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ABSTRACT

The urgent need to reduce CO: emissions in the construction industry has driven the search for
sustainable alternatives to conventional binders. Alkali-activated binders (AABs) have emerged
as a promising solution due to their lower environmental impact and capacity to incorporate
industrial wastes. Although extensive research has examined the mechanical performance of
AABES, their fresh-state behavior and hardening mechanisms remain insufficiently understood.
This gap hinders the optimization of their rheological and microstructural development, which
are essential for reliable performance. In parallel, the growing use of machine learning in
materials science has opened new perspectives for predicting binder properties; however, its
application to AABs remains in its early stages. Existing studies employing non-destructive test
(NDT) techniques, particularly ultrasonic pulse velocity, have provided valuable insights into
early-age transitions but are limited in capturing the complex viscoelastic behavior of these
materials. Impact resonance, in contrast, has demonstrated strong potential for evaluating
dynamic properties in hardened cementitious and asphalt materials, yet it has not been adapted
for fresh-state analysis. In this context, the main objective of this research is to investigate the
hardening mechanisms of AABs through the combined use of machine learning, impact
resonance, and microstructural characterization. The methodology is organized into three
stages. First, machine learning algorithms will be developed to estimate fresh and hardened
properties based on chemical composition. Second, a novel impact resonance test apparatus will
be designed and optimized through FEM (Finite Element Method) simulations to enable
accurate monitoring of AABs in the fresh state. Finally, the hardening kinetics of AABs will be
assessed through impact resonance and rheological time-sweep tests, coupled with thermal and
chemical analyses such as Fourier Transform Infrared Spectroscopy (FTIR),
Thermogravimetric Analysis (TGA), and isothermal calorimetry. The integration of these
experimental and computational approaches is expected to advance the understanding of
hardening mechanisms in AABs and provide a foundation for improved predictive and
monitoring tools. The main findings of this research reveal that artificial neural networks
(ANN), random forest (RF), and bagging regression (BR) demonstrated the highest predictive
performance for estimating setting time and compressive strength of AABs from chemical
composition. In parallel, the impact resonance test proved to be a highly effective
nondestructive tool for monitoring early-age hardening, showing strong correlations with
rheological parameters and calorimetric evolution over time. Integrating impact resonance test

with rheology, calorimetry, FTIR, and TGA provides a coherent, multi-scale understanding of



early-age hardening in AABs and reveals calcium availability as the dominant factor governing
their mechanical and microstructural evolution. This work is carried out in collaboration

between the Federal University of Ceard (UFC), Brazil, and ENTPE, France.

Keywords: alkali-activated binders (AABs); hardening kinetics; machine learning; impact
resonance test; theology.



RESUMO

A necessidade urgente de reduzir as emissdes de CO: na industria da construgdo civil tem
impulsionado a busca por alternativas sustentaveis aos ligantes convencionais. Os ligantes
alcali-ativados (AABs, do inglés) surgem como uma solugdo promissora devido ao seu menor
impacto ambiental e a capacidade de incorporar residuos industriais. Embora pesquisas
extensas tenham examinado o desempenho mecanico dos AABs, o comportamento no estado
fresco e os mecanismos de endurecimento permanecem insuficientemente compreendidos. Essa
lacuna dificulta a otimiza¢do do desenvolvimento reoldgico e microestrutural, aspectos
essenciais para o desempenho confidvel do material. Paralelamente, o uso crescente de técnicas
de machine learning na ciéncia dos materiais tem aberto novas perspectivas para a predi¢ao das
propriedades dos ligantes, contudo, sua aplicagdo em AABs ainda se encontra em estagios
iniciais. Estudos existentes que empregam técnicas ndo destrutivas (NDTs, Non-destructive
tests), particularmente a velocidade de pulso ultrassdnico, forneceram contribuigdes valiosas
sobre as transicoes em idades iniciais, mas apresentam limitagdes quanto a captura do
comportamento viscoeldstico complexo desses materiais. Em contraste, o método de
ressonancia por impacto (Impact Resonance Test) tem demonstrado forte potencial na avaliacao
de propriedades dindmicas em materiais cimenticios e asfalticos no estado endurecido, embora
ainda ndo tenha sido adaptado para andlises no estado fresco. Nesse contexto, o principal
objetivo desta pesquisa ¢ investigar os mecanismos de endurecimento de ligantes ativados por
alcali por meio do uso combinado de aprendizado de maquina, ressondncia por impacto e
caracterizacdo microestrutural. A metodologia est4 organizada em trés etapas. Primeiramente,
algoritmos de machine learning serdo desenvolvidos para estimar propriedades no estado fresco
e endurecido com base na composi¢do quimica. Em seguida, um novo aparato de ensaio de
ressonancia por impacto serd projetado e otimizado por meio de simulagdes em Método dos
Elementos Finitos (FEM, do inglés), visando permitir o monitoramento preciso dos AABs no
estado fresco. Por fim, a cinética de endurecimento dos AABs sera avaliada por meio de ensaios
de ressonancia por impacto e varreduras reoldgicas no tempo (time sweep), associadas a
analises térmicas e quimicas, como Espectroscopia no Infravermelho por Transformada de
Fourier (FTIR), Analise Termogravimétrica (TGA) e calorimetria isotérmica. A integragao
dessas abordagens experimentais € computacionais € esperada para avancar a compreensao dos
mecanismos de endurecimento em AABs e fornece uma base para o desenvolvimento de
ferramentas aprimoradas de predi¢do e monitoramento. Os principais resultados desta pesquisa

evidenciam que as redes neurais artificiais (ANN), o random forest (RF) e o bagging regression



(BR) apresentaram o desempenho preditivo mais robusto para estimar o tempo de pega e a
resisténcia a compressdo de ligantes alcali-ativados a partir de parametros quimicos. Em
paralelo, o ensaio de ressonancia por impacto demonstrou elevada eficacia como técnica nao
destrutiva para o monitoramento do endurecimento em idades iniciais, exibindo correlagdes
expressivas com a evolugdo reoldgica e calorimétrica. A integra¢do da ressonancia por impacto
com reologia, calorimetria, FTIR e TGA possibilitou uma interpretacdo multiescalar e coerente
da cinética de endurecimento, permitindo identificar a disponibilidade de célcio como o fator
preponderante na evolucao mecanica e microestrutural dos sistemas estudados. Este trabalho ¢
desenvolvido em colaboragdo entre a Universidade Federal do Ceara (UFC), Brasil, e a ENTPE,

Franga.

Palavras-chave: ligantes alcali-ativados; cinética de endurecimento; machine learning;

ressonancia por impacto; reologia.
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1 INTRODUCTION

The growing need to reduce CO: emissions from the construction industry has
driven the development of alternatives to Portland cement. Among them, alkali-activated
binders (AABs) have emerged as a promising option due to their lower environmental impact.
These materials are produced by activating aluminosilicate-rich precursors, such as fly ash,
steel slag, and metakaolin, with alkaline solutions, typically sodium silicate (Na-SiOs) and

sodium hydroxide (NaOH) (Xie ef al., 2020; Zhang et al., 2020).

Most existing studies on alkali-activated systems focus on mechanical performance,
with limited attention to the fresh state behavior (Tekle; Hertwig; Holschemacher, 2021). The
main factors influencing the setting development of AABs include binder content, the alkali-
to-binder ratio, the concentration and proportions of the activating solution, and the water
content (Nagajothi; Elavenil, 2018). The nature of the gels formed (N-A-S-H, C-A-S-H, or
hybrid structures) depends largely on calcium availability (Provis; Bernal, 2014), which also
affects the kinetics of gel formation. This has been object of studies from the Federal University
of Ceara (UFC) over the past 8 years (Costa, 2022; Carvalho, I. C. et al., 2024; Souza, 2024,
Aratjo et al., 2025).

In light of this, it is essential to deepen the understanding of those processes and
improve prediction, using more advanced tools. Some authors have successfully employed
machine learning to predict AAB properties based on key compositional and curing parameters
(Nguyen et al., 2020; Ahmad et al., 2022; Tang et al., 2022). However, the specific influence
of each oxide component remains underexplored, as most authors focus on one or two specific
types of precursors, which limits the applicability of their models to other types of waste-

derived raw materials.

Additionally, recent research addressed the fresh state of AABs using non-
destructive test (NDT) techniques to monitor hardening processes, focusing on reaction
kinetics, gel formation, and setting time (Tekle; Hertwig; Holschemacher, 2021; Park ef al.,
2024). Amongst the available techniques, ultrasonic test is the most commonly employed and
has demonstrated promising results (Hong; Choi, 2021; Lin ef al., 2022). For example, Park e?
al. (2024) proposed the existence hardening stages for geocement (a hybrid material between a
Portland cement and a geopolymer obtained after mixing metakaolin) based on variations in
ultrasonic wave amplitude across different frequencies. However, ultrasonic test remains

limited in the range of parameters it can assess, primarily focusing on wave velocity and



22

amplitude, which may be enough for elastic materials but fail for more complex viscoelastic
materials (Bezerra et al., 2023; Carret; Babadopulos, 2025). In that context, and as suggested
by Castillo, Hedjazi and Kabir (2022), impact resonance appears to be a more sensitive
technique for studying the hardening process of AABs and Portland cement materials. However,
its application in the fresh state, when the material may present high damping, still demands
significant development, particularly regarding test apparatus and theoretical understanding.
Currently, the technique is mainly employed in the hardened state to assess elastic modulus
(Castillo; Hedjazi; Kabir, 2022; Song; Lange, 2022). Therefore, such technique may reveal
relevant microstructural changes that contribute to understanding the hardening process of

AABs.

In this context, rheological and microstructural analyses serve as critical tools for
elucidating the mechanisms underlying mechanical wave propagation during the hardening
process of cementitious materials. Rheological characterization provides quantitative
information on the evolution of viscoelastic properties. In particular, flow behavior and stiffness
development, which are intrinsically linked to physicochemical transformations occurring
during setting and hardening, can be studied (Wang et al., 2023; Abed et al., 2024; Rahimpour;
Esmaeili, 2025). The rheological evolution of AAB is strongly controlled by their hydration
kinetics and associated microstructural transformations (Kou et al., 2020; Jiang; Shi; Zhang,
2022). Previous studies have shown that rheological stiffening and the transition from viscous
to elastic behavior by hydration-induced gel formation and microstructural percolation, which
simultaneously modify the material’s internal stiffness and damping, thereby influencing its
wave propagation characteristics (Kou ef al., 2020; Kozhukhova et al., 2021; Jiang; Shi; Zhang,
2022). Therefore, it is hypothesized that variations in resonance frequency and damping ratio
obtained from IRT can be used as indirect indicators of hydration kinetics, as both rheological

and microstructural evolution alter the dynamic stiffness that controls wave behavior.

Given the aforementioned scenario, the general objective of this work is to
investigate the hardening mechanisms of AABs, combining machine learning models,
mechanical wave propagation techniques and rheology, and microstructural analysis as a
complementary support. The specific objectives for such work are: i) to investigate the use of
machine learning techniques to estimate fresh and hardened state properties based on chemical
composition; ii) to design, develop and validate a test apparatus for studying the hardening
process by adapting non-destructive impact resonance techniques for test the material in the

fresh state; iii) to investigate the hardening kinetics of AABs through impact resonance and
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rheological tests, microstructural characterization, and thermal analyses. The method will
include: 1) test the main current machine learning models and validating them through
laboratory experiments; ii) simulating impact resonance behavior in different geometries using
FEM (Finite Element Method) in COMSOL software, followed by laboratory tests on the most
promising configurations; iii) applying impact resonance test to AABs with varying mix
parameters, supported by time-sweep rheological tests and advanced thermos-physical and
chemical characterization techniques such as FTIR, TGA and isothermal calorimetry. The
integration of experimental and computational approaches is anticipated to provide new tools
for real-time monitoring and quality control of these materials, promoting their reliable and
high-performance use in sustainable construction. This work is the result of a partnership

between UFC - Fortaleza, Brazil and ENTPE - Vaulx-en-Velin, France.

1.1 Research objectives
1.1.1 Main objective

Investigate the hardening mechanisms of alkali-activated binders (AABs),

combining machine learning models, mechanical wave propagation and rheology.

1.1.2  Specific objectives

To achieve the main objective, the specific objectives of this research are presented

below. They are organized in such a way that they fit in different chapters in this work.

1. To investigate the use of machine learning techniques to estimate fresh and

hardened state properties based on chemical composition;

2. To design, develop and validate a test apparatus for studying the hardening
process by adapting non-destructive impact resonance techniques for test the

material in the fresh state;

3. To investigate the hardening kinetics of alkali-activated binders through impact
resonance and rheological tests, microstructural characterization, and thermal

analyses.

1.2 MSc Thesis’ structure

This manuscript is organized into six chapters to ensure a coherent and systematic

presentation of the research. Chapter 1 introduces the research context and outlines the general
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and specific objectives, concluding with a brief description of the dissertation structure. Chapter
2 provides a comprehensive literature review, discussing the composition and environmental
relevance of AABs, the chemistry of reaction products, the mechanisms governing hardening
and rheological evolution, and the roles of precursors and mix parameters. It also reviews
current advances in machine learning and non-destructive techniques, with emphasis on the
impact resonance test. Chapters 3, 4, and 5 correspond directly to the three specific objectives
of the research and are structured as scientific papers: Chapter 3 investigates machine learning
methods for predicting fresh and hardened properties based on chemical composition; Chapter
4 presents the design, development, and validation of an impact resonance apparatus for
monitoring the hardening process; and Chapter 5 examines the hardening kinetics of AABs
through a multi-technique approach combining impact resonance testing, rheology, calorimetry,
FTIR, and TGA. Finally, Chapter 6 summarizes the main findings, followed by the list of

references.
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2 LITERATURE REVIEW

2.1 Alkali-activated binders: composition and environmental relevance

Alkali-activated binders are inorganic polymers that have emerged as an alternative
to Ordinary Portland Cement (OPC) in the construction sector (Alouani ef al., 2024). They are
produced by activating aluminosilicate materials (precursors) with alkaline solutions
(activators), leading to the formation of semicrystalline gels (Aktiirk et al., 2025; Bahmani;
Mostofinejad, 2025; Zhang, P. et al., 2025). A major advantage of AABs lies in the possibility
of using industrial waste as precursors, which significantly reduces CO: emissions compared to
OPC (Segura et al., 2023). Nonetheless, the production and application of AABs face several
challenges, including the elevated cost and environmental impact of commercial alkaline

activators, as well as the variability and unpredictability of raw materials (Aktiirk ez al., 2025).

Figure 1 illustrates the main precursors and activators used in AABs. Among the
most commonly used precursors are fly ash, ground granulated blast furnace slag, metakaolin
(Xie et al., 2020; Zhang et al., 2020; Nodehi; Taghvaee, 2022). Regarding activators, sodium-
based compounds are predominant: sodium hydroxide (NaOH) and sodium silicate
(Na20-nSiOz). They are frequently combined to provide a high pH environment and soluble
silicate content. Potassium-based analogues (such as KOH and potassium silicate) are also
effective but are less commonly used due to their higher cost (Xie et al., 2020; Zhang et al.,

2020; Luga et al., 2024).

Figure 1 — Main precursors and activators
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Source: Qin et al. (2022).
Reducing CO: emissions is the strongest motivation behind the development of
AABs, as OPC production alone is responsible for approximately 5-7% of global CO- emissions
(Singh; Middendorf, 2020). By utilizing industrial byproducts like fly ash and slag instead of

relying on limestone calcination, AABs can reduce CO: emissions by 50-68%, contributing



26

significantly to global climate goals (Segura et al., 2023). Additionally, AABs consume about
60% less energy and generate 60-80% fewer CO: emissions compared to OPC (Qureshi; Pal;
Singh, 2025).

Nevertheless, several obstacles remain. Comprehensive life cycle assessments
(LCA) are essential to ensure that AABs truly deliver sustainability benefits, considering that
the production of activators like sodium silicate can carry a considerable carbon footprint (Luga
et al., 2024). Furthermore, cost remains a critical barrier: current estimates suggest that AAB
concrete can be 2-3 times more expensive than OPC, primarily due to the high cost of activators

(Segura et al., 2023).

2.2 Reaction products and gel chemistry in AABs

The hardened matrix of AABs is composed predominantly of amorphous or semi-
crystalline gel phases, analogous to the calcium silicate hydrate (C-S-H) gel in Portland cement
systems (Nasir ef al., 2025). The principal gel phases are classified as sodium aluminosilicate
hydrate (N-A-S-H) and calcium aluminosilicate hydrate (C-A-S-H), with intermediate or hybrid
gels forming when both alkali and calcium are present in significant quantities (Provis; Bernal,
2014; Garcia-Lodeiro; Palomo; Fernandez-Jiménez, 2015; Jia et al., 2020; Azimi; Toufigh,
2023). The N-A-S-H gel predominates in low-calcium alkali-activated systems, such as those
based on fly ash or metakaolin. It consists of a three-dimensional framework of SiO4 and AlOa
tetrahedra, charge-balanced by alkali cations (Ca*, Na*, K*), and exhibits structural similarities
to zeolite-like aluminosilicate gels (Vizureanu; Burduhos-Nergis, 2021). Figure 2 shows C-A-

S-H and N-A-S-H, formed during the curing of AABs on ternary diagram.

Figure 2 — Evolution of N-A-S-H and C-A-S-H gels over time
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Source: Provis and Bernal (2014).
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Conversely, C-A-S-H gel is the dominant binding phase in high-calcium systems,
including activated slag and class C fly ash (Provis; Bernal, 2014). It shares similarities with
the C-S-H gel of Portland cement but incorporates aluminum and alkalis into its structure
(Garcia-Lodeiro; Palomo; Fernandez-Jiménez, 2015; Qin et al., 2022b). In addition to C-A-S-
H, minor phases such as hydrotalcite and aluminosilicate hydrates frequently coexist in slag-
activated systems (Wang, Xingang et al., 2024). The Figure 3 illustrates the 2D schematic of
C-S-H, C-A-S-H and N-A-S-H.

Figure 3 — 2D schematic of C-S-H, C-A-S-H and N-A-S-H

A A ©® ®

C-S-H C-A-S-H
Source: Adapted by Zhang, Xi and Yang (2021).

In blended systems, such as mixtures of slag and fly ash, both gel types may co-
develop, forming so-called hybrid gels denoted as C-(N)-A-S-H or N-(C)-A-S-H (Provis;
Bernal, 2014; Qin et al., 2022a; Ahmad et al., 2023). High-resolution analyses have revealed
that Ca?" ions can be incorporated into N-A-S-H gels, resulting in a denser N-(C)-A-S-H phase
that merges characteristics of both parent gels (Azimi; Toufigh, 2023). A key challenge is
linking gel composition to macroscopic properties: even small variations in Si/Al or Ca content
can significantly impact stiffness, shrinkage, and durability, yet these relationships are not yet
fully quantified (Zhang et al., 2017; Zhao et al., 2019; Dinh et al., 2024). Continued
investigation into the evolution and structural refinement of AABs gels is essential for

optimizing mix design and improving the prediction of long-term performance.

2.3 Hardening mechanisms and rheological evolution relationship in AABs

Before discussing the reaction mechanisms, it is necessary to define a few key
terms: stiffness, hardening, setting, and curing. This clarification is essential because these
terms are used continuously throughout the text and their definitions are often a source of

confusion in the literature.
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First, in mechanical terms, stiffness provides a quantitative measure of the
material’s resistance to deformation and is directly related to the elastic modulus. As such,
stiftness depends on both the intrinsic material properties and the geometry of the specimen.
By way of terminology, the term stiffness is used generically here to encompass modulus-

related properties that evolve during hardening.

Hardening in AABs refers to the progressive physical and chemical transformation
by which the material develops rigidity and mechanical strength as geopolymerization reactions
proceed (Romano; Cincotto; Pileggi, 2018; Hong; Choi, 2021). The setting period is empirically
determined using the Vicat test, which evaluates the penetration resistance of a standard needle,
providing a practical indication of when the paste transitions from a plastic to a rigid state
(Romano; Cincotto; Pileggi, 2018). Although setting is primarily a physical event, it signals the
onset of chemical hardening, where the microstructure begins to evolve into a coherent and
load-bearing network (Reinhardt; Grosse, 2004). It is important to note that setting, being
empirically determined, is distinct from hardening, which is a physically and chemically

grounded process linked to stiffness and strength development.

Finally, the curing process is defined as the maintenance of suitable moisture and
temperature conditions that allow these reactions to proceed effectively (Rath; Deo; Ramtekkar,
2018; Ghostine et al., 2022). Proper curing ensures adequate hydration and gel development,
leading to improved strength, impermeability, and durability. Consequently, many researchers
use hardening and curing almost interchangeably, since both describe the time-dependent

strengthening and densification of the matrix.

With the main terms established, the relationship between hardening mechanisms
and rheological evolution in AABs is now detailed. Duxson et al. (2007) proposed a conceptual
model to describe the geopolymerization process (or alkali-activation), as illustrated in Figure
4. It comprises sequential yet interconnected stages: dissolution of the aluminosilicate source,
speciation of dissolved species, gelation, reorganization, and final polymerization and
hardening. The author makes it clear that, although the process is presented in a linear manner,

it is strongly coupled, the stages occur simultaneously.
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Figure 4 — Highly simplified reaction mechanism for geopolymerization
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2.3.1 Dissolution and speciation equilibrium

The alkaline activation process begins with the dissolution of solid precursor
particles in alkali ambient. The covalent Si-O-Si and Al-O-Si bonds in the aluminosilicate
source are broken, this occurs via OH™ attack on the solid, effectively “leaching™ Si and Al into
the liquid phase (Duxson ef al., 2007; Siyal et al., 2024). The dissolution rate depends on

precursor chemistry and activator composition (Liu et al., 2023).

Low-calcium system often dissolve more slowly at ambient temperature, they may
require very strong alkali or heat curing to achieve substantial dissolution in the early (Huang,
G. et al., 2024; Xu, D. et al., 2024). By contrast, high-calcium precursors tend to have higher
initial reactivity, Ca-O bonds are more easily hydrolyzed (Huang, G. et al., 2024). In both cases,
the dissolution step is endothermic and is reflected as an initial thermal signal in isothermal

calorimetry (Keppert ef al., 2024). A key factor in AAB dissolution kinetics is whether
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dissolution continues or is limited by early gel precipitation. Rapid gel formation on particle
surfaces can create a passivating layer that slows further dissolution (Ma et al., 2023; Cui et al.,
2024). After dissolution, the released silicate and aluminate species coexist in the solution and
establish a speciation equilibrium, where different monomeric and oligomeric species
continuously form, break, and reorganize depending on pH, Si/Al ratio, and ionic strength

(Siyal et al., 2024).

The initial dissolution of precursor particles in AABs has some impact on the
rheological behavior of fresh binders. As OH™ ions break Si-O-Si and Al-O-Si bonds and leach
species into solution, the ionic concentration and viscosity of the pore fluid evolve, altering
yield stress and viscosity (Tran ef al., 2022). This can be observed via shear stress growth tests
and small amplitude oscillatory shear (SAOS) measurements (Sun et al., 2022; Tran et al.,
2022). This correlation between dissolution kinetics and rheological parameters offers a way to

probe microstructural development in situ in fresh AAB systems (Tran et al., 2022).

2.3.2 Gelation and reorganization

As the concentration of dissolved silicate and aluminate species increases, the
solution becomes supersaturated, and condensation reactions begin to form small oligomeric
structures that progressively assemble into a continuous aluminosilicate gel network (Duxson
et al., 2007; Aversa et al., 2024). In low-calcium systems, this stage corresponds to the
formation of an N-A-S-H gel (Provis; Bernal, 2014; Guan et al., 2022). According to the
conceptual model proposed by Duxson et al. (2007), this represents the gelation phase of
geopolymerization, where a disordered, colloidal framework begins to develop. The onset of
this nucleation and condensation process usually coincides with the end of the induction period
and the beginning of the main exothermic peak observed in isothermal calorimetry (Keppert et

al., 2024).

Following gelation, the newly formed amorphous network undergoes progressive
structural reorganization. The gel densifies as the degree of condensation increases, leading to
greater connectivity between Si-O-Al and Si-O-Si units and the gradual development of a three-
dimensional aluminosilicate framework (Duxson et al., 2007; Tognonvi; Pascual; Tagnit-
Hamou, 2022). This reorganization step involves redistribution of water within the pore
structure and partial rearrangement of the gel domains (Duxson et al., 2007; Aversa et al., 2024).
In calcium-rich systems, similar condensation reactions produce a C-A-S-H-type gel, which

may coexist or intermix with the N-A-S-H network, but both follow the same fundamental
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sequence of gel formation (Provis; Bernal, 2014; Egnaczyk; Quinn; Wagner, 2025).

From a rheological perspective, gel nucleation in AABs marks the onset of
stiffening as the system evolves from a low-viscosity suspension into a percolated network
(Liang; Yao; She, 2023). Rheologically, it is characterized by a rapid increase in the storage
modulus (G') and, in many cases, the point where G’ overtakes the loss modulus (G"), signaling
a liquid-to-solid transition (Kamath; Prashant; Kumar, 2021; Sun ef al., 2022; Aversa et al.,
2024). In practical terms, this confirm that macroscopic setting is a direct manifestation of

microscopic gel connectivity.

2.3.3 Polymerization and hardening

According to the conceptual model proposed by Duxson et al. (2007) (Figure 4),
this is the final stage of geopolymerization, and corresponds to the continued growth and
structural reorganization of the aluminosilicate gel. In this step, the small gel nuclei formed
during gelation consume additional dissolved species and progressively develop into a
continuous three-dimensional network. Chemically, this involves ongoing polycondensation,
where SiOs and AlOs tetrahedra increasing the connectivity and rigidity of the structure
(Keppert et al., 2024; Yi; Boluk; Bindiganavile, 2024). This process is exothermic and typically
coincides with the main calorimetric peak observed in alkali-activated systems (Egnaczyk;

Quinn; Wagner, 2025).

As the process continues, residual condensation reactions and structural
reorganization further reduce the gel porosity and increase the packing of the solid network
(Tognonvi; Pascual; Tagnit-Hamou, 2022). In some systems, secondary reactions or limited
crystallization may take place at later ages, refining the pore network and contributing to long-
term stability (Yi; Boluk; Bindiganavile, 2024). The overall process results in a dense, cohesive
aluminosilicate matrix whose mechanical and durability performance depend directly on the
extent of polymerization and structural consolidation achieved during hardening (Duxson et al.,

2007).

Following this, polymerization sustains the progressive build-up of rigidity. The
storage modulus (G') continues to increase as new Si-O-Al linkages form and the gel clusters
merge into a denser three-dimensional framework (Egnaczyk; Quinn; Wagner, 2025). Even
beyond the final set determined by Vicat, G’ continues to rise, indicating that the system remains

chemically active and that polymerization proceeds well into later ages (Tekle; Hertwig;
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Holschemacher, 2021).

2.3.4 Influence of precursors

The chemistry of the precursor, plays a critical role in influencing the reaction
pathway and the type of gel formed in alkali-activated binders. Figure 5 illustrates the main
materials used as precursors and their chemical composition in the CaO-Si0.-Al.Os ternary
diagram. Calcium availability accelerates the initial reactions, which in turn promotes faster
setting and early strength development (Qin ef al., 2022). In contrast, low-calcium systems rely
on the polymerization of dissolved silica and alumina species to form N-A-S-H networks.

Figure 5 — Variation of principal oxides in the chemical composition of precursors used in
alkali-activated materials
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Blending precursors enables the tailoring of reaction kinetics and gel chemistry.
According to Wang et al. (2023), when the CaO content is gradually increased in a fly ash-
based alkali-activated binder, the gel products evolve in stages: initially forming a N-A-S-H
network, then transitioning to a mixed N-(C)-A-S-H gel, and ultimately, under high calcium

conditions, predominating in a C-A-S-H type gel.

Experimental results have demonstrated that incorporating calcium into
aluminosilicate gels results in more compact structures and significantly higher compressive
strengths (Myers et al., 2013; Azimi; Toufigh, 2023). However, an excessive calcium content
can trigger overly rapid reactions and induce shrinkage if not properly managed (Luga et al.,
2024). In addition to calcium, the silica and alumina content of the precursor also critically
influences gel development: higher Si/Al ratios in low-calcium systems generally lead to the

formation of more polymerized and mechanically robust N-A-S-H networks (Kamath;
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Prashant; Kumar, 2021), while an optimal Ca/Si ratio of approximately 1.0-1.5 promotes the
development of strong C-A-S-H gels in slag-based systems.

Nonetheless, several challenges remain. Many industrial precursors are chemically
heterogeneous (Figure 5), making it difficult to predict their effects on setting behavior and
mechanical strength. Minor oxides such as MgO, Fe:0s, and TiO2, commonly present in
precursors, can lead to the formation of secondary hydrate phases that influence the pore
structure and durability, but these effects are less thoroughly studied (Mahmed; Zailan;
Abdullah, 2020; Prusty; Pradhan, 2020; Kaya et al., 2022).

