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Abstract
A simple mechanism is used in some universities in Brazil to select students at entry and

allocate them into various majors. Students �rst choose a major and then take exams that
either select them in the chosen major or select them out. The matching literature analyzing
the student placement issue, points out that this mechanism is not fair and is strategic. Pairs
of major & students can be made better o¤ and students tend to disguise their preferences.
We build up a dynamic model of choice of major and of grading as well as e¤ort exerted to
be successful where preferences are carefully modelled. We estimate this model by simulated
maximum likelihood using cross-section data about entry exams at Universidade Federal do
Ceara in Brazil in 2004. Using the empirical results of the model estimation, we then evaluate
changes in the way choices are given to the prospective students. Ex-ante expected utilitarian
social welfare indeed increases but it hides very strong distributive e¤ects among students.
Strategic e¤ects are found to be very strong.
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1 Introduction1

University access in Brazil is a very competitive process and even �ercer if one restricts the analysis

to public universities, on average the best institutions: More than two millions of students competed

to access one of the 331,105 seats in 2006. For some majors, in Medicine or Law for instance, the ratio

of students to available seats can be as high as 20 or more (INEP, 2008). Fierce competition is by

no means an exclusivity of the process of entrance into Brazilian universities as many developed and

developing countries are in a similar situation (Manski and Wise, 1983). What makes Brazil speci�c

is the formality of the selection process. In contrast to countries such as the United States where

the predominant selection system uses multiple criteria (for instance, Arcidiacono, 2005), selection

through exams and objective grading only is pervasive in Brazil. More than 88% of available seats

are allocated through a vestibular as is called the sequence of exams taken by applicants to university

degrees (INEP, 2008).

In this paper, we use comprehensive data on the choices of majors by students and the grades that

they obtain at the vestibular of the Universidade Federal do Ceará (UFC thereafter) in Northeast

Brazil in 2004 and we concentrate on the speci�cs of this case. The main characteristics of that

speci�c vestibular is that the student chooses a single undergraduate major before the exams and

competes against those students who made the same choice only. Another interesting characteristics

is that the exam consists in two stages. The �rst stage is common to all majors and is comprised of

many sub-exams, each one evaluating knowledge in a de�nite subject, i.e. Mathematics, Portuguese

etc.. The second stage is speci�c to each major and comprises two sub-exams.

What should be the optimal organization of the vestibular? This is known in the literature in

economics as the college admission problem. This subject has a long history and a brief survey

of the recent literature on one of the most popular solution is given in Roth (2008). The issue at

hand is to match students with colleges which are in our case, the schools o¤ering undergraduate

majors at the university (medicine, engineering and so on). In the case where college preferences

are simple2 and consist in attracting the students who are the best in their discipline, it boils

down to what is called student placement (Balinski and Sönmez, 1999) or one-sided matching. The

1We thank CNRS and CNPq for funding (Project 21207). Comments by participants at conferences in Brown,
Bristol and Atlanta and seminars in Oxford and CREST, Paris are gratefully acknowledged. The usual disclaimer
applies.

2Speci�cally, it eliminates the need to look at preferences over groups of students (i.e. couples for instance)
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matching mechanisms that are studied are supposed to satisfy certain properties. First, they could

be stable, or fair in the student placement literature, in the sense that there is no pair (student,

college) who would like to block the �nal allocation in order to improve their lot by matching with

another partner. Second, the mechanisms could be strategy proof i.e. every student has an interest

to reveal her true preferences. Stable mechanisms are not unique and some of them are better for

the students and others are better for the schools.

Among those mechanisms, the Gale Shapley student optimal stable mechanism (hereafter GS

mechanism) satis�es the properties of stability and strategy-proofness and is optimal among those

mechanisms from the student perspective (Abdulkadiroglu and Sonmez, 2003). In the GS mecha-

nism, the �rst step consists in each student proposing to her preferred school. Each school tentatively

ranks all its proposers (with respect to the possibly speci�c preference ranking the school has or

using a lottery to break ties) and rejects the ones in surplus with respect to the number of seats the

school has and which is �xed and publicly known ex-ante. In further steps of the algorithm, every

student who was rejected in the previous steps proposes to her next choice. Each school ranks all

its proposers (the ones from the previous step AND the new ones) and rejects the ones in surplus

with respect to the number of seats. A student who was not rejected in the �rst step can well be

rejected in further steps. This algorithm, also called a deferred acceptance algorithm, terminates

when all new student proposals are rejected and nothing can be modi�ed.

We can then compare the vestibular at UFC to the Gale Shapley mechanism. As a matter

of fact it turns out that the vestibular at UFC corresponds to step 1 only of the GS algorithm.

Students are allowed to propose to their �rst choice only. This is why the mechanism loses its two

properties: it is not stable (i.e. there exist pairs of student & school which could be made better o¤

by changing the �nal allocation) and it is not strategy proof. Some students prefer to disguise their

preferences for very demanded disciplines (medicine, law,. . . ) in order to improve their probability

of being accepted. The present form under which the vestibular is organized at UFC is thus di¢ cult

to justify.

Nevertheless, recent research concerned with comparing the result of the GS mechanism with

the so-called Boston mechanism questions the use of the former even if it is in a di¤erent context.

The Boston mechanism consists for the schools in accepting all the students who propose and are

ranked �rst instead of deferring the decision until all the iterations have �nished as in GS. This
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mechanism is known to be not stable and actors play strategically and disguise their preferences.

This recent research questions that the Gale Shapley mechanism leads to a Pareto solution in terms

of ex-ante utilities (Abdulkadiro¼glu, Che and Yasuda, 2008 in a school choice problem, Budish and

Cantillon, 2010 in a multi-unit assignment problem). Those papers exhibit other mechanisms that

are not stable and not strategyproof although they are dominating the GS mechanism in terms

of ex-ante utility. the main intuition for this result is that the latter mechanism does not allow

applicants to reveal the intensity of their preferences, just the ranking of them.

What we do in this paper is to contribute to teh empirical literature on this subject by evaluating

this vestibular using some counterfactual mechanisms. We start by constructing a dynamic model of

choice of majors following the literature about choices of colleges (Arcidiacono, 2006 and Bourdabat

and Montmarquette, 2007, for instance). In contrast to this literature though, we cannot use

information on wages after school and we model them as undistinguishable from preferences. Choice

probabilities of majors thus depend on (1) expected probabilities of success and (2) preferences for

the majors.

In addition, we shall consider that exams have both a dimension of selection of the most tal-

ented (although the selection is imperfect) but also of those who exert more e¤ort. The tournament

literature indeed insists on the double dimension of selection and incentives that exams, or tour-

naments, have and distinguishing between them is one of the substantive issues studied in applied

research (Davies and Stoian, 2007 or Leuven, Osterbeek, Sonnemans and van der Klaauw, 2008). It

is also interesting to include e¤ort since it allows students to reveal the degree of preferences that

they have for di¤erent majors since higher preferences lead to higher e¤ort and thus increases their

probabilities of success.

The advantage of these data is that we can carefully model the probability of success at entry

of each school using data on performances that we have i.e. the grades at the two stages of the

exam as well as an initial measure of talent obtained a year before the exam is taken. We adopt

the assumption that expectations are perfect (see Manski, 1992, for a critical evaluation of this

assumption) and thus that players are sophisticated. The thresholds above which students are

accepted into the programs are the results of the Nash equilibrium of this game in which beliefs are

given by what is observed in the data and in which each player is assumed to be small.

We estimate this model of performances, preferences and e¤ort using data made available to us
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by UFC that we restrict, for simplicity, to the choice process into three majors in medicine, the

most competitive major �eld. We use parametric models for the success probabilities and prefer-

ences although we study non parametric identi�cation of the model. Using these empirical results,

we then construct counterfactuals by recomputing the Nash equilibrium under the counterfactual

mechanism. Speci�cally, we analyze the mechanism which allows students to have two choices in-

stead of one and thus play less strategically. We show that indeed, enlarging the choice set has a

positive aggregate e¤ect in terms of utilitarist social welfare but has also strong distributive e¤ects.

The strategic e¤ects are shown to be very important.

This paper builds upon various literatures and in particular student placement. There are a few

papers concerned by the analysis of school choice (Lai, Sadoulet and de Janvry, 2009) and the Boston

mechanisms using Chinese data (He, 2009) or the GS mechanism using US data (Abdulkadiro¼glu,

Pathak and Roth, 2009). In a more theoretical work but oriented towards the analysis of a speci�c

mechanism, Balinski and Sönmez (1999) study the optimality of the placement of students in Turkish

universities although the selection there concerns all students & colleges throughout the country.

Students �rst write exams in various disciplines and scores are constructed by each college. Colleges

choose the weight that they give to di¤erent �elds: grades in maths can presumably be given more

weight by math colleges. They show that this mechanism is suboptimal with respect to the Gale &

Shapley mechanism.

Section 2 describes the set-up and the game that applicants play. The identi�cation and esti-

mation of the econometric model is the object of Section 3. Section 4 reports the empirical analysis

and counterfactual scenarii are studied in Section 5. Section 6 concludes.

2 Description & modelling

We start by describing the way the selection of students was organized at Universidade Federal

do Ceara in 2004 and we formalize its timing and the choices that the students make. Students

�rst choose one and only one major to dispute.3 As already mentioned, the exam consists in two

stages. The access to the second stage is conditional on the grade obtained at the �rst stage and

the selection is performed among students having chosen a given major. Are accepted all students

3The only exception is for Architecture and Urbanization where the student must choose a second option that
will be active if she fails the ability test speci�c to this major.
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having a rank above a multiple (usually 4 sometimes 3) of the number of available positions in

the chosen major. This ranking procedure at the �rst stage as well as at the second stage de�nes

thresholds in terms of grades that determine if the exam is passed. Appendix B gives further details

on the exam.

We consider a parsimonious theoretical set-up building up from models of college choices and

of tournaments. Students are supposed to be heterogenous in talent a single dimensional term

and students have preferences over di¤erent majors which can be monetary or non monetary. The

former include rewards that a degree in a speci�c major raises in the labor market. Furthermore,

we consider that entry is not a matter of talent and preferences alone but depends also on a variable

called e¤ort exerted before the exams. Talent and e¤ort are distinguished so that both selection

and incentives are the two main operating determinants of success in tournaments.

We analyze the entry exams as a game between students in which information is incomplete.

Agents do not know the types of competing students, only their distribution in the population. They

do know however their own talent and their own preferences. We shall consider Nash equilibria of

this game for all students. We thus write the decision model for any student where we consider

that actions, or choice probabilities, taken by any other student and which are described below are

�xed.

In dynamic models, assumptions about expectations play a key rôle (Manski, 1992). We assume

that expectations about own grades and others�grades, which are uncertain, are perfect, in the

sense that the distribution of those random variables are equal to the distribution of those in the

data. Even if there are multiple equilibria of the game, a point we shall return to in the section

about counterfactuals, we nevertheless assume that everybody coordinates on the equilibrium that

is observed in the data. Therefore, all thresholds determining at which grades the two-stage exams

are passed are supposed to be perfectly anticipated. In other words, players are sophisticated. The

validity of this assumption is questionned by Lai, Sadoulet & de Janvry (2009) and He (2009).

We start by looking at the timing of the extended structure and continue by de�ning notations

and formalizing the sequence of decisions & information arrival times. We then turn to measure-

ments and to the analysis of the solution to the economic model.
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2.1 Timing

We begin with setting up the notations and we omit the individual index for simplicity. Variable

d is a speci�c major and D is the number of such majors. The outside option is denoted d = 0.

Observed characteristics of the student are denoted z; an unobserved single dimensional variable,

"; stands for student�s talent and various unobserved tastes for every major are piled up in a vector

of preferences u = fudgd=0;:;D. Because preferences are written as a reduced form of future rewards

on the labor market yielded by a speci�c major degree, they are likely to be correlated with talent

".

� Step 1: Information: A standardized national exam whose nickname is ENEM is organized

about a year before the entry exam. Denote, m0, the grade obtained at this exam and assume

that:

m0 = "+ �0;

where �0 is a noise scrambling the signal for talent ". Talent " is known by each agent ex-ante

while �0 is not. The distribution of both is common knowledge among students.

