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“For people without disabilities, technology
makes things easier. For people with disabili-
ties, technology makes things possible.”

(Mary Pat Radabaugh)



ABSTRACT

Recent advances in artificial intelligence, particularly in large language models (LLMs), have
opened up new possibilities for automating software development tasks, including code genera-
tion for mobile applications. This study explores the capabilities of LLMs, such as ChatGPT, in
improving the accessibility of native Android applications. It examines whether LLM-generated
code conforms to established accessibility standards, taking into account different screen lay-
outs, prompt formulations, and interface generation strategies. Four studies were conducted
to evaluate the accessibility of seven types of mobile interfaces. The first study analyzed the
accessibility of mobile application screens created using a variety of layout strategies. In con-
trast, the second study focused specifically on Jetpack Compose and compared the output of
several LLMs. The third study examined whether creating screens with English prompts affected
accessibility. Finally, the fourth study used an LLM code assistant. A total of 702 accessibility
issues were identified in all studies. Jetpack Compose consistently outperformed other layout
approaches, and English prompts resulted in fewer issues. Interestingly, prompts that explicitly
requested accessibility often resulted in more errors, suggesting that LLLMs face challenges in
correctly interpreting and implementing accessibility requirements. These findings highlight
the importance of refining prompt strategies and LLM outputs to reduce the risk of accessibility

errors in Al-generated mobile app code.

Keywords: large language models; mobile apps; accessibility; mobile accessibility.



RESUMO

Os avangos recentes na inteligéncia artificial, particularmente em modelos de linguagem de
grande escala (LLMs), abriram novas possibilidades para automatizar tarefas de desenvolvimento
de software, incluindo a geracdo de cédigo para aplicativos méveis. Este estudo explora as
capacidades dos LLMs, como o ChatGPT, em melhorar a acessibilidade de aplicativos Android
nativos. E examinado se o cédigo gerado por LLMs estd em conformidade com os padrdes
estabelecidos de acessibilidade, levando em consideracao diferentes layouts de tela, formulagdes
de prompts e estratégias de geracao de interfaces. Quatro estudos foram realizados para avaliar a
acessibilidade de sete tipos de interfaces méveis. O primeiro estudo analisou a acessibilidade das
telas de aplicativos moveis criadas usando uma variedade de estratégias de layout. Em contraste,
o segundo estudo focou especificamente no Jetpack Compose e comparou os resultados gerados
por varios LLMs. O terceiro estudo examinou se a criacdao de telas com prompts em inglés
afetava a acessibilidade. Por fim, o quarto estudo utilizou um LLM assistente de cédigo. Um
total de 702 problemas de acessibilidade foram identificados ao longo de todos os estudos. O
Jetpack Compose superou consistentemente outras abordagens de layout, e os prompts em inglés
resultaram em menos problemas. Curiosamente, prompts que solicitavam explicitamente a
acessibilidade frequentemente resultaram em mais erros, sugerindo que os LLMs enfrentam
desafios ao interpretar e implementar corretamente os requisitos de acessibilidade. Esses achados
destacam a importancia de refinar as estratégias de prompt e os resultados gerados pelos LLMs

para reduzir o risco de erros de acessibilidade no c6digo de aplicativos moveis gerado por IA.

Palavras-chave: large language models; aplicagcdes moveis; acessibilidade; acessibilidade

movel.
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1 INTRODUCTION

The rapid evolution of Artificial Intelligence (AI) has driven significant advances in
the development of Large Language Models (LLMs), such as the widely known GPT (OPENALI,
2024). LLMs are neural networks trained to understand, generate, and manipulate natural
language in a wide range of tasks, including translation, summarization, question answering, and
content creation. These models are characterized by their substantial size and their ability to
detect intricate linguistic patterns from large amounts of text data.

LLMs have shown an extraordinary ability to produce human-like text, enabling
them to assist in numerous tasks, from content generation and customer service to software
development (HOU et al., 2024; ZHANG et al., 2020; CHEN et al., 2021). One particularly
promising application of LLMs is code generation, which has the potential to transform how
software applications (e.g., mobile, web) are developed (SIDDIQ et al., 2022; SVYATKOVSKIY
etal.,2020; LIU et al., 2024; L1 et al., 2024).

Recent studies indicate that the software development landscape is undergoing a
notable transformation, driven by the increasing adoption of LLM-powered code assistant tools
(e.g., GitHub Copilot). These tools and the LLMs themselves are now widely used by the
majority of developers (MOWAR et al., 2025). They have proven valuable in automating
specific coding tasks, allowing developers to focus on more complex and creative work while
substantially reducing development time and potentially minimizing human effort (GAO et al.,
2025; MOWAR et al., 2025; PENG et al., 2023; GOTTLANDER; KHADEMI, 2023).

However, despite these promising capabilities, the use of LLMs in generating code
raises important questions about the quality of the code (e.g., correctness, readability, and
maintainability) (DILLMANN et al., 2024; FAN et al., 2023; SIDDIQ et al., 2022; SPIESS et
al., 2024), as well as the accessibility of the resulting software (ALJEDAANI et al., 2024; SUH
et al., 2025).

In this context, accessibility refers to the ability of software to be used by all
individuals, including those with disabilities such as visual, auditory, or motor impairments. The
importance of accessibility in software development is underscored by ethical considerations
and legal obligations, including those outlined in Americans with Disabilities Act (ADA) (U.S.
Congress, 1990) and Web Content Accessibility Guidelines (WCAG) (W3C, 2023).

Given the growing reliance on LLMs, it is critical to examine whether mobile

applications developed using LLM-generated code comply with current accessibility standards.
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Previous studies have shown that mobile accessibility is often overlooked during the development
process, creating barriers for users with disabilities (ZAINA et al., 2022; SERRA et al., 2015;
PEREIRA et al., 2024; OLIVEIRA et al., 2023; ALSHAYBAN et al., 2020; LEITE et al., 2021).
Moreover, there is a lack of detailed and specific feedback from Persons with Disabilities (PwDs)
(OLIVEIRA et al., 2023). Moreover, LLMs may not inherently prioritize accessibility unless
explicitly instructed to do so, potentially exacerbating existing issues in inclusive software.

In addition, today’s LL.Ms have been observed to have language bias and often
exhibit suboptimal performance in code generation tasks when instructed in languages other
than English (WANG et al., 2024a; KOYANAGI et al., 2024). In addition, these models often
face challenges in capturing equivalent semantic meanings when natural language prompts with
the same intent are expressed in different languages (PENG et al., 2024; HELLAS et al., 2023;
JORDAN et al., 2024).

1.1 Main Goal

To the best of our knowledge, no previous study has evaluated the accessibility of
LLM-generated mobile screens, a crucial aspect of mobile app development. Although recent
literature has begun to address accessibility in LLM-generated code for web applications (AL-
JEDAANI et al., 2024), the mobile domain remains unexplored. Given the increasing use of
LLMs to support mobile application development, it is essential to assess whether the content
generated by these models adheres to accessibility standards for users with disabilities.

This research aims to fill this gap by systematically analyzing the accessibility of
native Android interfaces generated by LLMs. Throughout this study, the term interface refers
specifically to the User Interface (UI), the graphical and interactive components with which users
engage. It is important to clarify that the scope of this study is limited to evaluating the responses
generated by LLMs, and does not extend to other aspects of mobile application development

such as the underlying framework or hardware compatibility.

1.2 Research Questions

To achieve the objective of this research, four research questions were formulated.
These questions aim to explore key aspects of the accessibility of LLM-generated mobile screens,

focusing on both the general accessibility level and the specific effects of various parameters,
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such as prompt formulation and consistency of results. The questions are designed to assess how
well LLM-generated code meets accessibility standards and to explore potential improvements
for more inclusive development practices.
e RQ1 - What is the accessibility level of the screens generated by LLMs for native
Android?
e RQ2 - What is the accessibility level of the screens generated by LLMs for native
Android, when accessibility is required in the prompt?
e RQ3 - Are the elements of the codes generated by the LLLMs in the requested
language?

e RQ4 - Is there a variation in accessibility levels when repeating the same prompt?

1.3 Master Thesis Organization

To address these research questions, four studies were conducted to evaluate the
accessibility of seven different types of mobile interface. The first study assessed how various
layout strategies affect the accessibility of mobile app screens. The second study focused on
Jetpack Compose, comparing the screen output of multiple LLLMs. The third study examined how
English-language prompts influence the accessibility of generated interfaces. Finally, the fourth
study explored the effectiveness of an LLM-powered code assistant in generating accessible
mobile screens.

The remainder of the thesis is structured as follows: Chapter 2 provides detailed
information on research focusing on the accessibility of mobile applications, LLMs, and some
related work. The subsequent chapters, Chapter 3, detail the methodological framework and
research questions. Subsequently, Chapters 4, 5, and 6 detail the steps and methods used
to evaluate the accessibility of LLM-generated screens. Finally, Chapters 7 and 8 present a
discussion of the research questions involved in the investigation and the final considerations

regarding the implications of these findings.
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2 BACKGROUND

This chapter presents the background relevant to this research. It is divided into
four sections. First, Section 2.1 discusses the topic of mobile accessibility, focusing on design
principles, common challenges, and current studies. Then, Section 2.2 explores the role of
LLMs in software development, with emphasis on their capabilities and limitations. Section 2.3
examines existing literature related to the intersection of LLMs and accessibility, especially in

the context of code generation. Finally, Section 2.4 presents a brief conclusion of this chapter.

2.1 Mobile Accessibility

According to the World Health Organization (WHO)!, an estimated 1.3 billion
people, about 16% of the global population, currently experience significant disability. As
highlighted in its latest report on vision (WHO et al., 2019), it is estimated that more than 2.2
billion people have some form of visual impairment.

Mobile accessibility for People with Visual Impairments (PVI) is based on assistive
technologies built into smartphones, such as Android’s TalkBack?, which provides auditory
feedback for elements of the user interface. With TalkBack enabled, interface elements are
outlined with a focus box, and the device narrates their content. Instead of typical touch
interactions, users rely on gestures to navigate. Modern tools also provide additional features
such as font customization, color filters, and screen magnification.

To ensure these accessibility tools function properly, applications need to follow
specific standards and provide alternative content, such as proper markup, with descriptions that

match the context and accessibility needs (CHEN et al., 2022).
2.1.1 Mobile Accessibility Principles

To assist developers and designers of mobile apps, accessibility guidelines have been
created in both industry (e.g., Android Accessibility Guidelines®) and academia (BALLANTYNE
etal.,2018). These are primarily inspired by the WCAG, covering a range of accessibility aspects,
including UI design, control visibility, alternative text for images and other Ul elements, as well

as navigation and interaction, aiming to ensure accessible apps for everyone.

https://www.who.int/health-topics/disability
https://support.google.com/accessibility/android/answer/6283677 ?hl=pt-br
https://developer.android.com/guide/topics/ui/accessibility

2
3
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In addition to the Android Accessibility Guidelines, the Material Design 3* website
also mentions the main accessibility issues and how to work around them. One of the most
common is low contrast, which is the difference in brightness between the color of the text and
the color of the background behind the text. Contrast ratios represent how different one color is
from another color; the greater the difference between the two numbers, the greater the difference
in relative luminance between the colors. In general, elements should have a contrast ratio of
3:1, and elements that have low contrast are a hindrance to PVIs using the applications. Figure 1
shows two examples of sufficient and insufficient contrast.

Figure 1 — Examples of elements with sufficient and insufficient contrast.
‘EL IVimnules ueiuvi e ‘EL Jinmuwgs veiuie

6 guests
3 yes, 1no, 2 maybe

6 guests
3 yes, 1no, 2 maybe

Q)
=1 ]

o)
[===1 ]

Yes No Maybe
Passes 3:1

Each button's container color has Each button's container color has
less than Material's required contrast of at least 3:1 against the Ul
minimum contrast of 3:1 against the background, leading to better
Ul background, leading to poor contrast support for users with low
contrast support for users with low vision
vision

Source: https://m3.material.io/foundations/designing/color-contrast

Touch target size is an issue that affects users who cannot see the screen or who
have difficulty tapping small touches on items in your application. For example, an icon may
appear to be 24 x 24dp, but the padding surrounding it includes the full 48 x 48dp touch target.
In general, it is recommended that the touch targets be at least 48 x 48dp. Figure 2 shows an
example of how to make an icon with good touch target sizes.