2.3.5 Influence of mix parameters (alkali content, silica modulus, water content and curing
temperature)

Alkali content (N/B) is defined as the ratio between the equivalent mass of Na.O
supplied by the activating solution and the mass of the precursor solids. An increase in the
overall alkali concentration generally accelerates the reaction. For instance, raising the NaOH
molarity or the percentage of solids shortens the setting time by increasing the pH and
enhancing the dissolution rates. However, exceeding an optimum alkali concentration may
induce rapid particle coagulation and immediate stiffening of the paste (Mahmed; Zailan;

Abdullah, 2020; Yang; Zhang; Lin, 2022; Zhang et al., 2023).

Silica modulus (S/N) corresponds to the molar ratio of SiO2 to Na2O within the
activator. A lower value results in a higher initial pH, typically leading to faster setting but
potentially causing early structural instability (Hung ef al., 2021). Conversely, a higher silica
modulus moderates the initial pH and tends to extend the induction period. One study
demonstrated that increasing the S/N ratio significantly prolonged the setting time of alkali-

activated slag binders (Poggetto; Leonelli; Spinella, 2024).

Water content (W/B) is expressed as the total mass of water, originating from the
activating solutions, relative to the precursor mass. Higher water content dilutes the activator
and increases the spacing between particles, generally resulting in longer setting times and
lower early-age strength. For example, in slag-fly ash blends, mixtures with higher W/B show
slower stiffness development due to the dilution of reactants (Zhang et al., 2023; Guo ef al.,
2024; Han et al., 2024). Conversely, reducing the water content accelerates setting, although at

the expense of workability, by concentrating the alkalis and promoting faster gel percolation.

Curing temperature denotes the thermal regime applied during the early stages of
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reaction. Elevated temperatures can dramatically accelerate setting. In low-calcium systems,
raising the curing temperature can shorten the setting time from days to hours by enhancing the
dissolution of precursors and accelerating polymerization rates (Siddique ef al, 2021;

Mohamed, 2023; Statkauskas; Vai¢iukyniené; Grinys, 2024).

2.3.6 Challenges in monitoring hardening process in AABs

Understanding and monitoring the hardening process of AABs is crucial because it
provides direct guidance for mix design and formulation adjustments. By clarifying the steps
showed, researchers can better control workability, setting time, and strength development. Yet,
tracking these processes remains complex: the different reactions overlap, and conventional
tests such as the Vicat needle often fail to capture the gradual transitions observed in AABs
(Nedunuri; Muhammad, 2021; Shilton; Wang; Banthia, 2025; Zhang, P. et al., 2025). Advanced
methods, calorimetry, rtheometry, FTIR, Raman, offer valuable insight but require costly
equipment and expertise, and their signals often overlap, making interpretation difficult (Sun et
al.,2022; Zhong et al., 2022; Keppert et al., 2024). In addition, reproducibility is limited, since
small changes in precursor chemistry or activator composition can lead to markedly different

outcomes (Hung et al., 2021; Kaze ef al., 2021).

To overcome these barriers, less expensive approaches are gaining attention.
Machine learning models are being developed to link chemical composition with macroscopic
properties such as setting time and compressive strength (Nguyen ef al., 2020; Ahmad et al.,
2022; Hsu et al., 2024), while non-destructive techniques such as ultrasonic monitoring provide
accessible ways to follow hardening in real time (Lee; Lee; Choi, 2020; Tian; Xu, 2022; Park
et al., 2024; Xu, D. et al., 2024). Even so, the lack of standardized protocols for AAB
characterization continues to hinder comparisons between studies. Overall, advancing
monitoring strategies is essential, since a clearer understanding of hardening directly supports

the design of more efficient and reliable AAB formulations.

2.4 Machine learning applications in AABs

In recent years, researchers have increasingly employed machine learning (ML)
techniques to study and predict the properties of alkali-activated materials (AAMs) (Amin et
al.,2022; Fang et al., 2024; Matsimbe et al., 2024). ML is a subset of artificial intelligence (Al)
that enables computers to learn from data patterns and make predictions or decisions without

being explicitly programmed. In the context of materials science, ML models are trained using
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large datasets of experimental results, to identify complex, often nonlinear relationships among
variables that are difficult to capture through traditional regression or empirical equations

(Volker et al., 2021).

ML algorithms can generally be divided into supervised, unsupervised, and
reinforcement learning methods. Supervised learning, the most common in AAM research, uses
labeled data to predict target properties (e.g., compressive strength or setting time), while
unsupervised learning focuses on identifying patterns or clusters in unlabeled datasets (Volker
et al., 2021; Amin et al., 2022; Matsimbe et al., 2024). Among supervised approaches,
regression-based algorithms (e.g., linear, polynomial, or ridge regression) provide interpretable
yet limited models, whereas nonlinear methods such as random forest (RF), support vector
machines (SVM), and artificial neural networks (ANN) can capture complex feature
interactions with higher accuracy (Amin et al., 2022; Fang et al., 2024). Furthermore,
interpretability tools such as SHapley Additive exPlanations (SHAP) allow researchers to
quantify the relative influence of input parameters, revealing that factors like silica modulus,
slag/fly ash ratio, and curing temperature are the most influential variables controlling AAM

strength (Fang ef al., 2024; Matsimbe ef al., 2024).

Ensemble methods, such as Random Forest and XGBoost, combine the predictions
of multiple individual models to improve accuracy and robustness (Amin et al., 2022). By
integrating bagging or boosting strategies, these approaches effectively capture the nonlinear
relationships inherent in AABs, leading to superior prediction performance compared to single-

model approaches (Amin et al., 2022; Fang et al., 2024; Matsimbe et al., 2024).

The most common models applied in the literature include artificial neural networks
(ANNs), SVM, decision tree ensembles (e.g. random forests and gradient boosting), and other
regression algorithms. For example, Cao er al. (2022) studied using an ANN (multilayer
perceptron, MLP), an SVM, and an XGBoost gradient boosting model to predict the
compressive strength of fly ash-based geopolymer concrete from mix composition. They found
that the ensemble tree model (XGBoost) achieved the highest accuracy (R? ~ 0.98) compared
to the ANN and SVM. This indicates that nonlinear ensemble approaches can capture the
complex interactions in AAB mixes effectively. The Figure 6 presents the XGBoost results from
this study. It illustrates a common issue in machine learning applied to this field: the limited

amount of available data.

An example is a model that takes precursor chemistry and activator dosage as inputs
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to estimate strength or setting time (Zhang et al., 2024). Tree-based models (random forest,
gradient boosting) have been popular for AAMs because they handle mixed data (categorical
inputs like type of precursor, and continuous inputs like ratios) well and can rank variable
importance. In one comprehensive study, over 600 mix-data points of slag/fly ash were used to
train four different tree-based ML models, among them, gradient boosting regression gave the
best predictions of 28-day strength. Notably, that model achieved a high correlation (R? ~ 0.97)
between predicted and actual strength. As data from different studies are being combined, we
see more robust models emerging. These successes demonstrate that ML can be a powerful tool

to complement experimental and theoretical approaches in the AAB field.

Figure 6 — Experimental and predicted result of XGBoost model
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While ML models show promise, their performance is only as good as the data
available. A major limitation is the scarcity of large, diverse datasets, many models are trained
on a specific subset of materials (e.g. one type of fly ash and slag) and may not generalize to
different precursors or activators. Also, results from different labs are not always directly

comparable due to slight differences in conditions, which complicates data pooling.

2.5 Non-destructive techniques applications in AABs
2.5.1 Principles and general applications

Non-destructive tests (NDTs) refer to a range of techniques used to assess the
properties, quality, or internal condition of a material or structure without causing damage or
impairing its functionality (Perun, 2024). One important class of NDT techniques relies on
mechanical waves, such as ultrasonic or vibrational signals, which interact with the material’s

internal structure and provide insights based on wave speed, attenuation, or resonance behavior



37

(Silva et al., 2023; Perun, 2024).

In the mechanical wave literature, two types of body waves are reported: P-waves
(primary waves) and S-waves (secondary waves). P-waves are compressional waves in which
particles move in the same direction as the wave propagates. They are the fastest wave type and
can travel through solids, liquids, and gases. S-waves, on the other hand, are shear waves with
particle motion perpendicular to the direction of propagation; they are slower and can only
propagate through solids. According to King and Stephens (1975), the propagation velocities
of these waves, denoted as Vp for P-waves and Vs for S-waves, depend on the material's elastic
modulus (E) and specific mass (p), as expressed in Equations 1 and 2, valid for homogeneous

and isotropic materials.

B E(1-v)
Vp _\/p(1+v)(1—2v) o

E
“= (mae @

Among mechanical wave-based techniques, the Ultrasonic Pulse Velocity (UPV)
test is one of the most established. It involves transmitting high-frequency ultrasonic waves
through a material and measuring the time it takes for the waves to travel between a transmitter
and receiver (Silva et al., 2023; Alqurashi er al., 2025). The velocity of these waves is
influenced by the material’s stiffness, density, and homogeneity: higher velocities generally
indicate greater compactness and strength, while lower values may suggest cracks, voids, or
reduced stiffness (Perun, 2024). In practical setups, transducers are placed on opposite sides of

the sample with coupling gel to ensure effective contact (Figure 7).

Figure 7
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UPYV test has long been standardized (ASTM C597, 2022) and used in conventional
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and alkali-activated concretes for estimating dynamic elastic modulus, evaluating compactness,
and detecting internal flaws (Tekle; Hertwig; Holschemacher, 2021; Silva et al., 2023;
Alqurashi ef al., 2025). More notably, UPV has been applied to monitor early-age behavior in
alkali-activated materials. For example, Tekle, Hertwig and Holschemacher (2021) used
ultrasonic pulses to monitor alkali-activated mixes from fresh to hardened states and found a
strong correlation between the UPV curve and setting times determined via traditional Vicat

needle tests.

Despite these advances, ultrasonic test in the fresh state still presents important
limitations. While UPV techniques are effective in capturing structural transitions such as
setting and early hardening, they provide limited information about the viscous or flow-related
behavior of the material. This is due to the fact that the frequencies used are extremely high,
resulting in responses that are almost purely elastic. For example, Park et al. (2024) conducted
tests at 34 kHz, 100 kHz, and 400 kHz in the fresh state, limiting the analysis to wave velocity
and amplitude. As a result, early-age measurements can miss key aspects of workability,

thixotropy, or yield stress, which are critical for processing and placing alkali-activated binders.

In contrast, the Impact Resonance Test is particularly useful for evaluating more
complex materials such as asphalt pavements, which are well known for their pronounced
viscoelastic behavior (Carret, 2018; Bezerra et al., 2023). It provides a fast, non-invasive means
of assessing stiffness and mechanical response, and will be discussed in greater detail in the

following section.

2.5.2 Impact resonance test (IRT)

Impact resonance test is a non-destructive method in which a specimen, such as a
concrete beam or cylinder, is placed on soft foam supports, lightly struck with a small hammer,
and its vibration response is captured by an accelerometer (Malone; Sun; Zhu, 2023). The
Figure 8 shows the test setup on hardened specimen. The resulting signal is analyzed to identity
the specimen’s natural resonant frequencies (after fast fourier transform) (Carret, 2018; Bezerra
et al., 2023). From these frequencies, and using known relationships involving the specimen's
geometry, mass, and material properties, the dynamic modulus can be calculated, and when is
more complex materials: finite element method (FEM) (Schmidt; Dethof; Kessler, 2023; Wang,
Y. et al., 2024).

This technique is particularly effective for quasi-elastic materials like hardened
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Portland cement concrete, which respond with stable and well-defined vibrational modes (Kim
et al., 2022; Bezerra et al., 2023; Feng; Ren; Wang, 2023) . According to (ASTM C215, 2019),
the dynamic modulus of elasticity is given by Equation 3, where n' represents the fundamental
longitudinal frequency (Hz), M is the mass of the specimen (kg), and D is a geometric factor

equal to 5.093(L/d2) m™! for a cylindrical specimen.

Figure 8 — Impact resonance test setup
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Recently, this technique has gained attention for its potential use in more complex
materials like asphalt mixtures, which are inherently viscoelastic. In such cases, the time-
temperature superposition principle is applied to build master curves of complex modulus over
a wide range of temperatures and loading frequencies (Carret, 2018; Zhang; Sias; Dave, 2022;
Bezerra et al., 2023) . Although more challenging due to the dissipative nature of viscoelastic
behavior, the appeal lies in the fact that impact resonance allows for stiffness evaluation without

requiring large-scale mechanical equipment like a universal testing machine (UTM).

Although still unexplored in the fresh state of AABs, resonance by impact has the
potential to capture viscoelastic behavior due to its broad frequency range (typically 0 to 50
kHz) (Carret, 2018; Bezerra ef al., 2023). This makes it a promising technique for monitoring
the hardening process. By performing tests at short time intervals, it is possible to track the
evolution of stiffness across a wide frequency spectrum as the material sets-something that
conventional rheometers struggle to achieve. The challenge with rheometry is that frequency
sweeps take time, and as the material hardens, its properties are continuously changing during
the test (Maciel; Romano; Pileggi, 2023; Carvalho, 1. D. C. et al, 2024). Additionally,
rheometers are expensive and not always practical for field or large-scale use. In contrast,

impact resonance is fast, cost-effective, and could provide valuable high-frequency
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characterization during early-age development in alkali-activated binders.

Exploring this technique in the fresh-to-hardened transition not only opens a new
path for early-age monitoring but also creates opportunities to correlate resonance data with
rheological behavior and microstructural evolution-deepening our understanding of the

hardening mechanisms in these emerging binder systems.
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3 INVESTIGATION OF MACHINE LEARNING METHODS FOR PREDICTING
FRESH AND HARDENED PROPERTIES OF ALKALI-ACTIVATED BINDERS
BASED ON CHEMICAL COMPOSITION

3.1 Introduction

Concrete is one of the most widely used manufactured materials worldwide, and its
production relies fundamentally on Portland cement (PC) (Trindade ef al., 2020; Glanz ef al.,
2023). Nevertheless, PC manufacturing accounts for roughly 7-8% of CO: emissions (Singh;
Middendort, 2020). As global PC consumption continues to rise, the need to develop alternative
binders with markedly reduced environmental impact has become increasingly pressing
(Lanjewar et al., 2023). Within this context, alkali-activated binders (AABs) have emerged as
a highly promising sustainable alternative, owing to their ability to incorporate industrial by-
products and their potential to substantially lower CO2 emissions while preserving competitive

mechanical performance and durability (Provis, 2018; Segura et al., 2023; Luga et al., 2024).

AABs are synthesized by activating aluminosilicate precursors such as fly ash,
metakaolin, and GGBS with alkaline solutions, typically sodium hydroxide (NaOH) and
sodium silicate (Na2Si0s) (Provis, 2018; Xie et al., 2020; Zhang; Sias; Dave, 2022). As a result,
different gel networks are formed, including N-A-S-H in systems with low-calcium content and
C-A-S-H to high-calcium availability (Guan et al., 2022; Liu et al., 2023; Siyal et al., 2024).
The development and structural characteristics of these gels are strongly influenced by the
chemical composition of the precursor, particularly the SiO2, Al-Os and CaO content, as well as
by the concentration and composition of the activating solution (Provis, 2018; Siyal e al., 2024;
Qader et al., 2025). Because these parameters interact in complex and nonlinear ways,
significant variability arises in the properties (Statkauskas; Vai¢iukyniené; Grinys, 2024). For
example, the effects of the individual oxide species on hardening mechanisms are still poorly
resolved, making it difficult to design mixtures that simultaneously achieve suitable setting
times and compressive strength without relying on empirical trial-and-error approaches for each
new precursor (Zhao et al., 2019; Jurado-Contreras et al., 2022; Ma et al., 2023). Consequently,
machine learning (ML) frameworks have been introduced to address the high-dimensional
parameter interactions and nonlinear reaction pathways inherent to AABs (Nguyen ef al., 2020;

Ahmad et al., 2023; Hsu et al., 2024).

In the AABs the main ML methods employed include artificial neural networks

(ANNSs), support vector machines (SVMSs), and tree-based ensemble algorithms (Zou et al.,
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2022). Cao et al. (2022) showed that a gradient-boosted decision tree model (XGBoost)
outperformed both the ANN and the SVM for predicting compressive strength of fly ash-based
geopolymers (R? ~ 0.98), while Zhang et al. (2024) demonstrated that precursor mix proportion
and activator dosage can be used effectively to estimate strength or setting time. Although
ensemble models trained on larger combined datasets have reached high accuracy, the scarcity
of diverse and standardized data continues to limit generalizability (Zou et al., 2022; Feng; Ren;
Wang, 2023; Zhang et al., 2024). Most available datasets focus on fly ash and steel slag systems,
meaning that models rarely incorporate other industrial by-products or alternative precursors
(Nguyen et al., 2020; Cao et al., 2022; Han, T. et al., 2022). As a result, predictions may not
transfer well across different precursor chemistries, activator types, or laboratory conditions
(Hsu et al., 2024). Furthermore, many existing studies lack systematic sensitivity analyses,
making it difficult to determine the true influence of each mixture parameter on AAB

performance.

Based on this, the aim of the present study is to investigate the use of machine
learning techniques to estimate fresh and hardened state properties of AABs from their chemical
composition. For this purpose, several algorithms were applied, including Multivariate
Polynomial Regression (MPR), Decision Tree (DT), Random Forest (RF), Bagging Regression
(BR), AdaBoost (AB), and Artificial Neural Networks (ANN), with MPR used to benchmark
linear-polynomial behavior against the nonlinear ensemble and neural network models. The
models were trained using precursor oxide composition (Al20s, SiO2, P-Os, SOs, Cl, K20, CaO,
TiO2, MnO, Fe20:s), the silica modulus S/N (SiO2/Na20, mol ratio), the alkali content N/B
(Naz0/binder, mass ratio), the water-to-binder ratio W/B (mass ratio), and curing temperature.
The output variables were initial and final setting times and compressive strength, obtained
from datasets of 139 and 427 data points, respectively. Model performance was evaluated using
a 70/30 train-test split and the metrics Coefficient of Determination (R?), Mean Squared Error
(MSE), Mean Absolute Error (MAE), after which the three models with the highest R? were
selected for feature-importance and sensitivity analyses to determine the influence of each input

parameter on the predicted property.
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3.2 Materials
3.2.1 Data set description

3.2.1.1 Selected parameters as input

The dataset employed in this study comprised a comprehensive set of input
parameters covering both precursor composition and mix design variables. Precursor oxides
included Al.Os, SiO:z, P.Os, SO, Cl, K20, CaO, TiO2, MnO, and Fe.Os (obtained with X-ray
fluorescence, XRF). These oxides were included as input variables in the present study,
allowing the analysis to be generalized at the chemical level. In addition, mix design parameters
were considered, such as the silica modulus (SiO2/Na:0, in mol/mol), the NaO/binder ratio
(N/B, in %), and the water/binder ratio (H2O/Binder, in g/g). These parameters were selected
because they are commonly reported in the literature on alkali-activated materials and,
moreover, they provide a comprehensive summary of the mix design (Amaludin ef al., 2024;
Toobpeng; Thavorniti; Jiemsirilers, 2024; Yuan et al., 2024). Curing conditions were
represented by temperature (during 24 h after mixing), while fresh state behavior was assessed
through initial and final setting time, and hardened state performance was evaluated through

compressive strength.

In binder formulations containing two precursors, the equivalent oxide composition
was determined using Equation 4. This procedure ensured a precise representation of the overall
chemical composition of the binder system.

n=10, p=2

oxidey, ros = Z oxide ,, - precursor, 4)
np=1
Where oxidey res (%) is the resulting mass percentage of the n-th oxide in the

mixture, oxide,,(%) is the mass percentage of the n-th oxide in the p-th precursor, and

precursor, is the mass percentage of the p-th precursor in the mixture.

3.2.1.2 Initial and final setting time

The setting time of binders was evaluated using the Vicat apparatus, according to
NBR 16607 (2018) or similar. This empirical penetration test is commonly employed in the
literature for both Portland cement and AABs to assess the transition from the fresh to the
hardened state. In this method, the initial setting time corresponds to the period required for the

Vicat needle to remain at a distance of 6 £ 2 mm from the base plate, while the final setting
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time is reached when the needle penetrates no deeper than 0.5 mm, indicating the loss of

workability.

Table 1 presents the data overview of initial and final setting time. For each
parameter, the table reports the average, standard deviation, minimum, and maximum values,
providing an overview of the data distribution and variability among the collected samples. The
outputs consist of the initial setting time, with an average of 237.54 min and a standard deviation
0f'463.68 min, and the final setting time, with an average of 404.15 min and a standard deviation

of 742.12 min.

Table 1 — Dataset overview of initial and final setting time

Standard

Data Type Parameters Average [ Min Max
deviation
ALO; 15.01 6.24 1.26 29.09
Si0, 43.31 13.18 6.94 67.08
P,0s 0.12 0.33 0.00 2.21
SO; 1.10 0.86 0.00 4.86
Precursor Cl 0.86 1.48 0.00 3.92
oxides (%) K0 1.59 1.80 0.00 8.20
CaO 21.92 11.30 0.87 45.12
TiO> 2.10 2.60 0.00 6.98
MnO 0.08 0.41 0.00 3.18
Fe O3 5.03 6.77 0.50 39.86
Inputs S Si0, (mol)
—= 1.05 0.49 0.00 2.06
N Na,0 (mol)
Activator N o) Na,0 (g)
B (%) = Binder (2) 7.96 2.81 1.00 12.00
ﬂ = L@ 0.38 0.09 0.25 0.50
B Binder (g)
Curing Temperature (°C) 26.60 11.03 20.00 65.00
condition
Initial setting time (min) 237.54 463.68 5.00 4080.00
Output  Freshstate b1 cetting time (min)  404.15 742.12 25.00  6000.00
Total data 139

Source: elaborated by the author.

Actotal of 139 setting-time data entries were compiled from the literature, as detailed
in Table 2. The dataset integrates studies employing different aluminosilicate sources, including
fly ash, coal bottom ash, GGBFS, BFS, waste brick, wood bottom ash, and titanium tailing slag,
as well as blended precursor systems. This diversity in precursor chemistry and mixture design
provides a robust foundation for developing ML models capable of capturing variations in

setting behavior across different AABs systems.



Table 2 — Dataset of initial and final setting time literature sources
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Source Precursor Precursor 1 Precursor 2 Number
system of data
(Souza, 2024) 1 Fly ash BSSF 5
(Aratjo et al., 2025) 1 Fly ash BOF 3
(Li, J. et al., 2023) 1 Coal bottom ash Titanium 36
tailing slag
(Wang et al., 2023) 1 Fly ash - 13
(Toobpeng; Thavorniti; Jiemsirilers, 2024) 1 Fly ash - 1
(Allahverdi; Kani, 2009) 1 Waste brick Waste 15
concrete
(Yadollahi; Benli; Demirboga, 2015) 1 Hasar;ﬁfi femu“d - 9
ahverdi; Shaverdi; Kani, -
(Allahverdi; Shaverdi; Kani, 2010 1 BFS 6
(Al Makhadmeh; Soliman, 2021) 1 GGBFS - 9
(Tran Thi; Liao; Vo, 2023) | Fly ash + GGBFS WOO‘;:;IO“OIH 12
(Amaludin et al., 2024) 1 Palm A?s 1}11 Fuel GGBFS 8
(Ghosh; Ghosh, 2020) 1 Fly ash BFS 22
Total data 139

Source: elaborated by the author.

The Figure 9 presents the relative frequency distribution of all input variables used

in the dataset for predicting initial and final setting time. Each subplot corresponds to one

chemical or mix-design parameter included in the model. The histograms reveal substantial

variability in the dataset, with certain parameters such as Cl, MnO, Fe20s and temperature

displaying very narrow distributions, while others including SiO2, CaO, Al>Os, S/N and N/B

show broader and more heterogeneous ranges. Overall, the figure highlights the heterogeneity

and chemical diversity of the compiled dataset, which is essential for training ML models

capable of generalizing across different AABs systems.

Figure 9 — Relative frequency distribution of input variables dataset to initial and final setting
time (a) Al2Os (b) SiO: (¢) P20s (d) SOs (e) Cl (f) K20 (g) CaO (h) TiO: (i) MnO (j) Fe20s (k)
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3.2.1.3 Compressive strength

Temperature (°C)

0

60.

2 N/B (%)

The compressive strength is widely reported in the literature for AABs as a key

indicator of mechanical performance and material development. It’s determined through a

uniaxial compression test on hardened specimens at 28 days. Table 3 shows the dataset

overview for this property. As result the data set exhibit an average value of 28.59 MPa with a

standard deviation of 18.72 MPa, ranging from 0.81 MPa to 110 MPa.

Table 3 — Dataset overview of compressive strength

Standard .
Data Type Parameters Average deviation Min Max
Al,O3 15.41 9.20 1.26 46.23
SiO; 38.77 14.76 6.94 67.08
P»0s 0.28 0.43 0.00 2.21
SO; 1.28 1.31 0.00 4.86
Precursor Cl 0.29 0.93 0.00 3.92
oxides (%) K,O 1.58 1.49 0.00 8.20
CaO 22.39 14.00 0.09 63.00
TiO, 1.23 1.72 0.00 6.98
MnO 0.49 0.92 0.00 4.53
Fe 03 11.64 10.69 0.50 39.86
e S _ Si0; (mol) 112 0.48 0.00 3.10
N~ Na,O0 (mol) ’ ' ’ '
Activator N . Na,0 (g)
— = 9.05 4.83 1 36.47
B (%) Binder (g)
‘Y H,0
—= _Zi 0.40 0.17 0.06 1.44
B Binder (g)
Curing Temperature (°C) 43.56 24.13 20 85
condition
Hardened Compressive Strength
Output ctate (MPa, in 28-days) 28.59 18.72 0.81 110
Total data 427

Source: elaborated by the author.

The compressive strength dataset comprises 427 data points compiled from a wide
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range of literature sources, as presented in Table 4. The collected studies encompass both single-
precursor and blended binder systems, incorporating materials such as fly ash, GGBFS, BFS,

steel slag, bottom ash, waste brick, glass fiber powder and various industrial by-products.

Table 4 — Dataset compressive strength literature sources

Source Binder Precursor 1 Precursor 2 Number
system of data
(Souza, 2024) 1 Fly ash BSSF 27
(Araujo et al., 2025) 1 Fly ash BOF 36
(Costa, 2022) 1 KR - 5
(Costa, 2022) 2 Fly ash - 9
(Costa, 2022) 3 Bottom ash - 5
(Costa, 2022) 4 BOF - 9
(Costa, 2022) 5 Fly ash Bottom ash 5
(Costa, 2022) 6 Fly ash BOF 5
(Costa, 2022) 7 Bottom ash BOF 5
(Carvalho, I. C. et al., 2024) 1 Waste brick BFS 6
(Wang, M. et al., 2024) 1 Steel slag Slag 27
(Li, J. et al., 2023) 1 Coal bottom ash Titanium 36
tailing slag
(Wang et al., 2023) 1 Fly ash - 13
(Toobpeng; Thavorniti; Jiemsirilers, 2024) 1 Fly ash - 33
(Yuan et al., 2024) 1 Glass fiber - 15
powder
(Guo; Shi; Dick, 2010) 1 Fly ash - 18
(Adu-Amankwah et al., 2016) 1 Fly ash - 30
(Allahverdi; Kani, 2009) 1 Waste brick Waste 15
concrete
(Yadollahi; Benli; Demirboga, 2015) 1 Hasankalq ground - 9
pumice
(Allahverdi; Shaverdi; Kani, 2010) 1 Blast-furnace slag - 6
(Al Makhadmeh; Soliman, 2021) 1 GGBFS - 9
(Tran Thi; Liao; Vo, 2023) 1 Fly ash + GGBFS Woo‘islil"“"m 12
(Nunes et al., 2022) 1 BOF - 6
(Amaludin ef al., 2024) 1 Palm [SS ﬁ Fuel GGBFS 8
. Spent fluid
(Ruiz et al., 2019) 1 catalytic cracking - 19
(Joseph; Cizer, 2022) 1 Slag Fly ash 9
(Ghosh; Ghosh, 2020) 1 Fly ash BFS 50
Total data 427

Source: elaborated by the author.

The number of observations contributed by each reference ranges from a few
individual measurements to several dozen, resulting in considerable variability in precursor
chemistry and mixture design. The substantially larger volume of compressive strength data, in

comparison with the more limited setting time dataset, reflects the fundamental importance of
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this property in the assessment of AABs and the greater prevalence of such measurements in

the existing literature.