� Step 2: Decisions: The student simultaneously chooses one single major, d 2 f0; :; Dg and
resources, y, to apply in terms of hours or expenditures in order to prepare the entry exam

into the university. These resources or e¤ort, y, are written in terms of units of higher grades

that they allow the student to obtain at least in expectation. We assume that resources y

that are unobserved are written in the same units as talent " is so what impacts the grades

is the sum of talent " and resources y. Cost of resources is supposed to be quadratic in e¤ort

and equal to:

c0(y + cy
2=2):

Parameter c0 could be heterogenous across agents and potentially correlated with " although

we will show that its distribution is not identi�ed. On the other hand, parameter c is assumed

to depend on characteristics z or talent " via a deterministic function only.

� Step 3: Information: At the �rst stage of the vestibular, which is common to all majors, the
student gets a grade denoted m1 that we assume is given by:

m1 = "+ y + �1;
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where �1 is some noise. Students are ranked according to a known weighted combination

of grades m0 and m1 decided by the University. The �rst stage is passed and the student

proceeds to Step 2 if and only if the rank of the student among its fellow students in major

d 2 f1; :; Dg is larger than a certain reference rank. We neglect ties that are broken using a
formal institutional rule that has marginal importance here. The number of students who are

allowed in is equal to three or four times the number of seats available in that major. As m0

is observed by everybody and as we are looking at Nash equilibria, the passing rule can be

written as:

m1 � t1(d;m0):

Otherwise the exam is failed and the student gets the utility u0 of the outside option. this

is the utility of the best option among; The expected value of investing an additional year

so as to try to enter again into the university; The expected value of trying to enter another

university, a private or a State university �since both exist in the same town �or in another

town; To any other option that the student has, for instance if the student desists once and

for all. It is likely that the outside option depends on talent ". Nevertheless, we suppose for

simplicity that the value of the outside option does not depend on resources y expended in the

last period. The impact of resources y are supposed to be speci�c to the exam taking place

this year and at this university. this assumption enables us to argue later on that modifying

the selection mechanism does not a¤ect the population of students willing to take the exam.

� Step 4: Information: At the second stage,4 the student gets another grade,m2 and we assume

that:

m2 = "+ y + �2;

where �2 is some noise. Again, students are ranked according to a known weighted combination

of m0; m1 and m2 and only the higher ranked fraction of students is accepted. Again, we can

write the passing rule as a function of observed grades m0 and m1:

m2 � t2(d;m0;m1):

4At the second stage, the majors have more freedom to set the exams in the subjects they want and that form the
core of high school education in Brazil: Portuguese, Geography, History, Biology, Chemistry, Mathematics, Physics
and Foreign Language.
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Otherwise, if the grade is smaller than the threshold, the exam is failed and the student gets

the outside option u0: Namely, the access to the second stage does not grant any privilege

given unobserved talent and e¤ort. Finally, in case of success, the student gains ud as a

function of future wages, major choice and tastes. We chose this speci�cation because we

have no information on wages. Note that ud and talent " are generally correlated through

unobserved wages.

2.2 Observations, Measurements and Expectations

Measurement of talent As a summary, the grades obtained at the di¤erent stages are func-

tions of unobserved talent " and e¤ort y such that:8<:
m0 = "+ �0
m1 = "+ y + �1
m2 = "+ y + �2

where �i are noises a¤ecting grades. Note that talent and e¤ort have the same e¤ect at the two

stages of the exam something that we could try to generalize by using information coming from

di¤erent exams (i.e. mathematics, portuguese etc) although it is crucial in this set-up since it allows

the identi�cation of the distribution of e¤ort under conditions that we study below.

Expectations The student knows her own talent "; tastes & rewards ud and continuation value

u0 and learns about (�0; �1; �2) at every step. We �rst assume that measurement errors (�0; �1; �2)

are independently distributed and are independent of any other variables. Their distribution is

common knowledge. Furthermore, the student is supposed to know the distribution of the structural

random errors ("; fudgd=0;:;D) and of covariates z in the population:

Pr("; fudgd=0;:;D j z);

but not the precise shocks a¤ecting competitors. We assume that the anticipated distribution is

equal to the actual distribution of these variables in the data. 5

5We also impose some technical conditions that all distributions are smooth enough and everywhere increasing.
Furthermore, in parametric models below, we neglect all constraints coming from the fact that grades are bounded.
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2.3 Solving the model backward

We now write the dynamic model of choice. We do not use a discount factor even if this process

takes time, as the discount factor is generically not identi�ed in these dynamic discrete choice

models (e.g. Magnac and Thesmar, 2004). We solve the model backward given the information

that is available to the agent at each stage.

At Step 4 which is reached in the case of success at the �rst stage exam,m1 > t1(d;m0), the agent

has no decision to take and the history that she conditions on is h1 = (";m0; y; d;m1) comprising

talent, ", initial and �rst-stage grades, m0 and m1; e¤ort y and selected major d. The value of such

an history is the sum of what can be obtained in case of either success or failure:

V2(h1) = Pr
�2
fm2 > t2(d;m0;m1) j h1g:ud + Pr

�2
fm2 < t2(d;m0;m1) j h1g:u0:

Given that measurement shocks �j are independent, the only thing that matters in h1 are variables

("; y; t2(d;m0;m1) � t2d). Thus:

V2("; y; t2d) = Prf�2 > t2d � "� yg:ud + Prf�2 � t2d � "� yg:u0:

At the previous step, Step 3, the �rst stage grade is revealed so that the student gains the value

V2(:) if she passes, i.e. m1 > t1(d;m0) and gains u0 if she fails.

Going backward, at Step 2, two decisions are to be taken about the selection of a major and

about resources y to put up in such an endeavour. History is h0 = (";m0); composed by talent and

initial grade so that the utility at Step 2 as a function of the two decisions is written as:

V1(y; d;h0) = �c0:(y + cy2=2) + E�1 [1fm1 > t1(d;m0)g:V2(h1)] + Pr
�1
fm1 < t1(d;m0)g:u0;

Denote the overall probability of success in major d as:

Pd(y;h0) = Pr(�1 > t1(d;m0)� "� y; �2 > t2(d;m0; "+ y + �1)� "� y): (1)

Function Pd is derived from the independent distributions of �s. Note that ressources y unam-

biguously increase this probability and the derivative of this probability with respect to y, denoted

P 0d is positive (see Note 5). Additionally, when y tends to +1 (respectively �1 if it was possible),

Pd tends to 1 (resp. 0) we can interpret this derivative as a density function.
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Regrouping terms, we get:

V1(y; d; ";m0) = �c0:(y + cy2=2) + Pd(y; ";m0):ud + (1� Pd(y; ";m0)):u0:

Finally, at Step 0; the preferred major is selected as well as exerted e¤ort:

V0(";m0) = max
y;d

V1(y; d; ";m0):

The existence of solutions to this program is easy to argue. Decision d is discrete and y is bounded

from below by 0 (i.e. y � 0): Furthermore if y tends to in�nity, the bene�t tends to zero because the
probability of success is bounded while the cost tends to in�nity. Regarding uniqueness arguments

are studied below. We shall denote d�, the selected major, and yd the optimal solution for e¤ort if

major d is chosen.

2.4 Characterization of the solution

As usual in discrete choice models, some normalization of the payo¤s are needed. Given the optimal

e¤ort yd, whose determination is analyzed below, the value at time 0 simpli�es to:

�c0:(yd + cy2d=2) + Pd(yd; ";m0):(ud � u0) + u0:

As the choice of major d is a discrete decision and as u0 is independent of y, the continuation value

u0 is irrelevant. The location normalization in discrete choice models is to set u0 = 0 without any

loss of generality. The same would apply to any �xed costs involved in the application of ressources

(e.g. preparatory courses). The net value of each major is therefore given by:

vd = �c0:(yd + cy2d=2) + Pd(yd; ";m0):ud:

Note that the optimal major d� satis�es the condition vd� � 0 since our sample only comprises

students willing to take the exam. If vd� < 0; the person does not belong to our population of

interest. We will return to the normalization of the level of value functions later on.

Furthermore, the monetary unit in which these values are expressed is not identi�ed in discrete

choice and some scale normalization is necessary. We divide these values by cost c0 (or normalize

c0 to 1) so that:

vd = �(yd + cy2d=2) + Pd(yd; ";m0):ud: (2)
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We now turn to the characterization of the solutions. We �rst analyze the �rst order conditions

related to the choice of e¤ort for any choice of major d. The �rst order condition with respect to y

yields:

1 + cyd = P
0
d(y; ";m0)ud: (3)

As derivative P 0d is positive, e¤ort is positive if and only if ud > 0 so that major d yields more

value than exerting the outside option. Besides, using the second order condition, the �rst order

condition corresponds to a maximum if and only if at that point we have

P "d ud < c =) P "d udyd < P
0
dud � 1 =) ud >

1

P 0d � Pd":yd
where P 0d � Pd":yd > 0.

for ud � 0. There can be multiple solutions to this equation or none although it is easy to argue

that they are bounded:

We can also have a corner solution at yd = 0. For instance, if ud > 0 and ud < (maxy�0 P 0d(y; ";m0))
�1

the cost of e¤ort is too large with respect to the bene�t (proportional to ud) and yd = 0. The general

solution is derived from the set of optimal solutions to the �rst order condition and the comparison

of values at those di¤erent solutions. This de�nes a set of regimes that are obtained for di¤erent

solutions. Figure 1 represents the case of an optimal solution in a diagram when c = 0 and P 0d is

unimodal so that there is a unique interior solution that can be compared to the corner solution.

Furthermore, the optimal e¤ort function is continuous in ud when the �rst order solution remains

in the same regime. It can also jump from 0 to a positive solution or from one solution to the next

when there is a change in regime. Nevertheless, the value vd is continuous in ud and is also increasing

in ud: This is the object of the following:

Lemma 1 The value vd given by equation (2) is continuous and increasing in ud. Furthermore,

vd(0) = 0 and function vd(ud) can be inverted.

Proof. Write equation (2) as:

vd =
X
(�~yd + Pd(~yd; ";m0):ud)1fyd = ~ydg+Pd(0; ";m0):ud1fyd = 0g;

where the sum is taken with respect to all solutions of equation (3). By assumption, Pd(:) is a

continuous function of y and within regimes yd is a continuous function of ud (see equation (3)

above). The only points at which it could be discontinuous are the switching points between

regimes but the values vd in both regimes are equal at these switching points.
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Showing that vd is increasing uses that in every regime the quantity �~yd + Pd(~yd; ";m0):ud is

increasing in ud; the derivative being equal to Pd(~yd; ";m0) > 0. For a corner solution, the derivative

is also equal to Pd(0; ";m0) > 0. vd is therefore di¤erentiable except possibly at point ~ud where

left-hand and right-hand side derivatives may di¤er. Moreover note that ud = 0 implies that vd = 0:

Namely, when ud = 0; we have no investment yd = 0 since they are unproductive and therefore

vd = 0: The existence of the reciprocal uses that vd is an increasing function in u.

Some �nal remarks are in order regarding the structure of the game. The interactions between

agents are modelled through the thresholds ti(d) which are here supposed to be known i.e. are

perfectly anticipated by the students. The additional complication (auction) would be to assume

that they are the results of these interactions. Imagine that there are N players which are drawn in

the distribution of ("; �0; �1; �2): Then ti(d) are determined considering this population of players.

As the number of players N is quite large, the sampling variability of the thresholds seems to be

negligible with respect to the variability of the measurement errors.

3 The econometric model

3.1 Non-parametric Identi�cation

We here discuss informally some characteristics relative to non parametric identi�cation by contrast-

ing it to the usual estimation of discrete variable models. We assume that we observem0; d; yd;m1;m2

and we proceed in several steps. First of all by observing the rank of the auction we can derive

t1(d;m0) and t2m for each choice d and values of m0 and m1.

Second, we analyze the identi�cation of the success probability function Pd(y;m0; "). Last, we

study the identi�cation of preferences. We �rst present the general case and then turn to special

cases.

3.1.1 The distribution of measurement errors in grades

To identify the distribution of �1 and �2, the main issue arises because of the truncation of the

observed sample at the second stage, a truncation that can be written as m1 > m
�
1 where m

�
1 is a

deterministic threshold, m�
1 = t1(d;m0). We have:�

m1 = "+ y + �1
m2 = "+ y + �2
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There are two ways to proceed. Either use an argument of identi�cation at in�nity by assuming

that if m0 is su¢ ciently large, the truncation is irrelevant i.e. m�
1 = t1(d;m0)! �1: We can then

use the deconvolution argument of Kotlarski (see for instance, Heckman and Navarro, 2005).

We can also develop identi�cation of the distribution of " + y and �1 in the case in which �2

is assumed to have a �nite number of points of support. The formalization of the identi�cation of

mixtures that follows concern mixtures which have two points of support and is thus a special case.

