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impulsionado a busca por alternativas sustentáveis aos ligantes convencionais. Os ligantes 

álcali-ativados (AABs, do inglês) surgem como uma solução promissora devido ao seu menor 

impacto ambiental e à capacidade de incorporar resíduos industriais. Embora pesquisas 

extensas tenham examinado o desempenho mecânico dos AABs, o comportamento no estado 

fresco e os mecanismos de endurecimento permanecem insuficientemente compreendidos. Essa 

lacuna dificulta a otimização do desenvolvimento reológico e microestrutural, aspectos 

essenciais para o desempenho confiável do material. Paralelamente, o uso crescente de técnicas 

de machine learning na ciência dos materiais tem aberto novas perspectivas para a predição das 

propriedades dos ligantes, contudo, sua aplicação em AABs ainda se encontra em estágios 

iniciais. Estudos existentes que empregam técnicas não destrutivas (NDTs, Non-destructive 

tests), particularmente a velocidade de pulso ultrassônico, forneceram contribuições valiosas 

sobre as transições em idades iniciais, mas apresentam limitações quanto à captura do 

comportamento viscoelástico complexo desses materiais. Em contraste, o método de 

ressonância por impacto (Impact Resonance Test) tem demonstrado forte potencial na avaliação 

de propriedades dinâmicas em materiais cimentícios e asfálticos no estado endurecido, embora 

ainda não tenha sido adaptado para análises no estado fresco. Nesse contexto, o principal 

objetivo desta pesquisa é investigar os mecanismos de endurecimento de ligantes ativados por 

álcali por meio do uso combinado de aprendizado de máquina, ressonância por impacto e 

caracterização microestrutural. A metodologia está organizada em três etapas. Primeiramente, 

algoritmos de machine learning serão desenvolvidos para estimar propriedades no estado fresco 

e endurecido com base na composição química. Em seguida, um novo aparato de ensaio de 

ressonância por impacto será projetado e otimizado por meio de simulações em Método dos 

Elementos Finitos (FEM, do inglês), visando permitir o monitoramento preciso dos AABs no 

estado fresco. Por fim, a cinética de endurecimento dos AABs será avaliada por meio de ensaios 

de ressonância por impacto e varreduras reológicas no tempo (time sweep), associadas a 

análises térmicas e químicas, como Espectroscopia no Infravermelho por Transformada de 

Fourier (FTIR), Análise Termogravimétrica (TGA) e calorimetria isotérmica. A integração 

dessas abordagens experimentais e computacionais é esperada para avançar a compreensão dos 

mecanismos de endurecimento em AABs e fornece uma base para o desenvolvimento de 

ferramentas aprimoradas de predição e monitoramento. Os principais resultados desta pesquisa 

evidenciam que as redes neurais artificiais (ANN), o random forest (RF) e o bagging regression 



(BR) apresentaram o desempenho preditivo mais robusto para estimar o tempo de pega e a 

resistência à compressão de ligantes álcali-ativados a partir de parâmetros químicos. Em 

paralelo, o ensaio de ressonância por impacto demonstrou elevada eficácia como técnica não 

destrutiva para o monitoramento do endurecimento em idades iniciais, exibindo correlações 

expressivas com a evolução reológica e calorimétrica. A integração da ressonância por impacto 

com reologia, calorimetria, FTIR e TGA possibilitou uma interpretação multiescalar e coerente 

da cinética de endurecimento, permitindo identificar a disponibilidade de cálcio como o fator 

preponderante na evolução mecânica e microestrutural dos sistemas estudados. Este trabalho é 

desenvolvido em colaboração entre a Universidade Federal do Ceará (UFC), Brasil, e a ENTPE, 

França. 

Palavras-chave: ligantes álcali-ativados; cinética de endurecimento; machine learning; 

ressonância por impacto; reologia. 
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2 LITERATURE REVIEW 

2.1 Alkali-activated binders: composition and environmental relevance 

 

 

 

 

 

Source: Qin et al. (2022). 
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2.2 Reaction products and gel chemistry in AABs 

 

 

 
Source: Provis and Bernal (2014). 
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Source: Adapted by Zhang, Xi and Yang (2021). 

 

2.3 Hardening mechanisms and rheological evolution relationship in AABs 
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Source: Duxson et al. (2007) 
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2.3.3 Polymerization and hardening 
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2.3.4 Influence of precursors 

 

 

 

 

 
Source: Adapted by Lima Junior (2025) 
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2.3.5 Influence of mix parameters (alkali content, silica modulus, water content and curing 
temperature) 
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2.3.6 Challenges in monitoring hardening process in AABs 

 

 

2.4 Machine learning applications in AABs 



35

 

 

 

 



36

 

 

 
Source: Cao et al. (2022). 