Another very common problem is the absence or inadequacy of descriptive labels on

screen elements. Accessibility labels assist users who cannot rely on a product’s visual interface

4 https://m3.material.io/foundations/overview/principles
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Figure 2 — Examples of good touch target sizes for elements.

48 48 48 48 48
 — : N X | .
48| & v B
— — —
24 24 24 24 40

Source: https://m3.material.io/foundations/designing/structure

and should concisely describe an element’s content, purpose, and behavior. Figure 3 shows how

the elements on the screen can be correctly described.

Figure 3 — Example of how describe elements.

i 3
Accessibility label Accessibility label
Voice search Microphone
Role Role
Button Button
Y Y

Don't include the element type (button,

The label “voice search” describes menu, etc.) in your label. This will
the user task (search) paired with the automatically be added by assigning the
input method (voice) element the proper role.

Source: https://m3.material.io/foundations/designing/elements

The hierarchy of information is fundamental for efficient navigation in an application.
When navigation is clear, users can easily understand where they are and what is important.
In order for the screen reader to read the content in the desired order, it is important that the
elements on the screen also have a hierarchy. Figure 4 shows what a good hierarchy of screen

elements looks like.

There are other accessibility issues, such as the lack of alternative text for images,
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Figure 4 — Example of good hierarchy of elements.

Daily podcasts

S S D D S R S .

Get your week going

An example of how content hierarchy in a screen can be
identified in a logical reading order to optimize for the ways
assistive tech, such as screen readers, may interpret
information

Source: https://m3.material.io/foundations/designing/structure

and decorative icons and images that do not improve the experience for a PVI should be marked
as decorative to hide them in the code. Therefore, text should be wrapped when it is critical to
ensure comprehension or when there is space in the component. If long strings of enlarged text
will not fit on a screen, consider adding a vertical scrollbar to provide access to more content.
In the current market, there are already free tools available to evaluate the acces-
sibility of mobile applications. These include Accessibility Scanner’ for Android and Xcode
Accessibility Inspector® for iOS. In addition to these, the authors have developed proprietary
tools to access accessibility, and all of such tools have been successful in identifying errors

(ALSHAYBAN et al., 2020; CHEN et al., 2022; ELER et al., 2018; SWEARNGIN et al., 2024).

> https://play.google.com/store/apps/details?id=com.google.android.apps.accessibility.auditor
6 https://developer.apple.com/accessibility/
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2.1.2 Mobile Accessibility Studies

Despite these efforts, unfortunately, the accessibility reality in mobile applications
remains unsatisfactory (VENDOME et al., 2019; ALSHAYBAN et al., 2020; CHEN et al.,
2022; LEITE et al., 2021). Accessibility errors are prevalent across various categories of apps,
from Internet of Things (IoT) applications (e.g., Amazon Alexa) (MARTINS et al., 2022; TAZI
et al., 2023), banking apps (LOPES et al., 2022; KAMESWARAN; MURALIDHAR, 2019),
government apps (SERRA et al., 2015), and even in Figma’s templates designed for mobile apps
(MUNIZ et al., 2024).

Obviously, this also happens with popular apps, and a study by (ANDRADE et
al., 2024) evaluated eight popular Android apps, through different tasks and in three different
languages: Portuguese, English, and Spanish. The result showed a total of 2,355 accessibility
errors, with the Spanish tests showing the most errors (828). Figure 5 shows an example of

low-contrast and touch area size issues found in the SoundCloud app’s home screen.

Figure 5 — Example of Low Contrast and Touch Area Size Issues in the ANDRADE et al. study.
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These issues even occur in open source apps, VENDOME et al. investigated a set of
13,000 Android apps with code on GitHub. They showed that 46.25% of them had at least 50%

visual elements without descriptions. 5,107 had all content descriptions empty.
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Other authors manually evaluated the accessibility of 248 [oT apps from the Play
Store (TAZI et al., 2023). They found that only two apps had no accessibility errors and more
than 80% of the apps had errors related to missing names and descriptions of items and/or images.
Other studies with IoT apps (MARTINS et al., 2022; OLIVEIRA et al., 2016) show similar
results. Figure 6 shows low contrast and missing label issues in the Amazon Alexa, LG ThinQ,

and RSmart apps.

Figure 6 — Example of Low Contrast and Missing Labels Issues in the MARTINS ez al. study.
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In a different approach, MUNIZ et al. built applications from ten widely used Figma
templates and evaluated their accessibility. They discovered 738 accessibility issues, with an
average of 7.61 errors per screen, and all templates had problems. Figure 7 shows an example of
low-contrast issues identified in one of the templates.

Studies (ALSHAYBAN et al., 2020; LEITE et al., 2021; SANTOS; BRANCO,
2024), following surveys with mobile developers, attribute these accessibility issues to the
limited knowledge of guidelines and the infrequent consideration of accessibility in app projects.
Developers also pointed out the inappropriate use of development tools that often overlook
accessibility. In addition, the application templates provided by Android Studio itself have
accessibility issues, some of which are severe (ALSHAYBAN et al., 2020).

Since the codebase of existing mobile applications available on the Internet tends to
have accessibility issues, one of the hypotheses of our research is that these errors are reproduced

by generative models trained with this codebase.
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Figure 7 — Example of Low Contrast Issues in the MUNIZ et al. study.

Source: (MUNIZ et al., 2024)

2.2 Large Language Models (LLMs)

Large Language Models (LLMs) are advanced Al systems trained on vast text
datasets to understand and generate human language. These models form the foundation for
a wide range of tools that enable advanced language processing tasks, such as text and image
generation (BROWN ef al., 2020). When users interact with LLM, their input is tokenized,
analyzed, and processed by the model, which predicts the most likely response based on the
patterns learned (VASWANI et al., 2023). This process allows LLLMs to generate coherent and
contextually relevant output on a broad spectrum of topics, including mobile code and screen
descriptions.

Currently, the most well-known LLMs include GPT-3.5 (OPENALI, 2020) and GPT-
40 (OPENALI, 2023), both developed by OpenAl. GPT-3.5, with 175 billion parameters, is
recognized for its ability to generate and comprehend text. Meanwhile, GPT-40 promises to
provide more accurate and coherent responses, with improved understanding of complex contexts.
Following the success of ChatGPT, other companies have started releasing and promoting their
own LLM. For example, Google has developed Gemini’, which aims to enhance human-machine

interaction by leveraging Google’s infrastructure. Another example is Llama®, from Meta, an

https://gemini.google.com

8 hittps://llama.meta.com
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open source LLM.

Furthermore, the Brazilian company Maritaca Al has developed the Sabid model
(MARITACAALI, 2024), which is specifically trained to understand and generate text in Por-
tuguese with high precision (PIRES et al., 2023). This reflects significant progress in adapting
LLMs to specific languages, contributing to improved accessibility and effectiveness of Al in

regional linguistic contexts.

2.2.1 LLMs in Software Development

LLMs have an immense potential to help in software development (LI et al., 2024).
These models can automate various repetitive tasks, such as code generation, documentation,
and testing processes (CHEN et al., 2021; WANG et al., 2024b; TIAN et al., 2023; LI et al.,
2022). With their ability to understand natural language, LLLMs enable developers to interact
more intuitively with tools, increasing productivity, and facilitating the exploration of new ideas
and creative approaches in software development.

Peng et al. (2023) conducted a trial in which programmers were assigned with
implementing an HTTP server in JavaScript. The treated group had access to GitHub Copilot
and a brief instructional video, while the control group had to rely on Internet search and Stack
Overflow. The results indicated that the treated group completed task 55.8% faster, with a
confidence interval of 21-89%. Performance gains were particularly pronounced among less
experienced developers, older programmers, and those who programmed more hours per day.

In a similar vein, a study by Mowar et al. (2025) evaluated a custom GitHub Copilot
extension that suggested accessibility-compliant code. The controlled study with 20 novice
developers showed the extension’s effectiveness in reinforcing accessibility practices, guiding
developers through the process.

However, research has also identified some drawbacks to using LLMs in software
development (ZHONG; WANG, 2024; WANG et al., 2024c; TANG et al., 2024; GAO et al.,
2025). For example, Zhong and Wang (2024) demonstrated that LLMs’ answers to real-world
Java coding questions frequently suffer from API misuse issues. Furthermore, Gao et al. (2025)
discusses several challenges within the new software development paradigm that relies on LLM-
based assistance, particularly in areas such as requirements, design, coding assistance, and code
review.

In addition, Wang et al. (2024c) conducted a user study with 56 participants, who
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were randomly assigned to two groups to perform two development tasks. The first task involved
solving two simple coding puzzles, while the second required fixing two real-world bugs from
small-scale open-source projects. In Task 1, LLMs showed competence in handling well-defined
and straightforward problems. However, in Task 2, they exhibited notable deficiencies in
understanding complex tasks and multi-turn interactions.

Furthermore, current LLMs often face difficulties in generating source code based on
instructions in languages other than English. They struggle with capturing equivalent semantics
across different languages, especially when the prompts have the same intent (WANG et al.,
2024a; KOYANAGI et al., 2024; PENG et al., 2024; HELLAS et al., 2023; JORDAN et al.,
2024).

Although there are many efforts to develop LLMs tuned for specific languages such
as Arabic (AL-AZANI et al., 2024) (AraBERT and MARBERT), Chinese (HU et al., 2024)
(Ernie and Ziya), French (BRETON et al., 2024) (CamemBERT), and Portuguese (PIRES
et al., 2023) (Sabia-3). Few studies have evaluated the effectiveness of prompt source code
generation in languages other than English, especially when focusing on the development of
mobile applications.

Despite these challenges, the potential for LLMs to transform software development
remains strong. As advancements continue to address limitations in multilingual code generation
and task complexity, LLMs hold the promise of making the development process more efficient,

creative, and accessible, bridging language gaps in the global software ecosystem.

2.2.2 Prompt Engineering

Prompt engineering is the strategic design of natural language instructions to guide
LLMs to produce accurate, relevant, and safe output (SAHOO et al., 2025; TONMOY et al.,
2024; CHEN et al., 2025). Well-designed prompts allow pre-trained models to be applied to a
wide range of tasks without the need for fine-tuning, making them highly adaptable and efficient
(SAHOO et al., 2025).

In addition, prompt engineering plays a central role in improving model safety and
fairness. Optimized prompting techniques can help mitigate bias and improve the generalizability
of LLMs in different domains (XU et al., 2024). Furthermore, prompt formulation significantly
influences task success and that understanding model behavior through prompting is critical for

responsible Al development (REYNOLDS; MCDONELL, 2021).
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Several techniques have been developed to enhance the effectiveness of prompts

when interacting with LLMs:

Zero-Shot Prompt: In this approach, the model is asked to perform a task
without giving any prior examples. Its performance relies entirely on knowledge
acquired during pre-training. For instance, requesting “Translate to French:
‘Good morning™” without examples is a zero-shot prompt (BROWN et al., 2020).
Few-Shot Prompt: This technique involves including a few input-output exam-
ples within the prompt to help the model learn the task format. It is particularly
useful in domain-specific tasks such as translation or text classification (BROWN
et al., 2020).

Chain-of-Thought (CoT): A prompting technique that encourages the model to
generate a step-by-step reasoning path to solve complex problems, improving
performance on logical and multi-step tasks (WEI et al., 2023).