Suppose that m1 is observed continuously although m2 is observed continuously only when

m1 � 0. We assume that: �
m1 = x+ �1;
m2 = x+ �2:

(4)

where �1 (resp. �2) can take only two values 0 and � with probabilities �1 and 1 � �1 (resp. �2
and 1 � �2). We assume that �j 2 (0; 1). In contrast, x is allowed to take a continuum of values

and its density function exists and is denoted �(x) and for simplicity we shall assume that �(x) > 0

over the whole real line. Relaxing this assumption is not di¢ cult.

This framework implies that the density of m1 exists and is equal to:

p(m) = �(m)�1 + �(m��)(1� �1); (5)

which is observed for any m. Second, that the support of the joint density of m1 and m2 are 3

straight lines (m;m); (m;m+�) and (m;m��) and:8<:
p(m;m) = �(m)�1�2 + �(m��)(1� �1)(1� �2);
p(m;m+�) = �(m)�1(1� �2);
p(m;m��) = �(m��)(1� �1)�2:

These quantities are observed when m � 0 and therefore � is identi�ed. We now show that all

parameters are identi�ed:

Lemma 2 Parameters �1; �2 and �(m) are identi�ed

Proof. Write the last equation as:

�(m��)(1� �1) =
p(m;m��)

�2
;

replace in the �rst:

p(m;m) = �(m)�1�2 + p(m;m��)
(1� �2)
�2

;
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and derive:

�(m)�1 =
1

�2

�
p(m;m)� p(m;m��)(1� �2)

�2

�
:

Replace in the second equation to get:

p(m;m+�) =
1� �2
�2

�
p(m;m)� p(m;m��)(1� �2)

�2

�
= a2 (p(m;m)� p(m;m��)a2)

where a2 = 1��2
�2

> 0. This is a second degree equation since p(m;m � �) 6= 0 because of our

assumptions. It can be rewritten as:

(a2)
2p(m;m��)� a2p(m;m) + p(m;m+�) = 0;

whose discriminant is D = p(m;m)2�4p(m;m��)p(m;m+�): A necessary condition is therefore
that the discriminant is positive and we shall assume this condition. The solution(s) is (are) thus:

a�2 =
p(m;m)�

p
p(m;m)2 � 4p(m;m��)p(m;m+�)

2p(m;m��) :

To select one of the solution, consider that:

D = (�(m)�1�2 + �(m��)(1� �1)(1� �2))2 � 4�(m)�1(1� �2)�(m��)(1� �1)�2;

= (�(m)�1�2 � �(m��)(1� �1)(1� �2))2 ;

so that:

a+2 =
�(m)�1�2 + �(m��)(1� �1)(1� �2) + j�(m)�1�2 � �(m��)(1� �1)(1� �2)j

2�(m��)(1� �1)�2
:

When �(m)�1�2 � �(m��)(1� �1)(1� �2) > 0; or equivalently:

�(m)�1
�(m��)(1� �1)

�2
1� �2

> 1() �(m)�1
�(m��)(1� �1)

> a2;

solution a+2 is equal to:
�(m)�1

�(m��)(1� �1)
;

which is by construction strictly larger than a2: When �(m)�1�2 � �(m��)(1� �1)(1� �2) � 0;

a+2 =
�(m)�1�2 + �(m��)(1� �1)(1� �2)� (�(m)�1�2 � �(m��)(1� �1)(1� �2))

2�(m��)(1� �1)�2
= a2;
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which is therefore the generic solution. In the �rst case, it is straightforward to verify that solution

a�2 is the generic one. To select one of the two solutions reconsider the ratio of the two probabilities

which yield:

p(m;m+�)

p(m;m��) =
�(m)�1

�(m��)(1� �1)
1� �2
�2

=
�(m)�1

�(m��)(1� �1)
a2:

Therefore:
�(m)�1

�(m��)(1� �1)
? a2 ()

p(m;m+�)

p(m;m��) ? (a2)
2:

The solution is then given as the one which satis�es this latter condition and this identi�es �2. We

can now reconsider the expressions:8>><>>:
�(m)�1 =

p(m;m+�)

(1� �2)
;

�(m��)(1� �1) =
p(m;m��)

�2
=) �(m)(1� �1) =

p(m+�;m)

�2
;

to derive that:
1� �1
�1

= a2
p(m+�;m)

p(m;m+�)

which (over)-identi�es �1 using observations m > 0. Using the equations above identi�es �(m) for

any m � ��. Finally, using equation (5), we can write:

�(m��) = p(m)� �(m)�1
1� �1

;

which by recursion identi�es �(m) for any m < 0.

This proof can be extended to multiple values and might be interesting to extend to the case in

which the random shocks are bounded from below.

Last but not least, we can thus write for any y � 0 the functions Pd(y; ";m0) and P 0d(y; ";m0)

using the distribution of (�1; �2).

3.1.2 Preferences for majors

We want to exploit the choice model to write and identify the underlying structure of preferences

from the distribution of:

Pr(d j m0):

16



For simplicity, assume that d is a binary variable for a two-state model where 2 is the alternative

to 1. To proceed, let us �x " and utilities ud: This delivers the optimal value of e¤ort yd and the

optimal value functions vd(ud; ";m0) so that the choice probabilities become:

Pr(d = 1 j m0; ") = Pr(v1(u1; ";m0) > v2(u2; ";m0) j m0; "):

where vd are increasing functions of ud by Lemma 1. The functional forms of these functions are

identi�ed since they are functions of functions Pd which are supposed to be identi�ed.

We therefore get:

Pr(d = 1 j m0) =

Z
1fv1(u1; ";m0) > v2(u2; ";m0)gf(u1; u2 j ";m0)f(" j m0)du1du2d": (6)

The only unknowns is this expression are the densities f(u1; u2 j ";m0) because the distribution of

" is identi�ed using the proof above as well as functions vd.

Moreover, note that this is a choice based sample since only d = 1 or d = 2 is observed. It

is straighforward to show that the density function for negative values of u1 or u2 remains non

identi�ed. Consider the previous expression and write:

Pr(d = 1 j m0) =

Z
u1>0;u2>0

1fv1(u1; ";m0) > v2(u2; ";m0)gf(u1; u2 j ";m0)f(" j m0)du1du2d"

+

Z
u1>0;u2<0

f(u1; u2 j ";m0)f(" j m0)du1du2d":

since in the second case we have necessarily v1(u1; ";m0) > v2(u2; ";m0): Call the second term

on the RHS P1(m0) which by construction is lower than the LHS. Proceed in the same way for

Pr(d = 2 j m0) and call the second term P2(m0): As this is a choice based sample Pr(d = 1 or

2 j m0) = 1, summing the choice probabilities yields:Z
u1>0;u2>0

f(u1; u2 j ";m0)f(" j m0)du1du2d" = 1� P1(m0)� P2(m0):

The claim of non identi�cation can now be phrased as follows. If (f(u1; u2 j ";m0); P1(m0); P2(m0))

is a solution to equation (6) (and the corresponding expression for d = 2) then (
f(u1; u2 j ";m0)

1� P1(m0)� P2(m0)
; 0; 0)

is also a solution to equation (6).

We will thus argue the distribution of negative values for u1 and u2 can be set arbitrarily provided

that they respect the constraint that Pr(d = j j m0) > Pj(m0).
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A special case We simplify the model and assume that m0 = " so that the identi�cation of the

distribution of " is simpler. the expression above, we thus have:

Pr(d = 1 j m0) =

Z
Pr(v1(u1;m0) > v2(u2;m0) j m0; u1; u2):f(u1; u2 j m0)du1du2: (7)

It is well known that from binary choice models additively linear in the unobservables, it is impossible

to identify the distribution of the value of one alternative. The situation is slightly di¤erent in this

non linear-setting.

First remember that when d = 1 necessarily u1 > 0. We shall �rst study one-to-one increasing

mappings for u1 from [0;1) to [0;1); denoted T (:): They might depend on m0 that we drop for

simplicity since it can applied for any m0. Since vd are invertible, we have:

Pr(d = 1) = Pr(v1(u1) > v2(u2)) = Pr(u1 > v
�1
1 � v2(u2))

= Pr(T (u1) > T � v�11 � v2(u2)) = Pr(v1(T (u1)) > v1 � T � v�11 � v2(u2))

= Pr(v1(T (u1))) > v2 � v�12 � v1 � T � v�11 � v2(u2))

= Pr(v1(w1) > v2(w2))

where w1 = T (u1); w2 = v�12 �v1�T �v�11 �v2(u2). It proves that the distribution of u1 is not identi�ed
on [0;1). As it can neither be identi�ed on (�1; 0), we can thus normalize the distribution of u1
to any known continuous distribution, for instance N(0; 1).

Furthermore, in the absence of any other restriction, the distribution of u2 remains underiden-

ti�ed. The only restriction that we have is:

Pr(d = 1 j m0) = Pr(v1(u1) > v2(u2) j m0) = Pr(u2 < v
�1
2 � v1(u1) j m0)

We informally discuss the �nal identi�cation issues; We use exclusion restrictions since we shall

assume that conditional on talent, e¤ort and some other variables, grades will not depend on some

variables (the education level of the parents in the empirics below). On the other hand, we shall

assume that conditional on talent and some other characteristics, the utility of each major does

not depend on resources invested beforehand in private schooling, preparation and repetition of

the exams. We can thus consider that the success probabilities depend on other variables than the

utility of each major which allows us to disentangle these two determinants of choices.
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3.2 Parametric estimation

3.2.1 The distribution of grades

We adopt the assumption made earlier in the special case of the previous section that m0 is the

talent measured without error i.e. �0 = 0. The initial grade is thus given by:

m0 = �0 + �0:"

where, abusing notations, m0 is the transformation of the initial grade into a range going from �1
to +1 of the form log( x�(xmin�1)

(xmax+1)�x): The estimation of �0 and �0 is thus straighforward.
6

The �rst and second stage grades (also transformed accordingly to make their range be the

whole real line) are supposed to depend on "+ y the additive combination of talent " = m0��0
�0

and

e¤ort y which is unobserved. The distribution of y is itself a result of optimization and is a function

of unobserved tastes ud for major d. Talent " and e¤ort y are correlated since investments y depend

on talent ". Furthermore, y is truncated so that y � 0 with a mass point at zero:
We assume that e¤ort y can be written as y = (�y+�"+v)1f�y+�"+v > 0g where v is normal

variable independent of ". As y is unobservable, we posit directly that:�
m1 = �1 + s1"+ �1:(�y + �"+ v)1f�y + �"+ v � 0g+ �1:�1;
m2 = �2 + s2"+ �2:(�y + �"+ v)1f�y + �"+ v � 0g+ �2:�2;

(8)

where �i are distributed N(0; 1) and are independent between themselves and of v and " and where

we normalize the normal variate v so that Ev = 0 and V v = 1. Parameters sj; �j and �j are scaling

factors and if the speci�cation of the model in previous sections is true we should have (leaving the

mean unrestricted):
s1
s2
=
�1
�2
: (9)

Denote m" = �y + �". Using �rst stage grades, it is possible to estimate �1 and s1 by regressing m1

on " by

E(m1 j ") = �1 + s1"+ �1(m"�(m") + '(m")); (10)

where �(:) (resp. '(:)) is the unit normal cdf (resp. pdf) (Johnson, Kotz and Balaskrishnan, 1994,

vol1, p156). We can also derive that :

V (m1 j ") = �21 + �21
�
(1 +m2

")�(m") +m"'(m")� (m"�(m") + '(m"))
2
�
: (11)

6In the case in which m0 is missing and this concern only a small fraction of the sample (5%), we impute the
value obtained by a regression of m0 on explanatory variables and treat the prediction as if it were the true value
for m0.
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Using second stage grades is slightly more di¢ cult since the sample is truncated at value m1 >

m�
1. Note that m

�
1 depend explicitly on m0 and that the equation above implies that:

E (m2 j ";m1) = �2 + s2:"+ �2:E ((m" + v)1fm" + v � 0g+ �2:�2 j ";m1)

= �2 + s2:"+ �2E
�
(m" + v)1f�y + �"+ v � 0g j ";m1

�
= �2 + s2:"

+�2:E ((m" + v)1fm" + v � 0g j m1 � �1 � s1" = �1:(m" + v)1fm" + v > 0g+ �1:�1; ") ;

where the second line obtains because of independence between �2 and "; �1 and v and the last line

by a mechanical substitution.

