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Resumo

Nesta tese, estudamos as propriedades estruturais e dinâmicas, bem como, a fusão de sistemas

coloidais.

Inicialmente, abordamos o problema de determinar as estruturas de mı́nima energia e o es-

pectro de fônons de um sistema de dipolos magnéticos carregados, organizados em uma estrutura

de bicamadas e orientados perpendicularmente ao plano das camadas. Este sistema pode ser sin-

tonizado através de seis diferentes fases cristalinas, através da variação de parâmetros tais como

a separação entre as camadas e/ou a carga e/ou o momento de dipolo das part́ıculas. A presença

de carga elétrica nas part́ıculas dipolares é responsável pela nucleação de cinco fases onde as ca-

madas não estão alinhadas verticalmente e uma fase desordenada, que não são encontradas no

sistema em bicamadas de dipolos magnéticos previamente apresentado na literatura. Estas fases

extras são uma consequência da competição entre a repulsão coulombiana e a interação atrativa

entre os dipolos em diferentes camadas. As estruturas de mı́nima energia são sumarizadas em

um diagrama de fases associado à separação entre camadas e a importância relativa entre as in-

terações elétrica e magnética. Determinamos, ainda, a ordem das transições estruturais entre as

várias configurações de mı́nima energia. O espectro de fônons do sistema foi calculado usando a

aproximação harmônica. Um comportamento não-monotônico do espectro de fônons é encontrado

como função da interação efetiva entre as part́ıculas. A estabilidade termodinâmica das diferentes

fases é determinada.

Em seguida, estudamos o sistema de bicamadas de dipolos magnéticos carregados para tem-

peraturas diferentes de zero, investigando a fusão do sistema através do critério de Lindemann

modificado, em função dos parâmetros: (i) a distância entre as camadas η e (ii) a intensidade rel-

ativa da interação magnética com respeito à interação elétrica λ. Para λ suficientemente grande,

uma das fases (a fase hexagonal com alinhamento vertical) exibe um comportamento reentrante na

temperatura de fusão em função de η. Uma vez que a carga e o momento de dipolo magnético das

part́ıculas coloidais pode ser alterado, por exemplo, pela variação do pH da solução na qual estão

imersos e por um campo magnético externo, respectivamente, este sistema pode ser em prinćıpio

verificado experimentalmente.

Por último, um sistema bidimensional (2D) coloidal binário consistindo de dipolos interagentes

é investigado. Dentro da aproximação harmônica, calculamos o espectro de fônons do sistema

em função da composição, da razão entre os momentos de dipolo e da razão entre as massas

das part́ıculas pequenas e grandes. Através de uma análise sistemática dos espectros de fônons,

determinamos a região de estabilidade das diferentes estruturas das ligas coloidais. As lacunas

no espectro de frequência dos fônons, as frequências óticas no limite de longos comprimentos de

onda e a velocidade do som são também discutidos. Usando o critério de Lindemann modificado

e dentro da aproximação harmônica, estimamos a temperatura de fusão da sub -rede gerada pelas

part́ıculas grandes.



Abstract

This thesis presents the study of the structural and dynamical properties, as well as, melting

of colloidal systems.

Initially, we study the structure and phonon spectrum of a system of charged magnetic dipoles,

organized in a bilayer structure and oriented perpendicular to the plane of the layers. This

system can be tuned through six different crystalline phases by changing parameters such as the

interlayer separation and/or the charge and/or dipole moment of the particles. The presence of

the electric charge on the dipole particles is responsible for the nucleation of five staggered phases

and a disordered phase which are not found in the magnetic dipole bilayer system previously

presented in the literature. These extra phases are a consequence of the competition between

the repulsive Coulomb and the attractive dipole interlayer interaction. The minimum energy

structures are summarized in a phase diagram associated to the separation between the layers and

to the relative importance between the magnetic and electric interactions. We determine the order

of the structural phase transitions. The phonon spectrum of the system was calculated within

the harmonic approximation. A non-monotonic behavior of the phonon spectrum is found as a

function of the effective strength of the inter-particle interaction. The thermodynamic stability of

the different phases is determined.

Then, we study the bilayer system of charged magnetic dipoles for nonzero temperatures,

investigating the melting behavior of the system through the modified Lindemann criterion, as a

function of the parameters: (i) the distance between the layers η and (ii) the relative intensity of

the magnetic interaction with respect to the electric interaction λ. For large enough λ, one of the

phases (the matching hexagonal phase) exhibits a re-entrant melting behavior as a function of η.

Since the charges and the magnetic dipole moment of the colloidal particles can be altered, for

example, by changing the pH of the solution in which they are immersed or an external magnetic

field, respectively, this system can be in principle verified experimentally.

Last, a two-dimensional (2D) binary colloidal system consisting of interacting dipoles is inves-

tigated. Within the harmonic approximation, we obtained the phonon spectrum of the system as

a function of the composition, dipole moment ratio and mass ratio between the small and big par-

ticles. Through a systematic analysis of the phonon spectra, we are able to determine the stability

region of the different lattice structures of colloidal alloys. The gaps in the phonon frequency spec-

trum, the optical frequencies in the long-wavelength limit and the sound velocity are discussed

as well. Using the modified Lindemann criterion and within the harmonic approximation, we

estimated the melting temperature of the sub-lattice generated by the big particles.
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Chapter 1

Introduction

1.1 Colloidal systems

The term colloidal system or colloidal suspension is frequently used when one deals with

materials that are composed of particles of typical sizes varying between 1 nm and 1 µm, called

mesoscopic particles, dispersed into a solvent whose molecules are much smaller in size. The

mesoscopic particles form the disperse phase and the solvent, the dispersion medium. In the case

of a solid disperse phase composed of magnetic nanoparticles which are distributed into a liquid

dispersion medium, this colloidal magnetic system is termed ferrofluid or magnetic fluid.

This type of system has attracted the attention of many reseachers in the last decades. The

main reasons of the importance of the system of colloids are the following: 1) unlike atomic systems

in which the interactions between the particles are determined by their electronic structure and

therefore can not be controlled externally [1, 2], the interactions between colloidal particles and,

thus, the physical properties of the system, can be modified externally by controlling, for example,

the temperature, the salt concentration, the composition (stoichiometry) of the system and/or an

external magnetic field, depending on the type of particle in the system; 2) from the experimental

point of view, the size of the colloidal particles is of the order of magnitude of the wavelength

of visible light (400 nm - 700 nm) and, thus, one can study this system through light scattering

experiments [1, 2]. Besides, the particle motion can be observed directly using video microscopy

and, therefore, the state of the system can be studied in real time [3, 4]. For example, in Figure 1.1,

we have one-component monolayers of silica particles with diameter 3µm and 1µm at a horizontal

octane/water interface, which were observed from above using video microscopy [5].

In a system of charged colloidal particles dispersed in a medium containing ions, the actual

interaction between these colloidal particles is given by the Yukawa potential or Debye-Hückel po-

tential [6, 7, 8]. In this case, for a given temperature, the interaction between the colloidal particles

is screened by the surrounding ion cloud, and the screening length can be tailored by changing

the ion concentration [6, 7]. For low ion concentration, the interaction can be approximated by a

2
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Figure 1.1: One component monolayers of silica particles with diameter (a) 3µm and (b) 1µm at
a horizontal octance/water interface. The scale bars are equal to 30µm and the average distance
between large particle centers in (a) is 28µm. Figure taken from Ref. [5].

Coulomb potential.

On the other hand, in an electrically stabilized colloidal system, the charge of the colloids can

be controlled by the pH of the solution by adding/removing salt to/from the solvent [9, 10]. For

instance, in Fig. 1.2, we have the pH-dependence of the superficial density of charge of a ferrofluid

based on cobalt ferrite nanoparticles. We can see that, for pH values around 3.5 and 10.5, the

nanoparticles are charge saturated and the ferrofluid is thermodynamically stable [10].

In a system composed of super-paramagnetic colloidal particles, the interaction can be altered

by changing the applied external magnetic field. Due to the super-paramagnetic character of the

particles, thermal fluctuations of the magnetic moment around the preferred direction are negli-

gible, i. e., the magnetic dipole of each particle aligns perfectly with the external field. Besides,

the strength of the induced dipole moment can be tuned by the magnitude of the external mag-

netic field [11]. If the system has super-paramagnetic particles of different sizes, the composition

(for example, the concentration of small particles) can be used to modify the interaction between

the particles. Therefore, colloidal systems are very much used as model systems to study, for

instance, melting, because the size of colloidal particles and their interactions can be tailored for

experimental studies [2, 12, 13, 14].

The fact that the size of the colloidal particles and their interactions can be tailored for

experimental studies is of great importance in the study and understanding of phase transitions,

e. g., melting, since the observation of the melting transition of atomic or molecular materials on

the microscopic scale is very difficult. Therefore, melting transition of most materials is not well

understood because the lack of theories on a microscopic scale. The details of the interactions

between the particles forming the crystal have great influence in the mechanism of melting and,

as a consequence, the system of colloidal particles provides an appropriate scenario for testing the
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Figure 1.2: pH-dependence of the superficial density of charge. For pH ≤ 3.5 in acidic medium
and pH ≥ 10.5 in basic one, the nanoparticles are charge saturated and the ferrofluid is thermo-
dynamically stable. Figure taken from Ref. [10].

validity of a melting theory, for instance, the two-dimensional (2D) Kosterlitz-Thouless-Halperin-

Nelson-Young (KTHNY) theory. According to this theory, melting is based on the decoupling of

pairs of topological defects and it predicts the existence of an intermediate equilibrium phase - the

hexatic phase - between the crystal and the liquid phase [14]. In the hexatic phase, the system

has no translational order while the orientational correlation is still quasi-long-range. Such a

two step melting is not known in 3D for isotropic pair interactions [4]. The theoretical melting

scenario according to the KTHNY theory was confirmed experimentally using a one-component

system of super-paramagnetic colloidal particles at an water-air interface, in the presence of an

external magnetic field, and interacting through a repulsive dipole-dipole potential [14]. Although

this system of interacting dipole particles is very well understood in the classical regime, it was

unknown whether the hexatic phase exists when the quantum fluctuations play a major role.

An estimate of the effect of quantum fluctuations on this hexatic phase was presented for both

dipolar systems and charged Wigner crystals, predicting that the hexatic phase is stable to very

low temperatures [15].

Furthermore, the dispersion relation in colloidal systems can also be accessed experimentally.

For example, Keim et al. [2], resorted on a video-microscopy study of 2D colloidal crystals com-

posed of super-paramagnetic colloidal particles, and show how to obtain direct access to the normal

modes of vibration of the crystal. This is very important for studying, for instance, phononic crys-

tals, i. e, materials with a band gap in their spectrum of transmitted sound waves (no vibrations

are possible for frequencies within the gap). For example, the phonon spectra of periodic struc-

tures formed by 2D mixtures of dipolar colloidal particles was investigated, and it was shown that
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the phonon gaps can be controlled by changing the susceptibility ratio, the composition, and the

mass ratio between the two components [16].

Besides melting and phonons, the structural phases in colloidal system is also frequently in-

vestigated. For instance, Law et al. [5], reported experimental studies on a 2D binary colloidal

system composed of silica particles of different sizes floating at an oil-water interface, and interact-

ing through a repulsive dipole-dipole potential. In this case, the interaction between the particles

can be modified by changing the size of the colloidal particles.

The examples cited above help us to understand the main reasons of the importance of colloidal

systems: the interaction between the particles can be externally controlled and the possibility of

experimental access. This understanding is crucial for the appreciation of the next chapters since

we will deal with the structural and dynamical properties of some colloidal systems.

1.2 Structure of the thesis

The present work is organized as follows: in chapter 2, we address the structural and dynam-

ical properties of a system of charged magnetic dipoles in a bilayer structure. In chapter 3, we

investigated the melting of the same system using the modified Lindemann criterion and within

the harmonic approximation. In chapter 4, we study the dynamical properties and melting of

binary system of magnetic dipolar particles in a monolayer structure. The conclusions are given

in chapter 5.



Chapter 2

Bilayer crystals of charged magnetic

dipoles: structure and phonon spectrum

2.1 Introduction

Strongly repulsive interacting particles crystallize for a certain range of density and temper-

ature. This has been found in systems of rather different nature and therefore the study of the

structural and dynamical properties of such a crystalline phase is of fundamental interest. The

crystallization phenomenon of strongly interacting particles was originally predicted for an electron

gas (Wigner crystal - WC) by E. P. Wigner in 1934 [17]. Up to now, the original three-dimensional

(3D) WC of electrons is not yet observed experimentally, mainly due to defects and imperfections

in real lattice structures. But experimental evidence of the WC was found in 1979 in a 2D system

of electrons on the surface of liquid helium [18]. Nowadays, the term Wigner crystal is used in

a broad sense for the crystalline state of clusters of strongly interacting particles. Such Wigner

crystallization has also been observed in atomic and molecular clusters [19, 20, 21] and in several

non-electronic classical systems as colloids [12, 5, 22, 23, 24, 16], complex dusty plasma [30], and

metallic spheric balls [31].

For the particular case of classical systems (e. g., charged or magnetic colloidal particles

[32]), crystallization is observed if the interaction potential energy overcomes the kinetic energy

of the particles and correlation effects dominate the long-range structure of the system [33]. More

specifically, the thermodynamic state of the system is characterized by the coupling parameter Γ,

defined as the average of the ratio between the interaction potential energy and the kinetic energy.

For a 2D classical system of charged particles with Coulomb interaction, Γ = q2
√
πn/kBT , where

q is the charge of each particle, n the density, kB the Boltzmann constant and T the temperature.

For Γ < 1, the kinetic energy largely dominates the interacting term and the system behaves as

a classical gas. For intermediate values 1 ≤ Γ ≤ 100, particles become more correlated and a

liquid state is found. For Γ > 100, the interacting potential energy dominates the kinetic energy,

6
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particles become strongly correlated and the system typically changes to a crystalline phase for

Γ ∼ 130.

In a 2D system of purely repulsive interacting particles the ground state configuration is found

to be the hexagonal lattice [34, 35]. However, a more interesting scenario is observed if a 2D system

of particles with pure repulsive interaction are arranged in a bilayer structure. In this case, the

set of possible ground state configurations is richer, and many other 2D structures, not observed

in the single-layer case, now appear as the minimum energy configuration. Goldoni and Peeters

[36] showed that the hexagonal lattice is the ground state only when the separation between layers

is zero or larger than a critical value. In the latter case, the hexagonal lattice in each layer are

displaced with respect to each other (staggered hexagonal phase). For intermediate distances

between the layers, staggered square, rectangular, and rhombic phases become the ground state.

In a 2D system of magnetic dipoles oriented perpendicularly to the layers, Xin Lu et al.

[37] showed that, independently of the distance between the layers, the hexagonal phase is the

minimum energy structure in each layer, and the dipoles in the different layers are aligned along

the direction perpendicular to the layers (matching hexagonal phase). In addition, a reentrant

melting temperature, which was related to the anisotropic nature of the dipole interaction, was

predicted in this case. Magnetic 2D system of colloidal particles appear yet in many interesting

recent studies [5, 24, 38, 39, 40].

Motivated by modern technical methods of synthetizing particles and the assembly of colloidal

particles in controlled structures [41], we study a 2D classical bilayer system of charged magnetic

dipoles directed perpendicular to the layers (which can be realized by the application of a magnetic

field). Such particles have recently been produced using magnetic colloidal particles [12] with

electrical stabilization [9]. Note that in an electrically stabilized colloidal system the charge of

the colloids can in principle be controlled by the PH of the solution by adding/removing salt

to/from the solvent [10]. Furthermore, the magnetic moment of the paramagnetic particles is

tunable by the strength of the external magnetic field. In a single layer, both the Coulomb and

the magnetic interaction lead to a repulsion between the particles favoring the formation of a

2D Wigner lattice. Between the layers the particles exert a repulsive Coulomb interaction while

the magnetic interaction is attractive. Depending on the relative strength between the magnetic

and Coulomb interaction, the particles in both layers can be either staggered or on top of each

other. Here, we study the ground state configurations and the frequencies of the phonon modes

as a function of the separation between the layers and a parameter which is related to the ratio

between the dipole moment (µ) and the charge (Q) of the particles (λ = µ2n/Q2, with n the

density of particles).

This chapter is organized as follows. In Sec. 2.2 we introduce the model, define the important

parameters used to characterize the system and calculate the total energy of the system. In Sec.

2.3 the results for the ground state configurations are presented and discussed as a function of the

7
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separation between the layers and λ. In Sec. 2.4 we present the methodology used to calculate

the phonon spectrum and discuss the numerical results. Our conclusions are given in Sec. 2.5.

2.2 Model

We study a two-dimensional classical crystal of charged dipole particles with total density n

arranged in a bi-layer structure. The particles are evenly distributed over the layers (xy plane),

which are separated by a distance d along the z-axis. Each particle has charge Q and magnetic

dipole moment µ⃗ = µêz oriented perpendicular to the layers. Thus, the inter-particle interaction

consists of a repulsive Coulomb term Q2/|r⃗1 − r⃗2| and a dipole interaction term µ2/|r⃗1 − r⃗2|3. For
convenience we included the dielectric constant ϵ of the medium into Q2 and therefore, Q/

√
ϵ is

the real charge of the particles (Fig. 2.1).

In order to confine the colloidal particles in each layer into a plane we can make use of, e. g.,

glass plates. Because of the difference between the dielectric constants of the glass plates and the

water environment in which the colloids are, it will lead to image charges as discussed in Ref. [42].

But because the dielectric constant of water (ϵ = 80) is much larger than of the confining glass

plates, the induced image charges have the same charge as the colloidal particles. This will have

two effects: 1) the colloidal particles will be repelled by the glass plates and will therefore form a

2D layer in the middle between the two glass plates, and 2) the inter-colloid repulsive interaction

will increase which can, to some extent, be modeled by replacing the charge Q by an effective

charge Q∗ > Q. Therefore, including this dielectric mismatch effect will not qualitatively modify

our results.

Typically, we consider colloidal particles containing magnetic ions exhibiting paramagnetic

behavior and thus a magnetic field is applied in the z-direction aligning all magnetic moments in

the z-direction. The considered crystal structures are 2D lattices in which the unit cell consists

of two particles, one in each layer, where we will label the lattices in different layers by A and B

(Fig. 2.1). The equilibrium positions of the particles in each layer are given by R⃗A = l1a⃗1 + l2a⃗2,

and R⃗B = l1a⃗1 + l2a⃗2 + c⃗, where l1 and l2 are integers, a⃗1 and a⃗2 are the primitive vectors, c⃗ is a

two-dimensional vector which describes the shift of lattice B with respect to A in the xy plane.

For c⃗ = 0 the lattices are not displaced, and are exactly on top of each other (matched case).

The case c⃗ ̸= 0 implies staggered lattices. Because of equal density of particles in both layers, the

lattice structure in both layers is the same.

The total interaction energy is given by

Et = Et
el + Et

mag, (2.1)

8
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with the Coulomb interaction energy

Et
el =

1

2

∑
RA ̸=R′

A

Q2

|R⃗A − R⃗′
A|

+
1

2

∑
RB ̸=R′

B

Q2

|R⃗B − R⃗′
B|

+
∑

RA,RB

Q2√
|R⃗A − R⃗B|2 + d2

,

(2.2)

where d is the separation between the layers. The dipole-dipole interaction energy is

Et
mag =

1

2

∑
RA ̸=R′

A

µ2

|R⃗A − R⃗′
A|3

+
1

2

∑
RB ̸=R′

B

µ2

|R⃗B − R⃗′
B|3

+
∑

RA,RB

µ2(|R⃗A − R⃗B|2 − 2d2)

[|R⃗A − R⃗B|2 + d2]
5
2

.

(2.3)

Since the layers are equivalent, it is convenient to write the total energy per particle E as

E =
Et

N
= Eel + Emag, (2.4)

where the total Coulomb (Eel) and magnetic (Emag) energy per particle can be split as

Eel =
1

2
(E0E + EIE), (2.5a)

Emag =
1

2
(E0M + EIM), (2.5b)

where

E0E =
∑
R⃗ ̸=0⃗

Q2

|R⃗|
, (2.6a)

E0M =
∑
R⃗ ̸=0⃗

µ2

|R⃗|3
, (2.6b)

are the Coulomb and magnetic interaction energy per particle in each layer, respectively, and

R⃗ = l1a⃗1 + l2a⃗2. On the other hand,

EIE =
∑
R⃗

Q2

(|R⃗ + c⃗|2 + d2)1/2
, (2.7a)

EIM =
∑
R⃗

µ2(|R⃗ + c⃗|2 − 2d2)

(|R⃗ + c⃗|2 + d2)5/2
, (2.7b)

are the Coulomb and magnetic interaction energy per particle between particles in distinct layers,

9
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respectively. Following the procedure developed in Refs. [34, 35, 36, 37], we define the auxiliary

functions (see Appendix A):

T0(r⃗, q⃗) = e−iq⃗·r⃗
∑
R⃗

eiq⃗·(r⃗−R⃗)

|r⃗ − R⃗|
− 1

r
, (2.8a)

TI(r⃗, q⃗) = e−iq⃗·r⃗
∑
R⃗

eiq⃗·(r⃗−R⃗+c⃗)

[|r⃗ − R⃗ + c⃗|2 + d2]1/2
, (2.8b)

ψ0(r⃗, q⃗) = eiq⃗·r⃗
∑
R⃗ ̸=0⃗

e−iq⃗·(r⃗+R⃗)

|r⃗ + R⃗|3
, (2.8c)

ψI(r⃗, q⃗) = eiq⃗·r⃗
∑
R⃗

(
e−iq⃗·(r⃗+R⃗+c⃗)

|r⃗ + R⃗ + c⃗|3
+

−3d2e−iq⃗·(r⃗+R⃗+c⃗)

|r⃗ + R⃗ + c⃗|5

)
.