 

2.5 Non-destructive techniques applications in AABs 
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Figure 7  Ultrasonic test equipment and set up 

 
Source: Bezerra et al. (2023). 
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2.5.2 Impact resonance test (IRT) 
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Source: Bezerra et al. (2023). 
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3.2 Materials 

3.2.1 Data set description 

3.2.1.1 Selected parameters as input 
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3.2.1.2 Initial and final setting time 
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Data Type Parameters Average 
Standard 
deviation 

Min Max 

Inputs 

Precursor 
oxides (%) 

Al2O3 15.01 6.24 1.26 29.09 
SiO2 43.31 13.18 6.94 67.08 
P2O5 0.12 0.33 0.00 2.21 
SO3 1.10 0.86 0.00 4.86 
Cl 0.86 1.48 0.00 3.92 

K2O 1.59 1.80 0.00 8.20 
CaO 21.92 11.30 0.87 45.12 
TiO2 2.10 2.60 0.00 6.98 
MnO 0.08 0.41 0.00 3.18 
Fe2O3 5.03 6.77 0.50 39.86 

Activator 

 1.05 0.49 0.00 2.06 

 7.96 2.81 1.00 12.00 

 0.38 0.09 0.25 0.50 

Curing 
condition 

Temperature (°C) 26.60 11.03 20.00 65.00 

Output Fresh state 
Initial setting time (min) 237.54 463.68 5.00 4080.00 
Final setting time (min) 404.15 742.12 25.00 6000.00 

Total data  139 
Source: elaborated by the author. 
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Source 
Precursor 

system 
Precursor 1 Precursor 2 

Number 
of data 

(Souza, 2024) 1 Fly ash BSSF 5 

(Araújo et al., 2025) 1 Fly ash BOF 3 

(Li, J. et al., 2023) 1 Coal bottom ash 
 Titanium 
tailing slag 

36 

(Wang et al., 2023) 1 Fly ash - 13 

(Toobpeng; Thavorniti; Jiemsirilers, 2024) 1 Fly ash - 1 

(Allahverdi; Kani, 2009) 1 Waste brick 
Waste 

concrete 
15 

(Yadolla  1 
Hasankale ground 

pumice 
- 9 

(Allahverdi; Shaverdi; Kani, 2010) 1 BFS - 6 

(Al Makhadmeh; Soliman, 2021)  1 GGBFS - 9 

(Tran Thi; Liao; Vo, 2023) 1 Fly ash + GGBFS 
Wood bottom 

ash 
12 

(Amaludin et al., 2024) 1 
Palm Oil Fuel 

Ash 
GGBFS 8 

(Ghosh; Ghosh, 2020) 1 Fly ash BFS 22 

Total data 139 
Source: elaborated by the author. 

 

 

    

    



46

    

 

  

 

Source: elaborated by the author. 

3.2.1.3 Compressive strength 

 

 

Data Type Parameters Average 
Standard 
deviation 

Min Max 

Inputs 

Precursor 
oxides (%) 

Al2O3 15.41 9.20 1.26 46.23 
SiO2 38.77 14.76 6.94 67.08 
P2O5 0.28 0.43 0.00 2.21 
SO3 1.28 1.31 0.00 4.86 
Cl 0.29 0.93 0.00 3.92 

K2O 1.58 1.49 0.00 8.20 
CaO 22.39 14.00 0.09 63.00 
TiO2 1.23 1.72 0.00 6.98 
MnO 0.49 0.92 0.00 4.53 
Fe2O3 11.64 10.69 0.50 39.86 

Activator 

 1.12 0.48 0.00 3.10 

 9.05 4.83 1 36.47 

 0.40 0.17 0.06 1.44 

Curing 
condition 

Temperature (°C) 43.56 24.13 20 85 

Output 
Hardened 

state 
Compressive Strength 

(MPa, in 28-days) 
28.59 18.72 0.81 110 

Total data  427 
Source: elaborated by the author. 



47

 

 

Source 
Binder 
system 

Precursor 1 Precursor 2 
Number 
of data 

(Souza, 2024) 1 Fly ash BSSF 27 

(Araújo et al., 2025) 1 Fly ash BOF 36 

(Costa, 2022) 1 KR - 5 

(Costa, 2022) 2 Fly ash - 9 

(Costa, 2022) 3 Bottom ash - 5 

(Costa, 2022) 4 BOF - 9 

(Costa, 2022) 5 Fly ash Bottom ash 5 

(Costa, 2022) 6 Fly ash BOF 5 

(Costa, 2022) 7 Bottom ash BOF 5 

(Carvalho, I. C. et al., 2024) 1 Waste brick BFS 6 

(Wang, M. et al., 2024) 1 Steel slag Slag 27 

(Li, J. et al., 2023) 1 Coal bottom ash 
 Titanium 
tailing slag 

36 

(Wang et al., 2023) 1 Fly ash - 13 

(Toobpeng; Thavorniti; Jiemsirilers, 2024) 1 Fly ash - 33 

(Yuan et al., 2024) 1 
Glass fiber 

powder 
- 15 

(Guo; Shi; Dick, 2010) 1 Fly ash - 18 

(Adu-Amankwah et al., 2016) 1  Fly ash - 30 

(Allahverdi; Kani, 2009) 1 Waste brick 
Waste 

concrete 
15 

(Yadolla  1 
Hasankale ground 

pumice 
- 9 

(Allahverdi; Shaverdi; Kani, 2010) 1 Blast-furnace slag - 6 

(Al Makhadmeh; Soliman, 2021)  1 GGBFS - 9 

(Tran Thi; Liao; Vo, 2023) 1 Fly ash + GGBFS 
Wood bottom 

ash 
12 

 (Nunes et al., 2022) 1 BOF - 6 

(Amaludin et al., 2024) 1 
Palm Oil Fuel 

Ash 
GGBFS 8 

(Ruiz et al., 2019) 1 
Spent fluid 

catalytic cracking 
- 19 

(Joseph; Cizer, 2022) 1 Slag Fly ash 9 

(Ghosh; Ghosh, 2020) 1 Fly ash BFS 50 

Total data 427 
Source: elaborated by the author. 
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Source: elaborated by the author. 
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3.2.2 Laboratory validation binders 

 

 

Precursor Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 MnO Fe2O3 

DP 2.38 10.33 1.03 4.76 0.11 0.76 65.86 1.12 1.32 12.10 

FA-BR 15.64 46.80 0.44 1.91 0.03 3.72 8.07 1.77 0.12 21.05 
Source: elaborated by the author. 