The Figure 10 presents the distribution of the input variables incorporated into the
compressive strength dataset. Each histogram represents the frequency with which a given
chemical or mixture parameter appears across the collected studies. The oxide components
display markedly different patterns: elements such as Cl, MnO and Fe2Os occur in relatively
limited concentration intervals, while oxides including SiO2, CaO and Al:Os span a wider range

of values, reflecting the diversity of precursor types.

Figure 10 — Relative frequency distribution of input variables dataset to compressive strength
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Source: elaborated by the author.
The mixture-related parameters, namely S/N, N/B and W/B, also cover multiple
intervals. Curing temperature, although reported for fewer categories, still captures the

conditions most commonly explored in the literature.
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3.2.2 Laboratory validation binders

To validate the best machine learning models, a set of binder mixes will be produced
in the laboratory using Class F fly ash (FA-BR) (ASTM C618, 2019) from the Pecém
Thermoelectric Complex in Brazil and dry-pit slag (DP) supplied by ArcelorMittal Pecém
(AMP). The chemical compositions of these precursors, determined by X-ray fluorescence
(XRF), are presented in Table 5. FA-BR exhibited elevated SiO: (46.80%) and Al.Os (15.64%)
contents, with moderate Fe203 (21.05%) and comparatively low CaO (8.07%). In contrast, DP
was characterized by a significantly higher CaO content (65.86%) and lower levels of SiO:
(10.33%) and Al20s (2.38%), with Fe:Os at 12.10%. The specific gravities of FA-BR and DP
were 2.21 and 2.49, respectively.

Table 5 — Precursor oxides composition
Precursor AlLO; SiO: P05 SO3 Cl K:0 CaO TiO: MnO Fe:03
DP 238 1033 103 476 0.11 0.76 6586 1.12 1.32 12.10
FA-BR 15.64 4680 044 191 003 372 8.07 1.77 0.12 21.05

Source: elaborated by the author.

The crystalline phases of the precursors were identified through X-ray diffraction
(XRD), as shown in Figure 11. The fly ash (FA-BR) pattern exhibited predominant peaks
associated with silicon oxide and iron oxide, consistent with its high SiO- and Fe:Os contents
determined by XRF. In contrast, the dry-pit slag (DP) presented more intense reflections of

calcium-based phases, which corroborates its elevated CaO content.

Figure 11 — Precursors XRD
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Source: elaborated by the author.
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Additionally, the DP pattern displayed a markedly lower amorphous contribution
compared to FA-BR, evidenced by the reduced background hump, which reflects its
predominantly crystalline nature. As shown in Figure 12, the particle-size distribution curves
reveal a clear distinction between the two precursors selected for the validation group. The
analysis was performed using a Shimadzu SALD-2300 laser diffraction particle-size analyzer.
FA-BR exhibits a finer profile, with characteristic diameters of D10 = 3.6 um, D50 =22.7 pm
and D90 = 66.1 um, whereas the DP material presents substantially coarser particles, with D10
=16.2 um, D50 = 56.8 um and D90 = 124.2 um. In its as-received condition, DP is supplied as
a coarse aggregate, requiring mechanical beneficiation prior to use. Ball milling followed by
sieving at 150 pm was therefore applied; however, this process showed limited efficiency, with
only about 8-10% of the material being converted into fine particles. As a result, the DP

precursor retained a comparatively coarser particle size distribution than the other FA-BR.

Figure 12 — Particle size distribution of the precursors
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Source: elaborated by the author.

Based on the two precursors characterized, Table 6 presents the 20 binder
formulations developed for the validation group. The mixtures were designed by systematically
varying key compositional and mix-design parameters, including the relative oxide proportions
of the precursors, the S/N, N/B) and W/B. All mixtures were prepared at a controlled
temperature of 25 °C. The inclusion of DP is particularly relevant, as none of the data used for

training the models contained this type of precursor.
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Table 6 — Laboratory validation mix proportion binders

Oxides composition (%) N/B
1D DP-FA ALQO3  SiO2 P:0s  SOs Cl K> Ca0O TiO: MnO FeO3 SN (%) W/B

0-100 15.64 4680 044 191 0.03 372 807 177 0.12 21.05 0.75 &% 0.23
25-75 1233 37.68 0.59 262 0.05 298 2252 161 042 1881 0.75 &% 0.23
50-50 9.01 2857 074 334 0.07 224 3696 144 0.72 1657 075 8% 0.23
75-25 570 1945 089 4.05 0.09 150 5141 128 1.02 1434 075 8% 0.23
100-0 238 1033 1.03 476 0.11 076 6586 1.12 132 1210 0.75 8% 0.23
0-100 15.64 4680 044 191 0.03 372 807 177 012 21.05 0.75 &% 0.38
25-75 1233 37.68 059 262 0.05 298 2252 161 042 1881 0.75 &% 0.38
50-50 9.01 2857 074 334 0.07 224 3696 144 072 1657 075 &% 0.38
75-25 570 1945 089 4.05 0.09 150 5141 128 1.02 1434 075 8% 0.38
100-0 238 1033 1.03 476 0.11 076 6586 1.12 132 1210 075 8% 0.38
50-50 9.01 2857 0.74 334 0.07 224 3696 144 0.72 1657 025 8% 0.38
50-50 9.01 2857 0.74 334 0.07 224 3696 144 0.72 1657 050 8% 0.38
50-50 9.01 2857 074 334 0.07 224 3696 144 0.72 1657 1.00 8% 0.38
50-50 9.01 2857 074 334 0.07 224 3696 144 0.72 1657 125 8% 0.38
50-50 9.01 2857 0.74 334 0.07 224 3696 144 0.72 1657 150 8% 0.38
50-50 9.01 2857 074 334 0.07 224 3696 144 072 16,57 1.00 4% 038
50-50 9.01 2857 074 334 0.07 224 3696 144 072 16,57 1.00 6% 038
50-50 9.01 2857 074 334 0.07 224 3696 144 0.72 16,57 1.00 10% 038
50-50 9.01 2857 074 334 0.07 224 3696 144 0.72 16,57 1.00 12% 038
50-50 9.01 2857 074 334 0.07 224 3696 144 0.72 1657 1.00 14% 0.38

[N e e e
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Source: elaborated by the author.

3.3 Methods

Figure 13 illustrates the workflow adopted in this study for developing and

evaluating the predictive models.

e T

Figure 13 — Schematic representation of the analysis methodology
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Source: elaborated by the author.

The procedure begins with data collection, followed by the application of a
statistical baseline model using Multivariate Polynomial Regression (MPR) and a set of ML

algorithms. The dataset is then randomly divided into training (70%) and testing (30%) subsets
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to ensure unbiased model assessment, as done by other authors (Han, T. et al., 2022; Hsu et al.,
2024; Zhang et al., 2024). Each model is implemented in Python using specialized libraries for

statistical analysis and machine learning.

Model performance is evaluated on the testing subset based on the coefficient of
determination (R?), mean squared error (MSE) and mean absolute error (MAE). The three
promising models, identified by their higher R? values, are further analyzed through feature
importance and sensitivity analyses. Finally, the selected models are validated experimentally

through laboratory testing to assess their predictive capability under real conditions.

3.3.1 Multivariate Polynomial Regression (MPR)

Polynomial regression extends linear regression by including higher-order terms of
the input variables, allowing the model to capture nonlinear effects. For a single predictor, a
kth-order (k > 1) can be written as Equation 5 (Su; Zhong; Peng, 2021).

P = wo+ 01X + wyx? + w3x> + - + wpx® (5)

Where ¥ is the predicted value, x is the input variable, w, is the intercept term, and
W4, Wy, W3,... Wy are the regression coefficients for each polynomial term. When extended to
multiple predictors, the method becomes multivariate polynomial regression (MPR), which
incorporates both power terms and interaction terms (Wei et al., 2016). The kth-order MPR can

be expressed in Equation 6.

m m m
Y = Wy + Z (ollxll + Z Z (ollllelxlz + .-

ll=1 ll=1lz=l1 (6)

m m m
+ ZX Z cee Z (Dlllz...lkxllxlz“‘xlk

=1 L=l k=l
Where w,, 0,1, -, Wy,1,...1;, are the polynomial coefficients and x4, X1, -+, Xi
are the input variables. To determine the coefficients of the equation, the least squares method

is applied, based on the database.

3.3.2 Machine learning models

AABs exhibit complex behavior resulting from the strong interaction between
chemistry, reaction kinetics, and microstructural evolution, which can be difficult to represent
using linear models. Otherwise, machine learning methods are often considered nonlinear

because they employ nonlinear transformations, decision rules, or kernel mappings that enable
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the capture of complex interactions and non-additive relationships between variables, which
cannot be represented by classical linear models (Pilario er al., 2019; Woodman; Mangoni,

2023).

3.3.2.1 Decision Tree (DT)

As supervised learning algorithms, decision tree (DT) is employed in both
classification and regression contexts (Karbassi et al., 2014). The Figure 14 represent the

regression decision tree structure.

Figure 14 — Regression decision tree structure
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Source: elaborated by the author.

As showed, the DT is organized hierarchically, composed of internal nodes that
correspond to predictor attributes, branches that represent the decision rules, and terminal leaves
that provide the predicted outcomes (Ahmad et al., 2022). The construction process involves
recursively dividing the dataset into increasingly homogeneous subsets, usually guided by
impurity criteria such as the Gini index or information gain (Nazar et al., 2024). Data
partitioning is executed through decision nodes, whereas the final prediction is assigned at the
leaf nodes. However, due to the discontinuous structure of the model, small variations in the
input data can produce substantial fluctuations in the predictions, resulting in inefficiencies

(Syarif et al., 2012).

3.3.2.2 Random Forest (RF)

Random forest (RF) represents an ensemble-based extension of DTs designed to
improve generalization and reduce overfitting (Nazar ef al., 2024). The algorithm constructs
multiple trees, each trained on a bootstrap sample of the dataset, while random subsets of
features are evaluated at each split, and this dual randomization strategy decreases inter-tree

correlation and enhances predictive performance (Schonlau; Zou, 2020). Final outputs are
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obtained through aggregation, majority voting in classification tasks or averaging in regression
tasks, resulting in a model that is more accurate and robust than individual decision trees (Nazar

etal.,2024).

3.3.2.3 AdaBoost (AB)

Adaptive Boosting (AdaBoost) is a sequential ensemble technique that iteratively
combines multiple weak learners to form a stronger predictive model (Nazar et al., 2024). In
this study, AdaBoost was implemented using decision trees as base estimators. During training,
higher weights are assigned to samples that are mispredicted, forcing subsequent learners to
focus on these harder cases (Ahmad ef al., 2022). The outputs of all trees are then aggregated
through weighted averaging, with each learner’s contribution determined by its accuracy (Ding
et al., 2022). This reweighting strategy reduces bias, improves accuracy, and enhances

generalization compared to a single decision tree.

3.3.2.4 Bagging Regression (BR)

Bagging Regression (BR) is an ensemble method that constructs multiple bootstrap
samples from the dataset, trains a separate model on each subset, and aggregates their outputs
by averaging to produce the final prediction (Ahmad et al., 2022). This procedure reduces
variance, mitigates overfitting, and enhances model robustness (Sharafati; Asadollah; Al-
Ansari, 2021). In this study, BR was implemented with decision trees as base estimators,
allowing the ensemble to benefit from their high variance while improving stability through

aggregation.

3.3.2.5 Artificial Neural Networks (ANN)

Inspired by the structure and functioning of the human brain, Artificial Neural
Networks (ANNs) are computational models designed to recognize complex patterns. The
general structure is showed on Figure 15. They consist of interconnected artificial neurons
arranged in layers: an input layer, one or more hidden layers, and an output layer (Nazar ef al.,
2024). Each neuron aggregates several inputs into a weighted sum, incorporates a bias term,
and then applies a nonlinear activation (transfer) function to produce a single output (Lopez;

Lopez; Crossa, 2022).



Figure 15 — ANN structure
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The learning process in ANNSs is usually carried out through backpropagation,

where weights and biases are updated iteratively to minimize the discrepancy between predicted

and observed values (Nazar et al., 2024). This allows the network to learn linear as well as

nonlinear dependencies, making it a flexible tool for regression and classification problems.

The representational capacity of an ANN depends on its architecture: larger hidden layers or

deeper networks increase flexibility but also raise the risk of overfitting, requiring careful

parameter design and regularization (Mienye; Swart, 2024). In this research, the ANN was

implemented with a Multi-Layer Perceptron (MLPRegressor, scikit-learn). The rectified linear

unit (ReLLU) activation function and the Adam optimizer were employed.

3.3.3 Parameter’s evaluation

To evaluate the predictive performance of the models, three standard statistical

metrics were computed using the random test dataset (30% of the total data), as used by other

authors (Aydin ef al., 2023; Abdullah et al., 2024; Zhang et al., 2024). As decrypted by Abdullah
et al. (2024) the coefficient of determination (R?) (Equation 7), the mean absolute error (MAE)

(Equation 8) and the mean squared error (MSE) (Equation 9) are the main parameters. These

metrics were automatically calculated through Python using the scikit-learn library, ensuring

consistency across all evaluated algorithms.

2 (P —wi)?

R?=1- —
ﬁl(J’i —¥i)?

(7)
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Where y; and J; represent the experimental and predicted values, respectively, and
y;1s the mean of the experimental data.

3.3.4 Feature importance

Feature importance was evaluated using a permutation-based approach applied
consistently across all machine-learning models. First, the baseline predictive score (R?) was
obtained using the test dataset (Mandler; Weigand, 2024). Then, each input variable was
permuted independently while all others were kept unchanged, and the resulting drop in model

performance was interpreted as the importance of that feature (Biswas ef al., 2024).

For oxide variables (Al:Os, SiO2, CaO, Fe:0s), a compositionally-aware
permutation was used: after shuffling one oxide, the remaining oxides in the same sample were
rescaled proportionally to preserve the original total oxide content, as done by Borgonovo,
Plischke, Prieur (2024). Non-compositional parameters (S/N, N/B, W/B) were permuted
directly. Each permutation was repeated ten times, and the mean reduction in R? was used to

generate the final importance ranking.

3.3.5 Sensitivity analysis

Sensitivity analysis was performed using a representative “artificial binder,”
defined by the average values of the compressive strength dataset. The same binder
configuration was used for the setting time sensitivity analysis to maintain consistency between
outputs. For each input parameter, its value was independently varied from the minimum to the

maximum limits observed in the experimental database.

For the oxide variables, this variation was carried out under a compositional
constraint: when one oxide was perturbed, the remaining oxides were proportionally adjusted
so that the total oxide sum in each evaluation remained less than or equal to 100%. To avoid
model extrapolation, predictions exceeding the upper 90th percentile of the real dataset were
excluded from the analysis, corresponding to values above approximately 800 minutes for

setting time and 60 MPa for compressive strength.
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3.4 Results and discussion
3.4.1 |Initial and final setting time

3.4.1.1 Pearson correlation matrix

Figure 16 presents the Pearson correlation matrix, which quantifies the linear
association between variables through a coefficient ranging from -1 to 1, where values close to
+1 indicate strong linear relationships (positive or negative trend) and values near zero reflect

weak or no linear dependence (Yaseen et al., 2024; Han et al., 2023).

Figure 16 — Pearson correlation matrix for initial and final setting time
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Considering that the Pearson coefticient captures only linear relations, this analysis
was conducted as an initial exploratory step to provide a preliminary understanding of variable

interactions. Notably, the highest positive correlation reaching 0.50 (Al2O3) and the most
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negative correlation was -0.27 (CaO), indicating that the relationships between the chemical
composition and the setting behavior are generally weak from a linear standpoint. This is similar
to the findings of Nofalah ef al. (2023), who reported weak correlations in polynomial linear
prediction models. Even so, some meaningful tendencies can be observed. Al.Os, P2Os (0.32)
and S/N (0.27) display moderate positive correlations with the initial and final setting time,
suggesting as other authors, a delayed in hardening mechanism (Huang, Y. et al., 2024). In
contrast, CaO correlates negatively with both outputs (-0.27), reinforcing its role in accelerating
early-age reactions due to rapid C-A-S-H gel formation, process already knew in the literature
(Provis, 2018; Zhao et al., 2019; Toobpeng; Thavorniti; Jiemsirilers, 2024). SiO,, CI, K»O,

MnO, Fe;O3 and N/B show weak or negligible correlations within the studied range.

3.4.1.2 Model evaluation

Table 7 presents the evaluation metrics (R?, MAE, and MSE) obtained for all
models tested, as done by other authors in alkali-activated materials (Fang ef al., 2018; Nguyen
et al., 2020; Abuhussain ef al., 2024). Overall, the results reveal substantial variation in
predictive performance across algorithms. The MPR model exhibited the lowest accuracy (R?
= 0.04) and the highest error values (MAE = 164.95 min; MSE = 153,160.90 min?), indicating
that linear-polynomial relationships are insufficient to represent the complex behavior, that is
due to highly nonlinear chemical-microstructural interactions (Fang ef al., 2018; Nofalah et al.,
2023; Abuhussain et al., 2024). The first model parameters for the MPR are presented in
Appendix A. Since the model comprises 14 parameters and the polynomial model with degree
5 provided the best performance, it was not possible to include all data; therefore, only the first

parameters are presented as an example.

Table 7 — Evaluation parameters setting time

Model Parameters
R? MAE (min) MSE (min?)
Multivariate Polynomial Regression (MPL) 0.04 164.95 153160.90
Decision Tree (DT) 0.80 110.07 94181.59
Random Forest (RF) - 2nd higher R? 0.95 52.10 5928.17
AdaBoost (AB) 0.87 103.34 30617.52
Bagging Regression (BR) - 3rd higher R? 0.89 82.23 26649.38
Artificial Neural Networks (ANN) - 1st higher R? 0.96 47.27 17199.03

Source: elaborated by the author.

In contrast, the ANN delivered the best overall performance, achieving the highest
average R? (0.96) and the lowest MAE (47.27 min), this type of model are repeatedly shown to

outperform other ML predicting of alkali-activated materials behavior due to their ability to
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capture nonlinearities in multivariate data (Nofalah et al., 2023; Li, Q. et al., 2023; Dodo et al.,
2024). Ensemble methods also enhanced predictive capacity, particularly the RF, which
achieved the second-highest R? (0.95), followed by BR with the third-highest R? (0.89), such
models are generally effective in capturing the behavior and properties of AABs (Li, Q. et al.,
2023; Abuhussain et al., 2024; Khan ef al., 2025). Tree-based models showed notable
improvement compared to MPR, as illustrated by the DT with R* = 0.80, whereas AB presented
moderate accuracy (R? = 0.87) but higher prediction errors. Table 8 presents the ANN

hyperparameters that yielded the best performance.

The hyperparameters of the tree-based and ensemble models were tested, and the
best-performing configurations are reported below. The DT showed optimal performance with
a maximum tree depth of 13, no pruning (a = 0), 1 sample per leaf, and 2 samples for node
splitting. The BR performed best with 150 estimators, using all samples and features. The RF
achieved optimal performance with 100 trees, no depth restriction, 1 sample per leaf, and 2
samples for splitting. The AB yielded the best results with a linear loss function, a learning rate

of 0.1, and 100 estimators.

Table 8 — ANN hyperparameters initial and final setting time

Parameter Value
Activation function relu
Regularization parameter (alpha) 0.0001
Batch size auto
Adam first moment coefficient (1) 0.9
Adam second moment coefficient (2) 0.999
Early stopping criterion FALSE
Numerical stability constant (epsilon) 0.00000001
Hidden layer size(s) (500, 300, 150)
Learning rate schedule constant
Initial learning rate 0.001
Maximum number of function evaluations 15000
Maximum number of iterations 1000
Momentum coefficient 0.9
Maximum iterations without improvement 10
Nesterov’s momentum TRUE
Learning rate power parameter (power-t) 0.5
Data shuffling TRUE
Optimization solver adam
Convergence tolerance 0.0001
Validation data fraction 0.1

Source: elaborated by the author.

The inherent variability of the Vicat setting time measurement introduces
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uncertainty into the dataset, which may affect ML. model performance. Because setting time is
obtained from discrete measurements at non-fixed intervals, the results are subject to resolution
and interpolation errors, particularly near the setting points, potentially increasing prediction

dispersion and biasing model sensitivity to input parameters.

These trends are visually consistent with Figure 17, which shows the real versus
predicted values for initial and final setting times for each model ((a) MPR, (b) DT, (¢) RF, (d)
AB, (e) BR, (f) ANN).

Figure 17 — Real vs. predicted values obtained for the initial and final setting time prediction
(a) MPL (b) DT (c) RF (d) AB (e) BR (f) ANN
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In the best-performing models, particularly the ANN and RF, the scatter points align
closely with the 45° reference line, indicating strong agreement between measured and
predicted values. Conversely, the MPR plot shows significant dispersion and deviation from
the 45° line, visually reinforcing its low predictive accuracy. The intermediate performance of
the DT, AB and BR models is also evident in their respective panels, where the point clouds

partially align with but still deviate from the ideal trend.

3.4.1.3 Feature importance three higher R’

Figure 18 illustrates the normalized feature importance values obtained from the
ANN models. The variables were ranked according to their relative influence on the ANN
predictions, with importance values normalized from 0 to 1. The N/B ratio emerges as the most
dominant parameter (1.00), followed by SiO: (0.76), P20s (0.60), and K20 (0.58). Temperature
appears at the lower end of the ranking (0.07), indicating a comparatively minor effect within

the temperature range represented in the dataset.

Interestingly, some variables traditionally associated with strong control of setting
kinetics exhibit relatively modest importance in the ANN. For example, CaO typically
accelerates setting through the rapid formation of C-A-S-H or hybrid C-(N)-A-S-H phases
(Provis, 2018; Qin et al., 2022b; Xu, X. et al., 2024). Yet in this dataset CaO shows a moderate
importance rather than being among the dominant variables. A similar pattern is observed for
Al:0s, which plays a well-established structural role in gel formation but appears with low

importance (Gong; White, 2023).

Figure 18 — Feature importance ANN
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In contrast, the ANN attributes the highest sensitivity to the N/B ratio, which is
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consistent with the fact that alkalinity strongly affects the rate of precursor dissolution and early
gel formation (Mohamed, 2023; Siyal ef al., 2024). The high importance of SiO: and P20Os is
also chemically meaningful. Soluble silica enhances crosslinking and increases the rate of
polycondensation (Provis, 2018). While P2O:s is reported to modify gel connectivity and reaction
pathways, depending on concentration and precursor chemistry (Prochon; Piotrowski; Kepniak,

2024).

Figure 19a presents the normalized feature-importance values obtained from the RF
model for setting time prediction. The RF identifies SiO- as the most influential variable (1.00),
followed by CaO (0.33), Al:Os (0.22), and N/B (0.18). Moderate but lower importance is
observed for S/N (0.05), whereas all other parameters, including TiO-, Cl, Fe20s;, W/B, SOs,
P20s, K20, MnO, and temperature display negligible contributions (<0.01). Figure 19b shows
the results obtained from the BR model, which exhibit a very similar pattern, reflecting the
shared decision-tree architecture of both methods (Abdullah er al, 2024). BR likewise
emphasizes SiO: (1.00), Al.Os (0.80), and N/B (0.53) as dominant parameters, followed by a
secondary influence of CaO (0.18) and S/N (0.12), while all remaining variables contribute
minimally (<0.01). Despite architectural differences from the ANN, both tree-based models (RF
and BR) converge with the ANN in some points, these observations are in agreement with prior
studies (Hoayek et al., 2023; Ngo; Nguyen; Tran, 2023). All models consistently identify SiO:
and N/B as central predictors of setting time, reinforcing their relevance in dissolution, early
gel formation, and polycondensation kinetics (Siyal et al., 2024). Similarly, all three models

attribute very low importance to variables such as SOs, TiO2, Cl, MnO, and temperature.

Figure 19 — Feature importance (a) RF and (b) BR

SiO2 | 11.00 ]1.00
Ca0O 0.33 .. / 0.80
AI203 022 ‘
N/B 0.18 e e
SN [0.05 i
TiO2 ]0.01 RN TiO2 [0.01 .
Cl 10.01 Main oxides in Fe203 ]0.01 Main oxides in
Fe203 |0.00 alkali activation Cl ]0.01 alkali activation
W/B |0.00 SO3 ]0.01
SO3 10.00 W/B 10.00
P205 10.00 K20 10.00
K20 10.00 -m Temperature |0.00
Temperature |0.00 P205 [0.00
MnO |0.00 ) ) ) ) MnO |0.00 . . . .
a) 0.00 0.25 0.50 0.75 1.00 b) 0.00 0.25 0.50 0.75 1.00
Feature importance normalized Feature importance normalized

Source: elaborated by the author.

However, notable distinctions emerge when comparing tree-based models with the

ANN. While the ANN places N/B as the single most dominant parameter, RF and BR give
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higher prominence to SiO: and, to varying degrees, to CaO and Al:Os. From a chemistry
perspective, the prominence of this oxides in tree-based models is consistent with their known

roles in controlling setting kinetics, as discussed previously.

3.4.1.4 Sensitivity analysis three higher R’

As described in the methodology, the sensitivity analysis was performed using an
artificial binder, characterized by the average values of all input parameters. Each parameter
was then individually varied around this baseline to evaluate its specific influence on the setting
time. The detailed sensitivity analysis was performed for selected key parameters, as shown in
Figure 20: (a) Al2Os, (b) SiOz, (¢) CaO, and (d) P2Os. The first three oxides were chosen due to
their fundamental roles in alkali-activated binder chemistry. In addition, P-Os was included

because it exhibited high importance in the ANN feature importance analysis.

For AlOs (Figure 20a), all three models exhibit a similar qualitative trend, though
with different magnitudes. At low alumina contents, the predicted initial and final setting times
remain relatively stable, with minimal differences between models. RF and BR begin to show
a progressive increase after approximately 15 wt%, whereas the ANN displays this transition
only at higher contents, around 33 wt%. In all cases, elevated Al.Os concentrations produce a
sharp rise in setting time, indicating that higher alumina levels significantly retard the setting
process. This behavior is consistent with recent literature showing that elevated alumina
contents reduce precursor dissolution and lower early reaction heat, thereby delaying gel
nucleation and extending the setting time, particularly under low Si/Al ratios (Zhong et al.,
2022; Guo et al., 2025). Chemically, Marvila, Azevedo and Vieira (2021) explained that high-
alumina systems generate abundant AlO4™ tetrahedra, which slow condensation when the supply

of charge-balancing alkalis (Na*, K*) is insufficient.

Figure 20b presents the sensitivity analysis for SiO.. The ANN exhibits a steep
decrease in setting time as SiO: increases from low levels, followed by a prolonged region of
minimal values at intermediate contents and a gradual rise at higher SiO: percentages. In
contrast, the RF and BR models display smoother curves with moderate variability across the
entire SiO: range, maintaining higher predicted setting times than the ANN. At low silica
contents, all models predict delayed setting, with the ANN showing the strongest increase in
setting time. This trend is chemically expected: low silicate availability limits the supply of
polymerization nuclei, slowing the formation of Si-O-Al bonds and delaying network

percolation (Kaze et al., 2018; Lahlou Nouha ef al., 2019). At higher silica contents, all models
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eventually predict slower setting, though the ANN shows this reversal more clearly. This
behavior is also supported by experimental research. Silica-rich activators retard setting due to
diffusion barriers and over-polymerized silicate species (Dineshkumar; Umarani, 2020; Han,

Q.etal,2022).

Figure 20 — Sensitivity analysis precursor oxides (a) Al2Os (b) SiO2 (¢) CaO and (d) P>Os
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Source: elaborated by the author.

Figure 20c presents the sensitivity analysis for CaO. The ANN displays a distinct
nonlinear pattern with sharp variations at both low and high CaO levels. In that case, the RF
and BR models capture the most chemically coherent trend: setting time decreases as CaO
content increases, indicating faster hardening. Extensive evidence confirms that higher CaO
availability accelerates early-age reactions through rapid nucleation of C-A-S-H and hybrid C-
(N)-A-S-H gels, which form much more quickly than the aluminosilicate N-A-S-H networks
typical of low-calcium systems (Provis, 2018; Kusumastuti; Ariati; Atmaja, 2020; Siyal et al.,
2024).

The Figure 20d shows the variation of setting time with P-Os content. The ANN
model exhibits a distinct upward trend, with both initial and final setting times remaining low

up to approximately 0.5 wt% before increasing sharply beyond this point. In contrast, the RF
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and BR models display relatively stable behavior. Based on the available literature, no studies
have isolated the independent effect of P-Os content on the setting time of AABs. But are a few
relevant studies investigating phosphate-based geopolymers (Djobo; Stephan, 2021; Yankwa
Djobo; Nkwaju, 2021; Zribi; Baklouti, 2021). In these studies, the reaction behavior is governed
not by the bulk P-Os content but especially the P/Al molar ratio and the reaction mechanism.
For example, Zribi and Baklouti (2021) provided a detailed kinetic and mechanistic analysis of
metakaolin-phosphoric acid geopolymers, showing that the early-age evolution is controlled by
a sequence of dealumination, condensation, and polycondensation reactions, but they did not

perform any setting time analysis.