(2.8d)

The function ψI(r⃗, q⃗) can also be written as

ψI(r⃗, q⃗) = ψI1(r⃗, q⃗)− 3d2ψI2(r⃗, q⃗) (2.9)

with

ψI1(r⃗, q⃗) =
∑
R⃗

e−iq⃗·(R⃗+c⃗)

|r⃗ + R⃗ + c⃗|3
, (2.10a)

ψI2(r⃗, q⃗) =
∑
R⃗

e−iq⃗·(R⃗+c⃗)

|r⃗ + R⃗ + c⃗|5
, (2.10b)

where |r⃗ + R⃗ + c⃗| ≡ (|r⃗ + R⃗ + c⃗|2 + d2)1/2. Using Eqs. (2.8 - 2.10) we can write Eqs. (2.6) and

(2.7) as

E0E = Q2 lim
r⃗→0

T0(r⃗, 0⃗), (2.11a)

EIE = Q2 lim
r⃗→0

TI(r⃗, 0⃗), (2.11b)

E0M = µ2 lim
r⃗→0

ψ0(r⃗, 0⃗), (2.11c)

EIM = µ2 lim
r⃗→0

ψI(r⃗, 0⃗). (2.11d)

Due to the long range nature of the interactions, we use the Ewald summation method in order

to improve the convergence of the energy expressions. Therefore, for the Coulomb interaction,

10
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Eqs. (2.8a) and ( 2.8b) are re-written as [34, 35, 36]

T0(r⃗, q⃗) =
√
n/2

∑
G⃗

e−i(q⃗+G⃗)·r⃗Φ

(
|q⃗ + G⃗|2

2πn

)
+

√
n/2

∑
R⃗ ̸=0⃗

e−iq⃗·R⃗Φ(πn|r⃗ − R⃗|2/2)

+
√
n/2Φ(πn|r⃗|2/2)− 1

r
, (2.12a)

TI(r⃗, q⃗) =
√
n/2

∑
G⃗

e−i(q⃗+G⃗)·r⃗e−iG⃗.⃗cΨ

(
|q⃗ + G⃗|2

2πn
, πη2

)
+

√
n/2

∑
R⃗

e−iq⃗·(R⃗−c⃗)Φ(π[n|r⃗ − R⃗ + c⃗|2/2 + η2]),

(2.12b)

where G⃗ are arbitrary reciprocal lattice vectors given by G⃗ = l1⃗b1 + l2⃗b2 (l1, l2 are integers) and

b⃗1, b⃗2 are the primitive translation vectors of the reciprocal lattice. The functions

Φ(x) =

√
π

x
erfc(

√
x) , (2.13)

and

Ψ(x, y) =
1

2

√
π

x
[e

√
4xyerfc(

√
x

+
√
y) + e−

√
4xyerfc(

√
x−√

y)]

(2.14)

rapidly converge to zero for large values of their arguments. The term erfc(x) is the complementary

error function, and η = d
√
n/2 is a dimensionless parameter proportional to the separation

between the two layers. By considering Eqs. (2.13) and (2.14), Eqs. (2.11a) and (2.11b) can be

written as

E0E = Q2
√
n/2A , (2.15)

where

A = 2
∑
R⃗ ̸=0⃗

Φ(πn|R⃗|2/2)− 4, (2.16)

and

EIE = Q2
√
n/2B(η), (2.17)

11
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where,

B(η) =
∑
R⃗

Φ(π[n|R⃗ + c⃗|2/2 + η2])

+
∑
G⃗ ̸=0⃗

e−iG⃗·⃗cΨ

(
|q⃗ + G⃗|2

2πn
, πη2

)

+ 2{πη · erfc(
√
πη)− e−πη2}.

(2.18)

A similar approach is considered for the magnetic interaction. In this case, following Ref. [37],

the following expressions are obtained

ψ0(r⃗, q⃗) =
πn

2

∑
G⃗

ei(q⃗+G⃗)·r⃗
[
4ε√
π
e−|q⃗+G⃗|2/4ε2

− 2|q⃗ + G⃗|erfc

(
|q⃗ + G⃗|

2ε

)]

+

[
2εe−ε2r2

√
πr2

− erf(εr)

r3

]

+
∑
R⃗ ̸=0⃗

e−iq⃗·R⃗

[
erfc(ε|R⃗ + r⃗|)

|R⃗ + r⃗|3

+

(
2ε√
π

)
e−ε2|R⃗+r⃗|2

|R⃗ + r⃗|2

]
,

(2.19a)

ψI(r⃗, q⃗) =
πn

2

∑
G⃗

ei(q⃗+G⃗)·r⃗eiG⃗·⃗c
[
4ε√
π
e−

|q⃗+G⃗|2

4ε2
−ε2d2

− e−|q⃗+G⃗|d|q⃗ + G⃗|erfc

(
|q⃗ + G⃗|

2ε
− εd

)

− e|q⃗+G⃗|d|q⃗ + G⃗|erfc

(
|q⃗ + G⃗|

2ε
+ εd

)]

+
∑
R⃗

e−iq⃗·(R⃗+c⃗)

[
erfc(ε|R⃗ + c⃗+ r⃗|)

|R⃗ + c⃗+ r⃗|3

+

(
2ε√
π

)
e−ε2|R⃗+c⃗+r⃗|2

|R⃗ + c⃗+ r⃗|2
− 3d2

(
erfc(ε|R⃗ + c⃗+ r⃗|)

|R⃗ + c⃗+ r⃗|5

+

(
2ε

3
√
π

)
(3 + 2ε2|R⃗ + c⃗+ r⃗|2)e−ε2|R⃗+c⃗+r⃗|2

|R⃗ + c⃗+ r⃗|4

)]
,

(2.19b)
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where |R⃗+ c⃗+ r⃗| ≡ (|R⃗+ c⃗+ r⃗|2 + d2)1/2 , and the parameter ε > 0 is related to the inverse of the

average distance between particles in the same layer, i.e., ε = 1/r0 =
√
πn/2. In this case, Eqs.

(2.11c) and (2.11d) can be written, respectively, as

E0M = µ2(n/2)3/2C, (2.20)

where

C =
∑
G⃗

[
4πe−|G⃗|2/2πn − 2|G⃗|π√

n/2
erfc

(
|G⃗|

2
√
πn/2

)]

+
∑
R⃗ ̸=0⃗

[
erfc(

√
πn/2|R⃗|)

(n/2)3/2|R⃗|3
+

(
4

n

)
e−πn|R⃗|2/2

|R⃗|2

]
− 4π

3
,

(2.21)

and

EIM = µ2(n/2)3/2D(η), (2.22)

where

D(η) =
∑
G⃗

eiG⃗·⃗c
[
4πe−

|G⃗|2
2πn

−πη2

− π|G⃗|√
n/2

e−|G⃗|η/
√

n/2erfc

(
|G⃗|

2
√
πn/2

−
√
πη

)

− π|G⃗|√
n/2

e|G⃗|η/
√

n/2erfc

(
|G⃗|

2
√
πn/2

+
√
πη

)]

+
∑
R⃗

[
erfc(

√
πn/2|R⃗ + c⃗|)

(n/2)3/2|R⃗ + c⃗|3

(
1− 6η2

n|R⃗ + c⃗|2

)

+
4e−πn|R⃗+c⃗|2/2

n|R⃗ + c⃗|2

(
1− 6η2

n|R⃗ + c⃗|2
− 2πη2

)]
.

(2.23)

Finally, the total energy per particle defined in Eq. (2.4) can be written as

E

Q2
√
n
=

1

2
√
2
(A+B(η)) +

µ2n

Q2

1

25/2
(C +D(η)). (2.24)

Now we define the dimensionless parameter

λ =
µ2n

Q2
(2.25)

which relates the density, the magnetic moment and the charge of each particle. It is a measure

of the relative strength of the magnetic interaction as compared to the Coulomb interaction. In
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Phases a⃗1
a

a⃗2
a

c⃗ b⃗1a
2π

b⃗2a
2π

na2

2

I. one-component hexagonal (OCH) (1, 0) (0,
√
3) a⃗1+a⃗2

2
(1, 0) (0, 1/

√
3) 1√

3

II. staggered rectangular (SRect) (1,0) (0, α) a⃗1+a⃗2
2

(1,0) (0, 1/α) 1
α

III. staggered square (SS) (1,0) (0,1) a⃗1+a⃗2
2

(1,0) (0,1) 1

IV. staggered rhombic (SRhomb) (1,0) (cos θ, sin θ) a⃗1+a⃗2
2

(1, − cos θ
sin θ

) (0, 1
sin θ

) 1
sin θ

V. staggered hexagonal (SH) (1,0) (1
2
,
√
3
2
) a⃗1+a⃗2

3
(1, −1√

3
) (0, 2√

3
) 2√

3

VI. matching hexagonal (MH) (1,0) (1
2
,
√
3
2
) 0 (1, −1√

3
) (0, 2√

3
) 2√

3

VII. matching rectangular (MRect) (1,0) (0, α) 0 (1,0) (0, a1
a2
) 1

α

VIII. matching square (MS) (1,0) (0,1) 0 (1,0) (0,1) 1

IX. matching rhombic (MRhomb) (1,0) (cos θ, sin θ) 0 (1, − cos θ
sin θ

) (0, 1
sin θ

) 1
sin θ

Table 2.1: Lattice parameters of the different crystalline structures. a is the average nearest
neighbor distance which is determined by the density and the configuration (see last column). For
each case, a⃗1 and a⃗2 are the primitive lattice vectors, and c⃗ is the interlattice displacement vector.
b⃗1 and b⃗2 are the primitive vectors of the reciprocal lattice, n is the density. The aspect ratio of
phases II and VII is α = a2/a1. In phases IV and IX, the angle between the lattice vectors a⃗1 and
a⃗2 is θ.

this case, Eq. (2.24) takes the form

E

Q2
√
n
=

1

2
√
2
(A+B(η)) +

λ

25/2
(C +D(η)). (2.26)

Because λ is associated with the relative strength of the dipole-dipole interaction with respect

to the Coulomb interaction, it can be varied experimentally, e.g. through an external magnetic

field. Notice that the total energy of the system is only a function of λ and η and therefore the

zero temperature (T = 0) phase diagram can be represented in (λ, η)-space. The density enters

only in the energy (i.e. E0 = Q2
√
n) and length (r0 =

√
2/πn) scales of the problem and in the

parameter λ.

2.3 Ground state crystal structures

In this section we present the analytical results for the structure of the T = 0 configurations

(ground state).

The ground state configurations were obtained numerically by comparing the total energy

[Eq. (2.26)] of the 9-possible crystalline structures, described in Table 2.1 (for instance, see the

structures in Fig. 2.1), for both c⃗ = 0 (matching) and c⃗ ̸= 0 (staggered) cases as a function of λ

and η. From all the considered structures the one with the lowest energy is chosen as the ground

state configuration associated to the particular set of parameters (λ, η).

An example of the total energy as a function of η (λ = 0.04) for the lattices shown in Table

2.1 is presented in Fig. 2.2 . Notice that the energy curves cross each other or merge with (or

split away from) one another, and these facts are associated to first and second order structural
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Figure 2.1: Top view of the structures of the ordered phases, where the circles (crosses) correspond
to the lower (upper) layer. In the case of the matched phases, the layers are not displaced and
are exactly on top of each other, as is shown for the MH phase.

phase transitions, which can be observed more clearly in Fig. 2.2(b). For a first order structural

phase transition, the energy is continuous but the first derivative of the energy with respect to η

is discontinuous. In this case, the energy curves associated to different structures cross each other.

For a second order transition, the energy and its first derivative are continuous, but the second

derivative of the energy with respect to η is discontinuous. In this case, the energy curves merge

with (or split away from) one another. The transition from the staggered rhombic (SRhomb) to

the staggered hexagonal (SH) phase at η ≈ 0.65 is an example of a first order structural transition,

while a second order structural transition is observed when the system changes from the staggered

square (SS) to the SRhomb phase. Notice that such phases differ from each other only in the

aspect ratio a2/a1 and angle θ between the primitive vectors. As shown in Fig. 2.2(c) for η ≈ 0.51

the system starts to change continuously from the SS (sin θ = 1; a2/a1 = 1 ) to the SRhomb phase

(sin θ ̸= 1).

We summarize our results in the phase diagram of Fig. 2.3. The different phases are separated

by solid (dotted) lines for first (second) order structural phase transitions. In the point (λ, η)=(0,

0) the system is found in the one-component hexagonal (OCH) phase, where particles are arranged

in a single layer triangular lattice and the inter-particle interaction is only electrostatic. Notice

that of the studied 9 phases only 6 are found to be able to become the ground state in a certain

area of the (λ, η)-plane. The OCH phase is also found along the line η = 0, where the magnetic

interaction is present (λ ̸= 0), but in this case the inter-particle interaction is only repulsive,
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Figure 2.2: (a) The total energy per particle (in units of E0 = Q2
√
n) as function of η for the

different phases presented in Table 2.1. (b) Detailed view of (a). (c) The sine of the angle between
the primitive vectors a⃗1 and a⃗2 of the SRhomb phase as a function of η. The inset in (c) shows
how the aspect ratio a2/a1 for the SRect phase depends on η.
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Figure 2.3: The zero temperature phase diagram where λ = µ2n/Q2 and η = d
√
n/2. First (sec-

ond) order structural phase transitions are indicated by solid (dotted) lines. The labels indicating
the crystalline phases are given in Table 2.1. The hatched area corresponds to the disordered
phase.
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Figure 2.4: The log× log plot of the critical λ(η) curve which separates the staggered phases from
the MH phase taken from Fig. 2.3.

since the dipoles are all aligned along the z-axis and the inter-layer separation is zero. This is

the well-known 2D Wigner crystal phase [34]. Along the λ = 0 line, the OCH phase is found

only in a very small interval of η. In fact, already for η = 0.006 the OCH phase is no longer the

ground state. The λ = 0 line corresponds to the case in which the inter-particle interaction is

only electrostatic. In this case, the system can be found in five energetically favorable staggered

configurations (phases I, II, III, IV, V - see Table 2.1) as a function of η. The latter results are in

complete agreement with those discussed earlier in Ref. [36].

In general, when the magnetic interaction is taken into account (λ ̸= 0), it is possible to find

a configuration in which the dipoles in distinct layers are directly on top of each other (matching

configuration). This phase was absent in Ref. [36] and is a consequence of the attractive magnetic

interaction between the particles in different layers. We find that the matching configuration

is always reached for a high enough value of λ (which is a function of η) through a first order

structural transition (Fig. 2.3). In this case, the system is always found in the MH phase, where

particles in distinct layers are arranged in a hexagonal lattice and their dipoles are aligned along

the z-axis. Recently, Xin Lu et al. showed that the MH phase is the ground state configuration

for a 2D classical bilayer system of dipoles oriented perpendicular to the plane of the layers,

independently of the interlayer separation and density [37]. They did not include any Coulomb

interaction and therefore it corresponds to the case λ→ ∞. An interesting point here is that the

charging of the dipole particles allows the bilayer system to crystallize in different lattice structures
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which are not possible when only the magnetic dipole interaction is present.

The critical value of λ, where the system changes from a staggered (rectangular, square, rhom-

bic, hexagonal) to the MH phase, is a monotonic increasing function of η. As seen in Fig. 2.3

we notice two distinct behaviors of λ(η). Initially, there is a fast increase of λ with increasing η,

followed by an almost constant λ(η). Such a behavior can be qualitatively understood taking into

account the range of the Coulomb and magnetic dipole inter-particle interaction. An inter-particle

interaction is defined as short range if it decreases faster than 1/rα, where α is the dimensionality

of the system [43]. In the opposite case, the interaction is long range. In this sense the Coulomb

interaction can be considered as long range and the magnetic dipole interaction as short range.

For small η the separation between layers is small and the dipole interaction is dominant over

the electric interaction. As a consequence, the transition to the MH phase, which is the ground

state for a system with only magnetic dipole interaction, occurs for small λ. For a large enough

separation between the layers the coupling between dipoles in distinct layers (the inter-layer in-

teraction) becomes very small. For example, for η = 0.8 the inter-layer interaction is only 0.3% of

the total energy. As a consequence, for high enough values of η the layers become independent,

and it becomes numerically impossible to determine if the SH or MH phase is the ground state.

E.g., for η = 2.3 (λ ≈ 0.044) the absolute difference in energy between the SH and MH phases is

of the order of 10−8, which is the level of our numerical accuracy. In this case, the total energy is

twice the energy of each layer, since the particles in each layer barely interact.

A more detailed analysis of the critical λ(η) which defines the transition from a staggered to

the MH phase identifies a clear crossover between the fast (strong coupling between dipoles in

distinct layers) and slow increase of λ(η). This is shown in Fig. 2.4, where a log× log plot of

the critical λ(η) curve which separates the staggered phases from the MH phase is presented. As

can be seen, there is a power law increase of λ(η) for η . 0.15 with exponent β ∼ 1.92. Thus

for η . 0.2, the critical distance between the layers scales as d ∝ (µ/Q)1.04n0.021, which indicates

a weak dependence on the density and an almost linear dependence on the ratio µ/Q. This

scaling behavior can be understood as follows: the interlayer dipole interaction ∼ µ2/d3 while

the Coulomb interlayer interaction ∼ Q2/d and therefore we expect the staggered to matched

transition approximately when Q2/d ∼ µ2/d3 and thus λ ∼ η.

To conclude, we also present a hatched area in the (λ, η) phase diagram (Fig. 2.3). It cor-

responds to a disordered phase which can not be obtained from our analytical calculations. The

discussions concerning such a phase will be postponed to the next section.

2.4 Dynamical Properties

Now we turn our discussion to the dynamical properties of the system. Such a study in addition

will give us information on the stability of the different phases considered in the previous section.
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The phonon spectra are calculated within the harmonic approximation. The phonon frequencies

for a general lattice are directly obtained from the dynamical matrix through the square root of

the eigenvalues. Since we are studying a 2D crystal with two particles per unit cell (one in each

layer), the dynamical matrix corresponds to a 4× 4 matrix which can be written as

D =

(
DAA DAB

DBA DBB

)
, (2.27)

where DAA, DAB, DBA, DBB are 2 × 2 block matrices which include the intra- and inter-layer

electric and magnetic interactions. The labels A and B describe the distinct layers, and each block

matrix is of the form

[Dτν(q⃗)]αβ = [Dτν
el (q⃗)]αβ + [Dτν

mag(q⃗)]αβ, (2.28)

where τ, ν = A,B; α, β = x, y. Following the procedure described in Ref. [36] and by using Eqs.

(2.12a), (2.12b), (2.19a), and (2.19b), the different terms present in Eq. (2.28) are given by

[DAA
el (q⃗)]αβ =

1

m
{[SAA

el (0)]αβ + [SAB
el (0)]αβ

− [SAA
el (q⃗)]αβ},

(2.29a)

[DAB
el (q⃗)]αβ =

1

m
{−[SAB

el (q⃗)]αβ}, (2.29b)

[DAA
mag(q⃗)]αβ =

1

m
{[SAA

mag(0)]αβ + [SAB
mag(0)]αβ

− [SAA
mag(q⃗)]αβ},

(2.29c)

[DAB
mag(q⃗)]αβ =

1

m
{−[SAB

mag(q⃗)]αβ}, (2.29d)

where m is the mass of each particle and

[SAA
el (q⃗)]αβ = −Q2 lim

r→0
∂α∂βT0(r⃗, q⃗)

= −Q2√ns[E(q⃗)]αβ ,
(2.30a)

[SAB
el (q⃗)]αβ = −Q2 lim

r→0
∂α∂βTI(r⃗, q⃗)

= −Q2√ns[F (q⃗, η)]αβ ,
(2.30b)

[SAA
mag(q⃗)]αβ = −µ2 lim

r→0
∂α∂βψ0(r⃗, q⃗)

= −µ2√ns[G(q⃗)]αβ ,
(2.30c)
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[SAB
mag(q⃗)]αβ = −µ2 lim

r→0
∂α∂βψI(r⃗, q⃗)

= −µ2√ns[H(q⃗, η)]αβ .
(2.30d)

The auxiliary functions [E(q⃗)]αβ, [F (q⃗, η)]αβ, [G(q⃗)]αβ, and [H(q⃗, η)]αβ are given by:

[E(q⃗)]αβ = −
∑
G⃗

(q⃗ + G⃗)α(q⃗ + G⃗)βΦ

(
|q⃗ + G⃗|2

4πns

)
+ lim

r→0

∑
R⃗ ̸=0⃗

e−iq⃗·R⃗∂α∂βΦ
(
πns|r⃗ − R⃗|2

)
+ δαβ

4

3
πns,

(2.31a)

[F (q⃗, η)]αβ = −
∑
G⃗

(q⃗ + G⃗)α(q⃗ + G⃗)β

× e−iG⃗·⃗cΨ

(
|q⃗ + G⃗|2

4πns

, πη2

)
+ lim

r→0

∑
R⃗

e−iq⃗·(R⃗−c⃗)

× ∂α∂βΦ
(
π[ns|r⃗ − R⃗ + c⃗|2 + η2]

)
,

(2.31b)

[G(q⃗)]αβ = −πns

∑
G⃗

(q⃗ + G⃗)α(q⃗ + G⃗)βΥ

(
|q⃗ + G⃗|

2ε
, 0

)

+ lim
r→0

∑
R⃗ ̸=0⃗

e−iq⃗·R⃗∂α∂βΩ1

(
|r⃗ + R⃗|

)
+ δαβ

8ε5

5
√
π
,

(2.31c)

[H(q⃗, η)]αβ = −πns

∑
G⃗

(q⃗ + G⃗)α(q⃗ + G⃗)β

× eiG⃗·⃗cΥ

(
|q⃗ + G⃗|

2ε
, εd

)
+ lim

r→0

∑
R⃗

e−iq⃗·(R⃗+c⃗)∂α∂βΩ2

(
|r⃗ + R⃗ + c⃗|

)
,

(2.31d)

and the functions Υ(x, y), Ω1(x), and Ω2(x) which appear in Eqs. (2.31c) and (2.31d) are:

Υ(x, y) =
4ε√
π
e−x2−y2 +

∑
±

(−2)εxe±2xyerfc(x± y) , (2.32a)
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Figure 2.5: The phonon spectrum for the staggered square phase for different values of η and
for (a) λ = 0.002 and (b) λ = 0.029. The high-symmetry directions of the reciprocal space are
presented in the inset. The frequency is in units of ω0 = Qn3/4/m1/2.
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Ω1(x) =
erfc(εx)

x3
+

2εe−ε2x2

√
πx2

, (2.32b)

Ω2(x) =
erfc(εx)

x3
+

2εe−ε2x2

√
πx2

− 3d2

[
erfc(εx)

x5
+

2ε(3 + 2ε2x2)e−ε2x2

3
√
πx4

]
.

