X
&

UNIVERSIDADE FEDERAL DO CEARA

CENTRO DE CIENCIAS
DEPARTAMENTO DE COMPUTACAO
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO
MESTRADO ACADEMICO EM CIENCIA DA COMPUTACAO

ISABELY DO NASCIMENTO COSTA

OPTIMUS: MECANISMO DE OTIMIZACAO DE SEQUENCIA DE CASOS DE
TESTES EM SISTEMAS AUTOADAPTATIVOS

FORTALEZA
2024

ISABELY DO NASCIMENTO COSTA

OPTIMUS: MECANISMO DE OTIMIZACAO DE SEQUENCIA DE CASOS DE TESTES EM
SISTEMAS AUTOADAPTATIVOS

Dissertacao apresentada ao Curso de Mestrado
Académico em Ciéncia da computacdo do
Programa de Pds-Graduagdo em Ciéncia da
computagdo do Centro de Ciéncias da Universi-
dade Federal do Ceard, como requisito parcial
a obtenc¢do do titulo de mestre em Ciéncia da
computagio. Area de Concentracio: Engenharia
de Software.

Orientadora: Profa. Dra. Rossana Maria
de Castro Andrade.

Coorientador: Prof. Dr. Ismayle de Sousa
Santos.

FORTALEZA
2024

Dados Internacionais de Catalogacdo na Publicacdo
Universidade Federal do Ceard
Sistema de Bibliotecas
Gerada automaticamente pelo médulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

C8720 Costa, Isabely do Nascimento.
Optimus: Mecanismo de otimizagdo de sequéncia de casos de testes em sistemas autoadaptativos /
Isabely do Nascimento Costa. — 2024.
104 £. : il. color.

Dissertacdo (mestrado) — Universidade Federal do Ceard, Centro de Ciéncias, Programa de P6s-Graduagdo
em Ciéncia da Computacgao, Fortaleza, 2024.

Orientacdo: Profa. Dra. Rossana Maria de Castro Andrade.

Coorientacao: Prof. Dr. Ismayle de Sousa Santos.

1. sistemas autoadaptativos. 2. Sensibilidade ao Contexto. 3. Teste em Tempo de Execucdo. 4. Otimizacao.
1. Titulo.
CDD 005

ISABELY DO NASCIMENTO COSTA

OPTIMUS: MECANISMO DE OTIMIZACAO DE SEQUENCIA DE CASOS DE TESTES EM
SISTEMAS AUTOADAPTATIVOS

Dissertacao apresentada ao Curso de Mestrado
Académico em Ciéncia da computacdo do
Programa de P6s-Graduagdo em Ciéncia da
computacdo do Centro de Ciéncias da Universi-
dade Federal do Ceard, como requisito parcial
a obtencdo do titulo de mestre em Ciéncia da
computagio. Area de Concentracio: Engenharia
de Software.

Aprovada em: 30 de Agosto de 2024.

BANCA EXAMINADORA

Profa. Dra. Rossana Maria de Castro Andrade (Orientadora)
Universidade Federal do Ceara (UFC)

Prof. Dr. Ismayle de Sousa Santos (Coorientador)
Universidade Estadual do Ceard (UECE)

Profa. Dra. Valéria Lelli Leitao Dantas
Universidade Federal do Ceara (UFC)

Prof. Dr. Leonardo Sampaio Rocha
Universidade Estadual do Ceard (UECE)

Profa. Dra. Genaina Nunes Rodrigues
Universidade de Brasilia (UnB)

Dedico esse trabalho aos meus pais, Rosangela
e Francisco. E ao meu noivo Caio. Compartilhar

essa jornada com voc€s a tornou mais leve.

AGRADECIMENTOS

A Deus, que em todos os momentos dificeis durante a caminhada Ele sempre esteve
comigo e por isso consegui chegar até aqui.

Aos meus pais, Francisco e Rosangela. Agradeco por todo cuidado e apoio. A paz
de ter um lar refletiu imensamente em minha trajetoria.

Ao meu noivo, Caio. Vocé sempre acreditou mais em mim do que eu mesma.

Aos meus orientadores, pela paciéncia e os ensinamentos que tive em todo o periodo
de mestrado.

Aos meus amigos do laboratério GREat, quando entrei no mestrado pensava que
poderia caminhar sozinha. Voc€s me mostraram o qudo importante € ter com quem dividir a
jornada.

Ao laboratério GREat, que deu minha primeira oportunidade na 4rea de testes e me
motivou a estar onde estou.

Ao CNPq pela auxilio financeiro que tive nos tltimos meses de mestrado e a todos

0s projetos que participei no laboratério.

"Tudo o que temos de decidir € o que fazer com

o tempo que nos € dado." (Gandalf)

RESUMO

Os sistemas autoadaptativos, do inglés Self-Adaptive Systems (SAS), sdo sistemas capazes de se
modificar automaticamente de acordo com o ambiente no qual estdo inseridos. Essas adaptagdes
dindmicas trazem mais flexibilidade ao sistema, mas também podem resultar em falhas durante a
sua execucao, problemas com desempenho e operacdes indesejadas. Para os SAS, as abordagens
de teste tradicionais sao ineficazes devido aos aspectos dinamicos desses sistemas, tornando a
detec¢do de falhas uma tarefa complexa. Dessa maneira, varias abordagens de teste para estes
sistemas foram propostas na literatura como forma de resolver os principais desafios, sendo uma
delas o teste em tempo de execucdo. No entanto, ainda hd uma caréncia em relagcdo a cobertura
e o custo de execugdo de testes em tempo de execucdo. Em razio disso, este trabalho propde
um mecanismo para diminuir o custo de execu¢do e auxiliar a cobertura de testes em tempo
de execug¢do, com o objetivo de contribuir para a identificacdo de falhas em SAS. Para avaliar
este mecanismo foi desenvolvida uma prova de conceito juntamente com simulacdes de SAS
artificialmente gerados, abrangendo diferentes complexidades e niveis de variabilidade (baixa,
média e alta). O mecanismo mostrou-se eficiente em termos de tempo de execucao e capaz
de selecionar casos de teste eficazes para os objetivos em diferentes cendrios. As principais
contribui¢des deste trabalho sdo: o mecanismo de geracdo de sequéncias de casos de teste, que
visa minimizar o custo de execucdo e aumentar a cobertura de testes utilizando a métrica de
variabilidade de contexto, e uma ferramenta para geragcao de casos de teste em bindrio e calculo

de seus custos.

Palavras-chave: sistemas autoadaptativos; sensibilidade ao contexto; teste em tempo de execu-

¢d0; otimizagao.

ABSTRACT

Self-adaptive systems (SAS) can modify themselves automatically according to their environment.
These dynamic adaptations give the system more flexibility, but it can also result in failures
during execution, performance problems, and unwanted operations. For SAS, traditional testing
approaches are ineffective due to the dynamic aspects of these systems, making fault detection
a complex task. Then, various testing approaches for these systems have been proposed in
the literature to solve the main challenges, one of which is runtime testing. However, there
is still lack of information regarding the coverage and cost of running tests at runtime. Thus,
this research proposes a mechanism to reduce the cost of execution and help cover runtime
tests to contribute to the identification of faults in SAS. To evaluate this, a proof of concept
was developed along with simulations of artificially generated SAS systems covering different
covering different complexities and levels of variability (low, medium and high). The mechanism
performed efficiently in terms of execution time and was able to select effective test cases in
relation to the objectives in different scenarios. The main contributions of this work are a
mechanism for generating sequences of test cases, which aims to minimize the cost of execution
and increase test coverage using the context variability metric, and a tool for generating test

cases in binary and calculating their costs.

Keywords: self-adaptive systems; context awareness; runtime testing; optimization.

LISTA DE FIGURAS

Figural — Metodologiado trabalho 17
Figura2 — CicloMAPE-K 21
Figura3 — Algoritmo Genético AG 24
Figura4 — Exemplo de modelo DFTS 30
Figura5 — Metodologia da revisdo sistematica da literatura 34
Figura 6 — Artigos publicadosporano 37
Figura7 — Percentagem de tipos de SUT por publicagdo 41
Figura 8 — Visdo de rede de categorias e subcategorias 44
Figura9 — Visdo geral das etapas parausodo Optimus 51
Figura 10 — Exemplos de (A) DFTS no RETAKE e (B) DFTS no Optimus 53
Figura 11 — Atividades realizadas pelo Bumblebin 54
Figura 12 — Relacdo entre digitos, features e contextos 55
Figura 13 — Exemplo de geracdo de casos de teste relacionados 56
Figura 14 — Exemplo do cédlculo do custo docasodeteste 57
Figura 15 — Exemplo de arquivo de resumo gerado pelo Bumblebin 57
Figura 16 — Fluxo de execucdodo Optimus 61
Figura 17 — Especificaciodo GREatTour 64
Figura 18 — Parte dos casos de teste gerados pelo Bumblebin para o GREat Tour 64
Figura 19 — Casos de teste selecionados pelo Optimus 65
Figura 20 — Relacdo entre fronteira de Pareto e melhores casos de teste 66
Figura 21 — Relagdo entre fronteira de Pareto e casosdeteste 68
Figura 22 — Especificacdo do sistema de baixa complexidade e variabilidade 71

Figura 23 — (A) parte dos casos de teste relacionados ao contexto atual e (B) custos dos
casosdeteste 71
Figura 24 — Relagao entre fronteira de Pareto e casos de teste da Simulag¢do 1 no Cenario 1 72
Figura 25 — Relacdo entre fronteira de Pareto e casos de teste da Simulagdo 2 no Cenério 2 73
Figura 26 — Especificacdo do sistema de média complexidade e variabilidade 74
Figura 27 — Relacdo entre fronteira de Pareto e casos de teste da Simula¢@o 3 no Cendrio 1 75
Figura 28 — Especificacdo do sistema para simulacdo 5 76
Figura 29 — Relacido entre fronteira de Pareto e casos de teste da Simulacdo 5 no Cendrio 1 77

Figura 30 — Relacgdo entre fronteira de Pareto e casos de teste da Simulag¢do 6 no Cenério 2 78

Figura 31 — Especificacdo do sistema para simulacdo7
Figura 32 — Relacdo entre fronteira de Pareto e casos de teste da Simula¢do 7 no Cendrio 1
Figura 33 — Relagdo entre fronteira de Pareto e casos de teste da Simulacdo 8 no Cendrio 2
Figura 34 — Especificacdo do sistema para simulacdo9
Figura 35 — Relacdo entre fronteira de Pareto e casos de teste da Simulag@o 9 no Cenério 1
Figura 36 — Relagdo entre fronteira de Pareto e casos de teste da Simulac¢do 10 no Cendrio 2
Figura 37 — Especificagdo do sistema para simulagao 11
Figura 38 — Relacdo entre fronteira de Pareto e casos de teste da Simulag@o 11 no Cenario 1
Figura 39 — Especificacdo do sistema de grande complexidade e variabilidade

Figura 40 — Relacdo entre fronteira de Pareto e casos de teste da Simulag@o 13 no Cenario 1

80
81
82
83
84
84
85
86
87

LISTA DE TABELAS

Tabela 1 — Artigosselecionados L 38
Tabela 2 — Categorizacdo da abordagens por tipo, nivel e atividade de teste 40
Tabela 3 — Tipo de execucdo por artigo v v v i 42
Tabelad — COdigos o e e 43
Tabela 5 — Parte da codificacdo aberta traduzida 44
Tabela 6 — Trabalhos relacionadose o Optimus 49
Tabela 7 — Casos de teste selecionados pelo Optimus 65
Tabela 8 — Casos de teste selecionados selecionados pelo Optimus 67
Tabela 9 — Design da avaliag@o - Simulagdes 70
Tabela 10 — Casos de teste selecionados - Simulacado 1 72
Tabela 11 — Casos de teste selecionados - Simulacdo2 73
Tabela 12 — Casos de teste selecionados - Simulagao3 75
Tabela 13 — Casos de teste selecionados - Simulacado5 76
Tabela 14 — Casos de teste selecionados - Simulacdo 6 78
Tabela 15 — Casos de teste selecionados - Simulacao 7 79
Tabela 16 — Casos de teste selecionados - Simulagdo 8 80
Tabela 17 — Casos de teste selecionados - Simulacado 9 82
Tabela 18 — Casos de teste selecionados - Simulacao 10. 83
Tabela 19 — Casos de teste selecionados - Simulagao 11 85
Tabela 20 — Casos de teste selecionados - Simulacao 13 87
Tabela 21 — Resumo dos resultados da avaliacado 88

Tabela 22 — Artigos relacionados ao tema desta pesquisa 92

LISTA DE ALGORITMOS

Algoritmo 1 — Algoritmo do célculo da Distancia de Hamming
Algoritmo 2 — Geracdo de Casos de teste: Combinando Features e contextos

Algoritmo 3 — Filtrar Casos de teste a partir do primeiro grupo de contexto

AG
C-KS
CFM
COfFEE
CSP
DAS
DFTS
eCFM
GT

IBM

IoT

ISO
ISO/IEC/TEEE

JSON
RETAKE
SAS
SBSE
SBST
SLR
SUT
TestDAS

LISTA DE ABREVIATURAS E SIGLAS

Algoritmos Genéticos

Context Kripke Structure

Context Feature Model

CatalOg of measures for Feature modEl quality Evaluation
Constraint Satisfaction Problems

Dynamically Adaptive System

Dynamic Feature Transition System

Extended Context Feature Model

Grounded Theory

International Business Machines Corporation

Internet of Things

International Organization for Standardization

ISO (International Organization for Standardization), IEC (International Electro-
technical Commission) and IEEE (Institute of Electrical and Electronics Engine-
ers Standards)

JavaScript Object Notation

RuntimE Testing of dynamically Adaptive systEms
Self-Adaptive Systems

Search-Based Software Engineering

Search-Based Software Testing

Systematic Literature Review

System Under Test

Testing method for Dynamic Adaptive System

1.1
1.2
1.3
14

2.1
2.2
23
2.3.1
232

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.2.1
5.2.2
523
5.3

6.1

6.1.1
6.1.2
6.1.3

SUMARIO

INTRODUCAO . . . ittt et e e e et e e e et 15
Contextualizacdo 15
Motivacao 16
Objetivo e Metodologia 16
Estruturada Dissertacao 18
FUNDAMENTACAOTEORICA ittt i i iieennn.. 19
Sistemas autoadaptativos L. 19
Otimizacio em Engenharia de Software 21
Teste de software 24
Testeem SAS e 27
Search-Based Software Testing 31
REVISAO SISTEMATICA DA LITERATURA 33
Motivacido e objetivoo 33
Metodologia 33
Resultados ediscussao L. 37
TRABALHOS RELACIONADOS 47
Abordagens de teste para SAS com otimizacdo 47
Comparacao com o trabalho proposto 48
OPTIMUS . . . oot e e e it e it ettt i et e e an 50
VisdfoGeral 50
EtapasparaousodoOptimus 51
Analista de testes - Especificar SAS 51
Bumblebin 54
Implementagdo do Optimus 57
Aplicacdodo Optimus L. 61
AVALIACAO . . .ttt ittt e e e e e e ettt e e e eeeen 63
Estudo de viabilidade 63
Cendriol 65
Cendrio2 67

Conclusao dos resultados obtidos 67

6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
6.2.2.8
6.2.2.9
6.2.2.10
6.2.3
6.2.3.1
6.2.3.2
6.3

6.4

7.1
7.2
7.3
7.4

Simulagbées 69
SAS com Baixa complexidade 70
Simulagdo 1 - Cendrio]l 70
Simulagdo 2 - Cendrio 2 e 72
SAS com média complexidade e variabilidade 74
Simulagdo 3 - Cendrio]l e 74
Simulagdo 4 - Cendrio 2 75
Simulagdo 5 - Cendrio 1 e 76
Simulacdo 6 - Cendrio 2 e 77
Simulagdo 7 - Cendrio]l 78
Simulagdo 8 - Cendrio 2 e 79
Simulacdo 9 - Cendrio]l e 81
Simulagcdo 10 - Cendrio2 i 82
Simulagdo 11 - Cendrio 1 84
Simulagdo 12 - Cendrio2 i e 86
SAS com grande complexidade e variabilidade 86
Simulagdo 13 - Cendrio 1 86
Simulagdo 14 - Cendrio2 e 87
Conclusaodaavaliacao 88
Ameacasavalidade Lo 89
CONCLUSAOttt ittt i i i i e 90
Visaogeral 90
Resultados 91
Limitagoes L 92
Trabalhos futuros oL 93
REFERENCIASttt ittt 95

APENDICE A -PSEUDO-COGIDO: GERACAO DE CASOS DE TESTE 103
APENDICE B -PSEUDO-COGIDO: SELECAO DE TESTES CON-
FORME O ESTADODOSISTEMA 104

15
1 INTRODUCAO

Esta dissertacdo de mestrado apresenta uma mecanismo que utiliza técnicas de
otimizacdo para sequenciar casos de teste, visando reduzir o custo dos testes em sistemas
adaptativos e aumentar a diversidade de estados avaliados.

A Secdo 1.1 deste capitulo apresenta o contexto em que a pesquisa desta dissertacdo
estd inserida, oferecendo uma visao abrangente do tema. A Secdo 1.2 destaca a importancia e a
necessidade do mecanismo proposto. A Secdo 1.3 discute o objetivo e a metodologia adotados,
detalhando as abordagens e técnicas utilizadas para atingir os resultados esperados. Por fim, na

Secdo 1.4 é apresentada a estrutura do documento de dissertacao.

1.1 Contextualizacio

Os sistemas de informagdo modernos estdo se tornando cada vez mais complexos.
Isso ocorre devido ao aumento no uso de dispositivos méveis e a necessidade de que eles
funcionem continuamente em qualquer ambiente. Para atender a essas demandas, a industria de
software teve que se adaptar, utilizando sistemas altamente distribuidos. Operando em contextos
altamente diversos, esses sistemas precisam integrar dispositivos especializados e heterogéneos,
além de lidar com a variabilidade dos recursos de rede (KRUPITZER et al., 2015). Os sistemas
de Internet of Things (IoT) e a Industria 4.0 sdo exemplos disso (MATALONGA et al., 2022).

Todavia, desenvolver, configurar e manter esses sistemas € uma tarefa muito dificil,
sujeita a erros e custosa (KRUPITZER et al., 2015), uma vez que o contexto € imprevisivel
e pode mudar a qualquer momento, alterando a saida do sistema (PRIYA; RAJALAKSHMI,
2022). Uma solucdo para esse problema € a autoadaptacdo, de modo que espera-se que o
software cumpra os seus requisitos em tempo de execugdo, em resposta as alteracdes (SALEHIE;
TAHVILDARI, 2009). Este tipo de software € chamado de Self-Adaptive Systems (SAS) e é
capaz de se autorreconfigurar em resposta a mudancgas de requisitos e condi¢des ambientais

(FREDERICKS et al., 2013)!.

1

Alguns autores também utilizam os termos sistemas autonomos e sistemas dinimicamente adaptativos (HEZA-
VEHI et al., 2021)

16

1.2 Motivacao

As adaptacoes dinamicas dos SAS enquanto eles estdo em produgdo podem levar a
alteragdes em tempo de execugdo que podem levar a novos riscos de bugs, interacdes inesperadas,
degradacdo de desempenho e modos de operagdo indesejados (LAHAMI; KRICHEN, 2021).
Além disso, detectar falhas neste tipo de sistema de forma eficaz ndo é uma tarefa trivial
(SIQUEIRA et al., 2016).

No contexto de SAS, as abordagens de teste tradicionais sdo ineficazes devido as
caracteristicas inerentes a esses sistemas e os seguintes desafios tornam a atividade de teste
complexa:

(1) muitas das adaptagdes sdo realizadas em tempo de execucdo (SIQUEIRA et al., 2021);
(i1) a quantidade de cendrios gerados a partir de alternativas de adaptacdo ainda pode ser muito
grande e invidvel do ponto de vista do teste (SIQUEIRA et al., 2021); e
(ii1) a geracdo automaética de casos de testes em um ambiente dinAmico(SANTOS,).

A partir disso, o teste em tempo de execugdo tem potencial para ser uma solucao
apropriada para a validagdo de sistemas autoadaptativos (LAHAMI et al., 2013) e podem atuar
de vérias formas para resolucdo dos desafios mencionados (SANTOS, 2020). Contudo, ha uma
caréncia em abordagens e ferramentas que gerenciem e executem de forma eficiente os testes em
tempo de execugdo podendo gerar preocupacdes relacionadas a custo de execugdo e manutengao
dos casos de teste (LAHAMI; KRICHEN, 2021; SILVA et al., 2022). Este cenario motiva a
proposta deste trabalho, que visa a criagdo de um mecanismo de geracdo de sequéncias de casos

de teste com maior variabilidade e com menor custo.

1.3 Objetivo e Metodologia

Com o objetivo de contribuir para a identificagao de falhas em SAS, esta pesquisa
propde um mecanismo que utiliza um algoritmo multiobjetivo de otimizagdo para geragcao
de sequéncias de casos de testes com maior variabilidade de contexto e com menor custo de
execucao.

Para atingir este objetivo, esta pesquisa possui as seguintes metas:

— Realizar uma revisdo sistemdtica da literatura para identificar os desafios de testar sistemas

adaptativos, as abordagens de teste atuais e as possiveis maneiras de testar SAS;

— Modelar o problema como uma funcio fitness?;

17

— Implementar uma ferramenta para auxiliar na geragao e cdlculo dos custos dos casos de

teste;

— Implementar e avaliar o0 mecanismo proposto para geracao de sequéncias de casos de teste

utilizando a funcao fitness;

A Figura 1 apresenta a metodologia utlizada durante este trabalho, a qual foi definida

a partir do objetivo e das metas e foi organizada em trés fases principais: 1) Concepg¢do, onde

¢ definido o objetivo do trabalho baseado em uma revisao sistemética da literatura, ii) Desen-

volvimento, onde o mecanismo € implementado, e, por fim, iii) Avalia¢do, onde o mecanismo é

avaliado.

Figura 1 — Metodologia do trabalho

Concepcao

Desenvolvimento

Avaliagédo

Revisdo

sistematica < Sim
da literatura

Definigao/Revisao
do objetivo da
pesquisa

Precisa melhorar
0 objetivo da
pesquisa?

Pesquisa na .
literatura sobre |[<#——Nao—

SBST

T

Modelagem do
problema

T

Definigio da
funcao fitness

i —

Selegdo do Precisa melhorar
algoritmo |t Nio- a fungao?
genetico

T

Implementagéo
do mecanismo

T

Execucéo do
estudo de
viabilidade

T

Implementagéo
da ferramenta

|——Sim

de apoio

—

Melheria no

. -
mecanismo Sim

Melharia ha
ferramenta de

Criagdo de
dados sintéticos

:

Dados para
avaliacao

Experimento

:

Andlise dos
resultados

:

Avaliar a
hipétese da
pesquisa

apaio \/

Precisa melhorar
© mecanismo?

Fonte: elaborada pelo autora.

Na fase de Concepc¢do foi realizada uma revisao sistematica da literatura seguindo

guideline de Kitchenham et al. (2016) com o objetivo de identificar os desafios, abordagens,

fatores de influéncia e tendéncias em testes de sistemas autoadaptativos. A partir dessa revisao,

2

Uma func@o fitness € uma fungdo objetiva que ¢ utilizada para avaliar solugdes (ARRIETA et al., 2019).

18

foi definido e revisado o objetivo desta pesquisa. Ainda na fase de Concepgdo, uma pesquisa
na literatura em busca de trabalhos que abordassem técnicas de Search-Based Software Testing
(SBST) foi realizado para auxiliar nas atividades da proxima fase.

A fase de Desenvolvimento constituiu da modelagem do problema e defini¢do da
funcao fitness, seguindo os passos de Harman e Jones (2001) e Harman (2007). Em seguida, foi
selecionado o algoritmo para implementa¢do do mecanismo e execucao do estudo de viabilidade.
Durante o estudo de viabilidade, houve a implementacdo de uma ferramenta de apoio e o
mecanismo e a ferramenta foram avaliados em busca de melhorias.

Por fim, na fase de Avaliacdo o mecanismo foi avaliado por meio de 14 simulagdes

de sistemas SAS sintéticos, abrangendo diferentes complexidades e graus de variabilidade.

1.4 Estrutura da Dissertacao

O restante da dissertacdo estd organizada em seis capitulos:

— Capitulo 2 (Fundamentacao Tedrica) descreve os principais conceitos relacionados a
dissertacdo: Sistemas autoadaptativos, otimizagdo em engenharia de software e teste de
software;

— Capitulo 3 (Revisao Sistematica da Literatura) descreve a metodologia e resultados
obtidos através de uma revisao sistematica da literatura visando definir e revisar o objetivo
desta pesquisa;

— Capitulo 4 (Trabalhos Relacionados) compara a proposta desta dissertacdo com trabalhos
encontrados na literatura que abordam otimizagao e testes em sistemas SAS;

— Capitulo 5 (Optimus) apresenta em detalhes o mecanismo proposto nesta dissertacao,
bem como as etapas para utilizagdo do mesmo;

— Capitulo 6 (Avaliacao) descreve as avaliagdes do mecanismo proposto por meio de um
estudo de viabilidade e experimentos;

— Capitulo 7 (Conclusio) resume as contribui¢des alcangadas, discute algumas limitagoes

da pesquisa e trabalhos futuros.

19
2 FUNDAMENTACAO TEORICA

Neste capitulo sdo apresentados os conceitos fundamentais para a condugdo da
pesquisa. Na Secdo 2.1 € apresentado o conceito de Sistemas autoadaptativos (SAS) e suas
propriedades. Ademais, sdo apresentadas as defini¢des de autoconsciéncia, consciéncia de
contexto, adaptacdo e o ciclo MAPE-K. Na Secdo 2.2 destaca-se as defini¢cdes importantes
da Otimizacdo em Engenharia de Software SBSE, como aplicar SBSE e apresenta a sub-area
Search-Based Software Testing (SBST). Por fim, na Secdo 2.3 as definicdes bésicas de teste de
software, atividade de testes e seus objetivos sao apresentadas. Além disso, sdo apresentadas

propriedades e desafios do testes em sistemas SAS.

2.1 Sistemas autoadaptativos

Os sistemas baseados em componentes distribuidos podem mudar dinamicamente
durante sua execucdo continua sem fim. Geralmente, essas mudancas dindmicas sao necessarias
para fornecer sistemas mais confidveis, para apagar deficiéncias detectadas, ou para apoiar o
desenvolvimento rapido dos requisitos dos usudrios e a crescente variabilidade dos ambientes de
execucdo (LAHAMI; KRICHEN, 2021). Esses sistemas sao chamados de Sistemas autoAdapta-
tivos (em inglés, Self-adaptive Systems (SAS)), que podem ser definidos como sistemas que se
adaptam em resposta a mudanga de condi¢Oes ambientais (ALVES et al., 2009).

Os Self-Adaptive Systems proporcionam as chamadas propriedades fornecem pro-
priedades de autogestao como a autoconfiguragdo, a autorecuperagao na presencga de falhas, a
autootimizac¢do e a autoprotecdo contra ameagas (KRUPITZER et al., 2015). Para alcancar um
comportamento adaptativo, as propriedades bdsicas do sistema sdo: autoconsciéncia e conscién-
cia de contexto. A autoconsciéncia descreve a capacidade de um sistema de estar ciente de si
mesmo, ou seja, ser capaz de monitorar seus recursos, estado e comportamento. Consciéncia
de contexto significa que o sistema € ciente de seu ambiente operacional, o chamado contexto
(KRUPITZER et al., 2015).