 

Figure 11  Precursors XRD   

 
Source: elaborated by the author. 
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ID DP-FA
Oxides composition (%)

S/N
N/B 
(%)

W/B
Al2O3 SiO2 P2O5 SO3 Cl K2 CaO TiO2 MnO Fe2O3

1 0-100 15.64 46.80 0.44 1.91 0.03 3.72 8.07 1.77 0.12 21.05 0.75 8% 0.23
2 25-75 12.33 37.68 0.59 2.62 0.05 2.98 22.52 1.61 0.42 18.81 0.75 8% 0.23
3 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 0.75 8% 0.23
4 75-25 5.70 19.45 0.89 4.05 0.09 1.50 51.41 1.28 1.02 14.34 0.75 8% 0.23
5 100-0 2.38 10.33 1.03 4.76 0.11 0.76 65.86 1.12 1.32 12.10 0.75 8% 0.23
6 0-100 15.64 46.80 0.44 1.91 0.03 3.72 8.07 1.77 0.12 21.05 0.75 8% 0.38
7 25-75 12.33 37.68 0.59 2.62 0.05 2.98 22.52 1.61 0.42 18.81 0.75 8% 0.38
8 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 0.75 8% 0.38
9 75-25 5.70 19.45 0.89 4.05 0.09 1.50 51.41 1.28 1.02 14.34 0.75 8% 0.38
10 100-0 2.38 10.33 1.03 4.76 0.11 0.76 65.86 1.12 1.32 12.10 0.75 8% 0.38
11 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 0.25 8% 0.38
12 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 0.50 8% 0.38
13 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.00 8% 0.38
14 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.25 8% 0.38
15 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.50 8% 0.38
16 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.00 4% 0.38
17 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.00 6% 0.38
18 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.00 10% 0.38
19 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.00 12% 0.38
20 50-50 9.01 28.57 0.74 3.34 0.07 2.24 36.96 1.44 0.72 16.57 1.00 14% 0.38

Source: elaborated by the author.

3.3 Methods

Source: elaborated by the author.

Data collection

Compressive Strength,
Setting time

SiO
CaO, TiO

MnO, 
W/B, Temperature

Inputs

Outputs

Statistical Method
Multivariate Polynomial

Regression (MPR)

Machine Learning Methods
Decision Tree (DT)
Random Forest (RF)

Bagging Regression (BR)
AdaBoost (AB)

Artificial Neural Networks (ANN)

Model Evaluation
(30% testing)

Coefficient of Determination (R2)
Mean Squared Error (MSE)
Mean Absolute Error (MAE)

3 higher R2

Sensitivity
analysis

Feature
importance

Model validation in the 
laboratory

Modeling by Random Data Division
70% training
30% testing
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3.3.1 Multivariate Polynomial Regression (MPR) 

 

 (5)

 

 

(6)

 

3.3.2 Machine learning models 
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3.3.2.1 Decision Tree (DT) 

 

 

 
Source: elaborated by the author. 

 

3.3.2.2 Random Forest (RF) 
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3.3.2.3 AdaBoost (AB) 

 

3.3.2.4 Bagging Regression (BR) 

 

3.3.2.5 Artificial Neural Networks (ANN) 
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Source: elaborated by the author. 

 

3.3.3  evaluation 

 

 (7)
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 (8)

 (9)

Where  and  represent the experimental and predicted values, respectively, and 
is the mean of the experimental data. 

3.3.4 Feature importance 

 

 

3.3.5 Sensitivity analysis 
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3.4 Results and discussion 

3.4.1 Initial and final setting time 

3.4.1.1 Pearson correlation matrix 

 

 

Source: elaborated by the author. 
 

Al2O3

SiO2

P2O5

SO3

Cl

K2O

CaO

TiO2

MnO

Fe2O3

S/N

Temperature

N/B

W/B

Initial ST

Final ST
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3.4.1.2 Model evaluation 

 

 

Model 
Parameters 

R2 MAE (min) MSE (min2) 
Multivariate Polynomial Regression (MPL) 0.04 164.95 153160.90 

Decision Tree (DT) 0.80 110.07 94181.59 
Random Forest (RF) - 2nd higher R2 0.95 52.10 5928.17 

AdaBoost (AB) 0.87 103.34 30617.52 
Bagging Regression (BR) - 3rd higher R2 0.89 82.23 26649.38 

Artificial Neural Networks (ANN) - 1st higher R2 0.96 47.27 17199.03 
Source: elaborated by the author. 
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Parameter Value 