(2.32c)

By using the relations ε = 1/r0 =
√
πns, ns = n/2, and λ = µ2n/Q2 the terms of the matrix

given in (2.27) become

[DAA(q⃗)]αβ =
−Q2n3/2

m

[
1

23/2ns

{[E(0)]αβ + [F (0, η)]αβ

−[E(q⃗)]αβ}+
λ

(2ns)5/2
{[G(0)]αβ

+ [H(0, η)]αβ − [G(q⃗)]αβ}] ,

[DAB(q⃗)]αβ =
Q2n3/2

m

[
1

23/2ns

[F (q⃗, η)]αβ

+
λ

(2ns)5/2
[H(q⃗, η)]αβ

]
.

The two layers of particles are equivalent. In this case, DAA = DBB, DAB = [DBA]†, and the

dynamical matrix D may now be calculated as a function of λ, q⃗, and η. In general, the dynamical

matrix is complex hermitian. Therefore, it is possible to apply an unitary transformation in order

to generate a real and symmetric matrix. Such a transformation is given by the matrix

U =
1√
2

(
I2 iI2

iI2 I2

)
(2.33)

where I2 is the 2× 2 identity matrix, and

D̄ = UDU−1

=

(
DAA + ImDAB ReDAB

ReDAB DAA − ImDAB

)
(2.34)

where ReDAB and ImDAB are the real and imaginary parts of DAB, respectively. Since a unitary

transformation does not change the eigenvalues, we may consider now the real and symmetric

matrix D̄ in order to obtain the eigenvalues and the phonon frequencies. For each (λ,η), which

specify a given structure in the phase diagram shown in Fig. 2.3, we vary the wave vector q⃗ along

a given symmetry direction of the first Brillouin zone of the corresponding phases. For each value

of q⃗, we generate a 4 × 4 matrix which gives us four eigenvalues ω2
j (q⃗)/ω

2
0, with j = 1, ..., 4 and
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Figure 2.6: The phonon spectrum for the MH phase for different values of η and fixed λ. The
high-symmetry directions of the reciprocal space are presented in the inset.

ω2
0 = Q2n3/2/m, and for each eigenvalue a corresponding eigenvector e⃗(q⃗, j) which indicates the

direction of the phonon oscillation.

In our analysis of the dispersion relation we will present only frequencies which are real positive,

i. e. ω2
j (q⃗)/ω

2
0 ≥ 0. For ω2 < 0, the frequencies are imaginary, which means that the amplitudes of

particle oscillation become an exponentially increasing function of time. In this case, the crystalline

structure is unstable and will not exist. As commented earlier, in all phases studied in the previous

section there are two particles per unit cell, one in each layer. As a consequence, there are two

acoustic and optical modes which are associated to the in-phase and out-of-phase vibrations of

particles in the unit cell, respectively. The acoustic branch is characterized by ω(q⃗) → 0 for q⃗ → 0,

while in the optical branch ω(q⃗) → constant in the limit q⃗ → 0. Besides, the acoustic and optical

branches may also be defined as longitudinal, e⃗ ∥ q⃗, and transverse modes [44], e⃗ ⊥ q⃗. Due to

the extended parameter space, we present here only some examples which illustrate the general

behavior of the phonon spectrum.

In general, we find qualitative distinct behaviors for the normal mode spectra for the staggered

phases and for the matching hexagonal phase. With exception of the SH phase, for a given

staggered phase the phonon spectrum is almost-independent of λ, but it depends strongly on the

parameter η. In addition, for a given high-symmetry direction of the reciprocal space we found

a monotonic increasing (or decreasing) behavior of the phonon frequencies as a function of η. As

an example, the phonon frequencies for the SS phase along the high-symmetry directions of the

reciprocal space are presented in Fig. 2.5 for λ = 0.002 and λ = 0.029 and different η. The high-
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Figure 2.7: The sound velocity (in units of v0 = ω0/
√
n) of the TA mode as a function of η for

λ = 0.046 and λ = 0.5.

symmetry points in the first Brillouin zone are indicated in the insets. Notice that for both values

of λ, which are one order of magnitude distinct, the same qualitative behavior is found for the

phonon frequencies as a function of the wave vector. The phonons soften with increasing η along

the ΓX direction. Along the XM direction, the normal mode frequencies are degenerate for any

value of η. The lowest normal mode frequencies cross at a specific q-value which is independent

of η. Notice that in the ΓM direction the lowest energy phonons soften with decreasing η which

is the opposite behavior found along the ΓX direction.

For the MH phase, we present in Fig. 2.6, the phonon spectrum for λ = 0.046. In this case,

the bilayer system is found in the MH phase for any value of η. Again the high-symmetry points

in the reciprocal space are labelled in the inset. For a fixed density n, the parameter η = d
√
n/2

is directly related to the separation between the layers. For η = 0.1, a large gap between the

acoustic and optical modes is observed. The later ones, which describe the out-of-phase vibrations

of particles in distinct layers, are two orders of magnitude larger than the acoustic ones. Such

a behavior is due to the strong dipolar magnetic interaction for small η. Notice that the dipole

interaction (∝ 1/r3) is dominant over the Coulomb interaction (∝ 1/r) for short distances r.

The acoustic modes, which describe the in-phase oscillation of particles in the unit cell (distinct

layers), are almost not affected by the dipole coupling. In addition the width of the optical band

becomes extremely narrow. For large separation of the layers (η = 0.8) all mode frequencies have

the same order of magnitude (Fig. 2.6), indicating a weaker coupling between dipoles in distinct
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layers. This is in agreement with the comment made in the previous section that, for η = 0.8

the inter-layer interaction is only 0.3% of the total energy. The gap between the acoustic and

optical modes is observed for η . 0.44. For η >> 1 the acoustic and optical modes (transverse

and longitudinal) become degenerate since the coupling between the layers becomes very small,

and the system behaves as two independent single layer systems.

As shown previously for the SS phase, we also find a monotonic behavior of the phonon

spectrum of the MH phase for λ = 0.046, i.e. there is a softening of the phonon frequencies

with increasing η for all the high-symmetry directions of the reciprocal space. Such a behavior is

interesting, since in the bilayer system with only dipole interaction, a non-monotonic behavior of

the phonon spectrum was observed as a function of η [37]. Such a behavior was explained in Ref.

[37] as being linked to the competitive character of the dipole-dipole interaction. In that case, the

non-monotonic behavior of the phonon spectrum also revealed a non-monotonic dependence of the

sound velocity on η. In addition, for η → 0 the sound velocity is a factor
√
2 larger than the value

obtained for η >> 1, showing that for small separations the bilayer system of dipoles behaves as

a crystal of particles with twice larger dipole moment and mass. In the present bilayer system of

charged dipole particles, we found that such a non-monotonic behavior for the phonon spectrum

depends on the parameter λ as shown in Fig. 2.7. For λ = 0.046 the sound velocity is a monotonic

function of η, but e.g. for λ = 0.5 it is non-monotonic exhibiting a minimum for η = 0.73. We

found that the non-monotonic versus monotonic behavior of the sound velocity is associated to a

change in the attractive/repulsive character of the total energy, i.e. it is attractive when vTA is

non-monotonic. This is an interesting feature, since e. g. in electrically steric colloidal systems

the charge adsorbed on the colloidal particles can be controlled, for example, by changing the PH

of the solution [10]. In addition, since the melting temperature can in principle be calculated from

the normal mode frequencies, the non-monotonic behavior of the phonon spectrum should play an

important role in the behavior of the melting temperature, which should become noticeable when

varying λ.

As shown in Fig. 2.3, for η & 0.732 (λ & 0.035) the bilayer system can be found in either

SH and MH phases, depending on λ. Note that λ can be varied either through Q or µ. Now

we study how the phonon spectrum changes as a function of λ in the case the hexagonal phase

is found as the ground state in each layer. This is shown in Fig. 2.8 where the phonon spectra

for different values of λ are presented for η = 0.8. As shown in Fig. 2.3, a structural first order

phase transition from the SH to the MH phase is observed with increasing λ. For λ & 0.0436 the

MH phase appears as the ground state. It is interesting to notice that for η = 0.8 (λ = 0.046)

the layers are sufficiently far apart in order that the optical and acoustical frequencies are of the

same order of magnitude, indicating a weak dipole-dipole coupling between layers. However, the

magnetic interaction still plays an important role since the MH phase is found as the ground state.

The optical modes are softened and the acoustical modes are hardened when the system changes
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Figure 2.8: The phonon spectrum for the SH and MH phase for different λ and fixed η = 0.8. The
high-symmetry direction of the reciprocal space are presented in the inset.

from the SH to the MH phase.

Now we study the interval of stability of the different phases (deduced from the phonon spec-

trum) and compare it with the position of the phase boundary (obtained from the minimum energy

criterion).

As expected, not only the phase boundary but also the stability of the MH phase is enhanced

with increasing λ in the sense that the interval of η for which the MH phase is stable, increases with

increasing λ. This is shown in Fig. 2.9 for λ = 0.01 and 0.03. Notice that the stability interval

of the MH phase is larger than the phase boundaries in both cases, indicating that the MH phase

is metastable beyond the phase boundary. In such a case, the structural phase transition is first

order. The interval of stability of the staggered phases with increasing λ depends on the crystalline

structure. For the OCH, which is not found as a ground state for λ ̸= 0, the interval of stability

decreases with increasing λ (Fig. 2.9). For the SS phase and λ = 0.03, the interval of stability of

the SS phase (0.238 . η . 0.534) becomes larger than its phase boundary (0.262 . η . 0.534)

and a first order transition separates the SS and MH phases. When the SS phase is bordered by

the SRect and SRhomb phases (λ . 0.027) its phase boundary and interval of stability coincide

and these phases are separated by a second order structural (continuous) transition, characterized

by the softening of one of the phonon mode frequencies. The SRect phase, which is suppressed as

a ground state configuration for λ & 0.027, is still stable as shown e. g. for λ = 0.03.

An interesting feature of the present system, found for λ ̸= 0, is that more than two phases
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2. Bilayer crystals of charged magnetic dipoles: structure and phonon spectrum

Figure 2.9: The phase boundaries (circles) and the range of stability (colored triangles) for the
different phases as a function of η for two values of λ. Closed (open) circles refer to first (second)
order structural phase transitions.
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Figure 2.10: The radial distribution function as calculated from our MC simulations for the new
phase and the SH phase for two different temperatures. For the new phase: (a) T = 1 × 10−5

and (b) T = 0. For the SH phase: (c) T = 0 and (d) T = 3 × 10−6. The configuration of the
new phase (energy E = −1.340575) is presented as inset in (a), while the configuration of the SH
phase (energy E = −1.340534) is presented as inset in (c). The T ̸= 0 results in (a) and (d) were
obtained by applying MC simulations starting with the new phase and the SH phase at T = 0,
respectively. Solid and open circles represent particles in distinct layers.
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can be stable for some interval of η. For instance, for η = 0.24 (λ = 0.03) the MH, SS and

OCH phases are all stable. In contrast, for the pure Coulomb [36] and magnetic [37] systems a

maximum number of two phases were found to be stable in a given interval of η. The presence

of many stable phases might have important consequences for the melting temperature. In this

case, structural transitions between such phases should, in principle, be possible before the system

melts.

From Fig. 2.9, we see that in the large η-region (hatched) in the (λ, η) phase diagram (Fig. 2.3)

there is a discrepancy between the found lowest energy structure and its stability. For λ = 0.01

we found that the SH configuration has the lowest energy for η > 0.706 while it is only stable

for η > 0.727. For η < 0.727 the frequency of the transverse acoustic mode of the SH phase

becomes imaginary along the ΓX and ΓJ directions. Imaginary frequency is also found for the

other phases presented in Table 2.1. From this observation we are forced to conclude that in

the region 0.706 < η < 0.727 none of the 9 crystal structures can be the ground state. This

discrepancy is even more pronounced for λ = 0.03 where the SH phase was found to be unstable

in the range 0.660 < η < 0.981 where (from the analytical calculations) it was initially predicted

to be the ground state (Fig. 2.3). An important lesson to be learned from this stability analysis is

that one has to be very careful to rely only on the most plausible crystal structures in combination

with an energy minimization when deciding which phase is the ground state. In order to find the

true ground state in this area of the phase diagram we resorted to a pure numerical approach.

We used Monte Carlo (MC) numerical simulations in order to find the stable ground state

configuration. As an example we took λ = 0.03 and η = 0.8 and we notice from the inset of Fig.

2.10(a) that the obtained ground state configuration is similar to the SH phase (inset Fig. 2.10(c)),

but the 2D displacement of one layer with respect to the other is different, i. e. c⃗ ̸= (⃗a1 + a⃗2)/3.

The energy of this new phase is slightly lower, i.e. the difference with the SH phase is ∆E ≈ 10−5.

To test numerically the stability of the new configuration (inset of Fig. 2.10(a)) we compare

the T = 0 and T ̸= 0 pair distribution functions g(r) calculated from the MC simulations. See

that g(r) contains both the inter-layer (g12(r)) and the intra-layer (gii(r)) radial distribution,

where the latter takes into account only the inplane component. As can be observed from Fig.

2.10(a) the g(r) function remains almost unaltered when we increase T slightly, indicating the

thermal stability of the phase. That the SH phase is indeed unstable we tested by using our MC

simulations and let the program run for T ̸= 0. Notice that the g(r) for T = 0 and the one for very

low temperature T = 3 × 10−6 are different (Figs. 2.10(c) and (d)). There is a clear disordering

of the lattice which indicates that very small thermal fluctuations destroy already the SH phase

and consequently the SH phase is indeed unstable.

From the inset of Fig. 2.10(a) it appears that in the new phase both lattices are slightly shifted

with respect to each other. This is reflected in g(r) where the first peak now appears at a slightly

smaller r value and there is a second peak for r ≈ 1 which is not present in the SH phase. These
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Figure 2.11: The radial distribution function as calculated from our MC simulations (T = 0)
taking into account only one layer of the SH phase (dash-dotted black curve) and one layer of the
new phase (solid red curve).
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two peaks reflect only the short range inter-layer ordering. In fact, a more careful analysis reveals

that the new phase does not consists of a perfect hexagonal configuration in each layer. This can

be seen in Fig. 2.11 where a comparison between the pair distribution functions gii(r) calculated

in each layer of the new phase and the one calculated in each layer of the SH phase is presented

in two narrow ranges of r. The difference observed in the gii(r) functions between both phases

indicates that the new phase does not consist of a perfect hexagonal lattice in each layer. Notice

that for each peak of the SH phase, there appear many peaks (or a broadening of the hexagonal

lattice peak) of the new phase around it, which indicates that the lattice is distorted (or strained).

2.5 Conclusions

We studied a 2D classical bilayer system of charged magnetic dipoles. The phase diagram at

T = 0, as well as the phonon spectra were obtained through minimization of the energy and within

the harmonic approximation, respectively. We obtained a very rich phase diagram at T = 0 with

six different crystalline structures, being five staggered phases (OCH, SS, SRect, SRhomb, SH),

which were previously found as the ground state configuration when no magnetic interaction is

present [36], and a MH phase, which was obtained as the only ground state configuration for the

bilayer system of dipoles aligned perpendicularly to the layers [37]. Notice that the presence of

both Coulomb and magnetic interaction allows the appearance of phases which were not found

in the pure Coulomb (MH phase) and magnetic systems (staggered phases). In the latter, the

charges on the dipole particles allow the bilayer system to crystallize in different lattice structures

which are not possible when only the magnetic dipole interaction is present, e.g. the SH and

SRhomb phases appear not stable for any interval of η. The phase diagram was obtained as a

function of the separation between the layers (η), and a parameter (λ) which is associated to the

relative strength of the magnetic and Coulomb interaction between the particles. We found that

the staggered phase boundaries depend on λ, e.g., the SRect phase is no longer the ground state

for λ & 0.027.

The phonon spectrum of the different phases given in the (λ, η) phase diagram were obtained.

With the exception of the SH phase, we found that for a given staggered phase the phonon

spectrum has the same qualitative behavior for different λ, but depend sensitively on the separation

between the layers η. For the MH phase, there is a strong dependence of the phonon spectrum

on η. For small η, the optical frequencies become very large due to the strong coupling between

dipoles in the distinct layers. In addition, the optical band becomes very narrow. Also, a non-

monotonic behavior of the phonon spectrum as a function of λ was found for the MH phase,

which is related to the competition between the dipole and the Coulomb interaction [37]. We

found that the non-monotonic behavior of the phonon spectrum is associated to a prevalence of

the attractive over the repulsive character of the total energy, through an analysis of the sound
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velocity behavior. Notice that in electrically steric colloidal systems the charge adsorbed on the

colloidal particles can be controlled, for example, by changing the pH of the solution [10]. In this

case, for a large enough separation between the layers, where only the MH and SH phases are

found as ground state, it is possible to tune the configuration between staggered and matching

by changing e.g. the charge on the particles (fixed µ) and, consequently, λ. Alternatively we may

change the magnetic field strength in order to tune the value of λ. In addition, since the melting

temperature can, in principle, be calculated from the normal mode frequencies (at least within

the harmonic approximation), the non-monotonic behavior of the phonon spectrum might play an

important role when determining the melting temperature for different λ.

The stability of the phases obtained from the phonon spectrum were compared with the phase

boundaries for different values of (λ, η). In particular, the MH phase is enhanced with increasing

λ, in the sense that a larger phase boundary and interval of stability is observed. The SRect

phase, which is no longer observed as ground state configuration for λ & 0.027 still appears as

a metastable configuration. As an important finding, the presence of both electric and magnetic

interaction stabilizes up to three phases in some η-interval of a given ground state configuration,

and this fact should have profound implications on the melting temperature, since structural

transitions may take place for temperatures T ̸= 0.

We found a region in the (λ, η) phase diagram where the SH phase has the lowest energy among

the considered 9 crystal structures while from the phonon spectrum it appears to be unstable.

Monte Carlo simulations were used to determine the ordered structure in this region, and we found

that the lowest energy configuration corresponds to a distorted hexagonal lattice structure.

In this chapter, we studied the system at zero temperature. Initially, to obtain the structural

phase diagram, we calculated the energy of the system considering all the particles rigorously static

at the equilibrium positions of each considered crystalline structure. Then, we studied the stability

of the system in the harmonic approximation, where the particles execute small oscillations around

the equilibrium positions. In the next chapter, we will address the study of the system at nonzero

temperature. We will calculate the melting temperature of the system as a function of η and λ,

within the harmonic approximation and using the modified Lindemann criterion.
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Chapter 3

Melting of a classical bilayer crystal of

charged magnetic dipoles

3.1 Introduction

Since Eugene P. Wigner, in 1934, pointed out the crystallization of a three-dimensional (3D)

electron gas (Wigner crystal - WC) for low densities and temperatures [17], a large body of in-

vestigations occured in the last decades in order to understand the melting scenario of the WC.

Because the three-dimensional WC was not observed experimentally so far, due to imperfections

and defects in real structures, the investigations were addressed to 2D electron gas on the surface

of the liquid helium, since it is free of traps and scattering centers [45]. Therefore, several theo-

retical works arose in order to estimate the melting temperature of the 2D WC [46, 47, 48, 49].

Experimental evidence of a solid-liquid transition of the bi-dimensional WC was presented in 1979

by Grimes and Adams [50], for electrons on the liquid-He surface for low temperatures and high

densities.

Another interesting system is the electron gas in a bilayer structure. Unlike the monolayer

WC which has only one structural phase, namely, the hexagonal lattice, the bilayer electron gas

(BLEG) has five structural phases: one-component hexagonal and staggered square, rectangular,

rhombic and hexagonal [36, 51]. The melting scenario of the BLEG was investigated using the

modified Lindemann criterion within the harmonic approximation [36] as well as Monte Carlo

technique [52, 53]. A bilayer system of dipoles was also investigated and it was shown that the

matching hexagonal phase (MH - two hexagonal crystals positioned on top of each other) is the

only ground-state configuration [37]. Furthemore, the melting scenario was obtained by use of the

modified Lindemann criterion and within the harmonic approach. A re-entrant melting behavior

in the form of solid-liquid-solid-liquid transitions, at fixed temperature, of the MH phase was

observed and explained as being due to the attractive part of the dipole-dipole interaction [37].

Currently, the term Wigner crystal is also used in non-electronic systems, specially in colloidal
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3. Melting of a classical bilayer crystal of charged magnetic dipoles

systems, in order to designate the crystalline state of strongly interacting colloidal particles.

In experiments of 2D colloidal systems the particles are observed by video microscopy and

image processing [55, 4, 65]. As a consequence, the trajectories of the colloidal particles and,

therefore, the crystallization and the solid-liquid transition can be observed in real time [4]. More-

over, the interactions between colloidal particles can be controlled experimentally. For instance,

in a 2D colloidal system consisting of superparamagnetic colloidal particles of diameter 4.5 µm,

confined by gravity at a flat water-air interface of a pending water droplet, the dipole-dipole in-

teraction and, hence, the melting scenario are controllable by an external magnetic field [14, 4].

Furthermore, in an electrically stabilized colloidal system the charge of the colloids and, therefore,

the charge-charge interaction can be controlled, for example, by the pH of the solution by adding

(removing) salt to (from) the solvent [10].