Figure 21 presents the sensitivity analysis for the main activator parameters (a) S/N,
(b) N/B and (¢) W/B. Their effects on AABs are among the most extensively explored in the
literature. The Figure 21a shows the influence of the S/N. The ANN model remains at very low
values up to approximately 1.5, after which both initial and final setting times increase sharply.
In contrast, the RF and BR models remain comparatively stable across the entire S/N range.
Across multiple studies, increasing the S/N consistently leads to longer setting times (Adewumi
etal.,2021; Kaze et al., 2021; Dai et al., 2022a; Sun et al., 2024). Sun et al. (2024) and Huo ef
al. (2024) reported delays in slag systems due to reduced pH and slower dissolution at high
silicate contents. Considering this consistent experimental evidence, the ANN model provides

the most chemically plausible prediction.

Figure 21 — Sensitivity analysis activator parameters (a) S/N (b) N/B and (c) W/B
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Figure 21b shows the influence of N/B. The ANN model stays very low until around
10%, then increases sharply, while the RF and BR models decrease, and then remain mostly
stable across the range. Multiple works have shown that increasing N/B accelerates dissolution
and geopolymerization, resulting in shorter setting times (Liu ef al., 2020; Naqi et al., 2022;
Tekle; Holschemacher, 2022). In this case, the RF and BR models align more closely with the

trends reported in the literature.

Figure 21¢ shows the influence of W/B. The ANN model remains at very low values
up to approximately 0.5, after which both initial and final setting times rise sharply. In contrast,
the RF and BR models stay mostly stable across the entire W/B range. Numerous studies show
that increasing W/B dilutes the activator and slows geopolymerization, leading to longer setting
times at higher water contents (Dai et al., 2020; Liu et al., 2020; Yusslee; Beskhyroun, 2023).
For the authors, this effect occurs because the excess free water reduces the effective contact

between the precursor and activator, substantially delaying the hardening process.

Figure 22 presents the sensitivity analysis for the remaining parameters: (a) SOz,
(b) Cl, (¢) K20, (d) TiO, (e) MnO, (f) Fe20s, and (g) Temperature. A detailed analysis for each
parameter is not discussed here; however, it can be observed that the RF and BR models produce
very similar and closely aligned trends, indicating consistent behavior. In contrast, the ANN
model deviates noticeably across all cases, showing distinct sensitivity patterns compared to

the ensemble-based models.
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Figure 22 — Sensitivity analysis others parameters (a) SOz (b) Cl (c) K20 (d) TiO2 (e) MnO (f)
Fe>O3 and (g) Temperature
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The sensitivity analysis reveals that the ANN model exhibits nonlinearity and
extrapolation sensitivity, particularly when predicting outside the range of experimental data.
For parameters such as P-Os content and N/B, the ANN shows a sharp and unrealistic increase
in setting time beyond approximately 0.55 wt% P-Os and 10% N/B, respectively. This behavior
likely stems from the scarcity of training data in those regions, causing the ANN to overfit and
generate unstable predictions outside the calibrated domain. In contrast, the RF and BR models
display much more stable and flattened trends beyond these limits. This difference can be
attributed to the tree-based decision structure of the RF model and the regularization inherent

in BR, both of which limit sensitivity to out-of-range inputs.

3.4.1.5 Laboratory validation

The laboratory validation using the dry-pit/fly ash AAB formulations provides a
robust external test of the models, since these mixtures were not included in the training or

testing dataset. The Figure 23 shows the results to initial setting time prediction. As expected,
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the RF and BR models show very similar predictions. For the oxide-based formulations, the
ANN reproduces the experimental trend at low setting times but deviates substantially when
the mixtures fall outside the chemical space represented in the training data, resulting in a high
global Mean Absolute Error (611 min). In contrast, RF and BR follow the general trend of the
laboratory results, although with different magnitudes, and yield lower, yet still considerable
errors (170, 166 min), especially when compared with their internal model errors calculated for

the original dataset (52.10 for RF, 82.23 for BR, and 47.27 for ANN).

Figure 23 — Laboratory and model-predicted dry-pit binders’ initial setting time results
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In resume, the ANN captures the nonlinear transitions observed experimentally, but
becomes unstable at extreme values of S/N (>1.25) and N/B (>10%), likely due to the limited
number of samples in these regions during training. Crucially, when these overfitted regions are
excluded, the ANN’s MAE drops dramatically from 611.2 min to 40.3 min, demonstrating that
the network is highly accurate within its valid chemical range (S/N < 1.25 and N/B < 10%).

The Figure 24 it presents the final setting time results, the same behavior observed
for initial setting. RF and BR remain stable, with moderate errors (193.0 and 198.7 min) and
trends that generally follow the laboratory data. The ANN, however, becomes highly unstable
outside its trained domain, generating very large errors (1234.4 min) and even negative final
setting time predictions at high S/N and N/B values due to severe extrapolation. When these
out-of-range points are removed, the ANN MAE drops sharply to 88.1 min, confirming that the
model performs well within its valid chemical limits but must not be applied beyond them (S/N

<1.25 and N/B < 10%).



Figure 24 — Laboratory and model-predicted dry-pit binders’ final setting time results
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3.4.2 Compressive Strength

3.4.2.1 Pearson correlation matrix

Figure 25 presents the Pearson correlation matrix for compressive strength. Overall,
the correlations between individual parameters and compressive strength are weak, indicating
limited linear predictability. The highest positive correlation is 0.16 for CaO, suggesting only a
slight tendency for strength to increase with higher calcium content. Conversely, the strongest
negative correlations are -0.24, for Al:Os and for N/B, implying a modest reduction in
compressive strength when alumina proportion or alkali dosage increases. These low

coefficients are consistent with previous findings that linear models perform poorly when

describing mechanical development in AABs (Shah et al., 2022).



70

Figure 25 — Pearson correlation matrix for initial compressive strengths
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Other parameters, including SiO2, P20s, SOs, Cl, K20, TiO2, MnO, Fe:0s, S/N, W/B
and temperature display near-zero correlations, further reinforcing that compressive strength
emerges from complex, nonlinear interactions among composition, activator chemistry, and
reaction Kinetics, rather than simple linear relations. Some authors demonstrated that linear
relationships were more evident when the model considered only the precursor category (e.g.,
fly ash, steel slag), without integrating chemical characterization into the inputs (Ahmed et al.,

2022; Ngo; Nguyen; Tran, 2023; Garcia et al., 2024).

3.4.2.2 Model evaluation

Table 9 presents the evaluation metrics (R% MAE, and MSE) for all models applied
to compressive strength prediction. Similar results were found when predicting setting time,

where the same group of models showed the highest accuracy. The results show clear
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differences in predictive capability across algorithms. The MPR model exhibits moderate
performance (R? = 0.74) but relatively high errors (MAE = 7.99 MPa; MSE = 104.48 MPa?).

Table 9 — Evaluation parameters compressive strength

Model Parameters

R? MAE (MPa) MSE (MPa?)
Multivariate Polynomial Regression (MPL) 0.74 7.99 104.48
Decision Tree (DT) 0.88 5.19 47.16
Random Forest (RF) - 2nd higher R? 0.90 4.97 35.49
AdaBoost (AB) 0.68 8.77 108.65
Bagging Regression (BR) - 3rd higher R? 0.89 4.95 36.60
Artificial Neural Networks (ANN) - 1st higher R? 0.96 3.12 16.52

Source: elaborated by the author.

The model parameters for the MPR are presented in Appendix B. Since the
polynomial model with degree 2 provided the best performance, all parameter data are included.
The ANN model achieved the best overall performance, reaching the highest R? (0.96) and the
lowest error values (MAE = 3.12 MPa; MSE = 16.52 MPa?). This aligns with earlier
compressive strength studies demonstrating that ANNs reliably surpass other methods in
capturing the complex multivariate behavior of AABs (Bai ef al., 2023; Ngo; Nguyen; Tran,
2023; Katatchambo; Bing6l, 2025). Table 10 presents the ANN hyperparameters that yielded

the best performance.

Table 10 — ANN hyperparameters compressive strength

Parameter Value
Activation function relu
Regularization parameter (alpha) 0.0001
Batch size auto
Adam first moment coefficient (B:1) 0.9
Adam second moment coefficient (B2) 0.999
Early stopping criterion FALSE
Numerical stability constant (epsilon) 0.00000001
Hidden layer size(s) (500, 300, 150)
Learning rate schedule constant
Initial learning rate 0.001
Maximum number of function evaluations 15000
Maximum number of iterations 1000
Momentum coefficient 0.9
Maximum iterations without improvement 10
Nesterov’s momentum TRUE
Learning rate power parameter (power-t) 0.5
Data shuffling TRUE
Optimization solver adam
Convergence tolerance 0.0001
Validation data fraction 0.1

Source: elaborated by the author.

Ensemble methods also performed strongly: RF obtained the second-highest R?
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(0.90) with MAE = 4.97 MPa, while BR achieved the third-highest R? (0.89) and MAE = 4.95
MPa. The hyperparameters of the tree-based and ensemble models were evaluated, and the best-
performing configurations are reported below. The DT achieved optimal performance with a
maximum tree depth of 13, no cost-complexity pruning (a = 0), a minimum of 2 samples per
leaf, and 2 samples required for node splitting. The RF performed best with 100 trees, a
minimum of 1 sample per leaf, and 2 samples for node splitting, with no restriction on maximum
tree depth. The AB yielded the best results using a learning rate of 1 and 100 estimators. Finally,
the BR achieved optimal performance with 200 estimators, using all samples and all features
for training. Overall, the performance hierarchy for compressive strength mirrors the results
obtained for setting time, with ANN > RF > BR > DT > MPR > AB, confirming the consistent

superiority of ANN and ensemble models across different AAB behaviors.

A similar pattern can be observed in Figure 26, which compares the experimental
compressive strength to the predicted values for each model ((a) MPR, (b) DT, (c¢) RF, (d) AB,
(e) BR, (f) ANN). The highest-performing algorithms, most notably ANN and RF, display point

distributions that lie very close to the 45° reference line.

Figure 26 — Real vs. predicted values obtained for the compressive strength (a) MPL (b) DT (c)
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In contrast, the MPR panel reveals a broad scatter and clear divergence from the
ideal line, highlighting its limited ability to capture the nonlinear behavior of AAB strength
development (and with negative values in compressive strength). The DT, AB, and BR models
demonstrate intermediate performance: although their point clusters generally follow the
correct trend, the spread around the bisector line remains more pronounced, indicating reduced

predictive precision relative to ANN and RF.

3.4.2.3 Feature importance three higher R’

Figure 27 presents the normalized feature importance values obtained from the
ANN model for compressive strength prediction. Chloride (Cl) is identified as the most
influential parameter (1.00), followed by CaO (0.82), Fe20s (0.59), and TiO:2 (0.56). A second
group of variables with intermediate influence includes temperature (0.29), N/B (0.25), SiO2
(0.24), W/B (0.23), and Al20; (0.20). The parameters P-0Os, SOs, K20, and MnO show low
importance (< 0.12). Several interesting patterns emerge from these results. CaO appears as the
second most influential feature, which is consistent with its central role in promoting rapid
reaction kinetics and forming calcium-rich binding phases that strongly enhance compressive
strength. In contrast, SiO: and Al.Os, typically considered the primary structural oxides in
geopolymer gel formation, appear with only moderate importance in this dataset. This suggests
that their isolated effect on strength becomes less dominant when other strong contributors such

as Ca, Fe, and Ti are present.

An unexpected outcome of the ANN feature importance analysis is the extremely
high influence assigned to chloride (Cl). Although Cl is not usually considered a primary
precursor component in AABs, but recent studies show that chloride can modify strength

development, the effect depends on the content (Siddique; Jang, 2020; Zulkarnain ef al., 2021;
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Yang et al., 2022; Shen et al., 2023). However, the elevated importance observed here may be
influenced by the highly skewed and low-variability distribution of Cl in the dataset (Figure
10), as suggested by its relative frequency, which could bias feature-importance metrics and
potentially amplify its apparent relevance (Nascimento; Cavalcanti; Costa-Abreu, 2025). A
more comprehensive assessment of the influence of chloride will be addressed in the sensitivity

analysis presented in the next section.

Figure 27 — Feature importance to compressive strength ANN model
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The prominence of Fe:Os in the ANN is less unexpected. Evidence from iron-rich
precursors shows that high Fe:0s levels tend to shift the chemistry away from highly
polymerized aluminosilicate networks. Nkwaju et al. (2023), working with lateritic soils
containing ~45% Fe20s, reported that such systems develop lower compressive strength
because iron promotes the formation of less cohesive Fe-silicate phases. Similar observations
appear in studies using industrial residues rich in iron, reinforcing the notion that iron does not
participate as effectively as Al in building a robust three-dimensional network (Mishra et al.,

2022; Polydorou et al., 2022; Nkwaju ef al., 2023).

Figure 28(a—b) shows that the RF and BR models produced very similar importance
rankings. In both models, CaO emerges as the dominant variable, followed by Fe20s and SiO..
These three parameters clearly form the core chemical indicators for strength prediction in the
tree-based approaches. Secondary contributors such as S/N, Al:Os, and TiO: present moderate
importance values. Unlike the ANN model, which placed Cl among the most influential
variables, both RF and BR rank chloride at the very bottom of the feature hierarchy, together
with K20 and P2Os. Overall, RF and BR display a consistent and chemically intuitive pattern,

emphasizing oxide-driven reactivity based on CaO, SiO;, Al,03, and also the Fe;0Os.
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Figure 28 — Feature importance to compressive strength models (a) RF and (b) BR
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3.4.2.4 Sensitivity analysis three higher R’

Figure 29 shows the sensitivity analysis for the precursor parameters (a) Al2Os, (b)
Si02, (¢) Ca0, and (d) Cl. The first three oxides were selected because they are consistently
reported in the literature as the main components in AABs. Chloride was included due to its
unexpectedly high importance in the ANN feature importance. The Al:Os; (Figure 29a)
sensitivity curve shows that the ANN model exhibits a marked variation, reaching its lowest
predicted strength near 15 wt% before increasing steadily at higher contents. Meanwhile, the
RF and BR models maintain nearly constant predictions. The effect of Al-.Os on compressive
strength is rarely evaluated in isolation, instead, its influence is primarily interpreted through
Si02/Al20s5 (Si/Al) ratio trends (Ali; Al-Attar; Abbas, 2022; Dinh et al., 2024). Experimental
studies consistently show that optimal mechanical performance occurs at balanced Si/Al ratios,
where moderate Al availability enhances cross-linking and promotes the formation of well-
connected aluminosilicate gels (Wu et al., 2020; Guo et al., 2025; Zhang, G. et al., 2025). Thus,

the effect is non-monotonic, which is more consistent with the ANN model.

Figure 29b shows the effect of SiO: content on compressive strength. RF and BR
predict nearly constant and higher strength values, indicating a weak influence of SiO, while
the ANN curve remains lower and shows only slight nonlinearity. Similarly, to Al.Os, the effect
of SiO: is governed by chemical interactions that often produce non-monotonic trends.
Consequently, the ANN demonstrates better sensitivity to this behavior, evidenced by the

maxima and minima captured in its output.
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Figure 29 — Sensitivity analysis to precursors parameters (a) Al2Os (b) SiO2 (¢) CaO and (d) Cl
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Figure 29c¢ shows that increasing CaO generally raises compressive strength. RF
and BR capture a sharp strength increase around 25-35 wt% and predict the highest values,
while the ANN shows a smoother but consistent upward trend. Overall, the literature
demonstrates a nonlinear effect of CaO on compressive strength. Moderate CaO enhances
reaction kinetics and promotes the formation of dense hybrid C-A-S-H/N-A-S-H gels, leading
to higher strength, however, when CaO content exceeds the optimal range, the aluminosilicate
network is disrupted due to rapid precipitation, and increased porosity, resulting in reduced

strength (Gorhan; Danishyar, 2022; Zhan et al., 2022; Zerzouri et al., 2024).

Figure 29d shows the effect of Cl content on compressive strength. RF and BR
predict almost no variation across the range, while the ANN model displays a clear decrease in
strength as chloride increases. Shen et al. (2023) demonstrated that small NaCl additions (~2%)
can increase early compressive strength of slag-based geopolymers by nearly 67%, attributing
this to accelerated condensation of aluminosilicate species and the formation of zeolitic
structures. Similar results was found by other authors (Siddique; Jang, 2020; Yang et al., 2022).
As a counterpoint, Zulkarnain ef al., (2021) showed that the effect of chloride is highly dose-

dependent, beneficial at low contents but detrimental at higher levels. Despite these findings, it



77

is important to note that almost all available studies evaluate chloride in the form of NaCl or
CaClz, or through chloride-rich solutions such as seawater. Consequently, the isolated
contribution of the chloride ion itself is difficult to determine, since the accompanying cation
(Na* or Ca?") also alters dissolution behavior, ionic balance, and gel chemistry. The apparent
importance of chloride in the ANN model may stem from its uneven distribution, as about 90%
of the data points are below 0.04%. Such imbalance can distort the model’s assessment of its

global relevance. If consider that the literature indicates an optimal chloride content, none of

the models capture this variation.

Figure 30 shows the sensitivity analysis of the activator parameter (a) S/N (b) N/B

and (c) W/B. Figure 30a show a nonlinear relationship between S/N and compressive strength.

Figure 30 — Sensitivity analysis to activators parameters (a) S/N (b) N/B and (¢c) W/B
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Many studies identify an optimal S/N range, where soluble silica promotes stronger

and denser C-A-S-H/N-A-S-H gels (Gado ef al., 2020; Ukritnukun ef al., 2020; Adewumi ef
al., 2021; Gao et al., 2021). However, this optimum is not universal, it varies with other

formulation parameters, especially precursor type. The ANN, RF, and BR curves all reflect this

general nonlinear behavior.
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Figure 30b presents the N/B results. As with S/N, the literature indicates that N/B
does not follow a universal trend but instead shows an optimum that varies with precursor type
(Leong et al., 2016; Xu et al., 2023; Wang, Xiaoping et al., 2024). For this reason, the ANN is
better able to capture the associated nonlinear response. Figure 30c shows the effect of the W/B
on compressive strength. The RF and BR models predict almost no variation in strength. In
contrast, the ANN model shows a strong negative trend. The negative trend is consistent with
the material behavior, where higher W/B ratios reduce compressive strength because excess
water increases porosity in the hardened matrix (Al-Husseinawi et al., 2022; Teo et al., 2022;
Pham et al., 2023). Based on this, the ANN model looks more consistent with the expected

behavior.

Figure 31 presents the sensitivity analysis for the remaining parameters: (a) P2Os,
(b) SOs, (c) K20, (d) TiO2, (¢) MnO, (f) Fez0s, and (g) temperature. Although each case is not
discussed in detail here, it is evident that the RF and BR curves remain very close to each other
and generally stable across the evaluated ranges, indicating low sensitivity in these models. In
contrast, the ANN model shows much greater variability, displaying fluctuations and distinct
response patterns for each parameter, which suggests a higher sensitivity to these inputs
compared with the ensemble-based models.

Figure 31 — Sensitivity analysis to others parameters (a) P205 (b) SO3 (c) K20 (d) TiO2 (e)
MnO (f) Fe203 and (g) Temperature
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3.4.2.5 Laboratory validation

Figure 32 presents the laboratory compressive strength results for the dry-pit
binders alongside the predictions generated by the ANN, RF, and BR models. The three models
exhibit similar predictive patterns, and in several regions, they follow the general tendency of
the experimental curve, although not in numerical terms. Among them, the ANN model shows
the lowest error (MAE = 21.2 MPa), followed by RF (23.9 MPa) and BR (26.2 MPa); however,
these error values are still considerably high, indicating that the models did not perform well in

predicting the compressive strength for this specific dataset.

Figure 32 — Dry-pit binders compressive strength results in laboratory and model predicted
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Given that the dry-pit binders exhibited low compressive strength and

unsatisfactory predictive performance, additional experimental data from the literature were
incorporated to further assess the behavior of the models under alternative formulation
conditions. For this purpose, the dataset reported by Liu et al. (2020) was selected, as it includes
AABs based on landfilled fly ash (LFA) and ground-granulated blast-furnace slag (GGBS) with

higher strength levels and parameters variability. Figure 33 presents the laboratory compressive
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strength results from this reference dataset together with the predictions obtained from the
ANN, RF, and BR models. In this case, the models reproduce the experimental trends more
closely, with the ANN achieving the lowest prediction error (MAE = 5.8 MPa), followed by RF
(24.4 MPa) and BR (26.0 MPa).

Figure 33 — Liu et al. (2020) compressive strength results and model predicted
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A similar procedure was applied to an additional reference dataset reported by
Sachet et al. (2020), which includes AABs with varying proportions of ground granulated blast-
furnace slag (GGBFS). Figure 34 presents the corresponding laboratory results alongside the
predictions models. In this dataset, the ANN again demonstrates the best predictive
performance (MAE = 11.4 MPa), capturing the increasing trend in compressive strength as the
GGBFS content rises. In contrast, the RF and BR models exhibit substantially higher errors
(45.6 MPa and 45.2 MPa, respectively) and fail to reproduce the experimental strength

evolution, remaining almost constant over most of the range.

The difference in predictive performance between the dry-pit binders and the
literature datasets (Liu ef al., 2020; Sachet et al., 2020) can be hypothesized to arise from
material characteristics not represented in the oxide-based inputs used in the models. The XRD
results suggest that the dry-pit precursor may contain a higher proportion of crystalline phases
than the predominantly amorphous fly ash typically present in the database, which could imply
lower reactivity and reduced dissolution of Si and Al species. Likewise, the much coarser
particle-size distribution observed for the dry-pit material may slow dissolution kinetics and

limit gel development. The very short setting times of the dry-pit binders could also hinder the
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formation of a continuous reaction network due to rapid CaO dissolution and premature

hardening.

Figure 34 — Sachet et al. (2020) binders compressive strength results and model predicted
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These characteristics, crystallinity, particle size, are not included as input variables
because such characterizations are rarely reported across the studies that compose the database,
adding them would drastically reduce the usable dataset and compromise the model’s statistical
robustness. In contrast, the reference datasets from Liu et al. (2020) and Sachet ef al. (2020)
rely on precursors such as GGBS/GGBFS, which are well known for their high amorphous
content and reactivity, making them more compatible with the chemical and physical domain
represented in the original data. These hypotheses may help explain why the models perform
well for these systems but poorly for the dry-pit binders, however, they require further
experimental confirmation. Overall, the results indicate that the model can be reliably applied,
but only under formulation conditions that fall within the reactive and compositional domain

represented by the training dataset.

3.1 Section conclusions

This study investigated the use of ML models to predict the fresh state (initial and
final setting time, 139 data) and hardened state (compressive strength, 427 data) properties of
AABs based on their chemical composition and mix design parameters. Five ML algorithms

were used: DT, RF, AB, BR and ANN, along with MPR as linear statistical model.

The main initial and final setting time prediction conclusion are summarized as
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follows:

e ANN, RF, and BR achieved the best predictive performances (R?=0.96, 0.95, and 0.89,
respectively), while MPR showed very low accuracy (R* = 0.04), suggesting the

strongly nonlinear nature of the setting time behavior;

e The ANN identifies N/B, SiO, P20s, and K20 as the most influential variables, while
RF and BR consistently highlight SiO2, Al2Os, N/B, and CaO, a ranking that aligns more

closely with expected chemical behavior in AABs;

e Comparison with literature shows that no model consistently matches with all expected
trends. Agreement varies by parameter, with ANN sometimes better capturing nonlinear

effects and RF/BR aligning more closely in other cases;

e Laboratory validation showed the ANN performs well only within S/N < 1.25 and N/B
<10% (MAE =40.3 and 88.1 min), outside this domain, errors rise sharply (up to 611.2
and 1243.4 min);

¢ Expanding the predictive capacity of the models across wider parameter ranges depends

on increasing the dataset size, since the current 139 samples are not enough.

The main conclusions regarding the compressive strength predictions are

summarized as follows:

e ANN, RF, and BR showed the highest predictive accuracy for compressive strength (R?
=0.96, 0.90, and 0.89), while AB performed the worst;

e The ANN highlights Cl, CaO, Fe:0s, and TiO: as most influential, while RF and BR
consistently emphasize CaO, Fe:20s, SiO:, and S/N, which better reflect expected AABs

chemical behavior;

e Although the ANN ranked Cl as the most important feature, its isolated effect is rarely
studied, and the skewed, low-variability distribution of Cl may bias feature importance

estimates;

e The ANN captured expected nonlinear behaviors, such as optimum points for N/B and
S/N, showing greater sensitivity, while RF and BR remained more stable and less

responsive to these variations;

e The laboratory validation for the dry-pit binders showed poor agreement with the model

predictions, probably because their crystallinity and larger particle size are not
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considered in the model;

e Laboratory validation with external datasets, Liu ez al. (2020) and Sachet et al. (2020),
showed better agreement, with good results only for the ANN (MAE = 5.8 MPa and
11.4 MPa, respectively), indicating that the model performs better when the materials

exhibit good alkali-activation behavior.
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4 DESIGN, DEVELOPMENT, AND VALIDATION OF AN IMPACT RESONANCE
APPARATUS FOR STUDYING THE HARDENING PROCESS OF ALKALI-
ACTIVATED BINDERS

4.1 Introduction

Alkali-activated binders (AABs) have emerged as an alternative to Portland cement
and are produced by activating aluminosilicate precursors, such as fly ash, steel slag, and
industrial residues with alkaline solutions like sodium hydroxide (NaOH) and sodium silicate
(NazSi0s) (Provis, 2018; Xie et al., 2020; Siyal et al., 2024). Their hardening behavior varies
with precursor chemistry and activator composition, forming N-A-S-H and/or C-A-S-H gels
through reaction mechanisms that remain only partially understood (Siyal et al., 2024). Because
these early transformations strongly affect the final mechanical performance, improved
monitoring tools are needed (Park er al, 2024). Conventional methods for hardening
assessment are often limited when applied to AABs, especially given their complex kinetics

and rheology (Tekle; Hertwig; Holschemacher, 2021).

Between these techniques, the Vicat test, an empirical method that determines initial
and final setting times based on needle penetration, is useful for comparing binders but provides
only two discrete points and does not capture the continuous evolution of hardening (Naqi et
al., 2022). Isothermal calorimetry and Fourier Transform Infrared Spectroscopy (FTIR), while
capable of providing information on reaction progress, involve high experimental costs and
specialized equipment, limiting their application (Kaze et al., 2020; Dai et al., 2021; Hoyos-
Montilla et al., 2022). Given these constraints, there is a clear need for more accessible and
cost-effective techniques capable of capturing the physical evolution of the material and
enabling correlation with microstructural and chemical development. In this context,
rheological measurements have been explored, and some studies attempt to relate setting and
hardening behavior to the evolution of viscoelastic properties measured with Dynamic Shear
Rheometer (DSR) (Alrefaei ef al., 2022; Dai et al., 2022b; Egnaczyk; Quinn; Wagner, 2025).
In parallel, non-destructive techniques (NDT) are increasingly being applied in an effort to

complement these approaches.

Ultrasonic waves propagation is NDT, and has been used to monitor the early-age
behavior of binders. Some advanced approaches, like the multi-frequency method proposed by
Park et al. (2024), improved the method sensitivity by using 34, 100, and 400 kHz to capture

the material evolution, supported by SEM and FTIR analyses. However, ultrasound still
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presents limitations in the fresh state: the high frequencies used lead to predominantly elastic
responses, reducing sensitivity to viscous effects, mainly reflects bulk modulus changes (Ryu
et al., 2020). Given these limitations, the impact resonance test (IRT) emerges as a promising

alternative.

Building on this need for alternative approaches, the IRT shows potential for
application in the fresh state of AABs, particularly because of its proven effectiveness in
characterizing viscoelastic materials (such bituminous materials). The IRT is NDT in which a
specimen (usually cylindrical) is placed on soft supports, lightly impacted with a hammer, and
its vibrational response is recorded using an accelerometer (Boz et al., 2017; Barbosa et al.,
2024; Sadeghi et al., 2024). The frequency content of this response, obtained via fast Fourier
transform, allows identification of resonant frequencies related to stiffness (Carret, 2018;
Bezerraet al., 2023). IRT provides rapid, low-cost mechanical characterization without the need
for large testing machines (Barbosa et al., 2024). Its broad excitation frequency range (typically
0-50 kHz) makes it particularly suitable for capturing viscoelastic effects in materials with
substantial damping (Carret; Babadopulos, 2025; Herozi ef al., 2025). Although still unexplored
in the fresh state binders, it is hypothesized that IRT may be advantageous because it provides
access to the frequency domain at each measurement interval, potentially enabling continuous
tracking of stiffness evolution throughout the hardening process. This remains to be
experimentally demonstrated, and the use of IRT in the fresh state requires the development of
a specific test apparatus, including an appropriate geometry capable of containing the binder

during early-age measurements.

