (2001)
for a study of asymmetric labor supply in Brazil, Koenker and Bilias (2001)
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for an application of quantile regression to duration data and Bierens and
Ginther (2001) for a consistent test of the linearity of the quantile model.
A quick overview of the entire spectrum of quantile regression is Buchinsky
(1998). Notwithstanding that, there are still open problems in econometrics
that could be fruitfully approached by the use of quantile regression. We
believe that truncated regression models is one of those.

2 The Truncated Quantile Regression Model

The quantile regression with fractional variable model, henceforth QRF, is
defined by the following equations:

L(y) =Mnly - (1 -y~
=X'B+u  forye(0,1)

Po ify=20
Wy) =4 fly) ifye(0,1) (2)
pr ity=1
Qg [L(y)|X} = X/ﬁg for 6 € (po, 1-— pl) (3)

Where equation (1) just repeats the log-odds model, leaving unspecified L(0)
and L(1). The function [(.) is the probability density function of Y. Thus, YV’
is a mixed discrete-continuous random variable. Finally, Qp[.|X| represents
the 0’th quantile operator. The distribution of the error term wy is left
unspecified and it is assumed that:

Assumption 1 (Zero Conditional Quantile) Qy[uy|X]| = 0.



The model partially outlined will try to overcome the drawbacks of the con-
ditional expectation model. We approach the recovery issue by adopting a
conditional quantile specification instead of a conditional expectation. Since
the function g(y) = In [y - (1 — y)™'] is monotonic increasing, the operator
conditional quantile is easy to deal with. Accordingly to Powell (1991), if
h(y) is monotonic increasing, Qg [h(y)|X] = h(Qs[y|X]). Thus, it follows
that:

Qy[Infy - (1 —y)"|X] =1In [Qu(y|X) - (1 = Qu(ylX)) "] (4)

Hence, from a model specified by Equations (1), (2), (3) and from inspec-
tion of Equation (4) the quantity of interest, Qy(y|X), has the following
expression:

Qu(yl X,y € (0,1)) = (1 +exp(X'Fy)) (5)

To deal with the boundary problem we make use of the fact that truncation
of a random variable is analogous to a monotonic increasing transformation
of the original (non truncated) cumulative distribution function . To see this
let the cumulative distribution function of a random variable Y be F(.), for
all y € V. Also, let A be a subset of ) and ) \ A the complement of the
set A with respect to ), Ag the left interval of truncation and A; the right
interval of truncation. AgUA;UA =Y and A;NA=0fori=0,1. Aslong
as P(Y \ A) > 0, the following conditional cumulative distribution function
is well-defined:

F(y) — P(A)

Glyly € Y\ A) = B 57 A

forallye Y\ A (6)

Thus, the monotonic feature of the truncation has the potential to over-
come the boundary problem by noting the following. Suppose that one is
interested in estimating a fractional regression model and that the model ap-
pearing in Equations (1), (2) and (3) is correctly specified. Also, suppose that
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the econometrician does not want to use a subset of available observations.
The first consequence of that type trimming is that Equation (6) should the
right one to describe the new sample instead of F(z). However, G(.) is again
just a monotonic increasing transformation of F'(.). The quantile set up once
more makes its point as it is well known that the same truncation would
demand a much more complicated analysis had the model been set in terms
of a conditional mean. Nonetheless the simplicity of the preceding argument,
there are three issues related to the specific process of trimming: first, even
for a fixed initial sample size, the available sample size is no longer a fixed
number but, instead, a random variable; second, not all quantiles from the
original model might be identified; third, the truncation changes the location
of quantiles!.

Before elaborating on our sample strategy, it is worth to compare our
trimmed strategy with other uses of trimming. The use of trimmed samples
has its origins in the statistical literature of robust estimation. A classical
example, with roots on an old French custom, is the trimming of extreme ob-
servations to calculate the mean. The a-trimmed mean consists in ordering
the n observations of a sample from an ¢.i.d. random variable X, removing
a proportion of a from both extremes of the sample and, finally, taking the
average of the trimmed sample. Taking robustness? as synonym to insen-
sitiveness to outliers in the sample, the trimmed mean estimator is a very
simple robust estimator. Its computation is easy:

n—[2-an]

To=mn-[2-an)" > X, (7)

j=loont1)

Where [.] is the greatest integer function. The objective of trimming the
sample is to remove the influence of outliers on the estimated mean. The a-
trimmed sample has its asymptotics developed in Stigler (1973). The econo-
metrics literature has also made use of trimmed samples. The approach of
heteroscedasticity of the Tobit model by Powell (1986) is an interesting exam-

'Indeed, if the variable is truncated both in the left and right side this change is non-
trivial.