Recently, a 2D classical bilayer crystal of charged magnetic dipoles in a configuration in which

the dipole moments are all oriented perpendicularly to the layers (which can be realized by the

application of an external magnetic field) was studied [56]. Such particles have recently been

produced using magnetic colloidal particles [57] with electrical stabilization [58]. Six ordered

structural phases and one disordered phase were found to be the ground-state configurations as

a function of the separation between the layers (η) and a parameter which is related to the ratio

between the dipole moment (µ) and the charge (Q) of the particles (λ = µ2n/Q2, with n the

density of particles). The ordered phases are: one-component hexagonal (OCH), found when

there is no separation between the layers (η = 0); staggered square (SS), rectangular (SRect),

rhombic (SRhomb), hexagonal (SH); matching hexagonal (MH), and a disordered phase (DP)

[56]. The staggered phases correspond to the case where the crystalline lattices in both layers are

displaced with respect to each other along the plane. In this chapter, we will focus on the melting

of the six ordered structural phases of the bilayer system of charged magnetic dipoles. To this

aim, we resort on the modified Lindemann criterion (appropriated for 2D systems) and on the

harmonic approximation in order to calculate the phonons.

The present chapter is organized as follows. In Sec. 3.2, the details of the analytical calculations

are shown. In Sec. 3.3, the results for the melting are presented and discussed as a function η and

λ. Our conclusions are given in Sec. 3.4.

3.2 Classical melting

At low temperatures, the particles of the crystal execute small vibrations (by comparison with

the mean distance between the particles) around its equilibrium positions. When the crystal

is connected with a thermal reservoir at a temperature T , the crystal receives energy and the

displacement (u⃗) of the particles around its equilibrium positions becomes larger. When this

displacement becomes of the order of the mean distance between the particles (r0) the concept
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of a solid phase becomes nonsense. Therefore, it is expected that a solid-liquid transition takes

place and a natural question would be: when the solid-liquid transition initiate? In order to solve

this problem, Frederick A. Lindemann, in 1910, proposed that the melting occurs when the mean

square displacement exceeds a threshold value of the mean interparticle distance (r0) [59, 60]. In

other words, the Lindemann criterion states that, for a given structural phase, the melting occurs

when [36, 61, 37]
< u2 >

r20
= δ2 , (3.1)

where δ2 is a parameter which is obtained numerically using, for example, molecular dynamics

simulation, and the symbol <> stands for a thermal average. However, the Lindemann criterion is

not appropriated for 2D crystals because < u2 > diverges [36, 61]. On the other hand, in 1985, V.

M. Bedanov, G. V. Gadiyak and Yu. E. Lozovik showed through molecular dynamics simulation

[61] that the relative mean square displacement given by

< |u⃗(R⃗)− u⃗(R⃗ + a⃗)|2 > , (3.2)

is constant, where u⃗(R⃗) and u⃗(R⃗ + a⃗) are the displacement vectors at site R⃗ and at its nearest-

neighbor site R⃗+ a⃗, respectively, and a⃗ is the lattice parameter. Therefore, a modified Lindemann-

like criterion for 2D crystals is defined as

< |u⃗(R⃗)− u⃗(R⃗ + a⃗)|2 >
r20

= δ2m . (3.3)

Because the value of the parameter δ2m for several types of interactions in 2D classical crystals

(including dipole and Coulomb interactions) is around δ2m = 0.1, we will take this value in the

calculations of the melting temperature of the present system.

3.2.1 Analytical calculations

In this section we present the analytical calculations of the correlation function < |u⃗(R⃗) −
u⃗(R⃗+ a⃗)|2 > in order to estimate the melting temperature of the system. The correlation function

is obtained within the harmonic approximation and considering the nearest neighbors in each

layer. The structures in the phase diagram depend on λ and η, and six ordered structural phases

can be found. As a consequence, the number and the distance of the nearest neighbors changes

with these parameters. Furthermore, following Refs. [36] and [37], it is convenient to define two

correlations functions ∆uAA and ∆uAB, which involve the nearest neighbors in the same layer and

in different layers, respectively:

∆uAA =
1

NA

∑
α=x,y

NA∑
l=1

< |uAα (0)− uAα (l)|2 > , (3.4)
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and

∆uAB =
1

NB

∑
α=x,y

NB∑
l=1

< |uAα (0)− uBα (l)|2 > , (3.5)

where uAα (l) (u
B
α (l)) is the αth component of the displacement vector of the lth nearest neighbor

in the layer A (B), and NA and NB are the number of nearest neighbors in the layer A and B,

respectively. Using the normal coordinates transformation [37, 62]

uAα (0) =
1√
Nm

∑
q⃗,j

eAα (q⃗, j)Q(q⃗, j) , (3.6)

uAα (l) =
1√
Nm

∑
q⃗,j

eAα (q⃗, j)Q(q⃗, j)e
iq⃗.R⃗A(l) , (3.7)

where m is the mass of the particle, N the number of unit cells of the crystal, eAα (q⃗, j) is the αth

component of the eigenvector of the jth normal mode in layer A for the wave vector q⃗, Q(q⃗, j)

the normal coordinate of the vibrational mode, and R⃗A(l) is the relative vector connecting one

particle at the origin to its lth nearest neighbor in layer A. From the fact that the thermal average

of Q(q⃗, j)Q∗(q⃗
′
, j

′
) is given by [36, 37]

< Q(q⃗, j)Q∗(q⃗
′
, j

′
) >=

kBT

ω2(q⃗, j)
δq⃗q⃗′δjj′ (3.8)

where kB is the Boltzmann constant and T is the temperature of the system, we obtain

< |uAα (0)− uAα (m)|2 >= 4kBT

Nm

∑
q⃗,j

[eAα (q⃗, j)]
2

ω2(q⃗, j)
sin2 q⃗.R⃗A(l)

2
. (3.9)

Therefore, the expression for ∆uAA results

∆uAA =
4kBT

NmNA

ΓAA , (3.10)

with

ΓAA =
∑
q⃗,j

[eAx (q⃗, j)]
2 + [eAy (q⃗, j)]

2

ω2(q⃗, j)

NA∑
l=1

sin2 q⃗.R⃗A(l)

2
. (3.11)

Following the same procedure for < |uAα (0)− uBα (l)|2 >, where uBα (l) is given by

uBα (l) =
1√
Nm

∑
q⃗,j

eBα (q⃗, j)Q(q⃗, j)e
iq⃗.R⃗B(l) , (3.12)
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we find

< |uAα (0)− uBα (l)|2 > =
kBT

Nm

∑
q⃗,j

[eAα (q⃗, j)]
2 + [eBα (q⃗, j)]

2

ω2(q⃗, j)

−2kBT

Nm

∑
q⃗,j

eAα (q⃗, j)e
B
α (q⃗, j)

ω2(q⃗, j)

× cos q⃗.R⃗B(l) (3.13)

and the equation for ∆uAB is written as

∆uAB =
kBT

NmNB

ΓAB , (3.14)

with

ΓAB =

NB∑
l=1

∑
q⃗,j

1

ω2(q⃗, j)

[
1− 2 cos q⃗.R⃗B(l)

×{eAx (q⃗, j)eBx (q⃗, j) + eAy (q⃗, j)e
B
y (q⃗, j)}

]
. (3.15)

Moreover, following Refs. [36] and [37] we write the correlation function as

< |u⃗(R⃗)− u⃗(R⃗ + a⃗)|2 >= ∆uAA + f(η)∆uAB (3.16)

where f(η) takes into account the influence of the vibrations of the particles in one layer on the

vibrations of the particles in the other layer. Besides, f(η) is taken to be proportional to the

in-plane component of the force between two nearest neighbors in different layers, and it has to

fulfill the following conditions:

f(η = 0) = 1 (3.17)

and

f(η = ∞) = 0 (3.18)

where the first condition means that there is no distinction between the nearest neighbors and

second one means that the vibration in one layer is not affected by the vibration in the other layer.

For the staggered ordered structures in the T = 0 phase diagram, the in-plane component of

the force between two nearest neighbors in different layers is given by

F∥(d) = F el
∥ (d) + Fmag

∥ (d) (3.19)

where

F el
∥ (d) =

Q2c

(c2 + d2)3/2
, (3.20)
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Fmag
∥ (d) =

3µ2c

(c2 + d2)5/2
− 15µ2d2c

(c2 + d2)7/2
. (3.21)

Furthermore, from the definitions

αp =
1

nsc2
(3.22)

and η = d
√
ns, we obtain

F∥(d) =
Q2

c2(1 + αpη2)3/2
+

3µ2

c4(1 + αpη2)5/2

− 15µ2d2

c6(1 + αpη2)7/2
. (3.23)

Now we write f(η) as

f(η) =
F∥(d)

Q2/c2
, (3.24)

with

f(η) =
1

(1 + αpη2)3/2
+

3µ2

Q2c2(1 + αpη2)5/2

− 15µ2d2

Q2c4(1 + αpη2)7/2
. (3.25)

Substituting λ = µ2n/Q2, η = d
√
ns, αp = 1/nsc

2 and ns = n/2 into Eq. (3.25), f(η) becomes

f(η) = f el(η) +
3λαp

2
fmag(η) (3.26)

with

f el(η) =
1

(1 + αpη2)3/2
, (3.27)

fmag(η) =
1

(1 + αpη2)5/2
− 5αpη

2

(1 + αpη2)7/2
, (3.28)

where αp is a dimensionless parameter which depends on the considered structure, and can be

calculated from the lattice parameters of each structure. In order to satisfy the conditions (3.17)

and (3.18), we write f(η) as:

f(η) = f el(η) +
3λαp(1− δη,0)

2
fmag(η) (3.29)

where δη,0 is the Kronecker delta.

On the other hand, for the matched structures in the T = 0 phase diagram, F∥(d) is written

as

F el
∥ (d) =

Q2a

(a2 + d2)3/2
, (3.30)
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Fmag
∥ (d) =

3µ2a

(a2 + d2)5/2
− 15µ2d2a

(a2 + d2)7/2
, (3.31)

where a is the lattice parameter. Besides, αp in the Eq. (3.22), now is given by

αp =
1

nsa2
. (3.32)

Substituting (3.16) into (3.3), with δm = 0.1, r20 = 1/πns, and the expressions for ∆uAA (Eq.

(3.10)) and ∆uAB (Eq. (3.14)), we have

(∆uAA + f(η)∆uAB)πns = 0.1 (3.33)

πns4kBTM
NmNA

ΓAA + f(η)
πnskBTM
NmNB

ΓAB = 0.1 , (3.34)

where TM is the melting temperature of the crystal. As ns = n/2, where n is the total density, we

obtain
πn

2

kBTM
Nm

[
4ΓAA

NA

+
f(η)ΓAB

NB

]
= 0.1 . (3.35)

The expression in the last equation can be re-written as

πn

2

kBTM
Nm

=
π3/2

2N

Q2n3/2

m

kBTM
Q2

√
πn

. (3.36)

Now we use the dimensionless parameter Γ = Q2
√
πn/kBTM , which indicates the solid-liquid

transition, where Q is the particle charge and n is the total density. Using the characteristic

frequency ω1 =
√
Q2n3/2/m, the Eq. (3.36) becomes

πn

2

kBTM
Nm

=
π3/2

2N

ω2
1

Γ
. (3.37)

Therefore, substituting (3.37) into (3.35), the expression for Γ becomes,

Γ =
20π3/2ω2

1ΓAA

NNA

+
5π3/2ω2

1f(η)ΓAB

NNB

(3.38)
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3. Melting of a classical bilayer crystal of charged magnetic dipoles

From the definitions of ΓAA (Eq. (3.11)) and ΓAB (Eq. (3.15)) we finally obtain

Γ =
20π3/2

NNA

∑
q⃗,j

[
[eAx (q⃗, j)]

2 + eAy (q⃗, j)]
2

ω2(q⃗, j)/ω2
1

]

×
NA∑
l=1

sin2

(
q⃗.R⃗A(l)

2

)

+
5π3/2f(η)

NNB

∑
q⃗,j

1

ω2(q⃗, j)/ω2
1

−10π3/2f(η)

NNB

∑
q⃗,j

[
eAx (q⃗, j)e

B
x (q⃗, j) + eAy (q⃗, j)e

B
y (q⃗, j)

ω2(q⃗, j)/ω2
1

]

×
NB∑
l=1

cos q⃗.R⃗B(l) (3.39)

and we recall that ω2(q⃗, j)/ω2
1 (j = 1, ..., 4) and e⃗(q⃗, j) are the eigenvalues and the eigenvectors of

the dynamical matrix (calculated within the harmonic approach), respectively.

3.3 Results and discussion

In this section, we show the results for the melting of the ordered phases presented in Fig. 2.1.

In Fig. 3.1 we present the melting temperature for λ = 0.01 and λ = 0.03 as a function

of η. For λ = 0.01 and λ = 0.03, we have five phases and four phases energetically favorable,

respectively [56]. Besides, we plot the interval of η where the phases are energetically favorable

(phase boundaries). The first thing we observe is that, in general, for a given λ, e. g., λ = 0.01 or

λ = 0.03 the maximum melting temperature of each phase diminishes when the distance between

the layers (η) increases due to decrease of the interaction energy between the charged magnetic

dipoles. For the MH phase we have that the higher the λ, the greater is the melting temperature.

Furthermore, the melting temperature of the MH phase is considerably larger than that of the

other phases. The reason for this fact is the strong coupling between the magnetic dipoles. As

a consequence, more energy is necessary to dissolve the MH phase than to dissolve the other

structural phases. Another interesting thing we observe in Figs. 2 and 3 is that when the system

suffers a first order structural transition (discontinuous) the melting temperature exhibits a jump.

For instance, for λ = 0.01, from MH phase to SRect, and for λ = 0.03, from MH phase to SS, this

behavior can clearly be observed.

In Fig. 3.2, we present the melting temperature as a function of λ, for η = 0.8. I. e.,

we fixed the separation between the layers and study the melting temperature in terms of the

relative interaction between the particles. For η = 0.8, we found before [56] three different stable

ground-state configurations - SH, MH and a disordered phase. The SH phase becomes unstable
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Figure 3.1: Melting temperature of the energetically favorable phases as a function of η, for (a)
λ = 0.01 and (b) λ = 0.03 . The vertical dotted lines indicate the phase boundaries.
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Figure 3.2: Melting temperature of the SH and MH phases for η = 0.8 as a function of λ. The
vertical dotted lines indicate the phase boundaries.

for λ & 0.0169, while the MH phase is unstable for λ . 0.0401. Therefore, for the SH phase we

only present the melting temperature in the range 0 ≤ λ . 0.0169. We notice that the melting

temperature of the SH phase decreases rapidly when λ is around the stability limit, 0.0169. We

recall that when the value of λ is increased, the magnetic character of the particles becomes

more relevant. As a consequence, the dipoles in both layers tend to be aligned in a hexagonal

lattice (MH phase) and the SH phase is no longer stable. On the other hand, the MH phase is

energetically favorable for λ & 0.043, but it is stable even before this value, i. e., λ ≈ 0.0401.

Furthermore, when λ is increased the frequencies of vibration of the MH phase become large, and

consequently, the melting temperature increases with λ, as can be clearly seen in the Fig. 3.2.

Fig. 3.3 shows the melting temperature of the MH phase for three values of λ, as a function

of η. As observed previously, here we also have that the melting temperature of the MH phase

becomes larger when λ is increased. However, the most important result here is the re-entrant

behavior of TM as a function of η when the value of λ is very large, e. g., λ = 3. Actually, this

re-entrant behavior is already observed when λ ∼= 1.1. It means that, at a fixed temperature, the

MH phase melts going to the liquid phase and thereafter it returns to the solid phase, when the

distance between the layers η (for a fixed density) is increased. This re-entrant behavior was also

observed in the bilayer system with only dipole-dipole interaction, and it was explained as being

due to the attractive part of the dipole-dipole interaction [5]. Therefore, in the bilayer system

with only charge-charge interaction this re-entrant behavior can not be found, since only repulsive

interaction is present. Moreover, in the present bilayer system of charged magnetic dipoles, this

nonmonotonic behavior of TM depends on λ, i.e, depends on the magnetic dipole moment and
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Figure 3.3: Melting temperature of the MH phase as a function of η.
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Figure 3.4: Melting temperature of the SS phase for three values of η as a function of λ.
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3. Melting of a classical bilayer crystal of charged magnetic dipoles

the charge of the particles (for a fixed density). As commented in Ref. [56], the charges and

the magnetic dipole moment of the colloidal particles can be altered by changing the pH of the

medium in which the colloidal particles are inserted, and through an external magnetic field,

respectively. As a consequence, this re-entrant behavior can, in principle, be controlled by the pH

of the solution and/or by an external magnetic field.

Fig. 3.4 presents the melting behavior for the SS phase for three values of η and its dependence

with λ. First of all, we find quite different situations for each value of η. For η = 0.41, TM is

almost constant when λ is changed in the interval 0 ≤ λ ≤ 0.03. Recalling that the melting

temperature can be understood in terms of the phonon spectrum of the system, the constancy

of TM for η = 0.41 should be associated with the invariance of the phonon spectrum when λ is

changed. Actually, it was shown in Ref. [56] that the phonon spectra of the SS phase for η = 0.41

with λ = 0.002 and λ = 0.029 are pratically the same. Besides, although the phonon spectrum

for η = 0.27 and η = 0.53 for the same values of λ presents the same qualitative behavior, we

still notice a little increase of the frequencies of vibration when η = 0.27 and λ = 0.029 and a

little decrease when η = 0.53 and λ = 0.029 by comparison with the frequencies for λ = 0.002.

Therefore, our results for the melting temperature of the SS phase are in complete agreement with

the phonon spectrum discussed in Ref. [56], since the curves of TM for η = 0.27 and η = 0.53

show a increase and a decrease of TM with λ, respectively.

3.4 Conclusions

We investigated the melting behavior of a 2D classical bilayer system of charged magnetic

dipoles. Because the Lindemann criterion for melting (Eq. (1)) is unseemly for 2D systems we

resort to the modified Lindemann criterion (Eq. (3)) in order to estimate the melting temperature

of the system. Besides, the correlation function (Eq. (2)) was obtained within the harmonic

approximation. We studied the melting as a function of the distance between the layers η (for

a fixed density) and the dimensionless parameter λ which stands for relative intensity of the

dipole-dipole interaction with respect to the charge-charge interaction. Due to the large number

of possible combinations of η and λ, we analyze only some situations which provide us the general

understanding of the system at nonzero temperature. We observed that the maximum melting

temperature of the structural phases gets smaller when the distance between the layers increases,

for a fixed λ. Moreover, due to strong coupling between the dipoles, the MH phase has the highest

melting temperature. Another observation is the decrease (increase) of the melting temperature of

the SH phase (MH phase), when the magnetic character of the particles becomes large, i. e., when

λ increases. Therefore, it is possible to alternate between staggered and matched arrangements

by changing the parameter λ as, for example, through an external magnetic field or the pH of the

medium. Nevertheless, our most important result is the re-entrant melting behavior of the MH
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3. Melting of a classical bilayer crystal of charged magnetic dipoles

phase when λ & 1.1. It means that, at a fixed temperature, a sequence of solid-liquid transitions

takes place when the distance between the planes η is increased, for λ & 1.1.

Up to now, we studied the structures, dynamical properties and melting of a bilayer system

of charged magnetic dipoles. In the next chapter, we will investigate the stability, dynamical

properties and melting of a binary system of interacting dipoles in a monolayer structure, within

the harmonic approximation and using the modified Lindemann criterion.
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Chapter 4

Dynamical properties and melting of

binary two-dimensional colloidal alloys

4.1 Introduction

Colloids are useful model systems for studying not only important physical phenomena such as

crystallization and melting [14, 63], but also for solids specially because of the orders of magnitude

slower temporal and larger spatial scales allowing the use of video-microscopy techniques[4, 64]

and, therefore, properties such as structure, phonons and melting can be studied in real time

[55]. There are several possibilities (at interfaces, in between glass plates, patterned substrates)

to stabilize the colloidal particles into a reduced dimensional system such as channels and planar

substrates. Additionally, the interaction between the colloidal particles and thus the physical

properties of the system can be externally controlled, e. g. by means of external magnetic [65]

and/or electric fields [66].

Colloidal systems composed of two different types of dipolar particles confined in a monolayer

structure have attracted the attention of many theoretical and experimental researchers. Stirner

et al., [67] performed molecular dynamics simulations at finite temperatures of a binary colloidal

monolayer of two different particle sizes at an oil-water interface whose inter-particle interaction is

governed by an effective dipole potential. The simulations showed that for certain ratios of small

(B) to large (A) particles, e. g., 2 : 1 (AB2) and 6 : 1 (AB6), the system forms a 2D crystal.

In both cases the crystal is composed of a hexagonal lattice of large particles with a unit cell

composed of one A particle and two B particles for AB2, and one A particle and six B particles

for AB6. Studies of the zero temperature (T = 0) phase diagram of a 2D binary system of dipoles

using lattice sum calculations, [68] and genetic algorithms [69, 70] predicted the formation of

several possible lattice structures as a function of the composition and the susceptibility ratio.

The structural behavior of binary mixtures of super-paramagnetic colloidal particles at an air-

water interface was investigated using integral equation theory together with computer simulations
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4. Dynamical properties and melting of binary two-dimensional colloidal alloys

[71, 72] and experiments [72, 73]. Those studies, however, found only a partial clustering of small

particles [71, 72] and a local crystalline order [73].