In this context, the objective of this study is to design, develop, and validate an
impact resonance test apparatus to monitoring the hardening process of AABs in the fresh state.
The test geometries used throughout the development are manufactured by 3D printing in
polylactic acid (PLA), allowing precise dimensional control and rapid prototyping. The
methodology follows four stages: first, a reference PLA cylindrical specimen is fabricated and
tested using impact resonance, together with 2D finite element method (FEM) simulations, to
calibrate the viscoelastic 2S2P1D model; second, multiple geometries are evaluated through
FEM to assess how dimensional variations influence the frequency response and to pre-select
designs (the lower number of resonant peaks is the criteria); third, these geometries are 3D-
printed and experimentally tested, and the selection of the optimal geometry is guided by two
criteria: (i) a lower number of detectable resonant peaks in the frequency domain and (ii) high

signal coherence (~1), ensuring a clear and stable dynamic response and the overall objective
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of minimizing geometric influence on the measured response after in the binder. Finally, the
chosen geometry is used as a container for fresh AABs so that the vibrational signature
predominantly reflects the hardening behavior of the binder system. This work is expected to
provide new experimental insight into the hardening mechanisms of AABs and support the

development of more robust, physics-based interpretations of their hardening process.

4.2 Materials
4.2.1 Geometry material

4.2.1.1 Polylactic acid (PLA)

To adapt the test to the fresh state, it was necessary to design and manufacture a
specific geometry capable of containing the binder during the resonance measurements. The
geometry was produced using a 3D printer (Figure 35a). Several different geometries were
produced in polylactic acid (PLA) filament (Figure 35b) to evaluate the influence of shape on

wave propagation.

Figure 35 — 3D printing (a) 3D printer K1 Max and (b) PLA roll

Source: elaborated by the author.

PLA was selected because it is one of the most widely studied and documented
thermoplastic materials in the literature (Matos et al., 2019; Adibeig; Vakili-Tahami; Saeimi-
Sadigh, 2023; Song et al., 2024). The printing parameters adopted for manufacturing the PLA
geometries are presented in Table 11. These values were provided by the filament manufacturer
and were followed to ensure the reliability of the printing process and the dimensional precision

of the geometries.

The detailed 3D printing parameters employed in the production of the PLA
geometries are presented in Table 12. These settings, based on the manufacturer’s

recommendations and the printer’s default calibration, ensured consistent printing quality and
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dimensional stability across all specimens. The use of standardized print speeds for external

and internal perimeters (60 mm/s) further contributed to uniform layer deposition.

Table 11 — Polylactic Acid (PLA) properties

Parameter Value
Printing Temperature 215 °C (range: 190 °C — 220 °C)
Bed Temperature 60 °C
Retraction Distance Direct Extruder: 4 mm » Bowden Extruder: 9 mm
Retraction Speed ~45 mm/s
Fan Speed 100% (225 PWM)
Diameter 1.75 mm
Filament Length (per 1 kg) 330 m

Source: provided by the manufacturer.

Table 12 — 3D printing parameters

Parameter Setting Parameter Setting
Filament Type PLA External perimeter speed 60 mm/s
Filament Diameter 1.75 mm Internal perimeter speed 60 mm/s
Heat Deflection Temperature 60 °C First-layer travel speed 100 %
(HDT)
Idle Temperature 0°C Infill Density 99 %
Recommended Nozzle 190240 °C Infill Pattern Rectilinear
Temperature
Chamber Temperature 0°C Infill Anchor Length 400 %
Automatic Temperature . .
Adjustment Disabled Small Gap Filtering 0 mm
Build-Plate Type PEI smooth / High-temp bed  Infill/Perimeter Overlap 15%
Bed Temperature (First Layer) 60 °C Infill Density 99 %
Bed Temperature (Other Layers) 60 °C Infill Pattern Rectilinear

Source: provided by the manufacturer.

4.2.1.2 Polyurethane

In addition to the PLA geometry, polyurethane was employed in specific
configurations to attenuate unwanted vibrations and improve the accuracy of the resonance
measurements. Widely used in civil construction for dilation joints in structures, the material
provided the necessary damping support for the tests (Yuan; Wei; Ni, 2021; Babkina et al.,
2023; Chen et al., 2024). The main properties of the polyurethane used in this study are
summarized in Table 13. With a density of (1.53 +£0.02) g/cm? and a hardness of 25-30 Shore
A, the material combined flexibility and resilience, while its high elongation at break (>600%)

and broad temperature resistance (-20 °C to 120 °C) guaranteed stable performance during test.

Table 13 — Polyurethane properties

Property Value
Density (Pycnometer) (1.53 £0.02) g/cm?
Skin Formation Time ~35 minutes (25°C and 50% RH)
Curing Time 3mm/24h (25°C and 50% RH)

Flow Time (NBR 9278, 2019) 50-70 seconds (20 g - 1.5 kgf/cm? - 2.8 mm?)
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Hardness (ASTM D2240, 2015) 25-30 Shore A

Elongation at Break (ASTM D412, 2016) >600%
Tensile Strength 100% deformation (ASTM D412, 2016) ~0.46 N/mm?
Tensile Strength at Break (ASTM D412) ~0.90 N/mm?
Working Temperature 10°C to 40°C

Source: provided by the manufacturer.

4.2.2 Alkali-activated binder tested

Two aluminosilicate precursors were employed in the AAB composition at
50%/50% mass proportion: ground granulated blast-furnace slag (GGBS) and fly ash (FA). The
both chemical compositions determined by X-ray fluorescence (XRF), is presented in Table 14.
The GGBS exhibited a high CaO content (55.84%), with moderate Isevels of SiO: (27.91%)
and Al2Os (7.42%). Minor oxides such as TiO2, MnO, and Fe20s were also detected in smaller
proportions. The FA precursor showed a high SiO: content (58.15%), accompanied by a
substantial amount of Al2Os (19.61%), reflecting its predominantly aluminosilicate nature.
Smaller quantities of CaO (4.60%), Fe20s (9.33%), and K20 (2.60%) were present, along with
minor levels of TiO2, MgO, MnO, and SOs. A measurable amount of P-Os (1.87%) was also
detected. The density of the GGBS was 2.90 g/cm?, while the fly ash presented a density of 2.21

g/cm?®. The material binder was freshly prepared during the author’s internship in France.

Table 14 — Precursor oxides composition
Precursor ALOs3 Si02  P20s SOs MgO K20 CaO0 TiO: MnO Fe20s
GGBS 7.42 2791 0.72 1.52 2.96 0.58 55.84 1.53 0.58 0.78

FA 19.61 58.15 1.87 0.58 0.67 2.60 4.60 193 0.09 9.33
Source: elaborated by the author.

Figure 36 illustrates the cumulative particle size distributions of the FA and GGBS
precursors, measured using a laser diffraction particle size analyzer (SALD-2300, Shimadzu).
The technique is based on laser light scattering, allowing the determination of particle size
distribution over a wide range and providing a reliable comparison of the granulometric
characteristics of both precursors. FA presents larger characteristic diameters (D10 = 2.5 um,
D50 = 16.6 um, D90 = 72.2 um), indicating a generally coarser profile. In contrast, GGBS
shows finer sizes (D10 = 1.6 um, D50 = 12.6 pm, D90 = 33.0 um), reflecting a narrower
distribution. These differences highlight the greater overall particle size of FA compared to
GGBS.
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Figure 36 — Precursor’s particle size
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Figure 37 presents the FTIR spectra of the raw precursors, highlighting the distinct
structural environments of FA and GGBS. The most notable difference appears in the main Si-
O-T (T = Al or Si) asymmetric stretching region: FA shows a band at 1086 cm™, characteristic
of a more polymerized Si-O network, whereas GGBS displays this vibration at a lower
wavenumber (974 cm™), indicating a more depolymerized silicate structure (Bondar; Vinai,
2022). FA presents Si-O-Si vibrations at 795 ecm™ and Si-O/Al-O at 465 cm™ (Zhou et al.,
2023), whereas GGBS displays a broad 500-700 cm™ band due to overlapping Si-O/Al-O
bending modes (Bondar; Vinai, 2022).

Figure 37 — Precursor’s FTIR
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A carbonate (-CO32) band at 1479 cm™ (Zhang; Copuroglu, 2022) is observed only

in GGBS, indicating partial surface carbonation associated with its higher CaO content. These
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spectral trends are consistent with XRF data (Table 12), confirming the higher SiO. and Al>Os
content of FA and the CaO-rich composition of GGBS

The mix binder proportion is descripted on the Table 15. The alkaline activator

consisted of sodium hydroxide (NaOH) and sodium silicate (Na2SiOs) solutions.

Table 15 — Mix proportion
GGBS-FA (%) GGBS (g/L) FA (g/L) NazSiOs solution (g/L) NaOH solution (g/L)

50-50 562.90 562.90 137.11 558.81
Source: elaborated by the author.

The NaOH solution was prepared at a concentration of 10 mol/L, using analytical-
grade pellets with 98% purity. The sodium silicate solution had a density of 1.493 g/cm?® and
contained 27.86% SiO:, 11.14% Na:0, and 61.00% H:0. The silica modulus (S/N) was fixed
at 0.25, the alkali content (N/B) at 14%, and the water-to-binder ratio (W/B) at 0.40.

4.3 Methods
4.3.1 Classical binder tests in fresh state

Before advancing to the impact resonance test, a set of classical characterization
methods is first performed to establish the fundamental behavior of the binder system. These
preliminary tests include setting time measurements and time-sweep rheology, which together
provide essential information in early-age behavior, and viscoelastic evolution. These
conventional tests form the baseline against which the dynamic response obtained from IRT

can later be interpreted.

4.3.1.1 Setting time and time sweep rheology

The initial and final setting time was measured using the Vicat apparatus, in
accordance to NBR 16607, (2018). The setting time is determined through an empirical
penetration test. In practice, these values represent, in the field, the period of workability of the
material. The initial setting time corresponds to the interval between the contact of the cement
(precursors in AABs) with water (alkalinity solutions in AABs) and the moment when the
needle of the apparatus, inserted into the binder, remains at a distance of 6 £ 2 mm from the
base plate, while the final setting time is defined as the interval until the needle penetrates no
deeper than 0.5 mm. The standard indicates that Vicat needle penetration measurements are
performed at non-fixed, suitably spaced time intervals. Intervals of about 10 minutes are

typically used for the initial setting time and may be extended up to 30 minutes for the final
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setting time, with shorter intervals adopted near the end of the test to improve accuracy.

A time sweep rheological test was conducted to characterize the time-dependent
behavior of the binder and to provide fundamental parameters (G’, G” and §) for comparison
with impact resonance measurements and COMSOL simulations. Tests were carried out on a
dynamic shear rheometer (Advanced Rheometer AR2000) using a plate-plate geometry (40 mm
diameter, 1 mm gap). The evolution of viscoelastic properties was monitored through the
storage modulus (G'), loss modulus (G”), and phase angle (3), under constant frequency and
strain conditions, as showed in Figure 38. For this purpose, a frequency of 10 Hz was selected,
and the strain was determined by performing a strain sweep to identify the linear viscoelastic
region. The total duration of the test was set to 300 min (5 h), in accordance with the
approximate final setting time (~200 min) determined by the Vicat test for the investigated

binders. The test will be conducted at 10 Hz and 25 °C.

Figure 38 — Time sweep signals
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4.3.1.2 Isothermal calorimetry

Isothermal calorimetry is a thermal analysis method that quantifies the heat flow
released or absorbed by a material maintained at constant temperature (Egnaczyk; Quinn;
Wagner, 2025). In AABs, it is a powerful tool to investigate hardening kinetics, since the
dissolution of precursors and subsequent gel formation are exothermic processes (Caron; Patel;
Dehn, 2022; Sun et al., 2022; Cui et al., 2024). In this study, measurements were conducted
under controlled temperature conditions (25 °C) using an eight-channel TAM Air heat-
conduction calorimeter (TA Instruments). Immediately after mixing, the binder was transferred

into sealed 20 mL ampoules, and heat evolution was monitored continuously for 7 days. The
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raw heat-flow data (mW/kg of binder) were integrated over time to obtain the cumulative heat
release (J/kg of binder). These calorimetric profiles were then used to characterize reaction
kinetics and were correlated with complementary techniques to provide a comprehensive

understanding of binder hardening.

4.3.2 Impact resonance test (IRT)

4.3.2.1 Experimental setup and analysis procedure

The IRT is a non-destructive technique based on wave propagation, used to estimate
mechanical properties such as the elastic modulus (or complex modulus). At present, the
technique is mainly restricted to the hardened state (Carret, 2018; Bezerra et al., 2023),
however, in this work it will be employed to study materials in the fresh state during the

hardening process.

Figure 39 illustrates the schematic of the IRT setup for both hardened and fresh
states. The experimental configuration employed a miniature impact hammer (PCB model

086E80, 222 N load cell) to excite the specimen, while its response was recorded using a bonded

accelerometer (PCB model 353B15).

Figure 39 — Schematic IRT in hardened and fresh state materials
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The signals from both sensors were conditioned and amplified through a PCB
482C15 unit, and data acquisition was performed with an NI USB-6002 system at a sampling
rate of 50 kS/s. The digitized force and acceleration records were transferred to a computer for

post-processing. The time-domain signals were converted into the frequency domain using the
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Fast Fourier Transform (FFT), from which the frequency response function (FRF) was
computed as the ratio between the response spectrum (Y), typically acceleration, and the input

force spectrum (X), as defined in Equation 11 (Berjamin ef al., 2018; Carret, 2018).

Sy () _ X*(OY )
Sex(£)  X*(F)X(f)

H=(f) = (11)

Where H*(f) is the FRF in the frequency domain, but in this present study, the
analysis is always performed using the amplitude of the FRF, |[H*(f)I. Sxy is the cross-power
spectrum between the input and output, Sxx is the auto-power spectrum of the input, X(f) and
X*(f) represent the input signal in the frequency domain and its complex conjugate,
respectively; and Y (f) corresponds to the output signal in the frequency domain. The coherence
function (CF), calculated using Equation 12, was employed to assess the reliability of the
measurements, with coherence values approaching 1.0 indicating a high signal-to-noise ratio

and consistent excitation during testing (Bezerra et al., 2023).

2

Sxy
CF (f) = T (12)
xx " Oyy

Where Syy is the cross-power spectrum, Sxy is the auto-power spectrum of the input,
and Syy = Y*(£) Y(f) is the auto-power spectrum of the output. The terms Y(f) and Y*(f) denote

the output signal in the frequency domain and its complex conjugate, respectively.

However, as shown in Figure 39, it is necessary to use a geometry to contain the
binder in the fresh state. To obtain this result, an activity flowchart is described in Figure 40.
Accordingly, was followed our main steps: (1) The reference cylindrical specimen is produced
by 3D printing, being chosen specifically for the initial determination of the 2S2P1D
parameters, since its reduced complexity facilitates parameter identification compared to more
complex geometries. (2) 2D FEM simulations are performed to assess the influence of
geometric dimensions, followed by the selection of candidate geometries for laboratory testing.
(3) Based on these steps, the most suitable geometry is identified, and optimization of the
2S2P1D parameters is carried out. (4) Finally, binder parameters are optimized via LiveLink,
which connects COMSOL and MATLAB. To evaluate the evolution over time, resonance
impact tests are performed every 15 minutes, with the geometry parameters fixed and only the

binder parameters being identified.
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Figure 40 — Schematic representation for the definition of test geometry and binder analysis
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4.3.2.2 282P1D model

The 2S2P1D is a rheological model, with a mechanical analog composed of two
springs, two parabolic elements, and one dashpot, all connected in series (Figure 41). It was
developed to extend the applicability of earlier viscoelastic models, particularly for accurately
representing bituminous materials at low frequencies or high temperatures (Olard; Di

Benedetto, 2003; Di Benedetto et al., 2004).

Figure 41 — 2S2P1D model analogical representation
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Source: Carret (2018).

Equations 13 and 14 give the 2S2P1D laws for the complex modulus E*(®) and the
complex Poisson’s ratio v¥(®). The angular frequency is o=2xnf. The limits of E*(w) are Eoo at
very low frequency (0—0) and Eo at very high frequency (o—o). The fractional exponents k
and h (with 0<k<h<1) shape the two parabolic branches; d is a dimensionless weighting factor;

[ scales the Newtonian branch. The characteristic time is 1.> 0. The Poisson-ratio law v*(®)
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uses the same spectral skeleton but with bounds voo (static) and vo (glassy), and 1, is time
constant linked to that of the modulus (t,=te/y where y is a dimensionless constant). When the

spectral parameters are the same, the model has 10 independent constants (Carret, 2018).

E* (@) = Eoo + Do~ S (13)
1+ 8 (iwt,)* + (iwt,) ™" + (iwpt,) L
V() = Voo + L (14)
1+ 68 (iwt,)* + (iwt,) ™" + (iwpt,) ™t

This model was chosen because it provides a continuous formulation in the
frequency domain, allowing the representation of several decades of frequency while capturing
both the viscous and elastic characteristics of the material. The aim of this approach is to
evaluate how the binder properties evolve with frequency and, consequently, how they

influence the simulated mechanical response.

4.3.2.3 Finite element method (FEM)

In order to obtain the frequency domain numerically calculated, a modeling was
performed using the FEM software COMSOL Multiphysics. The material behavior was
considered linear elastic, but the modulus introduced at each frequency was not constant.
Instead, the rheological model 2S2P1D (Equation 13 and 14) previously defined, was employed

to calculate the complex modulus, which varies with frequency.

As showed in Figure 40, the FEM procedure was first applied to a PLA cylinder to
characterize the material, then extended to different geometries to assess shape influence, and
finally to binders, where geometry was fixed and only rheological properties were optimized
using the 2S2P1D model. The geometry was reproduced in COMSOL, and the mesh was
generated with a maximum element size of 5 mm (Figure 42 illustrates a FEM geometry

example).

Free boundary conditions were applied on all surfaces, except at the impact position
where a unitary load was imposed as a function of time. The frequency domain calculated was
then obtained by solving the wave propagation Equation 15 at each of the specified frequencies
of interest. Where u is the displacement vector, o the angular frequency, A the gradient tensor

operator, ¢ the Cauchy stress tensor, and p the bulk density.
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Figure 42 — Finite element mesh
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4.3.3 Inverse analysis to rheological parameter’s optimization

The inverse analysis developed in this work follows the methodology originally
proposed by Carret ef al. (2018), with adjustments as necessary due to the complex vibration
behavior of non-cylindrical geometries. The analysis was implemented through a MATLAB
code connected to COMSOL Multiphysics by the LivelLink interface, enabling iterative

calculations of the frequency domain while updating model parameters automatically.

In the present work, some modifications were introduced. First, it was the first time
that the 2S2P1D model was applied to PLA and AABs, so it was necessary to adjust all the
model parameters instead of restricting the optimization to a reduced set. Moreover, both the
complex modulus (Equation 13) and the complex Poisson’s ratio (Equation 14) were considered
in the formulation, which required a higher number of parameters to be optimized (total of 10).
Second, instead of selecting an artificial frequency window, the simulated FRF was evaluated
exactly at the 11 points of interest (Figure 43) corresponding to the experimental measurements,

selected within the half-power bandwidth (0.707 of the peak amplitude) around the resonance
peak, ensuring direct point-to-point comparability.
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Figure 43 — 11 data points example
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Third, instead of the original error function proposed by Carret ef al. (2018), the
optimization was performed using a new error function, defined in Equation 16, which depends
on the Concordance Correlation Coefficient (pc) given in Equation 17. Where peyp pem 18 the

Pearson correlation coefficient (Equation 18) between the two groups of data, ¢ represents the
standard deviation, and p denotes the mean result. The subscripts “exp” and “FEM” refer to the

experimental data and the data calculated by the finite element method, respectively.

Error = (1 —p.)-100 (16)
_ 2 Pexp,FEM * OexpOFEM
Pc = R 2 2 (17)
02p + fgn + (Hexp — HrEM)
_ oV(IH * (Nlexps [H * (F)lrzn)

Pexp,FEM = (18)
P 0'exp OFEM

The Pearson correlation coefficient (peyp rem) quantifies the linear relationship

between the experimental values (|H * (f)|exp) and the numerical values (|H * (f)|rgy), the

group data are the 11 points selected. The p,. measures both precision and accuracy between
datasets, quantifying their agreement. Values range from -1 to 1, when is closer to 1 indicate
stronger concordance between the experimental and simulated FEM data. The main difficulty
in extending the methodology to the geometries and the binders is that these simulations were
carried out in 3D FEM, which requires significantly more processing time. Therefore, all
modifications introduced in this work were designed to improve computational efficiency and
reduce simulation time, while still ensuring accurate agreement between experimental and

simulated results.
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4.4 Results and discussion
4.4.1 Classical tests

4.4.1.1 Setting time and time sweep rheology

The binder exhibited an initial setting time of 170 min and a final setting time of
230 min, values that indicate a relatively well-developed early-age reaction process. Similar
setting time ranges have also been reported in the literature for GGBS-FA based AABs
(Dineshkumar; Umarani, 2020; Paul; Gunneswara Rao, 2022). To complement these
measurements, a time-sweep rheology test (Figure 44) was conducted for 300 min (5 hours).
This duration was deliberately selected to capture the material’s evolution at three key stages:
(1) the period preceding the initial setting, (ii) the interval between initial and final setting, and
(ii1) approximately one hour after final set. This approach makes it possible to monitor changes

in viscoelastic behavior throughout the critical hardening phases.

The Figure 44a shows the evolution of the storage modulus (G'), loss modulus (G"),
and phase angle (6), while (b) displays their first derivatives (dG'/dt and dG"/dt), highlighting
the rate at which the microstructure develops over time. In the early stage (0-150 min), both G’
and G" remain close to zero and the phase angle is initially high, decreasing slightly in the first
~50 min and then rising gradually toward the end of the test. A slight, discrete increase in dG'/dt
is already visible around 20-115 min, suggesting early microstructural reorganization even
before G' begins its significant rise in Figure 44a. In the pre-initial setting stage, the material
behaves as a predominantly viscous suspension, with low G’ and G" values indicating minimal

particle-particle interactions (Bilek et al., 2021; Siddique et al., 2021)

A more pronounced change occurs around 170 min (initial setting time). At this
point, both G' and G" begin to increase, and the derivatives in Figure 44b show a clear
acceleration. The setting stage initiates as dissolution of slag and fly ash elevates the ionic
concentration of the pore solution, triggering accelerated gel formation and network percolation
that produce a sharp increase in both G’ and G" (Dai ef al., 2020; Nedunuri; Muhammad, 2021).
The derivative curves capture this transition earlier and more sharply than the shear modulus

themselves, demonstrating their sensitivity to the kinetics of early microstructure development.

Between 170 and 230 min, both the measured modulus and their derivatives
increase substantially. The G’ grows faster than G”. During this same interval, the phase angle,

after its initial drop, continues a progressive increase toward 300 min. In the post-setting stage,
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continued polymerization and densification of C-A-S-H and N-A-S-H gels increase stiffness
(Yinetal., 2022; Lv et al., 2023), while the rise in G" indicates that viscous dissipation remains

significant during hardening.

Figure 44 — Time sweep rheology (a) Measured values and (b) first derivative values
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Source: elaborated by the author.

Importantly, the peak of dG'/dt occurs 20 minutes before the final setting time (230
min). The system is still hardening, but the acceleration of gel formation and network
densification has begun to slow. In contrast, dG"/dt does not follow the same trend, with its
peak occurring approximately 10 minutes after the final setting time. After that, both dG'/dt and
dG"/dt continue to decline. Although the absolute modulus keeps increasing, the rate of

structural development progressively decreases as the binder transitions into a more

consolidated solid.

Overall, the combined analysis of the measured modulus and their derivatives
provides a view of the hardening kinetics of the binder. Figure 44a captures the global
viscoelastic evolution, while Figure 44b highlights subtle acceleration and deceleration phases,

which are essential for understanding the progressive microstructural development of AABs.

4.4.1.2 Isothermal calorimetry

The Figure 45 shows the isothermal calorimetry results at (a) 300 min and (b) 7
days, where the initial fluctuations observed between 0 and 45 minutes are disregarded because
they are strongly affected by environmental stabilization when the sample is placed into the
calorimeter at approximately 20 minutes. Despite this disturbance, the early behavior is
governed by rapid wetting of the precursor and dissolution of reactive glassy phases, which

release Si*, AI**, and Ca?" into the pore solution and generate a short-lived exothermic response
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mainly associated with physical dissolution processes (Ascensdo et al., 2020; Joseph; Cizer,
2022). As the reaction progresses (~45-180 min), the pore solution becomes supersaturated,
producing the main exothermic peak at roughly 155 minutes, which marks the onset of gel
polymerization and the precipitation of N-A-S-H or C-A-S-H structures, representing the
principal chemical reaction period (Sun; Vollpracht, 2018; Chithiraputhiran; Neithalath, 2013).

Figure 45 — Isothermal calorimetry (a) 300 min and (b) 7 days
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Source: elaborated by the author.

In the following interval (170-230 min), the heat flow decreases as the developing
gel network interconnects and progressively immobilizes remaining ions, corresponding to the
experimentally observed initial and final setting times and aligning with the deceleration
behavior previously described for alkali-activated slag-fly ash binders (Ascensao et al., 2020;
Joseph; Cizer, 2022). Over extended durations (1-7 days), the heat flow stabilizes at a low but
persistent level after the main exothermic process has fully dissipated-ending at approximately
3 days-while cumulative heat continues to increase, reflecting ongoing condensation reactions,
structural reorganization of the gel, and the potential formation of secondary crystalline phases,
consistent with long-term polymeric evolution in AABs (Sun; Vollpracht, 2018; Ascensédo et
al., 2020).

4.4.2 Impact resonance test (IRT)

4.4.2.1 FEM 2D for PLA characterization using cylinder

Figure 46 shows the frequency response function (FRF) comparison between the
experimental and simulated results for the PLA cylindrical specimen (100 mm in length and 50
mm in diameter, 99% infill). The specimen was produced to identify the 2S2P1D viscoelastic
model parameters, which describe the material’s dynamic mechanical behavior under

excitation.
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Figure 46 — FRF experimental and simulated for PLA cylinder 99% infill
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As observed in Figure 46, the simulated FRF (red curve) shows excellent agreement
with the experimental results (blue curve), particularly around the main resonance frequency
near 7000 Hz, confirming that the identified model accurately reproduces the material’s
dynamic response. The final calibrated 2S2P1D parameters, obtained from the optimization
process, are summarized in Table 16. The fitted parameters demonstrate consistent stiffness and

damping characteristics representative of high-density PLA material.

Table 16 — PLA cylinder 2S2P1D parameters

2S2P1D parameter PLA Cylinder
Eogo (Pa) 574945752
Eo (Pa) 2482262849
Te 7.770858
0.548684
0.143893
0.641324
B 0.070557
Voo 0.360395
Vo 0.407043
Ty 1.688496

Source: elaborated by the author.

4.4.2.2 FEM 2D for determining the geometries to be tested in the laboratory

Before conducting experimental measurements, selecting an appropriate specimen
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geometry is essential to ensure accurate and reliable results in IRT. While this aspect has
received limited attention in previous IRT research, most related studies on ultrasonic testing
of cementitious materials have relied on conventional specimen geometries without prior
optimization (Trtnik; Vali¢; Turk, 2013; Park et al., 2024; Xu, D. et al., 2024). Dumoulin and
Deraemaeker (2017), however, demonstrated through finite element simulations that geometry
plays a crucial role in wave propagation and resonance behavior. Nevertheless, such simulation-
based optimization has not been systematically applied to IRT. Therefore, in this study,
preliminary simulations were performed to determine the most suitable specimen geometry
capable of producing distinct and stable resonance modes, ensuring accurate and reproducible

experimental results.

The Figure 47 illustrates the finite element model (FEM) geometry used for the
analysis. A three-dimensional (3D) specimen with width (W), height (H), and wall thickness (t)
was represented in two dimensions (2D) to evaluate the influence of geometric parameters on
the vibration response. In this study, the specimen length was fixed at 100 mm, while width,
height, and thickness were varied individually, keeping the other dimensions constant for each
simulation. The analysis was performed on an empty geometry to identify the configuration
that produces the lowest vibration amplitude (i.e., fewer resonance peaks), providing insight
into the most stable geometry for the subsequent Impact Resonance Test (IRT).