2See Huber (1972) for a non-technical discussion about the different concepts of ro-
bustness in the statistical literature. For a thorough exposition of robust inference, see,
Maddala and Rao (1997).



ple3. Now, the “trimming” is used to turn a non-symmetric distribution into
a symmetric one. With that, ordinary least squares can deliver a consistent
estimate for the true parameter, regardless the presence of heteroscedastic-
ity. Notwithstanding the differences between these two examples, they share
a common feature: the available sample size continues to be predetermined.
This is in contrast to our proposed sample scheme. Also, our initial hope was
to use a trimmed sample not to protect against outliers nor to symmetrize
our distribution but simply to make the specification of our model at y = 0
and y = 1 completely dispensable.

The fundamental question that arises now is under what conditions can
(B be consistently estimated if the trimmed sample is to be used in the place
of the complete sample? It turns out to be that as long as the trimmed model
satisfies some very mild conditions, 3y can be consistently estimated, at least
for 6 € A C [0,1]. Hence, in order to consistently estimate quantiles of the
log-odds model, any attempt to specify a transformation at the boundaries
is an unnecessary complication. All that is needed is an specification for the
interval (0,1). Nevertheless, the implications of the trimmed sample on the
efficiency of the quantile estimator is not considered here. In fact we believe
this is an interesting topic for future research. In order to define precisely
the model to be estimated, we make the following additional assumptions®:

Assumption 2 The cumulative distribution function of Y, F(.) is continu-
ous in the set y € Y\ A.

Assumption 3 F(.) > 0 for all z € [0,1].
Assumption 4 The set Y \ A is convez.
Assumption 5 P(y € Y\ A) > 0.

Thus, given a vector of random variables (Y, X), X € R", we define our
model by Equations (1), (2) , (3) and assumptions 1 - 5. The trimmed sample
becomes the focus of analysis. In order to understand the consequences of
trimming the sample, define the sampling scheme to be employed by the
following two steps:

3Strictly speaking, there is no trimming of any observation. Powell (1986) truncates
the random variable. Hence, observation are transformed and not thrown away.

4For the brevity of notation, the conditioning on X is taken for granted, although it
does not explicitly appears in the formulas.



1. Fix a total sample size n to be draw;

2. During sampling, keep an observation if and only if it is on the interval
Y\ A, otherwise discharge it;

Call this scheme sequential trimming, ST. Denote by N(n) the number of
sampled observation that was retained. N(n) = 1,2,---n. The best way
to see the effect of that deliberate trimming on the available sample is to
use a triangular array. Denote y;; the j'th sample observation if only i < n
observations are in the set )\ A. The array assumes the following shape, as
outlined by Lehmann (1999):

Y11
Yo1 Y22
Yn1 Yn2 Ynn

Hence, for fixed n the available sample size is N(n), a random variable.
However, since an observation is retained if and only if y € Y\ A, N(n) and
Y;; are not independent and it becomes tricky how to do the asymptotics
of this model. A key fact to the development of our strategy of estimation
is that ST can be represented by a random variable with random indices.
The following notation is adopted throughout the paper. We represent the
fact that a sequence of random variables Z,, converges to a random variable
Z in probability by Z, - Z. Convergence in law to the cumulative
distribution function H,(.) is represented by Z, —5— H.(.). Also, Y\
A=A

The next three sequences of random variables will play a key role in the
rest of the paper:

.V,
.Y,
o Y

Where n — 0o, N(n) — oo and N(n) < n. Y, is an i.i.d. sequence of ran-

dom variables whose properties are given by Assumptions 2 and 3. Y,, is an
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1.2.d. sequence of random variables whose cumulative distribution function
F(y)—P(Ap)
P(A)
of random variables whose cumulative distribution function is also G(.), for
every fixed N(n) = k. Finally, N(n) is a discrete random variable not nec-

is given by G(y) = , for all y € A. 17]\7\(/@ is an i.i.d. sequence

essarily independent of Yy(,). The central issue is the limiting distribution
of the sequence of r: of random variables indexed by a discrete random variable
represented by YN for fixed n. Hence, conditions to prove convergence in
law of YN (n) When both N(n) and n go to infinity need to be developed.

The characterization of the limit distribution of 57]\[\(;) consists of two
parts. First, we need to show that ST is equivalent to the random sequence
37]\/\(:). Secondly, it should be proved that limpy(,)—ec P(fN\(:) < y) exists
and is equal to lim,, P(/YYn < y), at every continuity point of y. The next
proposition characterizes the trimmed sampling in terms of a sequence of
random variables with random indexes.

Proposition 1 The ST sample scheme s equivalent to an i.i.d. random

—~—

sequence with random indices, Yy, ), with cumulative distribution function
_ F(y)—P(Ao)

Gnm(y) = p—o for all N(n) <

Proof

The sequence of variables that generates )7];(:) is Y,,. For fixed n and for any

N(n) =k, 37]\7\(:) is a sequence of 7.i.d random variables whose cumulative
distribution function is obtained by conditioning on the event that Y € A:

S P
P(Yi < y) = "5

Finally, N(n) is just the sum of the number of success in n independent
binomial random variables, with probability of success P(y € A).