Segundo Abowd et al. (1999):

“O contexto é qualquer informag@o que pode ser utilizada para caracterizar
a situacdo de uma entidade. Uma entidade € uma pessoa, lugar ou objeto

considerado relevante a interag@o entre um usudrio e um aplicativo, incluindo o
usudrio e os proprios aplicativos."

Por exemplo, a informacgdo de contexto pode ser utilizada pelo sistema para se

20

adaptar ao nivel de bateria de um dispositivo e se 0 mesmo estd ou ndo ligado a uma fonte de
energia (SANTOS,).

A adaptacio € entdo a capacidade de alterar um sistema de acordo com variagdes
de contexto (MULLER et al., 2009) e esta pode acontecer em todos os niveis no sistema (e.g.
software do sistema, comunicagdo, recursos técnicos, contexto e aplicacdo). Por exemplo,
aplicacdes em smartphone que mudam para o modo silencioso quando o usudrio estd em uma
reunido através da utilizacdo de informagdes do calendério, oferecem adaptagdo ao nivel da
aplicacdo (KRUPITZER et al., 2015). Um exemplo de adaptagdo de comunicagdo € mudar a
conexao de rede, por exemplo, de 3G para WLAN até um Conexao WLAN esta disponivel
(DOBSON et al., 2006). Os recursos de autocorre¢do permitem o inicio automadtico de sistemas
de backup, por exemplo, em um data center, o que altera a nivel de recursos técnicos. Um
exemplo de adaptacdo ao contexto € uma sala de reunido inteligente que reduz automaticamente
a luz quando uma apresentacdo comeca (KRUPITZER et al., 2015). Em exemplo de adaptacdo
a nivel de software do sistema, um middleware ! adaptével oferece a possibilidade para trocar
componentes de hardware em tempo de execucdo (SADJADI; MCKINLEY, 2003). A dindmica
de adaptacgdo, pode ocorrer em tempo de execu¢do. Um sistema autoadaptativo (SAS) € um
sistema de software com adaptacdo em tempo de execucgdo ativada (KRUPITZER et al., 2015;
SANTOS,).

Uma vez que uma mudanca de contexto € detectada, a 16gica de sistemas adaptativos
pode usar diferentes tipos de critérios em seu processo de tomada de decisd@o: modelos, regras/-
politicas e objetivos (SANTOS, 2020). Os loops de controle autdbnomo fornecem um mecanismo
genérico de auto-adaptacdo que muitas vezes € modelado como o ciclo MAPE-K (ou MAPE-K
loop), este define como os sistemas adaptam seu comportamento para manter seus objetivos
controlados, com base em qualquer controle regulatério, rejei¢do de perturbacdes ou requisitos
de otimiza¢do. O MAPE-K loop € dividido em quatro atividades: Monitoramento (M), Anélise
(A), Planejamento (P) e Execuc¢do (E). Essas atividades sao baseadas de um Conhecimento (K,
da sigla em inglés) (ELEUTéRIO; RUBIRA, 2017; SANTOS, 2020). A Figura 2 apresenta os
elementos do MAPE-K loop, segundo a arquitetura proposta pela IBM (COMPUTING et al.,
2006). A seguir, sdo listados os seus elementos com suas respectivas descri¢des.

— Monitoramento: para detecao e processamento de eventos que possam requerer adaptacao,

' Uma camada de software que se situa entre a aplicagio comercial e a camada de rede de plataformas e protocolos

heterogéneos (diversos). Separa as aplicagdes comerciais de quaisquer dependéncias da camada de conexdo, que
consiste em sistemas operativos heterogéneos, plataformas de hardware e protocolos de comunicagdo (LIGHT;
ARUNACHALAN, 2006).

21

a informacao recolhida é enviada para a préxima atividade (SANTOS, 2020; ELEUT¢ERIO;
RUBIRA, 2017);

— Anadlise: com os dados de monitoramento essa atividade correlaciona a informagao de
contexto para inferir dados do ambiente de tempo de execucdo e do comportamento
do sistema (ELEUTERIO; RUBIRA, 2017). Em resumo, a fun¢do da Andlise é prever
situagdes futuras que requerem agdes de adaptacdo (SANTOS, 2020);

— Planejamento: a partir da informacgdes de andlise, a atividade de planejamento define
planos de adaptacao (ELEUTéRIO; RUBIRA, 2017);

— Execucao: esta implementa e executa os planos para adaptacdo do sistema em execucao
para obter o comportamento desejado (ELEUTERIO; RUBIRA, 2017; SANTOS, 2020); e

— Conhecimento: é um elemento que funciona como um repositério compartilhado que
envia e recebe dados para os demais elementos. Os dados armazenados incluem sintomas

de adaptagdo, politicas, requisicdes de mudanga e planos de mudanca (SANTOS, 2020).

Figura 2 — Ciclo MAPE-K

Fonte: adaptado de Computing et al. (2006)

2.2 Otimizacdo em Engenharia de Software

Desde a sua emergéncia como uma técnica de otimizacao para problemas dificeis de

engenharia de software tem sido aplicada com sucesso ao longo do ciclo de vida do desenvolvi-

22

mento de software (SIMONS, 2013). A conciliagdo entre técnicas de otimizagdo e Engenharia de
Software ficou conhecida como Otimizacao em Engenharia de Software, em inglés Search-Based
Software Engineering (SBSE) (MAIA et al., 2013). Pode-se definir otimizacdo como a busca
da melhor solugdo para um dado problema, que consiste em tentar varias solugdes e utilizar a
informacao obtida neste processo de forma a encontrar solucdes cada vez melhores (LACERDA;
CARVALHO, 1999).

Segundo Harman e Jones (2001), apenas dois componentes sdo necessarios para
aplicar o SBSE:

— Uma representagdo (codificacao) do problema (por exemplo, utilizando uma cadeia de
bits);
— A definic¢do da funcio de fitness (por exemplo, similaridade com a consulta de entrada).

As solucdes candidatas (que s@o codificadas a seguir a representacdo escolhida) sdo
evoluidas (através da aplicacdo do operagdes) e sao avaliados (pela fun¢do de fitness) numa
processo iterativo até que uma condic¢ao de parada seja cumprida (por exemplo, um niimero de
iteracdes). Como resultado, solucdes 6timas sdo encontradas para o problema (PEREZ et al.,
2021).

A funcdo fitness (ou fungdo quantitativa) € necessdria para que o algoritmo possa
discriminar entre solu¢gdes promissoras e mds. Essa no¢ao de qualidade é geralmente definida
apenas em termos de métricas software, ainda que os engenheiros de software possam fazer
uso de outros mecanismos mais subjetivos para avaliar a qualidade (RAMIREZ et al., 2018). A
fungdo fitness determina a proximidade entre a solu¢c@o dada e a solug@o 6tima.

Para a abordagem de objetivo unico, a funcdo fitness € a fungdo de objetivo do
problema, que maximiza ou minimiza para obter solu¢gdes 6timas. Por outro lado, a abordagem
multiobjetiva tem vdérias funcdes objetivo para cada meta, que se maximizam ou minimizam
individualmente para obter as solugdes ideais. A abordagem multi-objetiva pode comportar-se
como uma abordagem de objetivo tinico se combinarmos as fun¢des objetivo em uma tnica fun-
¢do fitness, atribuindo pesos a cada objetivo de acordo com o seu objetivo (BAJAJ; SANGWAN,
2019).

Os problemas de otimizacao multiobjetivos podem ser definidos de forma resumida
como: encontrar um vetor de varidveis de decis@o, que otimiza um vetor de funcdes objetivas.
Sendo as funcdes objetivas de um problema multiobjetivo, a descri¢do matematica dos critérios de

otimizagdo, que frequentemente estdo em conflito entre si (YOO; HARMAN, 2007). Dentro da

23

multiobjetividade, existe o conceito de Dominancia de Pareto (Defini¢do 2.2.1) e de Otimalidade

de Pareto (Defini¢do 2.2.2) (VELDHUIZEN et al., 1998).

Defini¢iio 2.2.1 (Dominancia de Pareto) Um vetoru= (uy,...,u,) domina umvetorv= (vi,...,vp)

se, e somente se, U é parcialmente menor ou maior (dependendo do objetivo) que v, ou seja,
Vie{l,.,ptu <vinTie{l,...p}:u; <v;.

Todos os vetores de decisdo que ndo sdo dominados por nenhum outro vetor de
decisdo formam o conjunto 6timo de Pareto, enquanto os vetores objetivos correspondentes

formam a Fronteira de Pareto (YOO; HARMAN, 2007).

Definicao 2.2.2 (Otimalidade de Pareto)) Uma solucdo x, € U é dita ser Pareto otima se, e
somente se, ndo existe nenhuma outra solugdo x € U tal que o vetor v = f(x) = (vi,...,vp)

domine o vetor u = f(x,) = (u1,...,up).

Identificar a Fronteira de Pareto € util pois pode ser utilizada para uma tomada de
decisdo bem informada que equilibre as compensacgdes entre os objetivos (YOO; HARMAN,
2007).

Os conceitos abordados encontram aplicacdo préatica por meio de algoritmos de
otimizacdo. Sendo o random search € o mais simples de se implementar. No entanto, nio utiliza
uma funcao de fitness (chamado de algoritmo, nao guiado), logo ndo atinge frequentemente
solugdes globalmente 6timas. Os Algoritmos Genéticos (AG) sdo considerados pesquisas globais,
mostrando muitos pontos no espago de pesquisa de uma s6 vez, oferecendo mais robustez aos
otimos locais (HARMAN et al., 2008). Estes utilizam utilizam os conceitos de populacdo
e recombinacdo (GARGARI; KEYVANPOUR, 2022). Frequentemente, um AG utiliza uma
representacao bindria, ou seja, as solugdes candidatas sdo codificadas como sequéncias de 1s e Os
(HARMAN et al., 2008). Na Figura 4 € descrito em alto nivel os passos do algoritmo genético.

Inicialmente, a resposta do problema é formulada como um gene neste algoritmo
e um conjunto de respostas € considerado aleatoriamente. Em seguida, dependendo da sua
compatibilidade e adequagdo, trés tipos de fun¢des denominadas selecdo, crossover € mutagcao
sdo executadas e sdo criados novos conjuntos de respostas. Estas respostas substituem as piores
respostas do conjunto inicial. Por fim, a resposta € dada satisfazendo a condi¢do de parada

(GARGARI; KEYVANPOUR, 2022).

24

Figura 3 — Algoritmo Genético AG

. Gerar ou semear aleatoriamente a populacdo inicial P;

. Repetir;

. Avaliar a aptiddo de cada individuo em P;

. Selecionar os pais de P de acordo com o mecanismo de selegdo;

. Recombinar os pais para formar uma nova descendéncia;

. Gerar uma nova populagdo P' a partir dos pais e dos descendentes;
. Mutagdo de P';

P=P;

. Até atingir a condigdo de parada.

WD m =@ U W=
.

Fonte: adaptado de Gargari e Keyvanpour (2022)

2.3 Teste de software

O teste de software consiste na verificacdo dinamica de que um programa fornece
comportamentos esperados em um conjunto finito de casos de teste, adequadamente selecionados
do dominio de execugdo geralmente infinito (BOURQUE et al., 2014). Outra defini¢do que pode
ser citada, seria a da ISO 29119, que define como um conjunto de atividades realizadas para
facilitar a descoberta e/ou avalia¢do de propriedades de um ou mais itens (HASS, 2014).

A atividade de testes faz parte do processo de Verificacio e Validacdo de software, que
tem como objetivo conferir se o produto desenvolvido cumpre sua especificacio e funcionalidade
para seus usudrios (SOMMERVILLE, 2019). Outros objetivos importantes incluem identificaciao
de vulnerabilidades de seguranga, avaliagdo de usabilidade e aceitacdo de software, para os
quais diferentes abordagens seriam tomadas. O propésito de teste varia de acordo com o alvo
a ser testado (BOURQUE et al., 2014). Dessa forma, testar € uma forma de corroborar com a
qualidade do software desenvolvido (HASS, 2014).

Alguns termos sao importantes quando se fala de teste de software, pois ajudam a
distinguir a causa de um mau funcionamento e um efeito indesejado no servigo prestado pelo
sistema (BOURQUE et al., 2014). Segundo a ISO/IEC/IEEE 24765:2010 (ELECTRICAL;
ENGINEERS, 2010), dispde-se os seguintes termos que auxiliam nesta distin¢do:

— Engano (Mistake) — acdo humana que produz um resultado incorreto.

— Defeito (Fault) — um passo, processo, ou defini¢do de dados incorreta em um produto de
software.

— Erro (Error) — diferenga entre o valor computado, observado ou medido e o valor teorica-
mente correto de acordo com a especificacao.

— Falha (Failure) — inabilidade do sistema ou componente realizar a fun¢io requerida,
considerando as questdes de desempenho exigidas.

A esséncia do teste de software é determinar um conjunto de casos de teste para o

25

item a ser testado. Um caso de teste completo deve possuir um identificador de caso de teste,
uma breve declaracdo de propésito (por exemplo, uma regra de negdocio), as pré-condigdes, as
entradas reais do caso de teste, as saidas esperadas, pds-condicdes esperadas e um histdrico
de execucdo. O histérico de execugdo € usado para gerenciamento de teste, nele pode conter
a data em que o teste foi executado, a pessoa que o executou, a versao em que foi executado
e o resultado (JORGENSEN, 2021). A atividade de teste € dispendiosa, pois o tamanho do
conjunto de casos de teste tende a aumentar a medida que o software evolui, e se fosse seguir o
seu objetivo ideal seria uma tarefa extremamente exaustiva (BARBOSA et al., 2022). H4 outras
razdes para justificar que testes exaustivos sdo improvaveis como: o dominio de as entradas
possiveis de um programa sao muito grandes e pode ndo ser vidvel simular todas as condi¢des
do ambiente do sistema (SANTOS, ; MYERS et al., 2013).

Existem duas maneiras de executar o teste de software: de forma manual e de
forma automatizada. No manual, o testador executa os passos especificados pelo caso de teste.
Enquanto na forma automatizada, ha a utilizacdo de ferramentas de teste que simulam usudrios
ou processos (MAIA et al., 2013). O uso de ferramentas de teste automatizadas pode minimizar
parte do custo do processo de teste (MYERS er al., 2013), mesmo que o processo de implantacao
dos testes automatizados inicialmente tem um elevado custo, devido a compra de ferramentas
apropriadas para a criagdo e execugdo dos testes, treinamento da equipe, contratacio de pessoas
qualificadas, e entre outros (SILVA et al., 2011).

O teste de software geralmente € realizado em diferentes niveis ao longo do desen-
volvimento e manutengdo processos. Os niveis podem ser definidos com base no objeto de teste,
que € chamado o alvo, ou no propésito, que é chamado de objetivo (do nivel de teste). O alvo de
teste pode ser: um tnico médulo, grupo de médulo ou o sistema em sua totalidade. Dessa forma,
existem trés niveis de teste: unidade, integracdo e de sistema. Sendo o de unidade a verificagdao
de elementos do software de maneira isolada, onde normalmente o testador tem acesso ao codigo.
J4 o teste de integracdo verifica as interagdes entre os componentes, utilizando estratégias como
a de ropdown (de baixo para cima). E por fim, o teste de sistema que analisa o comportamento
do sistema por inteiro (BOURQUE et al., 2014).

Além disso, existem as estratégias de teste, sendo a caixa-preta e a caixa-branca as
mais conhecidas (MYERS et al., 2013). A técnica caixa-preta tem como caracteristica os casos
de teste dependerem apenas do comportamento de entrada e saida do software. Em contrapartida,

a caixa-branca define seus testes de acordo com informacdes de estrutura de codificacdo do

26

software (BOURQUE et al., 2014).

A atividade de teste leva cerca de metade do custo total de desenvolvimento de
software, sendo um processo demorado e caro (BAJAJ; SANGWAN, 2019). Dadas as restri¢coes
de tempo e custo, uma das principais questdes do teste se torna: qual subconjunto de todos os
casos de teste possiveis tem a maior probabilidade de detectar a maioria dos erros (MYERS
et al., 2013). A partir disso, foram definidos critérios de adequacdo de teste que podem ser
usados para decidir quantos testes serdo suficientes ou foram realizados (BOURQUE et al.,
2014). Um critério de selecdo de teste € um meio de selecionar casos de teste ou determinar que
um conjunto de casos de teste € suficiente para um propésito especifico. Segundo (COPELAND,
2004), existem cinco critérios bésicos para definir até onde deve-se testar um software, sdo eles:
Critérios de cobertura, Taxa de descoberta de defeitos; Custo marginal de encontrar o préximo
defeito; Consenso da equipe e Defini¢do do chefe.

A cobertura ¢ uma medida de quanto foi testado em comparagdo com quanto esta
disponivel para teste. A nivel de cddigo pode ser definida com métricas de instru¢do, cobertura
de ramificacdo e cobertura de caminho. A nivel de integracdo pode ser por meio de quantidade
de APIs testadas ou combinagdes de API e parametros. Em nivel de sistema, pode ser mensurada
por termos de funcdes testadas, casos de uso ou histdrias de usudrio testados ou cendrios de casos
de uso. Uma vez que os casos de testes executados tenham sido suficientes para os critérios de
cobertura previamente definidos, pode-se considerar um critério de parada (COPELAND, 2004).

A abordagem de taxa de descoberta de defeitos utiliza do seguinte calculo: a cada
semana (ou curto periodo de tempo) é contado o nimero de defeitos descobertos e quando a taxa
de descoberta for menor que um limite previamente selecionado os testes podem ser parados
(COPELAND, 2004). Algumas situacdes podem gerar a baixa da taxa, como: criacdo de testes
menos eficazes e testadores de férias, em razao disso (COPELAND, 2004) sugere nao depender
apenas de um critério para definir a parada dos testes.

O “custo marginal” € associado a uma unidade adicional de produc¢do, que no caso
do teste de software seriam os defeitos. O custo de encontrar defeitos vai aumentando uma vez
que encontrar os primeiros defeitos € mais simples e menos custosos, enquanto os “préximos”
defeitos sdo mais complexos e consequentemente possuem maior custo. No momento em que o
custo do defeito excede a perda que a organizacao incorreria se entregasse o produto com esse
defeito pode-se parar os testes. Vale ressaltar que nem todos os sistemas podem utilizar desse

critério de parada, como os que exigem alta confiabilidade. (COPELAND, 2004)

27

O consenso da equipe pode tomar como base fatores técnicos, financeiros, politicos
ou “intuicdes". A equipe decide que entregar o software apds um consenso e assim a atividade
de teste € suspensa. E por fim, a definicdo do “chefe” € associada a entrega do software e
consequentemente a parada dos testes quando uma figura de autoridade do produto define que o
software deve ser entregue mesmo sem a execugao de todos os testes (COPELAND, 2004).

Além disso, existem atividades que auxiliam na determinacdo de uma ordem de
execucao mais eficaz (a eficdcia dos testes € determinada através da andlise um conjunto de
execucdes de programas) e quais testes devem ser realizados no sistema (FREITAS et al., 2010;
BOURQUE et al., 2014). Sao elas:

— Priorizacao de testes: Esta atividade trata da determinagdo da melhor ordem de execugao
dos casos de teste de um sistema. A defini¢do da qualidade de uma ordem ¢é realizada por
meio de uma métrica de cobertura definida matematicamente para calcular o quanto tal
ordem executa cedo todo o sistema (FREITAS et al., 2010).

— Selecdo de casos de teste: Consiste da escolha de quais testes devem ser realizados em um

sistema, seja para a primeira versao ou para versdes posteriores (FREITAS et al., 2010).

2.3.1 Teste em SAS

A principal caracteristica do sistema autoadaptativo é que ele pode adaptar-se em
tempo de execucao de acordo com a informag¢ao do contexto. Tanto a utiliza¢ao da informagao
de contexto como a reconfiguragdo do software em tempo de execugdo, traz varios desafios para
a atividade de teste de software (SANTOS,), como:

— Muitas das adaptacdes sao realizadas em tempo de execucdo (SIQUEIRA et al., 2021),
nao sendo possivel analis-las durante o tempo de desenvolvimento;

— Mesmo que o ambiente de execucao possa restringir o nimero de possiveis adaptagdes
(SHEVTSOV et al., 2015), a quantidade de cendrios gerados a partir de alternativas de
adaptacdo ainda pode ser muito grande e invidvel do ponto de vista do teste (SIQUEIRA et
al., 2021). Isso ocorre porque muitos dos cendrios sao imprevistos pelos desenvolvedores
(SIQUEIRA et al., 2021);

— A geracdo automatica de casos de testes em um ambiente dinamico (SANTQOS,). O
desenvolvimento de testes automatizados em aplicagdes com estruturas tdo complexas
torna-se um desafio. (SIQUEIRA et al., 2016).

Os testes durante a fase de concepcao (Design-time) servem para verificar e validar

28

que um SAS satisfaz as suas especificagdes dentro de um determinado conjunto de contextos
operacionais previstos (FREDERICKS ef al., 2013). Os casos de teste em tempo de concepgao
sdo frequentemente estaticos, de forma que o sistema nao € executado, e podem ocorrer situacdes
inesperadas por falta de informagdes em seus requisitos e até mesmo situacdes de contexto
diferentes do esperado. Além disso, podem tornar-se limitados considerando a natureza de
auto-reconfiguracado dos sistemas autoadaptativos (FREDERICKS et al., 2013).

O teste em tempo de execugdo tem potencial para ser uma nova solucdo para a vali-
dacdo de sistemas adaptdveis, devido a dificuldade de identificar em tempo de desenvolvimento
todo contexto operacional possivel que um SAS pode encontrar em tempo de execucdo. Segundo
(LAHAMI et al., 2015) o teste em tempo de execugdo (ou Runtime Testing) é definido como
um método de teste que € realizado em ambiente de execucao final de um sistema quando o
sistema ou uma parte dele estd operacional. Pode ser realizado no momento da implantacao
ou em tempo de servigo. Para garantir sua alta disponibilidade em tempo de execucao, estes
sistemas de software sdo projetados para acomodar novos recursos apds os estagios de design
e implantacdo. Eles precisam adaptar-se e evoluir dinamicamente em tempo de execucao para
atingir novos requisitos e evitar falhas (FREDERICKS er al., 2013). Utilizando as defini¢des
de Field-based Testing Techniques (BERTOLINO et al., 2021), o teste em tempo de execugdo
que tratamos neste trabalho se adequa a definicdo de Online Testing. O Online testing indica
atividades de teste de campo realizadas no ambiente de produgdo no sistema de software real.

Vérios métodos foram propostos para apoiar os testes em sistemas autoadaptativos,
sendo um deles o Testing method for Dynamic Adaptive System (TestDAS) (SANTOS,). O
TestDAS utiliza como entrada um modelo de features do SAS com as regras de adaptacdo e um
modelo de variagao de contexto. O método tem como objetivo a verificacao do modelo SAS e
gera um conjunto de testes para validar o comportamento adaptativo do sistema.

O TestDAS inicia com a etapa de especificacdo do SAS usando o Dynamic Feature
Transition System (DFTS). Na etapa seguinte, ha a verificacdo as propriedades comportamentais
do DFTS utilizando uma ferramenta e por fim a geracio e execugao de testes € feita a partir das
propriedades definidas na etapa anterior.

O DFTS modela as mudancas das configura¢des do SAS de acordo com as mudancas
de contexto e as regras de adaptacdo acionadas. O DFTS € derivado do Context Kripke Structure
(C-KS) (ROCHA; ANDRADE, 2012) e de um modelo de features do SAS com suas regras
de adaptacdo (SANTOS et al., 2016). O DFTS € um grafo cujos nds representam os estados

29

de contexto e as features ativas, enquanto as arestas representam as variagdes de contexto do
sistema (SANTOS, 2020). Este possui dois tipos de proposi¢des atdmicas: as proposi¢des de
contexto (F) e as proposi¢des de feature (Pr). As proposi¢des em P, representam o contexto. As

proposig¢des Py representam todas as caracteristicas do modelo de features (FM) do SAS.

Definicio 2.3.1 (DFTS) Dada uma Context Kripke Structure (C-KS) = (S,1,C,L —), um SAS
com modelo de features FM, um conjunto R de regras de adaptagcdo e um conjunto E de
configuragoes inicias do produto, a Dynamic Feature Transition System (DFTS) é dada pela
tupla (S',I',C',L' —') onde Santos et al. (2016):

— S’ é um conjunto de estados de configuragcdo que contém as features ativas e o estado de
contexto atual;

— I' C S’ ¢ o conjunto de estados de configuracoes iniciais;

— P = P. W Py é o conjunto de é um conjunto de proposicoes atOmicas que é particionada em
contexto e proposigoes de features. As proposicoes em P, vem do C-KS. As proposicoes
em Py representam todas as features no modelo de features FM do SAS

— L’ é uma fungdo de rotulamento tal que L’ :S° —' 2F; e

- =/C (8" x P. x 8") é uma relacdo de transicao.

A Figura 4 ilustra um exemplo de DFTS em uma aplica¢io que considera as features:
Login, Video, Foto e Texto e os contextos: Bateria, Conexdo com carregador de bateria e
Conexdo com a internet. No DFTS, cada n6 representa um estado das features do sistema e do
contexto. Dessa forma, o DFTS reflete os efeitos das regras de adaptacdo sobre as caracteristicas
do SAS. Por exemplo, no estado S3 possui as features Foto, Video e Login ativadas e OS
contextos: Bateria média, Acesso a Internet e Sem conexao com fonte de energia, quando o
sistema se reconfigura para o estado S2 havendo a alteracdo do contexto para Sem conexdo com
a internet a feature de Login é desativada.

Uma evolucdo do trabalho de Santos () é a abordagem RuntimE Testing of dynami-
cally Adaptive systEms (RETAKE) de Santos (2020). Esta utiliza os conceitos do modelo de
contexto e features, tendo como objetivo executar uma sequéncia de teste no mecanismo de
adaptacdo para verificar as regras de adaptacdo e checar as propriedades comportamentais. Dife-
rentemente do trabalho de (SANTOS,) que focava em testes em tempo de projeto, o RETAKE
tem como objetivo testar a variabilidade sensivel ao contexto do SAS durante sua execugao,

considerando falhas em tempo de execugao.

30

Figura 4 — Exemplo de modelo DFTS

e

LEGENDA

Contexto Feature
BA - Bateria alta Sl - Sem internet L - Login
BM - Bateria média C - Carregando V - Video

8B - Bateriabaixa NC - N&o carregando ~ F - Folo
L- Internet T - Texto

Fonte: Santos (2020)

A abordagem possui 3 etapas que sdo: Instrumentacdo do SAS onde o engenheiro de
software utiliza o modelo DFTS e Extended Context Feature Model (¢CFM) de (SANTOS et
al., 2016) para representar features ativas, contexto atual do sistema e modela a variabilidade do
SAS. O eCFM € uma versao extendida do Context Feature Model (CFM) proposto por Saller ef
al. (2013) que visa modelar sistemas que adaptam suas features em tempo de execucao de acordo
com o contexto no qual estdo inseridos permitindo especificar restricdes nas features. Essas
restri¢des na features de contexto sdo feitas através do uso dos Grupos de Contexto que separam
em grupos OR e XOR. No grupo XOR, um conjunto de features filhas tem relacionamento
alternativo com a feature pai e somente uma delas pode ser acionada ao mesmo tempo que o pai
e no grupo OR, um conjunto de features filhas de uma feature pai tem um relacionamento de
modo que mais de uma delas pode ser ativada a0 mesmo tempo em conjunto com o pai.