More recently, an interesting experimental and theoretical study [5] of a 2D binary colloidal

system of large (A) and small (B) silica particles at an octane-water interface was presented as a

function of the relative concentration of small particles ξ = ρB/(ρA + ρB), where ρA, ρB are the

2D densities of A and B particles, respectively. Due to the experimental setup, the particles were

supposed to interact through a repulsive dipole-dipole potential and it was found that the system

self-assemblies in a hexagonal alloy phase (HAP ). Also, it was shown that while the HAP for

ξ = 2/3 (AB2) and ξ = 6/7 (AB6) are thermodynamically stable, the HAP for ξ = 3/4 (AB3)

and ξ = 5/6 (AB5) was unstable. A comparison between the radial distribution function of the

small B particles around the A particles gAB(r) obtained from the analytical minimum energy

configuration (MEC) with the one obtained from T ̸= 0 Monte Carlo simulations, that were based

on a finite size computational unit cell, was further used in order to determine if the configuration

was stable or not. The structure and melting behavior of the system was also studied theoretically

as a function of the composition and the dipole moment ratio, using a lattice sum method and

Monte Carlo simulations [24]. By investigating the radial distribution function for small particles

gBB(r) as a function of temperature, it was found that the melting temperature of the AB2 and

AB6 configurations was three orders of magnitude larger than that of the AB5 structure [24].

In this work, we address the dynamical properties and melting of a 2D binary colloidal system

of dipoles which consists of particles with small and large dipole moments µB and µA, respectively.

Within the harmonic approximation we calculate the phonon spectrum of the system for different

values of the dipole moment ratio sB = µB/µA, the relative concentration of small particles ξ,

and mass ratio m∗ = mB/mA. The motivation to do so is twofold: 1) it is possible to tune the

number and width of the phonon gaps, and the shape of the phonon bands [16]; 2) the study of

the phonon spectra tells us additionally if the colloidal alloys are stable, i.e., have real phonon

frequencies. Specifically, through a systematic analysis of the dispersion relation we determine

the interval of values of sB for which the considered colloidal alloys are stable. Furthermore, the

study of the dispersion relation allows us to obtain the sound velocity, and the optical frequencies

in the long-wavelength limit. We also present an estimation of the melting temperature of the

sub-lattice generated by the big particles (type A) as a function of sB, ξ and m
∗ using the modified

Lindemann criterion. As a consequence, we found that it is possible to specify the optimum value

of sB for which the melting temperature of the system for a given composition is maximum.

In most part of this work, we will concentrate on the perfectly ordered 2D hexagonal colloidal

alloys in order to model some of the configurations observed experimentally in Ref. [5], namely,

the configurations for ξ = 2/3 (AB2), ξ = 3/4 (AB3), ξ = 5/6 (AB5), and ξ = 6/7 (AB6).

Additionally, we also studied a 2D square alloy for ξ = 1/2 (S(AB)). The lattice structures for

these colloidal alloys are illustrated in Fig. 4.1. It is worth to emphasize that in our calculations
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4. Dynamical properties and melting of binary two-dimensional colloidal alloys

we considered crystal structures, i. e. perfect periodic arrangements where defects and boundary

effects are absent, in contrast with real experiments where, in general, defects and finite size effects

might be present. Thus, although a small number of defects can be considered negligible from

an experimental point of view (they may act as a stabilizing factor), they are determinant for

the stability of the considered lattice from a theoretical point of view. E.g., we find that our

perfect hexagonal alloy phase for ξ = 2/3 (AB2) is not always stable even for the same set of

parameters considered in the experiments [5], which indicates that some distortion with respect to

the perfect HAP might be present in order to stabilize the experimentally observed configuration.

Indeed, deviations from the perfect HAP were previously pointed out by one of us [24] and by

Julia Fornleitner et al. [70].
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Figure 4.1: Structures of the colloidal alloys (a) AB2 (b) AB3 (c) AB5 (d) AB6 and (e) S(AB).
The unit cell of each phase is shown by the solid box and the primitive vectors are explicitly
shown.

This chapter is organized as follows. In Sec. 4.2, we introduce the model, define the parameters

used to characterize the system, and present the colloidal alloys considered in this work. In Sec.

4.3, we present the calculation of the dispersion relation and discuss the numerical results. In Sec.

4.4, we study the melting behavior of the system. Our conclusions are given in Sec. 4.5.

4.2 Model

We study a 2D binary colloidal system of dipole particles. The particles denoted by A and

B have dipole moments µA and µB, respectively, directed perpendicularly to the plane. The
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4. Dynamical properties and melting of binary two-dimensional colloidal alloys

interaction potential is of the dipole-dipole form and can be written in two different ways:

Ukj(r) =
µkµj

r3
(4.1)

or

βUkj(r) = Γ
sksja

3

r3
(4.2)

where k, j = A,B, and

Γ =
µ2
A

kBTa3
, (4.3)

is the dimensionless interaction strenght, which relates the potential and the thermal energy, r is

the distance between two particles, kB the Boltzmann constant, T the temperature of the system,

a the lattice parameter of the A particles, β = 1/kBT , and sB = µB/µA is the dipole moment

ratio.

For the experimental system studied in Ref. [5], A and B stand for the large and small

synthetic amorphous silica particles with diameters 3.00±0.05 µm and 1.00±0.05 µm, respectively,

located at an octane-water interface. In this case, the dipoles are mainly due to the residual

charges at the particle-oil interface (see Fig. 4.2), and the considered dipole moment ratio was

sB = 0.037. In this experiment, the large particles were spread first, forming a hexagonally

ordered monolayer structure. Then, the small particles were spread over the existing monolayer.

The relative concentration of small particles ξ in the mixed monolayer was varied, but keeping

the number density of the large particles constant [5].

On the other hand, for the experimental setup considered in Refs. [72] and [73], A and B

represent the large and small super-paramagnetic colloidal particles, respectively, at a water-

air interface. For instance, from Ref. [72], the big particles have diameter 4.7 µm, mass density

dA = 1.3g/cm3 and magnetic susceptibility χA = 6.2×10−11Am2/T, while the small ones having di-

ameter 2.8 µm, mass density dB = 1.5g/cm3 and magnetic susceptibility χB = 6.6×10−12Am2/T.

An external magnetic field B⃗ applied perpendicularly to the water-air interface, induces in each

particle a magnetic moment µ⃗i = χiB⃗, where i = A,B. Thus, the dipole moment ratio is sB ≈ 0.1.

In order to understand the experimental setup composed of super-paramagnetic coloidal par-

ticles, we will use the idea of ferromagnetic solids. The main characteristic of ferromagnetic solids

is that they are non-linear, i. e., they have magnetization even in the absence of an external

magnetic field. Furthermore, inside these solids there are regions where magnetic dipoles of the

individual atoms are oriented in a fixed direction. These regions are called magnetic domains (see

Fig. 4.3) [25, 26]. Examples of ferromagnetic materials are iron, nickel, cobalt and some of its

alloys and compounds [25, 26]. The magnetic dipole is responsable for the magnetic characteristics

of the material and has its origin associated to the orbital angular momentum and spin of the

electrons.
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Figure 4.2: Two silica particles of different size floating at an oil-water interface. The charges at
the particle-oil interface generate a resultant dipole moment in each particle.

When the size of a ferromagnetic material is reduced, a mono-domain particle can be generated

depending on the size of the material. This size for which a mono-domain particle is generated

is called critical size (critical diameter for a spherical particle) and depends on the material. As

shown in Fig. 4.4, when the diameter is smaller than the critical diameter, we have a mono-domain

particle. Otherwise, we have a multi-domain particle [27, 28].

In 1946, Kittel [27] presented the first estimative of the value of the critical diameter (Dc)

from which a mono-domain is produced. The value of Dc is about 15nm [27, 29]. The magnetic

particles with diameter (D) smaller than Dc show a super-paramagnetic behavior due to the fact

that the value of the total magnetic moment is in the interval between the paramagnetic and

ferromagnetic values [29]. Therefore, the saturation magnetization of the super-paramagnetic

materials is larger than that of the paramagnetic materials. Other characteristics of the super-

paramagnetic materials are the absence of hysteresis in the magnetization curve and zero coercive

field [29]. In the magnetization curve of a material, the coercive field is the magnetic field necessary

to remove the residual magnetization.

We are now able to understand how the binary system of super-paramagnetic colloidal particles

can be studied. When an external magnetic field is applied in a fixed direction, for instance,

perpendicularly to the water-air interface as shown in Fig. 4.5, the particle with larger diameter

will also have a larger resultant magnetic dipole in the same direction of the field.
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Figure 4.3: A material with four magnetic domains where the vectors indicate the magnetic
dipoles.

The colloidal alloy phases depend on the dipole moment ratio as well as the relative concen-

tration of small particles

ξ =
ρB

ρA + ρB
, (4.4)

where ρA and ρB are the 2D densities of A and B particles, respectively.

In the present work we will study the phonons and melting of: 1) the 2D hexagonal colloidal

alloys considered in Ref. [5] for ξ = 2/3 (AB2), ξ = 3/4 (AB3), ξ = 5/6 (AB5), and ξ = 6/7

(AB6); and 2) a 2D square alloy for ξ = 1/2 (S(AB)) (see Figure 4.1).

The system at hand is 2D with unit cell having one A particle and n small B particles.

Therefore, the equilibrium positions of the A particles and of n B particles are given by R⃗A = R⃗,

and R⃗Bi
= R⃗ + c⃗i, where R⃗ = l1a⃗1 + l2a⃗2 with l1, l2 integers, a⃗1, a⃗2 are the primitive vectors,

c⃗i = αia⃗1 + βia⃗2, where αi, βi ∈ (0, 1) are determined by minimizing the energy for a given dipole

moment ratio, and i = 1, ..., n. The primitive vectors of the hexagonal lattice are a⃗1 = a(1, 0) and
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(b)

(a)

Figure 4.4: Example of a spherical multi-domain particle for (a) D > Dc and of a mono-domain
particle for (b) D < Dc, where D is the diameter of the particle and Dc is the critical diameter.

a⃗2 = a(1/2,
√
3/2), while for the square lattice, a⃗1 = a(1, 0) and a⃗2 = a(0, 1). Since the colloidal

alloys considered here have only one A particle per unit cell, the density of A particles ρA is given

by ρAa
2 = 2/

√
3 and ρAa

2 = 1 for hexagonal and square unit cells, respectively.

4.3 Dynamical properties

The dynamical properties, i. e., the phonon spectrum, will be calculated within the harmonic

approximation. In this approach, one considers that each particle executes small oscillations

(compared to the average distance between the particles) around its equilibrium position and,

therefore, one expands the potential energy up to the second order in the deviations from its

equilibrium position. Due to the periodicity of the system, one introduces Bloch plane wave-like

solutions and thus, one obtains (for a given wave-vector q⃗ along the high-symmetry directions

of the first Brillouin zone) the dynamical matrix whose eigenvalues and eigenvectors are the

square frequencies of vibration, ω2(q⃗, j), and the direction of vibration, e⃗(q⃗, j), respectively, with

j = 1, ..., 2np, where np is the total number of particles per unit cell.

The study of the dispersion relation gives us additionally the stability of the mentioned colloidal
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Figure 4.5: Super-paramagnetic colloidal particles at a water-air interface. An external magnetic
field applied perpendicularly to the interface induces a magnetic dipole in each particle leading to
a repulsive dipole-dipole interaction.

alloys, for a given dipole moment ratio sB. The considered crystal structure of the colloidal alloy

is stable only if ω2(q⃗, j) ≥ 0 for all q⃗ and j [34, 36, 37, 44]. For ω2(q⃗, j) < 0 the frequencies are

imaginary, i. e., the amplitude of particle oscillation becomes an exponentially increasing function

of time [44]. It implies that the corresponding crystal structure of the colloidal alloy is unstable

and will not exist.

All the colloidal alloys considered in this work have more than one particle per unit cell. As a

consequence, there are several acoustical and optical modes which can be associated to in-phase

and out-of-phase vibrations of particles in the unit cell, respectively. The acoustical branch is

characterized by ω(q⃗) → 0 for q⃗ → 0, while for the optical branch ω(q⃗) → constant in the limit

q⃗ → 0. Besides, the acoustical and optical branches have a longitudinal, e⃗ ∥ q⃗, and a transverse

mode [44], e⃗ ⊥ q⃗.

The dynamical matrix is given by [36, 44, 62]

Cαβ(kk
′ | q⃗) = 1

√
mkmk′

∑
l′

ϕαβ(lk, l
′k′) e−iq⃗.(R⃗lk−R⃗l′k′ ) (4.5)
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where ϕ(r) is the interaction potential and

ϕαβ(lk, l
′k′) = ∂α∂βϕ(R⃗lk − R⃗l′k′) (4.6)

are the force constants with α,β=x,y. Furthermore, R⃗lk = R⃗(l)+ R⃗(k) is the equilibrium position

vector of the kth particle in the lth unit cell of the crystal, mk is its mass and R⃗(l) = R⃗. Besides,

the force constants have the property

∑
lk,l′k′

ϕαβ(lk, l
′k′) = 0 (4.7)

which will be useful in our further calculations. Thus, the equilibrium positions of A particles and

of n B particles are given by R⃗lA = R⃗A and R⃗lBi
= R⃗Bi

. Furthermore, the order of the dynamical

matrix is t = 2np × 2np, i. e., it depends on the considered 2D lattice. The dynamical matrix can

be written as

D =



DAA DAB1 ... DABn

DB1A DB1B1 ... DB1Bn

. . ... .

. . ... .

. . ... .

DBnA DBnB1 ... DBnBn


, (4.8)

where DAA, DAB1 , ..., DBnBn are 2 × 2 block matrices. From Eqs. (5) and (7), the elements of

the block DAA are written by

DAA
αβ (q⃗) =

1

mA

[
SAA
αβ (0) +

∑
i

SI1ABi
αβ (0)− SAA

αβ (q⃗)

]
(4.9)

where

SAA
αβ (q⃗) = −µ2

A lim
r→0

∂α∂βψ0(r⃗, q⃗) , (4.10a)

SI1ABi
αβ (q⃗) = −sBµ2

A lim
r→0

∂α∂βψ
i
I1(r⃗, q⃗) , (4.10b)

with

ψ0(r⃗, q⃗) =
∑
R⃗ ̸=0⃗

e−iq⃗.R⃗

|r⃗ + R⃗|3
, (4.11a)
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ψi
I1(r⃗, q⃗) =

∑
R⃗

e−iq⃗.(R⃗+c⃗i)

|r⃗ + R⃗ + c⃗i|3
. (4.11b)

On the other hand, from Eq. (5) we found

DABi
αβ (q⃗) =

1
√
mAmB

[
−SI1ABi

αβ (q⃗)
]
. (4.12)

In the same spirit of Refs. [34, 36, 37] we used the Ewald summation technique and transformed

Eqs. (11a) and (11b) into expressions which converge rapidly. Thus, we obtain [37]

ψ0(r⃗, q⃗) = πρA
∑
G⃗

ei(q⃗+G⃗).r⃗Υ

(
|q⃗ + G⃗|

2ε
, 0

)
+

2εe−ε2r2

√
πr2

−erf(εr)
r3

+
∑
R⃗ ̸=0⃗

e−iq⃗.R⃗Ω1(|r⃗ + R⃗|) , (4.13)

with

Υ

(
|q⃗ + G⃗|

2ε
, 0

)
=

4ε√
π
e−|q⃗+G⃗|2/4ε2

−2|q⃗ + G⃗|erfc

(
|q⃗ + G⃗|

2ε

)
(4.14a)

and

Ω1 (x) =
erfc(εx)

x3
+

2ε√
π

e−ε2x2

x2
(4.14b)

where the parameter ε > 0 is related to the density of large particles, i. e., ε =
√
πρA. Besides,

we have

ψi
I1(r⃗, q⃗) = πρA

∑
G⃗

ei(q⃗+G⃗).r⃗eiG⃗.⃗ciΥ

(
|q⃗ + G⃗|

2ε
, 0

)
+

+
∑
R⃗

e−iq⃗.(R⃗+c⃗i)Ω1(|r⃗ + R⃗ + c⃗i|) (4.15)

and, therefore, the block matrices DAA and DABi involve only rapidly convergent sums. On the

other hand, the block DBiBj , i ̸= j, and DBiBi , are written as

D
BiBj

αβ (q⃗) =
1

mB

[
−SII1BiBj

αβ (q⃗)
]

(4.16a)
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DBiBi
αβ (q⃗) =

1

mB

[
s2BS

AA
αβ (0) +

∑
j ̸=i

SII1
BiBj

αβ (0)

+SI1ABi
αβ (0)− s2BS

AA
αβ (q⃗)

]
(4.16b)

with

SII1
BiBj

αβ (q⃗) = −s2Bµ2
A lim

r→0
∂α∂βψ

ij
II1(r⃗, q⃗) (4.17a)

ψij
II1(r⃗, q⃗) =

∑
R⃗

e−iq⃗.(R⃗+c⃗ij)

|r⃗ + R⃗ + c⃗ij|3
(4.17b)

c⃗ij = c⃗i − c⃗j . (4.17c)

Again, the expression for ψij
II1(r⃗, q⃗) using the Ewald method is given by

ψij
II1(r⃗, q⃗) = πρA

∑
G⃗

ei(q⃗+G⃗).r⃗eiG⃗.⃗cijΥ

(
|q⃗ + G⃗|

2ε
, 0

)
+

+
∑
R⃗

e−iq⃗.(R⃗+c⃗ij)Ω1(|r⃗ + R⃗ + c⃗ij|) . (4.18)

Since the dynamical matrix is hermitian, we have DBiA = [DABi ]† and DBjBi = [DBiBj ]†. Because

the dynamical matrix involves the mass of the particles, we introduced the parameter m∗ =

mB/mA. For Brownian systems one can consider m∗ = 1, i. e. the particles have the same mass,

since the inertial asymmetry between the colloids becomes irrelevant in the overdampped regime

[16, 74, 2]. On the other hand, assuming that the dipole moment of each particle is µi = λD3
i ,

where λ is a constant of proportionality and Di is the radius of the particle [69], and that the

particles have the same mass density, we obtain m∗ = sB = µB/µA. The case with different

masses is available experimentally in systems of colloids between glass plates with no solvent [75].

In what follows, we will restrict ourselves to the two cases m∗ = sB and m∗ = 1.

Figs. 4.6 and 4.7 show the square of the phonon frequencies in units of ω2
0 = µ2

Aρ
5/2
A /mA of

the structure AB2 (Fig. 4.1a) for sB = 0.015 and sB = 0.037, considering m∗ = sB and m∗ = 1,

respectively. The square frequencies are shown along the high-symmetry directions in reciprocal

space, where the high-symmetry points are shown as insets. For sB = 0.015, we found ω2(q⃗, j) ≥ 0

for all the eigenvalues, indicating a stable long-range AB2 ordered structure. On the other hand,

for the dipole moment ratio sB = 0.037 considered in the experiments performed by Law et al.

[5], we found ω2(q⃗, j) < 0 for some eigenvalues indicating that the AB2 structure is not stable for

sB = 0.037. Actually, we found that on the basis of the requirement of real phonon frequencies,

the range of stability for the phase AB2 is 0 ≤ sB ≤ 0.0269. We stress that in our calculations the

considered perfect periodic structures are free of defects and boundary effects, in contrast with

real experiments where, in general, defects might be present. Thus, although a small number of
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Figure 4.6: Square of the phonon frequencies of the crystal phase AB2 for m∗ = sB in units of
ω2
0 = µ2

Aρ
5/2
A /mA (a) for sB = 0.015 and (b) sB = 0.037, along the high-symmetry directions in

reciprocal space. The high-symmetry points Γ, J and X are shown in the inset of (b). Only the
lowest energy modes are shown in (b) in order to enlarge the region around zero frequency.
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Figure 4.7: Square of the phonon frequencies of the phase AB2 for m
∗ = 1 (a) for sB = 0.015 and

(b) sB = 0.037. Only the lowest energy modes are shown in (b).

defects in the configuration AB2 for sB = 0.037 can be considered negligible from an experimental

point of view, they are determinant for the stability from a theoretical point of view. Our results
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Figure 4.8: Square of the phonon frequencies of the phase AB2 considering m∗ = 1 ((a) and (b))
and m∗ = sB ((c) e (d)).

indicate that the stable phase observed experimentally in Ref. [5] must present some distortion
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from the perfect hexagonal alloy phase. As a consequence, we did not find long-range order for

the perfect HAP AB2 for sB = 0.037, but we found it for sB = 0.0269 which is a slightly lower

value.

The presence of gaps in the phonon frequency spectrum is another important characteristic of

the structure AB2. No vibrations are possible for frequencies within the gap. The phonon gaps

of the phase AB2 for m∗ = sB, i. e., when the particles have different masses, are larger than

the ones for m∗ = 1. Furthermore, for m∗ = sB, the phonon gaps occur between acoustical and

optical modes as well as between the optical modes, while for m∗ = 1 the phonon gaps appear

only between the optical modes. The thick line in Fig. 4.7 is due to two optical branches very

close to each other that are not distinguishable on the scale used in the figure.

To conclude the analysis of the phase AB2, we show in Figure 4.8 the behavior of the phonon

frequencies of this phase for values of sB within the range of stability. In each case, we can notice

a small increase of the frequencies when we increase the dipole moment ratio. This is an expected

result since the interaction energy between the particles becomes stronger when the value of sB is

increased (see Equation (3.2)). However, the transverse acoustical branch softens along the ΓX

direction (see Figs. 4.8c e 4.8d) when sB = 0.0251 since this value is close to the limit of stability.
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Figure 4.9: Square of the phonon frequencies of the phase AB6 for sB = 0.002 in units of ω2
0 =

µ2
Aρ

5/2
A /mA for (a) m∗ = sB and (b) m∗ = 1.

For the structures AB3 and AB5 shown in Figs. 4.1(b) and 4.1(c), respectively, we found that

they are unstable for any dipole moment ratio, since imaginary phonon frequencies are found. In

other words, long-range order is not possible for the configurations AB3 and AB5 independently of
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the value of the dipole moment ratio. Since in the harmonic approximation, the particles execute

only small vibrations around their equilibrium positions, one can not state that the structures

AB3 and AB5 are stable at T = 0, as it was mentioned for the phase AB5 in Ref. [5]. Our result

clearly shows that calculations of the energy of a given lattice structure, even after minimization

with respect to some parameters, at T = 0, do not guarantee that the obtained MECs are stable.