Q.ED

In order to prove the second part, we use the results concerning limit the-
orems of sequences of random variables with random indices. The methods
of proving such limit theorems date backs to Anscombe (1949) and Renyi

7



(1970). More general results can be found in Guiasu (1971). Galambos
(1992) generalizes the results to functionals of random sequences. The the-
orem to be used is the classical Anscombe theorem /f_o\r/ random sequences
of random indices when N (n) is not independent of Yy(,). As it appears in
Theorem 2 of Guiasu (1971), we use the following to characterize the limiting
distribution of }7]\]\(;) in terms of the limiting distribution of ?n:

—~—

Proposition 2 If the sequence Yy, meets the conditions below:

e C 1 There exists an increasing sequence d(n) of positive integer num-
bers which tends to infinity with n and such that ]C\lf(%) converges in

probability to a random variable M with P(M > 0) = 1.

—~

o C 2 At every continuity point of G(.), lim, ., P(Y, < a) = G(a).
o C 3 For everye > 0 and n > 0 there exist a small real number sy =

so(g,m) and a natural number ng = ng(e,n) such that for every n > ny,
P(max;|Y; = Y,| >e:]i —n| <so-n) <.

Then, in every continuity point of the function G(.), lim,_ P(fN\(;) <a)=
G(a).

Before we proceed with the proof, it is worth mentioning that the assump-
tion of 7.i.d sampling will significantly reduces the difficulties in proving the
desired result. This is specially true for conditions C'2 and C'3. The proof
follows in three steps, one for each condition.

Proof

[C1]. Let d(n) = n. Thus, the sequence %”) is the proportion of successes

in n binomial trials with probability of success P(A). Now, by the Weak Law
of Large Numbers:

E(N(") - P(Z))2 0.

n



Hence, Nw) P, (A). This follows from the fact that convergence in

quadratic mean implies convergence in probability. Condition C7 is satisfied.
[C2]. Tt is trivially satisfied given our assumption of an i.i.d sequence of Y.

[C3]. Fix sp = 1. Let Z;; = Y, — 17]-, for all 3,7 = 1,2,3---. Define the
following new sequence of random variables:

Cl = 0;

Cy = max {|Z1|,|Z32|};

C3 = max ?ZL:}L | Za|, -, ’Z5,3‘};

C4 = Imax |Zl74|7 Y |Z3,4|7 |Z574‘7 ) |Z774|}7

Cn = max {’ZLn‘, Ty ‘anl,nL |Zn+1:n‘7 o ‘ZQ'nfl’n’};

Since ?,: is an 7.7.d sequence of random variables, C), is a sequence of indepen-
dent but not identical random variables. Define the cumulative distribution
function of C,, by H,(.) and the cumulative distribution function of each
individual random variable |Z; ;| by L(.), for all z € A.

Clearly, H,(z) = [L(2)]*" ! for n > 3. Since for a given n, H,(.) is an ex-
treme function of a sequence of i.1.d random variables, its asymptotic limit
can be characterized by the following®.

Let 2°"? = sup(A) and 6 > 0 a small constant. The limit, as n — oo, of
P(|C,, — z°"P| < 0) is:

lim P(2"% — 0 < C,, < 2° +6) = lim (1 — [L(z"7)]*""")

=1

5 A nice introduction to the asymptotic theory of extrem statistics is Galambos (1995).



Hence, H,(.) 2~ 2*7. Convergence in probability to a constant is the
same as convergence in law to a degenerate random variable. Hence, C,
converges in law and this implies that C,, is bounded in probability. We say
that a sequence of random variables is bounded in probability if it satisfies
condition BP. A sequence of random variable satisfies condition BP if:

For every e > 0 there exist a constant K and a natural number ng such that
for every n > ng, P(|C,| > K) <.

Finally, for sq = 1 satisfaction of condition BP clearly implies satisfaction of
condition C3.

Q.ED

P

Hence, by proposition 2, Yy(,) converges in law to the same cumulative dis-

tribution function of 57,; and this last random variable is just a monotonically
increasing transformation of the cumulative distribution function of the orig-
inal sequence Y,,, as shown in (6).

At least asymptotically, using the random-trimmed sample is equivalent
to sampling from G(y) for ally € A. In addition to that, assumption 4
guarantees that the quantile regression is well-behaved. Since we are trying to
solve a model built in a set up different than the model’s set up being used to
estimation, it is necessary to characterize the change occurred in the quantiles
of the original distributions due to the truncation of F'(.). This question gives
rise to two issues. First, what can be identified and how from the original
model if the trimmed sample is used instead of the full sample. Second, what
are the asymptotic properties of this new estimator? Proposition 3 addresses
both issues. Before that, we add to the set of invariant properties of the
quantile regressor estimator appearing in Koenker and Bassett (1978) a new
property related to the truncation of the original random variable.