Note that conditioning on the �st stage grade dispenses with looking at the selection bias since

we look at all m1 > m�
1. The rest of the algebra is done in Appendix A.1 where the following

Lemma is proven:

Lemma 3 We have: �
E (m2 j ";m1) = �2 + s2:"+ �2:A1A2;
V (m2 j ";m1) = �22 + �

2
2: [A1B1 � (A1A2)2] ;

where A1; A2 and B1 are de�ned in the proof as a function of the parameters.

The parametric model consists therefore in the two equations (10) and (11) and by the restric-

tions given in Lemma 3. We used a psseudo likelihood function based on the normal distribution

to estimate these restrictions. We can also impose restriction (9) which is overidentifying in this

parametric model.

This parametric setting can be extended easily to a semi parametric setting. First, it is imme-

diate to realize that we can dispense with any distributional assumption about �2 in the previous

argument. It is also easy to consider that y is an unrestricted spline function of ":

y = �y +

KX
k=1

bk(") + v;

where bk(") are quadratic spline functions, for instance. It is doable but less easy to rela the

normality assumption on �1 but much less easy to relax the normality assumption on v: We let

these investigations for future research.
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3.2.2 The choice model

As shown in equation (7), we have that:

Pr(d = 1 j m0; z) = Pr(v1(u1;m0) > v0(u0;m0) j m0)

where we assume that u1 s N(0; 1) and where u0 s N(z�0; �0) where (�0; �0) are to be estimated.

The �rst step of the algorithm detailed in the Appendix consists in computing the various

functions vd: It is then given by:

vd = �yd + Pd(yd;m0; "):ud

where the result of Lemma 1 is used solving for:

1 = P 0d(~yd):ud

and the corner solutions. We do that for each d and evaluate the result using simulation following

the lines of the GHK simulator.

4 Empirical analysis

The complete database comprises 41377 students who took the exam in 2004. The list of variables

consists in:

� grades at various stages (the initial national exam, the �rst and second stage of the vestibular)

� gender, age by discrete categories (16, 17.5, 21 and 25), the education levels of father and
mother.

� the public/private choice at the primary and high school levels: it is a discrete variable taking
values 0,1/3,2/3,1 according to the fraction of time spent in a private school.

� the number of repetitions and the undertaking of a preparatory course

In total there are 58 majors that the students may consider. Table 1 reports the list of majors and

the grouping of majors that we performed acccording to the composition of the departments within

the University and the contents of the second stage exam. For instance, a major in Medicine or
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Pharmacy and other medical �elds as well, requires taking speci�c exams in biology and chemistry

at the second stage while an Engineering major requires taking mathematics and either physics

or chemistry at the second stage. On the other hand, Law requires the same speci�c exams as

Literature but belongs to a di¤erent department. We used these guidelines to group the majors

into 4 groups �Business & Law, Mathematics, Medicine and Humanities �which are themselves

di¤erentiated into 13 subgroups. The complete tree appears in Table 1. This decomposition makes

it also simpler to report descriptive information for majors.

4.1 Descriptive results

Speci�cally, Table 2 reports the number of student applications, the available positions and the

rate of success at stages 1 and 2 in each of those major �elds. These �elds are quite di¤erent not

only in terms of organization and in terms of contents but also regarding the ratio of the number

of applicants to the number of positions. At one extreme lie Physics and Chemistry in which the

number of applications is low and the �nal pass rates very high (20%). At a lesser degree this is

also true for Accountancy, Agrosciences and Engineering. At the other extreme, lie Law, Medicine,

Other humanities and Pharmacy, Dentist and Other in which the �nal pass rate is as low as 5 or

6% that is one out of 16 students passes the exam. Nevertheless, there are other di¤erentiations in

terms of quality.

We now look in more detail to teh di¤erences in terms of grades across major �elds and we

justify the restiction of our analysis to a speci�c subsample containg three medical majors.

4.1.1 The distribution of grades

Tables 3 and 4 report summary statistics in each major �eld concerning the grades obtained �rst at

the national examination (Table 3) and at the �rst stage of the college exam.7 We report statistics

on the distribution of the initial and �rst stage grades in three samples:8 the complete sample, the

sample of students who passed the �rst stage and the sample of students who passed the second

stage and thus are accepted in the programs. Major �elds are ranked according to the median grade

among those who passed the �nal exam in that major �eld.

7We do not report the second stage grades as they consist in grades in speci�c �elds that are not necessarily
comparable across major �elds.

8We report for the complete sample the 10th percentile instead of the minimum in order to have a less noisy view
of whom are the applicants. There are also a few zeros in the distribution of the initial grades.
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From Table 3, we can conclude that applications do not di¤er across majors in the tails of the

distribution of initial grade since all minima are around 20 and all maxima are close to the top grade

63. The fact that applicants do self-select by talent when choosing their majors is captured by the

medians of initial grades of applicants in column 4 of Table 3. Medians are quite constant around

34 in the 6 �rst major �elds yet then increase to attain the grade level of 44 for Law and 51 for

Medicine. A second conclusion from Table 3 is that as expected the initial grades of those students

who have access either to the second stage or pass the exam, are larger and are ordered as would

be the �rst stage grades. Medians in the selected samples are now ranging from 42 in agrosciences

to 58 in medicine. What strikes in this table is the proximity of the initial grades of those who pass

and those who fails at the second stage which expresses that initial grade is an imperfect proxy for

the �rst-stage grade. The range of medians shrinks to 46 to 58.

Initial grades are a predictor of talent and of e¤ort in the model. This is why the same statistics

using �rst stage grades reported in Table 4 should be more informative. Indeed, even the minima

tend to be ordered as the median of students who pass (column 6) from 70 to 90 in column 1. The

�rst columns also reveal that some groupings might be somewhat arti�cial. The whole distribution

is for example scattered out in mathematics from a minimum of 70 to a maximum of 222 while

in medicine the range is 189 to 224. Other details are worth mentioning. The minimum grade in

medicine to pass to the second stage is close to the maximum that was obtained by a successful

students in Other �elds and somewhat less than in Agrosciences.

In conclusion, Medicine and Law are ranked the highest, as a matter of fact by a large amount

of di¤erence with other major �elds. For instance, in Table 4, the �rst stage grade among those who

passed in Medicine (resp. Law) has a median of 206 (resp. 189) while the next two are Pharmacy,

Dentist and Other (175) and Engineering (171) and the minimum is for Agrosciences at 142.

4.1.2 Restricting the sample

For computational simplicity, the empirical analysis will be performed using a sub-sample of ap-

plicants to this college entry exam. The form of the exam consisting in only one choice allows us

to simply restrict the sample without modifying the argument developed in the economic model.

All other majors are now summarized by the outside option. In the rest of the analysis, we shall

consider only individuals who take exams in the majors that are part of Medicine, the most com-
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petitive major �eld as shown above. There are three majors in this group corresponding to three

di¤erent locations in the state of Ceará: Barbalha, Sobral and Fortaleza. The �rst two majors are

small and o¤er 40 positions only while the last one, Fortaleza, is much larger since it o¤ers 160

seats. As shown in the empirical analysis below, this assymetry turns out to be important tp prove

the importance of strategic e¤ects.

Table 5 repeats the analysis performed in Table 4 at the disaggregated level of those majors.

Fortaleza is the most competitive one since the median of the �rst-stage grade of those who passed

is equal to 208.57 while for the two others, it remains around 200. nevertheless, the pass rate as

shown in Table 5 relating the number of applicants and the number of positions is about the same in

Sobral and Fortaleza (7%) while it is slightly lower in Barbalha (5%). At the same time, Barbalha

receives applications from the weakest students as shown by the median grades in the sample of all

applicants to this major.

The list of variables and descriptive statistics in the pools of applicants to the three di¤erent

majors appear in Table 6. The number of applicants taking the �rst exam are in total 3606 and

are decomposed into respectively 739 (Barbalha), 542 (Sobral) and 2325 (Fortaleza). The number

of seats after the �rst-stage is four times the number of �nal seats and is thus respectively equal

to 160 for the small majors and 600 for Fortaleza. Note also that only two applicants in the pool

of Fortaleza applicants and none in the others fail to go to the second-stage. The utility of taking

the second stage exam after the revelation of information after the second-stage is (almost always)

positive whatever the probability of success is.9

Apart from statistics on grades that we already reviewed, the three subsamples are somewhat

di¤erent. More women and individuals whose father and mother�s education level is higher apply

to the main major in Fortaleza. There are also some di¤erences in terms of private high school

attendance or the number of repetitions although they are not striking. Finally, Figures 2 and

3 report the estimated density functions of the �rst-stage and second-stage grades in the three

subsamples of applicants. These distributions are unimodal and the distributions of second-stage

grades are very similar in the three subsamples. Selection performed at the �rst stage seems to be

quite uniform. In contrast, the distributions of �rst stage grades are quite di¤erent. First, they

have a long-tail on the left concerning the weakest applicants. It seems also that the distribution

9The failure of two students to take the exam out of 920 might be put onto the account of sickness or other
accidents even if these events are not modelled here.
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for Fortaleza �rst-order stochastically dominates the distribution of �rst-stage grades applicants.

Fortaleza seems to be selected by better applicants.

4.2 Estimation of the dynamic model

4.2.1 Grade equations

We �rst estimate parametric grade equations form1 andm2 as developed in Section 3.2.1 by pseudo-

maximum likelihood in which we use the �rst and second order moments of the grades and where the

pseudo-distribution is normal. Results, using robust standard errors, are reported in Table 7. Table

7a reports the results using a simple speci�cation including the grade at national exam as the only

covariate while Table 7b reports results for a more complete speci�cation. These tables report three

sets of results corresponding to the coe¢ cients in equation (8). The �rst two columns report the

estimated coe¢ cients of variables entering directly the speci�cation of �rst stage grades, �1 = x�1

and s1 (resp. second-stage grades, �2 = x�2 and s2). The last column reports the estimates for the

variables appearing in the common component, �y = z�y and �. Finally, the estimated coe¢ cients

of e¤ort, �j, and standard errors, �j, of each equation in (8) are reported at the bottom of the �rst

two columns.

In Table 7a talent as measured by the initial grade is in�uencing positively the �rst and second

stage grades. It is very signi�cant at the �rst stage but not at the second stage. As expected

also, the e¤ect of e¤ort, as described by parameters �j, are positive and highly signi�cant. Overall,

restriction (9) that says that unobserved e¤ort has the same e¤ect at both stages of the exam is

frankly rejected (Student = 6.54). It might due to substantive di¤erences or it might be due to the

too restrictive nature of the parametric model.

This is why we considered the complete speci�cation in Table 7b. The restriction that says

that unobserved e¤ort has the same e¤ect at both stages of the exam is now not rejected at the

5% level (p-value = 6.8%). There are two points to note before commenting the complete results.

First, there does not seem to be any di¤erence for males and females (p-value = 8.2%). Second, the

variables concerning the education levels of the father and mother fail to appear in a direct way

in this speci�cation (p-value = 31.2%) while they a¤ect the common component concerning e¤ort

(p-value = 3.5%). As developed brie�y in the identi�cation section, these variables will provide an

important identi�cation leverage since they will be assumed to a¤ect utility but not probabilities
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of success. On the other hand, the variables that are supposed to a¤ect grades but not utilities are

the number of repetitions, the attendance of a preparatory course and a private high school. They

are jointly signi�cant in the terms �1 and �2, as reported in the �rst two columns of table 7b.

In terms of the variables, results are quite expected. Regarding the direct e¤ects on grades,

the older the applicant is, the lower grades at the two stages are. Attending a private high school

increases �rst stage grades signi�cantly but not second stage grades while attending a preparatory

course does the reverse by increasing second-stage grades signi�cantly. It conforms with the intuition

that the �rst-stage content is general while the second-stage is speci�c. The number of repetitions

increases at the 10% level the second-stage grade. Talent as described by the grade obtained at the

national exam is unambiguously positive and signi�cant. Turning to the e¤ect of these variables

on e¤ort (last column), we �nd again that age decreases e¤ort at least at age 25. The number of

repetitions increases e¤ort signi�cantly and it might be that e¤ort expanded in the previous exams

might �nd a way to express itself here. Parents�education unambiguously increases e¤ort so that

the utility of the majors unambiguously increases when these variables increase. Finally, talent also

increases signi�cantly e¤ort.

4.2.2 Preference estimates

Second we estimated preferences using simulated maximum likelihood. Random preference het-

erogeneities are assumed to be independent normals and we use the GHK simulator. The only

explanatory variable in the simple speci�cation that is reported here is the Grade at the national

exam and the results, using robust standard errors, are reported in Table 8. By assumption, the

main parameter is normalized to 0 and the standard error to 1 for the reference major (Fortaleza).