A segunda etapa do RETAKE ¢ a implantacdo do SAS na ferramenta proposta pelo
autor podendo optar pela execug@o no ambiente final ou no ambiente controlado. A ferramenta
atualiza as regras e modelo de features e por fim, inicia a verificacdo em tempo de execucao, com
as etapas de checagem de propriedades comportamentais, analise do estado do sistema, geracao
da sequéncia de testes e execucdo dos testes.

A geracgao dos casos de teste e sequéncias de testes do RETAKE sao baseadas nos
conceitos de Santos (). Os casos de testes focam na configuracao do sistema pds-reconfiguragao
e verificam o mecanismo de adaptacdo que € abstraido em um componente, dessa forma os
testes gerados sdo de nivel unitdrio. A verificacdo do estado correto das features € obtido a partir

do modelo eCFM. Para a geragdo das sequéncias de teste € definida uma sequéncia finita de n

31

transicdes de estado de sistema e testar essas sequéncias significa avaliar se as features ativas no
estado estdo de acordo com a acdo disparada pelo contexto. Para isso, o engenheiro de software
deve definir um tamanho » para a sequéncia. Em seguida, o RETAKE seleciona n estados no
DFTS e utilizando uma adaptacdo da métrica Diversidade de Contexto de Wang e Chan (2009),
Wang et al. (2014). Dessa forma para o RETAKE, uma sequéncia de teste € um nimero finito de

transi¢des consecutivas no DFTS.

Definicao 2.3.2 (Diversidade de contexto) A Diversidade de Contexto (DC) de um fragmento
de fluxo de contexto cstream (C) é denotado por DC (cstream(C)) e é definido pela equacdo:
DC(cstream(C)) = Z;’:_ll HD(ins(C);, ins(C),)n = lestream(c)l,
onde HD(ins(C);, ins(C),)i é a distdncia de Hamming de um par de instdncias de

contexto ins(C); e ins(C);, e n é o tamanho de um fragmento de stream de contexto C.

Apesar dos métodos propostos apoiarem os testes, ainda possuem desafios relaciona-
dos a necessidade de reduzir o nimero de testes que sdo automaticamento gerados (SIQUEIRA
et al., 2021; PRIYA; RAJALAKSHMI, 2022) e overhead em termos de memdria, rede e tempo
de execugdo (SILVA et al., 2022). Portanto, hd uma necessidade de explorar técnicas eficazes em
termos de custos que reduzam o tempo de teste e os riscos de danificar hardware; e técnicas de
teste multiobjetivas, search-based e verificacdo de modelos podem ser aplicadas para reduzir os

custos dos processos de teste (MATALONGA et al., 2022).
2.3.2 Search-Based Software Testing

Dada a importancia da fase de Teste de Software, a subdarea denominada Teste de
Software Baseado em Busca (em inglés, Search-Based Software Testing (SBST)) se destaca
em Search-Based Software Engineering (SBSE) (MCMINN, 2011; FREITAS et al., 2010).
Este destaque € dado principalmente pela quantidade de problemas de teste de software que
ja se mostraram possiveis de serem modelados e resolvidos através de técnicas de otimizagao
matematica (FREITAS et al., 2010).

A Search-Based Software Testing (SBST) € a utilizacdo de técnicas de pesquisa meta-
heuristica otimizada para automatizar total ou parcialmente uma tarefa de teste; por exemplo, a
geracdo automdtica de dados de teste. A chave para o processo de otimizacao € a funcdo fitness
especifica ao problema (MCMINN, 2011). Vale destacar que a SBST, complementa as técnicas

tradicionais da Engenharia de Software para desenvolvimento de sistemas. Assim, problemas que

32

ndo eram completamente resolvidos ou eram resolvidos de maneira insastifastéria comecaram a
ser solucionados com a utilizagdo do SBST. Alguns dos principais problemas estudados sdo: a
geracdo de dados de teste, sele¢do de casos de teste e priorizacdo de casos de teste (FREITAS et

al., 2010).

33

3 REVISAO SISTEMATICA DA LITERATURA

Neste capitulo sdao apresentados os resultados da revisdo sistematica da literatura,
cujo objetivo foi identificar os desafios, as abordagens e as tendéncias em testes de sistemas
autoadaptativos. Na Secdo 3.1 é apresentada a motivacio e objetivo da execucdo da revisao
sistemdtica. Na Secao 3.2 s@o apresentadas as questdes de pesquisa, as questdes de extracao,
bases de dados, string de busca e descri¢gdo da metodologia. Na Secdo 3.3 sdo apresentados
e discutidos os resultados encontrados ao longo da revisdo. Por fim, nesta mesma secdo, ¢
apresentado um resumo sobre a revisao, destacando as principais contribui¢des e implicacoes a

partir dos dados coletados.

3.1 Motivacao e objetivo

Uma pesquisa na literatura em busca de revisdes sistemdticas da literatura (do
inglés, Systematic Literature Review (SLR)) que contribuissem para a justificativa deste trabalho.
Contudo, a revisdao mais atual encontrada foi a de (SIQUEIRA et al., 2021) que possui apenas
trabalhos publicados até 2019 e um trabalho de 2020. Vale ressaltar, que nesta SLR foram
identificados poucos trabalhos que utilizavam otimizagdo em testes de sistemas SAS.

Ao identificar a necessidade de alcancar trabalhos atuais e em busca de realizar uma
pesquisa da literatura voltada para o objetivo deste trabalho de mestrado, uma revisao sistemética
da literatura foi realizada. Esta SLR teve como objetivo identificar os desafios, abordagens,

fatores de influéncia e tendéncias em testes de sistemas autoadaptativos.

3.2 Metodologia

A metodologia utilizada para essa SLR foi o guideline de Kitchenham et al. (2016).
Além disso, procedimentos de Grounded Theory (GT) (STRAUSS; CORBIN, 1990) foram
aplicados para uma parte dos dados obtidos pela etapa de sintese da SLR para uma andlise mais
aprofundada dos resultados relacionados aos desafios. A Figura 5 ilustra o processo metodoldgico
da revisdo sistematica.

Nesta revisao os critérios de inclusdo foram: O artigo tratar de teste em SAS e o
artigo ser um trabalho primério. O critério de exclusdo, por sua vez foi: artigos com uma lingua
diferente do inglés, artigos publicados antes de 2020. As questdes de pesquisa foram definidas a

partir do objetivo da revisdo sistemdtica e sdo as seguintes:

Figura 5 — Metodologia da revisdo sistemadtica da literatura

1

PLANEJAMENTO

2

CONDUGAO

questdes de
pesquisa
2. Defini¢do dos

exclusdo

1. Especificagdo das

critérios de inclusdo e

3. Identificagdo de
trabalhos relevantes
4. Selegdo de estudos
primarios
5. Extracdo dos dados
6. Sintese dos dados

7. Coleta dos dados
relacionados aos
desafios
B. Codificagdo aberta
9. Codificagao Axial
10. Codificagao seletiva
11. Sintese dos
resultados

o

12. Escrita do
Relatdrio

Fonte: adaptado de Kitchenham et al. (2016)

34

— RQ1) Quais sao as caracteristicas das abordagens atuais para testar SAS? Esta questao

de pesquisa teve como objetivo apresentar as abordagens de teste para SASs, categorizando

o tipo de teste que a abordagem realiza, o nivel de teste e o tipo de atividade em que a

abordagem esta inserida, o tipo de dominio do sistema sob teste ao qual a abordagem €

aplicada e quando a abordagem ¢ aplicada.

— RQ2) Quais sao os atuais desafios relacionados ao teste de SAS? Essa pergunta de

pesquisa apresenta os desafios dos testes de SASs, categorizando-os por meio dos procedi-

mentos de Grounded Theory.

As seguintes perguntas de extracdo foram definidas para obter as informagdes neces-

sarias para responder as perguntas da pesquisa. A relacdo com as perguntas de pesquisa pode ser

visualizada por meio dos IDs, onde as perguntas RQ1.1 a RQ1.3 apoiam a busca pela resposta &

pergunta RQ1, e a RQ2.1 apoia a busca pela resposta da pergunta RQ2.
— RQ1.1) Quais sdo as abordagens para testar sistemas adaptaveis?

— RQ1.2) Quais sdo os tipos de sistema sob teste (SUT) da abordagem?

— RQ1.3) As abordagens de teste sdo aplicadas em tempo de execugéio ou em tempo de

projeto?

— RQ2.1) Quais sido os desafios de testes em SAS?

A estratégia de busca utilizada para pesquisar os artigos foi por meio de pesquisa

automatica. A string de busca de (SIQUEIRA et al., 2021) foi utilizada. Em razado de ser a

revisdo sistemdtica mais atualizada (com artigos até 2019 e um trabalho de 2020) e possuir

uma string de busca com keywords abrangentes. O guideline de (KITCHENHAM et al., 2016)

foi seguido para validar a string de busca e identificar banco de dados relevantes. Em seguida,

35

alguns artigos encontrados pela string na base de dados do IEEE foram analisados e, com base
nos critérios de inclusdo e exclusdo, confirmou-se que a string estava fornecendo resultados
satisfatorios. Por fim, foi efetuada uma pesquisa automatizada.

A motivacdo para uma nova revisdo sistemdtica em vez de uma atualizag¢@o da revisao
de (SIQUEIRA et al., 2021) baseou-se na lista de verificagao 3PDF (MENDES et al., 2020) para
definir quando atualizar uma revisao sistematica. Mendes et al. (2020) define pode-se dizer que
€ uma atualizacio de uma revisao sistemdtica apenas que for seguida a mesma metodologia da
revisdo anterior. Além disso, ndo é possivel comparar os resultados de revisdes que seguiram
protocolos diferentes. A partir dessa definicao, foram observadas diferencas em relacio a esta
revisdo e a (SIQUEIRA et al., 2021), como: bases de dados diferentes, este trabalho nao utilizou
snowballing, como os sistemas foram categorizados, critérios de inclusdo e exclusao diferentes,
a revisdo anterior ndo utilizou checklist para avaliar a qualidade dos estudos ou procedimentos
de Grounded Theory para analisar os resultados.

As bases de dados selecionadas para este trabalho foram a IEEE!, ACM?, Scopus” e
ScienceDirect*. Estas bases de dados foram escolhidas devido 2 sua utilizacio generalizada pela
comunidade académica. Para além disso, foram escolhidas quatro bases de dados para abranger
uma maior diversidade de trabalhos.

A seguinte string de busca foi utilizada:

(""Testing'') AND (''adaptive systems''OR "adaptive system''OR '"'context aware''OR
""context-aware''OR ''context awareness''OR ''context-awareness''OR '"adaptive soft-
ware''OR "autonomic'')

Na etapa de conducdo, foram encontrados 312 artigos utilizando a string de busca.
Foi realizado um filtro para encontrar possiveis trabalhos duplicados, utilizando a ferramenta
Parsifal >, que encontrou 109 duplicados entre as bases de dados. Em seguida, procedeu-se a
leitura do titulo e do resumo dos artigos, utilizando os critérios de inclusdo e exclusio, obtendo-se
um total de 25 artigos para anélise.

Para avaliar a qualidade dos 25 artigos selecionados para o estudo, estes foram
analisados de acordo com um checklist de qualidade para avaliar a qualidade dos estudos. Esse

checklist foi adaptado para identificar melhor informacdes relevantes para esta pesquisa, como a

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.scopus.com/
https://www.sciencedirect.com/
https://parsif.al/

L N S

36

descri¢ao da abordagem e a forma como ela é apresentada, com base no checklist e escala de
avaliacdo sugeridas por (KITCHENHAM et al., 2010).

Seguindo a escala de avaliacao sugerida por (KITCHENHAM et al., 2010), dez
artigos responderam “sim” a todas as perguntas e 15 artigos responderam a maioria das perguntas
(mas ndo a todas) com “sim”. A percentagem mais baixa de perguntas respondidas com “sim” foi
de 81,25%, e quanto mais proximo de 100%, melhor a qualidade do trabalho. Esta percentagem
foi calculada pelo nimero de perguntas da lista de verifica¢do dividido pelo nimero de perguntas
respondidas com "sim". Assim, os artigos selecionados tém um grau de qualidade aceitdvel.

Esta revis@o contou com a participacdo de trés pesquisadores. A atividade de selecdo
foi dividida entre dois, e a revisdo e sintese dos resultados foi feita por todos os envolvidos.
Além disso, foram realizadas reunides de alinhamento para garantir que os autores estivessem
de acordo na extragdo das informacdes, e o indice de concordancia foi calculado a partir do
teste Kappa (COHEN, 1960) utilizando a ferramenta Jamovi (JAMOVI, 2022) para verificar
se os revisores estavam de acordo. Foi obtido um coeficiente de 0.8, que, dentro da escala de
interpretagdo indicada por (KITCHENHAM et al., 2010), se enquadra em "Substancial” e é
considerado um bom coeficiente de concordancia entre autores.

Em seguida, os dados coletados foram sintetizados em duas formas: RQ1.1, RQ1.2,
e RQ1.3, que foram resumidos e analisados para responder a questao de investigacdo RQ1. J4 os
dados recolhidos pela questdo RQ2 e RQ2.1 foram analisados e sintetizados utilizando procedi-
mentos de Grounded Theory (GT). Para os dados recolhidos na fase de extracado relacionados
com a questdo de investigacdo RQ2, foram aplicados os procedimentos da Grounded Theory
(GT) para consolidar os resultados obtidos e sistematizar a anélise destes dados qualitativos. Os
procedimentos efetuados foram:

Codificacao aberta: Esta fase envolveu a definicao dos cédigos e identificadores de
cddigos, apresentados na Tabela 4, e a sua associacdo as citagdes traduzidas. As citacdes seriam
trechos do artigo na fase de extracdo e os codigos foram elaborados a partir das préprias citagdes.

Codificacio axial: Apés a codificag@o aberta, nesta fase foram definidas as catego-
rias e subcategorias com base nos cddigos previamente definidos. Além disso, as categorias e
subcategorias foram relacionadas através de proposicdes de causas e efeitos, condi¢des interveni-
entes e estratégias de acdo. As proposicoes utilizadas foram: estd associado a, é a causa de, e
faz parte do.

Codificacao selectiva: Finalmente, nesta fase, foi definida a categoria central e

37

foram revistas as relagdes entre categorias e subcategorias. Foi criada uma vista de rede para

melhorar a visualiza¢do dos dados.

3.3 Resultados e discussao

Ap6s a aplicacdo do processo descrito anteriormente, foram selecionados 25 artigos
para responder as questdes de pesquisa. Estes artigos estdo listados na Tabela 1. Além disso,
cada artigo é acompanhado da sua referéncia e do tipo de sistema tratado na abordagem de
teste do artigo (ou seja, Android, Web, Software Embarcado, Internet of Things (10T), Sistemas
Ciberfisicos (CPS) e Indefinido).

Foi realizado um filtro dos artigos encontrados por ano de publicac@o para analisar a
quantidade de trabalhos relacionados a abordagens de testes em SASs nos dltimos quatro anos.
O maior nimero de publicacdes foi em 2020 (10 artigos), seguido de 2021 (8 artigos), 2022 (5
artigos) € o menor nimero 2023 (2 artigos). O baixo nimero de artigos em 2023 é esperado
porque a busca na base de dados foi realizada até o inicio de 2023, em 16 de marco de 2023. Na

Figura 6 € possivel visualizar o percentual de artigos por ano de publicagdo.

Figura 6 — Artigos publicados por ano

@ 2020 @ 2021 @ 2022 @ 2023

Fonte: elaborada pelo autora.

Tabela 1 — Artigos selecionados

38

Ref Titulo SUT

(MICHAELS et al., Data Driven Testing for Context Aware Apps Android

2022)

(DADEAU et al., Online Testing of Dynamic Reconfigurations w.r.t. Adaptation Policies Indefinido

2022)

(FANITABASI et al., A self-integration testbed for decentralized socio-technical systems IoT

2020)

(SANTOS et al., Runtime testing of context-aware variability in adaptive systems Android

2021)

(PIPARIA et al., Combinatorial Testing of Context Aware Android Applications Android

2021)

(DEVRIES er al., Analysis and Monitoring of Cyber-Physical Systems via Environmental CPS

2021) Domain Knowledge & Modeling

(CHEN et al.,2021) Context-Aware Regression Test Selection Web

(MANDRIOLJ, Testing Self-Adaptive Software With Probabilistic Guarantees on Perfor- Indefinido

MAGGIO, 2022) mace Metrics: Extended and Comparative Results

(SHAFIEIL, RAF- A Test Case Design Method for Context Aware Android Applications Android

SANJANI, 2020)

(MIRZA et al., 2021) ContextDrive: Towards a Functional Scenario-Based Testing Framework Indefinido
for Context-Aware Applications

(YIGITBAS, 2020) Model-Driven Engineering and Usability Evaluation of Self-Adaptive Indefinido
User Interfaces

(MANDRIOLJ, Testing Self-Adaptive Software with Probabilistic Guarantees on Perfor- Indefinido

MAGGIO, 2020) mace Metrics

(ALMEIDA et al., Context-Aware Android Applications Testing Android

2020a)

(ALMEIDA et al., ENVIAR: ENVIronment DAta SimulatoR Android

2020b)

(CHEN et al.,2020) Simulated or Physical? An Empirical Study on Input Validation for CPS
Context-Aware Systems in Different Environments

(DORESTE; TRA- CATS: A Testing Technique to Support the Specification of Test Cases Indefinido

VASSOS, 2023) for Context-Aware Software Systems

(USMAN et al., TEGDroid: Test case generation approach for android apps considering Android

2020) context and GUI events

(DORESTE; TRA- Towards supporting the specification of context-aware software system Indefinido

VASSOS, 2020) test cases

(Yletal., 2022) Improving the Exploration Strategy of an Automated Android GUI Android
Testing Tool based on the Q-Learning Algorithm by Selecting Potential
Actions

(DADEAU et al., Testing adaptation policies for software components CPS

2020)

(DADEAU et al., Automated Generation of Initial Configurations for Testing Component Indefinido

2021) Systems

(MAURIO et al., Agileservices and analysis framework for autonomous and autonomic CPS

2021) critical infrastructure

(SILVA, 2020) Adaptation oriented test data generation for Adaptive Systems Indefinido

(CHEN et al.,2022) Simulation Might Change Your Results: A Comparison of Context- CPS
Aware System Input Validation in Simulated and Physical Environments

(WANG et al., 2023) Design and implementation of a testing platform for ship control: A case Embarcado

study on the optimal switching controller for ship motion

Fonte: elaborada pelo autora.

Os artigos selecionados também foram categorizados por base de dados, sendo:

— Scopus: Nove publicacdes (Usman et al. (2020), Doreste e Travassos (2020), Dadeau et al.

39

(2020), Dadeau et al. (2021), Yi et al. (2022), Chen et al. (2022), Dadeau et al. (2022),
Michaels et al. (2022), Maurio et al. (2021));

— IEEE Xplorer: Sete publicagdes (Piparia et al. (2021), DeVries et al. (2021), Chen et al.
(2021), Mandrioli e Maggio (2022), Shafiei e Rafsanjani (2020), Mirza et al. (2021), Silva

(2020));

— ACM: Seis publicacdes (Yigitbas (2020), Mandrioli e Maggio (2020), Almeida et al.
(2020a), Chen et al. (2020), Doreste e Travassos (2023), Almeida et al. (2020b))

— ScienceDirect: Trés publicagdes (Fanitabasi ef al. (2020), Santos et al. (2021), Wang et al.

(2023)).

RQ1) Quais sao as caracteristicas das abordagens actuais para testar o SAS?

Os tipos e niveis de teste de Pierre e Richard (BOURQUE et al., 2014) e as defini¢des

de actividades de teste de Garousi et al. (2020) foram utilizados para categorizar as abordagens.

Assim, as abordagens estdo listadas na Tabela 2 por tipo de teste (ex.: Teste de desempenho),

por nivel do teste (ex.: Unidade) e, finalmente, por tipo de atividade (ex.: Concegdo de casos de

teste (baseada em critérios)). E importante notar que a atividade de teste indicada na tabela esta

relacionada com o produto final da abordagem, o que significa que, apesar de a abordagem ajudar

noutras actividades, apenas foi considerado o produto final, uma vez que este € o objetivo da

abordagem. Além disso, foram utilizadas as siglas “I"e “S"para indicar os niveis de Integracdo e

Sistema na coluna nivel de teste, respetivamente. As defini¢des sdo apresentadas a seguir:

Teste de aceitacdo: Determina se um sistema satisfaz os seus critérios de
aceitacdo, normalmente verificando os comportamentos desejados do sistema em
relacdo aos requisitos do cliente.

Teste de regressiio: E um reteste seletivo de um sistema ou componente para
verificar se as modificacdes ndo causaram efeitos indesejados e se o sistema ou
componente continua a cumprir os requisitos especificados.

Teste de desempenho: Verifica se o software cumpre os requisitos de desem-
penho especificados e avalia as caracteristicas de desempenho - por exemplo,
capacidade e tempo de resposta.

Testes de seguranca: Foca na verificacdo de que o software estd protegido
contra ataques externos. Em particular, os testes de seguranca verificam a
confidencialidade, integridade e disponibilidade dos sistemas e dos seus dados.

Testes de interface: Visa verificar se os componentes estabelecem uma interface

40

correta para proporcionar a troca correta de dados e informacdes de controle.

e Atividade de Design de casos de teste (baseado em critérios): Design de
conjuntos de testes (conjunto de casos de teste) ou requisitos de teste para
satisfazer critérios de cobertura.

e Execucio de testes: Executar casos de teste no sistema sob teste (SUT) e registar

os resultados.

Tabela 2 — Categorizacdo da abordagens por tipo, nivel e atividade de teste

Ref Tipo de teste Nivel de teste Atividade de teste
(FANITABASI et al., 2020) Performace I Execucdo de teste
(SANTOS et al., 2021) Aceitacdo S Execucdo de teste
(PIPARIA et al., 2021) Aceitagdo S Execucdo de teste
(DEVRIES et al., 2021) Aceitacdo S Execucdo de teste
(CHEN et al., 2021) Regression S Execucdo de teste
(MANDRIOLI; MAGGIO, 2022) Performace S Execucio de teste
(SHAFIEI; RAFSANJANI, 2020) Aceitacdo S Atividade de Design de casos de teste

(baseado em critérios)

(MIRZA et al., 2021) Aceitagdo S Execucdo de teste

(YIGITBAS, 2020) Interface S Execucdo de teste

(MANDRIOLI; MAGGIO, 2020) Performace S Execucdo de teste

(ALMEIDA et al., 2020a) Aceitacdo S Execucdo de teste

(CHEN et al., 2020) Aceitagdo S Execucdo de teste
(DORESTE; TRAVASSOS, 2023) Aceitacdo S Atividade de Design de casos de teste

(baseado em critérios)

(USMAN et al., 2020) Aceitacdo S Execucgdo de teste

(DORESTE; TRAVASSOS, 2020) Aceitacdo S Atividade de Design de casos de teste
(baseado em critérios)

(DADEAU et al., 2020) Aceitacdo S Execucio de teste

(DADEAU et al., 2021) Aceitagdo S Execucdo de teste

(YT etal., 2022) Aceitacdo S Execucio de teste

(CHEN et al., 2022) Aceitagdo S Execucdo de teste

(DADEAU et al., 2022) Aceitacdo S Execucdo de teste

(MICHAELS et al., 2022) Aceitagdo S Execucdo de teste

(WANG et al., 2023) Aceitacdo S Execucdo de teste

(SILVA, 2020) Aceitacdo S Execucio de teste

(ALMEIDA et al., 2020b) Aceitagdo S Execucdo de teste

(MAURIO et al., 2021) Seguranga S Execucgdo de teste

Fonte: elaborada pelo autora.

Com base na categorizagdo da Tabela 2 e seguindo a definicao de Pierre e Richard
(BOURQUE et al., 2014), foi analisada a porcentagem de abordagens de testes funcionais e
nao-funcionais. Como resultado, obtivemos 20 abordagens funcionais (80%) (SANTOS et
al., 2021) (PIPARIA et al., 2021) (DEVRIES et al., 2021) (CHEN et al., 2021) (SHAFIEI,
RAFSANIJANI, 2020) (MIRZA et al., 2021) (ALMEIDA et al., 2020a) (CHEN et al., 2020)
(DORESTE; TRAVASSOS, 2023) (USMAN et al., 2020) (DORESTE; TRAVASSOS, 2020)
(DADEAU et al., 2020) (DADEAU et al., 2021) (Y1 et al., 2022) (CHEN et al., 2022) (DADEAU

41

et al., 2022) (MICHAELS et al., 2022) (WANG et al., 2023) (SILVA, 2020) (ALMEIDA et al.,
2020b), incluindo Testes de Aceitacao e Testes de Regressao, e cinco (20%) (FANITABASI
et al., 2020) (MANDRIOLI; MAGGIO, 2022) (YIGITBAS, 2020) (MANDRIOLI; MAGGIO,
2020) (MAURIO et al., 2021) abordagens nao-funcionais, divididas em Testes de Segurancga,
Testes de Interface e Testes de Desempenho.

Conforme mostrado na Tabela 1, ndo ficou claro na maioria dos artigos (9 artigos)
que tipo de SUT a abordagem se destina. No entanto, os principais tipos identificados foram
Android (8 artigos), Sistemas ciber-fisicos (CPS) (5 artigos) e Web, IoT e Embarcado com um

artigo cada. A Figura 7 mostra a percentagem de tipos de sistemas alvo por publicacgao.

Figura 7 — Percentagem de tipos de SUT por publicagcdao

4.00%

@ Embarcado @ Indefinidc @ Web @ loT @ Android @ Sistemas Cyberfisicos

Fonte: elaborada pelo autora.

A partir da RQ1.3, obtivemos as caracteristicas elacionadas a quando as abordagens
de teste sdo aplicadas, em tempo de execugdo ou em tempo de projeto.

Na maioria das publica¢des analisadas (10 artigos), nao foi possivel identificar se a
abordagem apresentada pelo autor era aplicada em tempo de execucao ou em tempo de projeto,
pois a disting@o entre os dois tipos de execucdo é o ambiente em que a abordagem serd executada.
Os artigos ndo indicam explicitamente o foco. Entdo, h4 oito abordagens em tempo de execugao,

5 em tempo de projeto e duas que podem ser executadas em tempo de execugdo e em tempo de

42

projeto. A tabela 3 relaciona o tempo de execucao da abordagem apresentada no artigo com a

referéncia da publicacao.

Tabela 3 — Tipo de execugdo por artigo

Tipo de execucdo Artigos

Indefinida (MIRZA et al., 2021), (CHEN et al., 2020), (DORESTE; TRA-
VASSOS, 2023), (DORESTE; TRAVASSOS, 2020), (DADEAU
etal.,2021), (Yletal.,2022), (CHEN et al., 2022), (DADEAU
etal.,2022), (WANG et al., 2023), (SILVA, 2020)

Tempo de execu¢do (SANTOS et al., 2021), (YIGITBAS, 2020), (ALMEIDA et al.,
2020a), (USMAN et al., 2020), (DADEAU et al., 2020), (MI-
CHAELS et al., 2022), (ALMEIDA et al., 2020b), (MAURIO et
al., 2021)

Tempo de projeto (FANITABASI et al., 2020), (PIPARIA et al., 2021), (DEVRIES
et al., 2021), (CHEN et al., 2021), (SHAFIEI; RAFSANJANI,

2020)
Ambas (MANDRIOLI; MAGGIO, 2022), (MANDRIOLI; MAGGIO,

2020)

Fonte: elaborada pelo autora.