In-Context Prompt: Refers to the model’s ability to temporarily learn from
the examples provided within the prompt itself, without requiring any retraining.
This concept underpins zero-shot and few-shot prompting (BROWN et al., 2020).
Prompt Injection: A method in which manipulated or adversarial inputs are
inserted into a prompt to alter the output of the model. While it can be used for
personalization, it also raises concerns about the security and reliability of the

model (PEREZ; RIBEIRO, 2022).

Prompt engineering has been widely applied in various sectors. In content creation,

personalized prompts make it possible to control the style, tone, and structure of texts, facilitating

the production of materials that are aligned with specific needs (OPPENLAENDER et al.,

2024). In addition, prompt engineering is increasingly important for Al security. Robust prompt

design is critical for maintaining the integrity of Al systems in real-world deployments (PEREZ;

RIBEIRO, 2022).

Despite its potential, prompt engineering faces challenges, such as the need for a

deep understanding of the model and the constant evolution of techniques. However, as research

continues to advance and specialized tools are developed, prompt engineering is expected to

become an increasingly accessible and essential skill for professionals working with generative

AL
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2.3 Related Work

To the best of our knowledge, no research has evaluated the accessibility of LLM-
generated mobile app interfaces. However, it should be noted that a significant number of studies
are published daily on the use of LLMs for code generation and developer support, as seen in
work such as (ZHONG; WANG, 2024; TANG et al., 2024; WANG et al., 2024c), including in
the context of Android development (VASILINIUC; GROZA, 2023). In general, these studies
indicate that LLMs have the potential to assist in software development, but the code generated
by these models cannot be fully trusted.

In the specific context of accessibility, some studies (ALJEDAANI et al., 2024;
OTHMAN et al., 2023; DELNEVO et al., 2024) have investigated the topic in relation to the use
of LLLMs, although limited to the accessibility of Web applications. For example, Aljedaani et al.
(2024) evaluated the accessibility of the code of ChatGPT-generated Web applications with the
assistance of 88 Web developers. Most of the websites (84%) exhibited significant accessibility
issues, with more than 700 issues identified using two accessibility checkers.

Suh et al. (2025) present an empirical study that compares the accessibility of web
code generated by GPT-40 and Qwen2.5-Coder-32B-Instruct AWQ against human-written code.
The results of this study indicate that LLMs frequently generate code that is more accessible,
particularly in basic features such as color contrast and alternative text. However, LLLMs face
challenges on complex issues, including ARIA attributes. The study also examined the impact of
prompting techniques (e.g. Zero-Shot, Few-Shot, and Self-Criticism) on accessibility, finding
that prompts consistently yielded code with reduced accessibility issues.

Another study, by Othman et al. (2023), used ChatGPT to identify and correct
accessibility issues on two selected websites, one in English and the other in Arabic. Of the 39
identified errors, the LLM was able to correct 37, achieving a success rate of 94%. Furthermore,
the results showed that the LLM can automatically resolve a substantial number of issues,
reducing manual effort.

Finally, Delnevo et al. (2024) also used ChatGPT to identify accessibility issues in
HTML snippets. The elements evaluated included HTML forms, tables, and images. Similarly to
the previous study (OTHMAN et al., 2023), the results demonstrated that LLM can automatically
fix a significant number of issues but requires human oversight.

The last two studies (OTHMAN et al., 2023; DELNEVO et al., 2024) focus on the

ability of LLMs to assess and solve accessibility issues of Web apps. In contrast, another study
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(ALJEDAANI et al., 2024; SUH et al., 2025) specifically evaluates the accessibility of the code
generated by LLM. Our research shares a similar objective, but with a focus on exploring the

accessibility of code generated by LLMs to create mobile interfaces on Android devices.

2.4 Chapter Synthesis

This chapter has provided an overview of mobile accessibility, the role of LLMs in
software development, and related research on accessibility in Al-generated code. While LLMs
demonstrate potential in automating and improving coding tasks, especially for web platforms,
their capabilities in mobile accessibility remain largely unexplored.

Table 1 summarizes key studies that have assessed the accessibility of LLM-generated
Web applications. These findings underscore both the promise and the current limitations of

generative models in producing accessible interfaces.

Table 1 — Summary of Related Work

Research Result

84% of the websites exhibited accessi-
bility issues, with more than 700 issues
identified.

Aljedaani et | Evaluated the accessibility of Web app
al. code generated by ChatGPT.

LLM can automatically fix a significant
number of issues, but requires human
oversight.

Utilized ChatGPT to identify accessibil-

Delnovo et al. ity issues in HTML snippets.

Othman et al.

Utilized ChatGPT to identify and correct
accessibility issues in two selected web-
sites.

LLM was able to correct 37 of 39 issues,
achieving a success rate of 94%.

Suh et al.

Compared the accessibility of web code
generated by GPT-40 and Qwen2.5-
Coder-32B-Instruct AWQ  against
human-written code.

Source: Prepared by the author.

LLMs frequently generate code that is
more accessible in basic features, how-
ever encounter challenges in complex is-
sues.

Building upon this background, our research extends these efforts by focusing on
mobile applications. Specifically, we investigate the accessibility of LLM-generated Android

interfaces.
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3 METHODOLOGY

This chapter outlines the methodological approach used to investigate whether the
LLM-generated code produces accessible mobile user interfaces. We begin by defining the
research objectives and questions in Section 3.1. Section 3.2 details the process of selecting
representative screen types. Section 3.3 describes the procedures for generating applications,
performing accessibility evaluations and analyzing the results. We conclude the chapter with a

summary of the strengths and scope of the methodology in Section 3.4.

3.1 Research Goals

The objective of this research was to analyze whether the code proposed by LLM
for different types of mobile application screens ensures accessibility. The core of the study
involves simulating a developer requesting a screen example from an LLM and checking the
suggested code for accessibility issues. The idea behind this research is similar to other studies
(ALJEDAANI et al., 2024; WANG et al., 2024c; TANG et al., 2024) that assess the quality of
LLM code outputs.

To guide the research, we defined four research questions:

* RQ1 - What is the accessibility level of the screens generated by LLMs for native Android?
Rationale: This question evaluates the accessibility level of the screens generated by LLMs
for native Android. The answer to this question may indicate whether artificial intelligence
tools generate interfaces that meet accessibility requirements and whether improvements
are needed to ensure more inclusive access. The results could imply changes in the design
of Al systems to prioritize accessibility in their outputs.

* RQ2 - What is the accessibility level of the screens generated by LLMs for native Android,

when accessibility is required in the prompt?
Rationale: This question investigates whether including an explicit request for accessibility
in the prompt leads to improvements in the accessibility level of the generated screens.
The results may provide insight into the effectiveness of the instructions given to the model
and its ability to generate accessible screens under specific requirements, contributing to
the enhancement of user-Al interaction in accessibility contexts.

* RQ3 - Are the elements of the codes generated by the LLMs in the requested language?

Rationale: This question investigates whether the code elements generated by LLMs are
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in accordance with the requested language or if there are interpretation errors that may
compromise the quality or functionality of the screen. Understanding this dynamic is
important to validate the ability of LLMs to correctly translate user requirements into
appropriate code and can reveal limitations of the tools when it comes to generating code
in specific languages.

* RQ4 - Is there a variation in accessibility levels when repeating the same prompt?
Rationale: Consistency in output generation is a desirable feature in Al systems. This
question examines whether there are variations in the accessibility levels of the generated
screens when repeating the same prompt. If the outputs are inconsistent, this may indicate
flaws in the Al models or algorithms used, compromising the reliability and quality of the
automated development process. The answer to this question may provide insight into the
stability of LLMs, suggesting improvements or highlighting the need for greater control
over generated outputs to maintain consistent accessibility.

To address these questions, we structured our methodology into four studies, de-
scribed in Chapters 4, 5 and 6. Table 2 highlights the key differences between them. Both
studies follow the same procedure, and Figure 8 illustrates their common workflow. The first step
involved selecting the LLLMs to be used. The next step was choosing the screens to be requested
(e.g., Login, User Profile, Music Player).

It is important to note that there are multiple ways to build the same graphical
interface in native Android. The UI framework offers two paradigms: one based on XML !, and
another based on Jetpack Compose 2, where the interface is declarative and described directly
in the Activity’s code. Even after choosing a paradigm, various layout types can be used (e.g.,
Linear Layout, Constraint Layout, Column, Grid). These variations were considered during the
planning of the prompts.

Subsequently, the prompts were designed, executed, and their outputs analyzed. The
code was then extracted from the prompts and briefly modified to ensure a successful compilation.
An Android project was created containing the generated screens, resulting in a native mobile
application that included all the screens. Accessibility testing and analysis were performed on
the app screens using Google’s Accessibility Scanner®, which generated compliance reports.

Finally, we analyzed those reports to answer our research questions.

https://developer.android.com/develop/ui/views/layout/declaring-layout
https://developer.android.com/compose

3 https://play.google.com/store/apps/details
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Table 2 — Main differences between Studies.

User Interf:
Main goal ser tntertace LLMs
Approach

Analyzed the accessibility of mobile application
screen types generated by LLMs using various lay-

. Constraint Layout,
outs, such as the Constraint Layout, as well as frame- Y

Jetpack Compose

Study 1 | works for creating mobile interfaces (i.e., XML-based . ChatGPT-3.5
and Layout With-
approach and Jetpack Compose). The goal was to .
out Restrictions
evaluate how the output of each layout and frame-
work behaved in terms of accessibility.
Investigated the level of accessibility of the layout
i ChatGPT-3.5,
Study 2 Fhat presented the fewest errors .(1.e., Compose.). The Jetpack Compose
idea was to evaluate whether this layout was, in fact, ChatGPT-40
more accessible. and Sabi4-3
Evaluated the accessibility of mobile application
screens generated by an LLM using a prompt in En-
Study 3 glish. The objective of this study was to examine the Jetpack Compose | ChatGPT-4o

extent to which the LLM was capable of adapting
to language changes and generating screens that ad-
hered to accessibility standards.

Examined the accessibility of mobile application
screens generated by an LLM specifically trained
for code generation (e.g., GitHub Copilot). The focus
Study 4 | of this study was to evaluate the quality of accessi- | Jetpack Compose
bility in the generated screens, assessing whether a
code generation-oriented LLM could produce mobile
layouts.

GitHub Copi-
lot (GPT-40)

Source: Prepared by the author.

3.2 Screen selection

For the selection of the screens, we performed an exploratory visual examination
of the 50 most popular apps on the Google Play Store. We analyzed the types of screen these
apps most commonly featured and, based on this analysis, selected those we considered most
relevant. This selection was further informed by informal conversations with developers and
designers, who provided insights into which types of screens are generally viewed as important
or frequently requested during the development process.

The relevance criteria also included our assumption regarding the kinds of screens
that might interest both novice and experienced developers when interacting with an LLM. This
assumption was not grounded in a formal study, but rather in these informal discussions. We
recognize this as a limitation of our selection process.

In the end, seven types of screen were selected to be requested from the LLMs. Table

3 presents these types along with a description of the typical elements present in their graphical
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interfaces.

3.3 Materials and Methods

This section describes the procedures and resources used to develop and evaluate the

accessibility of the generated screens.

3.3.1 App Generation

To evaluate the accessibility of the LLM-generated screens, we developed a native
Android application project using Android Studio. The project served as a centralized platform
for organizing and testing all screen types under analysis.

For each LLM and different prompt languages, seven distinct APKs were generated,

one for each screen type, resulting in a total of 35 APKs across the entire research. This
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Table 3 — List of requested types of screen and their descriptions

Screen Type Description

The screen has fields for username/email and password, along with buttons

Login for “Log In” and “Forgot Password”.

The screen has fields for first name, last name, email address, password,
Registration Form date of birth, and gender. Additionally, it includes buttons for “Submit” and
“Cancel”.

The screen displays information about a product, including its name, de-
Product Details scription, price, and image. It also includes buttons to add to the cart or
favorites.