Figure 47 — FEM empty geometry analyzed in 2D
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The Figure 48 shows the results of the finite element method (FEM) analysis used

to evaluate how geometric dimensions influence the vibration response of the empty specimen.
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Figure 48(a) presents a representative frequency response for fixed dimensions (W = 100 mm,
H =150 mm, t =4 mm), where 46 resonance peaks were identified. Figure 48b illustrates that
reducing the width leads to fewer resonance peaks, indicating a decrease in vibration intensity.
Figure 48c shows that decreasing the height also reduces the number of peaks, suggesting
greater vibrational stability. Figure 48d demonstrates that increasing the thickness significantly
lowers the number of peaks, further stabilizing the frequency response. Overall, the results
indicate that specimens with smaller width and height and greater thickness exhibit fewer
resonance peaks, thereby minimizing vibration and enhancing stability for subsequent IRT

analyses.

Based on the results obtained from the FEM simulations, the geometries shown in
Figure 51 were selected for laboratory testing. Figures 51a and b represent the chosen
configurations, G1 and G2, selected because they followed the tendency observed in the
numerical analysis, showing fewer resonance peaks and, consequently, lower vibration
intensity.

Figure 48 — Influence of geometric dimensions on the frequency response domain (a) frequency
domain example (b) width (c¢) height and (d) thickness
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These geometries were designed to minimize the number of resonance peaks while
maintaining suitable wall thickness for structural integrity. In addition, the height limitation was
defined considering the subsequent ultrasonic tests, since this dimension is compatible with the
transducer setup and allows efficient signal transmission and detection. In addition, the height
limitation was defined considering the subsequent ultrasonic tests, as this dimension is
compatible with the transducer size and allows proper coupling during measurements. Thus,
the selected geometries provide a practical balance between vibration stability and experimental

feasibility for both the Impact Resonance Test (IRT) and the planned ultrasonic evaluations.

The Figure 49 illustrates the modified geometry designed with vibration-reduction
joints at the base. The use of these joints aims to decrease the vibration amplitude of the empty
PLA box, ensuring that, in subsequent tests, the mechanical energy from the impact is primarily
transmitted through the binder rather than through the PLA structure itself. This approach is
intended to better simulate the real behavior of the binder material during the Impact Resonance
Test (IRT). To identify a suitable material for the damping joint, a parametric study was
conducted by varying the elastic modulus and density of the joint material while keeping the
geometry fixed. This analysis allowed the evaluation of how different joint properties influence
the vibration response, helping to determine the optimal combination for effective vibration

reduction without compromising structural stability.

Figure 49 — Geometry incorporating a damping joint to reduce

vibrations
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Source: elaborated by the author.

The Figure 50 shows that the number of resonance peaks depends strongly on the
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joint material properties. In (a), the variation with elastic modulus is non-monotonic, very soft
or very stiff materials reduce vibrations, while intermediate stiffness increases the number of
peaks. In (b), increasing specific mass leads to more resonance peaks, indicating higher

vibration intensity. Thus, joints made of lightweight materials with moderate stiffness are more

effective in minimizing vibrations in the IRT setup.

Figure 50 — Impact of joint properties (a) Elastic modulus and (b) Specific mass
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To evaluate how the joint material influences the vibration response in the
laboratory, polyurethane and foam were selected as candidate materials. Both materials exhibit
distinct combinations of density and stiffness that influence their vibration damping behavior.
As shown in Figure 51c and 51d, the G3-P configuration employs polyurethane joints, while

the G3-F configuration incorporates foam joints with identical geometry, respectively.

Figure 51 — Geometries tested in the laboratory (a) G1 (b) G2 (¢) G3-P and (d) G3-F
Gl
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c)

Source: elaborated by the author.

These materials were chosen because polyurethane typically presents an elastic
modulus ranging from 0.06 to 2.1 MPa, depending on formulation low density (Domingos et
al., 2018), providing moderate stiffness and high energy absorption capacity. And, foams
exhibit low elastic modulus and density, which enhances vibration damping through greater

deformability and energy dissipation (Chen et al., 2023).

4.4.2.3 Experimental results of the selected geometries

Figure 52 shows the experimental response of the empty geometries, presenting the
frequency response functions (FRF) in Figure 52a and the coherence functions in Figure 52b.
The FRF curves reveal that the G1 and G2 geometries exhibit a large number of vibration peaks,
making peak identification and tracking more difficult. In contrast, the G3-based geometries
display a reduced number of resonant peaks, which simplifies the analysis of frequency domain
in later stages. The coherence plots further support this selection: G3-P maintains a high
coherence level (close to 1) up to approximately 7000 Hz, indicating a more reliable and stable

vibrational response.

Although G3-F also shows a reduced number of resonant peaks, its coherence
function does not present any frequency range with consistently high values. This behavior does
not necessarily indicate poor measurement quality, but rather reflects a strong attenuation of
vibration transmission to the accelerometer, leading to coherence values close to 0 when no
measurable response is detected. Nevertheless, in the absence of a stable frequency band with
high coherence, reliable peak identification becomes impractical. Furthermore, despite its
potential vibrational suitability, the G3-F geometry was excluded from subsequent analyses

because the foam interface allows pore solution and free water from the fresh binder to leak
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outside the geometry, thereby altering the effective formulation and compromising the

repeatability of the measurements.

Based on the combination of fewer peaks (7) and higher coherence, G3-P was
selected as the optimal geometry for subsequent binder analyses. Before performing the tests
with the fresh binder, the empty G3-P geometry will be simulated to determine its 2S2P1D
viscoelastic parameters using a full 3D FEM model. Once these parameters are calibrated, they
will be fixed, allowing the following analyses to focus exclusively on the evolution of the

binder’s behavior.

Figure 52 — Experimental empty geometries results (a) FRF and (b) coherence function
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Figure 53 presents the experimental and simulated FRF of the empty G3-P
geometry, together with the corresponding coherence function. The experimental and numerical
curves show strong agreement across the analyzed frequency range, reflected by the high
concordance correlation coefficient (CCC = 0.975). Among all identifiable modes, three
resonant peaks, labelled as the Ist, 2nd, and 3rd peaks, are the most clearly defined in both
experimental and simulated FRFs. These well-resolved peaks were therefore selected as the

reference points for the 2S2P1D optimization.

Because the empty geometry is composed of two materials with distinct viscoelastic
behavior, PLA forming the structural body and polyurethane acting as the damping joint, two
independent 2S2P1D parameter groups were required. For each material, 10 viscoelastic
parameters were calibrated, resulting in a total of 20 parameters used in the harmonic
simulation. This separation was essential to accurately represent the mechanical contribution of

each material and to achieve a reliable calibration.
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Figure 53 — Experimental and simulated FRF of the empty G3-P geometry with coherence
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Table 17 presents the calibrated 2S2P1D parameters for the two materials
composing the G3-P geometry: polyurethane (joint material) and PLA (structural body). The
optimized 2S2P1D parameters from the PLA cylinder were also added to the table to compare
the geometric influence using the same material. As expected, PLA exhibits much higher
instantaneous and long-term moduli (Eeo and Eo) compared to polyurethane. Conversely,
polyurethane shows a much lower relaxation time (t.) and a substantially higher o exponent,

consistent with its softer, more dissipative viscoelastic character.

Table 17 — 2S2P1D parameters materials to G3-P geometry

PLA
Parameter Polyurethane Cylinder G3-P Difference
Eoo (Pa) 228323 574945752 176234756 -69.3%
Eo (Pa) 2595825 2482262849 2800213241 12.8%
Te 0.049666 7.770858 0.472162 -93.9%
o 25.002689 0.548684 0.609907 11.2%
k 0.304845 0.143893 0.10496 -27.1%
h 0.976217 0.641324 0.978795 52.6%
B 0.000348 0.070557 0.03174 -55.0%
Voo 0.495137 0.360395 0.357957 -0.7%
Vo 0.496968 0.407043 0.390254 -4.1%
Ty 0.43916 1.688496 12.946642 666.8%

Source: elaborated by the author.

The PLA parameters obtained for the G3-P geometry differ noticeably from those
determined previously using the solid PLA cylinder. This discrepancy is expected, because
although both elements were printed with the same 99% infill, the G3-P geometry consists of
thin 3 mm walls and when the printed dimensions are smaller, the filament paths, layer
orientation, and inter-layer bonding have a strong influence on stiftness and damping, leading

to different deformation modes during vibration. The essential point, however, is whether the
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calibrated model reproduces the experimental behavior within the frequency range of interest,

which will be demonstrated in the Figure 54.

Figure 54 compares the 2S2P1D viscoelastic response of PLA calibrated from the
solid cylinder and from the G3-P geometry. In Figure 54a, the largest differences in the complex
modulus |E*| appear at low frequencies, where the thin-walled geometry shows a softer
response due to its reduced dimensions and greater filament influence. Above 100 Hz, both
curves converge and become very similar, indicating that the geometric differences have

minimal effect within the frequency range used in the resonance simulations.

Figure 54 — Differences of 2S2P1D model on PLA as cylinder and geometry (a) Complex
modulus as function of frequency and (b) Cole-Cole
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Source: elaborated by the author.

Figure 54b, the Cole-Cole diagram, highlights the main distinction between the two
calibrations: the PLA parameters optimized for the recipient produce a larger and wider loop,
indicating a more viscous character compared to the cylinder calibration. The slight distortion
at high E' is associated with the lower 8 value obtained during parameter fitting, which affects

the tail of the relaxation spectrum.

4.4.2.4 Rheological binder evolution based on 2S2P1D parameters approach

Figure 55 presents the time-dependent evolution of the storage modulus (E'), loss
modulus (E"), and phase angle for four excitation frequencies (a) 10 Hz, (b) 100 Hz, (c¢) 1000
Hz, and (d) 10000 Hz, obtained from IRT measurements performed every 15 minutes on the
fresh binder. The purpose of these analyses is to evaluate whether IRT can provide usable
viscoelastic information in the fresh state and to examine its potential as an alternative or

complementary technique to conventional shear rheometer.

In this case, the curves do not display a clear or physically consistent evolution over
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time, and no coherent trend can be identified for E', E", or phase angle across the different
frequencies. Several factors may contribute to this behavior. First, the numerical simulation
involves three different materials (PLA, polyurethane, and the evolving binder) within a full
3D model, making the problem computationally demanding and limiting the ability to refine
the analysis. Second, the sensor may not have sufficient sensitivity to capture well-defined peak
shapes during the very early, highly dissipative stages, resulting in noisy or inconsistent
responses.

Figure 55 — Time-dependent evolution of E’, E”, and phase angle for different frequencies (a)
10 Hz (b)100 Hz (¢) 1000 Hz and (d) 10000 Hz
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Source: elaborated by the author.

Additionally, because the resonance peaks shift significantly as the material
hardens, the effective frequency range of interest evolves over time; as a result, the 2S2P1D
extrapolation becomes unsuitable across the entire frequency domain, further reducing the
reliability of the fitted parameters. Finally, the use of the 2S2P1D model may not be the most
suitable representation for such a soft material, and exploring alternative rheological

formulations could lead to more interpretable trends.

Even with these limitations, the numerical magnitudes of E’ and E” obtained from



111

the IRT-based model remain broadly comparable to those measured by the rheometer, indicating
that the method is not fundamentally incompatible with the binder’s mechanical behavior.
Although IRT does not yet reproduce the rheological evolution with the clarity or reliability of
shear rheometers, the results suggest partial potential, particularly in capturing the correct order

of stiffness, which supports further refinement of the approach for fresh-state characterization.

Since the 2S2P1D fitting procedure did not produce a coherent rheological tendency
over time, the IRT data will be examined using an alternative strategy. Instead of relying on
viscoelastic parameter optimization, the analysis will focus directly on the measurable vibration
features extracted from the resonance response of the binder. This includes evaluating the
impact wave velocity, as well as the evolution of resonance frequencies, peak amplitudes, and
peak widths throughout the setting process. These quantities are closely related to stiffness
development and energy dissipation and may provide more robust indicators of early-age
behavior than the viscoelastic model alone. This alternative approach and its implications for
monitoring the hardening of the binder are presented and discussed in the following results

section.

4.4.2.5 Hardening behavior of the binder assessed through impact-wave velocity

Figure 56 presents the evolution of the impact wave velocity over time. Although
many studies commonly employ ultrasonic pulse velocity to assess hardening, the present work
determines velocity directly from the IRT. Here, the wave travel time was obtained from the
difference between the input impact (hammer) and the output response (accelerometer), with

the velocity computed using the linear distance between the opposite container walls.

A clear increase in wave velocity is observed as the binder hardens. This behavior
aligns with numerous ultrasonic studies that demonstrate a strong link between velocity and
microstructural evolution. For instance, Park et al. (2024) showed that longitudinal wave
velocity increases as the material hardens due to densification and growth of stiffness, noting
that velocity correlates with compressive strength and density as hardening proceeds. Similarly,
Xu, D. et al. (2024) reported that at early ages cement paste behaves like a water-like viscous
suspension, resulting in low velocity, but as hardening accelerates, the amplitude and velocity
of the transmitted wave rise sharply, reflecting the formation of a stronger internal structure.

These trends are further supported by classical UPV work.
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Figure 56 — Impact wave velocity evolution over time
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At later ages, the velocity continues to rise more gradually, accompanying
microstructural densification, consistent with the theoretical dependence of wave velocity on
elastic modulus and density described in ultrasonic frameworks. In the present binder, this
behavior mirrors the complex modulus evolution previously observed in the time-sweep
rheology (Figure 44). As G’ and G" increase, the material acquires stiffness, enabling faster

mechanical wave propagation.

Table 18 presents the Pearson correlation coefficients between the impact wave
velocity and the rheological and calorimetric properties of the alkali-activated binder up to 300
min.

Table 18 — Pearson correlation between binder rheological and
calorimetric properties and impact wave velocity (until 300 min)

Pearson correlation

|G*|(MPa) 0.96

G' (MPa) 0.97

G" (MPa) 0.94

4 (9 0.24
Cumulative heat (J/kg) 0.99

Source: elaborated by the author.

The Pearson correlation coefficient (r) measures the strength and direction of the
linear relationship between two variables, with values close to 1 indicating a strong positive
correlation, values near -1 a strong negative correlation, and values around 0 little or no linear
relationship. The impact wave velocity shows a high positive correlation with the rheological

stiftness parameters (|G|*, G', G"; r = 0.96, 0.97, 0.94, respectively) and with the cumulative
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heat (r = 0.99). In contrast, the phase angle (5) exhibits a weak correlation (r = 0.24). Overall,
these correlations confirm that impact wave velocity is a reliable and sensitive indicator of the

hardening and reaction evolution of AABs.

4.4.2.6 Hardening behavior of the binder assessed through resonance frequency, amplitude,
and peak width

This section evaluates the hardening of the S0GGBS binder by tracking the first
three resonance peaks obtained from the impact resonance tests. Since the 2S2P1D model did
not provide clear rheological trends in the fresh state, the analysis focuses instead on peak
characteristics that can be directly extracted from the frequency response: resonance frequency,
amplitude, and peak width. These parameters offer practical indicators of stiffness

development, energy dissipation, and structural evolution during setting.

Figure 57 presents the temporal evolution of the first three resonance frequencies
(1st RF, 2nd RF, and 3rd RF) of the S0GGBS binder obtained from IRT. Overall, all resonance
frequencies show a progressive increase over time, indicating a continuous rise in stiffness.

Figure 57 — Resonance frequency of the first three resonance peaks over
time
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However, the onset and progression of the increase differ among the modes, which
may indicate differences in their sensitivity to changes within the binder matrix. At the early
stage (0-60 min), all resonance frequencies remain nearly constant, consistent with a fluid-like
response and negligible elastic stiffness. The 2nd resonance frequency begins to increase first,
at approximately 70 minutes, followed by the 3rd resonance frequency and then the 1st
resonance frequency, which starts to rise more clearly after about 110 minutes. This sequence

could suggest that the higher modes, are more responsive to early structural changes, while the
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Ist mode appears to capture the overall stiffening behavior of the material.

Ist and 2nd resonance frequencies exhibit a clearer and more continuous increase.
In contrast, the 3rd resonance frequency shows intermittent fluctuations, including a temporary
decrease around 210 minutes, before continuing its upward trend. Such non-monotonic
variations may result from transient microstructural adjustments, minor heterogeneities, or
measurement sensitivity at higher modes. Overall, the evolution of resonance frequencies
provides a consistent indication of stiffness development during the hardening, as also
demonstrated by the time-sweep rheology and calorimetry results. Comparable multi-stage
trends, initial plateau, rapid increase, and later stabilization, have been reported in ultrasonic
monitoring studies of cementitious materials (Hong; Choi, 2021; Park ef al., 2024; Xu, D. et
al., 2024). These results demonstrate that resonance frequency monitoring can effectively

capture the progressive hardening behavior of binders in a non-destructive manner.

Figure 58 shows the evolution of the peak amplitude of the first three resonance
frequencies. In contrast to the clear increase observed in the resonance frequencies, the
amplitude responses do not display a consistent or pronounced trend across all modes. The 1st
resonance frequency exhibits a gradual decrease in amplitude over time, although the variation
is relatively small. For the 2nd and 3rd resonance frequencies, the amplitude values fluctuate

considerably, showing no clear monotonic behavior throughout the measurement period.

Figure 58 — Amplitude of the first three resonance peaks over time
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Similar irregular amplitude responses have been reported in ultrasonic monitoring
of early-age cementitious systems, where scattering and microstructural rearrangements

produce unstable signal magnitudes (Hong; Choi, 2021; Xu et al., 2023).



115

Figure 59 shows the evolution of the peak width of the first three resonance
frequencies, calculated at 0.707 of the peak amplitude. The peak width represents the damping
or energy dissipation of the system, broader peaks indicate higher internal losses (Carret, 2018).
The 1st resonance frequency shows a clear and steady increase over time, consistent with the
rise in the viscous component (G") observed in rheology, suggesting growing internal friction
during hardening. The 2nd resonance frequency increases up to about 280 minutes and then
decreases, while the 3rd resonance frequency shows no defined trend and fluctuates throughout
the test. Overall, only the 1st mode exhibits a consistent increase, indicating a gradual

enhancement of damping as the binder structure develops.

Figure 59 — Peak width of the first three resonance peaks over time
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Table 19 presents the Pearson correlation coefficients between the resonance
parameters (frequency, amplitude, and width) and the binder’s rheological and calorimetric
properties. The main objective of this analysis was to identify which resonance-based

parameters best represent the binder’s hardening behavior.

The phase angle (8) does not show a strong correlation with any of the resonance
parameters. When 98 is not considered, the resonance frequency shows the highest and most
consistent correlations with the rheological stiffness parameters and calorimetric response.
Among the modes, the 2nd resonance frequency correlates most strongly with the rheological
parameters |G|*, G', and G" (r = 0.99, 0.99, and 0.98, respectively), while the 1st resonance
frequency shows the strongest relationship with the cumulative heat (r = 0.99). These results
confirm that the resonance frequency closely follows both the mechanical stiffening and the

reaction progress of the AABs.
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Table 19 — Pearson correlation between binder rheological and calorimetric properties and
resonance peak metrics (until 300 min)

Resonance frequency (Hz) Amplitude (m/s2.N) Width (Hz)
Resonance Peak Ist 2nd 3rd Ist 2nd 3rd Ist 2nd 3rd
|G*|(MPa) 0.96 0.99 0.93 -0.35 -0.24 0.22 0.95 0.97 0.63
G' (MPa) 0.97 0.99 0.93 -0.35 -0.24 0.22 0.96 0.97 0.63
G" (MPa) 0.95 0.98 0.92 -0.33 -0.24 0.20 0.95 0.96 0.64
3 (°) 0.29 0.29 0.21 0.47 0.52 0.63 0.49 0.31 0.03
Cumulative heat (J/kg) 0.99 0.97 0.98 -0.43 -0.39 0.11 0.90 0.93 0.72

Source: elaborated by the author.
The peak width also correlates positively with these parameters, particularly for the

Ist and 2nd resonance peaks (r ~ 0.95-0.97), while the correlation weakens for the 3rd peak (r
~ 0.63-0.64). This suggests that the width can reflect damping and viscous effects but with
lower consistency at higher modes. In contrast, the peak amplitude shows weak or negative
correlations with the reference properties, indicating that it is not a reliable indicator of the

hardening process and is likely influenced by transient coupling or measurement variability.

Overall, these results indicate that the resonance frequency is the most
representative parameter for monitoring the hardening of AABs, with the 2nd mode best
reflecting rheological stiffening and the 1st mode showing the strongest relationship with
cumulative heat, while the peak width provides complementary but less stable information

related to energy dissipation during structural development.

4.5 Section conclusions

The objective of this study was to design, develop, and validate an impact resonance
test apparatus capable of monitoring the hardening process of AABs in the fresh state. The tests
were performed on an AAB formulated with GGBS and fly ash. The test geometries were
manufactured by 3D printing in polylactic acid (PLA). In the resonance tests, a 2S2P1D
rheological model was applied to analyze the binder’s viscoelastic evolution over time. The
resonance data were evaluated in terms of frequency, amplitude, and peak width, and correlated
with rheological (|G*|, G', G", §) and calorimetric parameters to assess their suitability as NDT

indicators of microstructural development. The main conclusions are summarized as follows:

e The G3-P geometry, which uses a polyurethane-filled joint, was the most suitable,
reducing unwanted vibrations and yielding fewer resonance peaks with a stable

coherence function up to 7000 Hz;

e The evolution of E’, E", and phase angle (by IRT) between 10 and 10,000 Hz showed
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no consistent trends compared with rheology, possibly due to limited sensor sensitivity
in the early highly dissipative stages, the suitability of the 2S2P1D model for very soft
binders, and the continuous shift of resonance peaks during hardening, which alters the

effective frequency range and compromises the stability of the fitted parameters;

The impact wave velocity showed strong correlations with rheological stiffness
parameters (|G*|, G', G"; r > 0.94) and cumulative heat (r = 0.99), confirming its

sensitivity to the binder’s hardening and reaction progress;

The resonance frequency proved to be the most representative parameter for monitoring
the hardening of AAB. The 2nd mode showed the strongest correlation with the
rheological stiffness parameters (|G|*, G', G"; r > 0.98), while the 1st mode correlated

best with the cumulative heat (r = 0.99);

The peak width exhibited moderate correlations (r ~ 0.95-0.97) for the first two modes,
suggesting partial sensitivity to damping and viscous effects, while the amplitude

showed weak or inconsistent relationships with the reference properties;
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5 HARDENING KINETICS OF ALKALI-ACTIVATED BINDERS EVALUATED
THROUGH IMPACT RESONANCE TEST, RHEOLOGY, AND CHEMICAL
CHARACTERIZATION

5.1 Introduction

The hardening of alkali-activated binders (AABs) follows the interconnected stages
described by Duxson ef al. (2007), where dissolution, speciation, gelation, and polymerization
occur simultaneously. OH™ ions break Si-O-Si and AI-O-Si bonds, releasing reactive species
into solution (Duxson et al., 2007; Siyal et al., 2024), with dissolution rates governed by
precursor chemistry and activator composition (Liu et al., 2023). Low-calcium precursors
dissolve more slowly, whereas calcium-rich systems show higher early reactivity (Huang ef al.,
2024; Xu et al., 2024). As dissolved species accumulate, condensation reactions produce N-A-
S-H or hybrid C-A-S-H/N-A-S-H gels (Guan et al, 2022; Provis; Bernal, 2014), which
progressively reorganize and densify (Aversa et al., 2024; Tognonvi; Pascual; Tagnit-Hamou,
2022). Continued polycondensation strengthens the aluminosilicate network (Keppert et al.,
2024), further consolidating the gel structure during hardening. Given the complexity of these
coupled mechanisms, advanced techniques capable of monitoring hardening in real time are

needed to better characterize AAB early-age behavior.

A range of techniques has been used, although many face practical limitations
related to high cost, equipment complexity, and the difficulty of performing continuous
measurements (Jiang; Shi; Zhang, 2022; Park et al, 2024). FTIR spectroscopy provides
valuable insight into chemical and structural evolution but requires specialized instrumentation
and is not easily adapted for real-time monitoring (Keppert et al., 2024; Park et al., 2024).
Isothermal calorimetry is a powerful tool for assessing reaction kinetics, yet calorimeters are
expensive and mainly offer indirect information about mechanical development (Keppert et al.,

2024; Siyal et al., 2024).

In response to these challenges, non-destructive techniques (NDT) have gained
increasing attention for early-age monitoring, as they allow continuous assessment of
mechanical evolution without interrupting the material (Xu, D. et al., 2024; Park et al., 2024).
Among these methods, ultrasonic testing has been widely adopted for tracking stiffness
development during hardening (Xu, D. et al., 2024; Park ef al., 2024). However, wave-based
methods, such as impact resonance test (IRT), offer low-cost, simple, and effective alternatives,

providing sensitivity to stiffness and damping changes through frequency-domain analysis.
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These advantages make impact resonance an attractive option for expanding real-time and
affordable monitoring of AAB hardening. However, this technique remains unexplored in fresh
state applications, it has only been applied to hardened materials (Carret, 2018; Bezerra et al.,

2023; Herozi et al., 2025).

Nevertheless, one key point must be highlighted: integrating multiple experimental
techniques is essential for identifying meaningful relationships between chemical, thermal,
rheological, and mechanical indicators of hardening. Early-age FTIR and TGA provide
essential chemical and thermal evidence of gel formation and water evolution (Keppert et al.,
2024; Park et al., 2024), while calorimetry and rheology clarify how reaction kinetics translate
into progressive stiffness development (Aversa et al., 2024; Siyal et al., 2024). IRT can capture
the mechanical manifestation of these transformations by tracking stiffness evolution through
frequency-domain responses. The combined interpretation of these complementary datasets
strengthens the overall understanding of early-age behavior in AAs, although such integrated

analyses remain largely unexplored in the current literature.

Based on this context, the objective of this study is to investigate the hardening
kinetics of AABs through an integrated experimental program combining IRT, rheological
measurements, chemical characterization, thermal analyses, and conventional fresh state tests.
To achieve this, three AABs are evaluated, varying the proportion of GGBS and fly ash to obtain
binders containing 50%, 75%, and 100% GGBS, allowing assessment of how calcium content
influences early-age reactions and mechanical evolution. The experimental program includes
setting time measurements, and time-sweep rheology, alongside continuous impact resonance
test to monitoring to obtain resonance frequency during the hardening. Reaction kinetics are
assessed through isothermal calorimetry, while microstructural evolution is examined using
FTIR and TGA. All techniques are applied at very early ages, up to approximately 5 hours, to
capture dissolution, gel nucleation, and early polymerization. By correlating wave-based
mechanical indicators with chemical, thermal, and viscoelastic evolution, this study aims to
identify the most sensitive descriptors of early-age hardening and to evaluate the potential of

impact resonance as a low-cost, real-time monitoring technique for AABs.

5.2 Materials

The raw materials used for producing the AABs in this study were the same as those
described previously in Section 4.2.2, namely ground granulated blast-furnace slag (GGBS)
and fly ash (FA). Based on these precursors, three binders were formulated by varying the
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GGBS content to 50%, 75%, and 100%, while maintaining a constant silica modulus
(Si02/Na20O, mol/mol) of 0.25, an alkali content (Na,O/Binder, g/g) of 14% Na20O and a water
content (H2O/Binder, g/g) ratio of 0.40, as summarized in Table 20. Sodium hydroxide (NaOH)

and sodium silicate (Na»SiO3), described earlier, were used as activators.

Table 20 — Alkali-activated binder mix proportion

ID GG(I:/S)_FA GGBS (g/) FA (g/L) Na:SiOs solution (g/L.) NaOH solution (g/L)
0
50GGBS 50-50 562.90 562.90 137.11 558.81
75GGBS 75-25 870.74 290.25 141.40 576.27
100GGBS 100-0 1198.44 0.00 145.96 594.86

Source: elaborated by the author.

The decision to vary the precursor proportions was made to more clearly reveal
differences in reaction kinetics among the binders, since the contrasting oxide compositions of
GGBS and FA, particularly their CaO, influence early-age chemical and mechanical evolution
(Siyal et al., 2024). The characterization of particle size distribution, oxide composition, and

FTIR for these precursors was already presented in the preceding sections.

5.3 Methods
5.3.1 Setting time

According to the methodology detailed in Section 4.3.1.1.

5.3.2 Time sweep rheology

According to the methodology detailed in Section 4.3.1.1.

5.3.3 Isothermal calorimetry

According to the methodology detailed in Section 4.3.1.2.

5.3.4 Impact resonance test (IRT)

The development and validation of the apparatus for applying the impact resonance
test (IRT) in the fresh state, as well the processing procedures, were detailed in Chapter 3. Based
on those results, the optimized geometry configuration was selected for the present study to
ensure reliable detection of early-age mechanical evolution. Using this configuration, the

impact signals were recorded at each 15 min and processed using MATLAB to extract the
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impact wave velocity (IWV) and the first and second resonance frequencies, which serve as

indicators of stiffness development and structural transition during the hardening of the AABs.