Ao analisar os artigos através da RQ1, foi também possivel obter dados relativos a
abordagens que utilizavam mecanismos de otimizacao na sua estrutura.

A maioria dos artigos ndo utiliza otimizag¢ao nas suas abordagens de teste (20 artigos).
Apenas cinco artigos (FANITABASI et al., 2020), (FANITABASI et al., 2020), (DADEAU et
al.,2021), (MAURIO et al., 2021) e (SILVA, 2020)) utilizam mecanismos de otimizacao para
resolver desafios relacionados com testes SAS dentro da defini¢do de Search-Based Software
Engineering.

RQ2) Quais sao os atuais desafios relacionados ao teste de SAS?

Entre os 25 trabalhos analisados, 18 artigos (FANITABASI et al., 2020), (SANTOS
etal.,2021), (PIPARIA et al., 2021), (DEVRIES et al., 2021), (MANDRIOLI; MAGGIO, 2022),
(MIRZA et al., 2021), (YIGITBAS, 2020), (MANDRIOLI; MAGGIO, 2020), (ALMEIDA et
al., 2020a), (CHEN et al., 2020), (USMAN et al., 2020), (DORESTE; TRAVASSOS, 2020),
(DADEAU et al., 2020), (Y1 et al., 2022), (SILVA, 2020), (DADEAU et al., 2022), (ALMEIDA
et al., 2020b), (MAURIO et al., 2021) mencionaram desafios de testar SASs e apenas em 7
artigos (CHEN et al., 2021), (SHAFIEI; RAFSANJANI, 2020), (DORESTE; TRAVASSOS,
2023), (DADEAU et al., 2021), (CHEN et al., 2022), (MICHAELS et al., 2022), (WANG et al.,
2023) ndo foi identificada qualquer mengao a desafios.

Seguindo os procedimentos Grounded Theory (GT) procedeu-se inicialmente a uma

codificacdo aberta onde foram identificadas citagdes relacionadas com os desafios de testar as

43

SAS, tendo sido definidos os codigos associados a essas citagdes. Os codigos da Tabela 4 foram
definidos de acordo com a leitura das citacdes selecionadas. Foram definidos IDs para cada

cddigo para melhor organizagdo e manutengdo dos c6digos.

Tabela 4 — Coédigos

ID Cédigos
CODO0O1 A camada de adaptagdo que reage explicitamente a incerteza
CODO02 Dificuldade de deteccdo de configuragdes incorretas em tempo de execucdo
CODO03 Como identificar os eventos de contexto de uma aplicacdo
COD04 Complexidade da atividade de teste
CODO05 Custo elevado de manutencdo dos testes
COD06 Dados de contexto inconsistentes € imprecisos
CODO07 Dependéncia de monitoramento de contexto dinamico em tempo de execucdo para
validagdo e verificacdo
CODO08 Diferentes cendrios de execugdo que podem ser dificeis de reproduzir manualmente
COD09 Ecossistema fragmentado
CODI10 Explosdo de combinagdes de cendrios
CODI11 Falta de abordagens em tempo de execugdo
CODI12 Heterogeneidade do contexto
COD13 Incertezas na mudancga que afetam na validade
CODI14 Limitacdo de técnicas de validag@o e verificacdo
CODI15 Metodologias limitadas que ndo consideram contexto
CODI16 Metodologias limitadas que ndo consideram adaptagéo
COD17 Mudanga e adaptagdo continua
CODI18 Necessidade de uma linguagem de modelagao de adaptacdo
COD19 Necessidade de uma linguagem de modelagdo de contexto
COD20 Plataformas de teste limitadas
COD21 Grande quantidade de eventos GUI e de contexto
COD22 Tempo oneroso para testar muitas combinacdes
COD23 Custo para testar muitas combinagdes

Fonte: elaborada pelo autora.

A Tabela 5 refere-se a uma parte da codificagdo aberta traduzida, uma vez que os
artigos selecionados estavam todo em lingua inglesa contendo a associagdo dos artigos, com a
citagdo extraida e o c6digo relacionado a citagao.

Na fase de codificacdo axial, as categorias foram definidas com base nos codigos
previamente definidos: A camada de adaptacdo que reage explicitamente a incerteza (CODO1),
Complexidade da atividade de teste (CODO04) e Limitacdo das técnicas de validacdo e verificacao
(COD14)".

Finalmente, na fase de codificacdo seletiva, a categoria central foi "Desafios de testes
em sistemas adaptativos". A Figura 8 mostra o resultado final do Grounded Theory, com a
categoria central, as subcategorias e suas relacdes apresentadas por uma visdo de rede.

Para identificar os desafios atuais, os dados coletados foram analisados para verificar

quantas vezes os codigos da Tabela 4 foram citados nos 25 artigos desta pesquisa. O desafio

44

Tabela 5 — Parte da codificacdo aberta traduzida

Ref. Trecho ID do Cédigo

(SANTOS et al., 2021) “Entre os principais desafios, destaca-se a detecdo de configura- CODO02
¢des incorretas em tempo de execugdo na presenca de alteragdes
de contexto. "

(PIPARIA et al., 2021) “O grande nimero de eventos de GUI e eventos de contexto COD22
geralmente complicam o processo de teste."

(PIPARIA et al., 2021) “Devido as infinitas combinacdes de eventos e a fragmentacao COD22
de dispositivos suportados para aplicativos GUI, testd-los é um
desafio em termos de tempo e custos."

Fonte: elaborada pelo autora.

Figura 8 — Visdo de rede de categorias e subcategorias

Desafios de teste em
sistemas adaplativos

faz parte de faz parte de.

cons /
faz parte de

Técnicas limitadas de
validacdo e verificacio

coDo4
Complexidade da atividade de teste
esta associado com

A camada de adaptacio que
reage explicitamente 4 incerleza dacasade o

Como identifcar eventos de
— contexto de um aplicalivo
Swcmmude € acausa de CODO9. e
/ \ &acausa de
€OD13. comz. Ecossistema fragmentado
{ Incertezas na mudanca uuﬂ [Mudanca e adaptacio }

esta associado com
esta associado com

D
Falta de abordagens de tempo
de execugao

Metodologias limitadas que n&o
consideram a adapiacio

afetam a validade continuas estd associado com

Metodologias fimitadas que nfo
COD06.

& consideram o contexto
éacassade esta associado com Dados de contexto
st assodatacon inconsistentes e imprecisos
. €OD10_
— esié associado com = =
Dificuldade em detectar Explosio de combinages de
configuracBes incorretas em rio .
o 16 GumtuE0 cop1s. Necessicade de uma finguagem st associada com, covz1.
- d6 uma linguagem e modelagem de adaptacdo Grande niimero de eventos de
de modelagem de contexto GUI e contexto
& acausa de
& 2 causa de
esla associado com s uoaicate
€OD12,

CODOS.
Alto custo de manutencio de

copoz. Heterogeneidade de contexto
Dependéncia de mantoramento
de contexto dinamico em tempo conz0,

de execucko para validacio e
verificagdo Plataformas de teste limitadas

&2 causade

&acausage

(Tempa dispendioso para testar
muitas combinacbes

Diferentes cenarios de
execucio que podem ser

€OD23. dificeis de reproduzir

Custo de testar muitas
combinaces

Fonte: elaborada pelo autora.

mais citado entre os artigos foi o Mudanga continua e adaptagdo (citado oito vezes), seguido do
Complexidade da atividade de teste e do Explosdo de combinagoes de cendrios, ambos citados
sete vezes. Outros desafios envolvem Incertezas na mudanga que afectam a validade (citado
seis vezes) e, finalmente, Metodologias limitadas que ndo consideram o contexto (citado quatro
vezes).

As categorias 1 (A camada de adaptacdo que reage explicitamente a incerteza)
e 3 (Técnicas limitadas de validagdo e verificacdo) s@o as que t€m mais subcategorias, 0ito
respetivamente. Pode ver-se que os desafios significativos no testede SASs sdo a camada de

adaptacao relacionada com:

Alto custo de manutencao de testes;

Diferentes cendrios de execucdo que podem ser dificeis de reproduzir manualmente;
— Heterogeneidade do contexto;
— Incertezas na mudanga que afetam a validade;

Mudanca e adaptagdo continuas;

45

— Grande nimero de eventos de GUI e de contexto;
— Tempo dispendioso para testar muitas combinagdes;
— Custo para testar muitas combinagdes.
Além disso, a limitacdo de técnicas para ajudar a validar e verificar esses sistemas,

que estdo associados a:

Dificuldade em detectar configuragdes incorretas em tempo de execugao;

Dependéncia da monitoriza¢io dindmica do contexto em tempo de execuc¢do para validacao

e verificacdo;

Falta de abordagens em tempo de execucao;

Metodologias limitadas que nao consideram o contexto ;
— Metodologias limitadas que ndo t€ém em conta a adaptaco;
— Necessidade de uma linguagem de modelagdo da adaptacio;
— Necessidade de uma linguagem de modelagcdo do contexto;
— Plataformas de teste limitadas.

Além disso, a Categoria 2 (Complexidade da atividade de teste) também € significa-
tiva, com quatro subcategorias, pois também se pode verificar que varios fatores tornam o teste
destes sistemas complexo (Como identificar os eventos de contexto de uma aplicacdo, Dados de
contexto inconsistentes e imprecisos e Explosdao de combinagdes de cendrios).

Com base nos resultados relacionados as caracteristicas das atuais abordagens de
teste em SAS. existem poucas abordagens aos testes ndo funcionais; apenas cinco artigos tratam
deste tipo de testes. Além disso, apenas os testes nao-funcionais de Desempenho, Interface e
Seguranga sdo abordados. Além disso, a maioria das abordagens centra-se mais na atividade de
execucgao de testes em SASs e em testes ao nivel do sistema. Desta forma, abordagens para testes
nao-funcionais que se concentram em outras atividades e niveis de testes sdo uma oportunidade
de estudo.

A partir dos resultados obtidos pela pergunta de extracdo RQ1.2, nota-se uma
caréncia de abordagens focadas em sistemas Embarcados, Web e [oT nos tltimos anos. Portanto,
apresentar novas abordagens para Self-Adaptive Systems voltadas para esses sistemas pode ser
um tdépico interessante para pesquisas futuras.

Pode-se observar que a maioria dos estudos que indicam o tipo de execucao da
abordagem de teste € voltada para testes em tempo de execucao, e apenas dois estudos apresentam

abordagens que podem ser tanto em tempo de execu¢do quanto em tempo de projeto. A proposta

46

de abordagens de teste para SASs flexiveis que possam ser executadas em tempo de execucdo e
em tempo de projeto pode também ser uma oportunidade para investigacao futura.

Ademais, foram encontradas poucas abordagens focadas em testes ndo funcionais;
apenas cinco artigos tratam deste tipo de testes. Além disso, apenas os testes ndo-funcionais
de Desempenho, Interface e Seguranca sdo abordados. Além disso, a maioria das abordagens
centra-se mais na atividade de execucgdo de testes em SASs e em testes ao nivel do sistema. Desta
forma, abordagens para testes ndo-funcionais que se concentram em outras atividades e niveis de
testes sdo uma oportunidade de estudo.

Nota-se também uma caréncia de abordagens focadas em sistemas Embarcados, Web
e [oT nos ultimos anos. Portanto, apresentar novas abordagens para SAS voltadas para esses
sistemas pode ser um topico interessante para pesquisas futuras.

Os trabalhos relacionados com as abordagens de otimizagdo sdo escassos. Apenas
cinco artigos em 4 anos tratam de mecanismos de otimiza¢do dentro de abordagens de testes em
SASs. Vale ressaltar que o uso de mecanismos de otimizagdo em abordagens de testes para SASs
pode ser promissor devido aos beneficios ja observados com o uso de Search-Based Software
Testing (SBST) em outros dominios (MCMINN, 2011).

Em resumo, através da revisao sistemadtica pode-se ter uma visao geral do contexto
de testes de SASs nos tultimos trés anos e vislumbrar desafios e oportunidades. Também foi
possivel identificar a necessidade de abordagens focadas em sistemas Embarcados, Web e [oT e
que apenas duas abordagens sdo flexiveis quanto ao tipo de execucao, sendo possivel executa-las
em tempo de execucdo e em tempo de projeto. Além disso, faltam abordagens voltadas para
testes ndo funcionais que suportem vdarios niveis e atividades de testes. Vale ressaltar ainda
que, dos 25 artigos selecionados, apenas cinco aplicavam mecanismos de otimiza¢do em suas
abordagens de teste.

Por fim, nota-se que existem varios desafios relacionados ao teste de SASs, principal-
mente ligados a camada de adaptac@o, ao nimero limitado de técnicas de teste e a complexidade
do teste desses sistemas. Os resultados podem entdo auxiliar futuras pesquisas sobre testes
de sistemas autoadaptativos e incentivar a produgdo cientifica que busca mitigar os desafios

identificados.

47
4 TRABALHOS RELACIONADOS

Neste capitulo sdo apresentados trabalhos relacionados a esta pesquisa, identificados
por meio da revisdo sistematica da literatura descrita no Capitulo 3. A Secdo 4.1 enumera os
trabalhos que utilizam otimizagdo para auxiliar na execucio de abordagens de teste em sistemas
SAS e, por fim, a Secdo 4.2 apresenta uma comparagao entre os trabalhos relacionados e ao que

€ proposto nesta dissertacao.

4.1 Abordagens de teste para SAS com otimizacao

Os sistemas autoadaptativos tém a caracteristica de se ajustar em tempo de execucao
com base nas informagdes do contexto. Essa caracteristica acarreta desafios relacionados a
quantidade de adaptacdes realizadas durante a execucdo, a quantidade e complexidade dos
cendrios de teste para esses sistemas (SIQUEIRA et al., 2021; FANITABASI et al., 2020), e as
dificuldades associadas a automatizagao dos testes nesse contexto (SIQUEIRA et al., 2016).

Diversos métodos foram propostos para apoiar os testes em sistemas autoadaptativos,
com destaque para os trabalhos de Dadeau et al. (2021), Maurio et al. (2021), Mandrioli e
Maggio (2022) e Santos (2020), que sao apresentados em detalhes nesta secao.

Dadeau et al. (2021) apresentam uma abordagem para gerar automaticamente confi-
guracdes para testar sistemas baseados em componentes. Para tanto, um algoritmo combinatdrio
¢ utilizado para enumerar todas as solugdes possiveis sem simetria do Constraint Satisfaction
Problems (CSP)! definido pelo modelo componente, a fim de produzir configuraces iniciais.
Este algoritmo integra padrdes de eliminacao de simetria que reduzem as combinagdes a serem
consideradas.

No trabalho de Maurio et al. (2021), os autores descrevem duas abordagens de teste
de seguranca de sistemas fisicos cibernéticos. A primeira abordagem reabilita os sistemas de
controle industrial com propriedades autdnomas permitindo detectar e recuperar automaticamente
de ciberataques e outras falhas através da utilizacdo de microsservicos que reconfiguram os
sistemas de forma dindmica durante os ataques ou falhas. A segunda abordagem utiliza agentes
inteligentes numa modelacao e quadro de simulacdo para testar a resiliéncia de sistemas aéreos
autdbnomos nao tripulados. Usando uma abordagem de programagao de restricdo baseada em

algoritmo genético, o escalonador/alocador produz uma configuragao inicial contendo os horarios

' Constraint Satisfaction Problems (CSP) sdo problemas mateméticos definidos como um conjunto de objetos

cujo estado dos mesmos deve satisfazer uma série de restricdes

48

de inicio e locais para todos os microsservigos. Os autores indicam que as duas abordagens
em conjunto fornecem a garantia e a resiliéncia dos sitemas de continuar a operar durante
falhas e ataques, e um mecanismo para testar a sua resiliéncia sob uma série de condi¢des de
funcionamento.

Mandrioli e Maggio (2022) apresentam uma abordagem para aspectos ndo funcionais.
Estes buscaram encontrar limites para um desempenho parametro de um sistema adaptativo (ou
seja, do software e de uma dada estratégia de adaptacdo implementada sobre o mesmo). Na
metodologia de teste proposta pelos autores, a varidvel de decisdo é o desempenho de pior caso
da estratégia de adaptagao (ou seja, o melhor valor da métrica de desempenho que se garantir com
seguranca), a funcdo de custo € o proprio desempenho de pior caso e cada um dos os resultados
dos testes sdo uma restricdo. A avaliacao do limite de desempenho torna-se entdo, o problema
de otimiza¢do: maximizar o desempenho que sempre pode ser garantido, sob a restricao de que
ndo pode exceder o que € experimentado nos testes realizados. O objetivo desta abordagem ¢é
fornecer garantias empiricas sobre o comportamento do sistema.

O RETAKE de Santos (2020) é uma abordagem para executar o teste em tempo de
execugdo com base na variabilidade do contexto do sistema e na modelacdo de caracteristicas. O
RETAKE testa o mecanismo de adaptacao, permitindo a verificacdo das suas regras de adaptacdo
com o modelo de variabilidade do sistema. O teste em tempo de execucdo € apoiado pela
verificacdo das propriedades comportamentais. Esta abordagem gera sequéncias de testes,
contudo de forma aleatoria e utilizando o algoritmo de Hamming para calcular a distancia de
Hamming entre o contexto do estado atual do SAS no Dynamic Feature Transition System
(DFTS) em relagdo aos seus vizinhos. Esta abordagem ja gera sequéncias de testes, contudo
de forma aleatdria e utilizando o algoritmo de Hamming para calcular a distancia de Hamming

entre o contexto do estado atual do SAS no DFTS em relag¢do aos seus vizinhos.

4.2 Comparaciao com o trabalho proposto

Diferente dos trabalhos relacionados identificados na literatura, o objetivo deste
trabalho € trazer um mecanismo de otimizagao de sequéncias de testes que possa ser utilizado de
forma ampla em abordagens de testes em sistemas DAS. Assim, as abordagens que busquem
os objetivos de diversidade de contexto, cobertura de teste e custo de execucdo podem utilizar
este mecanismo. A Tabela 6 resume as diferencas entre os trabalhos encontrados na literatura

e o proposto neste estudo, indicando com "V"os elementos presentes no trabalho e com "X"os

ausentes.

Tabela 6 — Trabalhos relacionados e o Optimus

Trabalho Runtime Testing Tipo de teste Otimizacio Algoritmos genéticos
Dadeau et al. (2021) X Funcional \'% X
Maurio et al. (2021) v Seguranga v \"
Mandrioli e Maggio (2022) v Performace v X
Santos (2020) \" Funcional X X
Optimus \" Funcional \Y \"

Fonte: elaborada pelo autora.

50

S OPTIMUS

Neste capitulo é apresentada a proposta desta dissertagio, o mecanismo Optimus .
Primeiro, uma visdo geral do mecanismo € descrita (Secdo 5.1). Ademais, sdo apresentadas as
etapas para aplicacao do mecanismo (Sec¢@o 5.2) nas quais se apresenta sobre a especificacdo
do SUT (Sec¢ao 5.2.1), utilizagdo da ferramenta Bumblebin (Sec¢ao 5.2.2) e mais detalhes do

Optimus (Se¢do 5.2.3).

5.1 Visao Geral

Neste trabalho de mestrado € proposto o mecanismo Optimus que busca auxiliar na
geracao de sequéncias de casos de teste para Self-Adaptive Systems (SAS), utilizando algoritmo
genético para maximizar a cobertura de testes e minimizar o custo de execugdo dos testes.
Isso € feito selecionando os melhores casos de teste a partir de parametros. A relevancia do
mecanismo € vista por meio resultados encontrados durante a execugdo da revisdo sistemdtica da
literatura (descrita no Capitulo 3), onde entre os desafios mais citados por autores estd a explosdao
combinatorial de cendrios e o custo de testar muitas combinacdes. Ademais, poucos trabalhos
foram encontrados na literatura que utilizassem de otimizacdo para testes em SAS, mesmo com
os beneficios ja observados em outros dominios (MCMINN, 2011).

O mecanismo € desacoplado de abordagens e sistemas, o que facilita sua integracao
e evita impactos no cédigo da aplicagdo ou do sistema a ser testado. Ademais, o Optimus utilizou
e evoluiu alguns os conceitos dos trabalhos de Santos () e Santos (2020). Santos () apresenta
um método de teste em SAS (TestDAS) baseado no Dynamic Feature Transition System (DFTS)
que envolve uma abordagem de verificagcdo de modelos para identificar falhas de design na
geracdo de testes para validar os SASs em tempo de projeto. Enquanto isso, o RETAKE de Santos
(2020) busca testar a variabilidade sensivel ao contexto de SAS em tempo de execucao, isto €,
considerando falhas ocorridas durante a execu¢do do sistema em seu ambiente final. Por sua
vez, o Optimus € um mecanismo que pode auxiliar, por exemplo, na otimizac¢do da execugdo dos
testes de Santos () e Santos (2020). Assim como de outras abordagens ou métodos de teste em
sistemas SAS que utilizem o modelo DFTS. Outra caracteristica do mecanismo € que este pode

ser aplicado tanto para testes em tempo de execucao, como também em testes em Design-time.

' O nome Optimus foi inspirado no robé Optimus Prime do filme Transformers. Uma vez que o mecanismo

pretende receber informagdes e transforma-las, assim como o robd Optimus prime possui essa caractetistica de
transformacao.

51

Neste trabalho focamos em testes em tempo de execucao.

O mecanismo recebe casos de testes e gera uma sequéncia otimizada por meio das
métricas de diversidade de contexto e custo da feature. A Figura 9 apresenta uma visao geral de
como funciona a aplicacdo do mecanismo. Inicialmente, o analista de testes especifica o0 SAS
definindo quais features serdo testadas, o custo da feature, o estado do sistema (podendo ser
o atual ou o que se deseja testar) e os grupos de contexto (ver Secao 2.3.1). Em seguida, ele
utiliza o conversor bindrio de features e contextos (Bumblebin) para geracao e selecio de casos
de teste a partir do contexto atual. Por fim, o Optimus avalia os casos de testes por meio da
funcao fitness tendo como objetivos: maximizagao da diversidade de contexto e minimizac¢ao do

custo da feature e retorna a sequéncia de testes com os melhores casos de teste.

Figura 9 — Visao geral das etapas para uso do Optimus

Bumblebin

Analista de teste

Conversdo para
Selegdo do bindrio de Geragdo dos
Test_set contextos e casos de teste

Cdlculo dos
custos dos
casos de teste

Seleg@o dos casos de
teste relacionados ao
estado atual do sistema

Geracdo dos
arquivos

4

Optimus i Resumo
Especificagdo com vis@o
do SAS 5‘3[505 de _ geral
este :
7

—_

features

Custos dos
casos de teste
selecionados

Fonte: elaborada pelo autora.

5.2 Etapas para o uso do Optimus

Para a execu¢do do Optimus faz-se necessaria a realizagdo de algumas etapas para
preparar as informacgOes a serem recebidas pelo mecanismo. As secdes 5.2.1, 5.2.2 e 5.2.3

elucidam cada etapa.

5.2.1 Analista de testes - Especificar SAS

Inicialmente, para a geracdo dos casos de teste o analista de teste deve modelar o
System Under Test (SUT) no modelo de features usando o Dynamic Feature Transition System

(DFTS). Para isso, foi feita uma adapta¢do do modelo DFTS proposto por (SANTOS, 2020). O

52

modelo utilizado por (SANTOS, 2020) define que em um arquivo JavaScript Object Notation
(JSON) devem ser determinadas as features, contextos e caminhos, seguindo a definicao do
DFTS. Para este trabalho, essa estrutura foi alterada, de forma que devem ser definidas: features
a serem testadas, custo de cada feature, o estado do sistema (que se deseja testar ou estado atual,
sendo o estado atual igual a(s) feature(s) e contexto(s) ativados) e os conjuntos de contextos
relacionados as features. Esta alteracao foi realizada para que ndo houvesse a necessidade de
definir caminhos para a realizagcdo dos testes, uma vez que os casos de teste devem ser escritos
para condi¢des de entrada que sdo invalidas e inesperadas, bem como para aquelas que sdo
validas e esperadas (MYERS er al., 2013).
Assim, diferentemente da abordagem de geragdo de Santos () e Santos (2020) o
Optimus gera uma sequéncia de testes baseada em um contexto do sistema, consequentemente
expandindo a variabilidade de cendrios a serem testados. Para utilizar o Optimus em testes
realizados em design-time, o analista de teste pode especificar qualquer estado que deseja testar.
Para testes em tempo de execucdo, deve ser utilizado o estado atual do sistema. Orienta-se que o
analista concentre-se nas features e contextos que deseja testar, selecionando assim o Test_set. O
Test_set para este trabalho é configurado para possibilitar que o analista teste diversos grupos de
features e contextos especificados em um tnico arquivo JSON.
Ademais, foi acrescentada a definicao dos custos das features baseada na definicao
dos autores Santos et al. (2018), que sugerem que o custo seja calculado considerando:
— O custo inerente de usar a feature, que inclui o valor de uso da feature e seus ativos que
foram criados durante o processo de engenharia;
— O custo médio de consumo de energia da feature no ambiente de implantacao;
— O custo de personalizar ativos da feature para o sistema;
— O custo da insercdo da l6gica de adaptacio do tempo de execucio (esse custo esta relacio-
nado a percepcao do contexto).
Para este trabalho, os custos das features foram definidos entre 0 e 5 de acordo
com nivel de complexidade de atividades consideradas. O nivel de complexidade envolve a
dificuldade de execugdo da feature, o tempo gasto e o impacto no sistema, onde tem-se o valor:
e 0, se ndo existir;
e 1, se for muito baixo;
e 2, se for baixo;

e 3, se for moderado;

e 4, se for alto;

e 5, se for muito alto.

53

E importante destacar que esta é apenas uma sugestio para a defini¢io dos custos

de cada feature, e o analista de teste tem liberdade para estabelecer esses valores, desde que

se mantenha a escala de zero a cinco. No entanto, a defini¢do do custo € essencial para que o

mecanismo possa selecionar os casos de teste levando em consideragdo o custo de cada um.

A Figura 10 ilustra como o arquivo JSON de Santos (2020) (A) € estruturado em

comparacao com o arquivo desta pesquisa (B). No arquivo de Santos (2020) existe o0 campo

edges que € organizado por id indicando o caminho no DFTS a ser seguido, em contrapartida no

arquivo do Optimus possui o grupo de contexto e adicionalmente o campo de estado do sistema

(atual ou o estado que se deseja testar) que possui as features ativadas e contextos; € o campo

de custo das features. O campo de estado do sistema € indicado em formato bindrio seguindo a

definicdo de Santos et al. (2018), onde as features e contextos ativados devem ser representados

por 1 e os desativados por zero.