The screen has a profile picture, fields for personal information (e.g., first
View Profile name, last name, email, phone), and buttons for editing and saving. Addi-
tionally, it allows the user to update their information.

The player should include standard playback controls, such as buttons for
Music Player play/pause, skip forward, rewind, and a progress bar. It also includes a
playlist and displays information about the current song.

E-Commerce Side-| The menu contains navigation items such as “Home”, “Promotions”, “My
bar Menu Orders”, “My Cart”, “My Account”, and “Log Out”.

The screen has a list with at least three items, each containing a checkbox,

To-Do List a task, and a date. The list is organized in descending order by date.

Source: Prepared by the author.

approach ensured that each LLLMs outputs could be evaluated independently and fairly, without
contamination from outputs generated by other models or prompt configurations.

All APKs were built using the minimum SDK version 29 (Android 10, Q), ensuring
compatibility with the Accessibility Scanner and a wide range of contemporary devices. Mi-
nor modifications were made to the generated code to guarantee successful compilation (e.g.,
correcting missing imports or syntax issues). However, no semantic or structural changes were
introduced, which preserved the authenticity of the LLMs’ output for accurate accessibility

evaluation.
3.3.2  Accessibility Test

We used the Accessibility Scanner tool to evaluate applications. This Google tool
assesses the interface of the app during manual navigation and identifies accessibility issues.
Designed for developers and designers, it offers suggestions for improvement and generates
detailed reports, identifying issues with contrast, font sizes, and button labels. The definitions of

identified accessibility errors are available on the tool website®.

4 https://support.google.com/accessibility/android/faq/6376582 ?hl=pt-BR
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Table 4 describes the issues detected by the Accessibility Scanner in this research.
In addition, we include Context, which, while not classified as an error by the Scanner, is an

important consideration related to the language and contextual appropriateness of Ul elements.

Table 4 — Types of errors found by Accessibility Scanner and their descriptions.

Error Description

Related to the context or language of the element, such as missing language

Context . . . . .

indication for the interface or improper use of terms in a given context.

Indicates that a touch target (such as a button or link) is too small or too
Touch Target

close to other elements.

The contrast between text and background is insufficient, making reading
Contrast

difficult.

Interactive elements (such as buttons or links) lack proper descriptions for
screen readers.

Item Description

Text Size The text size is too small, making reading difficult.

Hidden or invisible text that may be problematic for screen readers, either

Hidden Text . X .
due to a lack of context or improper interpretation.

Interactive elements (such as buttons and input fields) do not have clear

Item Label labels, making it difficult to understand their purpose.

Item Type Label The type of an 1nteract'1ve item is th properly 1dc?nt1ﬁed, making navigation
difficult for users relying on assistive technologies.

Editable Ttem Label Edltz'lble.ﬁelds (such as form inputs) lz.lck clear .labels or proper descriptions,
making it harder to fill in the correct information.

Clickable Item A clickable item does not have a clear indication of its interactivity, making

it harder for users to identify it.

Source: Prepared by the author.

For example, Figure 9 highlights accessibility errors detected with the help of
the Accessibility Scanner. The tool visually identified text contrast errors and issues with
element labels on the login screens. Other studies (MARTINS et al., 2022; LOPES et al.,
2022; ANDRADE et al., 2024) have used the Accessibility Scanner as a testing tool to assess
accessibility.

The accessibility testing process was conducted by a single evaluator using a Galaxy
A54 5G smartphone. All tests were performed using the light theme of the smartphone. The
choice of the light theme aims to ensure that the results are more relevant and applicable
to the general public, as many users may not be familiar with dark themes or high-contrast
modes. Furthermore, it is important to note that during the tests, image contrast errors were not
considered. This decision was made because the use of certain images may lead to errors that do

not necessarily reflect the accessibility of the generated interface.
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Figure 9 — Two Login Screens Evaluated by the Accessibility Scanner. “Nome de usudrio” and
“Senha” mean username and password, respectively.

Nome de usudrio ou E-mail | A

Serlnha”. I ] ‘ ‘

queced a senha?

Esqueceu a senha? Clique aqui para recupera-la.

11 (0} < ! il W] <

Source: Prepared by the author.

3.4 Chapter Synthesis

This chapter describes the methodology used to assess the accessibility of LLM-
generated mobile Ul code. By defining clear research questions and systematically testing a
variety of screen types, layouts, and prompt formulations, the study provides a robust framework
to evaluate the behavior of LLMs in accessibility-sensitive contexts. The methodology takes
advantage of real-world examples and employs a well-established testing tool, ensuring reliability
and practical relevance. The next chapters present studies and discussions based on the four

studies designed using this methodological foundation.
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4 STUDY 1-LAYOUT TYPE

This chapter presents Study 1 of this research, which investigates how different
layout requirements influence the accessibility of the Android interface code generated by LLM.
Section 4.1 justifies the LLLM chosen in this study. In Section 4.2, we describe the design of
the prompts, including the layout variations and the two types of prompt objectives: with and
without accessibility requirements. Section 4.3 details the execution strategy, including how the
prompts were run and how the outputs were selected. The results of the accessibility analysis are
presented and discussed in Section 4.4. Finally, Section 4.5 summarizes the key findings of this

study.

4.1 LLM selection

ChatGPT-3.5, developed by OpenAl, was selected as the LLLM for this study due to its
robust ability to understand and generate natural language text, along with its strong performance
in producing functional and syntactically valid code. These features are particularly useful for
tasks that involve prompt-based code generation for user interfaces. In addition, it supports
a wide variety of programming languages and frameworks, including Android development,
making it a flexible and practical tool for developers.

At the time this research was initiated, ChatGPT-3.5 was the most popular and widely
used LLLM available. Its accessibility, being free to use and intuitive interface made it a common
choice among both experienced developers and novices. By selecting this model, our aim was
to simulate a realistic usage scenario that reflects how a typical user might employ an LLM for

mobile Ul generation in real-world settings.

4.2 Prompt Design

The first step in the design process was to determine the essential elements that
needed to be present on each screen, such as the structure and elements in the interface (e.g.,
which interface components are necessary on a Product screen). The next step was to clearly
structure the prompts so that the LLLMs could easily generate the required code.

Initially, we tested the prompts as continuous text, where everything that the screen
needed was mentioned. Then, we created a structured prompt in bullet points, where the

necessary items, such as the objective, restrictions, and screen elements, were clearly separated.
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After analyzing the first results, we chose the second prompt model, as its output was more
complete and suitable for compilation.

Finally, we determined that it would be crucial to understand how the LLLM adapts
to the native Android interface construction models and the various layout types available.
Therefore, for each of the 7 screen types, we created 3 prompts, each requiring a different layout,
as listed below:

e Chat-WR: layout without restrictions;
e Chat-CLR: Constraint Layout was explicitly required;
e Chat-JCR: Jetpack Compose was explicitly required.

Once the structure for the screen prompts was defined, two types of request were
made: an initial one not requiring accessibility on the screens (NReq) and another that explicitly
required accessibility (AccessReq). Figure 10 shows an example of a translated NReq prompt in
a Chat-JCR that requests a Product Details screen. For the other prompts, an additional restriction

was added that specifies the required layout type.

Figure 10 — Example of a Chat-JCR prompt requesting the “Product Details”.

Context: I am an Android mobile developer.

General Need: Help me develop a product detail screen for a native Android mobile
application.

Screen Design Elements: This screen should display detailed information about
a specific product, including its name, description, price, and image. Additionally,
include interactive elements such as buttons to add to the cart or favorites. It should
follow Material Design guidelines. Generate the texts for each element.

Constraints: Specify all the files needed to compile the code. Use Jetpack Compose.

Source: Prepared by the author.

The AccessReq prompt is simpler and is issued immediately after the NReq response.
We informed that the screen generated by NReq had accessibility issues (even before testing
it) and request its correction. The translated prompt is: “Rewrite the screen code to make
it accessible.” It is worth noting that all prompts were written in the native language of the
evaluators, Brazilian Portuguese (pt-BR). Although we provided some structure in the prompt,
NReq can be seen as the In-Context Prompt, which provides little context, task descriptions, and
initial text to generate usable code or responses from natural language input, often following a
"from scratch" approach without any contextual example (LI ef al., 2024), while the AccessReq
prompt can be seen as a zero-shot prompt. We considered that novice developers would likely

use this sort of approach.
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4.3 Prompt Execution

Once the prompts were defined, a structured approach was established to guide their
execution, taking into account the potential variability in the responses generated by the models.
To address this variability and ensure more consistent and reliable results, each prompt was
executed multiple times. Specifically, for each type of screen, the prompt was repeated three
times for each layout option, resulting in a total of nine prompt executions per screen.

Since both versions of each prompt were tested, one without explicit accessibility
requirements (NReq) and one with accessibility explicitly requested (AccessReq), the process
resulted in 18 generated versions for each screen. All generated outputs were carefully reviewed
to identify incomplete responses or missing interface elements that could compromise the
analysis.

Figure 11 illustrates how this execution strategy was applied to the Login screen. As
an example, Figure 12 shows a prompt with the NReq variation executed in ChatGPT 3.5. After
NReq execution, the AccessReq variation was submitted in the same conversational context, as

shown in Figure 13.

Figure 11 — Study 1 Prompt Execution Structure: Login Screen example

Normal Request
(NReq)

3 x Chat-WR

Without

o Accessibility Requested
Restrictions

(AccesReq)

Normal Request
(NReq)

== 3xChat-CLR
Login ; - Constraint Layout
Screen Required Accessibility Requested 18 Login
(AccesReq) E
sereen
versions
Normal Request
(NReq)
3 x Chat-JCR
Jetpack Compose o
Required Accessibility Requested

(AccesReq)

Source: Prepared by the author.
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Figure 12 — NReq prompt requesting the Product Details screen in ChatGPT-3.5. The translated
prompt is shown in Figure 10.

) You

Contexto: Sou desenvolvedor Android mobile.

Necessidade Geral: Me ajude a desenvolver uma tela de detalhes do produto para uma aplicagio
mével Android nativa.

Elementos de Design da tela: Esta tela deve exibir informagdes detalhadas sobre um produto
especffico, incluindo seu nome, descrigdo, prego e imagem. Além disso, inclua elementos
interatives, como botdes para adicionar ao carrinho ou favorites. Deve seguir os padrées do
Material Design. Gere os textos para cada elemento.

Restricdes: Indique todos os arquivos necessarios para compilar o cédigo e use Compose Jetpack.

ChatGPT
Para criar a tela de detalhes do produto para uma aplicagio mével Android nativa utilizando Compose

Jetpack e seguindo os padraes do Material Design, vocé precisara dos seguintes arquivos e codigos:

1. build.gradle (app level):

Certifique-se de que vocé tenha as dependéncias necessarias para o Jetpack Compose:

dependencies {
implementation "androidx.compose.ui:uiz1.6.8"
implementation "androidx.compose.material:material:1.@.
implementation "androidx.activity:activity-compose
// Outras dependéncias conforme necessario

2. ProductDetailScreen.kt:
Este é o arquivo que define a tela de detalhes do produto.
katlin

androidx.compose. foundation. Inage

androidx. compose. foundation. layout. *

Source: Prepared by the author.

Figure 13 — AccessReq prompt requesting an accessible Product Details screen in ChatGPT-3.5.
The translated prompt means: “Rewrite the screen code to make it accessible.”.

P You
Reescreva o cédigo da tela, de forma que ela fique acessivel

Claro, aqui esté o cédigo da tela de detalhes do produto com as correes para melhorar a

acessibilidade:

androidx.compose. foundation. Inage
androidx. compose. foundation. layout. *

t androidx.compose.material . *
androidx. compose. runt ime. *
androidx. compose. ui.Alignment
androidx. compose. ui.Modifier
androidx. compose. ui.res. stringResource

t androidx.compose.ui.res.painterResource
androidx. compose. ui.semantics. contentDescription
androidx. compose. ui.semantics. semantics
androidx. compose. ui. tooling-preview.Pre,

androidx. compose. ui.unit. dp

(productName: , productbescription: » productPrice:

Source: Prepared by the author.
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4.4 Results

In this first study with ChatGPT 3.5, prompts were generated for 126 screens (i.e., 7
x 18 versions). However, only 120 screens were evaluated; since for the “E-commerce Sidebar
Menu” screen in Chat-WR, ChatGPT had already provided a code using the Constraint Layout.