5.3.4.1 Impact wave velocity (IWV)

Figure 60a shows the experimental configuration adopted for the IRT in the fresh
state. The binder is placed inside a rectangular geometry and a impact hammer is positioned on
one wall to generate the input pulse, while a uniaxial accelerometer is mounted on the opposite
face to capture the transmitted signal. This geometry minimizes early-age boundary reflections
and improves the accuracy of wave-arrival detection. Figure 60b illustrates the procedure used
to determine the Time of Flight (ToF) between the hammer impact and the arrival of the
mechanical wave at the accelerometer. The first force signal (t:) marks the exact moment of
impact, while the beginning of the first distinguishable acceleration peak (t2) corresponds to the

wave arrival. The difference (At = t2 — t1) defines the ToF.
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The IWV was then computed using Equation 19, which relates the travel distance
between the hammer and the sensor (0.056 m) to the measured ToF (At):

0.056 (m)

At (s) (19)

IWV (m/s) =

5.3.4.2 Resonance frequency

Figure 61 presents a representative FRF used to illustrate the procedure for
identifying the first and second resonant peaks of the system (more details about FRF was
presented in the section 3.3.2). For all measured times, this same peak-identification procedure

was systematically applied to the FRFs. The processing was performed using custom MATLAB
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scripts developed to automatically locate local maxima, assign the 1st and 2nd resonant modes,
and extract their corresponding frequencies with high precision. Since resonant mode is
governed by the rheological properties of the material (Bezerra ef al., 2023), changes in
resonant frequency provide a reliable indicator of stiffness evolution throughout the hardening
process.

Figure 61 — Identification of the 1st and 2nd resonant peaks by FRF
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5.3.5 Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared (FTIR) spectroscopy is a technique that records the
interaction between infrared radiation and matter, allowing the identification of functional
groups through their characteristic vibrational bands (Nguyen et al., 2022). In this study, it was
followed FTIR methodology proposed by Hoyos-Montilla et al. (2022), with the difference that
earlier hardening ages were investigated. This approach was used to monitor the temporal
evolution of the main bands in AABs, with measurements collected every 30 minutes from
mixing up to 5 hours. Complemented by 1, 7 and 28 days of curing to evaluate the stability of
the formed products. FTIR spectra were acquired using a Shimadzu IR Prestige 21

spectrometer, operating with 4 cm™ resolution over the 400-4000 cm™ range.

5.3.6 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) monitors mass changes of a sample under
controlled heating, providing information on decomposition events, thermal stability, and
material composition (Yu et al., 2024; Bilek et al., 2025; Luo et al., 2025). Unlike FTIR, which

allows rapid sequential measurements, TGA is a slower technique; therefore, only two
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measurement was performed in the fresh state, the first at 30 min and another one 300 min (5
h) after mixing, complemented by another at 28 days of curing to evaluate the stability of the
formed products. Analyses were conducted using a Shimadzu DTG-60H, with samples heated
from 25 to 1000 °C at 10 °C/min under an inert nitrogen atmosphere (50 mL/min). The
derivative thermogravimetric curves (DTG) were analyzed to identify characteristic
decomposition steps, quantify bound water, and assess microstructural transformations during

hardening and long-term stabilization.

5.3.7 Compressive strength

At 28 days, compressive strength was determined using a universal test machine
operating at a loading rate of 0.5 mm/min with a 300 kN load cell. For each condition, three
cubic specimens of 40 mm were tested, and the average value obtained was employed to

compare the binders in the hardened state.

5.4 Results and discussion
5.4.1 Setting time

The Figure 62 illustrates the evolution of initial and final setting times of ABBs.
Increasing the GGBS content consistently accelerates setting. The 50% GGBS mixture shows
the slowest kinetics, with an initial setting time of approximately 170 min and final setting at
230 min. When the GGBS proportion increases to 75%, both values decrease substantially to
95 min (initial) and 150 min (final). The binder composed entirely of GGBS exhibits the fastest

reaction, reaching initial set at 80 min and final set at 130 min.

Figure 62 — Initial and final setting times
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Source: elaborated by the author.

These results are consistent with the findings of previous studies (Huang, G. et al.,
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2024; Siyal et al., 2024; Shi et al., 2022). This acceleration is primarily attributed to the higher
calcium content provided by GGBS, which enhances the formation of C-A-S-H gels and
promotes rapid hardening under alkaline conditions (Huang, G. et al., 2024; Siyal et al., 2024).

5.4.2 Time sweep rheology

Figure 63 shows the evolution of G', G", and phase angle for the binders with (a)
50GGBS, (b) 75GGBS, and (¢) 100GGBS. An increase in GGBS content accelerates the
development of G, indicating an earlier gain in stiffness, which is consistent with the setting-
time results. This behavior agrees with previous research showing that slag-rich binders exhibit
faster geopolymerization kinetics because of their higher calcium content (55.84 wt% CaO for
GGBS vs. 4.60 wt% for fly ash) and finer particle size (Dso = 33.0 um for GGBS vs. 72.2 um
for fly ash), which together enhance dissolution and early gel formation (Dai et al., 2020;

Alnahhal; Kim; Hajimohammadi, 2021; Shi et al., 2022).

Before the initial setting, all mixtures show predominantly viscous behavior
characterized by low G’ and G" and high phase angles. This period corresponds to precursor
dissolution and ion accumulation (Palacios et al., 2021; Egnaczyk; Quinn; Wagner, 2025),
where the system remains fluid and unconnected. The higher surface area (due the lowest
particle size) of GGBS accelerates ion release and initial gel nucleation, producing noticeable
rheological responses even before network formation (Alnahhal; Kim; Hajimohammadi, 2021;
Huang, G. et al., 2024). In contrast, the S0GGBS binder remains more fluid because the lower-
Ca, coarser fly ash dissolves slowly and contributes less to early C-A-S-H gel formation (Siyal

et al., 2024).

Between the initial and final setting times, the binders transition from a viscous
suspension to a percolated solid network. The sharp increase of G' and its overtaking of G"
mark the formation of a continuous gel skeleton, similar to the structural build-up patterns
reported by Alnahhal, Kim and Hajimohammadi (2021). The 100GGBS mixture exhibits the
fastest transition (80-130 min), followed by 75GGBS (95-150 min) and 50GGBS (170-230
min). The phase angle (8) stabilizes or slightly increases during this interval but remains lowest
for slag-rich binders. Thus, the higher GGBS content compress the setting window and

accelerate mechanical percolation (Sun ef al., 2022; Zhang; Liu; Liu, 2024).
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Figure 63 — Time sweep rheology with G’, G” and phase angle over time at 10Hz and 20°C (a)
50GGBS (b) 75GGBS and (¢) 100GGBS
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After the final setting, all binders exhibit predominantly elastic behavior, but their
hardening rate and stiffness magnitude depend on GGBS content. The 5S0GGBS binder shows
gradual G’ growth. The 75GGBS reaches intermediate stiffness, while 100GGBS exhibits the
steepest and highest post-setting increase in G', forming a dense and rigid structure within a

shorter period. This behavior promotes rapid gel interconnectivity and structural densification
(Shi et al., 2022; Egnaczyk; Quinn; Wagner, 2025).

Figure 64 shows the derivative evolution of (a) dG'/dt and (b) dG"/dt for the binders.
In Figure 64 (a), the dG'/dt curves highlight how the rate of elastic-network formation increases
with slag content. The 100GGBS binder presents the earliest and most intense peak, indicating
the fastest stiffening, followed by 75GGBS, while 5S0GGBS shows the slowest evolution.
Although higher GGBS contents clearly accelerate the rate of modulus development, the

position and shape of the dG'/dt peaks do not show a direct correlation with the empirically
measured initial and final setting times.
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Figure 64 — Derivative evolution of (a) G’ and (b) G" for binders with different GGBS contents
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The Figure 64b, the dG"/dt curves show how the rate of viscous-loss evolution is
influenced by GGBS content. The evolution of dG"/dt clarifies the different phase-angle
behaviors. In S0GGBS, dG" reaches a higher and later peak, meaning viscous losses continue
to grow for a longer period; this produces the more pronounced increase in phase angle. The
75GGBS binder shows the same trend but with lower intensity. In contrast, 100GGBS exhibits
a much earlier and smaller dG" peak, and after this point the rate changes only slightly, so
viscous losses do not rise significantly. As a result, the phase angle remains almost constant for

100GGBS, while it increases clearly in the mixtures with lower slag content.

A possible explanation for the differences in phase-angle evolution is related to how
the gel network may develop as the GGBS content varies. For the binders 5S0GGBS and
75GGBS, it is plausible that a slower and less cross-linked C-A-S-H network allows a greater
amount of long, partially connected polymeric species, sustaining viscous dissipation during
hardening. This would justify the higher and later dG" peaks and the more pronounced increase
in phase angle, as the viscous contribution continues to grow even while G' increases. In
contrast, for the 100GGBS, the rapid and denser gel formation may limit the presence of mobile
polymeric chains, reducing viscous losses at later ages. This would explain why dG” peaks
earlier and remains small and why the phase angle stays nearly constant. Although this

interpretation requires further validation.

5.4.3 Isothermal calorimetry

The Figure 65 shows the isothermal calorimetry over 300 min: (a) Flow heat and
(b) Cumulative heat. Figure 65 a) demonstrate that the reaction kinetics are strongly influenced

by the GGBS content, with higher slag proportions leading to greater heat evolution and faster
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reaction rates. The initial dissolution peak (0-45 min) was disregarded due to thermal

disturbance from sample insertion (Sun; Vollpracht, 2018).

After that, the dormant period is the short stage after the initial dissolution when
reaction heat temporarily stabilizes before gel formation begins (Sun; Vollpracht, 2018). In all
binders, it is very short, showing that dissolution and polycondensation occur almost
simultaneously (Dai et al., 2020; Huang, G. ef al., 2024). After this initial period, a clear main
exothermic peak is observed, corresponding to the polycondensation and gelation stages of the
reaction, during which the N-A-S-H and C-A-S-H gels form and begin to crosslink
(Chithiraputhiran; Neithalath, 2013; Sun; Vollpracht, 2018; Dai et al., 2020; Siyal et al., 2024).
The increase in the peak magnitude with increasing GGBS content indicates a higher overall
reaction rate and heat release due to the greater availability of reactive CaO from slag, which
promotes rapid formation of calcium aluminosilicate hydrate networks (Dai ef al., 2020; Sun;
Vollpracht, 2018). After the main peak, the heat flow decreases, indicating the diffusion-
controlled stage, where residual particles slowly react and the gels densifies (Sun; Vollpracht,

2018; Keppert et al., 2024).

Figure 65 — Isothermal Calorimetry 300 min (a) Flow heat and (b) Cumulative heat
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Source: elaborated by the author.

The timing of the main calorimetric peaks (155 min for 50GGBS, 178 min for
100GGBS, and 199 min for 75GGBS) indicates that the reaction rate does not scale linearly
with slag content. Similar non-monotonic behavior has been reported in several studies, where
the competition between dissolution, ion diffusion, and gel growth determines the apparent rate
of heat evolution (Sun; Vollpracht, 2018; Dai ef al., 2020). Higher slag content supplies more
reactive calcium and alkalinity, accelerating dissolution and the early formation of C-A-S-H
gels (Sun; Vollpracht, 2018; Huang, G. et al., 2024). However, when calcium concentration

becomes very high, rapid precipitation of early gels nuclei can create localized surface
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passivation layers, temporarily reducing the availability of reactive sites and slowing further
polycondensation (Chithiraputhiran; Neithalath, 2013; Dai et al., 2020). This self-limiting
effect explains why the 100GGBS mixture, although richer in reactive slag, does not reach its

maximum heat release as quickly as SO0GGBS.

As the flow heat increased with higher GGBS content (Figure 65a), it is natural that
the cumulative heat curves in Figure 65b followed the same trend. Through the cumulative
curves, the differences between the mixtures become even clearer, reinforcing that GGBS-rich
binders react more extensively and develop faster than those with lower slag proportions

(Keppert et al., 2024; Egnaczyk; Quinn; Wagner, 2025).

At 7 days (Figure 66), the calorimetry curves show that most of the reaction
occurred within the first 3 days, as the heat flow (Figure 66a) rapidly dropped to near zero after
the main peak. This indicates that the binder reached its stable reaction stage early, typical of
AABS with high calcium reactivity (Sun; Vollpracht, 2018). The cumulative heat curves (Figure
66b) confirm this behavior. Even though no new thermal phenomena are observed after this
stage, the mechanical and microstructural properties of the AABs continue to develop,
following the ongoing gel densification and structural reorganization (Egnaczyk; Quinn;

Wagner, 2025).

Figure 66 — [sothermal Calorimetry 7 days (a) Flow heat and (b) Cumulative heat
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Source: elaborated by the author.

5.4.4 Impact resonance test (IRT)

5.4.4.1 Impact wave velocity (IWV)

Figure 67 shows the evolution of IWV over time for the binders. The velocity was

obtained by measuring the time difference between the hammer impact and the first arrival of
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the accelerometer signal (Figure 60), and then dividing the linear distance between the sensors
by the calculated travel time. The segment labeled measures without resolution (100GGBS and
75GGBS at late ages) corresponds to situations where the travel time between hammer and
accelerometer becomes too short to be accurately distinguished, this occurs because the linear
distance between sensors is insufficient to resolve very small-time differences. A possible
improvement in future geometries would be to increase the sensor distance, allowing longer

travel times and thus higher sensitivity.

Figure 67 — Impact wave velocity over time
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As seen in the figure, the initial and final setting times align with characteristic
velocity ranges, with initial setting occurring around 800-1200 m/s and final setting near 2000-
2500 m/s for all binders. Higher slag content leads to a faster rise in IWV. The evolution of
IWYV provides a clear NDT representation of the hardening kinetics of AABs, described by Park
et al. (2024) and Tian and Xu (2022). Initially, the low velocities (<500 m/s) reflect a fluid
suspension dominated by ionic dissolution, where waves propagate mainly through the liquid
phase (Banouni et al., 2022; Xu, D. et al., 2024). As the reaction proceeds, the sharp velocity
increase marks the formation of a percolating C-A-S-H/N-A-S-H gel network and coincides
with the defined setting period (Shi et al., 2022; Park et al., 2024). The subsequent increase
indicates the establishment of a continuous, elastic solid matrix and microstructural
densification. Overall, impact wave velocity provides a reliable, NDT measure of hardening
kinetics. However, to achieve greater sensitivity in high velocity binders, such 100GBBS, it is

necessary to adapt the geometry.
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5.4.4.2 Resonance frequency

The resonance frequency is directly linked to the material’s fundamental
rheological properties, especially its stiffness and ability to store elastic energy. Because of this
relationship, the evolution of resonance frequency provides meaningful insight into the

hardening process.

The Figure 68 shows the resonance frequency over time for two peaks (a) 1st and
(b) 2nd. Both the 1st and 2nd modes exhibit a similar overall behavior: the resonance frequency
increases progressively as the binder hardens, and mixtures with higher GGBS content
consistently develop stiffness earlier and more rapidly. This general trend agrees with the time-

sweep rheology, calorimetry and with the IWV.

Figure 68 — Resonance frequency over time (a) 1st and (b) 2nd

o0 st | —50GGBS 12000 51 ] = S50GGBS
2 8000 1 o se2e - 22100 + 10075 " 79GGBS AT 4000 > 75GGBS
= U, Xe = 22, X . = - 7
7000 | R? = 0.9803 ——100GGBS /- = y = 0.1433x2 - 82605x +509.22 —°~100GGBS
Q . d . Q 2 7
£ ' =0.0921x2 - 14.046x + 687.97 = R*=10.9893 .
3 6000 | ° ;2,()_973;‘ - 3 8000  y=01053x> - 12.834x + 68526
E 5000 | ¥=0019% -02891x + 11479 E RZ = 0,987
R?=0.9817 S 6000 | v=0.0388x - 3.5448x +260.83
S 4000 r z R*=0.9973
5 3000 - Initial ST S 4000 | Initial ST
7] 2] .
e — Final ST o —Final ST
Z 2000 =
Z E 2000 |
1000 = T
0 T P 0 IIIII||||||I||||I||||
0 50 100 150 200 250 300 b) 0 50 100 150 200 250 300
a) Time (min) Time (min)

Source: elaborated by the author.

Despite the similar overall behavior in both modes, the 2nd resonance frequency is
more sensitive to evolution, as indicated by its polynomial coefficients. Identifying whether
each resonance peak corresponds to a compressional, flexural, or mixed mode is difficult
because the vibration modes overlap and are not cleanly separated. The geometry causes
multiple deformation mechanisms to occur in similar frequency ranges, meaning each peak
likely represents a mixed vibration mode. Despite this, the frequency evolution still provides

reliable insight into early-age stiffness development.

During the acceleration phase, the sharp rise in resonance frequency parallels the
rapid formation of gels, as described by Rouyer and Poulesquen (2015) in their observation of
a fractal percolating network marking the transition from a viscous suspension to a rigid solid.
The dependence of resonance evolution on GGBS content, where higher slag percentages
produce earlier and steeper frequency increases, agrees with the findings of Egnaczyk, Quinn

and Wagner (2025), who demonstrated that reaction rate governs the rate of modulus
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development through rheokinetic coupling. Collectively, these findings confirm that resonance
frequency acts as a sensitive, non-destructive descriptor of early-age mechanical evolution,

integrating the chemical kinetics, microstructural transitions.

5.4.4.3 Time-dependent correlation of impact resonance test, rheological parameters, and
calorimetric response

Table 21 summarizes the Pearson correlation coefficients (r) between impact
resonance parameters, rtheological properties, and cumulative heat. The r quantifies the strength
and direction of linear relationships between variables. Values closer to +1 indicate a very

strong positive correlation, meaning both parameters evolve synchronously over time.

Table 21 — Pearson correlation coefficients between impact resonance parameters,
rheological properties, and cumulative heat

Resonance frequency (Hz)

Binder Parameters IWV (m/s)
st 2nd
|G*| (MPa) 0.96 0.96 0.99
G' (MPa) 0.97 0.97 0.99
G" (MPa) 0.94 0.95 0.98
Cumulative heat (J/kg) 0.99 0.99 0.97
|G*| (MPa) 0.99 0.92 0.96
G' (MPa) 0.99 0.91 0.95
75GGBS
G" (MPa) 0.97 0.95 0.98
Cumulative heat (J/kg) 0.98 0.94 0.97
|G*| (MPa) 0.97 0.87 0.92
G' (MPa) 0.97 0.86 0.92
100GGBS
G" (MPa) 0.96 0.91 0.95
Cumulative heat (J/kg) 0.92 0.95 0.98
Average 0.97 0.93 0.96

Source: elaborated by the author.

The results indicate that all binders present very strong positive correlations
between impact resonance parameters, rheological stiffening, and cumulative heat, showing
that the three techniques capture highly synchronized hardening behavior. IWV exhibits the
highest correlations (r ~ 0.97), reflecting its strong dependence on the development of the elastic
gel network. G" and |G*| show the strongest rheological alignment with resonance frequencies,
while G” remains slightly lower but still highly correlated. Cumulative heat also correlates
strongly with mechanical and rheological evolution, particularly for 50GGBS and 75GGBS (r
=0.97-0.99). In 100GGBS, the second resonance mode correlates more closely with cumulative
heat than IWV. Overall, Table 21 confirms that impact resonance parameters, mainly IWV and
2" resonance frequency, captures the same hardening process reflected by rheology and

calorimetry, supporting its use as a reliable NDT method for monitoring early-age kinetics in
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AABs.

5.4.5 Fourier Transform Infrared Spectroscopy (FTIR)

The Table 22 FTIR band assignments summarize the main vibrational bands
identified across all AABs studied. These bands appeared consistently in the spectra, with only
minor shifts observed within narrow wavenumber ranges. Such variations, especially noticeable
at later ages, reflect subtle differences in gel formation and the evolving chemical environment

progress from early dissolution to advanced reaction stages.

Table 22 — FTIR band assignments

Wavemgnber Chemical species / Type of vibration Reference
(em™) group
—OH (structural or . (Finocchiaro et al., 2020; Hoyos-
3418 adsorbed water) Stretching Montilla ef al., 2022)
2970 HCO;” (bicarbonate Stretching (Xu et al., 2023)
species)
2361 CO, Asymmetric (Hoyos-Montilla et al., 2022)
stretching
_ Asymmetric (Finocchiaro et al., 2020; D’Elia et al.
2 £ ) E
1454 COs? (carbonate) stretching 2023)
. o Asymmetric (Hoyos-Montilla ef al., 2022; Poggetto;
1034 Si-0-T (T =Si, Al stretching Leonelli; Spinella, 2024)
_ Bending (out-of- (Finocchiaro et al., 2020; Xu et al.
2 > > >
866 COs? (carbonate) plane) 2023)
471 Si_O-Al Bending (Archez et al. ,2200223%; D’Elia et al.,

Source: elaborated by the author.

5.4.5.1 FTIR Analysis at early ages (0-300 min)

The Figure 69 shows the FTIR spectra of the S0GGBS during the first 300 min in
two configurations (a) non-overlapped (b) overlapped. The Si-O-T vibration band (typically
950-1050 cm™) is a key spectral feature in AABs, as it represents the asymmetric stretching of
Si-O-Al/Si linkages within the aluminosilicate gel and its position reflects the degree of
polymerization and Al incorporation in the network (Archez et al., 2020; Finocchiaro et al.,
2020; Poggetto; Leonelli; Spinella, 2024). Although the calorimetry and rheology results clearly
indicate ongoing reaction activity and a progressive increase in stiffness during the first five
hours of activation, the FTIR spectra show that the main Si-O-T band at 1034 cm™ remains
essentially unchanged in both position and intensity throughout this period. This is particularly

noteworthy given that the initial and final setting times are approximately 170 min and 230 min,
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respectively, when the system is already undergoing significant mechanical stiffening.

The absence of changes in the 1034 cm™ band indicates that, although dissolution
and early gel nucleation occur, they do not produce long-range structural reorganization
detectable by FTIR. This suggests that FTIR has limited sensitivity to early-age reactions
dominated by short-range ionic rearrangements, with significant spectral evolution typically
observed only after ~24 h of curing as the geopolymer network becomes more cross-linked
(Finocchiaro ef al., 2020; Hoyos-Montilla ef al., 2022; D’Elia et al., 2023). The 471 cm™ Si-
0O-Al bending band was not analyzed in detail due to limited spectral quality in the low-

wavenumber region of the KBr FTIR spectrum (Krivoshein ef al., 2022).

Figure 69 — FTIR spectra S0GGBS during the first 300 min: (a) non-overlapped (b) overlapped
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Source: elaborated by the author.

A decrease in the O-H stretching band at 3418 cm™ was observed during the first
five hours, indicating a progressive reduction of free and bound water as the alkali activation
progressed. In the present case, the attenuation of the O-H region is more likely related to water
evaporation from the sample surface rather than complete chemical consumption. The FTIR
detects both free and bound water, the reduction in intensity suggests that part of the physically
adsorbed or loosely retained moisture was lost during curing or measurement, while the
molecular water structurally incorporated into the gels remains detectable in the spectra
(Riischer et al., 2021). The more pronounced change in the O-H band, compared with the stable
Si-O-T vibration at 1034 cm™, suggests that water participates directly in early-age processes
such as precursor dissolution and charge transport, while the aluminosilicate framework

remains largely unchanged at the long range.

As shown in Figure 69, the FTIR spectra of the 75GGBS (Figure 70) exhibit a
behavior very similar to that of the S0GGBS system. The main Si-O-T band at 1034 cm™

remains nearly unchanged during the first 300 min, with only a very slight and almost
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imperceptible variation in position or intensity. The O-H stretching band at 3418 cm™ also

gradually decreases over time.

Figure 70 — FTIR spectra 7SGGBS during the first 300 min: (a) non-overlapped (b) overlapped

—30 min

——60 min

90 min 120 min 75GGBS Si-0-Al
——150 min ——180 min 471
—210 min  ——240 min CO.2 Si-O-

—270 min —300 min  ~ 1452 T
-CO;?
Bl o B A
SR

I~

Absorbance (u.a)

3900 3400 2900 2400 1900 1400 900 400

a)

Wavenumber (cm')

Source: elaborated by the author.

—30 min
90 min
——150 min
—210 min
——270 min

time

Absorbance (u.a)

];900 3400 2900 2400

——60 min
120 min
— 180 min
——240 min
—300 min

Decreases over

75GGBS

-CO;? /

1454

No changes
over time __

—

1900 1400 900
Wavenumber (cm!)

Si-O-Al

471
Si-O-T
1034

\-CO_;Z

866

400

As shown in Figure 71, the FTIR spectra of the 100GGBS binder exhibit a distinct
behavior compared to the SOGGBS and 75GGBS systems. The main Si-O-T band at 1034 cm™,

shows a slight but clear increase in intensity over time, indicating progressive development and

densification of the reaction products. This vibration is widely recognized as the fingerprint of
C-A-S-H, N-A-S-H, or hybrid (N,C)-A-S-H gels, depending on the Ca/Si ratio and the

precursor composition (Archez et al., 2020; Finocchiaro et al., 2020; Hoyos-Montilla et al.,

2022).

Figure 71 — FTIR spectra 100GGBS during the first 300 min: (a) non-overlapped (b) overlapped
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of the 100GGBS mixture (~80 min initial and ~130 min final) and with the calorimetry results,

which showed a higher cumulative heat release compared to the other binders. This correlation

confirms that a higher slag content accelerates gel formation and structural reorganization.
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Meanwhile, the O-H stretching band at 3418 cm™ decreases due to water consumption and

condensation of the gel network.

5.4.5.2 FTIR Analysis at later ages (up to 28 Days)

As illustrated in Figure 72, the FTIR spectra of the SOGGBS binder over the first
28 days displayed as (a) non-overlapped and (b) overlapped plots, clearly demonstrate the
gradual structural evolution of the system. From 1 day to 28 days of curing, the Si-O-T band
(initially centered near 1034 cm™) shows a progressive increase in intensity accompanied by a
slight shift toward lower wavenumbers. This evolution reflects the ongoing polymerization and
condensation of the aluminosilicate framework, a process that becomes increasingly evident at
later curing ages (Hoyos-Montilla et al, 2022). The shift of this band toward lower
wavenumbers indicates the progressive incorporation of Al into the silicate network and the
increase in the polymerization degree of the gel (Finocchiaro et al., 2020). As Al substitutes for
Si in the tetrahedral sites, the Si-O bond environment becomes more ionic, lowering the bond
energy and thus the corresponding vibration frequency (Riischer ef al., 2021; Hoyos-Montilla
et al.,2022). This trend is characteristic of C-A-S-H-type gel growth in slag-rich binders, where
Ca?* balances the negative charge created by Al substitution, promoting the formation of a

denser, more interconnected structure (Mikhailova et al., 2019).

Figure 72 — FTIR spectra S0GGBS during 28 d: (a) non-overlapped (b) overlapped
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Source: elaborated by the author.
The decrease of the 1454 cm™ band and 866 cm™ (-CO37?) over time, coinciding

with the increase in the Si-O-T band, has been associated with the progressive consumption or
encapsulation of carbonate species as gel polymerization advances. According to Finocchiaro
et al. (2020), carbonate vibrations in this region originate mainly from the partial carbonation
of alkaline cations and Ca-rich phases during the initial stages of activation, leading to transient

COs* stretching near 1454 cm™. As hardening proceeds, the growth of C-A-S-H and (N,C)-A-
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S-H gels incorporates available calcium and silica into the aluminosilicate network, reducing
the amount of free or weakly bound carbonate species (Finocchiaro ef al., 2020; Hoyos-
Montilla ef al., 2022; D’Elia et al., 2023). In resume, the increase in mechanical properties over
time is directly related to the growth and shift of the Si-O-T band toward lower wavenumbers,
indicating progressive gel polymerization and structural densification, together with the
decrease of the carbonate band (~1454 cm™) as calcium and alkalis are incorporated into the

aluminosilicate framework.

The Figure 73 shows the FTIR spectra of the 7SGGBS binder during 28 days: (a)
non-overlapped and (b) overlapped presentation. The spectral evolution of the 7SGGBS binder
follows the same general trends observed for the S0GGBS system. As this behavior has already
been discussed in detail for the SOGGBS composition, only the evolution of the O-H stretching

region (3418 cm™) is further considered here.

In this case, the O-H band, which initially decreased during the first 300 min due to
water consumption during early condensation and gel formation, shows a gradual increase at
later curing ages (1-28 days). This apparent re-intensification is likely not related solely to
additional structural hydroxylation but rather to moisture uptake from the environment, since
the binder showed clear hygroscopic behavior when the samples were collected. The high
alkalinity and the presence of residual NaOH in the pore solution can promote rapid adsorption
of atmospheric humidity, increasing the O-H signal intensity even after the main hydration

reactions have slowed.