In Fig. 4.9 we present the square of the phonon frequencies of the phase AB6 for sB = 0.002.

For the AB6 configuration, we found that the interval of stability is 0 ≤ sB ≤ 0.0043. Therefore,

if we considered not only the large A particles, there is no long-range AB6 order for sB = 0.037

which is consistent with the experiments reported in Ref. [5]. However, the most important result

for the AB6 configuration is the considerable increase of the phonon gaps between the optical

modes when the particles have different masses. As a consequence, there is a large number of

frequencies for which the AB6 structure can not sustain vibrations. On the other hand, when

the particles have the same mass only a small phonon gap is found, between the optical modes,

similarly to the phase AB2.

Figure 4.10 shows the dispersion relation of the configuration S(AB) for sB = 0.25. Again,

on the basis of the requirement of real phonon frequencies, we found that the interval of stability

of the alloy S(AB) is 0.038 ≤ sB ≤ 0.29. Interestingly, in this case, we do not have stability for

sB = 0, i. e., when only one particle is present in the unit cell. It is well known that a 2D system

of particles interacting through a Coulomb potential when arranged in a square Bravais lattice is

unstable [34]. Here, the same conclusion is reached when the particles interact through a repulsive

dipole-dipole potential. Unlike the phases AB2 and AB6 that have phonon gaps for m∗ = sB and

m∗ = 1, the configuration S(AB) exhibits gaps in the phonon spectrum only for m∗ = sB. This

is an example of how the properties of the system depend on the composition ξ. The interval of

stability of some of the colloidal alloys are reported in Table 4.1.

Table 4.1: Interval of stability of some colloidal alloys. The phases AB3 and AB5 are unstable
and therefore are not listed.
Phases AB2 AB6 S(AB)
Stable 0 ≤ sB ≤ 0.0269 0 ≤ sB ≤ 0.0043 0.038 ≤ sB ≤ 0.29

The sound velocity of the transverse acoustical (TA) mode, νTA = dωTA/dq|q→0, is shown for

the stable configurations AB2, AB6 and S(AB), in Figs. 4.11, 4.12, and 4.13, respectively, along

the directions (1,0) and (1,1) (in what follows, the symbol 0+ means that we are not considering

sB = 0, but only sB values very close to zero). For these phases, the sound velocity is large in

the case the particles have different masses. For the structure AB2, in both directions, we found

the sound velocity decreases with increasing sB. However, the sound velocity along the direction

ΓJ decreases faster than in the direction XΓ. On the other hand, for the configuration AB6 we

have a different behavior for the sound velocity. In the direction ΓJ , the sound velocity decreases
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Figure 4.10: Dispersion relation of the phase S(AB) for sB = 0.25 along the high-symmetry
directions in reciprocal space (a) for m∗ = sB and (b) for m∗ = 1. The high-symmetry points Γ,
X and M are shown in the inset of (b).

monotonically with increasing sB, while along the direction XΓ the sound velocity decreases up

to sB = 0.00251, where the minimum sound velocities νTA/ν0 = 1.07608 and νTA/ν0 = 0.40973

are observed for m∗ = sB and m∗ = 1, respectively.

For the configuration S(AB), the sB-dependence of the sound velocity is completely different

from the one found for the phases AB2 and AB6 as is shown in Fig. 4.13. In the direction ΓX, the

velocity increases monotonically with increasing sB, while the opposite behavior is found along

the direction MΓ. We were able to fit the sound velocity of the phases AB2, AB6 and S(AB) to

the expression

νTA/ν0 = v0 + v1sB + v2s
2
B (4.19)

where the coefficients vi are reported in Tables 4.2, 4.3 and 4.4, respectively.

Table 4.2: Fitting parameters for the sound velocity of the phase AB2.

AB2 m∗ = sB m∗ = sB m∗ = 1 m∗ = 1
Direction ΓJ XΓ ΓJ XΓ

v0 1.289 1.289 0.744 0.743
v1 −17.38 −18.32 −9.166 −9.745
v2 −473.1 −314.4 −294.8 −200.0

In Figs. 4.14(a), 4.15, and 4.16 the sB-dependence of the optical frequencies ωop at the Γ

point is presented for both cases m∗ = sB and m∗ = 1. The optical frequencies are associated
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Figure 4.11: The sound velocity in units of ν0 = ω0/
√
ρA of the transverse acoustical mode of the

phase AB2 as a function of sB for m∗ = 1 and m∗ = sB.
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Figure 4.12: The sound velocity in units of ν0 = ω0/
√
ρA of the transverse acoustical mode of the

phase AB6 as a function of sB for m∗ = 1 and m∗ = sB .

with the out-of-phase vibrations of the particles in the unit cell. In general, the number of optical

frequencies nop depends on the number of particles per unit cell np and the dimensionality of the

system, being nop = 2np − 2 for the 2D colloidal system at hand. As a general behavior, the
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Figure 4.13: The sound velocity in units of ν0 = ω0/
√
ρA of the transverse acoustical mode of the

S(AB) as a function of sB for m∗ = 1 and m∗ = sB.

Table 4.3: Fitting parameters for the sound velocity of the phase AB6.

AB6 m∗ = sB m∗ = sB m∗ = 1 m∗ = 1
Direction ΓJ XΓ ΓJ XΓ

v0 1.289 1.288 0.485 0.476
v1 −176.7 −142.9 −65.16 −50.90
v2 20861.2 24930.7 7759.54 9060.95

optical frequencies for m∗ = sB are larger than those for m∗ = 1.

The phase AB2 has four optical frequencies and the phase AB6 has twelve, since these alloys

have three and seven particles per unit cell, respectively. For the colloidal alloys AB2 and AB6,

the different optical frequencies are non-degenerate. The jumps of the optical frequencies for the

phase AB2 in Fig. 4.14(a) are associated with the change of the positions of the small particles

in the unit cell as a function of sB, as can be seen in Fig. 4.14(b). On the other hand, a different

behavior is found for the structure S(AB). In this case, the two allowed optical phonon frequencies

are degenerate, which is a consequence of the symmetry of the square lattice structure presented

by that phase. The vibrations of the particles in the unit cell are equivalent in both directions.

To conclude, notice that the optical frequencies tend to zero when sB approaches zero only in

the case m∗ = 1. In this limit (sB → 0) the interaction involving the small particles B becomes

negligible, allowing the optical modes to be excited with a very low frequency.
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Table 4.4: Fitting parameters for the sound velocity of the phase S(AB).

S(AB) m∗ = sB m∗ = sB m∗ = 1 m∗ = 1
Direction ΓX MΓ ΓX MΓ

v0 0.001 2.015 −0.021 1.417
v1 13.64 −2.985 10.22 −1.236
v2 −20.02 −5.899 −13.25 −6.354
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Figure 4.14: (a) The optical frequencies in units of ω0 at the Γ point for AB2 as a function of
sB for m∗ = sB (dotted line) and m∗ = 1 (short dash dotted line) and (b) positions of the small
particles inside the unit cell of the structure AB2 as a function of sB.

4.4 Melting

Now we turn our discussion to the melting behavior of the system as a function of the dipole

moment ratio sB. The melting temperature will be calculated within the harmonic approximation

using a Lindemann-like criterion. The original Lindemann criterion [59] states that the melting

of a given structural phase occurs when the mean square displacement exceeds a threshold value

of the mean inter-particle distance r0 [59, 60, 61]:

< u2 >

r20
= δ2 , (4.20)

where the parameter δ2 is obtained numerically from, e. g., molecular dynamics simulation. The

symbol <> stands for a thermal average. The original Lindemann criterion is not applicable

for 2D crystals because < u2 > diverges logarithmically with the size of the system [36, 61].

Bedanov et al. [61] showed through molecular dynamics simulations that the relative mean square
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Figure 4.15: The optical frequencies in units of ω0 at the Γ point for AB6 as a function of sB for
m∗ = sB and m∗ = 1.
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Figure 4.16: The optical frequencies in units of ω0 at the Γ point for S(AB) as a function of sB
for m∗ = sB and m∗ = 1.

displacement, given by

< |u⃗(R⃗)− u⃗(R⃗ + a⃗)|2 > , (4.21)

is a well defined quantity for a 2D infinite system, where u⃗(R⃗) and u⃗(R⃗+ a⃗) are the displacement

vectors at site R⃗ and at its nearest-neighbor site R⃗+ a⃗, respectively, and a⃗ is the lattice parameter.
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In Ref. [61], the modified Lindemann-like criterion for 2D crystals was defined as

< |u⃗(R⃗)− u⃗(R⃗ + a⃗)|2 >
r20

= δ2m , (4.22)

with the modified Lindemann parameter (δ2m) typically δ
2
m ≈ 0.1. The melting of the B sub-lattice

was studied in Ref. [24] using Monte Carlo simulations and the radial distribution function gBB(r)

between the small particles was obtained. For instance, the calculated melting temperature of the

B sub-lattice for the AB2 configuration was 4.0± 0.5× 10−3 for sB = 0.025.

Here we will study the melting behavior of the large A particles. In this case, r0 in Eq.

(4.22) is the mean inter-particle distance between large particles which is related to the density

as r0 = 1/
√
πρA. The parameter δ2m for 2D dipole interaction [61] is δ2m = 0.12, and therefore,

we will take this value in order to determine the melting temperature (TM) of the A particles.

In fact, the value of TM calculated in the present work is an estimate. As shown recently, the

B sub-lattice (small particles) is already melted at TM , since the melting temperature of the A

sub-lattice (large particles) was estimated to be two orders of magnitude larger than the one for

the small particles [24]. In addition, the melting temperature calculated through the harmonic

approximation depends on the frequencies of the phonon spectrum which are obtained at T = 0

by considering both sub-lattices ordered (e. g., see Eq. (4.30)). In the present colloidal alloys the

distribution of the small B particles around the big A particles is symmetric. We argue here that

since in the melted state the small particles are spread uniformly around the large particles, the

effective interaction between small and large particles is very similar to the one found in the crystal

structure at T = 0. In this case, the frequencies of the phonon spectrum obtained at T = 0 for the

ordered arrangement of the colloidal alloy would also in some sense reflect the effective interaction

between both types of particles at T ̸= 0. Therefore, in spite of the B sub-lattice be already melted

at the melting temperature of the A sub-lattice, we consider the phonon frequencies obtained for

the complete ordered structure at T = 0. We stress again that the melting temperature of the

large A particles obtained here is only an estimate but we expect that the qualitative trends and

the order of magnitude to be correct.

The correlation function < |u⃗(R⃗)−u⃗(R⃗+a⃗)|2 > is obtained within the harmonic approximation

and by considering only the nearest neighbors interactions. In general, each lattice site in the 2D

colloidal alloys has several types of nearest neighbors, and the number and the distance of the

nearest neighbors depend on the considered colloidal alloy. The melting behavior of the A sub-

lattice will be studied as a function of the dipole moment ratio sB for the case m∗ = 1, i. e. when

both types of particles have the same mass [16, 77] and for m∗ = sB.
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The correlation function between A particles is given by [36, 37]:

∆uAA =
1

NA

∑
α=x,y

NA∑
l=1

< |uAα (0)− uAα (l)|2 >, (4.23)

where uAα (l) is the αth component of the displacement vector of the lth nearest neighbor of type

A and NA is the number of nearest neighbors of type A. For the stable configurations AB2 and

AB6 the A particles are ordered in a hexagonal lattice and therefore each of them has six nearest

neighbors. On the other hand, for the phase S(AB) the A particles form a square lattice with

each particle having four nearest neighbors.

Using the normal coordinates transformation [37, 62],

uAα (0) =
1√
NmA

∑
q⃗,j

eAα (q⃗, j)Q(q⃗, j) , (4.24a)

uAα (l) =
1√
NmA

∑
q⃗,j

eAα (q⃗, j)Q(q⃗, j)e
iq⃗.R⃗A(l) , (4.24b)

where mA is the mass of the large particle, N the number of unit cells of the crystal, eAα (q⃗, j)

the αth component of the eigenvector of the jth normal mode of the large particle for the wave

vector q⃗, Q(q⃗, j) the normal coordinate of the vibrational mode, and R⃗A(l) is the relative vector

connecting one A particle at the origin to its lth nearest neighbor of type A. From the fact that

the thermal average of Q(q⃗, j)Q∗(q⃗′, j′) is given by [37, 62]

< Q(q⃗, j)Q∗(q⃗′, j′) >=
kBT

ω2(q⃗, j)
δq⃗q⃗′δjj′ (4.25)

where kB is the Boltzmann constant and T is the temperature of the system, we obtain

< |uAα (0)− uAα (l)|2 >=
4kBT

NmA

∑
q⃗,j

[eAα (q⃗, j)]
2

ω2(q⃗, j)
sin2 q⃗.R⃗A(l)

2
. (4.26)

Therefore, the expression for ∆uAA results in

∆uAA =
4kBT

NmANA

ΓAA , (4.27)

with

ΓAA =
∑
q⃗,j

[eAx (q⃗, j)]
2 + [eAy (q⃗, j)]

2

ω2(q⃗, j)

NA∑
l=1

sin2 q⃗.R⃗A(l)

2
. (4.28)

Now, the correlation function becomes

< |u⃗(R⃗)− u⃗(R⃗ + a⃗)|2 >= ∆uAA, (4.29)
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and substituting this into the modified Lindemann criterion, we found

ΓM =
4π

NNAδ2mρ
3/2
A a3

∑
q⃗,j

[eAx (q⃗, j)]
2 + [eAy (q⃗, j)]

2

ω2(q⃗, j)/ω2
0

×

NA∑
l=1

sin2 q⃗.R⃗A(l)

2
, (4.30)

where ω2
0 = µ2

Aρ
5/2
A /mA.

The melting temperature of dipolar systems is usually studied in terms of the dimensionless

coupling parameter ΓM = µ2
A/kBTMa

3, which involves the potential and thermal energy. Here we

will plot 1/ΓM as a function of the dipole moment ratio sB.
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Figure 4.17: Melting temperature of the A sub-lattice of the phase AB2 as a function of the dipole
moment ratio. m∗ = 1 (m∗ = sB) means particles A and B with equal (different) masses. For
m∗ = 1, the melting temperature assumes the maximum value 1/ΓM = 0.01507 for sB = 0.0231.

In Fig. 4.17 we present the melting behavior of the structure AB2 (ξ = 2/3) as a function of

the dipole moment ratio sB for the cases with equal (m∗ = 1) and different (m∗ = sB) masses.

Initially, we will focus on the case with m∗ = 1. For sB = 0, i. e., a one component dipolar system,

we found 1/ΓM ≈ 0.15, which is very close to the value 1/ΓM ≈ 0.11 found in Refs. [24] and [78].

Besides, as an important finding, there is an optimum value of the dipole moment ratio sB for

which the melting temperature of the A sub-lattice reaches a maximum, i. e., for sB = 0.0231

the melting temperature has the maximum value 1/ΓM = 0.01507. This is interesting since it

can be used in future experimental studies of 2D binary colloidal systems of dipoles when one

69



4. Dynamical properties and melting of binary two-dimensional colloidal alloys

0.001 0.002 0.003 0.004
0.0000

0.0005

0.0010

0.0015

0.2

0.4

0.6

0.8

0+

 

 

k BT
M

 a
3 /

sB

 m*=1
  m*=s

B

AB6

Figure 4.18: Melting temperature of the A sub-lattice for the structure AB6 as a function of the
dipole moment ratio. m∗ = 1 (m∗ = sB) means particles A and B with equal (different) masses.
The melting temperature for m∗ = 1 reaches its maximum value when sB = 0.0033.

wants to maximize the melting temperature. For sB = 0.025 which is relevant to the experiments

performed by Law et al. [5, 24], we find that 1/ΓM = 1.45× 10−2. It means that, for sB = 0.025,

the melting point of the A sub-lattice is one order of magnitude larger than that of the B sub-

lattice (1/ΓM = 4.0± 0.5× 10−3) calculated using Monte Carlo simulations [24].

In the case of particles having different masses (m∗ = sB), we observe a very different qualita-

tive behavior of the melting temperature as a function of sB. The melting temperature decreases

monotonically as sB is increased. Quantitatively, the melting temperature is one order of mag-

nitude larger than that of the case with equal masses m∗ = 1. The presence of the lighter small

dipoles makes the crystalline structure more stable against thermal fluctuations, as compared to

the case with m∗ = 1.

The melting temperature for the phase AB6 (ξ = 6/7) as a function of sB is presented in Fig.

4.18 for the cases m∗ = 1 and m∗ = sB. The same general qualitative behavior found for the phase

AB2 is also observed for the phase AB6, namely, the melting temperature for m∗ = 1 presents a

maximum for sB = 0.0033, while for the case m∗ = sB we observe that the melting temperature

decreases with increasing sB. Also, the melting temperature for m∗ = sB is about two orders of

magnitude larger than that for m∗ = 1. The fluctuations of the melting temperature observed

in Fig. 4.18 come from the non-symmetric distribution of small B particles around the big A

particles.

The melting of the A sub-lattice for the structure S(AB) as a function of sB, for m
∗ = 1 and
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Figure 4.19: Melting temperature of the A sub-lattice for the configuration S(AB) as a function of
the dipole moment ratio. Here, for m∗ = 1, the maximum temperature 1/ΓM ≈ 0.060 takes place
for sB = 0.18, while for m∗ = sB, the maximum temperature 1/ΓM ≈ 0.138 occurs for sB = 0.138.

m∗ = sB, is presented in Fig. 4.19. Unlike the configurations AB2 and AB6, the phase S(AB)

has the same qualitative behavior for m∗ = 1 and m∗ = sB. On the other hand, quantitatively,

the maximum melting temperature for m∗ = 1 (1/ΓM ≈ 0.060) is one order of magnitude smaller

than that for m∗ = sB (1/ΓM ≈ 0.138). This is another example of how the composition changes

drastically the properties of the system.

4.5 Conclusions

We investigated the dynamical properties and melting transition of a 2D binary colloidal system

of dipoles interacting through a dipole-dipole repulsive potential. Within the harmonic approxi-

mation we calculated the phonon spectra of the system as a function of the relative concentration

of small particles, dipole moment ratio and mass ratio. We determined the interval of values of

the dipole moment ratio sB for which the colloidal alloys are stable and have long-range order. For

instance, we found that the hexagonal AB2 configuration has long-range order for sB . 0.0269.

Furthermore, unlike the T = 0 calculation of the energy for the phase AB5 which was based on a

minimization of the energy of a limited set of crystal structures, we found that the T = 0 phonon

spectrum consists of imaginary frequencies, indicating that the AB5 structure at T = 0 is unsta-

ble. We did not find a long-range AB6 ordered configuration for sB = 0.037 which is consistent

with the experiments reported in Ref. [5].
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The gaps in the phonon spectra were analyzed by changing the composition, mass ratio and the

dipole moment ratio. E. g., the phonon gaps of the configurations AB2 and AB6 are considerably

larger when the particles have different masses. Furthermore, unlike the colloidal alloys AB2 and

AB6 that have phonon gaps when the particles have different masses as well as equal masses, the

configuration S(AB) exhibits phonon gaps only when the particles have different masses. This is

an example of how the composition changes the properties of the system. The optical frequencies

in the long-wavelength limit were discussed. The number of optical frequencies is associated with

the number of particles per unit cell, i. e., the composition. The optical frequencies of the phase

S(AB) are degenerate while the ones of the configurations AB2 and AB6 are not. The common

behavior that the optical frequencies go to zero when the dipole moment ratio tends to zero, does

not hold when particles have different masses (m∗ = sB). We also analyzed the sound velocity

of the transverse acoustical mode. As a general behavior, the sound velocity becomes large when

the particles have different masses. Furthermore, the speed of sound depends strongly on the

composition and the dipole moment ratio. For instance, for the composition ξ = 6/7 (AB6) the

sound velocity along the ΓX direction diminishes only until sB = 0.00251, where the minimum

speed of sound is obtained.

We estimated the melting temperature of the A sub-lattice as a function of the dipole moment

ratio and composition, within the harmonic approximation, and using the modified Lindemann

criterion. For each stable configuration, we determined the value of the dipole moment ratio for

which the melting temperature is a maximum. This is also an important result that will be useful

in future experiments of 2D binary colloidal systems of dipoles.
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Chapter 5

Conclusions

In this chapter, we summarize the main results obtained in this thesis.

First, we studied a 2D classical bilayer system of charged magnetic dipoles. Six ordered

structural phases (OCH, SS, SRect, SRhomb, SH and MH) and one disordered phase were found

to be the ground-state configurations as a function of the separation between the layers (η) and a

parameter which is related to the ratio between the dipole moment (µ) and the charge (Q) of the

particles (λ = µ2n/Q2, with n the density of particles).

The phonon spectrum of the different phases given in the (λ, η) phase diagram were obtained.

A non-monotonic behavior of the phonon spectrum as a function of λ was found for the MH

phase, which is related to the competition between the dipole and the Coulomb interaction [37].

We found that the non-monotonic behavior of the phonon spectrum is associated to a change from

attractive to repulsive character in the total energy. Besides, since the melting temperature can be

calculated from the normal mode frequencies (at least within the harmonic approximation), the

non-monotonic behavior of the phonon spectrum might play an important role when determining

the melting temperature for different λ.

The stability of the phases obtained from the phonon spectrum were compared with the phase

boundaries for different values of (λ, η). As an important finding, the presence of both electric

and magnetic interaction stabilizes up to three phases in some η-interval of a given ground state

configuration, and this fact should have profound implications on the melting temperature, since

structural transitions may take place for temperatures T ̸= 0.

We found a region in the (λ, η) phase diagram where the SH phase has the lowest energy among

the considered 9 crystal structures while from the phonon spectrum it appears to be unstable.

Monte Carlo simulations were used to determine the ordered structure in this region, and we found

that the lowest energy configuration corresponds to a distorted hexagonal lattice structure, where

the lattice positions are slightly disordered.