All of these screens were manually evaluated with the Accessibility Scanner. A
summary of accessibility error results by prompt type is presented in Table 5. The table also
indicates the number of errors identified, the average number of errors, and the total standard
deviation for each prompt.

Among the 120 screens evaluated, a total of 333 accessibility errors were identified,
with an average of 2.78 errors per screen. In particular, the prompts requiring accessibility
features (“AccessReq”) accounted for more errors (192) than those without accessibility require-

ments (“NReq”) (141).

Table 5 — Errors by type of prompt from Study 1.
NReq AccessReq Total

# ERRORS 141 192 333
MEAN ERRORS 2.35 3.2 2.78
STANDARD DEVIATION 2.17 3.54 2.96

Source: Prepared by the author.

For prompts specifically requiring Jetpack Compose, AccessReq generally produced
fewer errors compared to NReq. On two screens, AccessReq did not present accessibility errors.
However, in four out of seven screens, AccessReq was not effective in reducing accessibility
errors.

To analyze the difference between the two approaches, we compared the 60 prompts
generated with NReq to their corresponding “AccessReq” versions. Only 8 of the 60 prompts
showed a reduction in the number of errors. Applying a paired Student’s ¢-test (STUDENT,
1908) to these comparisons, we obtained the following results: ¢ = 2.406, p = 0.01926. The
result (p < 0.05) indicates that the differences are statistically significant.

Figure 14 shows the distribution of accessibility errors in the prompts for each type
of screen. Following the trend of the previous result, all the screens generated by the “AccessReq”
prompts have more errors than the “NReq” prompts, except for the “E-Commerce Sidebar Menu”
screen, which has the same number of errors.

Table 6 presents a heatmap detailing the number of accessibility errors found on the



Figure 14 — Accessibility Errors by Type of Screen and Prompts in Study 1.
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screens, classified according to the required layout approach. As explained, we do not have data

on the “E-Commerce Sidebar Menu” screen in Chat-CLR, as in Chat-WR, the screen was already

generated using the Constraint Layout. The “Registration” screen has the highest total number

of errors (91) and also presents the most errors in Chat-CLR and in general (56). Chat-CLR is

the layout approach with the highest total number of errors (138), followed by Chat-WR (132).

Only for the “Product” (16) and “To-Do-List” (19) screens did Chat-JCR exhibit more errors; for

the other screens, this layout approach resulted in the fewest accessibility errors.

Table 6 — Accessibility errors for each type of screen, categorized by layout approach, in Study

1.
LOGIN | PRODUCT | RECIS | TO-DD | propme | MUSIE | STOBAR | romaL
Chat-WR |5 eseg |18 |0 I T O T T s W
Chat-CLR | el 18| 2 S N S I T B
ChatJCR e Rea TS 19 T e e e A

Source: Prepared by the author.

Figure 15 shows a heatmap detailing accessibility errors by screen type, categorized

by different aspects of accessibility (e.g, Text Size, Contrast, I[tem Description). The most
common error identified was Contrast (171), which was the highest in four screens, while

Clickable Item (2) was the least frequent error.
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Figure 15 — Type of Accessibility errors for each type of screen in Study 1.
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Source: Prepared by the author.

Figure 16 shows a comparative analysis of the performance of ChatGPT-3.5 for each
type of layout in the seven types of screen. For each screen, the results of the three individual
attempts are displayed. Notably, Chat-CLR often registers higher AccessReq values, particularly
on the “Registration” screen, presenting one prompt with 12 errors, another had 6 or more, and

the third had 18 issues.

Figure 16 — Accessibility errors across layouts for each type of screens in each type of layout, in

Study 1.
LOGIN PRODUCT  REGISTRATION TO-DOLIST PROFILE  MUSIC PLAYER SIDEBAR MENU
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Source: Prepared by the author.
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Figure 17 shows a boxplot that illustrates the number of accessibility errors found in
all attempts for each layout investigated. It allows for a comparison of the performance of the
different layouts, highlighting both the consistency and variability in accessibility errors between
them. Chat-JCR showed less variation in the number of errors, while Chat-CLR had a higher

average number of errors with greater variability.

Figure 17 — Boxplot showing the number of accessibility errors across all trials, for each layout
investigated, in Study 1.
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Source: Prepared by the author.

4.5 Chapter Synthesis

This first study revealed important insights into the impact of layout constraints
on accessibility in LLM-generated Android interfaces. Contrary to expectations, prompts that
explicitly requested accessibility features did not consistently lead to fewer accessibility errors.
In fact, AccessReq prompts produced more errors in general, with only 8 of the 60 prompts,
AccessReq showed a reduction in the number of errors.

Among layout strategies, Jetpack Compose (Chat-JCR) generally led to better acces-
sibility outcomes, showing fewer errors and less variance in performance. Constraint Layout
(Chat-CLR), while powerful, often resulted in the most accessibility issues.

The results obtained raise questions about the possible influence of language and the
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choice of a general-purpose LLM. These factors may have had a significant impact on the results.
In the following chapters, these issues will be explored in more detail in order to clarify their

impact on the analysis performed.



45

S STUDY 2 AND 3 - LLM AND PROMPT LANGUANGE VARIATION

This chapter presents the methodology and findings of Studies 2 and 3, which explore
the effects of linguistic variation in prompts on the accessibility performance of LLMs. While
Study 2 (Section 5.1) investigates the differences between multiple LLMs using Brazilian Por-
tuguese (PT-BR) prompts, Study 3 (Section 5.2) evaluates the impact of the prompt language by
comparing English prompts with Portuguese ones, using a single LLM. Section 5.3 summarizes

the key findings of these studies.

5.1 Study 2

Study 2 aims to evaluate and compare the accessibility performance of three different
LLMs: ChatGPT-3.5, ChatGPT-40, and Sabid-3 when requested in Brazilian Portuguese. This
study builds on the methodology used in the previous study. This section is structured into three
parts: LLM selection (Subsection 5.1.1), prompt design and execution (Subsection 5.1.2), and

the results analysis (Subsection 5.1.3).

5.1.1 LLMs selection

The selection of language models for Study 2 was guided by the intention to compare
models with different architectures, levels of advancement, and regional focus. Initially, the study
planned to include ChatGPT-40 (OpenAI’s most recent public model as of mid-2024), Sabia-3
(a large language model trained specifically for Brazilian Portuguese), and Gemini (Google’s
multilingual model). ChatGPT-40 was selected for being an evolution of GPT-3.5, offering
improved reasoning capabilities and a wider context understanding, and it had recently become
partially available for free. Sabid-3 was included due to its focus on local development and
potential advantages in processing prompts written in Portuguese.

However, during preliminary testing in July 2024, Gemini exhibited major limitations.
The model frequently failed to complete the code blocks or would abruptly stop during generation,
significantly impacting the reliability and consistency of the output. As a result, Gemini was
excluded from the final experiment. The study thus proceeded with three models: ChatGPT-3.5
(used in Study 1 as a baseline), ChatGPT-40 (to assess improvements in newer architectures),

and Sabid-3 (to explore performance differences in a Portuguese native model).
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5.1.2 Prompt Design and Execution

In Study 1, the results showed that the interfaces developed with Jetpack Compose
had fewer accessibility errors. This finding suggests that Jetpack Compose may offer notable
advantages in terms of accessibility for people with disabilities (PwD). Therefore, it was the only
layout required in study 2 (Chat-JCR). Jetpack Compose is a more recent and modern framework
for creating Android apps and has been receiving continuous updates and improvements.

The execution of the prompts followed the same procedure as in the previous study,
with a normal request (NReq) and a request that explicitly considered accessibility (AccessReq)
in each conversation. The prompts were executed exclusively using the Jetpack Compose layout,
as exemplified in Figure 10. For each of the three LLMs (ChatGPT-3.5, ChatGPT-40, and
Sabid-3), and for each of the seven screen types, the evaluator repeated the prompt three times.
In total, 42 screen codes were generated by ChatGPT-3.5, 42 by ChatGPT-40, and 42 by Sabid-3,

which is 126 versions of the 7 requested screens.

5.1.3 Results

A summary of the accessibility error results by prompt type is presented in Table
7. The table also indicates the number of errors identified, the average number of errors, and
the total standard deviation for each prompt. Among the 126 screens evaluated, a total of 270
accessibility errors were identified, with an average of 2.14 errors per screen. Notably, the
prompts requiring accessibility features (“AccessReq”) accounted for more errors (144) than

those without accessibility requirements (“NReq”) (126).

Table 7 — Errors by type of prompt from Study 2.
NReq AccessReq Total

# ERRORS 126 144 270
MEAN ERRORS 2 2.29 2.14
STANDARD DEVIATION 2.53 245 2.48

Source: Prepared by the author.

Figure 18 shows the number of accessibility errors in the prompts for each LLM.
ChatGPT-40 was the model with the highest number of errors (140), followed by Sabid-3 (67)
and ChatGPT-3.5 (63). The AccessReq prompt had the most errors in ChatGPT-4o (71) and
Sabia-3 (44), while in ChatGPT-3.5 (29), the NReq prompt had more errors (34).
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Figure 18 — Accessibility errors in each LLM, for each type of prompt, in Study 2.

70 69 il mmm NReq
s AccessReq
60
50
44
£
g 40
L 34
* 3 29
23
20
10

ChatGPT-3.5 ChatGPT-4o Sabia-3

Source: Prepared by the author.

Figure 19 shows the distribution of accessibility errors in the prompts for each type
of screen. In 5 of the 7 types of screens, those generated by the “AccessReq” prompts have more

errors than the “NReq” prompts, except for the “Sidebar Menu” and “Profile” screens, where the

opposite is observed.
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Figure 19 — Accessibility errors in each screen, for each type of prompt, in Study 2.
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Table 8 shows the number of errors identified by the Accessibility Scanner for each

type of error, categorized by model and prompt. ChatGPT-40 was the model with the highest
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number of Context errors (74), while ChatGPT-3.5 had the fewest (22). ChatGPT-40 also showed
the most errors in both prompts, with 69 errors in NReq and 71 in AccessReq. Sabii-3 had the
highest number of errors in the AccessReq prompt, except for Touch Target errors, where it had

the same count as the other models.

Table 8 — Accessibility Errors by Type of Prompt for Each Accessibility Error Category in Study

> Context Touch Contrast Item Hidden | Item Item

Target Description | Text | Label | Type Label
ChatGPT3S |5 eiiea T 10 4 9|4 2 0 0
ChatGPT0 | seea| 1 3 I8 12 1
S| cceseq |16 T4 71 o T

Source: Prepared by the author.

Table 9 illustrates the distribution of errors between different types of screen. The
ChatGPT-40 model showed the highest number of errors on the screens “To-Do List” (27),
“Profile” (30), and “Music Player” (46), while the Sabid-3 model had more issues in the screens
“Login” (14), “Registration” (7), and “Sidebar Menu” (11). ChatGPT-3.5 only showed more
errors in the “Product” (16) screen. The highest number of errors was found on the “Music

Player” screen with NReq (22) and AccessReq (24) in ChatGPT-4o0.

Table 9 — Errors for each type of prompt, for each type of screen, in Study 2.

LOGIN | PRODUCT T%EA(T;E)-N TSI'SDTO PROFILE PBEIAJ‘S(;CR SII\I;EEQR
ChatGPT-3.5 Acf:::geq 2 ; } 172 g (3) ;
ChatGPTdo | NRed | T e e
Sabid-3 Acljt::l(ieq g } g g (1) 173 ?5

Source: Prepared by the author.