Activation function relu 

Regularization parameter (alpha) 0.0001 

Batch size auto 

 0.9 

 0.999 

Early stopping criterion FALSE 

Numerical stability constant (epsilon) 0.00000001 

Hidden layer size(s) (500, 300, 150) 

Learning rate schedule constant 

Initial learning rate 0.001 

Maximum number of function evaluations 15000 

Maximum number of iterations 1000 

Momentum coefficient 0.9 

Maximum iterations without improvement 10 

 TRUE 

Learning rate power parameter (power-t) 0.5 

Data shuffling TRUE 

Optimization solver adam 

Convergence tolerance 0.0001 

Validation data fraction 0.1 
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Source: elaborated by the author. 
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3.4.1.3 Feature importance three higher R2 

 

 

 

 
Source: elaborated by the author. 
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Source: elaborated by the author. 
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3.4.1.4 Sensitivity analysis three higher R2 
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Source: elaborated by the author.
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Source: elaborated by the author.
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Source: elaborated by the author.

3.4.1.5 Laboratory validation
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Source: elaborated by the author. 
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Source: elaborated by the author. 

3.4.2 Compressive Strength 

3.4.2.1 Pearson correlation matrix 
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Source: elaborated by the author. 

 

3.4.2.2 Model evaluation 
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Model  
Parameters 

R2 MAE (MPa) MSE (MPa2) 
Multivariate Polynomial Regression (MPL) 0.74 7.99 104.48 

Decision Tree (DT) 0.88 5.19 47.16 
Random Forest (RF) - 2nd higher R2 0.90 4.97 35.49 

AdaBoost (AB) 0.68 8.77 108.65 
Bagging Regression (BR) - 3rd higher R2 0.89 4.95 36.60 

Artificial Neural Networks (ANN) - 1st higher R2 0.96 3.12 16.52 
Source: elaborated by the author. 

 

 
Parameter Value 

Activation function relu 

Regularization parameter (alpha) 0.0001 

Batch size auto 

 0.9 

 0.999 

Early stopping criterion FALSE 

Numerical stability constant (epsilon) 0.00000001 

Hidden layer size(s) (500, 300, 150) 

Learning rate schedule constant 

Initial learning rate 0.001 

Maximum number of function evaluations 15000 

Maximum number of iterations 1000 

Momentum coefficient 0.9 

Maximum iterations without improvement 10 

 TRUE 

Learning rate power parameter (power-t) 0.5 

Data shuffling TRUE 

Optimization solver adam 

Convergence tolerance 0.0001 

Validation data fraction 0.1 
Source: elaborated by the author. 
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Source: elaborated by the author. 

 

3.4.2.3 Feature importance three higher R2 

 



74

 

 

 

Source: elaborated by the author. 
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Source: elaborated by the author. 

3.4.2.4 Sensitivity analysis three higher R2 
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Source: elaborated by the author. 
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Source: elaborated by the author. 
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Source: elaborated by the author. 

3.4.2.5 Laboratory validation 

 

 

 
Source: elaborated by the author. 
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Source: elaborated by the author. 
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Source: elaborated by the author. 

 

 

3.1 Section conclusions 
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4 DESIGN, DEVELOPMENT, AND VALIDATION OF AN IMPACT RESONANCE 

APPARATUS FOR STUDYING THE HARDENING PROCESS OF ALKALI-

ACTIVATED BINDERS 

4.1 Introduction 
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4.2 Materials

4.2.1 Geometry material

4.2.1.1 Polylactic acid (PLA)

Source: elaborated by the author.

b)a)
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Source: provided by the manufacturer. 

 
Parameter Setting Parameter Setting 

Filament Type PLA External perimeter speed  
Filament Diameter  Internal perimeter speed  

Heat Deflection Temperature 
(HDT) 

   

Idle Temperature  Infill Density  
Recommended Nozzle 

Temperature 
 Infill Pattern Rectilinear 

Chamber Temperature  Infill Anchor Length  
Automatic Temperature 

Adjustment 
Disabled Small Gap Filtering  

Build-Plate Type PEI smooth / High-temp bed Infill/Perimeter Overlap  
Bed Temperature (First Layer)  Infill Density  

Bed Temperature (Other Layers)  Infill Pattern Rectilinear 
Source: provided by the manufacturer. 

4.2.1.2 Polyurethane 

 

 

Property Value 

Density (Pycnometer) (1.53 ± 0.02) g/cm³ 

Skin Formation Time ~35 minutes (25°C and 50% RH) 

Curing Time 3mm/24h (25°C and 50% RH) 

Flow Time (NBR 9278, 2019) 50-70 seconds (20 g - 1.5 kgf/cm² - 2.8 mm²) 
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Hardness (ASTM D2240, 2015) 25-30 Shore A 

Elongation at Break (ASTM D412, 2016) >600% 

Tensile Strength 100% deformation (ASTM D412, 2016) ~0.46 N/mm² 

Tensile Strength at Break (ASTM D412) ~0.90 N/mm²  

Working Temperature 10°C to 40°C 

Source: provided by the manufacturer. 

4.2.2 Alkali-activated binder tested 

 

 

Precursor Al2O3 SiO2 P2O5 SO3 MgO K2O CaO TiO2 MnO Fe2O3 

GGBS 7.42 27.91 0.72 1.52 2.96 0.58 55.84 1.53 0.58 0.78 

FA 19.61 58.15 1.87 0.58 0.67 2.60 4.60 1.93 0.09 9.33 

Source: elaborated by the author. 
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Source: elaborated by the author. 