Second, we investigated the melting behavior of the previous system using the modified Linde-

mann criterion in order to estimate the melting temperature of the system. We observed that the
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maximum melting temperature of the structural phases gets smaller when the distance between

the layers increases, for a fixed λ. Moreover, due to strong coupling between the dipoles, the MH

phase has the highest melting temperature. Another observation is the decrease (increase) of the

melting temperature of the SH phase (MH phase), when the magnetic character of the particles

becomes large, i. e., when λ increases. Therefore, it is possible to alternate between staggered

and matched arrangements by changing the parameter λ as, for example, through an external

magnetic field or the pH of the medium. Nevertheless, our most important result is the re-entrant

melting behavior of the MH phase when λ & 1.1. It means that, at a fixed temperature, a se-

quence of solid-liquid transitions takes place when the distance between the planes η is increased,

for λ & 1.1.

Last, we investigated the dynamical properties and melting transition of a 2D binary colloidal

system of dipoles interacting through a dipole-dipole repulsive potential. We determined the

interval of values of the dipole moment ratio sB for which the colloidal alloys are stable and have

long-range order. For instance, we found that the hexagonal AB2 configuration has long-range

order for sB . 0.0269.

The gaps in the phonon spectra were analyzed by changing the composition, mass ratio and the

dipole moment ratio. E. g., the phonon gaps of the configurations AB2 and AB6 are considerably

large when the particles have different masses. Furthermore, unlike the colloidal alloys AB2 and

AB6 that have phonon gaps when the particles have different masses as well as equal masses, the

configuration S(AB) exhibits phonon gaps only when the particles have different masses.

We estimated the melting temperature of the A sub-lattice as a function of the dipole moment

ratio and composition, within the harmonic approximation, and using the modified Lindemann

criterion. For each stable configuration, we determined the value of the dipole moment ratio for

which the melting temperature is a maximum.
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Appendix A

Energy per particle using Ewald

summation

In this appendix, we present the details of the calculation of the energy per particle for the

bilayer system of charged magnetic dipoles.

A.1 Electric case

A.1.1 Coulomb interaction energy per particle in each layer

From equation (2.6a), we have that

E0E =
∑
R⃗ ̸=0⃗

Q2

|R⃗|
(A.1)

E0E = Q2 lim
r⃗→0

∑
R⃗

1

|r⃗ − R⃗|
− 1

r

 (A.2)

Following the Refs. [35, 36], we define the function:

T0(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗)

|r⃗ − R⃗|
− 1

r
. (A.3)

Then, we can rewrite equation (A.2) in the following way:

E0E = Q2 lim
r⃗→0

T0(r⃗, 0⃗) . (A.4)

Using the equations,

erf + erfc = 1 (A.5)
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A. Energy per particle using Ewald summation

erf =
2√
π

∫ x

0

e−t2dt (A.6)

erfc =
2√
π

∫ ∞

x

e−t2dt. (A.7)

we can write 1/|r⃗ − R⃗| as

1

|r⃗ − R⃗|
=

1

|r⃗ − R⃗|
[erf(ε|r⃗ − R⃗|) + erfc(ε|r⃗ − R⃗|)] . (A.8)

Substituting (A.8) into T0(r⃗, q⃗) we have:

T0(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗) [erf(ε|r⃗ − R⃗|) + erfc(ε|r⃗ − R⃗|)]
|r⃗ − R⃗|

− 1

r
(A.9)

T0(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗) erf(ε|r⃗ − R⃗|)
|r⃗ − R⃗|

+ e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗) erfc(ε|r⃗ − R⃗|)
|r⃗ − R⃗|

− 1

r

(A.10)

T0(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗) erf(ε|r⃗ − R⃗|)
|r⃗ − R⃗|

+ e−iq⃗.r⃗
∑
R⃗ ̸=0⃗

eiq⃗.(r⃗−R⃗) erfc(ε|r⃗ − R⃗|)
|r⃗ − R⃗|

+
erfc(ε|r⃗|)

|r⃗|
− 1

r
(A.11)

Let us define

t = γξ (A.12)

dt = γdξ (A.13)

Thus,

erf(x) =
2√
π

∫ x

0

e−t2dt =
2√
π

∫ x/γ

0

γe−γ2ξ2dξ (A.14)

gives us
erf(εγ)

γ
=

2√
π

∫ ε

0

e−γ2ξ2dξ (A.15)
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A. Energy per particle using Ewald summation

Substituting (A.15) into (A.11), we have that

T0(r⃗, q⃗) =
∑
R⃗

e−iq⃗.R⃗ 2√
π

∫ ε

0

e−|r⃗−R⃗|2ξ2dξ + e−iq⃗.r⃗
∑
R⃗ ̸=0⃗

eiq⃗.(r⃗−R⃗) erfc(ε|r⃗ − R⃗|)
|r⃗ − R⃗|

+
erfc(ε|r⃗|)

|r⃗|
− 1

r
(A.16)

Now, we work with the first term of this equation:

∑
R⃗

e−iq⃗.R⃗ 2√
π

∫ ε

0

e−|r⃗−R⃗|2ξ2dξ =
2√
π

∫ ε

0

∑
R⃗

e−|r⃗−R⃗|2ξ2e−iq⃗.R⃗

 dξ (A.17)

Substituting the following transformation (the 2D θ-function transformation)

∑
R⃗

e−|r⃗−R⃗|2ξ2e−iq⃗.R⃗ =
nsπ

ξ2

∑
G⃗

e−|q⃗+G⃗|2/4ξ2e−i(q⃗+G⃗).r⃗ (A.18)

into (A.17), we have that

2
√
πns

∑
G⃗

e−i(q⃗+G⃗).r⃗

[∫ ε

0

1

ξ2
e−|q⃗+G⃗|2/4ξ2dξ

]
. (A.19)

If

t = |q⃗ + G⃗|/2ξ (A.20)

then ∫ ε

0

1

ξ2
e−|q⃗+G⃗|2/4ξ2dξ =

2

|q⃗ + G⃗|

[∫ ∞

|q⃗+G⃗|/2ε
e−t2dt

]
=

√
π

|q⃗ + G⃗|
erfc

(
|q⃗ + G⃗|

2ε

)
(A.21)

and (A.19) becomes

2πns

∑
G⃗

e−i(q⃗+G⃗).r⃗

|q⃗ + G⃗|
erfc

(
|q⃗ + G⃗|

2ε

)
. (A.22)

Let us define

Φ(x) =

√
π

x
erfc(

√
x) . (A.23)

Thus,
erfc(εr)

r
=

ε√
π
Φ(ε2r2) . (A.24)

Since ε =
√
πns, we have that

erfc(
√
πnsr)

r
=

√
nsΦ(πnsr

2) . (A.25)
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Analogously,
erfc(ε|r⃗ − R⃗|)

|r⃗ − R⃗|
=

√
nsΦ(ε

2|r⃗ − R⃗|2) (A.26)

gives us
erfc(

√
πns|r⃗ − R⃗|)
|r⃗ − R⃗|

=
√
nsΦ(πns|r⃗ − R⃗|2) (A.27)

and
erfc(|q⃗ + G⃗|/2ε)

|q⃗ + G⃗|
=

erfc(|q⃗ + G⃗|/2√πns)

|q⃗ + G⃗|
=

1

2π
√
ns

Φ

(
|q⃗ + G⃗|2

4πns

)
. (A.28)

Then,

T0(r⃗, q⃗) =
√
ns

∑
G⃗

e−i(q⃗+G⃗).r⃗Φ

(
|q⃗ + G⃗|2

4πns

)
+
√
ns

∑
R⃗ ̸=0⃗

e−iq⃗.R⃗Φ(πns|r⃗ − R⃗|2) +

√
nsΦ(πns|r⃗|2)−

1

r
, (A.29)

E0E = Q2 lim
r⃗→0

T0(r⃗, 0⃗) , (A.30)

and

T0(r⃗, 0) =
√
ns

∑
G⃗

e−iG⃗.r⃗Φ

(
|G⃗|2

4πns

)
+
√
ns

∑
R⃗ ̸=0⃗

Φ(πns|r⃗ − R⃗|2) +

√
nsΦ(πns|r⃗|2)−

1

r
. (A.31)

Now, we are going to work with the last two terms of the equation (A.31). Thus,

lim
r→0

[
√
nsΦ(πns|r⃗|2)−

1

r

]
= lim

r→0

[
−
erf(

√
πnsr)

r

]
= −

√
πns lim

t→0

erf(t)

t
(A.32)

Using the Taylor series of the error function, we have that

lim
x→0

erf(x)

x
=

2√
π

(A.33)

and then,

lim
r→0

[
√
nsΦ(πns|r⃗|2)−

1

r

]
= −2

√
ns . (A.34)
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For the first term of the equation (A.31), we have that

lim
r→0

√
ns

∑
G⃗

e−iG⃗.r⃗Φ

(
|G⃗|2

4πns

)
=

√
ns

∑
G⃗

Φ

(
|G⃗|2

4πns

)
=

√
ns Φ

(
|G⃗|2

4πns

)∣∣∣∣∣
G=0

+

√
ns

∑
G⃗ ̸=0

Φ

(
|G⃗|2

4πns

)
. (A.35)

From equations (A.5) e (A.23), we obtain

lim
r→0

√
ns

∑
G⃗

e−iG⃗.r⃗Φ

(
|G⃗|2

4πns

)
=

2πns

G

∣∣∣∣
G=0

−
[
2πns

G
erf

(
G

2
√
πns

)]∣∣∣∣
G=0

+

√
ns

∑
G⃗ ̸=0

Φ

(
|G⃗|2

4πns

)
(A.36)

and using the equation (A.33), we can write

lim
r→0

√
ns

∑
G⃗

e−iG⃗.r⃗Φ

(
|G⃗|2

4πns

)
=

2πns

G

∣∣∣∣
G=0

− 2
√
ns +

√
ns

∑
G⃗ ̸=0

Φ

(
|G⃗|2

4πns

)
(A.37)

But,

G⃗ = 2πns(ẑ × R⃗) (A.38)

and since ẑ is a unit vector perpendicular to the layers, we have that

G = 2πnsR (A.39)

G2

4πns

= πnsR
2 . (A.40)

Thus,

lim
r→0

√
ns

∑
G⃗

e−iG⃗.r⃗Φ

(
|G⃗|2

4πns

)
=

2πns

G

∣∣∣∣
G=0

− 2
√
ns +

√
ns

∑
R⃗ ̸=0

Φ
(
πnsR

2
)

(A.41)

and

lim
r→0

T0(r⃗, 0) =
2πns

G

∣∣∣∣
G=0

− 2
√
ns +

√
ns

∑
R⃗ ̸=0

Φ
(
πnsR

2
)
+

√
ns

∑
R⃗ ̸=0⃗

Φ(πns|R⃗|2)− 2
√
ns (A.42)
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gives us,

E0E =
2πQ2ns

G

∣∣∣∣
G=0

+ 2Q2√ns

∑
R⃗ ̸=0

Φ
(
πnsR

2
)
− 4Q2√ns . (A.43)

The divergent term in the last equation is exactly balanced by the interaction energy with a

background ρ+ = Qns, located in the same layer [34, 36]. This interaction energy is given by

EB
0E = −Qρ+

∫
d2r

|r⃗|
= − 2πQ2ns

q

∣∣∣∣
q=0

(A.44)

and then, we obtain (with ns = n/2)

E0E = Q2
√
n/2A , (A.45)

where

A = 2
∑
R⃗ ̸=0⃗

Φ(πn|R⃗|2/2)− 4 . (A.46)

A.1.2 Coulomb interaction energy per particle between particles in

distinct layers

The equation (2.7a) is given by

EIE =
∑
R⃗

Q2

[|R⃗ + c⃗|2 + d2]1/2
(A.47)

and following the Ref. [36], we define

TI(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

[|r⃗ − R⃗ + c⃗|2 + d2]1/2
(A.48)

and, thus

EIE = Q2 lim
r⃗→0

TI(r⃗, 0⃗) . (A.49)

With

γ2 = |r⃗ − R⃗ + c⃗|2 + d2 (A.50)

and from equation (A.5), we have:

TI(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

γ
(A.51)
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TI(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

γ
[erf(εγ) + erfc(εγ)] (A.52)

TI(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

γ
erf(εγ) +

e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

γ
erfc(εγ) . (A.53)

Since
erf(εγ)

γ
=

2√
π

∫ ε

0

e−γ2ξ2dξ (A.54)

we can write

TI(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗) 2√
π

∫ ε

0

e−γ2ξ2dξ +

e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

γ
erfc(εγ) (A.55)

Let us define the function

TA(r⃗, q⃗) = e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗) 2√
π

∫ ε

0

e−γ2ξ2dξ (A.56)

and then,

TI(r⃗, q⃗) = TA(r⃗, q⃗) + e−iq⃗.r⃗
∑
R⃗

eiq⃗.(r⃗−R⃗+c⃗)

γ
erfc(εγ) . (A.57)

Now, we are going to work with the equation (A.55):

TA(r⃗, q⃗) =
2√
π

∫ ε

0

∑
R⃗

e−iq⃗.(R⃗−c⃗)e−γ2ξ2

 dξ (A.58)

TA(r⃗, q⃗) =
2√
π

∫ ε

0

eiq⃗.⃗c

∑
R⃗

e−iq⃗.R⃗e−γ2ξ2

 dξ . (A.59)
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Using the equation (A.49), we have that:

TA(r⃗, q⃗) =
2√
π

∫ ε

0

eiq⃗.⃗c

∑
R⃗

e−iq⃗.R⃗e−[|r⃗−R⃗+c⃗|2+d2]ξ2

 dξ (A.60)

TA(r⃗, q⃗) =
2√
π

∫ ε

0

eiq⃗.⃗c

∑
R⃗

e−iq⃗.R⃗e−|r⃗−R⃗+c⃗|2ξ2

 e−d2ξ2dξ (A.61)

TA(r⃗, q⃗) =
2√
π

∫ ε

0

eiq⃗.⃗c

∑
R⃗

e−iq⃗.R⃗e−|(r⃗+c⃗)−R⃗|2ξ2

 e−d2ξ2dξ (A.62)

But, ∑
R⃗

e−|r⃗−R⃗|2ξ2e−iq⃗.R⃗ =
nsπ

ξ2

∑
G⃗

e−|q⃗+G⃗|2/4ξ2e−i(q⃗+G⃗).r⃗ (A.63)

gives us ∑
R⃗

e−|(r⃗+c⃗)−R⃗|2ξ2e−iq⃗.R⃗ =
nsπ

ξ2

∑
G⃗

e−|q⃗+G⃗|2/4ξ2e−i(q⃗+G⃗).(r⃗+c⃗) (A.64)

and thus,

TA(r⃗, q⃗) =
2√
π
nsπ

∑
G⃗

e−i(q⃗+G⃗).r⃗e−iG⃗.⃗c

[∫ ε

0

1

ξ2
e−|q⃗+G⃗|2/4ξ2e−d2ξ2dξ

]
. (A.65)

Let us define the integral I as

I =

∫ ε

0

1

ξ2
e−|q⃗+G⃗|2/4ξ2e−d2ξ2dξ . (A.66)

Using the variable

t =
|q⃗ + G⃗|

2ξ
(A.67)

dt = −|q⃗ + G⃗|
2ξ2

dξ (A.68)

−2
dt

|q⃗ + G⃗|
=
dξ

ξ2
(A.69)
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A. Energy per particle using Ewald summation

we have that, if ξ = 0, then t = ∞. On the other hand, if ξ = ε, then t = |q⃗+G⃗|
2ε

. Therefore, the

integral I becomes

I =
2

|q⃗ + G⃗|

∫ ∞

|q⃗+G⃗|
2ε

e−d2|q⃗+G⃗|2/4t2e−t2dt (A.70)

I =
2

|q⃗ + G⃗|

∫ ∞

|q⃗+G⃗|
2ε

e
−
[
t2+

(
d|q⃗+G⃗|

2

)2
1
t2

]
dt (A.71)

and using the result∫ ∞

x

e
−
[
t2+α2

t2

]
dt =

√
π

4

[
e2αerfc

(
x+

α

x

)
+ e−2αerfc

(
x− α

x

)]
(A.72)

with

x =
|q⃗ + G⃗|

2ε
(A.73)

α =
d|q⃗ + G⃗|

2
(A.74)

α

x
= εd (A.75)

we have that ∫ ∞

|q⃗+G⃗|
2ε

e
−
[
t2+

(
d|q⃗+G⃗|

2

)2
1
t2

]
dt =

√
π

4

[
ed|q⃗+G⃗|erfc

(
|q⃗ + G⃗|

2ε
+ εd

)
+

e−d|q⃗+G⃗|erfc

(
|q⃗ + G⃗|

2ε
− εd

)]
. (A.76)

Let us define ε =
√
πns. Defining the function Ψ(x, y) given by

Ψ(x, y) =
1

2

√
π

x

[
e
√
4xyerfc

(√
x+

√
y
)
+ e−

√
4xyerfc

(√
x−√

y
)]

(A.77)

with

√
x =

|q⃗ + G⃗|
2ε

(A.78)
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x =
|q⃗ + G⃗|2

4ε2
=

|q⃗ + G⃗|2

4πns

(A.79)

1

2

√
π

x
=

π
√
ns

|q⃗ + G⃗|
(A.80)

√
y = εd = d

√
πns (A.81)

y = d2πns (A.82)

and, with η = d
√
ns, we have that

y = πη2 . (A.83)

With these definitions, we obtain

Ψ

(
|q⃗ + G⃗|2

4πns

, πη2

)
=

π
√
ns

|q⃗ + G⃗|

[
ed|q⃗+G⃗|erfc

(
|q⃗ + G⃗|

2ε
+ εd

)
+

e−d|q⃗+G⃗|erfc

(
|q⃗ + G⃗|

2ε
− εd

)]
(A.84)

|q⃗ + G⃗|
π
√
ns

Ψ

(
|q⃗ + G⃗|2

4πns

, πη2

)
=

[
ed|q⃗+G⃗|erfc

(
|q⃗ + G⃗|

2ε
+ εd

)
+

e−d|q⃗+G⃗|erfc

(
|q⃗ + G⃗|

2ε
− εd

)]
(A.85)

Substituting (A.84) into (A.75), we have that

∫ ∞

|q⃗+G⃗|
2ε

e
−
[
t2+

(
d|q⃗+G⃗|

2

)2
1
t2

]
dt =

√
π

4

|q⃗ + G⃗|
π
√
ns

Ψ

(
|q⃗ + G⃗|2

4πns

, πη2

)
(A.86)

therefore,

I =
2

|q⃗ + G⃗|

∫ ∞

|q⃗+G⃗|
2ε

e
−
[
t2+

(
d|q⃗+G⃗|

2

)2
1
t2

]
dt =

2

|q⃗ + G⃗|

√
π

4

|q⃗ + G⃗|
π
√
ns

Ψ

(
|q⃗ + G⃗|2

4πns

, πη2

)
(A.87)
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I =
2

|q⃗ + G⃗|

∫ ∞

|q⃗+G⃗|
2ε

e
−
[
t2+

(
d|q⃗+G⃗|

2

)2
1
t2

]
dt =

1

2

1√
π
√
ns

Ψ

(
|q⃗ + G⃗|2

4πns

, πη2

)
. (A.88)

Thus,

TA(r⃗, q⃗) =
2√
π
nsπ

∑
G⃗

e−i(q⃗+G⃗).r⃗e−iG⃗.⃗c

[
1

2

1√
π
√
ns

Ψ

(
|q⃗ + G⃗|2

4πns

, πη2

)]
(A.89)

TA(r⃗, q⃗) =
√
ns

∑
G⃗

e−i(q⃗+G⃗).r⃗e−iG⃗.⃗cΨ

(
|q⃗ + G⃗|2

4πns

, πη2

)
(A.90)

and then,

TI(r⃗, q⃗) =
√
ns

∑
G⃗

e−i(q⃗+G⃗).r⃗e−iG⃗.⃗cΨ

(
|q⃗ + G⃗|2

4πns

, πη2

)
+
∑
R⃗

e−iq⃗.(R⃗−c⃗)

γ
erfc(εγ) .