As for the other two majors, the negative and signi�cant coe¢ cients for the intercepts indicate

that the choice of the small majors (Barbalha and Sobral) are dominated by Fortaleza and that

talent attracts less students at Barbalha than at the other two schools something that we already

spotted using descriptive statistics. The estimate of standard errors of tastes for the latter major

are nevertheless larger and a signi�cant fraction of the population have preferences for Barbalha.

This will have an impact on the results for some counterfactuals that we study now.

[Include full speci�cation results here]
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5 Evaluation of policy changes

As we estimated the model using candidates to the exam only, it is not immediately clear that

we can evaluate the impact of policy changes on the extensive margin i.e. how it modi�es the

composition of the population of candidates. If the assumptions of the economic model are correct

it does not as a matter of fact. Indeed, changing the selection mechanism modi�es the success

probabilities but it does not modify preferences and the key position of the outside option in the

preference list. Indeed, if a major yields utility above the outside option, it will always deliver a

value of this major above the outside option whatever the selection mechanism. The same argument

applies to majors yielding utility below the outside option. Therefore, the population of interest

remains the same .

Two possible changes among many others, are interesting to study:

� Students could choose more than one major before the �rst stage.

� Students could choose between the two stages and not before the �rst stage.

We develop these two cases in this section. For welfare, we use an utilitarist social welfare

function where students get their ex-ante expected utility.

5.1 Enlarging choices

Suppose now that the choice set is composed by pairs (d�; d��) instead of a single choice d�. The

timing of the game remains the same, choices and investment being made before the �rst stage.

After the �rst stage, there are now three possibilities:

� m1 > t
A
1 (d

�;m0) : the student quali�es for the second stage of major d�:

� m1 < tA1 (d
�;m0) and m1 > tA1 (d

��;m0) : the student quali�es for the second stage of major

d��.

� m1 < t
A
1 (d

��;m0) : the student fails.

Note that the �rst and third stage are as in the original game whereas the second regime is

original. It is also obvious the limit grades tA1 (d;m0) varies with respect to the original experiment.
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Note also that because of perfect expectations, choosing a d�� such that tA1 (d
��;m0) > tA1 (d

�;m0)

implies that the second regime disappears and is thus equivalent to make a single choice (d�;?) as

in the original experiment. It happens in all cases where only a single choice is valued positively by

the agent. This is why we also allow for this choice possibility where tA1 (?;m0) =1.
The solving of the Nash equilibrium is slightly more di¢ cult that in the original game. We

follow the Gale Shapley student optimal stable mechanism to do that. Speci�cally, let us denote

the common parameter controling limit grades as a vector t :

t�1(d;m0) = t1(d;m0; t
0); tA1 (d;m0) = t1(d;m0; t

A)

where t0 is the original set of limits in the exam as it works currently and tA is the counterfactual

set of grades which will describe the Nash equilibrium in the new game. This will apply sililarly to

the second stage limit grades, t2(d;m0; t
A).

Set up the individual model as follows. For those succesful at the �rst stage, we have before the

second stage:

V2(h1) = Pr
�2
fm2 > t2(d

�;m0; t
A)gud� if m1 > t1(d

�;m0; t
A)

= Pr
�2
fm2 > t2(d

��;m0; t
A)gud�� if m1 2 [t1(d��;m0; t

A); t1(d
�;m0; t

A))

= 0 if m1 < t1(d
��;m0; t

A)

where it should be understood that V2(h1) = 0 when the interval on the second line is empty.

The value function at the �rst period becomes:

V1(d
�; d��; y;m0) = �y + E�1V2(h1)

= �y + E�1 Pr�2
fm2 > t2(d

�;m0; t
A)g1fm1 > t1(d;m0; t

A)gud�

+E�1 Pr�2
fm2 > t2(d

��;m0; t
A)g1fm1 2 [t1(d��;m0; t

A); t1(d
�;m0; t

A))gud��

= �y + Pd�(y;m0; t
A)ud� + P

(2)
d��(y;m0; t

A)ud�� : (12)

where Pd�(y;m0; t
A) is the overall probability of success for major d� as de�ned above. The second

probability P (2)d� (y;m0; t
A) is:

P
(2)
d��(y;m0; t

A) = E�1 Pr�2
fm2 > t2(d

��;m0; t
A)g1fm1 2 [t1(d��;m0; t

A); t1(d
�;m0; t

A))g:
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De�ne ~tA such that all limit grades remain the same except:

t1(d
��;m0; ~t

A) = t1(d
�;m0; t

A):

Therefore:

P
(2)
d��(y;m0; t

A) = Pd��(y;m0; t
A)� Pd��(y;m0; ~t

A); (13)

as a function of the previous success probabilities.

From equation (12), we can de�ne y(d�;d��) and therefore the optimal value function as a function

of (ud� ; ud��). We then de�ne:

(d�; d��) = arg max
(d1;d2;y)

V1(d1; d2; y;m0):

In order to compute the counterfactual limit grades tA we proceed as follows. We predict choice

and success at both stage probabilities for all individuals:

pi1(d; t
A) = PrfChoosing (d; ~d) and success at Stage 1 for d or

Choosing ( ~d; d) and success at Stage 1 for d and not for ~dg

Anlogously we can de�ne pi2(d; tA) describing choice and full success at both stages.

We then solve the non-linear D equations with D unknowns:

NX
i=1

pij(d; t
A) = Nj(d);

where Nj(d) are the number of o¤ered seats at Stage j for major d.

5.2 Changing the timing of choices

We can also change the timing of the game in the following way. The individual is supposed to

choose his/her major after full revelation of the �rst stage grade. Note that it is not equivalent to

the game where the list of preferences over all majors is as long as the individual wants since the

choice can be made dependent upon the revelation of the �rst stage grade m1.

Let C(m1;m0; t
B) be the choice set left after full revelation of the �rst stage grade:

C(m1;m0; t
B) = fd;m1 > t1(d;m0; t

B)g
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where tB is any set of equilibrium limit grades in this new setting. The value before the second

stage is:

V2(h1) = Pr
�2
fm2 > t2(d;m1;m0; t

B)gud� if d 2 C(m1;m0; t
B)

= 0 if not.

The individual chooses d� such that:

d� = arg max
d2C(m1;m0;tB)

V2(d;m1;m0)

The value function at the �rst period becomes:

V1(y;m0) = �y + E�1V2(d
�;m1;m0):

and we maximize this quantity in order to derive the optimal e¤ort, y.

There is no simple way of writing this maximization program since it corresponds to the inversion

of the expectation and the maximization operators. Indeed, the dynamic program that was solved

before correponds to:

max
d;y

�
�y + E�1V2(d;m1;m0)

�
to compare with the current one:

max
y

�
�y + E�1 maxd V2(d;m1;m0)

�
:

The algorithm that could be used to solve this program is by simulation. Let �s1 a draw in the

distribution of �1: We can thus compute maxd V2(d;m1;m0) as a function of y and speci�cally, the

derivative of this function with respect to y. We repeat this computation over S simulations and

get the evaluation of the second term E�1 maxd V2(d;m1;m0) as a function of y. We can then solve

for the optimal y. As y is bounded from below by 0 and the return to y is bounded if y tends

to 1; a solution exists. It might not be given by a �rst order condition though depending on the
characteristics of the function E�1 maxd V2(d;m1;m0).

5.3 Discussion of the uniqueness of equilibrium

In each of these experiments, including the one which is the current scheme of selection, remains

the pending question of the uniqueness of the equilibrium. This property should be proven in each
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set-up and we do not have any general result on uniqueness, to our knowledge. Nevertheless, it is

possible to prove uniqueness in a simple context. We assume that the scheme is the current selection

scheme with heterogeneity across agents in preferences only (equal talent) and in which there is no

e¤ort. We �rst look at the equilibrium at the second stage of the exam, given some probability of

success, fpdgd=1;:;D, at the exam and given some choice probabilities f�dgd=1;:;D. We pile up these
objects into vectors p and �.

The choice probabilities are given by the comparison between value functions fvd(pd)gd=1;:;D
where each value function vd depends on the success probability pd only and where it is strictly

increasing, i.e. pd > p0d =) vd(pd) > vd(p
0
d). We assume that for all d and all pd, we have �d > 0.

An additional interesting property is that:

8p;
DX
d=1

�d(p) = � independent of p:

Without loss of generality, we will assume that � = 1 in the following.

Let f�dgd=1;:;D be the fraction of seats in the population attributable to each major. The

equilibrium relationships can then be written as:

�d = Pr(Choosing d, Success in d) = Pr(Choosing d) Pr(Success in d) = pd�d = zd(p);

since choices and realizations are independent because e¤ort and talent are absent. We pile up the

elements zd(p) into z(p). The probability of failing is:

DX
d=1

(1� pd)�d = 1�
DX
d=1

�d;

and is satis�ed by construction as an accounting identity.

The following Lemma ensures the uniqueness of equilibrium:

Lemma 4 For any (p; p0); p 6= p0 and no elements of p is equal to zero, we have z(p) 6= z(p0).

Proof. By contradiction, assume that z(p) = z(p0) so that for any d, pd�d = p0d�
0
d.

Consider �rst that (i) p0d � pd for all d and the inequality is strict for at least one d: We thus
have:

pd�d = p
0
d�
0
d � pd�0d
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and for one d at least the inequality is strict since for all d, �d > 0. Thus �d � �0d and one inequality
at least is strict. It is a contradiction with

PD
d=1 �d = 1. Case (i) can obviously be extended to the

case where p0d � pd and one inequality is strict.
Second, consider (ii): for all d 2 I; p0d < pd and for all d 2 J; p0d � pd and where I is not empty.

The case where I is empty is the complement of case (i). We have:

d 2 I; pd�d = p0d�0d =) �d =
p0d
pd
�0d < �

0
d;

since �0d > 0. It implies that: X
d2I

�d <
X
d2I

�0d:

Yet, by de�nition:X
d2I

�d = Pr(max
d2I

vd(pd) � max
d2J

vd(pd));
X
d2I

�0d = Pr(max
d2I

vd(p
0
d) � max

d2J
vd(p

0
d)):

As for all d 2 I; p0d < pd; maxd2I vd(p
0
d) < maxd2I vd(pd) since the value functions are increasing,

and as for all d 2 J; p0d � pd, maxd2J vd(p0d) � maxd2J vd(pd); we have:

Pr(max
d2I

vd(pd) � max
d2J

vd(pd)) � Pr(max
d2I

vd(p
0
d) � max

d2J
vd(p

0
d)) =)

X
d2I

�d �
X
d2I

�0d;

a contradiction with the inequality above.

This Lemma ensures that the equilibrium is unique in terms of probabilities p. These equilibrium

values are obtained as a fucntion of the thresholds:

p�d = Pr(m1 > t1(d);m2 > t2(d)): (14)

Using the fact that �rst stage and second stage probabilities are �xed and known, we have:

Pr(m1 > t1(d);m2 > t2(d))

Pr(m1 > t1(d))
= �

which determines t1(d) as the unique solution of:

Pr(m1 > t1(d)) =
p�d
�
:

The second threshold t2(d) is then obtained by solving equation (14).

The general case is more di¢ cult to tackle since it consist in solving equilibrium relationships

such as:

Eu [pd(u)�d(u)] = zd(p) = �d:
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5.4 Results

We computed the equilibrium thresholds in the �rst counterfactual developed in the subsection 5.1

above and using values reported in Tables 7a and 8. We computed these counterfactuals using the

population of applicants at UFC by using that even success probabilities change, only students who

have at least one positively valued major take exams at this University. The population of reference

does not change as a result.

Table 9 reports the current and counterfactual thresholds. Quite surprisingly, the e¤ect is strong.

The �rst school, Barbalha, becomes a very competitive place since the thresholds at the �rst and

second stage are now the highest of all three majors. We attribute this to the very large dispersion

of tastes for Barbalha in the population and to the fact that students have less incentives to censor

themselves when they declare their �rst choices. They can "try" at Barbalha and as an insurance

device select Fotaleza second, a thing that they would not do in the current system because of the

small number of seats at that school (40). This is an illustration of the strategic e¤fect that the

current system has on students. Furthermore, what Barbalha gets, the largest one Fortaleza loses

it and at a lesser degree the other small one, Sobral. The counterfactual tends to create an elitist

small medicine school at Barbalha while the elite big school was before in Fortaleza. This is not

neutral for school managers and this could be evaluated.