 

Figure 37   

 
Source: elaborated by the author. 
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GGBS-FA (%) GGBS (g/L) FA (g/L) Na2SiO3 solution (g/L) NaOH solution (g/L) 

50-50 562.90 562.90 137.11 558.81 
Source: elaborated by the author. 

 

4.3 Methods 

4.3.1 Classical binder tests in fresh state 

 

4.3.1.1 Setting time and time sweep rheology 
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Source: elaborated by the author. 

4.3.1.2 Isothermal calorimetry 
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4.3.2 Impact resonance test (IRT)

4.3.2.1 Experimental setup and analysis procedure

Source: elaborated by the author.
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 (11) 

 

 

 (12) 
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Source: elaborated by the author.

4.3.2.2 2S2P1D model
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 (13)

 (14)

 

 

4.3.2.3 Finite element method (FEM) 
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Source: elaborated by the author.

(15)

4.3.3 Inverse analysis
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(16)

(17)

(18)
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4.4 Results and discussion 

4.4.1 Classical tests 

4.4.1.1 Setting time and time sweep rheology 
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4.4.1.2 Isothermal calorimetry 
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4.4.2 Impact resonance test (IRT) 

4.4.2.1 FEM 2D for PLA characterization using cylinder  
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2S2P1D parameter PLA Cylinder

E00 (Pa) 574945752

E0 (Pa) 2482262849

e 7.770858

0.548684

k 0.143893

h 0.641324

0.070557

v00 0.360395

v0 0.407043

v 1.688496

4.4.2.2 FEM 2D for determining the geometries to be tested in the laboratory
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Width (W)

Thickness (t)

Geometry wall 
(PLA)

Since it was not 
analyzed in 2D, 

it was fixed

3D

2D

Thickness (t)
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G1 G2

G3-P G3-Fa) b)
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Source: elaborated by the author.

4.4.2.3 Experimental results of the selected geometries

c) d)
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Source: elaborated by the author. 

 

 

 



108

Source: elaborated by the author.

Parameter Polyurethane
PLA

Cylinder G3-P Difference
E00 (Pa) 228323 574945752 176234756 -69.3%
E0 (Pa) 2595825 2482262849 2800213241 12.8%

e 0.049666 7.770858 0.472162 -93.9%
25.002689 0.548684 0.609907 11.2%

k 0.304845 0.143893 0.10496 -27.1%
h 0.976217 0.641324 0.978795 52.6%

0.000348 0.070557 0.03174 -55.0%
v00 0.495137 0.360395 0.357957 -0.7%
v0 0.496968 0.407043 0.390254 -4.1%

v 0.43916 1.688496 12.946642 666.8%
Source: elaborated by the author.
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Source: elaborated by the author. 

 

4.4.2.4 Rheological binder evolution based on 2S2P1D parameters approach 
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Source: elaborated by the author. 
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4.4.2.5 Hardening behavior of the binder assessed through impact-wave velocity 
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Source: elaborated by the author. 

 

 

 

 
 Pearson correlation 

|G*|(MPa) 0.96 

G' (MPa) 0.97 

G" (MPa) 0.94 

 0.24 

Cumulative heat (J/kg) 0.99 
Source: elaborated by the author. 
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4.4.2.6 Hardening behavior of the binder assessed through resonance frequency, amplitude, 
and peak width 

 

 

 

 
Source: elaborated by the author. 
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Source: elaborated by the author. 
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Source: elaborated by the author. 
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 Resonance frequency (Hz) Amplitude (m/s2.N) Width (Hz) 

Resonance Peak 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

|G*|(MPa) 0.96 0.99 0.93 -0.35 -0.24 0.22 0.95 0.97 0.63 

G' (MPa) 0.97 0.99 0.93 -0.35 -0.24 0.22 0.96 0.97 0.63 

G" (MPa) 0.95 0.98 0.92 -0.33 -0.24 0.20 0.95 0.96 0.64 

 0.29 0.29 0.21 0.47 0.52 0.63 0.49 0.31 0.03 

Cumulative heat (J/kg) 0.99 0.97 0.98 -0.43 -0.39 0.11 0.90 0.93 0.72 

Source: elaborated by the author. 

 

 

4.5 Section conclusions 
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5 HARDENING KINETICS OF ALKALI-ACTIVATED BINDERS EVALUATED 

THROUGH IMPACT RESONANCE TEST, RHEOLOGY, AND CHEMICAL 

CHARACTERIZATION 

5.1 Introduction 
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5.2 Materials 
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ID 
GGBS-FA 

(%) 
GGBS (g/L) FA (g/L) Na2SiO3 solution (g/L) NaOH solution (g/L) 

50GGBS 50-50 562.90 562.90 137.11 558.81 

75GGBS 75-25 870.74 290.25 141.40 576.27 

100GGBS 100-0 1198.44 0.00 145.96 594.86 

Source: elaborated by the author. 

 

5.3 Methods 

5.3.1 Setting time 

 

5.3.2 Time sweep rheology 

 

5.3.3 Isothermal calorimetry 

 

5.3.4 Impact resonance test (IRT) 
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5.3.4.1 Impact wave velocity (IWV)

Source: elaborated by the author.