Figura 10 — Exemplos de (A) DFTS no RETAKE e (B) DFTS no Optimus

"contexts":{"battery":"batteryHigh", "internet":
"hasNotInternetConnection™, "charging”:"isNotCharging”},
"edges":{

"0":{"battery":"batteryHigh",
"hasNotInternetConnection”,
{"battery":"batteryHigh"”,
"hasInternetConnection™, "cha
"3":{"battery":"batteryMedium",
"hasInternetConnecticn”, "charg
"2":{"battery”:"batteryMedium",

internst™:

i *isNotCharging”},
et
:"isNotCharging”},
rnet”:
NotCharging"},
TREETS

nym

"hasNotInternetConnecticn™, "charging™:"isNotCharging"},
"5":{"battery"”:"batteryMedium”, "internet":
"hasNotInternetConnection™, "charging™:"isCharging"},
"4":{"battery"”:"batteryMedium”, "internet":
"hasInternetConnection", "charging":"isCharging"}
}
tr
{
18721,
"features": ["login", "text"],
"contexts":{"battery":"batteryHigh", "internet":
"hasInternetConnection”, "charging™:"isNotCharging"},
"edges":{
"1":{"battery":"batteryHigh", "internet":

"hasInternetConnection™, "cha
"0":{"battery":"batteryHigh"”, "
"hasNotInternetConnection™, "charging™:"isNotCharging™
"3":{"battery"”:"batteryMedium", rnet”:
ternetConnection™, "cha isNotCharging"},
"2 {"battery":"batteryMedium"”, ernet™:
"hasNotInternetConnection™, "ch ":"isNotCharging”
"5":{"battery":"batteryMedium",
"hasNotInternetConnection™, "char ":"isCharging"},
"4": {"battery": "batteryMedium”, ternet”:
"hasInternetConnection™, “charging™:"isCharging"}

g":"isNotCharging™},
jof = o]

1r

{
"ign:0,
"features":["login", "video"],

{

"lfesk: gelM: MI%;
"features": ["Login","Video","Photo","Text"],
"features cost":[1, 3, 5, 41,
"current context": {
Ypak®s MITIT™:
"cont":"0011010"
e
"context or": {
"0": ["High Battery", "Medium Battery",
"Low Battery"],
"1™ ["NG Internet”, “"Internet™],
"2": ["Not charging”, "Charging™]

“id":1,
"TesE seE™s mam,
"features”: ["Video™,"Photo", "Text"],
"features ceost":[2; 3, 4];
"current context": {
"Feak™ s "irioe,
"oouk” 00 11030"
be
"context or": {
"0": ["High Battery”, "Medium Battery",
"Low_Battery"l,
1%y ["No: Interpethy Yipternet¥l;
"2": ["Not_charging", "Charging"]

Fonte: elaborada pelo autora.

Na Figura 10 (B), o campo "'Test_set’” indica um idenficador do conjunto de features

e grupos de contexto para teste que € igual a 1. No campo "'features” sdo identificadas as features

54

a serem testadas, que sdo: Login, Video, Photo e Text. Em seguida no campo ''features_cost”
sdo definidos os custos de cada feature a ser testada, sendo: Login com custo = 1, Video = 3,
Photo = 5 e Text = 4. O campo '"'current_context” indica a partir de qual estado serd testado
(no caso € o atual). O campo "'feat” informa quais features estio ativas no estado a ser testado,
que sdo todas: 1111 ("Login", "Video", "Photo", "Text"). O campo "cont” sdo os contextos
ativados no estado a ser testado, sendo: 0011010, que quer dizer que estd: "Low Battery"(001),
"No Internet"(10) e "Not charging"(10). A combina¢do do campo feat e cont formam o estado a
ser testado: 11110011010. Por fim, o campo ''context_or” apresenta os grupos de contexto do
tipo OR relacionados as features que sdo: "High Battery", "Medium Battery", "Low Battery",

"No Internet", "Internet", "Not charging"e "Charging".
5.2.2 Bumblebin

O Bumblebin ? é uma ferramenta desenvolvida nesta pesquisa para gerar casos de
teste em bindrio, filtrar os relacionados ao estado do sistema e calcular seus custos. A modelagem
com numeros bindrios foi escolhida pela eficiéncia no armazenamento (NOROUZI et al., 2012)
e pela capacidade de gerar infinitas combinagdes. A implementagdo dessa ferramenta se tornou
necessdria, em razdo de que as primeiras versdes do mecanismo Optimus agregavam varias
etapas: de filtragem, geracao e selecdo dos casos de teste. Assim, o desempenho das primeiras
versdes do Optimus era inferior e com o Bumblebin pode-se separar as atividades e melhorar o
desempenho do mecanismo. Além disso, resultou em uma ferramenta desacoplada que pode ser
utilizada em outros cendrios, como por exemplo, quando um analista de teste precisa de todos os
possiveis casos de testes e seus respectivos custos. A Figura 11 apresentacdo uma visdo geral

das atividades realizadas pelo Bumblebin.

Figura 11 — Atividades realizadas pelo Bumblebin

Conversdo para Selecdo dos casos de :
A - ; Cdlculo dos L
bindrio de Geragdo dos teste relacionados ao Geragdo dos
custos dos e :
contextos e casos de teste estado a ser testado do arquivos
casos de teste

features sistema

Fonte: elaborada pelo autora.

Ap6s a especificacdo do SAS o Bumblebin recebe o arquivo JSON e retorna trés

2 O nome Bumblebin foi inspirado no robé Bumblebee do Transformers. Este robd também possui a capacidade

de se transformar, assim como a ferramenta propde a transformacéo de informagdes.

55

arquivos de texto, um contendo todas as informacdes geradas pela ferramenta (as features, os
custo das features, os contextos e todos os possiveis casos de testes), outro contendo os casos de
teste filtrados pelo estado do sistema e por fim; um com os custos dos casos de teste filtrados.
Os casos de teste definidos pelo Bumblebin tem como base o conceito aplicado no RETAKE
de Santos (2020), onde cada estado do sistema no DFTS gera um caso de teste para avaliar o
mecanismo de adaptagcdo. Por exemplo, na Figura 10 B, um caso de teste seria: 11110100110,
onde os 4 primeiros digitos sdo relacionados as features e os outros 7 digitos sdo relacionados ao
contexto, a Figura 12 ilustra a relacdo entre digitos, features e contextos. A presente dissertacao
nao tem o propdsito de propor uma nova forma de avaliagdo ou discussdo sobre a execucao dos
casos de teste. O objetivo € a geracdo de sequéncias de configuracdes (casos de teste) com maior

variabilidade e menor custo.

Figura 12 — Relacdo entre digitos, features e contextos

Features Contextos
= M N - ~
"Login”: 1, "High_Battery": 0, "Medium_Battery": 1,
"“Video: 1" "Low_Battery”: 0,
i '" ; "No_Internet": O, "Internet”: 1,
Photo": 1, "Mot_charging": 1, "Charging": 0
"Text": "

Fonte: elaborada pelo autora.

O analista de teste deve indicar no Bumblebin qual o 7est_set desejado para conversao
bindria. Em seguida, o Bumblebin converte as features e os contextos para bindrio seguindo
a mesma definicdo utilizada para a defini¢do do estado do sistema no arquivo JSON. Apos a
conversdo, sao geradas todas as combinagdes possiveis entre features e contextos para a geragao
dos casos de teste (ver Apéndice A). A partir das combinagdes, um filtro € realizado selecionando
apenas casos de testes relacionados ao estado do sistema (ver Apéndice B). Para selecionar
apenas os casos de teste relacionados ao estado do sistema foi definido que apenas casos de teste
que tivessem o primeiro grupo de contexto igual ao primeiro grupo de contexto do estado do

sistema seriam selecionados. Essa decisdo foi feita uma vez que as features podem ser ativadas e

56

desativadas mediante mudanca de contexto (SANTOS et al., 2016) e devia-se manter relacdo
com o estado do sistema. A Figura 13 ilustra a um exemplo da geracdo dos casos de testes

relacionados ao primeiro grupo de contexto do estado do sistema.

Figura 13 — Exemplo de geracdo de casos de teste relacionados

T — Casos de teste relacionados ao
i estado a ser testado

000 0 0

Estado a ser testado do 0 0 0

sistema 0 0 0

0 0 0

- 11110011010 - 0 0 0
) 0 0

0 0

o

-

[
= o
o
=]
Moo

o oo

o

=]

=R Sy
=
o

o
o
= - OO0 OO0

o
[=]

(=
[e R = =]
oo
oo
[}
oo o
[e e e e e e e
oo
- o
O OHDKOK

Fonte: elaborada pelo autora.

No exemplo da Figura 13, os 4 primeiros digitos dos casos de teste sdo relacionados
as features ["Login”, "Video”, "Photo” e "Text’] e o restante aos grupos de contexto, sendo o
primeiro grupo de contexto igual para todos os casos para manter a relacdo com o estado do
sistema. O primeiro grupo de contexto do estado selecionado a ser testado ¢ 001 ["High_Battery”,
"Medium_Battery”, "Low_Battery”], logo os casos listados todos possuem o primeiro grupo
igual a 001 como ilustrado na imagem.

Por fim, o célculo dos custos € feito por meio da leitura dos casos de teste. O
Bumblebin verifica quais features estio ativas no caso de teste e realiza o somatoério dos custos
quando mais de uma feature esta ativa e se estiver somente uma ativa o custo do caso de teste €
o custo da feature. Considerando o caso de teste: 00110011001, sendo os 4 primeiros digitos
relacionados as features e os custos sendo 1, 3, 5 e 4 (Como na Figura 14 abaixo), o custo desse
caso de teste € 9 (0011 = 0+0+5+4), por exemplo.

A Figura 15 apresenta o arquivo de resumo com o Test_set selecionado pelo analista
de testes, as features, os custos das features, os contextos em bindrio e por fim; as combinacdes
possiveis de features e contextos (casos de teste). O arquivo JSON utilizado para esse exemplo é
o da Figura 10.

A geracdo de um arquivo de resumo tem como objetivo fazer com que o analista
tenha uma visdo geral de quantos casos de teste podem ser gerados a partir das features e
contextos definidos no arquivo JSON. Em contrapartida, os arquivos com casos de teste filtrados

e o de custo serdo utilizados no Optimus.

57

Figura 14 — Exemplo do célculo do custo do caso de teste

["Login®™, "video™, "Fhato", "Text"],

osc™i L1, i L 1

Caso de teste

00110011001 00110011001

Custo:5+4:=9

Fonte: elaborada pelo autora.

Figura 15 — Exemplo de arquivo de resumo gerado pelo Bumblebin

Test_Set: 1

Features: ['Login', 'Video', 'Photo’, 'Text', 'Motion']
Features cost: [1, 3, 2, 4, 5]

Contexts @:

{'@': ['High_Battery', ‘Medium_Battery', 'Low Battery'], '1': ['No_Internet’', 'Internet'], "2': ['Not_charging', 'Charging’']}
Binary contexts @:

e: [[1, o, @], [e, 1, 8], [0, B, 1]]

1: [[1, @], [e, 1]]

2: [[1, @], [e, 1]]

COMBINING CONTEXTS AND FEATURES OF THE 1 TEST SEﬂ
Beealleelele
eeealleeleel
eeeelleeelle
seealleeelel
eeealelelele
eeealeleleel
eeeal1elee11e
eeeale1ee1el
eeeeleeilele
Beea106811001

Fonte: elaborada pelo autora.

5.2.3 Implementacdo do Optimus

O Optimus € um mecanimo para geracao de sequéncia de testes otimizadas em rela-
¢do a custo e diversidade de estados do sistema. O mecanismo busca maximizar a variabilidade
de estados do sistema e minimizar o custo execucao, dessa forma selecionados os melhores casos
de teste em vista a esses objetivos.

Em relacdo a implementacdo do Optimus, inicialmente houve a defini¢do do pro-
blema. O problema consiste na selecao de casos de testes para a geracdo de sequéncia(s) de
testes mais eficaz(es). Para selecionar os casos de teste mais adequados, foram considerados os
seguintes objetivos:

e Selecionar um subconjunto de casos de teste com maior diversidade de estados
do sistema;

e Selecionar um subconjunto de casos de teste com menor custo de execugao.

58

A variabilidade de features e contextos nos casos de teste estd diretamente relacionada
a cobertura de teste do sistema, uma vez que tratando-se de SAS que utilizam o DFTS as features
e contextos sdo o que definem como o sistema funciona. Em relagdo ao custo, esse objetivo
torna-se igualmente importante para o Optimus uma vez que para executar testes em tempo
de execuc¢do pode causar perturbacdes no estado do sistema (LAHAMI et al., 2016), entdao
quao menos custoso for o teste para o sistema entdo menos a¢des indesejadas poderdao ocorrer.
Portanto, os dois objetivos tem o mesmo peso, isto €, possuem a mesma importancia.

A Diversidade de contexto (Defini¢do 2.3.2) de Santos (2020) foi utilizada para
determinar a variabilidade do estado do sistema. Utilizando a Distancia de Hamming para
calcular a similaridade entre dos casos de teste e buscar aquele com maior diversidade. O caso
de teste com maior distancia de Hamming possui maior variabilidade. Como pardmetro para
célculo da distancia foi utilizado o estado do sistema, podendo também utilizar o primeiro caso
de teste do arquivo gerado pelo Bumblebin.

Com base nos objetivos, as fungdes fitness sao as seguintes:

e mix | variabilidade de estados |, sendo
| variabilidade de estados | = Z?;ll DH(ct(fc);, ct(fc), |)n, onde

— DH(ct(fc),, ct(fc),,) € a distincia de Hamming de um par de casos de teste

i+1
ct(fe); e ct(fc), ;-

— n sendo o tamanho do caso de teste.

e min | custo |, sendo
| custo | =Y.' | x;-c;, onde
— x; € o valor bindrio indicando se o caso de teste i € selecionado (1) ou ndo
0).
— ¢; € o custo associado ao caso de teste i.

O Algoritmo 1 detalha como € realizado o calculo da Distincia de Hamming. A
entrada se trata do estado do sistema (ou o primeiro caso de teste da lista) e um caso de teste da
lista. Para cada bit diferente entre as duas entradas € somado o valor da Distancia de Hamming
entre as duas entradas.

O algoritmo utilizado para implementacao do Optimus foi o NSGA-II (DEB et
al., 2002) em razao da sua propriedade multiobjetiva e preservacao do elitismo (mantém os

melhores individuos da populagdo pai e filho) e a diversidade de solucdes. Além disso, o

NSGA-II € usado por 30% dos pesquisadores para selecdo multiobjetiva de testes em sistemas

59

Algoritmo 1: Algoritmo do célculo da Distancia de Hamming
Entrada: Estado do sistema

Entrada: Um caso de teste da lista
inicio

cs + Estado do sistema;

ct + Caso de teste da lista;

contador < O;

para cada bit € ct faga
se bit do cs # bit de ct:

contador < contador + 1;

fim

fim

(BAJAJ; SANGWAN, 2019). Dessa forma, o NSGA-II foi escolhido por melhor se adequar as
caracteristicas do problema desta pesquisa que seriam: multiobjetivo, busca por diversidade de
solugdes e ser um algoritmo amplamente empregado pelos pesquisadores para selecdo de testes.
Vale salientar que para a definicdo do algoritmo e objetivos, foi analisada a possibilidade de
se utilizar somente um objetivo e assim utilizar um algoritmo mono-objetivo. Contudo, pela
caracteristica do problema de possuir objetivos contraditdrios entre si, isto € uma solu¢do pode
ser boa para um objetivo pode ser ruim para outro objetivo, optou-se por seguir as indicagdes das
pesquisas bibliograficas para a selecao de objetivos e algoritmos (CUI et al., 2017).

Para a parametrizacao do algoritmo, foi definido o tamanho da populacio igual a 100
(caso a quantidade de casos de teste relacionados seja menor que 100 o tamanho serd igual a essa
quantidade), sendo possivel configurar outros valores. Essa escolha foi feita uma vez que cerca
de 40% dos estudos sobre testes de software baseados em algoritmos genéticos estabeleceram o
tamanho da populacdo em 100. Entretanto, a definicdo desses parametros ndo segue uma regra
fixa, pois varia conforme a natureza do problema e os objetivos do analista de testes (BAJAJ;
SANGWAN, 2019).

O operador de selecdo sendo por torneio, que realiza varios torneios entre os indivi-
duos selecionados aleatoriamente e usa os vencedores para crossover. O operador de mutagao
consiste no bit flit que permite com que cada bit da representacdo do individuo seja trocado (de 0
para 1 ou de 1 para 0) com uma determinada probabilidade (EIBEN et al., 2003), a probabilidade
selecionada foi 0.01. O crossover sendo de um tnico ponto de corte e com taxa de 0.5.

Em seguida, o analista de teste define o tamanho da sequéncia de teste ou alter-

60

nativamente, pode-se manter o valor padrao de 10, correspondente a 10% da populagdo total
definida no algoritmo. No entanto, ndo hd uma regra fixa para essa definicao, pois ela depende
das necessidades do analista. Por exemplo, quanto maior o tempo disponivel para a execucao
dos testes, maior pode ser a quantidade de testes selecionados. Da mesma forma, com menos
tempo disponivel, a quantidade de testes a serem executados tende a ser reduzida.

Por fim, ap6s a defini¢do do tamanho da sequéncia, procede-se a defini¢do do estado
do sistema em bindrio para cdlculo da Distancia de Hamming (podendo manter por padrdo a
selecdo do primeiro caso de teste do arquivo) e o Optimus segue o fluxo de execucdo do NSGA-II,
sendo:

— Inicializagdo da populacdo: A populagdo inicial sd@o os casos de testes gerados pelo
Bumblebin

— Classificagdo: Processo de classificagdo com base em critérios de ndo dominacdo da
populacdo que foi inicializada.

— Crowding distance: Nesta etapa ao invés de utilizar o valor da crowding distance (que
mede o quao longe um individuo estd do resto da populagdo, isto €, o quao diferente o caso
de teste € em relacdo aos outros) para selecionar os individuos, foi utilizada a avaliagao
do | custo | e | variabilidade de estados | dos individuos para selecionéd-los. A adaptacéo
foi motivada em razdo de que a crowding distance possui uma defini¢do bem proxima
da | variabilidade de estados |, assim seria uma adi¢do no custo computacional para duas
avaliacOes semelhantes.

— Selecdo por torneio: Para selecionar um caso de teste para a proxima geracao ou para cru-
zamento/mutacdo os casos de sdo escolhidos aleatoriamente da populagdo e o selecionado
€ aquele que tem solucdes mais dominantes que no caso sio aqueles que possuem o menor
custo e maior variabilidade de estados

— Repeticdo do processo: Todas as etapas anteriores sao repetidas até que o tamanho da
populacdo exceda o tamanho da populacdo atual.

Na etapa de geracao de uma nova populagdo, os casos de testes gerados s@o analisados
para verificar se sdo estados vdlidos, isto €, se estdo dentro da lista de casos de testes definidos
anteriormente pelo Bumblebin. Ademais, também retira-se possiveis duplicados na mesma
populagao.

Ao final da execucdo, o Optimus retorna a sequéncia de casos de testes 6timos

em relacdo aos objetivos definidos por meio de um arquivo #xt. Ademais, para garantir que

61

0 mecanismo produzisse os mesmos resultados em execugdes diferente, afim de manter a
reprodutabilidade foi definida uma seed. Ao definir uma seed para a geragdo de nimeros
aleatdrios, significa que o gerado de nimeros aleatorios inicializa em um estado especifico. O
gerador entdo produz uma sequéncia de nimeros que serd sempre a mesma para aquela semente,
garantindo que os mesmos “nimeros aleatérios” sejam gerados em execugdes subsequentes. Na

Figura 16 temos o fluxo de execucdao do Optimus.

Figura 16 — Fluxo de execu¢do do Optimus

/ Optimus \

Populagao inicial
// Bumblebin \ puBag
100101011
\-. NSGA-II
. g 100 geragdes 100101011

Casos de teste Custos et
y Fungao fitness | o Mo

Sequéncia de teste

Entrada

0OiHO0
Casos de teste [sTe3 AR Te]

10013101
monin R A [
31245

a0n1nMoio T N

513144

\ /
\ Custos /

Fonte: elaborada pelo autora.

5.3 Aplicacao do Optimus

Para aplicacdo do Optimus em testes em tempo de execucdo, na etapa de Especifica-
¢do do SAS (Detalhada na subse¢do 5.2.1) deve ser utilizado o estado atual do sistema, sendo o
estado atual igual a(s) feature(s) e contexto(s) ativados. Embora a execucao de testes ndo esteja
incluida no escopo deste trabalho, podem ser utilizados os conceitos de Santos (2020) para testes
em tempo de execucao em SAS. Santos (2020) define que o mecanismo de adaptacdo deve ser
isolado para execucdo dos testes, de forma que o mecanismo de adaptacdo do SUT entre em
modo teste através de técnicas de bloqueio e orientacdo a aspectos. Dessa forma, o analista
poderia capturar o estado atual do sistema durante o modo teste do sistema e executar as etapas
necessdrias (5.2.1, 5.2.2 e 5.2.3) para execugdo do Optimus e gerar a sequéncia de teste 6tima,
assim podendo executar de forma manual ou automatizada os casos de teste. Vale ressaltar, que
utilizacdo do Optimus resulta numa diminui¢cdo do impacto negativo do bloqueio do mecanismo
de adaptacdo, uma vez que apenas os melhores casos de testes (em relacdo a custo e diversidade)

seriam executados diminuindo o tempo de bloqueio do SUT.

62

Para aplicacdo do Optimus em testes em Design-time, na etapa de Especificacao do
SAS deve ser utilizado o estado a ser testado e as outras etapas deve ser seguidas de acordo com

as orientagcdes das subse¢des 5.2.1,5.2.2 ¢ 5.2.3.

63
6 AVALIACAO

Este Capitulo apresenta um estudo de viabilidade e trés avaliacdes do Optimus. A
Secdo 6.1 detalha o estudo de viabilidade, enquanto a Se¢do 6.2 apresenta as simulacdes em
sistemas de baixa, média e alta complexidade e variabilidade. Por fim, a Secao 6.3 discute os

resultados e a validacao da hipétese inicial.

6.1 Estudo de viabilidade

Como forma de avaliagdo do Optimus, um estudo de viabilidade foi realizado com o
objetivo de responder a seguinte pergunta: E vidvel utilizar o mecanismo para gerar sequéncias
de casos de teste otimizadas?

Para isso, a aplicacdo SAS moével GREat Tour de Marinho et al. (2013) foi selecio-
nada para ser especificada. O GREat Tour € um aplicativo de guia turistico de um laboratério
de pesquisa e desenvolvimento da Universidade Federal do Ceard, o GREat . Este aplicativo
fornece informagdes sobre o ambiente do laboratdrio e pesquisadores. A aplicacdo se adapta
seguindo o modelo de features de acordo com o contexto atual do visitante, composto pela
localizagdo, perfil/preferéncias e carateristicas do dispositivo.

As features selecionadas para a especificacdo do SAS foram: Login, Video, Photo e
Text;. E os contextos selecionados foram: Bateria alta, Bateria média, Bateria baixa, Sem acesso
a internet, Com acesso a internet, Conectado ao carregador e Sem conexao com o carregador
(High_Battery, Medium_Battery, Low_Battery, No_Internet, Internet, Not_charging, Charging).
Dessa forma, sdo 4 features e 7 contextos no total.

A Figura 17 ilustra o resultado da especificacdo do GREat Tour. Vale notar que, de
acordo com a especificacdo utilizada para a avaliacdo, o estado de contexto atual do aplicativo é
0011010, significando que estdo ativos os contextos Low_Battery, No_Internet e Not_charging.

Ap0s especificagdo do SAS, utilizando o Bumblebin, foram gerados os casos de teste
em binario. Ao total foram obtidos 180 casos de testes, mas somente 60 estavam relacionados ao
primeiro grupo de contexto atual referente aos contextos ["High_Battery", "Medium_battery",
"Low_Battery"], definidos na etapa de especificacio do sistema. Considerando que o estado atual
€ Low Battery, o valor correspondente é (001), indicando que, deste grupo de contexto, apenas

o ultimo ("Low_Battery") estd ativo. Na Figura 18 € exibido uma parcela dos casos de teste

' https://www.great.ufc.br/

Figura 17 — Especificacao do GREat Tour

{

"igv: 2

"features

e

ngw.

myw.

mom.

e

"Tagt set™: "in
est set®: s
"features™: ["Login","Video™,"Photo","Text"],

gogse™2 i1, 3, 2, &1,

"current_Eontext": {
TEeat®r WELIELY,
"cont":"0011010"

"context er":

["High Battery", "Medium Battery",

"Low_Battery"],

"o Tnteriet", "“Internet™],
["Not charging", "Charging"]

Fonte: elaborada pelo autora.

64

relacionados ao contexto atual, sendo cada linha do arquivo um caso de teste. Por exemplo, a

linha 1 possui o caso de teste 00010011010, que seria somente a feature Text ativa e os contextos

Low_Battery, No_Internet e Not_charging.

Figura 18 — Parte dos casos de test:

e gerados pelo Bumblebin para o GREat Tour

A] = S
U =

W e

=

@2 il.BpaIil el.0
0001PO1Y1O01
0001P0O1O1T1O
060 1 P06 B 10T
00100011010
0010pPO Y1001
0010K0OIYO 1T 10
0010 O0CI101 01
0011pPO0C11 010
0% A a0 Aald. 99l Al
001100 YO 110
0011pPO0CII01TO01
0100100141010
0100pP01Y19O9001
01000010110

Fonte: elaborada pelo autoraa.

Para fins de avaliagdo foram analisados dois cendrios de execu¢do do Optimus: o

primeiro cendrio utilizando o primeiro caso de teste para célculo da Distancia de Hamming e

o segundo cendrio utilizando o estado atual do sistema para este cdlculo. A motivacdo para

avaliar os dois cendrios foi analisar o comportamento do mecanismo em termos de desempenho

e qualidade dos casos de teste, modificando o estado inicial para a geracdo desses casos. Isso se

justifica porque, devido a quantidade de casos gerados, a busca por um estado especifico pode

demandar mais tempo do que simplesmente utilizar o primeiro estado listado.

65

6.1.1 Cenadrio 1

Utilizando os arquivos gerados pelo Bumblebin (de custo e com os casos de teste), o
Optimus selecionou os 10 melhores casos de teste em relacdo a custo e diversidade (utilizando
como parametro de cdlculo da distancia de Hamming o primeiro caso de teste da lista de casos)
em uma média de tempo de 63,38 segundos. A Figura 19 apresenta os casos de teste selecionados

pelo mecanismo.

Figura 19 — Casos de teste selecionados pelo Optimus

Solucdo 1: 18688611616
Solucdo 2: 18080612118
Solucdo 3: 1e8e8alleel
Solucdo 4: 1eseealalsl
Solucdo 5: Blepaallesl
Solucdo 6: ©lBBBE18181
Solucdo 7: @l008811818
Solucdo B: 91066618116
Solucdo 9: @goleelelel
Solucao 1@: 110880168116

Fonte: elaborada pelo autora.

Cada caso de teste selecionado foi avaliado individualmente, a fim de analisar o
seu custo individual e sua diversidade de estados. A Tabela 7 apresenta os 10 casos de teste

selecionados pelo Optimus.

Tabela 7 — Casos de teste selecionados pelo Optimus

Casos de teste Distiancia de Hamming Custo

10000011010 2 1
10000010110 4 1
10000011001 4 1
10000010101 6 1
01000011001 4 3
01000010101 6 3
01000011010 2 3
01000010110 4 3
00010010101 4 4
11000010110 5 4

Fonte: elaborada pelo autora.