If we adopt a pure utilitarist viewpoint by summing the ex-ante expected values for all students,

the counterfactual is slightly preferred (Ev1 = 1406:750) to the current system (Ev0 = 1353:776).

Figure 4 report the estimated current and counterfactual distribution of expected values in the

whole population and Figure 5 reports what we found in terms of di¤erences of expected values.

The distribution of di¤erences is slightly assymetric. The ones who gain to the counterfactual

change, gain more that the ones who lose. The distributive e¤ects are thus quite strong.

6 Conclusion

Our main result is that strategic e¤ects are indeed very strong when the matching mechanism

demands that the choice of majors should be before the �rst stage exam and that only one choice

is o¤ered to every student. Second, there are some gains to have more choices in the list although

the distributive e¤ects might be strong.
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These results need to be extended in various directions. We should be able to extend the

experiment using three majors only to the whole set of majors. It would also be interesting to

perform semi-parametric estimation of grades to see if our results are robust to this change in

speci�cation. Other counterfactuals like the one developed in the second subsection could also be

analyzed.

On the theoretical side, there are also large margins for improvement. For instance, there is

a complication related to the two-stage aspect of the exam. The �rst stage is general and the

second stage is chosen by the major. Some students do not undertake all speci�c exams (biology

is unnecessary to go into physics although needed when entering medicine). The vestibular system

thus allows a more re�ned selection and that is an interesting theoretical object of study.
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A Statistical appendix

A.1 Proof of Lemma 3

Denote :

M1 = m1 � �1 � s1";

X = m" + v

so that the term on the last line is proportional to:

A � E (X:1fX � 0g j �1:X + �1:�1 =M1; ") =

Z Z
�1:X+�1:�1=M1

X:1fX � 0g'(X�m")'(�1)dXd�1

since X and � are independent. We obtain:

A =

Z Z
�1:X+�1:�1=M1;X�0

X:'(X �m")'(�)dXd� =

Z
X�0

X:'(X �m")'(
M1 � �1X

�1
)dX:

We can write that:

'(X �m")'(
M1 � �1X

�1
) = A1:

1

�
'(
X � �
�

)

where A1; � and � are constant to determine. The left hand side is equal to:

1

2�
exp(� 1

2�21

�
�21(X �m")

2 + (M1 � �1X)2
�
) (15)

and the argument between square brackets in the exponential function is:

�21X
2 + �21m

2
" � 2�21m"X +M

2
1 + �

2
1X

2 � 2M1�1X

= X2(�21 + �
2
1)� 2X(�21m" +M1�1) + �

2
1m

2
" +M

2
1

= (�21 + �
2
1)(X � �)2 + 2X((�21 + �21)�� (�21m" +M1�1))

�(�21 + �21)�2 + �21m2
" +M

2
1

= (�21 + �
2
1)(X � �)2 � (�21 + �21)�2 + �21m2

" +M
2
1 ;

if we set � to:

� =
�21m" +M1�1

�21 + �
2
1

:
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Let set �2 = �21
�21+�

2
1
; and replace in equation (15) to get :

�

2�

1

�
exp(� 1

2�2
(X � �)2): exp(� 1

2�21

�
�21m

2
" +M

2
1 � (�21 + �21)�2

�
so that:

A =
�p
2�
exp(� 1

2�21

�
�21m

2
" +M

2
1 � (�21 + �21)�2

� Z
X�0

X:
1

�
'(
X � �
�

)dX = A1A2

where:

A1 =
�p
2�
exp(� 1

2�21

�
�21m

2
" +M

2
1 � (�21 + �21)�2

�
Because:

A2 =

Z
X�0

X:
1

�
'(
X � �
�

)dX = E(X1fX � 0g) = ��(�
�
) + �'(

�

�
)

we thus get:

E (m2 j ";m1) = �2 + s2:"+ �2A1

h
��(

�

�
) + �'(

�

�
)
i
:

In the truncated sample, we can also use that:

V (m2 j ";m1) = �22:V ((m" + v)1fm" + v � 0g+ �2:�2 j ";m1)

= �22:V ((m" + v)1fm" + v � 0g j ";m1) + �
2
2;

= �22:V (X1fX � 0g j ";m1) + �
2
2;

= �22:(E
�
X21fX � 0g j ";m1

�
� (E (X1fX � 0g j ";m1))

2) + �22;

where X = m" + v as before. It remains to evaluate:

B � E
�
X21fX � 0g j ";m1

�
which by the same argument as above leads to:

B = A1

Z
X�0

X2:
1

�
'(
X � �
�

)dX:

Furthermore:

B1 =

Z
X�0

X2:
1

�
'(
X � �
�

)dX = �2:

Z
Y�0

Y 2:'(Y � �
�
)dY;

= �2((1 +
�2

�2
)�(

�

�
) +

�

�
'(
�

�
)) = (�2 + �2)�(

�

�
) + ��'(

�

�
):

which proves the equations in the Lemma:�
E (m2 j ";m1) = �2 + s2:"+ �2:A1A2;
V (m2 j ";m1) = �22 + �

2
2: [A1B1 � (A1A2)2] :
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A.2 The Success Probability and its Derivative

We start from: �
m1 = �1 + s1:"+ �1y + �1:�1;
m2 = �2 + s2:"+ �2y + �2:�2:

The selection through the �rst stage is given by the condition, varying across majors:

FSFSE � FS0FSE

or equivalently as for the �rst stage grade:

m1 = FSFSE � 120 � ENEM=63 � m0
1;

whose threshold m0
1 varies between individuals because their grade at ENEM varies.

The selection into the second stage is given by the condition, varying across majors:

FG = 0:4FSFSE + 0:6FSSSE � FG0

or equivalently, if we set m2 = FSSSE:

0:4m1 + 0:6m2 � FG0 � 0:4 � 120 � ENEM=63

() m2 �
FG0 � 0:4 � 120 � ENEM=63� 0:4m1

0:6

() m2 � m0
2 � !m1;

which varies across individuals because grades m1 and at ENEM vary.

The (full) success probability is given by:

p(y) =

Z
m1>m0

1;m2>m0
2�!m1

f(�1)f(�2)d�1d�2;

=

Z
m1>m0

1;�2>
m02�(�2+s2"+�2y)�!m1

�2

f(�1)f(�2)d�1d�2

=

Z
m1>m0

1

f(�1)(1� F (
m0
2 � (�2 + s2"+ �2y)� !m1

�2
))d�1;

=

Z
�1>�

0
1

f(�1)(1� F (
m0
2 � (�2 + s2"+ �2y)� !m1

�2
))d�1;

where �01(y) =
m0
1�(�1+s1"+�1y)

�1
. We get:

p0(y) =
�1
�1
f(�01)(1� F (

m0
2 � (�2 + s2"+ �2y)� !m0

1

�2
))

+(
�2 + !�1
�2

)

Z
�1>�

0
1

f(�1)f(
m0
2 � (�2 + s2"+ �2y)� !(�1 + s1"+ �1y + �1�1)

�2
))d�1:
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Write the second integral on the RHS as:

I2 =

Z
�1>�

0
1

f(�1)f(�
!�1
�2
�1 + �)d�1

where:

�(y) =
m0
2 � (�2 + s2"+ �2y)� !(�1 + s1"+ �1y)

�2
:

In the normal variate case:

f(�1)f(�
!�1
�2
�1 + �) =

1

2�
exp(�1

2
(�21 + (�

!�1
�2
�1 + �)

2)

=
1

2�
exp(�1

2

�
(�1 � ��)2 + 2�1�� � �2�

�2
� 2!�1

�2
��1 + �

2

�
where:

�2 = (1 + (
!�1
�2
)2)�1:

Canceling the terms in �1 yields:
��(y)

�2
� !�1
�2
�

and the integrand of I2 becomes:

�(y)p
2�:�

exp(�1
2

�
(�1 � ��)2

�2

�
) where �(y) =

�p
2�
exp(

1

2
(
�2�
�2
� �2)):

Thus:

I2 = �(y)(1� �(
�01 � ��
�

));

and:

p0(y) =
�1
�1
f(�01)(1� �(

m0
2 � (�2 + s2"+ �2y)� !m0

1

�2
)) + (

�2 + !�1
�2

)�(1� �(
�01 � ��
�

)):

The second derivative is obtained as:

p"(y) =
�1
�1
f(�01)

�
�1
�1
�01(1� �(

m0
2 � (�2 + s2"+ �2y)� !m0

1

�2
)) +

�2
�2
f(
m0
2 � (�2 + s2"+ �2y)� !m0

1

�2
)

�
+

(
�2 + !�1
�2

)

�
�0(y)(1� �(

�01 � ��
�

))� �
�

d(�01 � ��)
dy

f(
�01 � ��
�

)

�
where:

�0(y) = (
�0���
�2

� �0�)�(y); �0� = �2
!�1
�2
�0; �0 = ��2 + !�1

�2
;
d�01
dy

= ��1
�1
:

Notice that:

p(y) =

Z
�1>�

0
1

f(�1)�(
�2 + s2"+ �2y + !m1 �m0

2

�2
))d�1;

that can be obtained easily by simulation.

40



A.3 Construction of the structural objects

We consider the approximation of the value function written as:

v(u) = max
y

�
Pd(y):u� (y + c

y2

2
)

�
:

The algorithm is designed in such a way that computing v(u) or its inverse can be performed using

a grid parameterized by values of y. We start by approximating the integral Pd(y) of P 0d(y). Our

objective is to make the approximation as simple as possible so that we could experiment with

di¤erent degrees of approximation.

The approximation will be controled by one index K which is inversely related to the degree of

thinness of the grid. Another index say K1 controls for the precision of the approximation of the

integral and we arbitrarily set that K1 = 5K.

A.3.1 Approximation of Pd(y)

Let f(y) = P 0d(y) and de�ne y0 = max(0; y
�) where y� is the mode of the distribution:

y� = argmax
y
P 0d(y).

Arbitrarily, set the bounds on integration as:

y+ = P
0�1
d (P 0d(y0)=2K1); y� = min(0; 2y

� � y+):

De�ne the Simpson�s rule of approximation for the integral over the whole range as:

A =
�A
3

"
P 0d(y�) + 4

2K1X
i=1

P 0d(y� + (2i� 1)�A) + 2
2K1�1X
i=1

P 0d(y� + 2i�A) + P
0
d(y+)

#
;

where �A =
y+�y�
4K1

and the "nodes" are equally spaced.

We then approximate Pd(y) at value 0 as:

G(0) =
��
3A

"
P 0d(y�) + 4

K1X
i=1

P 0d(y� + (2i� 1)��) + 2
K1�1X
i=1

P 0d(y� + 2i��) + P
0
d(0)

#

where �� = � y�
2K1
: Note that G(0) = 0 if y� = 0. We can also compute on the grid between 1 and

K1 the values:

g(2i�+) =
�+

3(1�G(0)) [P
0
d(2(i� 1)�+) + 4P 0d((2i� 1)�+) + P 0d(2i�+)] ;
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where �+ =
y+
2K1

so that the approximation of Pd(y) on the �ne grid would be:

G(2k�+) = G(0) +
kX
i=1

g(2i�+); k = 1; :; K1:

In fact, we extract from the �ne grid above f0; y+g; a coarse grid according to K = K1=5 :

G(10k�+) = G(0) +

kX
j=1

5jX
i=5(j�1)+1

g(2i�+); k = 1; :; K:

A.3.2 Computation and inversion of value functions

The likelihood function as de�ned in the next subsection depends on the evaluation of inequalities

such as:

vd�(x�d� + �d��d�) > vd(x�d + �d�d)()
v�1d (vd�(x�d� + �d��d�))

�d
� x�d

�d
> �d

so that we have to compute v�1d for any d 6= d� and be able to compute vd� :
The latter computation is easy since the relationship between value and utility can be obtained

by maximizing for any value u:

vd�(u) = max
y

�
Pd�(y):u� y � c

y2

2

�
;

over the coarse grid f0; y+g:
As for the former computations, we use the following algorithms. We �rst compute a grid values

of utilities such that:

ud = �d(
x�d�

�d
+Quantiles("))

where " follows a truncated normal distribution, truncated in such a way that ud > 0. This is due

to the fact that inverting vd at the value vd� necessarily yields a positive value. We adjoin on the

left (respectively on the right) the value 0 (respectively a large value).