(19)

5.3.4.2 Resonance frequency

Accelerometer
(opposite 

hammer side)

Binder

Hammer

a)
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Source: elaborated by the author. 

5.3.5 Fourier Transform Infrared Spectroscopy (FTIR) 

 

5.3.6 Thermogravimetric Analysis (TGA) 
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5.3.7 Compressive strength 

 

5.4 Results and discussion 

5.4.1 Setting time 

 

 

 
Source: elaborated by the author. 
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5.4.2 Time sweep rheology 
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Source: elaborated by the author.
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Source: elaborated by the author. 

 

 

5.4.3 Isothermal calorimetry 
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Source: elaborated by the author. 
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Source: elaborated by the author. 

5.4.4 Impact resonance test (IRT) 

5.4.4.1 Impact wave velocity (IWV) 
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Source: elaborated by the author. 
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5.4.4.2 Resonance frequency 

 

 

 

Source: elaborated by the author. 
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5.4.4.3 Time-dependent correlation of impact resonance test, rheological parameters, and 
calorimetric response 

 

 

Binder Parameters IWV (m/s) 
Resonance frequency (Hz) 

1st 2nd 

50GGBS 

|G*| (MPa) 0.96 0.96 0.99 

G' (MPa) 0.97 0.97 0.99 

G" (MPa) 0.94 0.95 0.98 

Cumulative heat (J/kg) 0.99 0.99 0.97 

75GGBS 

|G*| (MPa) 0.99 0.92 0.96 

G' (MPa) 0.99 0.91 0.95 

G" (MPa) 0.97 0.95 0.98 

Cumulative heat (J/kg) 0.98 0.94 0.97 

100GGBS 

|G*| (MPa) 0.97 0.87 0.92 

G' (MPa) 0.97 0.86 0.92 

G" (MPa) 0.96 0.91 0.95 

Cumulative heat (J/kg) 0.92 0.95 0.98 

Average 0.97 0.93 0.96 
Source: elaborated by the author. 
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5.4.5 Fourier Transform Infrared Spectroscopy (FTIR) 

 

 
Wavenumber 

 
Chemical species / 

group 
Type of vibration Reference 

3418 
OH (structural or 
adsorbed water) 

Stretching 
(Finocchiaro et al., 2020; Hoyos-

Montilla et al., 2022) 

2970 
species) 

Stretching (Xu et al., 2023) 

2361  
Asymmetric 

stretching 
(Hoyos-Montilla et al., 2022) 

1454  
Asymmetric 

stretching 
(Finocchiaro et al. et al., 

2023) 

1034 Si O T (T = Si, Al) 
Asymmetric 

stretching 
(Hoyos-Montilla et al., 2022; Poggetto; 

Leonelli; Spinella, 2024) 

866  
Bending (out-of-

plane) 
(Finocchiaro et al., 2020; Xu et al., 

2023) 

471 Si O Al Bending 
(Archez et al. et al., 

2023) 

Source: elaborated by the author. 

5.4.5.1 FTIR Analysis at early ages (0-300 min) 
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Source: elaborated by the author. 
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Source: elaborated by the author. 
 

 

 

  
Source: elaborated by the author. 

400900140019002400290034003900
Wavenumber (cm-1)

30 min 60 min
90 min 120 min
150 min 180 min
210 min 240 min
270 min 300 min

-CO3
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-CO3
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-O-H
3418 -O-H

1682

CO2
2361

-
2970

Si-O-Al
471

Decreases over 
time

b)

100GGBS

Increases 
over time
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5.4.5.2 FTIR Analysis at later ages (up to 28 Days) 

 

 

  
Source: elaborated by the author. 
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Source: elaborated by the author. 
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Source: elaborated by the author. 

5.4.6 Thermogravimetric Analysis (TGA) 
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Source: elaborated by the author. 
 

 

 

  
Source: elaborated by the author. 
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Source: elaborated by the author. 
 

 

 

  
Source: elaborated by the author. 
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5.4.7 Compressive strength 

 

 

 
Source: elaborated by the author. 

5.5 Section conclusions 
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6 FINAL CONSIDERATIONS 
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APPENDIX A  PARAMETERS OF THE MULTIVARIATE POLYNOMIAL 