Ao analisar os dados da Figura 18, nota-se que a Distancia de Hamming méxima € 8,
uma vez que o primeiro grupo de contexto atual, que sdo 3 digitos, estarem sempre no mesmo

local no caso de teste. Logo, a Distincia de Hamming maxima para estados relacionados a esse

66

estado atual € de 11 - 3, que resulta em 8. Dessa forma, analisando os dados da Tabela 7 infere-se
que o Optimus conseguiu bons resultados balanceando o custo de toda a execu¢do da sequéncia
em relacdo a variabilidade.
Em relagcdo ao custo (Defini¢do citada na Secdo 5.2.1), dentre os casos de teste
analisados pelo Optimus existiam casos com os mais diversos custos (1, 3,4, 5,9, 7, 8,9, 10,
12 e 13). O mecanismo conseguiu selecionar os casos de teste com menor custo mantendo uma
significativa variabilidade, uma vez que se deve considerar o custo total da sequéncia.
Ademais, as solu¢des foram analisadas do ponto de vista de fronteira de Pareto (ver
Definicoes 2.2.2 e 2.2.1). A Figura 20 apresenta a fronteira de Pareto (em azul) e as melhores
solugdes (em vermelho) em relacdo a dois objetivos: custo e distancia de Hamming. A distancia
estd ilustrada negativa pois visa a maximizagdo. Ao observar o Grafico, pode-se notar que:
— A distribuicao das soluc¢des ao longo da fronteira de Pareto parece ser uniforme, o que é
desejavel, pois indica uma boa diversidade nas solu¢des encontradas.
— As melhores solucdes estdo bastante concentradas em regioes de menor custo. Isso pode
indicar que essas solucdes sdo vidveis e dominantes em relagdo ao custo.
— Observa-se que algumas das "melhores solucdes'coincidem com pontos da fronteira de
Pareto, o que € positivo, uma vez que essas solugdes sdo nao dominadas e, portanto, fazem
parte da melhor frente de solugdes. Isso significa que as solugdes escolhidas sdo eficientes

em termos dos dois objetivos.

Figura 20 — Relacdo entre fronteira de Pareto e melhores casos de teste

04 @ T ® Fronteira de Pareto
¥ Melhores Solugées
14 =3 = =
24 = L S & & &
on
T
E —3 ~ wr = EH] = L] =]
T
8 44 = = =S & = & &
m
2 | NP - -
‘E -5 4 L - L1 - Ll - -
-t
o
—6 = = = B &
—? “ L EH] EH] -
—8 - =]
T T T T T T
2 4 6 8 10 12
Custo

Fonte: elaborada pelo autora.

67

6.1.2 Cenadrio 2

As mesmas etapas e dados do Cendrio 1 (Secdo 6.1.1) foram utilizados para a
execugdo do Cenario 2, tendo como diferenca o pardmetro de calculo da distancia de Hamming
sendo o estado atual do sistema (11110011010, na Figura 18). A média de execug¢ao foi de 88.22
segundos, indicando um aumento no tempo de execu¢cao comparado com o Cenario 1.

Assim como no Cenario 1, cada caso de teste selecionado foi avaliado individual-
mente, afim de analisar o seu custo individual e sua diversidade de estados. Ademais, A Tabela 8

apresenta os 10 casos de teste selecionados pelo Optimus.

Tabela 8 — Casos de teste selecionados selecionados pelo Optimus

Casos de teste Distancia de Hamming Custo

10000010101 7 1
10000010110 5 1
10000011001 5 1
10000011010 3 1
01000011001 5 3
01000010101 7 3
01000011010 3 3
01000010110 5 3
00010010101 7 4
11000011001 4 4

Fonte: elaborada pelo autora.

A Distancia de Hamming méxima continua sendo a mesma do Cendrio 1, de 8. Logo,
analisando os dados da Tabela 8 € possivel perceber que houve um aumento no valor da distancia
€ 0 custo se manteve 0 mesmo. Ademais, mesmo com esse aumento na distancia os casos de
teste selecionados sdo em grande parte os mesmos. Somente o caso de teste 11000011001 difere
dos selecionados no Cendrio 1 para o Cendrio 2.

As solucdes também foram analisadas do ponto de vista de fronteira de Pareto. A
Figura 21 apresenta a fronteira de Pareto (em azul) e as melhores solu¢gdes (em vermelho) em
relacdo a dois objetivos: custo e distancia de Hamming. Em compara¢do com o Cendrio 1, é
possivel ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram oS mesmos.

6.1.3 Conclusdo dos resultados obtidos

A andlise das solugdes propostas na avaliacdo de viabilidade do Optimus revela uma

boa distribui¢do ao longo da Fronteira de Pareto, indicando que as estratégias de otimizagao utili-

68

Figura 21 — Relagdo entre fronteira de Pareto e casos de teste

Fronteira de Pareto e Melhores Solugoes

041 e Fronteira de Pareto
% Melhores Solugées

|
=
Py
]
L
Yy

Distancia de Hamming

|
)]
i
&
L]
an
¥
L]
>
L]

|
-

i
L]
L]
-
L]

Custo

Fonte: elaborada pelo autora.

zadas conseguiram capturar uma bons casos de teste. Ademais, o valor da distancia de Hamming
obtida € satisfatdria, indicando que os casos de teste alcancaram o objetivo de variabilidade de
estados e o resultado dos valores de custos também foram satisfatorios.

A andlise da sequéncia de casos de teste gerada: 10000010101, 10000010110,
10000011001, 10000011010, 01000011001, 01000010101, 01000011010, 01000010110, 00010010101
e 11000011001, indica que ela pode ser considerada 6tima. Isso se deve ao fato de que a soma das
distancias de Hamming nos cendrios 1 e 2 € de 41 e 51, respectivamente. Valores elevados para
essas somas indicam maior variabilidade na relagao entre o contexto comparado e o selecionado
na sequéncia, o que estd alinhado com o objetivo de maximizar a variabilidade. Além disso, o
custo associado nos cendrios 1 e 2 € de 24, resultando em uma média de custo de 2,4 por caso de
teste, o que atende ao objetivo de minimizar o custo.

Ademais ao comparar os Cendrios 1 e 2 € possivel perceber resultados similares em
relacdo a custo e selecdo de testes, mas o desempenho do Cendrio 2 foi inferior ao Cenério 1 no
que se refere a tempo de execugdo. Isso possivelmente aconteceu pois no Cendrio 2 o Optimus
precisa inicialmente encontrar o estado atual e seu custo dentro da lista de casos de casos e
apenas depois comecar o cilculo da Distancia de Hamming.

Com base nos dados coletados nesta avaliagio, é possivel responder a pergunta “E
vidavel utilizar o mecanismo para gerar sequéncias de casos de teste otimizadas?” de forma

afirmativa.

69

6.2 Simulacoes

A fim de avaliar o impacto da complexidade estrutural e variabilidade dinamica dos
SAS sobre o Optimus, foram realizadas simulagdes, com SAS sinteticamente gerados, seguindo
os passos de um experimento como definido por Wohlin et al. (2012).

Para definir o grau de complexidade e variabilidade dos sistemas foi utilizado o
CatalOg of measures for Feature modEl quality Evaluation (COfFEE) de Bezerra et al. (2014)
que define medidas para avaliagdo de qualidade de modelos de features. O catidlogo estabelece
que quanto menor o valor das medidas de complexidade e variabilidade, menor a complexidade
e variabilidade do modelo de features. As medidas utilizadas foram: o nimero de features e o
numero de grupos de contexto, conforme definidos no catdlogo COfFEE de Bezerra et al. (2014).

Essa geracdo dos SAS foi feita manualmente, inicialmente supunha-se um Self-
Adaptive Systems em um dominio de aplicacdo. Em seguida, foram definidas as features com
base na aplicacdo, na complexidade e variabilidade da Simulagdo. Foram elencadas adaptagdes
em cima destas features, para com isso definir os estados e grupos de contexto. Além disso, foi
feita uma revisdo para garantir que todos os contextos afetavam todas as features, respeitando o
formato de modelo de features (descrito na Secdo 5.2.1).

Nesse sentido, foram definidos 3 cendrios distintos, variando a complexidade e
variabilidade dos Self-Adaptive Systems (SAS). A complexidade e variabilidade do sistema foi
diretamente proporcional a quantidade de features e contextos que ele abrangia, seguindo a
definicdo do COfFEE. Para cada cenario, o Optimus foi executado 3 vezes para calcular a média
de tempo de execugdo do algoritmo e verificar consisténcia dos resultados. Assim como no
estudo de viabilidade (Secdo 6.1), também foram analisados os dois cendrios de: cdlculo de
Hamming com referéncia ao estado atual e ao primeiro caso de teste da lista (Cendérios 1 e 2
respectivamente na Tabela 9). Ademais, foi mantido o valor padrao de 10 casos de teste para a
sequéncia.

Para orientar o experimento a seguinte pergunta foi definida: Como mecanismo se
comporta para os mais complexos e variados SAS?.

Os resultados obtidos e discutidos neste capitulo apresentam indicios da capacidade
do mecanismo de encontrar solu¢des otimizadas em um tempo significativamente curto, infe-
rior a 7 minutos, mesmo quando aplicado a sistemas complexos e com considerdvel nivel de
variabilidade.

Na Secdo 6.2.1 sao apresentados os resultados da simulacdo de um sistema de

70

Tabela 9 —Design da avaliag¢do - Simulagdes

Simulac¢oes | Cenarios Descricao
1 1 Baixa complexidade e variabilidade (5 features e 13 contexts)
2 2 Baixa complexidade e variabilidade (5 features e 13 contexts)
3 1 Média complexidade e variabilidade (9 features e 17 contexts)
4 2 Média complexidade e variabilidade (9 features e 17 contexts)
5 1 Média complexidade e variabilidade (4 features e 17 contexts)
6 2 Média complexidade e variabilidade (4 features e 17 contexts)
7 1 Média complexidade e variabilidade (4 features e 11 contexts)
8 2 Média complexidade e variabilidade (4 features e 11 contexts)
9 1 Média complexidade e variabilidade (5 features e 15 contexts)
10 2 Média complexidade e variabilidade (5 features e 15 contexts)
11 1 Média complexidade e variabilidade (9 features e 19 contexts)
12 2 Média complexidade e variabilidade (8 features e 19 contexts)
13 1 Alta complexidade e variabilidade (10 features e 17 contexts)
14 2 Alta complexidade e variabilidade (10 features e 17 contexts)

complexidade e variabilidade baixa. A Secdo 6.2.2 apresenta dois aspectos: um sistema de média
complexidade e variabilidade e o mesmo sistema sendo executado fragmentado. Por fim, na
Secdo 6.2.3 € apresentada uma simulacao de estresse, onde o sistema € de alta variabilidade e

complexidade.
6.2.1 SAS com Baixa complexidade
6.2.1.1 Simulacdo 1 - Cendrio 1

Para a simulag¢do de um sistema de baixa complexidade e variabilidade foram consi-
deradas 5 features e 13 contextos, que sao apresentados na Figura 22.

Com o Bumblebin, foram gerados 2.976 casos de teste em bindrio e 992 casos de
teste relacionados ao grupo de contexto atual (100). O tamanho do caso de teste é de 18, sendo
5 bits relacionados as features e 13 relacionados aos contextos. O tamanho do caso de teste €
relevante pois pode atingir o desempenho do Optimus, especialmente na etapa de crossover. Na
Figura 23 (A) apresenta uma parte dos casos de teste relacionados ao contexto atual e (B) parte
dos custos dos mesmos. A Figura 23 (B) evidencia a variabilidade nos custos dos casos de teste.

O Optimus retornou os 10 melhores casos de teste em uma média de tempo de 0,92
segundos. A Tabela 10 apresenta os casos de teste, as distancias de Hamming de cada caso de
teste e seu custo individual.

Do ponto vista da Fronteira de Pareto (ver Figura 24), pode-se perceber que o Opti-

Figura 22 — Especificac@o do sistema de baixa complexidade e variabilidade

{

" j.Ci" . :
“Test sel™i 1N,

"features":

"PlayerLevel"],
“featiures cest™i[5¢ 1, 3; 4y 1],
"current context™: |{

EEaE" Ly “011aa",
"copt™:"100011001.0110"
by

"context or™: {

}

"0": ["High Battery”, "Medium Battery",
"Low Battery"],

IME [YNe Internet®; TInkernetf];

ngni ["Not charging™; "Charging™];

"3": ["Raining”, "Not Raining"]l,

"4": ["Camera_ On", "Camera Off"],

"5": ["Gyroscope On", "Gyroscope Off"]

["AR", "Pokeballs","Mission", "Event”,

Fonte: elaborada pelo autora.

71

Figura 23 — (A) parte dos casos de teste relacionados ao contexto atual e (B) custos dos casos de

teste
1S e T O O B 1 O O o O B 0
444408442844484848428434
555555555555555555
333333333333333333
444484484428484842844
7 T F LT TTT TLT T
888888688 838868688368338
T e L o O e i
AR P eV PR SR Y
555555555555555555
6666666666666666F¢66
444444444444484444°38
555555555555555555
| 88888888888888888S8
L 0000110010101 01010 ERE R R R R L K
2 0000110010101 01001 5 55555555555555555
666666666666666666
0000110010101 00110 6956996566569 690959 s
0000110010101 00101 10 10 10 10 10 10 10 10 10 10 10 10
e 10 10 10 10 10 10 10 10 10 10 10 8
: 00001100101 O001T1TO010 mEad s ite kb
6 00001100101 0011001 999999999999999
7 000011001 010010110 12 12 1242 12 12 32 12 12 12 1242
_ 12 13 13 13 13 13 13 13 13 13 13 13
8 000011001 010010101 13 13 13 13 13 13 13 13 13 13 13 13
a0 0 D0 11001001 101T010 EEEBEEEERNGEEEEERIREE
- 7. T B T2 g T T 0 T
L0 600 131 003100112030 01 10 10 10 10 10 10 10 10 10 10 10 10
39 000011001001100110 10 10 11 11 11 11 11 11 11 11 11 11
13 A7 2131, 11 21 T 91 3 31 a1 91
12 0000110010011 001 01 9999999999999999g9g9
1308 6001 1T 001001011010 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 13 13 13 13 13 13 13 13 13
A0 0001106001 001011001 13 13 13 13 13 13 13 13 13 13 13 13
A58l 0 00 110010010101 10 14 14 14 14 14 14 14 14 14 14 14 14
14 14 14 14

PO O UOoU s oUW e
LOUWOUEOUNF@-E WS-
L R I VI, IR
L R T . T B e L R
WU DU S o U WU e

1
4
5
3
4
7
8
1
2
5
6
4
5
8
9
5
6
9
1

o
-
o

0 10

12 12 12 12
1313 13 13
666666
777777
10 10 10 10
10 10 10 10
p it B i e

LOUL U AU @ WO
e R IR T RSC T B R AR I S SUIT BN

i
4
5
3
4
7F
8
i
2
5
6
4
5
8
9
<
3
5
i1

0 10

12 12
13 13
6 6 6
F Y
10 10
10 10
11 11

WU U@ U e W e
WO UL DU O U] W
FLOoameomsounEo-dswd s

I
4
5
3
4
s
8
1
2
5
3
4
5
8
8
5
3
9
3l

o
1
o

129
13- 13
66 6
T T T
10 10
10 10
11 il

WO U OU SO U WU

0

888888888288¢888
8899999999929 99999
5912 12 12 12 12 12 12 12 12 12

12
13
€ 6
77
10
10
11

11.9/9 99 9359 G 919 59
9 9 10 10 10 10 10 10 10 10

10 10 10 10
13 13 13 13
13 13 14 14
14 14 14 14

10 10
13 23
14 14
14 14

10 10
1333
14 14
14 14

10
13
14
14

Fonte: elaborada pelo autora.

mus foi capaz de encontrar um conjunto diversificado de solu¢des nao dominadas, representando

um bom compromisso entre a distancia de Hamming e o custo. Ademais, Apesar de ter sido

submetido a um conjunto de 992 casos de teste, 0 mecanismo demonstrou bom desempenho,

executando em apenas 0,92 segundos e retornando os bons casos de teste em relagdo a custo e

distancia de Hamming.

72

Tabela 10 — Casos de teste selecionados - Simulacdo 1

Casos de teste Distancia de Hamming Custo
000011001010010101 6 1
000011001010101001 2 1
000011000110101001 4 1
010001000110010110 8 1
000011000110011010 4 1
000011001001100110 4 1
010001000110101001 6 1
000011001010011010 2 1
000011000101010110 8 1
010001001010101010 2 1

Fonte: elaborada pelo autora.

Figura 24 — Relacgdo entre fronteira de Pareto e casos de teste da Simulagdo 1 no Cenério 1

Fronteira de Pareto e Melhores Solugoes

04— T ® Fronteira de Pareto
% Melhores Solucées
(1] L] ® (1]
24 = & ¢ s g e
o
=
E] L] L]] 0
E
o i -~ s - Y
T 41 = - w - -
[1F]
=]
L [L & L)
(=
&
H 6= L s 4
[=]
L] L]
-8 4—=
1]]
2 4 B 8 10

Custo

Fonte: elaborada pelo autora.

6.2.1.2 Simulacdo 2 - Cendrio 2

As mesmas etapas e dados do Cenério 1 (Se¢do 6.2.1.1) foram utilizados para a
execugdo do Cenario 2, tendo como diferenca o pardmetro de calculo da distancia de Hamming
sendo o estado atual do sistema (011111000110010110, na Figura 22). A média de execucio foi
de 1.12 segundos, indicando um aumento no tempo de execu¢ao comparado com o Cenario 1.

Assim como no Cenario 1, cada caso de teste selecionado foi avaliado individual-
mente, afim de analisar o seu custo individual e sua diversidade de estados. Ademais, A Tabela
11 apresenta os 10 casos de teste selecionados pelo Optimus.

A Distancia de Hamming méxima € de 15 (18 - 3, sendo 3 digitos o contexto atual).
Logo, analisando os dados da Tabela 11 € possivel perceber que houve um aumento no valor da

distincia e o custo se manteve o mesmo. Ademais, diferente do resultado do estudo de viabilidade

73

Tabela 11 — Casos de teste selecionados - Simulacao 2

Casos de teste Distancia de Hamming Custo
010001000110100101 7 1
010001000110101010 7 1
000011000110011001 7 1
000011000110011010 5 1
000011000101010110 5 1
000011000101010101 7 1
010001000110011001 7 1
010001000101010110 5 1
010001001001010110 7 1
000011000110010101 5 1

Fonte: elaborada pelo autora.

apenas 2 casos de testes foram selecionados igualmente nos dois cendrios. Esse resultado pode
indicar que em sistemas de baixa complexidade e variabilidade, a melhor abordagem seria utilizar
o estado atual dependendo do objetivo de teste. Por exemplo, se o objetivo é gerar os casos de
teste de forma rapida e alheio ao estado atual do sistema, poderia utilizar o calculo a partir do
primeiro caso de teste da lista.

As solucdes também foram analisadas do ponto de vista de fronteira de Pareto. A
Figura 25 apresenta a fronteira de Pareto (em azul) e as melhores solu¢gdes (em vermelho) em
relagdo a dois objetivos: custo e distancia de Hamming. Em comparagdo com o Cenario 1, é
possivel ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

a0 custo se mantiveram os mesmos.

Figura 25 — Relacgdo entre fronteira de Pareto e casos de teste da Simulagdo 2 no Cendrio 2

Fronteira de Pareto e Melhores Solucoes

01 e Fronteira de Pareto
% Melhores Solugdes

|
b
-
L]
=
-

—4 | =

Distancia de Hamming

|
o

i
¢
(]
a
o+
]
Py
L]

Custo

Fonte: elaborada pelo autora.

74

6.2.2 SAS com média complexidade e variabilidade

Para o SAS de média complexidade e variabilidade foram executadas 10 simulacdes

para avaliar o impacto que o nimero de features e contextos no desempenho do sistema.
6.2.2.1 Simulacdo 3 - Cendrio 1

Para essa simulacdo foram consideradas 9 features e 17 contextos, que sdo apresen-

tados na Figura 26.

Figura 26 — Especificacdo do sistema de média complexidade e variabilidade
{

»1d" 0,
"igst SeE™I MIY;
"features": ["Text","Video","Photo","Push", "Email",
"Screen", "Buttons", "Vibration", "Sound"],
"features €esk™ 1y 2, 2y 5y 37 L Iy 3p 35
"current context": |

“Eeak™y "1,

"cont":"01001101001101010"

o
"context or™: {

"0": ["High Battery”, "Medium Battery”,
"Low Battery"],

wi%: ["No Internet®p TEnternet®];

"2": ["Not charging", "Charging"],

"3": ["Notification On", "Notification Off"],

"4"; ["Vibration on", "Vibration GQff"],

"5": ["Newsletter On", "Newsletter Off"],

"gr ["sound on™, “Seund OEE"];

"7": ["RecommendationBt On", "RecommendationBt Off"

]

e

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 196.224 casos de teste em bindrio e 65.408 casos
de teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O tamanho
do caso de teste € de 26, sendo 9 bits relacionados as features e 17 relacionados aos contextos. O
Optimus retornou os 10 melhores casos de teste em uma média de tempo de 87 segundos. Na
Tabela 15 sao apresentados os casos de teste selecionados pelo Optimus nesta simulacao bem
como Distancia de Hamming e custo de cada.

Do ponto vista da Fronteira de Pareto (ver Figura 27), pode-se perceber que o
Optimus teve resultados semelhantes ao da simulagd@o 1 no que se refere a solu¢des ndo dominadas

e relacdo entre distancia de Hamming e custo, mesmo submetido a 65.408 casos de teste.

75

Tabela 12 — Casos de teste selecionados - Simulacao 3

Casos de teste Distancia de Hamming Custo
10000000001001101010101010 4
10000000001010101010100110
00000010001010101001101010
00000010001010101001101001
00000100001010101010101001
00000010001001101010100110
00000010001010101010011010
00000100001010101010100110
10000000001010101001101010
00000100001010101001101010

B e e N
e e

Fonte: elaborada pelo autora.

Figura 27 — Relagdo entre fronteira de Pareto e casos de teste da Simulagdo 3 no Cendrio 1

Fronteira de Pareto e Melhores Solugoes
04— 1 E i i ® Fronteira de Pareto
¥ Melhores Solucées
=1 = L] L
o
=
E 21 @ % & & ® &
&
.
% —3 4 A == i »
1]
'Q
c
-4 @ & 2 & o ‘
a
-5 & ¢ @ 8
—6 & @
T T T T T T T T
1 2 3 4 5 [} 7 8
Custo

Fonte: elaborada pelo autora.

6.2.2.2 Simulacdo 4 - Cendrio 2

As mesmas etapas e dados do Cenério 1 (Se¢do 6.2.2.1) foram utilizados para a
execugdo do Cenario 2, tendo como diferenca o pardmetro de calculo da distancia de Hamming
sendo o estado atual do sistema que € 01001101001101010 (apresentado na Figura 26). O
Optimus nao conseguiu ser executado, uma vez que pelo nimero elevado de casos de teste em
conjunto com o cdlculo de Hamming a partir do estado atual do sistema, afetou o desempenho
do mecanismo que solicitou mais poder computacional para executar. Assim, por limitacdes de

ambiente (mdquina) ndo foi possivel executi-lo.

6.2.2.3 Simulacdo 5 - Cendrio 1

76

Nesta simulacao foram consideradas 4 features e 17 contextos, que sdo apresentados

na Figura 28.

Figura 28 — Especificac@o do sistema para simulacao 5

{

]

b

"CI":
"Low Battery"],
"1" -_
H'2":
"3":
H4H’:
"5":
H'6":

Wby AL

"idhen,;
it = A ot e
"features"™: ["“Text","Video","PBhoto","Push"],
"features cest™: [1, 2, 2, 5],
"current centext®: {
"Feat™: "1I01M,
“cont™:"01001101001101010"
iy
"context or": {

["High Battery", "Medium Battery”,

["No Internet", "Internet"],

["Not charging”, "Charging™],
["Notification On", "Notification Off"],
["Vibration On", "Vibration Off"],
["Newsletter On", "Newsletter Off"],

["Sound On"™, "Sound Off"],
["RecommendationBt On", "RecommendationBt Off"

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 5.760 casos de teste em bindrio e 1.920 casos de

teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus

retornou os 10 melhores casos de teste em uma média de tempo de 1.10 segundos. Na Tabela

15 sao apresentados os casos de teste selecionados pelo Optimus nesta simulacdo bem como

Distancia de Hamming e custo de cada.

Tabela 13 — Casos de teste selecionados - Simulacao 5

Casos de teste

Distancia de Hamming Custo

100001010011010100101 8
100001001101010101001
100001010100110101010
100001010100110101001
100001010011010101001
100001010011010101010
100001001101010101010
100001010101010101001
100001010011001101010
100001010100110100110

[e a2 e N @)
e e

Fonte: elaborada pelo autora.

77

Do ponto vista da Fronteira de Pareto (ver Figura 29), pode-se perceber resultados
semelhantes a Simulac¢do 3 em relagdo a solu¢des e compromisso entre a distincia de Hamming
e o custo. Ademais, o mecanismo demonstrou bom desempenho, executando em 7.6 segundos

sendo submetido a um conjunto de 1920 casos de teste.

Figura 29 — Relacgdo entre fronteira de Pareto e casos de teste da Simulagdo 5 no Cendrio 1

Fronteira de Pareto e Melhores Solucoes
01— 1 T T & ® Fronteira de Pareto
% Melhores Solugdes
1 P - |
-2 & @ &
on
=
E =37 & & &
1]
.
% —4 L] H
1]
7%]
& -5 & &
pit
0
[=}
—6 % &
-7 &
-8 E i
T T T T T
1 2 3 4 5 6 7 8
Custo

Fonte: elaborada pelo autora.

6.2.2.4 Simulacdo 6 - Cendrio 2

As mesmas etapas e dados do Cendrio 1 (Se¢do 6.2.2.3) foram utilizados para a
execucdo do Cendrio 2, tendo como diferenca o parametro de célculo da distancia de Hamming
sendo o estado atual do sistema (111101001101001101010, na Figura 28). A média de execu¢dao
foi de 1.33 segundos, indicando um aumento no tempo de execu¢do comparado com o Cenario 1.

Assim como no Cenério 1, cada caso de teste selecionado foi avaliado individual-
mente, afim de analisar o seu custo individual e sua diversidade de estados. Ademais, a Tabela
14 apresenta os 10 casos de teste selecionados pelo Optimus.

Analisando os dados da Tabela 14 € possivel perceber que houve um aumento no
valor da distancia e o custo se manteve o mesmo. Ademais, diferente do resultado do estudo de
viabilidade apenas 1 caso de teste foi selecionado igualmente nos dois cendrios.

As solucdes também foram analisadas do ponto de vista de fronteira de Pareto. A

Figura 25 apresenta a fronteira de Pareto (em azul) e as melhores solu¢gdes (em vermelho) em

78

Tabela 14 — Casos de teste selecionados - Simulacdo 6

Casos de teste Distancia de Hamming Custo
100001010101010101010 7
100001001101001101010
100001001101001100101
100001001011001101010
100001010101010101001
100001001101001101001
100001001101010100110
100001010100101101001
100001001100101101001
100001001011001101001

Fonte: elaborada pelo autora.

N EANCREN BV, BANeRRT, BN BROV)
e e

relagdo a dois objetivos: custo e distancia de Hamming. Em comparagdo com o Cendrio 1, é
possivel ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

a0 custo se mantiveram os mesmos.

Figura 30 — Relacgdo entre fronteira de Pareto e casos de teste da Simulagdo 6 no Cendrio 2

Fronteira de Pareto e Melhores Solucoes
0+ @ Fronteira de Pareto
% Melhores Solugdes
@ L] @
=2] & s o

on
| =
=] [&]
g
T — = e a
:F)
=
= ®]
o
&
=2 —6]
a

L] L]

_8 >
L] [
2 4 6 8 10
Custo

Fonte: elaborada pelo autora.

6.2.2.5 Simulagdo 7 - Cendrio 1

Nesta simulac¢do foram consideradas 4 features e 11 contextos, que sdo apresentados
na Figura 31.