At each of these new nodes, we again solve:

vk(uk) = max
y

�
P (y):uk � y � c

y2

2

�
;

over the usual grid for y. We then use the grids in u and v to do a linear interpolation of v�1d .
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A.3.3 Random drawings and simulated choice probabilities

We write choice probabilities (say of major 1) as:

Pr(d� = 1 j Application to UFC) = Pr(v1 > vj;8j 2 f2; :; Dg j max
k2f1;:;Dg

vk > 0)

=
Pr(v1 > vj;8j 2 f2; :; Dg;maxk2f1;:;Dg vk > 0)

Pr(maxk2f1;:;Dg vk > 0)

=
Pr(v1 > vj;8j 2 f2; :; Dg; v1 > 0)

Pr(maxk2f1;:;Dg vk > 0)

=
Pr(v1 > vj;8j 2 f2; :; Dg j v1 > 0) Pr(v1 > 0)

1� Pr(vj < 0;8j 2 f1; :; Dg)
:

Since the events 1fvj > 0g = 1fuj > 0g (see text), we have that:

Pr(d� = 1 j Appl. to UFC) = Pr(v1 > vj;8j 2 f2; :; Dg j u1 > 0)
Pr(u1 > 0)

1� Pr(uj < 0;8j)
:

We thus simulate two objects Pr(v1 > vj;8j 2 f2; :; Dg j u1 > 0) and Pr(uj < 0;8j).
For the �rst, we draw �s1 in the distribution function of �1 truncated by the condition that

u1 = x�1 + �
s
1 > 0: We then draw successively in the distribution function of �2 given that v

s
1 > v2

and �s1 and so on and so forth using the strategy of Geweke, Hajivassiliou and Keane. We obtain:

Pr(v1 > vj;8j 2 f2; :; Dg j u1 > 0) = (16)

1

S

SX
s=1

Pr(vs1 > v2 j us1):Pr(vs1 > v3 j us1; us2):::Pr(vs1 > vD j us1; us2; :; usD�1):

We do the same for the second object using the same underlying uniform draws though adapting

to di¤erent truncation thresholds.

In the case of independence between random terms a¤ecting utility levels, the likelihood function

can be written as:
1

S

SX
s=1

Pr(vs1 > v2):Pr(v
s
1 > v3):::Pr(v

s
1 > vD):

When random terms �d are dependent we build up each term in equation (16) using for any d 6= d�:

�d =
X
d02D

�d0;d�d0 +

s
1�

X
d02D

�2d0;d:"d

where coe¢ cients � are obtained by the Choleski decomposition of the covariance matrix and "d

has unit variance. We consider that D = fd�g [ fd0 lexicographically before dg: The condition:

�d <
v�1d (vd�(x�d� + �d��

s
d�))� x�d

�d
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becomes:

"d <
1q

1�
P

d02D �
2
d0;d

"
v�1d (vd�(x�d� + �d��

s
d�))� x�d

�d
�
X
d02D

�d0;d�d0

#
:

Remark: In the case of linear multinomial Probit, the assumption on the covariance matrix of

(�1; :; �D) that insures formal identi�cation (for instance, Keane, 1992) is:X
=

0@ 1 c0 0
c00 �0 0
0 0 0

1A
where �0 and c0 are unrestricted provided that � is a de�nite positive matrix. This normalization

comes from setting one utility index to zero i.e. considering (�1��D; :; 0)We saw in the text that we
cannot use this normalization in the non linear case and that we would have to adapt this identifying

assumption to a framework where �D has unit variance. It is easy since it could consist in adding

to the previous vector a unit-variance random normal variate �D independent of (�1; :; �D�1) (since

this dependence cannot be identi�ed) so that we get:

�0 =

0@ 2 c0 + 1 1
c00 + 1 �0 + J 1
1 1 1

1A
where J is a matrix of ones.

In the general case of dependence we adopt this normalization even though it could be nor

su¢ cient nor necessary in the non-linear case.

A.4 First counterfactual: details

The choice set is now composed of two majors:

(d1;?); (d1; d2); :; (d1; dD); (d2; d1); (d2;?); :; (d2; dD); :; (dD;?)

Note that choices consisting of a single major (di;?) could also be written (d1; d1).

First, note that some choices are always (weakly) dominated. Consider that the probability of

success at stage 1 is ordered as the natural order d1; :; dD i.e.

t1(di) > t1(dj)() Pr(m1 > t1(di)) < Pr(m1 > t1(dj)) i¤ i < j. (17)

Then choices (dj; di) are always dominated by (dj;?) since the option di can never be exercised. If

the candidate does not access the second stage in major dj; she cannot access the second stage in

major di. We therefore chose to eliminate all choices (dj; di) where j > i.
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The value function of any choice (di; dj) (where j can be equal to i) is therefore:

v(di; dj) = �y + pdi(y; t1(di); t2(di))ui + (pdj(y; t1(dj); t2(dj))� pdj(y; t1(di); t2(dj)))uj

as derived from equation (13) in the text. Note that if i = j, the second term is equal to zero and

if i < j;

pdj(y; t1(dj); t2(dj)) > pdj(y; t1(di); t2(dj));

because of equation (17). Denote pij(y) = pdj(y; t1(di); t2(dj)) so that:

vij(y) = �y + pii(y)ui + (pjj(y)� pij(y))uj: (18)

The algorithm runs as follows:

� Compute for a grid of values of y and for any i � j; pij(y) in the order (p11; p12; ::; p1D; p22; :; p2D; :; pDD):

� Simulate values for (u1; :; uD) drawn in a multivariate normal distribution truncated bymaxd ud >
0.

� Compute for any (di; dj); for the grid of values y and for any simulated us of (u1; :; uD),
vs(di; dj; y; us):

� Maximize vs(di; dj; y; us) on the grid y to obtain v�s(di; dj;us) as speci�ed in equation (18).

� Compute the frequency estimator of Pr((di; dj) = 1
S

PS
s=1 1fv�s(di; dj;us) � maxl;m v�s(dl; dm;us)g:

The expected value is obtained by:

X
(di;dj)

1

S

SX
s=1

v�s(di; dj;us):1fv�s(di; dj;us) � max
l;m

v�s(dl; dm;us)g:
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B Data appendix

B.1 Description

The Vestibular, an entrance exam where di¤erent universities develop its own format of testing

restricted to some federal constraints, has its root during the creation of the �rst undergraduate

course in Brazil 200 hundred years ago. Only in 1970, with the creation of the National Commission

of the Vestibular, the system started to develop a regulatory background in order to rationalize the

increasing demand for undergraduate education in the country. The �nal step that shaped the actual

format of the Vestibular was taken in 1996 with the approval of the Law of Directives and Basis

of the National Education (LDB). The LDB, among other things, set the minimum requirements

of the exam and made explicit some constraints regarding the form and content that universities

must obey if they choose to select their students by a Vestibular. Also, Olive (2002) asserts that

the LDB introduced a regular and systematic process of evaluation and credentialing that initiated

a new era of meritocracy in Brazilian universities. Even though the LDB brought a lot of regulation

and as a consequence many new restrictions, as matter of fact, law abiding universities still have a

lot of degrees of freedom to adapt their entrance exams to their needs.

Roughly, the Vestibular has the following features:

1. The student choose the undergraduate degree before the test, and compete only against

those students who made the same choice;

2. It is comprised of many sub-exams, each one evaluating knowledge in Mathematics,

Physics, Chemistry, Biology, Portuguese, History, Geography and a Foreign Language;

3. The exams are almost exclusively developed with objective (multiple choice) questions;

4. Di¤erent undergraduate courses can weight the sub-exams di¤erently in order to re�ect

their priorities in terms of required knowledge;

5. More than one stage is allowed during the process of testing.

6. Almost all universities developed their own exam, however its is possible to form groups

of universities to develop uni�ed exams;

7. After the exams, students are ranked accordingly to a pre-determined protocol applied to

their grades in the exam. Places are �lled from top to bottom, and if there are remaining free spots

a period of recall of students are made;

8. Those who do not exercise their right of initiating the university course in the same year

they took the Vestibular can not make it later on. However, any student can take the entrance
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exam as many times as they want to.

B.2 The Vestibular at UFC

The 2008 Vestibular was taken by 31,304 students who disputed the chance of getting one of the

4,085 available places. This overall student by place ratio of 7.66 is not a good estimator for some

speci�c undergraduate degrees. For instances, Medicine had the highest ratio of 24.1, Law had a

ratio of 16.7. In contrast, Information Systems had a ratio of 1.1 and Economics had a ratio of 4.5.

The UFC�s Vestibular shares the same features described above regarding its protocol.

However, we give a rather detailed description of some of its feature in order to gain insight when

developing and estimating econometrics models. An important �rst thing to know is the fact that

by law all entrance exams in public universities must be preceded by the release of a document

called Edital. An Edital is a public document that must contain all sets of regulations regarding

the exam. It must contain, among others, a speci�c timeline for exams, a detailed list of syllabus for

all disciplines required in the exams, the majors o¤ered as well as the available spots in each one,

how scores are calculated, how students are ranked, forbidden actions that may cause elimination

from the exams, minimum requirements in terms of grades and so on. Accordingly to Brazilian law

system the Edital is a fundamental document that posses a status of legislation, i.e., any dispute of

rights with respect to details of the Vestibular must use the contents of the Edital as a �rst guiding

line in order to settle the dispute.

The �rst stage, called General Knowledge (GK), is composed of a unique 66 objective questions

(multiple choice, with �ve alternatives A, B, C, D and E) exam whose content is exactly the core high

school curricula, i.e., Portuguese (Grammar and Writing), Geography, History, Biology, Chemistry,

Mathematics, Physics and Foreign Language . In order to understand the grading system for this

�rst exam note that there are two types of scores: raw and standardized, respectively. The raw

score for each subject is given in Table 1 and the standardized scores in Table 2.

Adding up all standardized scores gives the total standardized score XGK
s . In order to succeed

to the second stage, called Speci�c Knowledge (SK) exam, the student must obey the following

rules:

1. Get a in each subject appearing in the GK exam;

2. After ranked accordingly to his/her overall standardized score XGK
s , the student must be

placed in a position equal or above the threshold speci�c to his/her chosen major. This threshold is
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Table 1

Subject
Number of Question

in the GK Test
Value per Question Total Value or rx

Portuguese 12 3 36

Geography 8 3 24

History 8 3 24

Biology 8 3 24

Chemistry 8 3 24

Mathematics 8 3 24

Physics 8 3 24

Foreign Language 6 1 6

TOTAL ( GK
rX ) 186

Source: Elaborated by the authors.

Table 2

Source: Elaborated by the authors.

Portuguese 






 −
+=

r

rr
s

xxx
σ

2.736

Geography, History, Biology, Chemistry,

Mathematics and Physics 






 −
+=

r

rr
s

xxx
σ

8.424

Foreign Language 






 −
+=

r

rr
s

xxx
σ

2.16
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calculated based on the following rule: Let N be the number of available places in a speci�c major

previously shown in the Edital. Let r be de�ned as the ratio of the number of students choosing

the major and the number of available seats in the major. If r < 10 then the threshold is 3N ,

otherwise it is 4N . Note that the threshold is not known by the candidate when choosing majors.

This information is disclosed ex-post the major choice.

The SK exam is comprised of two separated sub-exams (realized in two consecutive days apart

only two weeks from the releasing of the results from the �rst stage exam). The SK is described

below:

Table 3

Subject

Number of

Question in the

GK Test

Number of

Question in the SK

Test

Value per

Question

Total Value

or rx

Writing ­ ­ 80

Specific 1 8 10 80
Specific Knowledge

Specific 2 8 10 80

TOTAL ( SK
rX ) 240

Source: Elaborated by the authors.

The two speci�c exams are set according to requirements of each major. Again, this list in

known ex-ante the choice of major and is given by the following table:
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Table 4
Course Specific Exams

Biblioteconomy; Social Sciences; Social Communication –
Journalism;  Social Communication ­  Publicity and
Advertising; Law; Musical Education – Graduate; Fashion and
Style; Philosophy; Letters

Portuguese and
History

Geography; History; Pedagogy History and
Geography

Domestic Economy; Physics Education – B. Sc.; Physics
Education – Graduate; Psychology History and Biology

Architecture and Urbanism History and Physics
Computing; Civil Eng.; Computing Eng.; Mechanical
Production Eng.;  Tele­informatics Eng.; Electrical Eng.;
Mechanical Eng.; Statistics; Physics – B. Sc.;  Physics –
Graduate; Mathematics – B. S.c.; Mathematics –Teaching.