Figure 20 shows a heatmap detailing accessibility errors by screen type, categorized
by different aspects of accessibility. The most common error identified was Context (124), which
was the highest in four screens, while Item Label (4) was the least frequent error.

Figure 21 presents a comparative analysis of the performance of ChatGPT-3.5,
ChatGPT-40, and Sabid-3 in the seven types of screens. For each screen, the results of the three
individual attempts are displayed. Accessibility varies between prompts for each screen. For

example, in “Product” in ChatGPT-3.5, one prompt resulted in 1 error, another had 6 or more,
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Figure 20 — Type of Accessibility errors for each type of screen, in Study 2.
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and the third had none.
Figure 21 — Accessibility errors across LLMs for each type of screens, in Study 2.
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Figure 22 presents a boxplot that illustrates the number of accessibility errors found
in all attempts for each LLM investigated. It allows for a comparison of the performance of the
different LLMs, highlighting both the consistency and variability in accessibility errors between

them. Sabid-3 showed less variation in the number of errors, while ChatGPT-40 had a higher
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Figure 22 — Boxplot showing the number of accessibility errors across all 42 trials, for each of
the LLMs investigated, in Study 2

10 e

# Errors

ChatGPT-3.5 ChatGPT-4o Sabia-3

Source: Prepared by the author.

average number of errors with greater variability.

We applied Student’s t-test by pairing the evaluation results two by two. In only
one combination, the difference in the number of errors was not significant (p < 0.05); for the
other two combinations, it was significant. For ChatGPT-3.5-Sabia-3, the ¢-value was 0.206687
and the p-value was 0.83728. For ChatGPT-3.5-ChatGPT-4o0, the t-value was 3.34968 and the
p-value was 0.00174. And finally, for Sabid-3-ChatGPT-4o, the t-value was 3.552866 and the
p-value was 0.00098. In summary, the results indicate that there are significant differences
between ChatGPT-3.5 and ChatGPT-40, and between Sabia-3 and ChatGPT-40. However, there
is no significant difference between ChatGPT-3.5 and Sabié-3.

To analyze the difference between the two approaches (NReq and AccessReq), we
compared the 63 prompts generated with “NReq” to their corresponding “AccessReq” versions.
The results of this comparison are as follows: only 10 of the 63 prompts showed a reduction
in the number of errors, an increase was shown by 24, and the number of errors remained the
same for 29. Subsequent to the application of a paired Student’s 7-test to these comparisons, we
obtained the following results: t = —1.374, p = 0.17434. The result (p > 0.05) indicates that

the differences are not statistically significant.
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5.2 Study 3

In Studies 1 and 2, all the prompts were written in Brazilian Portuguese (PT-BR). In
this study, we explore the impact of changing the prompt language to English. The goal is to
investigate whether the use of English affects the accessibility performance of the generated code.
Study 3 is based on the methodology employed in previous studies. This section is structured into
three parts: LLM selection (Subsection 5.2.1), prompt design and execution (Subsection 5.2.2),

and the results analysis (Subsection 5.2.3).

5.2.1 LILM selection

The initial plan for Study 3 was to evaluate the performance of both ChatGPT-40 and
Sabiad-3 when generating Android screen code based on English language prompts. The inclusion
of Sabia-3 aimed to explore whether a model primarily trained for Portuguese could maintain
consistent performance when asked in a different language. Meanwhile, ChatGPT-40, being
a state-of-the-art model released by OpenAl, represented a strong benchmark for evaluating
prompt language effects on accessibility-aware code generation.

However, during the prompt execution phase, considerable issues arose with the
outputs produced by Sabid-3, mainly due to inconsistencies between builds and version-related
discrepancies. As a result, the model was excluded from this study and the analysis focused
solely on the output generated by ChatGPT-40. This decision allowed for a more controlled
investigation into the effect of changing the prompt language from Portuguese (used in previous
studies) to English, isolating this variable without interference from architectural or training

discrepancies between LLMs.

5.2.2 Prompt Design and Execution

Other studies (WANG et al., 2024a; KOYANAGI et al., 2024) demonstrated that
LLMs frequently exhibit suboptimal performance in source code generation when instructed
in languages other than English. Consequently, we chose the prompt language in this study as
English.

The execution of the prompts followed the same procedure as in previous studies,
with a normal request (NReq) and a request that explicitly considered accessibility (AccessReq)

in each conversation. The prompts were executed exclusively using the Jetpack Compose layout,
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as exemplified in Figure 10 and in the English language. For each of the seven screen types,
the evaluator repeated the prompt three times. In total, 42 screen codes were generated by

ChatGPT-4o.

5.2.3 Results

A summary of the accessibility error results by prompt type is presented in Table
10. The table also indicates the number of errors identified, the average number of errors, and
the total standard deviation for each prompt. Among the 42 screens evaluated, a total of 47
accessibility errors were identified, with an average of 1.12 errors per screen. Unlike other
studies, prompts without accessibility requirements (“NReq”) caused more errors (28) than those

requiring accessibility features (“AccessReq”) (19).

Table 10 — Errors by type of prompt from Study 3.
NReq AccessReq Total

# ERRORS 28 19 47
MEAN ERRORS 1.33 0.9 1.12
STANDARD DEVIATION 2.2 1.34 1.81

Source: Prepared by the author.

Figure 23 shows the distribution of accessibility errors in the prompts for each type
of screen. Contrary to the findings of other studies, the AccessReq prompt exhibited a higher
prevalence of errors only on the "Product” and "Registration" screens compared to the NReq
prompt. In contrast, on all other screens, the opposite was observed. Notably, no errors were
detected on the "Login" and "Sidebar Menu" screens.

Figure 24 shows a heatmap detailing accessibility errors by type of screens, catego-
rized by different aspects of accessibility. The most common error identified was Contrast (36),
especially in the "Profile" screen (17), while Hidden Text (2) was the least frequent error.

Figure 25 shows a comparative analysis of performance for the five types of screen.
Since “Login” and “Sidebar Menu” did not show any errors, they were not added to the chart.
Note that for each screen, the results of each of the three attempts are shown. There is a variation
in accessibility between screen prompts. For instance, in “Music Player”, one prompt had 9
errors, another had 1, and the last one had none.

To analyze the difference between the two approaches, we compared the 21 prompts

generated with NReq to their corresponding “AccessReq” versions. The results of this comparison
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Figure 23 — Accessibility Errors by Type of Screen and Prompts in Study 3.
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Figure 24 — Type of Accessibility errors for each type of screen, in Study 3.
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Figure 25 — Accessibility errors across prompts for each type of screens, in Study 3.

1 PRODUCT REGISTRATION TO-DO LIST PROFILE MUSIC PLAYER
8
6
4 = =
' mm 1 1o
oL l [ -|m = mm HN - [ | [ ]
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
mm NReq W AccessReq

Source: Prepared by the author.

are as follows: 4 of the 21 prompts showed a reduction in the number of errors, an increase was
shown by only 2, and the number of errors remained the same for 15. It is noteworthy that 6 of
the 15 prompts are from the “Login” and “Sidebar Menu” screens, which do not show errors.
Subsequent to the application of a paired Student’s #-test to these comparisons, we obtained the
following results: t = 0.952, p = 0.35253. The result (p > 0.05) indicates that the differences

are not statistically significant.

5.3 Chapter Synthesis

Study 2 revealed significant differences in accessibility performance among the
LLMs tested. ChatGPT-40 generated the most accessibility errors, while ChatGPT-3.5 and Sabié-
3 performed similarly, with no statistically significant differences between them. Surprisingly,
prompts that included accessibility instructions (AccessReq) did not produce fewer errors, in
fact, they often performed worse.

Although Study 3 found that using English prompts with ChatGPT-40 resulted
in fewer accessibility errors rate compared to Portuguese prompts used in Studies 1 and 2.
Interestingly, accessibility instructions (AccessReq) prompts performed slightly better than
standard prompts (NReq), although the difference was not statistically significant. These findings
align with previous literature and suggest that English prompts can lead to better results in code

generation tasks, particularly in terms of accessibility.
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6 STUDY 4 - LLM FOR CODE GENERATION

This chapter presents Study 4, which builds on the methodology used in previous
studies. The key difference in this study lies in the selection of LLM. We investigate the
performance of a code-specific LLM, GitHub Copilot, in generating Android screen interfaces,
with a particular focus on accessibility. Section 6.1 justifies the LLM chosen in this study. In
Section 6.2, we describe the design of the prompts and detail the execution strategy. The results
of the accessibility analysis are presented and discussed in Section 6.3. Finally, Section 6.4

summarizes the key findings of this study.

6.1 LLM selection

The LLM selected for this study was GitHub Copilot, which uses the GPT-40 model.
GitHub Copilot! is designed specifically for code generation and is trained on a vast dataset
that includes public and private code repositories. Unlike general-purpose models used in
previous studies (SUH et al., 2025; ALJEDAANI et al., 2024; OTHMAN et al., 2023), Copilot
is optimized for software development tasks, making it an ideal candidate to assess whether a
task-specific LLM can produce more accessible Android interfaces (MASTROPAOLO et al.,
2023; VAITHILINGAM et al., 2022).

This study also provides a comparison between GitHub Copilot and OpenAl general-
purpose models (ChatGPT) to explore the potential advantages of using a tool trained specifically

for code generation.

6.2 Prompt Design and Execution

Based on previous studies, the objective of selecting GitHub Copilot was to determine
the efficacy of the models that have been trained for the purpose of code generation. The central
question guiding this research was to assess whether a model trained for this task could result in
more accessible screens.

The execution of the prompts followed the same procedure as in previous studies,
with a normal request (NReq) and a request that explicitly considered accessibility (AccessReq)
in each conversation. The prompts were executed exclusively using the Jetpack Compose layout,

as exemplified in Figure 10 and in the language Portuguese-Brazilian (pt-BR). For each of the

' https://github.com/features/copilot
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seven screen types, the evaluator repeated the prompt three times. The total number of screen

codes generated by GitHub Copilot (GPT-40) was 42.

6.3 Results

A summary of the accessibility error results by prompt type is presented in Table
11. The table also indicates the number of errors identified, the average number of errors, and
the total standard deviation for each prompt. Among the 42 screens evaluated, a total of 115
accessibility errors were identified, with an average of 2.74 errors per screen. Notably, prompts
requiring accessibility features (“AccessReq”) accounted for more errors (61) than those without

accessibility requirements (“NReq”) (54).

Table 11 — Errors by type of prompt from Study 4.
NReq AccessReq Total

# ERRORS 54 61 115
MEAN ERRORS 2.57 2.9 2.74
STANDARD DEVIATION 2.84 2.9 2.84

Source: Prepared by the author.

Figure 26 shows the distribution of accessibility errors in the prompts for each type
of screen. In the screens “Login” and “To-Do List”, the NReq prompts exhibit a higher incidence
of errors compared to the AccessReq prompts. In contrast, in “Product”, “Registration”, and
“Profile”, AccessReq prompts demonstrate a greater prevalence of errors. The screens of “Music
Player” and “ “Sidebar Menu” exhibited equivalent error counts, with “Music Player” registering
the highest number (48).

Figure 27 shows a heatmap detailing accessibility errors by screen type, categorized
by different aspects of accessibility. The most common error identified was Context (54),
particularly in the "Music Player" screen (42). Conversely, Hidden Text and Item Description (2)
were the least frequent errors.