Com o Bumblebin, foram gerados 720 casos de teste em binario e 240 casos de
teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus

retornou os 10 melhores casos de teste em uma média de tempo de 1.22 segundos. Na Tabela

Figura 31 — Especificac@o do sistema para simulagao 7

{

"idv:2,

"TedE BEETe 3Y,
"features cost™:[1,
"eurrent context™:

“EEart™y MELOL™,

b

"context or":

"Low Battery"],

by

"features™: ["Text","Video","Photo","Email™],

o | li' l]i’
{

"econt™:"01001101001"

"0™: ["High Battery"™, "Medium Battery”,

T [*Ne: TRbernet®, “Interneit®];

"2": ["Not charging", "Charging”],

"5": ["Newsletter On", "Newsletter Off"],
*g™i |"sound on", vSeound ©Lf"]

Fonte: elaborada pelo autora.

79

15 sdo apresentados os casos de teste selecionados pelo Optimus nesta simulagdo bem como

Distancia de Hamming e custo de cada.

Tabela 15 — Casos de teste selecionados - Simulacdo 7

Casos de teste Distancia de Hamming Custo

100001010101010
100001001100110
100001001011010
100001010101001
100001001101010
100001010100110
100001010011010
100001010011001
100001010100101
100001001101001

2

o = Yo N N N N N Yo N
S Gy VA U Uy

Fonte: elaborada pelo autora.

Do ponto vista da Fronteira de Pareto (ver Figura 32), pode-se perceber resultados

semelhantes a Simulacdo 3 em relagdo a solucdes e compromisso entre a distincia de Hamming

€ 0 custo.

6.2.2.6 Simulacdo 8 - Cendrio 2

As mesmas etapas e dados do Cendrio 1 (Se¢do 6.2.2.5) foram utilizados para a

execucao do Cendrio 2, tendo como diferenga o parametro de célculo da distancia de Hamming

80

Figura 32 — Relagdo entre fronteira de Pareto e casos de teste da Simulagao 7 no Cenario 1

Fronteira de Pareto e Melhores Solugoes

04— | & 1 @ Fronteira de Pareto
¥ Melhores Solucdes
_1 B L { L i) & ! I
-2 & & & =
2
E -3 P s ¢
1]
T
L -4 & & i @ & s
1]
'C
5 -5 & & &
L
o
[=}
—6 % & & ¢
-7 &
_8— B i
T T T T T T T
1 2 3 4 5 6 7

Custo

Fonte: elaborada pelo autora.

sendo o estado atual do sistema (110101001101001, na Figura 31). A média de execugdo foi de

1.42 segundos, indicando um aumento no tempo de execucao comparado com o Cendério 1.
Assim como no Cendrio 1, cada caso de teste selecionado foi avaliado individu-

almente, afim de analisar o seu custo individual e sua diversidade de estados. A Tabela 16

apresenta os 10 casos de teste selecionados pelo Optimus.

Tabela 16 — Casos de teste selecionados - Simulacdo 8

Casos de teste Distancia de Hamming Custo
100001001011010 6
100001001101001
100001010011001
100001001101010
100001001100110
100001010100101
100001001100101
100001010101001
100001010010101
100001001010101

(o) Je I S e e I 2
[e N Y T S

Fonte: elaborada pelo autora.

A Distancia de Hamming maxima € de 12. Logo, analisando os dados da Tabela
16 € possivel perceber que houve um aumento no valor da distdncia e o custo se manteve o
mesmo. Ademais, diferente do resultado do estudo de viabilidade apenas 7 casos de testes foram
selecionados igualmente nos dois cendrios.

As solucdes também foram analisadas do ponto de vista de fronteira de Pareto. A

81

Figura 33 apresenta a fronteira de Pareto (em azul) e as melhores solu¢gdes (em vermelho) em
relacdo a dois objetivos: custo e distancia de Hamming. Em compara¢ao com o Cenario 1, é
possivel ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram oS mesmos.

Figura 33 — Relacdo entre fronteira de Pareto e casos de teste da Simulagdo 8 no Cendrio 2

Fronteira de Pareto e Melhores Solugoes

041 e Fronteira de Pareto 1 @
% Melhores Solugées

Distancia de Hamming

|
~l

i
an
L
an
W

Custo

Fonte: elaborada pelo autora.

6.2.2.7 Simulacdo 9 - Cendrio 1

Nesta simulag¢do foram consideradas 5 features e 15 contextos, que sdo apresentados
na Figura 34. Com o Bumblebin, foram gerados 5.952 casos de teste em bindrio e 1.984 casos de
teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus
retornou os 10 melhores casos de teste em uma média de tempo de 1.03 segundos. Na Tabela
17 sao apresentados os casos de teste selecionados pelo Optimus nesta simulacdo bem como
Distancia de Hamming e custo de cada.

Do ponto vista da Fronteira de Pareto (ver Figura 35), pode-se perceber resultados
semelhantes a Simulacdo 3 em relacdo a solugdes e compromisso entre a distancia de Hamming

€ o custo.

Figura 34 — Especificac@o do sistema para simulagao 9

{

b

]

by

PHgaa

"Test sehfs W4T,

"features”: ["Email"™, "Screen", "“Buttons", "Vibration",
"Sound™],

“Fegrnress eosc" i3, 1, 1, 3, 3],

Yeurvent cenkewt¥:

“Eeat™: "I1L010";
"cont":"010011010011010"™

"context or": {
nger
"Low Battery"],
e
man.
G b
i
Wi
i -

["High Battery", "Medium Battery",

["No Internet™, "Internet"],

["Not charging", "Charging”],

["Vibration On", "Vibration Off"],
["Newsletter On", "Newsletter Off"],

["Sound On", "Sound Off"],
["RecommendationBt On", "RecommendationBt Off"

Fonte: elaborada pelo autora.

Tabela 17 — Casos de teste selecionados - Simulacao 9

Casos de teste

Distancia de Hamming Custo

00100010100110101001 6 1
00100010101010100110 4 1
00100010100110101010 4 1
01000010101010101010 2 1
01000010011010101010 4 1
01000010101001101001 6 1
01000010100110011010 6 1
00100010101010101010 2 1
01000010011010101001 6 1
01000010101001100110 6 1

Fonte: elaborada pelo autora.

6.2.2.8 Simulagdo 10 - Cendrio 2

82

As mesmas etapas e dados do Cendrio 1 (Se¢do 6.2.2.7) foram utilizados para a

execucdo do Cendrio 2, tendo como diferenga o parametro de célculo da distancia de Hamming

sendo o estado atual do sistema (11010010011010011010, na Figura 34). A média de execucdo

foi de 1.02 segundos, indicando uma diminui¢do no tempo de execu¢do comparado com o

Cendrio 1, isto pode ocorrer por condi¢des ambientais, como por exemplo processamento da

maquina.

Assim como no Cenario 1, cada caso de teste selecionado foi avaliado individu-

almente, afim de analisar o seu custo individual e sua diversidade de estados. A Tabela 18

apresenta os 10 casos de teste selecionados pelo Optimus.

&3

Figura 35 — Relacdo entre fronteira de Pareto e casos de teste da Simulag@o 9 no Cenério 1

Fronteira de Pareto e Melhores Solugoes
04— 1 & T T ® Fronteira de Pareto
% Melhores Solugées
—1 4 &
& =R i ? i
£
% _3 - a Fy Y
o &
[E]
=
G 4T & @
=
b
o]
a -5 ¢] & ¢
-6+ ¢ #
-7 ¢ 8
T T T T T T T T
1 2 3 4 5 6 7 8
Custo

Fonte: elaborada pelo autora.

Tabela 18 — Casos de teste selecionados - Simulacdo 10

Casos de teste Distancia de Hamming Custo
01000010010110010110 6
01000010010110101010
01000010101010011001
01000010011010010110
01000010011001101010
01000010011010011010
01000010011001010110
01000010010110011010
01000010010110011001
01000010011010101010

B S R L) N S e I e)W e)
T T S Gy S e e S Sy

Fonte: elaborada pelo autora.

A Distancia de Hamming méxima € de 17. Logo, analisando os dados da Tabela 18
€ possivel perceber que houve um aumento na média de valor da distancia (o Cenério 1 teve
uma média de 4.6 e no Cenario 2 de 5) e o custo se manteve o mesmo. Ademais, diferente do
resultado do estudo de viabilidade apenas 1 caso de teste foram selecionado igualmente nos dois
cendrios.

As solucdes também foram analisadas do ponto de vista de fronteira de Pareto. A
Figura 36 apresenta a fronteira de Pareto (em azul) e as melhores solugdes (em vermelho) em
relacdo a dois objetivos: custo e distdncia de Hamming. Em compara¢do com o Cendrio 1, é
possivel ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram oS mesmos.

84

Figura 36 — Relacgdo entre fronteira de Pareto e casos de teste da Simulagdo 10 no Cenério 2

Fronteira de Pareto e Melhores Solugoes
01 @ Fronteira de Pareto i i i &
% Melhores Solugées
14 t ! &
21— & & ®
on
4=
£
g -39 @ o & e
1]
= o
L —a1% & &]
1]
'a
& 5 @ &
o
a
—6+% & ¢
_? - ﬂ
-8 %
T T T T T T T T
1 2 3 4 5 6 7 8
Custo

Fonte: elaborada pelo autora.

6.2.2.9 Simulacdo 11 - Cendrio 1

Nesta simulagcdo foram consideradas 8 features € 19 contextos, que sdo apresentados

na Figura 37.

Figura 37 — Especificagdo do sistema para simulagdo 11
{

"id".E,

"Test set™: "a%,

"features™: ["Text","Video","Photo","Push™, "Email",
"Screen", "Buttons","Vibration"],

“features: eost™: 1, &; 2 5 35 1;i 35 Bly

"current context™: {

“Eeat™: "FILOLELGY;
"cont™:"0100110100110101001"
be
"context er™:
"0": ["High Battery"”, "Medium Battery"™,
"Low Battery"],
"1%: ["Ne_ Takernot™; “Intermec];
"2": ["Not charging™, "Charging"],
"3": ["Notification On", "Notification Off"],

"4": ["Vibration On", "Vibratiom Off"],

"5": ["Newsletter On", "Newsletter Off"],

"e": ["Sound On", "Sound Off"],

"7": ["RecommendationBt On", "RecommendationBt OLf"

1,
oMy [MTest m", "Tasc GEEY]

}

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 195.840 casos de teste em bindrio e 65.280 casos

85

de teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus
retornou os 10 melhores casos de teste em uma média de tempo de 85.02 segundos. Na Tabela
19 sdo apresentados os casos de teste selecionados pelo Optimus nesta simulagdo bem como

Distancia de Hamming e custo de cada.

Tabela 19 — Casos de teste selecionados - Simulacdo 11

Casos de teste Distiancia de Hamming Custo
100000000101010101001101010 4
000001000101010101010101001
100000000101001101010100110
000001000101010011010100110
000001000101010101010101010
000001000101010011010101010
100000000100110100110101010
100000000100110101010100110
000001000100110101010101010
000001000100110101010101010

EEE) M)W SN S B o) Ne) i o
—_— e = e e e = e e

Fonte: elaborada pelo autora.

Do ponto vista da Fronteira de Pareto (ver Figura 38), pode-se perceber resultados
semelhantes a Simulacdo 3 em relacdo a solugdes e compromisso entre a distancia de Hamming

€ o custo.

Figura 38 — Relacdo entre fronteira de Pareto e casos de teste da Simulacdo 11 no Cenério 1

Fronteira de Pareto e Melhores Solucoes
01 e Fronteira de Pareto &
% Melhores Solugdes
-1 4 4
g —2 1% & = EH]
£
% _3 — a s s Y -
=] & ¢ i] &
L]
=
g _4 == L - *
=
o
0
o -5 & & 4 s @
—6 2% & &]
7 ¢
T T T T
1 2 3 4 5 6 7
Custo

Fonte: elaborada pelo autora.

86

6.2.2.10 Simulagdo 12 - Cendrio 2

O Optimus ndo conseguiu ser executado pelas motivagdes ja citadas (ver Secdo

6.2.2.2).
6.2.3 SAS com grande complexidade e variabilidade

6.2.3.1 Simulagdo 13 - Cendrio 1

Para a simulacdo de um sistema de grande complexidade e variabilidade foram

consideradas 10 features € 17 contextos, que sdo apresentados na Figura 39.

Figura 39 — Especificacdo do sistema de grande complexidade e variabilidade
{

lrid" " |

0,

"Tast sef™: MM,

"features": ["Text","Video","Photo","Push", "Email",
"Screen", "Buttons", "Vibration", "Sound", "Featurel"],
“Eeath¥es GOsEMI[E, 2, &, B, 3 1y Le 3 3 Bl

“eurrert context": o
ety MITTITITTTOM,
"cont":"01001101001101010"
b
“eontext @r"
"0": ["High Battery", "Medium Battery",
"Low_Battery"],
e ['No anterne. “Inte#fiek"],
"2": ["Not charging”, "Charging"],
"3": ["Notification On", "Notification Off"],

"4": ["Vibration On", "Vibration Off"],

"5": ["Newsletter On", "Newsletter Off"],

"g": ["Sound On", "Sound Off"],

"7": ["RecommendationBt On", "RecommendationBt Off"

]

b

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 392.832 casos de teste em bindrio e 130.944 casos
de teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O tamanho
do caso de teste € de 27, sendo 5 bits relacionados as features e 17 relacionados aos contextos.

O Optimus retornou os 10 melhores casos de teste em uma média de tempo de 330,4
segundos. Na Tabela 20 sdo apresentados os casos de teste selecionados pelo Optimus nesta
simula¢do bem como Distancia de Hamming e custo de cada.

Assim como nas outras simulagdes, a Fronteira de Pareto foi analisada (ver Figura

40). Apesar de ter sido submetido a um conjunto de 130.944 casos de teste, 0 mecanismo

87

Tabela 20 — Casos de teste selecionados - Simulacdo 13

Casos de teste Distancia de Hamming Custo
000000100001010011010101010 4
100000000001010101010011001
100000000001001100110101010
000001000001010011001101010
000001000001010011010011010
000000100001001101001101010
000000100001010100110101010
000001000001010101001101010
000000100001010101001101001
000001000001010101001101001

(o) Ne) W S > e e i e Jo)
e e e

Fonte: elaborada pelo autora.

demonstrou bom desempenho, executando em 330,4 segundos e retornando bons casos de teste

em relacdo a distancia de Hamming e custo.

Figura 40 — Relacio entre fronteira de Pareto e casos de teste da Simulagdo 13
no Cendrio 1

Fronteira de Pareto e Melhores Solucoes

14— ! ! ; 1 i @ Fronteira de Pareto
¥ Melhores Solugdes

4@

&
&
H

Distancia de Hamming

Fonte: elaborada pelo autora.

6.2.3.2 Simulagdo 14 - Cendrio 2

O Optimus ndo conseguiu ser executado pelas motivacdes ja citadas (ver Secdo

6.2.2.2).

88

6.3 Conclusao da avaliacao

Considerando os resultados apresentados, pode-se inferir que o mecanismo Op-
timus demonstrou bons resultados na geracdo de casos de teste, apresentando as seguintes
caracteristicas:

— Eficiéncia: O mecanismo foi capaz de gerar os 10 melhores casos de teste em um tempo
relativamente hdbil, mesmo lidando com um conjunto de 130.944 casos de teste;

— Qualidade: Os casos de teste gerados pelo Optimus apresentaram um bom compromisso
entre a distancia de Hamming e o custo, indicando a capacidade do mecanismo de encontrar
solucdes diversificadas e ndo dominadas;

Ademais, pode-se perceber que o parametro de cdlculo da Distancia de Hamming
pode afetar a selec@o dos casos de teste, mas ao utilizar o estado atual do sistema 0 mecanismo
perde parte do seu desempenho. Também se observou que a divisdo do processo de geracdo de
casos de teste em etapas menores demonstra ser uma estratégia eficaz para garantir a escalabili-
dade. Ao fragmentar a geragdo, € possivel lidar com grandes conjuntos de dados e complexidades
crescentes, evitando sobrecarregar os recursos computacionais.

Em resumo, os resultados obtidos (Tabela 21) indicam que o mecanismo Optimus é
uma ferramenta promissora para a geracdo de sequéncia de casos de teste, oferecendo um bom
equilibrio entre eficiéncia, qualidade e escalabilidade. Dessa forma, respondendo a pergunta

(Como mecanismo se comporta para os mais complexos SAS?).

Tabela 21 — Resumo dos resultados da avaliacao

Simulacoes Qtd. de casos de testes Tempo Grau de complexidade e variabilidade
1 992 0.92 segundos Baixo
2 992 1.12 segundos Baixo
3 65.408 87 segundos Médio
4 65.408 - Médio
5 1.920 1.10 segundos Médio
6 1.920 1.33 segundos Médio
7 240 1.22 segundos Médio
8 240 1.42 segundos Meédio
9 1.984 1.03 segundos Médio
10 1.984 1.02 segundos Médio
11 65.280 85.02 segundos Médio
12 65.280 - Médio
13 130.944 330.4 segundos Grande
14 65.280 - Grande

Fonte: elaborada pelo autora.

89

6.4 Ameacas a validade

As principais ameacgas a validade avaliadas sdo relacionadas a validade interna e
externa. A validade interna considera a relagdo causal entre fatores, avaliando se hé influéncia
de varidveis externas ndo identificadas que possam comprometer os resultados, enquanto as
ameacas a validade validade externas avaliam a generalizacdo dos resultados obtidos (WOHLIN
etal.,2012).

A implementagdo do algoritmo NSGA-II apresenta uma ameaca a validade interna
deste trabalho. Para assegurar a implementagdo correta foram realizados testes com pequenas
populacdes para avaliar solucdes de diferentes niveis de dominancia, andlise da mutagdo e
cruzamento para verificar se a solucdes estavam dentro das restri¢des, variagdo dos tamanhos
dos parametros (tamanho da populacio, nimero de geracdes e probabilidades de cruzamento e
mutacdo) e avaliac@o das solugdes em relagdo a convergéncia para a frente de Pareto.

Outra ameaca a validade interna € a implementacdo do Bumblebin. Para assegurar o
correto funcionamento do Bumblebin foram realizados testes com diferentes especificagdes de
SAS (niveis de complexidade e variabilidade), verificando se os casos de teste gerados estavam
consistentes com as informacdes fornecidas pelas especificacdes.

A principal ameaca a validade externa € a elaboragdo manual dos modelos de features
dos SAS utilizados para simulagdo. Para mitigar foi utilizado como base o modelo de features
do GREat Tour de Marinho et al. (2013) e utilizadas as métricas de avaliacdo de modelos de
features de Bezerra et al. (2014) para a definicdo dos sistemas das simulacdes.

Outra ameaca a validade externa € a quantidade limitada de modelos utilizados na
avaliacdo. Essa restricdo implica que os resultados obtidos ndo podem ser generalizados para
Self-Adaptive Systems de todos os tamanhos. Para mitigar essa limitagcdo, foram realizadas 14

simulacdes utilizando diferentes configuragdes, variando a quantidade de features e contextos.

90

7 CONCLUSAO

Este capitulo apresenta as nossa consideragdes finais com uma visdo geral do meca-
nismo proposto nesta dissertagdo (Secdo 7.1), os resultados obtidos pela pesquisa (Segdo 7.2), as

limitagdes (Secdo 7.3) e os trabalhos futuros (Se¢ao 7.4).

7.1 Visao geral

O crescente uso de dispositivos moveis e a necessidade de que estes funcionem
ininterruptamente em qualquer ambiente resulta, consequentemente, em sistemas mais complexos.
Uma vez que a industria de software busca se adaptar a esta demanda, sistemas altamente
distribuidos sdo desenvolvidos para integrar os mais diversos dispositivos e fluxos de dados em
diferentes contextos. Contudo, desenvolver, configurar € manter esses sistemas ¢ uma tarefa
dificil, sujeita a erros e custosa. A autoadaptacdo surge como uma solucdo para auxiliar esta
tarefa. Um sistema autoadaptativo deve responder as alteracdes do ambiente cumprindo os
seus requisitos em tempo de execucdo. Assim, um Self-Adaptive Systems (SAS) é capaz de
automaticamente modificar-se em resposta as mudangas em seu ambiente operacional.

Apesar de suas vantagens, as adaptacdes em tempo de execuciao podem levar a falhas,
bugs e a degradacao do desempenho, uma vez que é desafiador prever e tratar todos os cendrios
possiveis que podem surgir durante a execucdo do sistema. Por isso, testar esses sistema nao é
uma tarefa trivial.

Essa atividade de teste para SAS torna-se complexa devido a: multiplas adaptacdes
realizadas em tempo de execucdo, quantidade de cendrios a partir da diversidade de adaptacdes e
dificuldade de gerar automdticamente casos de teste em um ambiente dinamico.

Sendo assim, o teste em tempo de execugdo surge como uma alternativa promissora
para a validacao de sistemas dinamicamente adaptativos. Contudo, a auséncia de mecanismos
eficazes para gerenciar e manter esses testes em tempo de execugdo representa um desafio
significativo. A principal preocupacdo reside no alto custo computacional associado a essa
abordagem.

A partir dessa problemdtica, este trabalho propos o Optimus cujo objetivo € auxiliar
na geragdo de sequéncias de casos de teste com maior variabilidade de estados do sistema com
menor custo. Por sua caracteristica de desacoplamento, o Optimus € capaz de ser utilizado por

abordagens de teste que utilizem um modelo de features na especificagdo do SAS a ser testado.

91

Ademais, a ferramenta Bumblebin foi desenvolvida para auxiliar na geracdo dos
casos de teste e valoracdo dos custos. Por meio do Bumblebin, foi possivel gerar e converter
casos de teste em bindrio através de um arquivo de especificacdo. Além disso, esta ferramenta
auxiliou na defini¢do dos custos associados a cada caso de teste, otimizando a utilizagao do
Optimus.

Para avaliar o mecanismo, foi realizado um estudo de viabilidade com o objetivo de
responder a pergunta: "E vidvel utilizar o mecanismo para gerar sequéncias de casos de teste
otimizadas?"Com os resultado foi possivel afirmar que o Optimus alcanga sequéncias de casos
de teste 6timas em relagdo a custo e diversidade de estados.

Por fim, para avaliar o impacto da complexidade dos SAS sobre o Optimus foram
realizadas simulagdes com sistemas sinteticamente gerados. Trés simula¢des foram executadas
por ordem de complexidade (baixa, média e alta). Os resultados das simula¢des indicaram que
o Optimus consegue manter a eficiéncia em relacdo ao tempo de execu¢do, como também a
qualidade dos casos de teste selecionados. Adicionalmente, foi possivel observar que dividir o
processo de geracao dos casos de teste demonstra ser uma estratégia eficaz para diminuicdo de
tempo de execucdo e custo computacional, asism como o caso de teste parametro para o cdlculo

da distancia afeta o desempenho do mecanismo.

7.2 Resultados

Os principais resultados desta pesquisa estdo listados a seguir:

— Optimus. Um mecanismo para geracao de sequéncias de casos de teste para SAS utilizando
NSGA-II para minimizar o custo de execu¢cdo € maximizar a cobertura de teste. O
mecanismo recebe casos de teste em bindrio e seus respectivos custos, € por meio de
funcgdes fitness seleciona os casos de teste 6timos. Ao final, 0 mecanismo retorna uma
sequéncia de casos de teste e seus respectivos custos.

— Bumblebin. E uma ferramenta de geracio bindria de casos de teste. Este artefato permitiu
que através de um arquivo JSON com especificagcdes do SAS, fossem geradas todas
as combinacdes possiveis entre features e contextos para defini¢do dos casos de teste.
Adicionalmente, a ferramenta seleciona todos os casos de teste relacionados ao estado
atual do sistema e seus respectivos custos.

Além dos resultados da dissertagdo propriamente dita, citados anterioremente, du-

rante o periodo de mestrado foram publicados 2 artigos, listados na Tabela 22, diretamente

92

relacionados ao tema deste trabalho. O artigo (COSTA et al., 2023) apresenta a ideia inicial da

dissertacdo e o artigo (COSTA. et al., 2024) descreve a revisdo sistemadtica da literatura descrita

no Capitulo 3.

Tabela 22 — Artigos relacionados ao tema desta pesquisa

Autores

Trabalho

Evento

Qualis (2024)

COSTA, I. N.; AN-
DRADE, R. M. C. ;
SANTOS, L. S.

COSTA, I. N.; SAN-
TOS, I. S. ; AN-
DRADE, R. M. C.

Optimus: Mecanismo de oti-
mizagdo de execucdo de tes-
tes em sistemas autoadaptati-
VoS

Testing on Dynamically
Adaptive Systems: Challen-
ges and Trends

XXII Simp6sio Brasileiro de
Qualidade de Software: XXI
Workshop de Teses e Disser-
tacdes em Qualidade de Soft-
ware (2023)

26th International Confe-
rence on Enterprise Informa-
tion Systems (2024)

A3

Fonte: elaborada pelo autora.

Outro artigo, relacionado a drea de testes, foi publicado durante o periodo do mes-

trado, mas ndo esta diretamente ligado ao tema principal desta pesquisa. Este artigo (COSTA et

al., 2022) apresenta uma biblioteca para auxiliar na execucdo do Monkey Testing' em vrias telas

de um dispositivo movel. O trabalho foi apresentado no 17th Iberian Conference on Information

Systems and Technologies (CISTI) em 2022.

7.3 Limitacoes

Ap6s a finalizacdo deste trabalho, foram identificadas limitacdes relacionadas as

decisdes de design do mecanismo e ao proprio escopo da pesquisa. A seguir sao apresentadas as

principais limitagdes:

— Execucdo da sequéncia de teste. Apesar das simulagdes evidenciarem que o mecanismo

produz casos de teste 6timos em relacdo a custo e variabilidade, a execucao da sequéncia

de teste em um ambiente real poderia fornecer dados relacionados a desempenho e comu-

nicacdo com uma ferramenta ou abordagem de teste. Embora a execucao de testes ndo

estvesse incluida no escopo deste trabalho, a realizagcao de testes poderia contribuir para a

identificac@o de possiveis melhorias no Optimus.

— Modelo de features e contextos. Embora o modelo seja adequado para os SAS, a sua

utilizagdo limita a utilizagdo do Optimus. Para diminuir o impacto dessa limitagdo foi

apresentado um modelo menos complexo, uma vez que € necessaria a especificacao do

SAS usando este modelo.

1

O Monkey € um programa que gera fluxos pseudoaleatdrios de eventos do usudrio em um dispositivo.

93

— Atribuicdo de pesos iguais aos objetivos. Apesar do SAS considerar a mesma importancia
a diversidade de estados e ao custo, a possibilidade de atribuir pesos distintos a esses
objetivos permitiria um ajuste mais fino das solucdes, possibilitando que o analista de teste
priorize aspectos especificos de acordo com suas necessidades

— Criagdo dos dados sintéticos. Os dados sintéticos foram gerados manualmente. Apesar
de utilizar do modelo de features e simular sistemas reais, a utilizacdo de sistemas reais
possibilitaria uma visualiza¢do concreta de como 0 mecanismo se comportaria no ambiente

real.

7.4 Trabalhos futuros

Nesta Secdo sdo apresentadas possibilidades de evolugdo desta pesquisa e dire¢des
para s novos desafios que surgiram.

— Pesos diferentes para os objetivos. O Optimus atualmente trata dos dois objetivos
com pesos iguais. Um direcionamneto seria adaptar abordagem multiobjetiva para se
comportar como uma abordagem de objetivo tinico combinando as fungdes objetivo em
uma Unica func¢do de aptidao, atribuindo pesos a cada objetivo de acordo com sua meta
como discutido no trabalho de Bajaj e Sangwan (2019). Ao variar os pesos, seria possivel
ajustar o comportamento do Optimus de acordo com o grau de importincia dado aquele
objetivo.