REGRESSION MODEL FOR INITIAL AND FINAL SETTING TIME 

Parameter 
Value 

Parameter 
Value 

Initial ST Final ST Initial ST Final ST 

Intercept 183.968 291.712  -0.272 -0.740 

 2.059 5.353  0.275 -0.201 

 0.420 -0.144  0.036 0.781 

 0.176 0.083  3.331 2.649 

 1.120 3.420  -1.191 -0.614 

Cl -0.883 0.076  -0.783 0.214 

 -2.587 -6.392  -0.728 -0.552 

CaO -1.153 -2.684  0.264 -1.263 

 -0.660 1.109  -0.719 -2.833 

MnO -0.006 -0.001  -0.691 -0.239 

 0.804 1.848  -0.237 -0.718 

S/N 0.172 1.425  0.281 1.262 

Temperature -0.374 -2.279  -0.625 -0.276 

N/B -3.104 -1.607  -0.360 -1.485 

W/B 2.467 -0.662  2.381 5.561 

 1.330 3.743  -0.295 -2.284 

 0.748 -0.694 Cl² -1.433 -4.863 

 -0.374 -1.736  2.303 3.677 

 0.182 1.959 Cl×CaO -0.447 -3.514 

 -1.202 -0.276  -1.376 -4.436 

 -1.212 -5.088 Cl×MnO 0.188 -0.015 

 -0.862 -2.308  -0.015 0.429 

 -0.985 1.102 Cl×S/N -0.628 -0.926 

 -0.428 -1.121 Cl×Temperature 0.750 1.290 

 0.480 1.768 Cl×N/B 1.258 2.493 

 -0.916 -0.879 Cl×W/B -1.115 -4.691 

 -0.872 -3.320  0.006 2.232 

 1.258 5.786  1.205 4.897 

 1.231 -2.824  2.723 3.968 

 -1.619 -4.572  0.538 1.329 

 -0.015 0.127  -0.154 -0.894 

 1.051 0.711  1.102 0.872 

 1.024 3.733  0.384 1.780 

 -1.451 -3.314  1.845 0.725 

 0.554 3.876  -2.278 0.261 

 1.227 4.382 CaO² 0.118 -0.629 

 -0.084 0.025  -0.888 -5.235 

 0.196 0.293 CaO×MnO 0.242 0.566 

 -1.094 -2.378  -0.245 -0.529 

 -0.708 -1.835 CaO×S/N 0.691 0.198 

 -1.953 -1.767 CaO×Temperature 0.914 3.073 

 1.335 2.056 CaO×N/B -1.439 -6.152 

 0.184 0.127 CaO×W/B -0.612 0.740 
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 -0.244 -1.195  -1.338 -4.488 

 0.225 -0.078  0.141 -0.231 

 0.979 2.334  -0.005 0.585 

 0.135 0.855  -0.392 -0.109 

 0.252 -0.405  0.653 0.911 

 -1.301 -4.917  3.164 4.526 

MnO² -0.014 0.011  0.303 -0.488 

 -0.184 -0.383  0.218 -0.044 

MnO×S/N -0.035 -0.274  0.463 1.884 

MnO×Temperature 0.079 0.475  -0.310 0.445 

MnO×N/B 0.653 0.321  0.374 -0.401 

MnO×W/B -0.500 0.141  0.082 0.358 

 -0.211 -1.313  -0.122 -0.649 

 0.730 1.727  1.118 0.978 

 -0.161 -0.312  0.093 1.078 

 1.149 1.932  4.459 2.544 

 0.140 0.856  -1.080 -1.005 

S/N² -1.652 -2.604  1.354 3.364 

S/N×Temperature -0.561 -1.353  0.386 1.930 

S/N×N/B -1.769 -2.041  -0.499 -2.763 

S/N×W/B 0.730 -0.079  -1.020 -2.000 

Temperature² 0.071 0.948  0.783 2.756 

Temperature×N/B -1.063 -2.501  -0.033 -0.411 

Temperature×W/B -0.572 1.844  -0.063 -0.914 

N/B² 6.824 14.860  1.101 2.182 

N/B×W/B -0.726 -7.109  -0.345 -1.620 

W/B² 1.025 -0.360  3.642 5.755 

 2.328 6.372  0.536 -1.062 

 -0.057 -1.712  -0.985 -3.335 

 0.377 -0.803  0.706 0.434 

 1.445 4.409  -1.256 -5.214 

 0.196 3.423  -0.756 -2.690 

 -1.117 -5.036  0.250 0.060 

 -1.439 -2.782  0.246 0.545 

 0.632 4.209  0.333 1.321 

 -0.273 -0.780  0.509 0.229 

 0.217 0.224  -0.053 0.664 

 0.567 2.389  0.020 -3.278 

 -0.949 -3.302  0.548 3.208 

 5.496 9.055  1.115 3.609 

 1.053 -1.194  0.567 -0.416 

 -0.771 -4.228  0.255 1.056 

 0.017 0.455  -0.054 0.021 

 -0.224 -0.279  0.447 -0.349 

 0.836 3.689  0.379 2.323 

 -0.674 -1.088  -0.581 -3.810 

 0.832 3.212  -1.190 1.261 

 0.746 3.341  0.306 -0.551 
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 -0.153 0.145  -1.500 -5.126 