Figure 28 shows a comparative analysis of performance for the seven types of screen.
Note that for each screen, the results of each of the three attempts are shown. There is a variation
in accessibility between screen prompts. For instance, in "Product”, one prompt had 1 error,
another had 5, and the last one had none. It should be noted that only the “Music Player” and
“Sidebar Menu” exhibited consistent patterns in terms of the number of errors for each prompt

and request.
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Figure 26 — Accessibility Errors by Type of Screen and Prompts in Study 4.
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Figure 27 — Type of Accessibility errors for each type of screen in each LLM, in Study 4.
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Figure 28 — Accessibility errors across prompts for each type of screens, in Study 4.
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To analyze the difference between the two approaches, we compared the 21 prompts
generated with NReq to their corresponding “AccessReq” versions. The results of this comparison
are as follows: a reduction in the number of errors was shown by only 4 of the 21 prompts, an
increase was shown by 6, and the number of errors remained the same for 11. Subsequent to the
application of a paired Student’s #-test to these comparisons, we obtained the following results:
t = —0.863, p = 0.3984. The result (p > 0.05) indicates that the differences are not statistically

significant.

6.4 Chapter Synthesis

The results of Study 4 indicate that GitHub Copilot, despite being a domain-specific
LLM designed for code generation, does not significantly outperform general-purpose models in
terms of accessibility when generating Android Uls. In fact, the AccessReq prompts resulted
in slightly more errors than the general NReq prompts. The most common issue was related to
contextual accessibility problems, particularly in more complex screens such as “Music Player”.
The variation in the number of errors on repeated prompts also highlights inconsistency in the

model output.
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7 DISCUSSION

This chapter presents a comprehensive discussion of the findings derived from the
four empirical studies carried out throughout this dissertation. The aim is to synthesize the key
results, compare the behavior of the models across different scenarios, and critically analyze the
implications of these findings in the context of generating accessible mobile interfaces using
LLMs. The discussion is organized as follows: Section 7.1 provides a summary and comparison
of the studies; Sections 7.2 to 7.5 address the research questions explored; Section 7.6 discusses
the practical implications of the results; and Section 7.7 outlines the threats to the validity of the

study.

7.1 Summary of the Studies

The objective of this section is to provide a comparative analysis of the four studies
that were conducted. This analysis will summarize the main information and results from each
study.

A summary of the accessibility error results by prompt type from all studies is
presented in Table 12. The table also indicates the number of errors identified, the average
number of errors, and the total standard deviation for each prompt. Among the 288 screens
evaluated, a total of 702 accessibility errors were identified, with an average of 2.44 errors per
screen. Notably, prompts requiring accessibility features (“AccessReq”) accounted for more

errors (387) than those without accessibility requirements (“NReq”) (315).

Table 12 — Errors by type of prompt from all studies.
NReq AccessReq Total

# ERRORS 315 387 702
MEAN ERRORS 2.19 2.69 2.44
STANDARD DEVIATION 244 3.0 2.74

Source: Prepared by the author.

To analyze the difference between the two approaches (NReq and AccessReq), we
compared the 144 prompts generated with “NReq” to their corresponding “AccessReq” versions.
We applied a paired Student’s ¢-test to these comparisons and obtained the following results:
t =—2.739,p = 0.00694. The result (p < 0.05) indicates that the differences are statistically

significant.
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Figure 29 shows the distribution of accessibility errors in the studies for each type of
screen. In 3 of the 7 screens, Study 1 had the most errors, while for the rest of the screens, Study

2 had the most. The “Registration” screen in Study 1 had the highest number of errors (91) of all

studies.

Figure 29 — Accessibility Errors by Type of Screen for each Study.
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However, given the varying number of screens evaluated in the studies, Figure 30
presents the mean accessibility errors per screen in the studies, classified by screen type. The

“Music Player” screen in Study 4 exhibited the highest mean (8), followed by the “Registration”

screen in Study 1 (5.06).

Figure 30 — Mean Accessibility Errors by Type of Screen for each Study.
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Figure 31 shows a boxplot that illustrates the number of accessibility errors found
in all attempts for each study. It allows for a comparison of the performance of the studies,
highlighting both the consistency and variability in accessibility errors between them. “Login”
screen showed less variation in the number of errors, while “Profile” and “Music Player” had a

higher variation.

Figure 31 — Boxplot showing the number of accessibility errors across all trials, for each study.
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Figure 32 shows the distribution of accessibility errors in the studies for each type
of request. In general, the AccessReq prompt (416) showed more errors than the NReq prompt
(349). Following the same principle as in Figure 30, Figure 33 presents the mean accessibility
errors per screen in the studies, categorized by request type.

Since the same LLM (ChatGPT-40) was used in Studies 2 and 3, differing only in
the prompt language, Figure 34 presents the distribution of accessibility errors in the studies
for each type of screen. All types of screens in Study 2 were observed with a higher number of
errors compared to Study 3. The "Music Player" screen (46) and the "Profile" screen (30) had
more errors, both from Study 2.

Figure 35 shows a heatmap detailing accessibility errors by studies, categorized
by different aspects of accessibility. The most prevalent error identified was Contrast (301),
followed by Context (205), while Text Size (7) and Clickable Item (2) were the least frequent

CITOIS.



Figure 32 — Accessibility Errors by Type of Request for each Study.
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Figure 33 — Mean Accessibility Errors by Type of Request for each Study.
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Figure 34 — Accessibility Errors by ChatGPT-4o.
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Figure 35 — Type of Accessibility errors for each Study.
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7.2 RQ1 - What is the accessibility level of the screens generated by LLLMs for native
Android?

The results of this study highlight significant issues regarding the accessibility of
LLM-generated interfaces. In Study 1, the interfaces generated by ChatGPT-3.5 had an average
of 2.78 accessibility errors per screen, with a total of 333 errors. In Study 2, 207 additional
errors were identified across 84 screens generated by ChatGPT-40 and Sabié-3, resulting in an
average of 2.46 errors per screen. In Studies 3 and 4, more 47 and 115 errors were identified on
84 screens (42 for each study) generated by ChatGPT-40 and GitHub Copilot.

This error rate is lower than those reported in studies of real applications and
application templates (MUNIZ et al., 2024; VENDOME et al., 2019) (e.g., 7.61 errors per screen
in (MUNIZ et al., 2024)). However, it is important to note that the screens required in this study
contained fewer elements than those in real applications, suggesting that LLM-generated code
still contains accessibility issues that cannot be overlooked.

In Study 1, the number of errors varied depending on the layout types used, un-
derscoring how the choice of framework can directly influence accessibility quality. Notably,
the Jetpack Compose framework stood out, as the prompts requesting this layout resulted in
fewer accessibility errors compared to other layouts. This result may indicate that the more
modern framework offers advantages in terms of accessibility. It may suggest that the codes
using Jetpack Compose, which were used in the training of the LLMs, have accessibility features,
such as text or image descriptions, more frequently than the other layout models. However, the
number of errors remains significant, emphasizing the need for developers to carefully validate
the accessibility of LLM-generated interfaces.

In Study 2, ChatGPT-40 and Sabii-3 generated more errors than ChatGPT-3.5,
indicating that the latest version of GPT still faces challenges in addressing accessibility require-
ments. In terms of error types, inadequate contrast was the most common issue, followed by
problems with element descriptions. These findings align with other studies (VENDOME et al.,
2019; ALSHAYBAN et al., 2020), which show that these errors are persistent issues in mobile
applications.

In Study 3, with English prompts, ChatGPT-40 generated considerably fewer errors
and mean errors compared to the other studies, and especially compared to Study 2. This finding
is consistent with the conclusions of other studies (WANG et al., 2024a; KOYANAGI et al., 2024)

that code generation tasks are often under-performed when instructions are given in languages
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other than English.

In Study 4, GitHub Copilot (GPT-40) showed a similar error rate to Studies 1 and
2, both with pt-BR prompt, and showed more errors than Study 3. This suggests that even
though the model was trained to generate code, there was not much improvement in terms of

accessibility.

7.3 RQ2 - What is the accessibility level of the screens generated by LL.Ms for native

Android, when accessibility is required in the prompt?

For most prompts, screens generated when accessibility was explicitly requested (Ac-
cessReq) surprisingly had more errors than those generated without such a requirement (NReq).
This suggests that even when instructed to prioritize accessibility, LLMs may misinterpret the
guidelines or over-implement them, resulting in additional issues.

On several occasions of AccessReq, the LLMs pointed out generic accessibility
issues before generate code, many of which were not present in the NReq code. At no point were
the LLMs able to correctly identify the actual errors in the first generated code.

One possible explanation for this result lies in the quality and coverage of acces-
sibility examples in the models’ training data. If accessible Ul code is underrepresented or
inconsistently implemented across the datasets used to train these models, the LLM may rely
on flawed or incomplete patterns when attempting to fulfill accessibility-related requests. This
highlights a potential gap in the training data regarding accessibility best practices and suggests
a broader need for curating higher-quality, accessibility-aware code examples in future LLM
training pipelines.

It is clear that models require a deeper understanding of accessibility guidelines
and how they apply to the context of each interface element, avoiding both over- and under-
implementation. A common example of over-implementation in our study was the case where
elements were given unnecessary accessible descriptions that confused screen readers, such as
placing a “contentDescription” in an editable text field. This result suggests that LLMs still need

refinement, especially when it comes to specific instructions related to accessibility.
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7.4 RQ3 - Are the elements of the codes generated by the LLLMs in the requested language?

The use of the prompt language Brazilian Portuguese (pt-BR) revealed that the de-
scriptive elements in the generated code were predominantly in the intended language. However,
there were instances where the translation of terms and descriptions deviated from the requested
language.

We found 180 “Context” errors in three studies with prompt pt-BR, of 655 in total,
representing approximately 27% of the total errors identified. In Study 2, a significant portion of
the errors on the “MUSIC PLAYER” screen, in ChatGPT-40, were related to “Context”, with a
large number of English terms (e.g., Song 1, Artist Name, Previous, Next). A similar pattern was
observed in Study 4, where the “Context” category exhibited the highest number of errors in
both studies.

The use of the English prompt also presented a “Context” issue, albeit in a signif-
icantly smaller number. A total of three errors were documented on the “To-Do List” screen,
attributed to the use of the Portuguese Brazilian (pt-BR) format for the due date. The potential
causes of this error include IP issues, cookies, or caching in the browser in a language other than
English.

This raises questions on the LLMs ability to handle linguistic nuances when instruc-
tions are given in specific languages. Linguistic accuracy is key to ensure that developers in
different regions can use the generated code without the need for significant adjustments. This
aligns with the literature (KOYANAGI et al., 2024), in which the authors observed differences
in the GitHub Copilot output when prompts to solve AtCoder contests were given in Chinese,
Japanese, or English. Thus, the training of LLMs can be improved to make them effective in

multilingual contexts, especially in less prevalent languages in training datasets.

7.5 RQ4 - Is there a variation in accessibility levels when repeating the same prompt?

In all studies, differences in the code suggested by the same prompt were observed
in all three attempts. For example, as seen in Figures 16, 21, 25, and 28, there was variation in
accessibility presented between the screens on the three identical prompts that were repeated
for each of the seven screens in the three LLMs. In some cases, the difference in the number of
errors is minimal, but in others, it ranged from zero to seven.

This also highlights that reproducibility and repeatability are still not easily achiev-
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able features for code generation in the LL.Ms tested. The variation in results suggests that
the models may interpret the same prompt differently depending on internal factors, such as
randomization or subtle differences in their training. This raises concerns about the reliability of
LLMs in contexts where consistency and accuracy are essential, such as in software development
environments, where even a small coding error can have significant consequences.

These fluctuations in results emphasize the need for improvements in training algo-
rithms and LLMs architecture to reduce discrepancies and ensure greater stability and predictabil-
ity in the generated code. Additionally, it suggests that users of these models should adopt a
critical approach when using them for tasks that require precision, especially when expecting the

generated code to be reproducible and error-free.

7.6 Implications and takeaways

Our results have significant implications for the development of accessible mobile
applications. The first major takeaway is that while LLLM can accelerate development and assist
in the creation of interfaces, LLLMs are not yet capable of replacing specialized accessibility
knowledge. Over-reliance on these models risks producing interface code that is not fully
compliant with current accessibility guidelines and that does not adequately address the needs of
people with disabilities.