(A.91)

On the other hand, with ε =
√
πns and γ = [|r⃗ − R⃗ + c⃗|2 + d2]1/2, we have that

erf(εγ)

γ
=

erf(
√
πns[|r⃗ − R⃗ + c⃗|2 + d2]1/2)

[|r⃗ − R⃗ + c⃗|2 + d2]1/2
(A.92)

and again, we write this equation in terms of the function Φ(x) given by

Φ(x) =

√
π

x
erfc(

√
x) . (A.93)

If
√
x =

√
πns[|r⃗ − R⃗ + c⃗|2 + d2]1/2 (A.94)

then

x = π[ns|r⃗ − R⃗ + c⃗|2 + nsd
2] . (A.95)

But, since η = d
√
ns and, therefore, η

2 = d2ns, we obtain

x = π[ns|r⃗ − R⃗ + c⃗|2 + η2] (A.96)

erf(εγ)

γ
=

erf(
√
πns[|r⃗ − R⃗ + c⃗|2 + d2]1/2)

[|r⃗ − R⃗ + c⃗|2 + d2]1/2
=

√
nsΦ(π[ns|r⃗ − R⃗ + c⃗|2 + η2]) (A.97)
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and we can write

TI(r⃗, q⃗) =
√
ns

∑
G⃗

e−i(q⃗+G⃗).r⃗e−iG⃗.⃗cΨ

(
|q⃗ + G⃗|2

4πns

, πη2

)
+

√
ns

∑
R⃗

e−iq⃗.(R⃗−c⃗)Φ(π[ns|r⃗ − R⃗ + c⃗|2 + η2]) . (A.98)

Since

EIE = Q2 lim
r⃗→0

TI(r⃗, 0⃗) (A.99)

we are going to calculate TI(0, 0):

lim
r⃗→0

TI(r⃗, 0⃗) =
√
ns

∑
G⃗

e−iG⃗.⃗cΨ

(
|G⃗|2

4πns

, πη2

)
+

√
ns

∑
R⃗

e−iq⃗.(R⃗−c⃗)Φ(π[ns|R⃗ + c⃗|2 + η2]) (A.100)

lim
r⃗→0

TI(r⃗, 0⃗) =
√
ns lim

G→0
Ψ

(
|G⃗|2

4πns

, πη2

)
+
√
ns

∑
G⃗ ̸=0

e−iG⃗.⃗cΨ

(
|G⃗|2

4πns

, πη2

)
+

√
ns

∑
R⃗

e−iq⃗.(R⃗−c⃗)Φ(π[ns|R⃗ + c⃗|2 + η2]) (A.101)

with

Ψ

(
|G⃗|2

4πns

, πη2

)
=

π
√
ns

|G⃗|

[
e|G⃗|η/√nserfc

(
|G⃗|

2
√
πns

+
√
πη

)
+

e−|G⃗|η/√nserfc

(
|G⃗|

2
√
πns

−
√
πη

)]
. (A.102)

From equation

erf(x) + erfc(x) = 1 (A.103)

we have that,

erfc

(
|G⃗|

2
√
πns

±
√
πη

)
= 1− erf

(
|G⃗|

2
√
πns

±
√
πη

)
(A.104)

Ψ

(
|G⃗|2

4πns

, πη2

)
=

π
√
ns

|G⃗|

[
e|G⃗|η/√ns + e−|G⃗|η/√ns − e|G⃗|η/√nserf

(
|G⃗|

2
√
πns

+
√
πη

)

−e−|G⃗|η/√nserf

(
|G⃗|

2
√
πns

−
√
πη

)]
(A.105)
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Ψ

(
|G⃗|2

4πns

, πη2

)
=

π
√
ns

|G⃗|

[
e|G⃗|η/√ns + e−|G⃗|η/√ns

]
−
π
√
ns

|G⃗|

[
e|G⃗|η/√nserf

(
|G⃗|

2
√
πns

+
√
πη

)

+e−|G⃗|η/√nserf

(
|G⃗|

2
√
πns

−
√
πη

)]
. (A.106)

Now, let us define the functions

ΨA =
π
√
ns

|G⃗|

[
e|G⃗|η/√ns + e−|G⃗|η/√ns

]
(A.107)

ΨB = −
π
√
ns

|G⃗|

[
e|G⃗|η/√nserf

(
|G⃗|

2
√
πns

+
√
πη

)
+ e−|G⃗|η/√nserf

(
|G⃗|

2
√
πns

−
√
πη

)]
(A.108)

and, therefore,

Ψ

(
|G⃗|2

4πns

, πη2

)
= ΨA +ΨB (A.109)

Ψ
(
0, πη2

)
= lim

G→0
ΨA + lim

G→0
ΨB (A.110)

where

lim
G→0

ΨB = −
π
√
ns

|G⃗|
[
erf
(√

πη
)
+ erf

(
−
√
πη
)]

(A.111)

lim
G→0

ΨB = −
π
√
ns

|G⃗|
[
erf
(√

πη
)
− erf

(√
πη
)]

=
0

0
(A.112)

since erf(−x) = −erf(x). Thus, we can use the L’Hospital theorem, after the following definitions:

M = −π
√
ns

[
e|G⃗|η/√nserf

(
|G⃗|

2
√
πns

+
√
πη

)
+ e−|G⃗|η/√nserf

(
|G⃗|

2
√
πns

−
√
πη

)]
(A.113)

and

N = G (A.114)
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and thus

ΨB =
M

N
(A.115)

with

lim
G→0

ΨB = lim
G→0

M

N
=

0

0
. (A.116)

Using the L’Hospital theorem,

lim
G→0

ΨB = lim
G→0

M

N
= lim

G→0

dM
dG
dN
dG

(A.117)

where

dN

dG
= 1 . (A.118)

On the other hand, in order to calculate dM
dG

, we need to obtain the derivative of the integrals.

Thus, if

I(t) =

∫ b(t)

a(t)

f(x)dx (A.119)

then,

dI(t)

dt
= f(b(t))

db(t)

dt
− f(a(t))

da(t)

dt
(A.120)

and

erf

(
|G⃗|

2
√
πns

±
√
πη

)
=

2√
π

∫ |G⃗|
2
√

πns
±
√
πη

0

e−t2dt (A.121)

d

dG
erf

(
|G⃗|

2
√
πns

±
√
πη

)
= e

−
(

|G⃗|
2
√
πns

±
√
πη

)2 1

π
√
ns

(A.122)

gives us

lim
G→0

ΨB = lim
G→0

dM
dG
dN
dG

= −2π
√
ns

[
e−πη2

π
√
ns

+
ηerf(

√
πη)

√
ns

]
. (A.123)
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On the other hand,

lim
G→0

ΨA = lim
G→0

π
√
ns

|G⃗|

[
e|G⃗|η/√ns + e−|G⃗|η/√ns

]
(A.124)

lim
G→0

ΨA = lim
G→0

π
√
ns

[
e|G⃗|η/√ns − e−|G⃗|η/√ns

G
+

2e−|G⃗|η/√ns

G

]
(A.125)

lim
G→0

ΨA = 2π
√
ns lim

G→0

e−|G⃗|η/√ns

G
+ π

√
ns lim

G→0

[
e|G⃗|η/√ns − e−|G⃗|η/√ns

G

]
(A.126)

lim
G→0

ΨA = 2π
√
ns
e−|G⃗|η/√ns

G

∣∣∣∣∣
G=0

+
0

0
. (A.127)

Again, applying the L’Hospital theorem, we have that

lim
G→0

ΨA = 2π
√
ns
e−|G⃗|η/√ns

G

∣∣∣∣∣
G=0

+ π
√
ns lim

G→0

[
η

√
ns

e|G⃗|η/√ns +
η

√
ns

e−|G⃗|η/√ns

]
(A.128)

lim
G→0

ΨA = 2π
√
ns
e−|G⃗|η/√ns

G

∣∣∣∣∣
G=0

+ 2πη (A.129)

Then, the equation (A.109) becomes

Ψ
(
0, πη2

)
= 2π

√
ns
e−|G⃗|η/√ns

G

∣∣∣∣∣
G=0

+ 2πη − 2
[
e−πη2 + πηerf(

√
πη)
]

(A.130)

and, finally,

lim
r⃗→0

TI(r⃗, 0⃗) = 2πns
e−|G⃗|η/√ns

G

∣∣∣∣∣
G=0

+ 2πη
√
ns − 2

√
ns

[
e−πη2 + πηerf(

√
πη)
]
+

√
ns

∑
G⃗ ̸=0

e−iG⃗.⃗cΨ

(
|G⃗|2

4πns

, πη2

)
+
√
ns

∑
R⃗

e−iq⃗.(R⃗−c⃗)Φ(π[ns|R⃗ + c⃗|2 + η2])

(A.131)

with

EIE = Q2 lim
r⃗→0

TI(r⃗, 0⃗) . (A.132)
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Thus,

EIE = 2πQ2ns
e−|G⃗|η/√ns

G

∣∣∣∣∣
G=0

+ 2πQ2η
√
ns − 2Q2√ns

[
e−πη2 + πηerf(

√
πη)
]
+

Q2√ns

∑
G⃗ ̸=0

e−iG⃗.⃗cΨ

(
|G⃗|2

4πns

, πη2

)
+Q2√ns

∑
R⃗

e−iq⃗.(R⃗−c⃗)Φ(π[ns|R⃗ + c⃗|2 + η2])

(A.133)

and, again, the divergent term in the last equation is balanced by the interaction energy with a

background ρ+ = Qns, located in the opposite layer [36]. This interaction energy is given by

EB
IE = −Qρ+

∫
d2r

(r2 + d2)1/2
= − 2πQ2ns

e−|q⃗|η/√ns

q

∣∣∣∣
q=0

. (A.134)

Therefore, we obtain

EIE = Q2
√
n/2B(η) (A.135)

where

B(η) =
∑
R⃗

Φ(π[n|R⃗ + c⃗|2/2 + η2])

+
∑
G⃗ ̸=0⃗

e−iG⃗·⃗cΨ

(
|q⃗ + G⃗|2

2πn
, πη2

)

+ 2{πη · erfc(
√
πη)− e−πη2}.

(A.136)

A.2 Magnetic case

A.2.1 Magnetic interaction energy per particle in each layer

From equation (2.6b), we have that

E0M =
∑
R ̸=0

µ2

|R⃗|3
. (A.137)

Following the Ref. [37], we define the function:

ψ0(r⃗, q⃗) = eiq⃗·r⃗
∑
R ̸=0

e−iq⃗·(r⃗+R⃗)

|r⃗ + R⃗|3
(A.138)

such that

E0M = µ2 lim
r⃗→0

ψ0(r⃗, 0⃗) . (A.139)

90



A. Energy per particle using Ewald summation

Using the identity based on the integral representation of the gamma function

1

X2s
=

1

Γ(s)

∫ ∞

0

ts−1e−X2tdt (A.140)

with s = 3/2, Γ(3/2) =
√
π/2, we have that

1

|r⃗ + R⃗|3
=

2√
π

∫ ∞

0

t1/2e−|r⃗+R⃗|2tdt . (A.141)

Substituting (A.139) into (A.136), we obtain:

ψ0(r⃗, q⃗) = eiq⃗·r⃗
∑
R ̸=0

e−iq⃗·(r⃗+R⃗) 2√
π

∫ ∞

0

t1/2e−|r⃗+R⃗|2tdt , (A.142)

ψ0(r⃗, q⃗) = eiq⃗·r⃗
∑
R

e−iq⃗·(r⃗+R⃗) 2√
π

∫ ∞

0

t1/2e−|r⃗+R⃗|2tdt− 2√
π

∫ ∞

0

t1/2e−|r⃗|2tdt . (A.143)

If we separate the integrals above in the regions (0, α2) and (α2,∞), we obtain:

ψ0(r⃗, q⃗) = eiq⃗·r⃗
∑
R

e−iq⃗·(r⃗+R⃗) 2√
π

∫ α2

0

t1/2e−|r⃗+R⃗|2tdt

+eiq⃗·r⃗
∑
R

e−iq⃗·(r⃗+R⃗) 2√
π

∫ ∞

α2

t1/2e−|r⃗+R⃗|2tdt

− 2√
π

∫ α2

0

t1/2e−|r⃗|2tdt− 2√
π

∫ ∞

α2

t1/2e−|r⃗|2tdt (A.144)

ψ0(r⃗, q⃗) = eiq⃗·r⃗
2√
π

∫ α2

0

t1/2

[∑
R

e−|r⃗+R⃗|2te−iq⃗·(r⃗+R⃗)

]
dt+

2√
π

∫ ∞

α2

t1/2e−|r⃗|2tdt

+eiq⃗·r⃗
∑
R ̸=0

e−iq⃗·(r⃗+R⃗) 2√
π

∫ ∞

α2

t1/2e−|r⃗+R⃗|2tdt− 2√
π

∫ α2

0

t1/2e−|r⃗|2tdt

− 2√
π

∫ ∞

α2

t1/2e−|r⃗|2tdt (A.145)

ψ0(r⃗, q⃗) = eiq⃗·r⃗
2√
π

∫ α2

0

t1/2

[∑
R

e−|r⃗+R⃗|2te−iq⃗·(r⃗+R⃗)

]
dt− 2√

π

∫ α2

0

t1/2e−|r⃗|2tdt

+eiq⃗·r⃗
∑
R ̸=0

e−iq⃗·(r⃗+R⃗) 2√
π

∫ ∞

α2

t1/2e−|r⃗+R⃗|2tdt (A.146)
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Using the 2D Poisson summation formula

∑
R

e−|r⃗+R⃗|2te−iq⃗.R⃗ =
πns

t

∑
G

e−|q⃗+G⃗|2/4tei(q⃗+G⃗).r⃗ (A.147)

the equation A.144 becomes

ψ0(r⃗, q⃗) = πns

∑
G

ei(q⃗+G⃗).r⃗ 2√
π

∫ α2

0

t−1/2e−|q⃗+G⃗|2/4tdt− 2√
π

∫ α2

0

t1/2e−|r⃗|2tdt

+
∑
R ̸=0

e−iq⃗·R⃗ 2√
π

∫ ∞

α2

t1/2e−|r⃗+R⃗|2tdt . (A.148)

Now, we need the following equations:

∫ ∞

α2

t1/2e−x2tdt =

√
π

2x3
erfc(αx) +

αe−α2x2

x2
(A.149)

∫ α2

0

t−1/2e−x2/4tdt = e−x2/4α2
[
2α−

√
πxex

2/4α2

erfc(x/2α)
]

. (A.150)

Therefore,

∫ ∞

α2

t1/2e−|r⃗+R⃗|2tdt =

√
π

2|r⃗ + R⃗|3
erfc(α|r⃗ + R⃗|) + αe−α2|r⃗+R⃗|2

|r⃗ + R⃗|2
(A.151)

e

∫ α2

0

t−1/2e−|q⃗+G⃗|2/4tdt = e−|q⃗+G⃗|2/4α2
[
2α−

√
π|q⃗ + G⃗|e|q⃗+G⃗|2/4α2

erfc(|q⃗ + G⃗|/2α)
]

(A.152)

∫ α2

0

t−1/2e−|q⃗+G⃗|2/4tdt = 2αe−|q⃗+G⃗|2/4α2 −
√
π|q⃗ + G⃗|erfc(|q⃗ + G⃗|/2α) . (A.153)

Besides,

∫ α2

0

t1/2e−|r⃗|2tdt =

√
π

2r3
erf(αr)− αe−α2r2

r2
. (A.154)

Substituting (A.149), (A.151) and (A.152) into (A.146), with ns = n/2 and α = ε, we obtain:
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ψ0(r⃗, q⃗) =
πn

2

∑
G⃗

ei(q⃗+G⃗)·r⃗
[
4ε√
π
e−|q⃗+G⃗|2/4ε2

− 2|q⃗ + G⃗|erfc

(
|q⃗ + G⃗|

2ε

)]

+

[
2εe−ε2r2

√
πr2

− erf(εr)

r3

]

+
∑
R⃗ ̸=0⃗

e−iq⃗·R⃗

[
erfc(ε|R⃗ + r⃗|)

|R⃗ + r⃗|3

+

(
2ε√
π

)
e−ε2|R⃗+r⃗|2

|R⃗ + r⃗|2

]
.

(A.155)

Since

E0M = µ2 lim
r→0

ψ0(r⃗, 0⃗) , (A.156)

we have to calculate limr⃗→0 ψ0(r⃗, 0⃗):

lim
r→0

ψ0(r⃗, 0⃗) =
πn

2

∑
G⃗

[
4ε√
π
e−|G⃗|2/4ε2 − 2|G⃗|erfc

(
|G⃗|
2ε

)]

+ lim
r→0

[
2εe−ε2r2

√
πr2

− erf(εr)

r3

]

+
∑
R⃗ ̸=0⃗

[
erfc(ε|R⃗|)

|R⃗|3
+

2ε√
π

e−ε2|R⃗|2

|R⃗|2

]
.

(A.157)

But,

lim
r→0

[
2εe−ε2r2

√
πr2

− erf(εr)

r3

]
= lim

r→0

[
2αre−ε2r2 −

√
πerf(εr)√

πr3

]
=

0

0
. (A.158)

Therefore, we can use the L’Hospital theorem, after the following definitions:

f(r) = 2εre−ε2r2 −
√
πerf(εr) (A.159)

and

g(r) =
√
πr3 (A.160)
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such that

lim
r→0

f(r)

g(r)
= lim

r→0

df
dr
dg
dr

= lim
r→0

−4ε3r2e−ε2r2

3
√
πr2

=
−4ε3

3
√
π

. (A.161)

Thus, we obtain (with ε =
√
πns =

√
πn/2):

E0M = µ2(n/2)3/2C, (A.162)

where

C =
∑
G⃗

[
4πe−|G⃗|2/2πn − 2|G⃗|π√

n/2
erfc

(
|G⃗|

2
√
πn/2

)]

+
∑
R⃗ ̸=0⃗

[
erfc(

√
πn/2|R⃗|)

(n/2)3/2|R⃗|3
+

(
4

n

)
e−πn|R⃗|2/2

|R⃗|2

]
− 4π

3
.

(A.163)

A.2.2 Magnetic interaction energy per particle between particles in

distinct layers

From equation (2.7)b, we have that

EIM =
∑
R⃗

µ2(|R⃗ + c⃗|2 − 2d2)

(|R⃗ + c⃗|2 + d2)5/2
. (A.164)

Following the procedure developed in Ref. [37], we define the function

ψI(r⃗, q⃗) = eiq⃗·r⃗
∑
R⃗

(
e−iq⃗·(r⃗+R⃗+c⃗)

|r⃗ + R⃗ + c⃗|3
+

−3d2e−iq⃗·(r⃗+R⃗+c⃗)

|r⃗ + R⃗ + c⃗|5

)
(A.165)

which can also be written as

ψI(r⃗, q⃗) = ψI1(r⃗, q⃗)− 3d2ψI2(r⃗, q⃗) (A.166)

with

ψI1(r⃗, q⃗) =
∑
R⃗

e−iq⃗·(R⃗+c⃗)

|r⃗ + R⃗ + c⃗|3
, (A.167)

ψI2(r⃗, q⃗) =
∑
R⃗

e−iq⃗·(R⃗+c⃗)

|r⃗ + R⃗ + c⃗|5
, (A.168)

where |r⃗ + R⃗ + c⃗| ≡ (|r⃗ + R⃗ + c⃗|2 + d2)1/2. Therefore,
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EIM = µ2 lim
r⃗→0

ψI(r⃗, 0⃗). (A.169)

Using the equations (A.138) and (A.145), we can write

ψI1(r⃗, q⃗) = πns

∑
G

ei(q⃗+G⃗).r⃗eiG⃗.⃗c 2√
π

∫ α2

0

t−1/2e−
|q⃗+G⃗|2

4t
−d2tdt

+
∑
R

e−iq⃗·(R⃗+c⃗) 2√
π

∫ ∞

α2

t1/2e−|r⃗+R⃗+c⃗|2tdt . (A.170)

The integral

I1 =

∫ α2

0

t−1/2e−
|q⃗+G⃗|2

4t
−d2tdt (A.171)

with the change of variable t = 1/w2 can be written as

I1 = 2

∫ ∞

1/α

w−2e−
|q⃗+G⃗|2w2

4
− d2

w2 dw (A.172)

I1 =

√
π

2d

[
e−|q⃗+G⃗|derfc

(
|q⃗ + G⃗|
2α

− αd

)
− e|q⃗+G⃗|derfc

(
|q⃗ + G⃗|
2α

+ αd

)]
. (A.173)

Using the equation (A.147), the second integral in the equation (A.168) can be solved. There-

fore,

ψI1(r⃗, q⃗) =
πns

d

∑
G

ei(q⃗+G⃗).r⃗eiG⃗.⃗c

[
e−|q⃗+G⃗|derfc

(
|q⃗ + G⃗|
2α

− αd

)
− e|q⃗+G⃗|derfc

(
|q⃗ + G⃗|
2α

+ αd

)]

+
∑
R

e−iq⃗·(R⃗+c⃗)

[
erfc(α|r⃗ + R⃗ + c⃗|)

|r⃗ + R⃗ + c⃗|3
+

(
2α√
π

)
e−α2|r⃗+R⃗+c⃗|2

|r⃗ + R⃗ + c⃗|2

]
. (A.174)

Now, we have to work with the expression

ψI2(r⃗, q⃗) =
∑
R⃗

e−iq⃗·(R⃗+c⃗)

|r⃗ + R⃗ + c⃗|5
. (A.175)

Using the equation (A.138) (with s = 5/2, Γ(5/2) = 3
√
π/4) and the equation (A.145), we obtain
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ψI2(r⃗, q⃗) =
4
√
πns

3

∑
G

ei(q⃗+G⃗).r⃗eiG⃗.⃗c

∫ α2

0

t1/2e−
|q⃗+G⃗|2

4t
−d2tdt

+
4

3
√
π

∑
R

e−iq⃗·(R⃗+c⃗)

∫ ∞

α2

t3/2e−|r⃗+R⃗+c⃗|2tdt . (A.176)

The first integral in (A.174) can be solved using the change of variable t = 1/w2 with the equation

∫ ∞

1/α

w−4e−
x2w2

4
− y2

w2 dw =
1

8y3

[
−4αye−

x2

4α2−α2y2 +
√
πe−xy(xy + 1)erfc

(
x

2y
− αy

)
+

√
πexy(xy − 1)erfc

(
x

2y
+ αy

)]
. (A.177)

The second integral in (A.174) can be solved using the result

∫ ∞

α2

t3/2e−x2tdt =
3
√
π

4x5
erfc(αx) +

α(3 + 2α2x2)e−α2x2

2x4
. (A.178)

Using the equation (with α = ε, ε =
√
πns =

√
πn/2, η = d

√
n/2)

EIM = µ2 lim
r⃗→0

ψI(r⃗, 0⃗) (A.179)

with

ψI(r⃗, q⃗) = ψI1(r⃗, q⃗)− 3d2ψI2(r⃗, q⃗) (A.180)

we obtain

EIM = µ2(n/2)3/2D(η) (A.181)
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where

D(η) =
∑
G⃗

eiG⃗·⃗c
[
4πe−

|G⃗|2
2πn

−πη2

− π|G⃗|√
n/2

e−|G⃗|η/
√

n/2erfc

(
|G⃗|

2
√
πn/2

−
√
πη

)

− π|G⃗|√
n/2

e|G⃗|η/
√

n/2erfc

(
|G⃗|

2
√
πn/2

+
√
πη

)]

+
∑
R⃗

[
erfc(

√
πn/2|R⃗ + c⃗|)

(n/2)3/2|R⃗ + c⃗|3

(
1− 6η2

n|R⃗ + c⃗|2

)

+
4e−πn|R⃗+c⃗|2/2

n|R⃗ + c⃗|2

(
1− 6η2

n|R⃗ + c⃗|2
− 2πη2

)]
.

(A.182)
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