 0.108 0.658  0.175 0.485 

 -0.879 -0.774  -0.074 -0.004 

 -0.556 -0.815  -0.493 -1.571 

 -0.011 0.583  0.888 2.595 

 0.111 2.524  -4.410 -6.224 

 0.750 1.038  -0.557 -0.799 

 0.204 -0.229  -0.286 -1.400 

 0.128 -0.164  2.386 2.244 

 0.896 1.910  -0.722 -1.438 

 0.343 -0.330  -0.786 -0.092 

 2.740 4.960  0.135 1.547 

 -0.258 -4.557  0.022 -0.255 

 0.086 0.231  0.268 0.627 

 -0.100 -0.380  -0.017 1.323 

 0.193 0.164  -0.213 -0.152 

 0.182 0.693  -0.119 -0.103 

 -0.268 -1.193  -0.092 0.503 

 -0.264 0.594  -0.290 -0.235 

 -0.139 -0.365  1.129 2.205 

 0.343 0.146  -0.500 1.439 

 -0.128 -0.334  -0.028 0.116 

 1.240 0.452  -0.281 -1.306 

 -0.020 0.481  -1.031 -3.614 

 0.864 0.783  0.052 0.167 

 -0.288 -0.884  -0.216 -0.775 

 1.172 1.107  -0.074 -0.261 

 0.039 -0.579  1.127 2.584 

 0.347 1.601  -0.347 -1.114 

 -2.304 -4.641  2.845 4.140 

 -0.433 1.887  -0.283 -0.413 

 6.806 12.792  0.806 1.031 

 -2.198 -8.757  0.054 -0.296 

 1.616 0.375  -0.137 -0.968 

 -1.734 -4.092  0.306 0.685 

 0.702 1.760  0.219 0.774 

 0.408 -1.230  -0.075 -0.264 

 0.805 1.769  0.461 0.946 

 -0.155 0.594  -0.886 -0.933 

 1.117 4.240  -0.398 -2.111 

 0.933 1.885  -1.393 -4.466 

 0.340 0.953  -0.958 -3.251 

 0.415 1.457  -0.122 -0.802 

 -1.628 -3.248  -0.013 -0.230 

 0.132 0.311  1.087 0.944 

 -2.879 -3.246  0.117 -0.273 

 0.313 0.128  1.315 1.944 

 0.224 0.075  0.133 -2.572 
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 -0.255 -0.193  0.151 0.284 

 -0.462 -1.428  -0.257 -0.913 

 0.552 1.215  -0.230 -0.838 

 -0.428 -1.563  1.522 3.028 

 -0.454 -1.622  -0.338 -0.930 

 0.009 -0.031  4.313 6.139 

 -0.032 -0.134  -0.733 -0.762 

 0.664 1.101  0.015 -0.006 

 0.184 0.631  -0.036 -0.074 

 -0.058 -0.012  0.228 0.481 
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APPENDIX B  PARAMETERS OF THE MULTIVARIATE POLYNOMIAL 

REGRESSION MODEL FOR COMPRESSIVE STRENGTH 

Parameter Value Parameter Value 

Intercept -5.211E+11  1.142E+10 

 7.728E+10  -4.548E+00 

 2.796E+11  2.805E+09 

 -1.505E+11  4.744E-01 

 1.838E+11  9.793E+00 

Cl -2.518E+11 Cl² 3.359E+12 

 2.693E+11  4.677E+11 

CaO -3.765E+11 Cl × CaO -1.299E+12 

 -8.061E+11  -2.582E+12 

MnO 9.095E+09 Cl × MnO 4.214E+11 

 7.909E+10  5.526E+11 

S/N 3.968E+00 Cl × S/N 5.480E+00 

Temperature 5.567E+10 Cl × Temperature 1.499E+11 

N/B 2.142E+00 Cl × N/B -1.877E+01 

W/B -4.788E+00 Cl × W/B 1.889E+01 

 -5.654E+10  7.480E+09 

 -1.553E+10  2.869E+09 

 5.720E+10  -8.124E+10 

 9.901E+10  1.706E+11 

 5.983E+11  -2.601E+10 

 -2.554E+09  -6.955E+00 

 -6.697E+10  7.457E+09 

 4.904E+10  -5.975E+00 

 -4.332E+11  9.602E+00 

 -2.940E+10 CaO² 3.032E+10 

 -8.617E+00  1.409E+11 

 4.214E+10 CaO × MnO -3.817E+11 

 -1.219E+00 CaO ×  1.167E+11 

 6.434E+00 CaO × S/N -1.430E+01 

 -1.163E+10 CaO × Temperature 1.474E+10 

 6.955E+10 CaO × N/B -3.724E+00 

 -2.449E+10 CaO × W/B 7.921E+00 

 8.632E+11  9.839E+09 

 1.474E+10  -1.927E+11 

 6.541E+10  8.631E+10 

 3.539E+11  -8.701E+00 

 -5.332E+11  -9.048E+09 

 6.770E+10  1.079E+01 

 -7.369E+00  -4.220E+00 

 -7.115E+09 MnO² -1.882E+11 

 -1.349E+01  -3.486E+11 

 3.400E+01 MnO × S/N -3.601E+00 

 -6.601E+10 MnO × Temperature -1.220E+10 

 -4.400E+10 MnO × N/B -1.144E+01 
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 -4.421E+11 MnO × W/B 4.453E+01 

 1.803E+11  1.337E+11 

 1.422E+11  -2.208E+00 

 1.640E+11  -1.492E+10 

 2.730E+11  -4.395E+00 

 1.409E+09  5.331E+00 

 -3.328E+00 S/N² -2.789E+00 

 4.977E+10 S/N × Temperature -2.115E+00 

 -1.536E+01 S/N × N/B -1.529E+00 

 4.561E+00 S/N × W/B 3.395E-03 

 -6.847E+09 Temperature² -1.105E+01 

 3.357E+11 Temperature × N/B 5.450E+00 

 3.447E+10 Temperature × W/B 5.858E+00 

 6.064E+10 N/B² -3.932E+00 

 3.824E+10 N/B × W/B -7.725E-01 

 1.601E+11 W/B² 3.310E+00 

 