Physics and
Mathematics

Chemistry Eng.; Chemistry – B. Sc.;  Chemistry –Teaching Chemistry and
Mathematics

Administration; Actuarial Sciences; Science Accounting;
Economic Sciences;.

History and
Mathematics

Agronomy; Food Engineering. Biology and
Mathematics

Executive Secretary; Information Systems Portuguese and
Mathematics

Source: Elaborated by the authors.

The standardized scores are calculated according to the following formulas:

Table 5

Writing 






 −
+=

r

rr
s

xxx
σ

1680

Specific 1 






 −
+=

r

rr
s

xxx
σ

1680

Specific 2 






 −
+=

r

rr
s

xxx
σ

1680

Source: Elaborated by the authors.

The sum of all standardized scores taken in the second stage gives . The sum of all �rst stage

standardized scores and all second stage standardized scores gives the �nal grade (FG = + ). All

students are ranked again and the available places are allocated to the best ranked students.
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Group Subgroup Subsubgroup Majors
Biblioteconomia                 Biblioteconomia                 
Comunicacao Social (Jornalismo) Comunicacao Social (Jornalismo) 
Comunicacao Social (Publ e Prop) Comunicacao Social (Publ e Prop)
Filosofia (Noturno)             Filosofia (Noturno)             
Letras (Portugues)              Letras (Portugues)              
Letras (Portugues-Alemao)       Letras (Portugues-Alemao)       
Letras (Portugues-Espanhol)     Letras (Portugues-Espanhol)     
Letras (Portugues-Frances)      Letras (Portugues-Frances)      
Letras (Portugues-Ingles)       Letras (Portugues-Ingles)       
Letras (Portugues-Italiano)     Letras (Portugues-Italiano)     
Economia Domestica              Economia Domestica              
Educacao Fisica                 Educacao Fisica                 
Estilismo e Moda                Estilismo e Moda                
Ciencias Sociais                Ciencias Sociais                
Geografia                       Geografia                       
Historia                        Historia                        

Pedagogia (Diurno)              
Pedagogia (Noturno)             

Psicologia                      Psicologia                      
Ciencias Atuariais (Noturno)    Ciencias Atuariais (Noturno)    

Ciencias Contabeis (Diurno)     
Ciencias Contabeis (Noturno)    
Administracao (Diurno)          
Administracao (Noturno)         

Secretariado (Noturno)          Secretariado (Noturno)          
Ciencias Economicas (Diurno)    
Ciencias Economicas (Noturno)   
Direito (Diurno)                
Direito (Noturno)               

Medicina                        Medicina                        
Medicina - Barbalha             Medicina - Barbalha             
Medicina - Sobral               Medicina - Sobral               
Ciencias Biologicas             Ciencias Biologicas             
Enfermagem                      Enfermagem                      
Farmacia                        Farmacia                        

Administracao                   

Ciencias Economicas             

Direito                         

Humanities & Social Sciences

Humanities

Other

Social Sciences

Medicine

Medicine

Pharmacy, Dentist & Other

Pedagogia                       

Law & Business

Accountancy

Administration

Economics

Law

Ciencias Contabeis              

Odontologia                     Odontologia                     



Group Subgroup Subsubgroup Majors

Sciences

Agrosciences

Agronomia                       Agronomia                       
Eng. de Alimentos               Eng. de Alimentos               
Eng. de Pesca                   Eng. de Pesca                   
Zootecnia                       Zootecnia                       

Engineering

Arquitetura e Urbanismo         Arquitetura e Urbanismo         
Eng. Civil                      Eng. Civil                      
Eng. Eletrica                   Eng. Eletrica                   
Eng. Mecanica                   Eng. Mecanica                   
Eng. de Producao Mecanica       Eng. de Producao Mecanica       

Mathematics

Computacao                      Computacao                      
Eng. de Teleinformatica         Eng. de Teleinformatica         
Estatistica                     Estatistica                     

Matematica                      Lic. em Matematica (Noturno)    
Matematica (Diurno)             

Physics & Chemistry

Eng. Quimica                    Eng. Quimica                    

Fisica                          Fisica (Diurno)                 
Lic. em Fisica (Noturno)        

Geologia                        Geologia                        

Quimica                         Lic. em Quimica (Noturno)       
Quimica - Licenciatura          

Quimica - Bacharelado           Quimica - Bacharelado           
Quimica Industrial              Quimica Industrial              

Table 1: The tree structure of majors



     
 
     
 
     
Groups of majors Applications % Pass 1st 

stage 
% Pass 2nd 
stage 

Positions 

     
Accountancy 1,374 40% 13% 185 
Administration 2,474 29% 8% 200 
Agrosciences 2,996 41% 13% 390 
Economics 1,516 37% 11% 160 
Engineering 2,648 40% 14% 360 
Humanities 4,897 17% 9% 430 
Law 3,625 20% 5% 180 
Mathematics 2,425 37% 11% 269 
Medicine 4,024 23% 6% 230 
Other 2,778 21% 6% 165 
Pharmacy, Dentist & Other 5,312 24% 6% 320 
Physics & Chemistry 1,734 58% 20% 349 
Social Sciences 5,574 26% 7% 385 
     
Source: UFC Vestibular 2004 
 
 

Table 2: Number of applications and positions  and success probabilities 
 



Subgroup 10th percentile Min Min Median Maximum
All First stage Pass All First stage Pass All First stage Pass

Other 18 28 30 32 44 46 58 58 58

Physics & Chemistry 22 0 0 37 42 46 62 62 62

Humanities 18 27 29 32 43 47 60 60 60

Social Sciences 18 27 29 34 45 47 61 61 60

Accountancy 23 36 36 38 46 48 59 59 59

Economics 21 31 37 35 44 49 61 61 61

Administration 19 31 35 34 46 49 62 62 62

Mathematics 21 0 0 39 48 50 62 62 62

Engineering 24 33 33 43 50 53 63 63 63

Pharmacy, Dentist & Other 20 34 40 38 50 52 62 62 62

Law 21 46 47 44 55 57 63 63 63

Medicine 24 47 51 51 58 58 63 63 63

Table 3: Summary statistics of initial grades in the samples of (1) all, (2) pass after first stage (3) definite pass after second stage  



Subgroup 10th percentile Min Min Median Maximum
All First stage Pass All First stage Pass All First stage Pass

Agrosciences 71.1 91.2 100.1 106.9 128.1 141.6 192.6 192.6 192.6

Other 66.1 102.1 104.8 102.0 136.7 143.3 187.5 187.5 187.5

Physics & Chemistry 76.8 33.0 50.0 115.2 128.9 144.6 210.2 210.2 210.2

Humanities 67.9 96.3 99.2 104.2 133.6 147.1 203.3 203.3 203.3

Social Sciences 68.9 101.0 102.0 109.4 138.6 147.9 214.3 214.3 214.3

Accountancy 80.5 120.5 122.9 120.3 139.9 151.5 200.7 200.7 198.6

Economics 71.8 113.3 121.1 110.9 133.8 152.3 209.2 209.2 209.2

Administration 68.6 108.5 121.0 108.7 140.9 154.2 212.3 212.3 212.3

Mathematics 75.8 70.3 73.0 122.1 151.7 158.9 222.1 222.1 222.1

Engineering 84.3 130.2 137.6 133.7 156.3 170.8 210.5 210.5 210.5

Pharmacy, Dentist & Other 73.8 142.0 143.8 123.0 160.2 175.1 208.1 208.1 208.1

Law 77.4 165.5 168.0 139.5 179.4 189.5 215.2 215.2 215.2

Medicine 89.6 182.0 186.9 169.0 200.2 206.4 224.3 224.3 224.3
 

Table 4: Summary statistics of first stage grades in the samples of (1) all, (2) pass after first stage (3) definite pass after second stage  
(The order of subgroups is given by the median of the first stage grades in the pass sample, column 6)  



Major 10th percentile Min Min Median Maximum Observations
All First stage Pass All First stage Pass All First stage Pass

Barbalha 66.19 182.05 186.86 152.62 191.67 199.62 214.29 214.29 214.29 739

Sobral 121.57 185.05 186.86 171.76 196.52 200.76 214.38 214.38 214.19 542

Fortaleza 93.05 193.67 193.86 172.95 202.57 208.57 224.29 224.29 224.29 2325

Table 5: Summary statistics of initial grades in the samples of (1) all, (2) pass after first stage (3) definite pass after second stage  

(Medicine sample composed by three majors: Barbalha, Sobral and Fortaleza)



Table 6: Descriptive statistics in the three choice-based medical majors

Barbalha:

Variable Mean (Std. Dev.) Min. Max. N
Grade: National Exam 45.053 (10.906) 12 62 739
Grade: First stage 140.237 (47.975) 19 214.286 739
Grade: Second stage 240 (34.91) 129.449 322.63 160
Female 0.484 (0.5) 0 1 739
Age 19.574 (2.458) 16 25 739
Private High School 0.633 (0.473) 0 1 739
Repetitions 0.667 (0.818) 0 2 739
Father�s education 1.786 (1.053) 0 3 739
Mother�s education 1.955 (1.042) 0 3 739

Sobral:

Variable Mean (Std. Dev.) Min. Max. N
Grade: National Exam 50.297 (7.278) 18 61 542
Grade: First stage 164.681 (32.894) 35 214.381 542
Grade: Second stage 240 (33.984) 94.3 296.649 160
Female 0.469 (0.499) 0 1 542
Age 19.689 (2.378) 16 25 542
Private High School 0.855 (0.34) 0 1 542
Repetitions 0.987 (0.882) 0 2 542
Father�s education 2.085 (1.046) 0 3 542
Mother�s education 2.218 (0.994) 0 3 542

Fortaleza:

Variable Mean (Std. Dev.) Min. Max. N
Grade: National Exam 49.253 (10.028) 12 63 2325
Grade: First stage 160.925 (42.672) 25 224.286 2325
Grade: Second stage 240 (34.374) 48.301 311.105 598
Female 0.538 (0.499) 0 1 2325
Age 19.246 (2.303) 16 25 2325
Private High School 0.771 (0.405) 0 1 2325
Repetitions 0.691 (0.830) 0 2 2325
Father�s education 2.135 (0.999) 0 3 2325
Mother�s education 2.153 (0.978) 0 3 2325
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Coe¢ cients First stage Second stage Common
Grade at National Exam 15.83 2.66 0.16

(0.497) (2.75) (0.05)
� 16.65 25.93

(2.55) (4.12)
Intercept 65.66 234.30 -0.61

(2.08) (3.12) (0.53)

Standard errors 8.65 33.42
(�) (1.47) (1.16)

Nobs 3606

Likelihood -18210.71

Table 7a: Estimates of grade functions in medicine (simple speci�cation)
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Coe¢ cients First stage Second stage Common
Intercept 37 222 2.76

(2.32) (6.9) (0.346)
Age=16 1.80 8.06 0.184

(2.16) (7.56) (0.255)
Age=21 -2.52 -3.03 -0.00441

(0.93) (3.73) (0.130)
Age=25 -0.691 -33.3 -0.797

(1.26) (7.52) (0.183)
Private High School 3.30 5.72 0.0609

(1.42) (6.45) (0.185)
Preparatory Course 0.938 9.00 0.0293

(0.798) (3.76) (0.108)
Nb of repetitions -0.138 4.38 0.351

(1.07) (2.37) (0.132)
Mothers�education 0.0254

(0.0367)
Fathers�education 0.0516

(0.0333)
Grade at national exam 1.95 2.91 1.64

(0.973) (1.22) (0.165)

Lambda 8.85 5.91
(0.577) (�)

Standard errors 5.74 33.5
(0.802) (1.07)

Nobs 3606

Likelihood -17975.284

Table 7b: Estimates of grade functions in medicine (complete speci�cation)
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Variables Barbalha Sobral Fortaleza
Enem -1.38 0.005

(0.21) (0.008)
Intercept -5.91 -0.25 0

(0.84) (0.10) (-)

Standard errors 5.28 0.24 1
(.73) (.09) (-)

Nobs 3606

Likelihood -3142.83

Table 8: Preference estimates in medicine

Barbalha Sobral Fortaleza
First stage Current 182.0476 185.0476 193.6667

Counterfactual 202.4889 186.2268 186.8603

Second stage Current 236.0816 237.8046 240.8465
Counterfactual 264.6613 218.9603 219.6025

Table 9: Current and counterfactual thresholds for passing at �rst and second stage.
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Figure 2: Density function of First Stage Grades by Majors
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Figure 3: Density function of Second Stage Grades by Majors
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