Confirming the findings of the literature, we found that an LLM tailored to a
specific language can generate code with better results with prompts not written in English.
This is important for developers who are not English speakers.

The research also showed that the code generated for Jetpack Compose has a
greater potential to ensure proper accessibility, but still requires adjustments. Another
important implication is the need to improve the prompt clarity and precision. This can help
guide LLMs to produce better results, particularly in addressing complex requirements such
as accessibility. Developers should experiment with different prompt styles (e.g., zero-shot,
one-shot, or few-shot) (SASAKI et al., 2024) to identify the most effective approach for their
specific use cases.

The results showed a similar rate of accessibility errors on screens generated by
both ChatGPT and GitHub Copilot. Despite differences in interaction style and the underlying
model architecture, both tools produced outputs with comparable levels of accessibility issues.

This suggests that current LLM-based coding assistants, regardless of interface, may share
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similar limitations when it comes to generating accessible mobile user interfaces.

Analysis of the results of our study raises questions about the effectiveness of trained
code generation models in terms of accessibility. Despite the expectation that these models could
drive the creation of more accessible interfaces, our results show that such models did not lead to
significant improvements in the accessibility of generated mobile screens.

The findings of this research also indicate that accessibility is not yet a priority for
LLMs when generating code for mobile interfaces. Consequently, developers who use tools
such as ChatGPT or GitHub Copilot are advised to employ complementary strategies to ensure
the accessibility of their applications. These strategies may include the use of tools such as the

Accessibility Scanner for code validation.

7.7 Threats to Validity

This section delineates the threats to the validity of this research. These threats are
classified according to the study of Lima et al. (2014) and are divided into three categories:

Construct, External, and Internal Validity.

7.7.1 Construct Validity

The evaluation centered on accessibility compliance, a pivotal component of usability.
However, this emphasis might potentially overlook other crucial factors, such as navigation
efficiency and the clarity of information, thereby constraining the experiment’s validity. A more
comprehensive analysis that integrates accessibility with other user experience components
would facilitate a more detailed examination of the subject and increase the credibility of the
results. Additionally, the absence of evaluation components such as integrations with assistive
technologies (e.g., external keyboards and mice) and Flash may have led to the undetection of

additional accessibility errors.

7.7.2  External Validity

One limitation of this research is the exclusive use of zero-shot prompts. While
zero-shot prompting is valuable for evaluating the model’s ability to generalize with minimal
input, it does not reflect the broader range of prompting techniques, such as one-shot or few-

shot prompting, commonly used in real-world applications. This restriction may limit the
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generalizability of the findings, as models might exhibit different performances when provided
with examples or more structured contexts. Future studies should consider exploring a variety of
prompting strategies to better assess model behavior across diverse contexts.

Additionally, the evaluation was conducted on only one type of device. This re-
striction may introduce bias, as different devices may possess disparate hardware and software
configurations that could influence the performance or interaction with the system under study.

Our screen selection process also presents a limitation. While the choices were
informed by an analysis of common screens in popular mobile applications and enriched by
informal conversations with developers and designers, they were not derived from a formal
or systematic study. As a result, assumptions regarding which screens are most relevant or
interesting may not be fully generalizable to the broader developer community.

Finally, the simplicity of the interfaces used in this study. The screens selected for
evaluation represent relatively common and structurally simple mobile interfaces, which may

not capture the full complexity typically found in real-world applications.

7.7.3 Internal Validity

This study may encounter challenges in terms of internal validity due to the stochastic
nature of the LLM output, which can exhibit variability for the same prompt. To address this
challenge, each prompt was executed multiple times, and the variability of the results was
subjected to a thorough analysis. Additionally, the utilization of a singular evaluation instrument,
the Accessibility Scanner, might introduce bias, as it is conceivable that certain accessibility
concerns might not be detected. To ensure a more comprehensive evaluation, future research
should incorporate multiple tools and manual validation.

Another factor that could influence results is consistency in prompt execution. Varia-
tions in phrasing, model configurations, or external factors such as computational load could
confound the findings. To mitigate these potential risks, the study standardized prompt structures

and testing conditions.

7.8 Chapter Synthesis

In summary, the points discussed in this chapter highlight both the potential and the

current limitations of LLMs in generating accessible mobile interfaces. The analyzes revealed
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significant challenges related to understanding accessibility guidelines, variations in performance
depending on the language of the prompt, inconsistencies in responses to identical prompts, and
the impact of the type of layout used. Although models, such as ChatGPT-40, show progress
in code generation, they are not yet mature enough to reliably guarantee accessibility. The
conclusions drawn here reinforce the need for more careful approaches, improvements in the

models themselves, and greater attention to the ways in which people interact with these tools.
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8 CONCLUSION

This chapter presents the conclusion of this research. Section 8.1 shows our final
considerations. Section 8.2 highlights the main contributions of this work. Section 8.3 shows the
publications and datasets related to this work. Finally, Section 8.4 presents proposals for further

research.

8.1 Final Considerations

This research sought to evaluate the accessibility of user interfaces for LLM-
generated mobile applications, with a focus on native Android development. In four struc-
tured studies, the investigation focused on the influence of different LLMs, layout paradigms,
languages, and prompt formulations on the accessibility of generated screens.

The findings of this study indicated that accessibility continues to pose a substantial
challenge in the realm of LLM-generated interfaces. The analysis identified a total of 702
accessibility issues on 288 evaluated screens, with an average of 2.44 errors per screen.

Despite the increasing use of LLMs in mobile app development, the average number
of accessibility issues per screen was substantial in all models evaluated, including ChatGPT-3.5,
ChatGPT-40, Sabia-3, and GitHub Copilot. Of particular interest is the observation that, in in-
stances where accessibility was explicitly requested in the prompt, the anticipated enhancements
were not evident. In some cases, the number of accessibility issues increased, suggesting that
current models may still lack a comprehensive understanding of accessibility best practices.

Among the key findings, Jetpack Compose emerged as the layout framework that
resulted in fewer accessibility errors, reinforcing its potential as a more inclusive development
approach. Furthermore, screens generated from prompts in English exhibited a substantially
lower incidence of errors compared to those generated from prompts in Brazilian Portuguese.
This observation is consistent with previous research that has documented language biases
present in LLMs.

The categories “Contrast” and “Context” were the most prevalent accessibility issues,
underscoring the need for models to improve their ability to manage visual design elements
and linguistic consistency. The limited impact of explicitly requesting for accessibility on the
prompts underscores a gap in current LLM capabilities that developers and model providers must

address.



72

8.2 Main Contributions

The results of this research highlight the need for advances in the automatic genera-
tion of accessible code. Despite the potential of language models to accelerate the development
of mobile interfaces, the data obtained indicate that these tools still have significant limitations
when it comes to creating accessible components. The error analysis revealed recurring problems
with contrast, lack of appropriate descriptions of interactive elements, and contextual errors. In
addition, accessibility prompts did not always lead to improvements, suggesting that LLMs still
lack a refined understanding of this aspect.

Among the most relevant findings was the fact that the choice of framework used
to build the interface has a direct impact on the accessibility of the screens generated. Jetpack
Compose performed better than XML, suggesting that advances in development tools can help
improve the accessibility of generated code. In addition, the comparison between different LLMs
showed variations in the number of errors, with ChatGPT-40 (pt-BR prompt) being the model
with the highest number of problems, while Sabia-3 had a relatively more stable performance.
These results point to the need for improvements in the training of these Als, including more
rigorous databases aligned with accessibility guidelines such as WCAG.

Also, the language of the prompt may also have a significant impact on LLM
performance. Notably, the study using an English prompt reported both the lowest number of
errors and the lowest error rate compared to studies using prompts in other languages and in
different LLMs. This suggests, like other studies (WANG et al., 2024a; KOYANAGI et al.,
2024), that LLMs may be more optimized or better trained for English input, potentially due to
the predominant English language data in their training corpora.

Based on these findings, this research suggests that developers using LLMs for code
generation should not blindly trust the answers they receive. A manual review process and the
use of validation tools such as Google Accessibility Scanner are essential to ensure that the
resulting applications are accessible to all users. In addition, refining prompt design to include
one-shot and few-shot approaches that provide richer context and examples could allow for better
error correction and guidance on how to create accessible application interfaces. In addition,
formulating more detailed prompts, including specific requirements for accessible elements, can

possibly minimize errors and make the generated code more suitable for different audiences.
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8.3 Publications and datasets

During the master’s program, I participated in additional research projects related to
mobile accessibility, which resulted in published papers at academic conferences and the creation
of publicly available datasets.

One of these studies was published in the Proceedings of the 30th Brazilian Sym-
posium on Multimedia and the Web (WebMedia 2024)!. In this work, Andrade ef al. (2024)
evaluated the accessibility of eight popular Android applications performing various tasks in
three languages: Portuguese, English, and Spanish. The study reported a total of 2,355 accessi-
bility issues, the highest of which was found in the Spanish tests (828). To enable replication and
foster future research, an open dataset was created compiling the accessibility issues identified
across all applications. The dataset is available on GitHub?.

Another study, presented at the 17th International Conference on PErvasive Tech-
nologies Related to Assistive Environments (PETRA '24)3, by Muniz et al. (2024), involved the
development of mobile applications based on ten widely used Figma templates. Accessibility
was assessed in these apps and 738 issues were identified, with an average of 7.61 errors per
screen. All templates showed some level of accessibility non-compliance.

Additionally, part of the present research was accepted for publication at the 12th
International Conference on Mobile Software Engineering and Systems (MOBILESoft 2025)*.
This paper explores the use of LLMs in the context of mobile accessibility. We provide a
complete replication infrastructure, including all prompts, application project files, and test
reports generated using the Accessibility Scanner tool. The dataset is available on GitHub>.

These publications and their associated datasets not only support the findings pre-
sented in this dissertation but also contribute to the broader research community. All datasets
are available upon request and are intended to be released as open-access resources to support

ongoing and future work on Al-driven digital accessibility.

https://sol.sbc.org.br/index.php/webmedia/article/view/30340

https://github.com/Test- Accessibility/Dataset-accessibility-assessments/tree/main/Study %2002
https://doi.org/10.1145/3652037.3652075
https://www.researchgate.net/publication/390235970_Breaking_Barriers_in_Mobile_Accessibility_A_Study_
of _LLM-Generated_Native_Android_Interfaces

https://github.com/Test- Accessibility/Dataset-accessibility-assessments/tree/main/Study_LLMs
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8.4 Future work

Given the increasing role of Al in software development, accessibility must be treated
as a core component rather than as an afterthought. One promising area of research is the creation
of automated metrics that allow LLMs to evaluate and self-correct their output before delivering
the final code. This kind of feedback loop could dramatically improve code quality and reduce
developer intervention.

Furthermore, we propose the development and training of a language model special-
ized in digital accessibility. This would involve curating a training dataset composed of mobile
accessibility guidelines, inclusive design patterns, and annotated examples of both compliant
and non-compliant Ul code. Such a model could assist developers in real time by flagging
accessibility issues, suggesting improvements, and even automatically generating accessible
alternatives.

Future research should focus on improving prompt design and improving error cor-
rection within real-world mobile app interfaces. This includes the development of more intuitive
and context-sensitive prompts that can effectively guide users through tasks and interactions.
The incorporation of one-shot and few-shot prompting techniques, which provide richer context
and concrete examples, holds significant potential in enhancing the generation of accessible user
interfaces and the correction of accessibility-related errors.

In addition, accessibility evaluation is essential to expand accessibility evaluation
to other languages and frameworks widely used in application development, such as React
Native and Flutter. Future research should consider how LLMs can be adapted to understand and
generate accessible components in other languages, respecting platform-specific guidelines and
ensuring that good practices are maintained in different contexts of use.

By ensuring that Al tools evolve in this direction, it will be possible to promote more
inclusive technological development, benefiting millions of users with disabilities around the

world.
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