Definition 1 Let 3*(0,y, x) be the estimated parameter of a regression model,
where 0 € (0,1) indexes some set of population parameters. We say that a
regression model is truncation-invariant if there is a convezr subset A C [0, 1]
and a linear function m : A — R such that for any 0 € A, 5*(0,y,x) =
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B*(m(0), Yirune, ©).  Where Ygyune 18 a random variable that results from a
truncation of the original random variable y.

Proposition 3 The quantile regression with fractional dependent variable
model is truncation-invariant.

Proof

Let A = (P(Ap),1—P(A;)), where P(Ap) and P(A;) are the probabilities of
sampling zero or one, respectively. For all § € A define the #’th conditional
quantile of the original model by Qy. By continuity of F(.), for all y € A,
Qy is the unique solution of § = F~1(Qy).

Call the truncated #’th conditional quantile by Q,. Note first that the cu-
mulative distribution function for the truncated sample is G(y) = P(A)™' -

(F'(y) = P(Ao)).

For any 6 € A, clearly 3 0" € 0,1), such that Qp = Qp-. Where 0 =
P(A)-0*+P(Ap) . This is so because if G(Qp-) = 6*, then P(A)™- (F(Qp-)—
P(Ap)) = 6*. And that implies that:

F(Qy) = P(A) - 0" + P(Ay).
Q.ED

Hence, estimating the #’th quantile regression model with the original sample
is equivalent to estimate the 8*’th quantile regression model with the trimmed
sample, where:

0 — P(Ap)
P(A)

Truncation-invariance establishes a one-to-one relationship between the quan-
tile regression model that uses the original sample and the model that uses
the trimmed sample. Hence, for all quantiles in the original model that can
be identified by the truncated sample, say, § € A, consistency follows from
the properties of the quantile regression developed in Koenker and Bassett
(1978). Define the #* th randomly-trimmed quantile estimator by 5, and
the true parameter corresponding to the #’th quantile model by Fy. Thus,

8*
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for the randomly-trimmed quantile regressor:

o . . 0—P(Ay)
/B%TQ L’ ﬁ@ fOI' all (9 . 9 = W

As mentioned before, a study of relative efficiency of the randomly-
trimmed quantile estimator vis-a-vis other estimators of models with frac-
tional dependent variable is beyond the scope of the present article. Nonethe-
less, the quantile solution is well-known to outperform conditional mean mod-
els in non-gaussian situations. Next section contains a simple application of
the randomly trimmed regression to model to the problem of estimating the
percentage of a given sentence that is actually served by an inmate.

3 Conclusion

We have shown a new approach to estimate regression models with fractional
dependent variable, when values of zero and one occur with positive prob-
ability. The randomly-trimmed quantile regression estimator appears to be
a reasonable alternative to solve both the recovery and boundary problems.
Asymptotically, it delivers consistent estimates of the ’th quantile model,
as long as, theta belongs to a specified subset of the unit interval, and it
does that requiring a mild set of conditions. Notwithstanding those nice fea-
tures, we believe the proposed estimator could be further improved in some
directions.

A very important first point to be addressed is the issue of small sample
properties. Econometricians are well aware of that consistent estimators can
deliver very poor small sample properties. For instances, the case of the
GMM estimator is illustrative: in small samples, accordingly to Podivinsky
(1999), it can be “badly biased, and asymptotic tests based on these estimators
may have true sizes substantially different from presumed nominal sizes”. So,
a Monte Carlo study of the small sample property of our estimator should
be one priority.

A second topic that deserves further attention has to do with the effi-
ciency of the randomly-trimmed estimator vis-a-vis other competitors, spe-
cially the quasi-maximum likelihood approach of Papke and Wooldridge
(1996) when the model is not correctly specified. Another interesting topic
is related to specification testing of the original quantile model. However,
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the mixed continuous-discrete feature of the original model is an obstacle to
tests like the JC'M test for quantile regression of Bierens and Ginther (2001).

Finally, the estimator should pass the “real data” test. Given the straight-
forward implementation, one just needs to drop all zero and/or one obser-
vations and run a simple quantile regression model, we hope to see applied
papers using our estimator. As a matter of fact, a thorough econometric pack-
age that, besides having a set of complete routines for data manipulation,
estimation and inference, estimates quantile regression model is EasyReg,
written by Prof. Herman Bierens from PennState University. It also contains
the IC'M test as it appears in Bierens and Ginther (2001). This freeware pro-
gram can be found at http : //econ.la.psu.edu/ ~ hbierens/ EASYREG.HTM.
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