Figure 73 — FTIR spectra 75GGBS during 28 d: (a) non-overlapped (b) overlapped
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The Figure 74 illustrate the FTIR spectra of the 100GGBS until 28 days: (a) non-

overlapped and (b) overlapped presentation. The spectra of the 100GGBS binder follow the

same overall behavior observed for the S0GGBS and 75GGBS systems, showing an increase
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in the Si-O-T band (~1034 cm™) and a decrease in the carbonate peaks (1454 and 866 cm™)
over time. To obtain more detailed information and enable a quantitative comparison between
the binders, it is necessary to perform a deconvolution analysis of the main Si-O-T band, which
would allow for a clearer evaluation of the structural evolution and the degree of polymerization

among the different mixtures, as did for Hoyos-Montilla et al. (2022).

Figure 74 — FTIR spectra 100GGBS during 28 d: (a) non-overlapped (b) overlapped
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Source: elaborated by the author.
5.4.6 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis of alkali-activated systems typically shows three main
weight-loss stages. The first, from room temperature to ~150 °C, corresponds to the evaporation
of free and physically bound water (Caballero et al., 2019; Abdellatief et al., 2022). Between
150 °C and 400 °C, the dehydration and dehydroxylation of C-A-S-H and N-A-S-H gels occur,
marking structural densification of the aluminosilicate network (Rezzoug; Ayed; Leklou, 2024;
Yan et al., 2024). At higher temperatures, around 600-900 °C, carbonate decomposition and
crystalline phase formation (e.g., mullite, spinel) take place (Caballero et al., 2019; Poggetto;
Leonelli; Spinella, 2024).

The TGA (Figure 75a) and DTG curves (Figure 75b) of the 50GGBS system present
the typical thermal behavior of slag-based geopolymers at three curing ages: 30 min, 300 min
(5 h), and 28 days. At 30 min, the pronounced mass loss and sharp DTG peak indicate a high
content of free and weakly bound water, reflecting an immature and porous gel structure
(Abdellatief et al., 2022). After 300 min, both mass loss and DTG peak intensity decrease,
showing that early geopolymerization reduces water retention and initiates gel condensation.
At 28 days, the amount of released water continues to decrease, and a broader tail appears above

150 °C, suggesting the presence of a higher proportion of stable gels and a more consolidated
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C-A-S-H network.

Figure 75 — Thermal decomposition of the S0GGBS (a) TGA and (b) DTG
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Figure 76 shows the (a) TGA and (b) DTG curves of the 75GGBS system, which
follow the same overall thermal behavior observed for the SOGGBS mixture, with progressive
reductions in water-related mass loss and DTG peak intensity as curing time increases. But,
unlike the S0GGBS system, where total loss decreased continuously with curing time (30 min >
300 min > 28 d), the 7SGGBS mixture exhibits an irregular trend (28 d > 30 min > 300 min).
This behavior can be related to the higher slag content, which enhances calcium availability
and promotes the formation of more hydrated C-A-S-H phases at longer curing times, resulting

in slightly greater total weight loss upon heating (Rezzoug; Ayed; Leklou, 2024).

Figure 76 — Thermal decomposition of the 75GGBS (a) TGA and (b) DTG
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Figure 77 shows the (a) TGA and (b) DTG curves of the 100GGBS system, which
maintain the same general decomposition pattern observed in the S0GGBS and 75GGBS
mixtures. However, unlike the previous mixtures, the 100GGBS sample does not present a clear

trend in total water-related mass loss with hardening time. This behavior may result from the
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higher slag content, which promotes the formation of additional C-A-S-H gel capable of
retaining more bound water. A partial reabsorption of atmospheric moisture by the 28-day
sample could also contribute to the higher apparent water release, as occasionally observed in

dense, calcium-rich alkali-activated systems (Abdellatief et al., 2022).

Figure 77 — Thermal decomposition of the I00GGBS (a) TGA and (b) DTG
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Figure 78 summarizes the thermogravimetric weight-loss behavior of AABs) at
different curing ages for (a) free water and (b) gels. The values were obtained by subtracting
the mass loss in the 0-150°C range (free water) from that in the 150-400°C range (gel

dehydration). The Figure 78a shows that the trend of free-water loss varies

Figure 78 — Thermogravimetric weight loss of AABs over time (a) free water evaporation and

(b) gel dehydration
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Source: elaborated by the author.
. When comparing the same binder over time, the amount of free water decreases

as hardening progresses, reflecting microstructural densification and reduced porosity.
However, no clear trend is observed when comparing between different binders, as the values
fluctuate with GGBS content, additionally, no substantial change was observed. This irregular

behavior may be influenced by the hygroscopic nature of the samples, since partial moisture



140

reabsorption from the atmosphere before testing could affect the measured water content
(Abdellatief ef al., 2022; Rezzoug; Ayed; Leklou, 2024). The Figure 78b shows that gel-related
mass loss increases consistently with both curing age and GGBS content, confirming that higher
slag levels promote the formation of more C-A-S-H and/or N-A-S-H gels with larger amounts
of bound water. The 100GGBS mixture shows the greatest gel-related loss at 28 days, consistent
with a higher degree of reaction showed in the calorimetry and a denser, more polymerized

structure.

5.4.7 Compressive strength

Figure 79 shows the compressive strength results of the AABs after 28 days, which
correspond to the only tests conducted in the hardened state. As expected, the increase in GGBS
content led to a progressive rise in compressive strength, with values of 33.2 MPa, 48.9 MPa,
and 54.3 MPa for 50GGBS, 75GGBS, and 100GGBS, respectively. This trend agrees with
previous results from FTIR, calorimetry, impact resonance test, and TGA analyses, all of which
indicated that higher GGBS contents promote greater formation of C-A-S-H gels. These gels
are known to form a denser and more cohesive microstructure, which enhances the mechanical

strength (Dal Poggetto et al., 2021; Abdellatief et al., 2022; Rezzoug; Ayed; Leklou, 2024).

Figure 79 — Compressive strength at 28 d
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5.5 Section conclusions

This study investigated the hardening kinetics of AABs through an integrated
experimental program that combined setting time measurements, time-sweep rheology,
continuous monitoring of resonance frequency through IRT, isothermal calorimetry to

characterize reaction kinetics, and FTIR and TGA to track microstructural evolution. Three
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binders were evaluated with 50%, 75%, and 100% GGBS, to elucidate how calcium availability
influences early-age reactions and mechanical development. These combined methodologies
provided a comprehensive understanding of the early-age processes governing the hardening

behavior of AABs. The main conclusions are summarized below:

e Calcium availability is the dominant factor controlling early-age behavior, dictating

dissolution rate, gel connectivity, and stiffness evolution;

e Higher GGBS content accelerates hardening, driven by greater calcium availability and

finer particle size, which enhance dissolution, ion release, and early gel nucleation;

e Viscous losses decrease more rapidly in slag-rich binders, as reflected in smaller and

earlier dG"/dt peaks, leading to lower and more stable phase angles during hardening;

e The timing of calorimetric peaks does not scale linearly with GGBS content, due to
competing effects such as rapid dissolution followed by temporary surface passivation

in very slag-rich systems;

e Both impact wave velocity (IWV) and the two first resonance frequency increased
consistently over time, confirming their sensitivity to stiffness development during

early-age reactions;

e Impact resonance parameters correlated strongly with complex, storage and loss
modulus and cumulative heat, demonstrating that mechanical, chemical, and thermal

indicators evolve synchronously during hardening;

e FTIR is not highly sensitive for monitoring early hardening (first 300 min) in low- and
medium-slag systems (50GGBS and 75GGBS), but it reliably captures structural
development at later stages and differentiates mixtures when polymerization becomes

more advanced (100GGBS);

e Significant FTIR evolution became evident only at later ages (1-28 days), when all
binders exhibited increased Si-O-T intensity and shifts to lower wavenumbers,

reflecting gel polymerization, Al incorporation, and network densification;

e Gel-related mass loss, by TGA, increased with both hardening age and slag content,
demonstrating that higher GGBS levels promote greater formation of C-A-S-H/N-A-S-

H gels and a more polymerized aluminosilicate network;

e Higher GGBS content leads to more advanced microstructural development, greater gel
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formation, and improved mechanical performance.
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6 FINAL CONSIDERATIONS

This research was structured into three papers, each aligned with one of the specific

objectives.

The first paper investigated the application of machine learning models to predict

both fresh state (initial and final setting time) and hardened state (compressive strength)

properties of AABs and concluded:

ANN, RF, and BR were the most accurate models, indicating that setting-time behavior

is highly nonlinear and not suitable for linear approaches such as MPR;

RF and BR produced chemically coherent variable rankings and stable sensitivities,
while ANN captured stronger nonlinearities but showed greater variability when

extrapolating;

The limited setting time dataset (139 samples) restricts model generalization, meaning

broader predictive reliability requires expanding the setting-time database;

In compressive strength, ANN, RF, and BR achieved the highest predictive
performance, with ANN additionally capturing key nonlinear behaviors such as optimal

N/B and S/N ratios;

RF and BR highlighted variables consistent with expected AAM chemistry (CaO, Fe20s,

Si0:z, S/N), while ANN showed higher sensitivity to complex nonlinear interactions;

Model accuracy depends on the activation quality of the material, performing well for
external datasets but poorly for dry-pit binders whose characteristics fall outside the

trained domain;

The second paper focused on the design, development, and validation of an impact

resonance test apparatus capable of monitoring the hardening process of AABs in the fresh state

and concluded:

The G3-P geometry was the most suitable configuration, presenting fewer spurious
peaks and stable coherence up to 7000 Hz, making it the best option for early-age

resonance monitoring;

E', E", and phase angle from the 2S2P1D model showed no clear trends, probably due
to early-age sensor limitations, the shift of the peak approached over time, and the

model’s reduced applicability to very soft binders;
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e Resonance frequency was the most sensitive indicator of hardening, with the 2nd mode

strongly related to stiffness and the 1st mode closely following reaction heat;

e Peak width showed moderate sensitivity to damping and viscous effects, while

amplitude did not present consistent or meaningful correlations.

The third paper examined the early-age hardening kinetics of alkali-activated binders using

impact resonance as the central monitoring technique and concluded:

e Calcium availability is the key driver of early-age behavior, controlling dissolution, gel

nucleation, network connectivity, and stiffness evolution;

e Higher GGBS content accelerates hardening, producing faster stiffness gain, reduced

viscous losses, and earlier mechanical percolation.

e Mechanical, thermal, and rheological indicators evolve synchronously, as shown by the

strong correlations between IWV, resonance frequencies, moduli, and cumulative heat;

e FTIR has low sensitivity during the first 300 min, except for 100GGBS, but clearly

captures gel polymerization and structural densification at later ages (1-28 days);

e TGA and compressive strength results show increased gel formation and improved
mechanical performance with higher GGBS content, confirming more advanced

microstructural development in slag-rich binders.

This research achieved its objectives by advancing both the understanding and the
monitoring of early-age behavior in alkali-activated binders, combining data-driven prediction,
rheological insight, and non-destructive mechanical evaluation. The findings demonstrate that
the hardening process of AABs is strongly governed by precursor composition, which controls
reaction kinetics, gel formation, and stiffness development. Machine learning tools proved
capable of capturing the nonlinear relationships between chemistry, mix design, and
performance, while resonance-based methods provided sensitive real-time indicators of
microstructural evolution. Together, these approaches strengthen the scientific basis for
designing, predicting, and assessing AABs, contributing to their advancement as sustainable

and technically robust alternatives to conventional binders.
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PARAMETERS

REGRESSION MODEL FOR INITIAL AND FINAL SETTING TIME
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OF THE MULTIVARIATE POLYNOMIAL

Value Value
Parameter Parameter
Initial ST  Final ST Initial ST  Final ST
Intercept 183.968 291.712 P20s5xFe203 -0.272 -0.740
AlOs 2.059 5.353 P20sxS/N 0.275 -0.201
SiO2 0.420 -0.144 P-OsxTemperature 0.036 0.781
P20s 0.176 0.083 P-0sxN/B 3.331 2.649
SOs 1.120 3.420 P-0sxW/B -1.191 -0.614
Cl -0.883 0.076 SOs? -0.783 0.214
K-0 -2.587 -6.392 SOsxCl -0.728 -0.552
CaO -1.153 -2.684 SOsxK-0 0.264 -1.263
TiO: -0.660 1.109 SOsxCaO -0.719 -2.833
MnO -0.006 -0.001 SOsxTiO: -0.691 -0.239
Fe:0s 0.804 1.848 SO:xMnO -0.237 -0.718
S/N 0.172 1.425 SOsxFe20s 0.281 1.262
Temperature -0.374 -2.279 SOsxS/N -0.625 -0.276
N/B -3.104 -1.607 SOsxTemperature -0.360 -1.485
W/B 2.467 -0.662 SOsxN/B 2.381 5.561
AlLOs? 1.330 3.743 SOsxW/B -0.295 -2.284
Al205xSi0: 0.748 -0.694 CI? -1.433 -4.863
Al203xP20s -0.374 -1.736 CIxK20 2.303 3.677
Al205xS0s 0.182 1.959 CIxCaO -0.447 -3.514
Al0sxCl -1.202 -0.276 CIxTiO: -1.376 -4.436
Al205xK20 -1.212 -5.088 CIxMnO 0.188 -0.015
Al205xCa0O -0.862 -2.308 CIxFe20s -0.015 0.429
Al0sxTiO: -0.985 1.102 CIxS/N -0.628 -0.926
Al03xMnO -0.428 -1.121 ClxTemperature 0.750 1.290
Al203xFe20s 0.480 1.768 CIxN/B 1.258 2.493
Al203xS/N -0.916 -0.879 CIxW/B -1.115 -4.691
Al:OsxTemperature -0.872 -3.320 K202 0.006 2.232
Al20sxN/B 1.258 5.786 K20xCaO 1.205 4.897
AlOsxW/B 1.231 -2.824 K20xTiO2 2.723 3.968
SiO2? -1.619 -4.572 K20xMnO 0.538 1.329
Si02xP20s -0.015 0.127 K20x%Fe20s -0.154 -0.894
Si02xS0s 1.051 0.711 K20xS/N 1.102 0.872
SiO2xCl 1.024 3.733 K2OxTemperature 0.384 1.780
Si02xK-0 -1.451 -3.314 K-OxN/B 1.845 0.725
Si02xCa0O 0.554 3.876 K-OxW/B -2.278 0.261
Si02xTiO- 1.227 4.382 Ca0? 0.118 -0.629
Si02xMnO -0.084 0.025 CaOxTiO- -0.888 -5.235
SiO2xFe20s 0.196 0.293 CaOxMnO 0.242 0.566
SiO2xS/N -1.094 -2.378 CaOxFe20s -0.245 -0.529
SiO2xTemperature -0.708 -1.835 CaOxS/N 0.691 0.198
SiO2xN/B -1.953 -1.767 CaOxTemperature 0914 3.073
SiO-xW/B 1.335 2.056 CaOxN/B -1.439 -6.152
P.Os* 0.184 0.127 CaOxW/B -0.612 0.740
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P20sxS0s
P20sxCl
P205xK-20
P>0sxCa0O
P>0sxTiO2
TiO-xW/B
MnO?
MnOxFe203
MnOxS/N
MnOxTemperature
MnOxN/B
MnOxW/B
Fe20s3
Fe.03xS/N
Fe:OsxTemperature
Fe20:xN/B
Fe.0:xW/B
S/N?
S/NxTemperature
S/NxN/B
S/NxW/B
Temperature?
TemperaturexN/B
TemperaturexW/B
N/B?
N/BxW/B
W/B?
AlOs5?
AL052xSi02
Al:032xP20s
Al:O3?xS0s
ALOs2xCl
ALOs2xK20
Al205?xCa0O
ALOs2xTiO2
Al:O32xMnO
Al0s*xFex03
Al205>xS/N
AlLOs*xTemperature
AlOs2xN/B
ALOs*xW/B
AL0O5xSi02?
AL0O5xSi02xP20s
AlO3xSi02xS0s
Al:05xSi02xCl
AL05xSi02xK20
Al05xSi02xCa0O
Al:05xSi02xTiO:

-0.244
0.225
0.979
0.135
0.252
-1.301
-0.014
-0.184
-0.035
0.079
0.653
-0.500
-0.211
0.730
-0.161
1.149
0.140
-1.652
-0.561
-1.769
0.730
0.071
-1.063
-0.572
6.824
-0.726
1.025
2.328
-0.057
0.377
1.445
0.196
-1.117
-1.439
0.632
-0.273
0.217
0.567
-0.949
5.496
1.053
-0.771
0.017
-0.224
0.836
-0.674
0.832
0.746

-1.195
-0.078
2.334
0.855
-0.405
-4.917
0.011
-0.383
-0.274
0.475
0.321
0.141
-1.313
1.727
-0.312
1.932
0.856
-2.604
-1.353
-2.041
-0.079
0.948
-2.501
1.844
14.860
-7.109
-0.360
6.372
-1.712
-0.803
4.409
3.423
-5.036
-2.782
4.209
-0.780
0.224
2.389
-3.302
9.055
-1.194
-4.228
0.455
-0.279
3.689
-1.088
3.212
3.341

TiO2?
TiO2xMnO
TiO2xFe20s

TiO2xS/N
TiO:xTemperature
TiO2xN/B
ALQO3xP20sxS0;
ALO3xP20sxCl
ALQO3xP20sxK20
ALQO3xP20sxCa0
ALQO3xP205xTiO2
ALQO3xP20sxMnO
ALQO3xP20sxFe20;
ALQO:3xP20sxS/N

Al:03xP>OsxTemperature

ALQO3xP20sxN/B
ALO3xP20sxW/B
ALO3xSO3?
ALO3xSOsxCl
ALO3xSO3xK20
AlLO3xSO3xCa0
ALO3xSO03xTiO2
ALO3xSO3xMnO
AL0:3xSO3xFe203
ALO3xSOsxS/N

ALO3xSOsxTemperature

ALO3xSO3xN/B
ALOs;xSOsxW/B
ALOsxCI?
ALOsxCIxK20
ALO:3;xClxCaO
ALO3xCIxTiO2
ALO3;xCIxMnO
AlO3xClxFe20s
ALOsxCIxS/N

ALOsxClxTemperature

ALOsxCIxN/B
ALOs;xCIxW/B
ALOsxK20?
ALOs;xK20%xCaO
ALOsxK20xTiO:
ALO3;xK20xMnO
ALOsxK20%Fe20s
ALOs;xK20%xS/N

ALOs;xK.OxTemperature

ALOs;xK20xN/B
ALOs;xK20xW/B
ALLOs;xCa0?

-1.338
0.141
-0.005
-0.392
0.653
3.164
0.303
0.218
0.463
-0.310
0.374
0.082
-0.122
1.118
0.093
4.459
-1.080
1.354
0.386
-0.499
-1.020
0.783
-0.033
-0.063
1.101
-0.345
3.642
0.536
-0.985
0.706
-1.256
-0.756
0.250
0.246
0.333
0.509
-0.053
0.020
0.548
1.115
0.567
0.255
-0.054
0.447
0.379
-0.581
-1.190
0.306

-4.488
-0.231
0.585
-0.109
0.911
4.526
-0.488
-0.044
1.884
0.445
-0.401
0.358
-0.649
0.978
1.078
2.544
-1.005
3.364
1.930
-2.763
-2.000
2.756
-0.411
-0.914
2.182
-1.620
5.755
-1.062
-3.335
0.434
-5.214
-2.690
0.060
0.545
1.321
0.229
0.664
-3.278
3.208
3.609
-0.416
1.056
0.021
-0.349
2.323
-3.810
1.261
-0.551
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ALOsxTemperaturexN/B
ALOsxTemperaturex W/B
ALOsxN/B?
ALOs;xN/BxW/B
ALOsxW/B?

SiO2?
Si022xP20s
Si02?xS0s
Si022xCl
Si022xK-0
Si02*xCa0
Si022xTiO2
Si02>*xMnO
SiO2*xFe20s
SiO2?xS/N
SiO22xTemperature
SiO2*xN/B
SiO2*xW/B
Si02xP20s?

-0.153
0.108
-0.879
-0.556
-0.011
0.111
0.750
0.204
0.128
0.896
0.343
2.740
-0.258
0.086
-0.100
0.193
0.182
-0.268
-0.264
-0.139
0.343
-0.128
1.240
-0.020
0.864
-0.288
1.172
0.039
0.347
-2.304
-0.433
6.806
-2.198
1.616
-1.734
0.702
0.408
0.805
-0.155
1.117
0.933
0.340
0.415
-1.628
0.132
-2.879
0.313
0.224

0.145
0.658
-0.774
-0.815
0.583
2.524
1.038
-0.229
-0.164
1.910
-0.330
4.960
-4.557
0.231
-0.380
0.164
0.693
-1.193
0.594
-0.365
0.146
-0.334
0.452
0.481
0.783
-0.884
1.107
-0.579
1.601
-4.641
1.887
12.792
-8.757
0.375
-4.092
1.760
-1.230
1.769
0.594
4.240
1.885
0.953
1.457
-3.248
0.311
-3.246
0.128
0.075

ALO3xCaOxTiO:
ALO3:xCaO*xMnO
Al:O3xCaOxFe20s
Al:O3xCaOxS/N
Al:03xCaOxTemperature
Al:O3:xCaOxN/B
Al:O3xCaOxW/B
AlLO3xTiO22
Si02xP20sxN/B
Si02xP-0sxW/B
Si02xS0s?
Si02xS0sxCl
Si02xS0:xK20
Si02xS03xCa0
Si02xS03xTiO2
Si02xSO3xMnO
Si02xS03xFe20s
Si02xS03xS/N
Si02xSOsxTemperature
Si02xS0:xN/B
Si02xS0:xW/B
Si02xCJ?
Si02xCIxK20
Si0.xClxCaO
Si02xCIxTiO2
Si02xCIxMnO
SiO2xClxFe203
SiO2xCIxS/N
SiO2xClxTemperature
SiO2xCIxN/B
SiO2xCIxW/B
Si02xK.0?
Si02xK.0xCaO
Si02xK20xTiO2
Si02xK20xMnO
Si02xK20xFe20s
Si02xK.0xS/N
Si02xK.OxTemperature
Si02xK.0xN/B
Si02xK.0xW/B
Si02xCa0?
Si02xCaOxTiO:
Si02xCa0OxMnO
Si02xCaOxFe203
Si02xCaOxS/N
Si02xCaOxTemperature
Si02xCaOxN/B
Si0:xCaO*xW/B

-1.500
0.175
-0.074
-0.493
0.888
-4.410
-0.557
-0.286
2.386
-0.722
-0.786
0.135
0.022
0.268
-0.017
-0.213
-0.119
-0.092
-0.290
1.129
-0.500
-0.028
-0.281
-1.031
0.052
-0.216
-0.074
1.127
-0.347
2.845
-0.283
0.806
0.054
-0.137
0.306
0.219
-0.075
0.461
-0.886
-0.398
-1.393
-0.958
-0.122
-0.013
1.087
0.117
1.315
0.133

-5.126
0.485
-0.004
-1.571
2.595
-6.224
-0.799
-1.400
2.244
-1.438
-0.092
1.547
-0.255
0.627
1.323
-0.152
-0.103
0.503
-0.235
2.205
1.439
0.116
-1.306
-3.614
0.167
-0.775
-0.261
2.584
-1.114
4.140
-0.413
1.031
-0.296
-0.968
0.685
0.774
-0.264
0.946
-0.933
-2.111
-4.466
-3.251
-0.802
-0.230
0.944
-0.273
1.944
-2.572
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Si02xP205xS0s
Si02xP205xCl
Si02xP205xK20
Si02xP20sxCa0O
Si02xP205xTiOz
Si02xP20sxMnO
Si02xP20s5xFe20s
Si02xP205xS/N
Si02xP20OsxTemperature
P20sxMnO

-0.255
-0.462
0.552
-0.428
-0.454
0.009
-0.032
0.664
0.184
-0.058

-0.193
-1.428
1.215
-1.563
-1.622
-0.031
-0.134
1.101
0.631
-0.012

Si02xTiO2?
Si02xTiO2xMnO
Si02xTi02xFe203
SiO2xTi02xS/N
SiO>xTiO2xTemperature
SiO2xTiO2xN/B
SiO2xTiO2xW/B
Si02xMn0O?
Si02xMnOxFe203
Si02xMnOxS/N

0.151
-0.257
-0.230
1.522
-0.338
4313
-0.733
0.015
-0.036
0.228

0.284
-0913
-0.838
3.028

-0.930
6.139
-0.762
-0.006
-0.074
0.481
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APPENDIX B - PARAMETERS OF THE MULTIVARIATE POLYNOMIAL
REGRESSION MODEL FOR COMPRESSIVE STRENGTH

Parameter Value Parameter Value
Intercept -5.211E+11 SOs x Fe20s 1.142E+10
AlOs 7.728E+10 SOs x S/N -4.548E+00
SiO: 2.796E+11 SOs x Temperature 2.805E+09
P20s -1.505E+11 SOs x N/B 4.744E-01
SOs 1.838E+11 SOs x W/B 9.793E+00
Cl -2.518E+11 CP 3.359E+12
K-0 2.693E+11 Cl x K0 4.677TE+11
CaO -3.765E+11 Cl x CaO -1.299E+12
TiO: -8.061E+11 Cl x TiO2 -2.582E+12
MnO 9.095E+09 CI x MnO 4.214E+11
Fe20s 7.909E+10 Cl x Fe20s 5.526E+11
S/N 3.968E+00 Cl x S/N 5.480E+00
Temperature 5.567E+10 Cl x Temperature 1.499E+11
N/B 2.142E+00 Clx N/B -1.877E+01
W/B -4.788E+00 Clx W/B 1.889E+01
AlLO5? -5.654E+10 K-0? 7.480E+09
ALOs x SiO2 -1.553E+10 K20 x CaO 2.869E+09
ALO; x P20Os 5.720E+10 K20 x TiO: -8.124E+10
AlOs x SOs 9.901E+10 K20 x MnO 1.706E+11
AlLOs x Cl 5.983E+11 K20 % Fe20s -2.601E+10
ALOs x K20 -2.554E+09 K20 x S/N -6.955E+00
Al0Os x CaO -6.697E+10 K20 x Temperature 7.45TE+09
AlLOs x TiO: 4.904E+10 K20 x N/B -5.975E+00
Al:Os x MnO -4.332E+11 K20 x W/B 9.602E+00
ALOs x Fe20s -2.940E+10 Ca0? 3.032E+10
AlLOs x S/N -8.617E+00 CaO x TiO2 1.409E+11
Al0s x Temperature 4.214E+10 CaO x MnO -3.817E+11
AlLOs x N/B -1.219E+00 CaO x Fe:0s 1.167E+11
ALOs x W/B 6.434E+00 CaO x S/N -1.430E+01
SiO2? -1.163E+10 CaO x Temperature 1.474E+10
SiO2 x P20s 6.955E+10 CaO x N/B -3.724E+00
SiO:2 x SOs -2.449E+10 CaO x W/B 7.921E+00
SiO: x Cl 8.632E+11 TiO2? 9.839E+09
SiO:z x K20 1.474E+10 TiO2 x MnO -1.927E+11
SiOz x CaO 6.541E+10 TiO:2 x Fe20s 8.631E+10
SiO:z x TiO: 3.539E+11 TiO2 x S/N -8.701E+00
SiO2 x MnO -5.332E+11 TiO: x Temperature -9.048E+09
SiO: x Fe:0s 6.770E+10 TiO: x N/B 1.079E+01
SiO2 x S/N -7.369E+00 TiO2 x W/B -4.220E+00
SiO: x Temperature -7.115E+09 MnO? -1.882E+11
SiO:2 x N/B -1.349E+01 MnO x Fe20s -3.486E+11
SiO2 x W/B 3.400E+01 MnO x S/N -3.601E+00
P20s? -6.601E+10 MnO x Temperature -1.220E+10

P205 x SOs -4.400E+10 MnO x N/B -1.144E+01



P20s x Cl
P20s x K20
P20s x CaO
P20s x TiO:
P20s x MnO
P20s x Fe20s
P20s x S/N

P-Os x Temperature
P20s x N/B
P.0s x W/B

SOs?

SOs x Cl

SOs x K20

SOs x CaO

SOs x TiOa
SOs x MnO

-4.421E+11
1.803E+11
1.422E+11
1.640E+11
2.730E+11
1.409E+09

-3.328E+00
4.977E+10

-1.536E+01
4.561E+00
-6.847E+09
3.357E+11
3.447E+10
6.064E+10
3.824E+10
1.601E+11

MnO x W/B
Fe205?

Fe.03 x S/N
Fe20; x Temperature
Fe.03 x N/B
Fe.03 x W/B
S/N?

S/N x Temperature
S/N x N/B
S/N x W/B
Temperature?
Temperature x N/B
Temperature x W/B
N/B?

N/B x W/B
W/B?
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4.453E+01
1.337E+11
-2.208E+00
-1.492E+10
-4.395E+00
5.331E+00
-2.789E+00
-2.115E+00
-1.529E+00
3.395E-03
-1.105E+01
5.450E+00
5.858E+00
-3.932E+00
-7.725E-01
3.310E+00