— Utilizaciao de outras metaheuristicas. A versao atual do mecanismo utiliza a metaheuris-
tica NGSA-II. Ao utilizar outras metaheuristicas pode-se permitir diversificar as solugdes
encontradas e encontrar pontos de melhoria no mecanismo. Ademais, a metaheuristica
atual poderia ser combinada com uma nova, a fim de tomar proveito das vantagens de
cada uma. O trabalho de Ramirez et al. (2018) apresenta algumas metaheuristicas e suas
aplicacdes dentro do SBSE.

— Avaliacao com execucio dos testes. O presente trabalho conduziu a avaliagdo por meio
de simulagdes com o objetivo de verificar a eficdcia e viabilidade do mecanismo. Novas
avaliacdes podem ser realizadas para quantificar a cobertura de falhas proporcionada pelas
sequéncias de teste, permitindo avaliar sua qualidade.

— Geracao dos casos de testes de forma implicita. A versdo atual do mecanismo Optimus
necessita do Bumblebin para geracdo dos casos de teste. Pode-se explorar a geracao dos

casos de teste implicita, através de regras para geragdo e validacao dos casos de teste no

94

proprio mecanismo. Desse modo, torna-se possivel avaliar o impacto na execu¢do e no
desempenho do mecanismo por meio de uma metodologia alternativa de geracao de casos

de teste.

95

REFERENCIAS

ABOWD, G. D.; DEY, A. K.; BROWN, P. J.; DAVIES, N.; SMITH, M.; STEGGLES, P. Towards
a better understanding of context and context-awareness. In: Handheld and Ubiquitous
Computing: First International Symposium, HUC’99. Germany, Berlin Heidelberg: Springer,
1999. p. 304-307.

ALMEIDA, D. R. de; MACHADO, P. D.; ANDRADE, W. L. Context-aware android
applications testing. In: Proceedings of the XXXIV Brazilian Symposium on Software
Engineering. Natal, Brazil: SBC, 2020. p. 283-292.

ALMEIDA, D. R. de; MACHADO, P. D. L.; ANDRADE, W. L. Enviar: Environment data
simulator. In: Proceedings of the XXXIV Brazilian Symposium on Software Engineerung.
Natal, Brazil: SBC, 2020. p. 532-537.

ALVES, V.; SCHNEIDER, D.; BECKER, M.; BENCOMO, N.; GRACE, P. Comparitive study
of variability management in software product lines and runtime adaptable systems. VaMoS,
Sevilha, v. 9, 2009.

ARRIETA, A.; WANG, S.; SAGARDUI, G.; ETXEBERRIA, L. Search-based test case
prioritization for simulation-based testing of cyber-physical system product lines. Journal of
Systems and Software, United States, v. 149, p. 1-34, 2019.

BAJAJ, A.; SANGWAN, O. P. A systematic literature review of test case prioritization using
genetic algorithms. IEEE Access, United States, v. 7, p. 126355-126375, 2019.

BARBOSA, G.; SOUZA, E.F. de; SANTOS, L. B. R. dos; SILVA, M. da; BALERA, J. M.;
VIJAYKUMAR, N. L. A systematic literature review on prioritizing software test cases using
markov chains. Information and Software Technology, Netherlands, v. 147, p. 106902, 2022.

BERTOLINO, A.; BRAIONE, P.; ANGELIS, G. D.; GAZZOLA, L.; KIFETEW, F.; MARIANI,
L.; ORRU, M.; PEZZE, M.; PIETRANTUONO, R.; RUSSO, S. et al. A survey of field-based
testing techniques. ACM Computing Surveys (CSUR), ACM New York, NY, USA, v. 54, n. 5,
p.- 1-39, 2021.

BEZERRA, C. 1.; ANDRADE, R. M.; MONTEIRO, J. M. S. Measures for quality evaluation of
feature models. In: Software Reuse for Dynamic Systems in the Cloud and Beyond: 14th
International Conference on Software Reuse, ICSR 2015. Miami, FL, USA: Springer, 2014.
p. 282-297.

BOURQUE, P.; FAIRLEY, R. E.; SOCIETY, I. C. Guide to the Software Engineering Body of
Knowledge (SWEBOK(R)): Version 3.0. 3rd. ed. Washington, DC, USA: IEEE Computer
Society Press, 2014. ISBN 0769551661.

CHEN, J.; QIN, Y.; WANG, H.; XU, C. Simulated or physical? an empirical study on input
validation for context-aware systems in different environments. In: Proceedings of the 12th
Asia-Pacific Symposium on Internetware. Singapore: ACM, 2020. p. 146—155.

CHEN, J.-C.; QIN, Y.; WANG, H.-Y.; XU, C. Simulation might change your results: a
comparison of context-aware system input validation in simulated and physical environments.
Journal of Computer Science and Technology, Germany, v. 37, n. 1, p. 83-105, 2022.

96

CHEN, Y.; CHAUDHARI, N.; CHEN, M.-H. Context-aware regression test selection. In: 28th
Asia-Pacific Software Engineering Conference (APSEC). Taipei, Taiwan: IEEE, 2021. p.
431-440.

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications, Thousand Oaks, CA, v. 20, n. 1, p. 3746, 1960.

COMPUTING, A. et al. An architectural blueprint for autonomic computing. IBM White
Paper, Citeseer, Pensilvania, v. 31, n. 2006, p. 1-6, 2006.

COPELAND, L. A practitioner’s guide to software test design. Estados Unidos: Artech
House, 2004.

COSTA, I.; ANDRADE, R.; SANTOS, I. Optimus: Mecanismo de otimiza¢do de execugdo de
testes em sistemas autoadaptativos. In: Anais Estendidos do XXII Simpoésio Brasileiro de
Qualidade de Software. Porto Alegre, RS, Brasil: SBC, 2023. p. 31-36.

COSTA,, L; S. Santos., I.; ANDRADE., R. Testing on dynamically adaptive systems: Challenges
and trends. In: INSTICC. Proceedings of the 26th International Conference on Enterprise
Information Systems - Volume 2: ICEIS. France: SciTePress, 2024. p. 129-140.

COSTA, L. S. da; SANTOS, 1. S.; COSTA, I. N.; ANDRADE, R. M. C. X-monkey: a library
to extend the monkey testing. In: 17th Iberian Conference on Information Systems and
Technologies (CISTI). Portugal: IEE Xplore, 2022. p. 1-6.

CUL Y.; GENG, Z.; ZHU, Q.; HAN, Y. Multi-objective optimization methods and application in
energy saving. Energy, Elsevier, Amsterda, v. 125, p. 681-704, 2017.

DADEAU, F.; GROS, J.-P.; KOUCHNARENKO, O. Testing adaptation policies for software
components. Software Quality Journal, Springer, Germany, v. 28, p. 1347-1378, 2020.

DADEAU, F.; GROS, J.-P.; KOUCHNARENKO, O. Automated generation of initial
configurations for testing component systems. In: Formal Aspects of Component Software:
17th International Conference, FACS 2021. Virtual Event: Springer, 2021. p. 134-152.

DADEAU, F; GROS, J.-P.; KOUCHNARENKO, O. Online testing of dynamic reconfigurations
wrt adaptation policies. Automatic Control and Computer Sciences, Springer, Germany, v. 56,
n. 7, p. 606-622, 2022.

DEB, K.; PRATAP, A.; AGARWAL, S.; MEYARIVAN, T. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, IEEE, United
States, v. 6, n. 2, p. 182—-197, 2002.

DEVRIES, B.; FREDERICKS, E. M.; CHENG, B. H. Analysis and monitoring of cyber-physical
systems via environmental domain knowledge & modeling. In: International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Madrid: IEEE,
2021. p. 11-17.

DOBSON, S.: DENAZIS, S.;: FERNANDEZ, A.; GAITI, D.; GELENBE, E.; MASSACCI,
F.; NIXON, P.; SAFFRE, F.; SCHMIDT, N.; ZAMBONELLI, F. A survey of autonomic
communications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), ACM,
New York, v. 1, n. 2, p. 223-259, 2006.

97

DORESTE, A. C. D. S.; TRAVASSOS, G. H. Cats: A testing technique to support the
specification of test cases for context-aware software systems. In: Brazilian Symposium on
Software Quality (SBQS). Curitiba, Brazil: Association for Computing Machinery, 2023.

DORESTE, A. C. de S.; TRAVASSOS, G. H. Towards supporting the specification of
context-aware software system test cases. In: Proceedings of the XXIII Iberoamerican

Conference on Software Engineering (CIbSE). Curitiba, Brazil: Curran Associates, 2020. p.
356-363.

EIBEN, A. E.; SMITH, J. E.; EIBEN, A.; SMITH, J. Genetic algorithms. Introduction to
Evolutionary Computing, Springer, Germany, p. 37-69, 2003.

ELECTRICAL, I. of; ENGINEERS, E. ISO/IEC/IEEE 24765:2010 Systems and Software
Engineering — Vocabulary. United States: Institute of Electrical and Electronics Engineers,
2010.

ELEUT¢RIO, J. D. A. S.; RUBIRA, C. M. F. Technical Report A Comparative Study of
Dynamic Software Product Line Solutions for Building Self-Adaptive Systems. Campinas,
SP, Brasil, 2017. Disponivel em: https://ic.unicamp.br/~reltech/2017/17-05.pdf. Acesso em: 5
jun. 2025.

FANITABASI, F.; GAERE, E.; POURNARAS, E. A self-integration testbed for decentralized
socio-technical systems. Future Generation Computer Systems, Elsevier, Netherlands, v. 113,
p. 541-555, 2020.

FREDERICKS, E. M.; RAMIREZ, A. J.; CHENG, B. H. Towards run-time testing of dynamic
adaptive systems. In: 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). United States: IEEE, 2013. p. 169-174.

FREITAS, F. G. de; MAIA, C. L. B.; CAMPOS, G. A. L. de; SOUZA, J. T. de. Otimizac¢iao em
teste de software com aplicacdo de metaheuristicas. Revista de Sistemas, Brazil, v. 5, p. 3-13,
2010.

GARGARI S. K.; KEYVANPOUR, M. R. Comparative analytical survey on sbst challenges
from the perspective of the test techniques. International Journal of Information &
Communication Technology Research, Iran, v. 14, n. 2, 2022.

GAROUSI, V.; FELDERER, M.; KUHRMANN, M.; HERKILOGLU, K.; ELDH, S. Exploring
the industry’s challenges in software testing: An empirical study. Journal of Software:
Evolution and Process, Wiley Online Library, United Kingdom, v. 32, n. 8, p. 2251, 2020.

HARMAN, M. The current state and future of search based software engineering. In: Future of
Software Engineering (FOSE’07). United States: IEEE, 2007. p. 342-357.

HARMAN, M.; JONES, B. F. Search-based software engineering. Information and software
Technology, Elsevier, Netherlands, v. 43, n. 14, p. 833-839, 2001.

HARMAN, M.; MCMINN, P.; SOUZA, J. T. D.; YOO, S. Search based software engineering:
Techniques, taxonomy, tutorial. In: LASER Summer School on Software Engineering.
Germany: Springer, 2008. p. 1-59.

HASS, A. M. Guide to advanced software testing. United States: Artech House, 2014.

98

HEZAVEHI, S. M.; WEYNS, D.; AVGERIOU, P.; CALINESCU, R.; MIRANDOLA, R.;
PEREZ-PALACIN, D. Uncertainty in self-adaptive systems: A research community perspective.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), ACM, New York, v. 15,
n. 4, p. 1-36, 2021.

JAMOVI. The jamovi project. 2022. Disponivel em: https://www.jamovi.org. Acesso em: 5 jun.
2025.

JORGENSEN, B. D. P. C. Software Testing: A Craftsman’s Approach. 4. ed. United States:
Auerbach Publications, 2021.

KITCHENHAM, B.; SJOBERG, D. I.; BRERETON, O. P.; BUDGEN, D.; DYBA, T;
HOST, M.; PFAHL, D.; RUNESON, P. Can we evaluate the quality of software engineering
experiments? In: Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement. United States: ACM, 2010. p. 1-8.

KITCHENHAM, B. A.; BUDGEN, D.; BRERETON, P. Evidence-based software engineering
and systematic reviews. United States: CRC press, 2016.

KRUPITZER, C.; ROTH, F. M.; VANSYCKEL, S.; SCHIELE, G.; BECKER, C. A survey on
engineering approaches for self-adaptive systems. Pervasive and Mobile Computing, Elsevier,
Netherlands, v. 17, p. 184-206, 2015.

LACERDA, E. G. de; CARVALHO, A. D. Introdugdo aos algoritmos genéticos. Sistemas
inteligentes: aplicacoes a recursos hidricos e ciéncias ambientais, Brasil, v. 1, p. 99-148,
1999.

LAHAMI, M.; KRICHEN, M. A survey on runtime testing of dynamically adaptable and
distributed systems. Software Quality Journal, Springer, Germany, p. 1-39, 2021.

LAHAMI, M.; KRICHEN, M.; JMAIEL, M. Runtime testing framework for improving quality
in dynamic service-based systems. In: Proceedings of the 2013 International Workshop on

Quality Assurance for Service-based Applications. Lugano, Switzerland: ACM, 2013. p.
17-24.

LAHAMI, M.; KRICHEN, M.; IMAIEL, M. Runtime testing approach of structural adaptations
for dynamic and distributed systems. International Journal of Computer Applications in
Technology, Inderscience Publishers (IEL), United Kingdom, v. 51, n. 4, p. 259-272, 2015.

LAHAMI, M.; KRICHEN, M.; IMAIEL, M. Safe and efficient runtime testing framework
applied in dynamic and distributed systems. Science of Computer Programming, Elsevier,
Netherlands, v. 122, p. 1-28, 2016.

LIGHT, J.; ARUNACHALAN, B. Mobile middleware service architecture for ems application.
In: 2006 1st International Conference on Communication Systems Software & Middleware.
New Delhi, India: IEEE, 2006. p. 1-5.

MAIA, C. L. B.; SOUZA, J. T. de; PEREIRA, P. H. Uma proposta de otimizagao para selecao
de casos de testes para automacdo. In: Anais do XLV Simpésio Brasileiro de Pesquisa
Operacional. Natal, Brazil: SBPO, 2013.

99

MANDRIOLI, C.; MAGGIO, M. Testing self-adaptive software with probabilistic guarantees on
performance metrics. In: Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.
Virtual Event USA: ACM, 2020. p. 1002-1014.

MANDRIOLI, C.; MAGGIO, M. Testing self-adaptive software with probabilistic guarantees on
performance metrics: Extended and comparative results. IEEE Transactions on Software
Engineering, New York, v. 48, n. 9, p. 3554-3572, 2022.

MARINHO, F. G.; ANDRADE, R. M.; WERNER, C.; VIANA, W.; MAIA, M. E.; ROCHA,
L. S.; TEIXEIRA, E.; FILHO, J. B. F.; DANTAS, V. L.; LIMA, F. et al. Mobiline: A nested
software product line for the domain of mobile and context-aware applications. Science of
Computer Programming, Elsevier, Netherlands, v. 78, n. 12, p. 2381-2398, 2013.

MATALONGA, S.; AMALFITANO, D.; DORESTE, A.; FASOLINO, A. R.; TRAVASSOS,
G. H. Alternatives for testing of context-aware software systems in non-academic settings:

results from a rapid review. Information and Software Technology, Elsevier, Netherlands,
v. 149, p. 106937, 2022.

MAURIO, J.; WOOD, P.; ZANLONGGQO, S.; SILBERMANN, J.; SOOKOOR, T.; LORENZO,
A.; SLEIGHT, R.; ROGERS, J.; MULLER, D.; ARMIGER, N. et al. Agile services and analysis
framework for autonomous and autonomic critical infrastructure. Innovations in Systems and
Software Engineering, Springer, Germany, p. 1-12, 2021.

MCMINN, P. Search-based software testing: Past, present and future. In: IEEE Fourth
International Conference on Software Testing, Verification and Validation Workshops.
Berlin, Germany: IEEE, 2011. p. 153-163.

MENDES, E.; WOHLIN, C.; FELIZARDO, K.; KALINOWSKI, M. When to update systematic
literature reviews in software engineering. Journal of Systems and Software, Elsevier,
Netherlands, v. 167, p. 110607, 2020.

MICHAELS, R.; PIPARIA, S.; ADAMO, D.; BRYCE, R. C. Data driven testing for context
aware apps. In: International Conference on Software Engineering and Knowledge
Engineering (SEKE). Virtual Event USA: KSI Research Inc, 2022. p. 206-211.

MIRZA, A. M.; KHAN, M. N. A.; WAGAN, R. A.; LAGHARI, M. B.; ASHRAF, M.; AKRAM,
M.; BILAL, M. Contextdrive: Towards a functional scenario-based testing framework for
context-aware applications. IEEE Access, IEEE, United States, v. 9, p. 80478-80490, 2021.

MULLER, H.; KIENLE, H. M.; STEGE, U. Autonomic computing now you see it, now you
don’t. Software engineering, Springer, Italy, p. 32-54, 2009.

MYERS, G. J.; SANDLER, C.; BADGETT, T. The art of software testing. New York: John
Wiley & Sons, 2013.

NOROUZI, M.; FLEET, D. J.; SALAKHUTDINOV, R. R. Hamming distance metric learning.
Advances in neural information processing systems, Curran Associates, United States, v. 25,
2012.

PEREZ, F.; FONT, J.; ARCEGA, L.; CETINA, C. Empowering the human as the fitness function
in search-based model-driven engineering. IEEE Transactions on Software Engineering,
IEEE, United States, 2021.

100

PIPARIA, S.; ADAMO, D.; BRYCE, R.; DO, H.; BRYANT, B. Combinatorial testing of context
aware android applications. In: 16th Conference on Computer Science and Intelligence
Systems (FedCSIS). Sofia, Bulgaria: IEEE, 2021. p. 17-26.

PRIYA, S. S.; RAJALAKSHMI, B. Testing context aware application and its research challenges.
In: International Conference on Smart Technologies and Systems for Next Generation
Computing (ICSTSN). Villupuram, India: IEEE, 2022. p. 1-7.

RAMIREZ, A.; ROMERQO, J. R.; SIMONS, C. L. A systematic review of interaction in
search-based software engineering. IEEE Transactions on Software Engineering, IEEE,
United States, v. 45, n. 8, p. 760-781, 2018.

ROCHA, L. S.; ANDRADE, R. M. Towards a formal model to reason about context-aware
exception handling. In: Sth International Workshop on Exception Handling (WEH). Zurich,
Switzerland: 1EEE, 2012. p. 27-33.

SADJADI, S. M.; MCKINLEY, P. K. Tecnical report A survey of adaptive middleware. United
States, 2003. v. 13. Disponivel em: https://www.researchgate.net/profile/S-Masoud-Sadjadi/
publication/2946567_A_Survey_of_Adaptive_Middleware/links/0912f50f476b2165c0000000/
A-Survey-of- Adaptive-Middleware.pdf. Acesso em: 5 jun. 2025.

SALEHIE, M.; TAHVILDARI, L. Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., Association for Computing Machinery, New York, USA,
v. 4, n. 2,2009.

SALLER, K.; LOCHAU, M.; REIMUND, I. Context-aware dspls: model-based runtime
adaptation for resource-constrained systems. In: Proceedings of the 17th International
Software Product Line Conference co-located workshops. Tokyo, Japan: ACM, 2013. p.
106-113.

SANTOS, E. B. d. RETAKE: Abordagem para teste em tempo de execucio de sistemas
dinamicamente adaptativos, 2020. 16 f. Dissertacdo (Mestrado em Ciéncia da Computacao),
Universidade Federal do Ceara, Fortaleza, 2020.

SANTOS, E. B. dos; ANDRADE, R. M.; SANTOS, I. de S. Runtime testing of context-aware
variability in adaptive systems. Information and Software Technology, Elsevier, Netherlands,
v. 131, 2021.

SANTOS, I. d. S. TestDAS: Testing method for dynamically adaptive systems, 2017. 183 f.
Tese (Doutorado em Ciéncia da Computacdo), Universidade Federal do Ceard, Fortaleza, 2017.

SANTOS, I. de S.; JUNIOR, E. C.; ANDRADE, R. M. de C.; NETO, P. d. A. dos S.; ROCHA,
L. S.; WERNER, C. M. L.; SOUZA, J. T. de. Optimized feature selection for initial launch in

dynamic software product lines. In: Internacional Conference on Enterprise Information
Systems - ICEIS. Lisboa: SCITEPRESS, 2018. p. 145-156.

SANTOS, I. S.; ROCHA, L. S.; NETO, P. A. S.; ANDRADE, R. M. Model verification of
dynamic software product lines. In: Proceedings of the XXX Brazilian Symposium on
Software Engineering. Maringd, Brazil: ACM, 2016. p. 113-122.

SHAFIEI, Z.; RAFSANJANI, A. J. A test case design method for context aware android
applications. In: 25th International Computer Conference, Computer Society of Iran
(CSICC). Tehran, Iran: IEEE, 2020. p. 1-8.

101

SHEVTSOV, S.; IFTIKHAR, M. U.; WEYNS, D. Simca vs activforms: comparing control-and
architecture-based adaptation on the tas exemplar. In: Proceedings of the 1st international
workshop on control theory for software engineering. Bergamo, Italy: ACM, 2015. p. 1-8.

SILVA, D. N. A. d. Adaptation oriented test data generation for adaptive systems. In: 15th
Iberian Conference on Information Systems and Technologies (CISTI). Seville, Spain: 1EE,
2020. p. 1-7.

SILVA, P. C. B. da; ALVES, T. S.; BRUNO, E. A. Automacao de testes funcionais: testes
funcionais automatizados de software. Revista de Ciéncias Exatas e Tecnologia, Brasil, v. 6,
n. 6, p. 113-133, 2011.

SILVA, S.; BERTOLINO, A.; PELLICCIONE, P. Self-adaptive testing in the field: are we there
yet? In: Proceedings of the 17th Symposium on Software Engineering for Adaptive and
Self-Managing Systems. Pittsburgh, Pennsylvania: ACM, 2022. p. 58-69.

SIMONS, C. L. Whither (away) software engineers in sbse? In: 1st International Workshop
on Combining Modelling and Search-Based Software Engineering (CMSBSE). United
States: IEEE, 2013. p. 49-50.

SIQUEIRA, B. R.; FERRARI F. C.; SERIKAWA, M. A.; MENOTTI, R.; CAMARGO, V. V.
de. Characterisation of challenges for testing of adaptive systems. In: Proceedings of the 1st
Brazilian Symposium on Systematic and Automated Software Testing. Maringa, Brazil:
ACM, 2016. p. 1-10.

SIQUEIRA, B. R.; FERRARI F. C.; SOUZA, K. E.; CAMARGQO, V. V.; LEMOS, R. de.
Testing of adaptive and context-aware systems: approaches and challenges. Software Testing,
Verification and Reliability, United States, v. 31, n. 7, p. e1772, 2021.

SOMMERVILLE, I. Engenharia de Software. Edicao 10. Brasil: Pearson Universidades, 2019.

STRAUSS, A.; CORBIN, J. Basics of qualitative research. New York: Sage publications,
1990.

USMAN, A.; IBRAHIM, N.; SALIHU, I. A. Tegdroid: Test case generation approach for
android apps considering context and gui events. International Journal on Advanced Science,

Engineering and Information Technology, Int. J. Adv. Sci. Eng. Inf. Technol, Indonesia, v. 10,
n. 1, p. 16, 2020.

VELDHUIZEN, D. A. V.; LAMONT, G. B. et al. Evolutionary computation and convergence to
a pareto front. In: Late breaking papers at the genetic programming 1998 conference. USA:
Citeseer, 1998. p. 221-228.

WANG, H.; CHAN, W.; TSE, T. Improving the effectiveness of testing pervasive software via
context diversity. ACM Transactions on Autonomous and Adaptive Systems (TAAS), ACM,
USA, v.9,n. 2, p. 1-28, 2014.

WANG, H.; CHAN, W. K. Weaving context sensitivity into test suite construction. In:
IEEE/ACM International Conference on Automated Software Engineering. New Zealand:
IEEE, 2009. p. 610-614.

WANG, L.; LI, S.; LIU, J.; HU, Y.; WU, Q. Design and implementation of a testing platform for
ship control: A case study on the optimal switching controller for ship motion. Advances in
Engineering Software, ScienceDirect, Netherlands, v. 178, p. 103427, 2023.

102

WOHLIN, C.; RUNESON, P.; HOST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLEN, A.
Experimentation in software engineering. Berlin, Heidelberg: Springer Science & Business
Media, 2012.

YL, G. K.; BAHAROM, S. B.; DIN, J. Improving the exploration strategy of an automated
android gui testing tool based on the g-learning algorithm by selecting potential actions. Journal
of Computer Science, Science Publications, Australia, v. 18, n. 2, p. 90 — 102, 2022.

YIGITBAS, E. Model-driven engineering and usability evaluation of self-adaptive user
interfaces. ACM SIGWEB Newsletter, ACM, New York,USA, n. Autumn, p. 1-4, 2020.

YOO, S.; HARMAN, M. Pareto efficient multi-objective test case selection. In: Proceedings of

the international symposium on Software testing and analysis. United Kingdom: ACM,
2007. p. 140-150.

103

APENDICE A - PSEUDO-COGIDO: GERACAO DE CASOS DE TESTE

Algoritmo 2: Geracdo de Casos de teste: Combinando Features e contextos

Require: Array A (Features) e lista de diciondrios L (Contextos)
Ensure: Lista de strings combinadas R
1: R« lista vazia
2: if algum elemento de L ndo € diciondrio then
3: Erro: “Lista invélida”
4: end if
5: for cadavem A do
6: C < todas as combinacgdes possiveis dos valores de cada dicionério em L
7: for cada combinagdo c em C do
8 s <— string formada por v seguido dos valores de ¢
9: Adicione s em R
10: end for
11: end for
12: return R

104

APENDICE B - PSEUDO-COGIDO: SELECAO DE TESTES CONFORME O
ESTADO DO SISTEMA

Algoritmo 3: Filtrar Casos de teste a partir do primeiro grupo de contexto

Require: Array de strings A (Todos os casos de teste gerados), contexto inicial C, tamanho do
contexto inicial P
Ensure: Lista de Casos de teste filtrados pelo Contexto R
1: R <« lista vazia
2: for cada s em A do
3: if P < tamanho de s then

4: if substring de s comecando em P ¢ igual a C then
5: Adicione s em R

6: end if

7. end if

8: end for

9: return R

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introdução
	Contextualização
	Motivação
	Objetivo e Metodologia
	Estrutura da Dissertação

	Fundamentação teórica
	Sistemas autoadaptativos
	Otimização em Engenharia de Software
	Teste de software
	Teste em SAS
	SBST

	Revisão sistemática da literatura
	Motivação e objetivo
	Metodologia
	Resultados e discussão

	Trabalhos Relacionados
	Abordagens de teste para SAS com otimização
	Comparação com o trabalho proposto

	Optimus
	Visão Geral
	Etapas para o uso do Optimus
	Analista de testes - Especificar SAS
	Bumblebin
	Implementação do Optimus

	Aplicação do Optimus

	Avaliação
	Estudo de viabilidade
	Cenário 1
	Cenário 2
	Conclusão dos resultados obtidos

	Simulações
	SAS com Baixa complexidade
	Simulação 1 - Cenário 1
	Simulação 2 - Cenário 2

	SAS com média complexidade e variabilidade
	Simulação 3 - Cenário 1
	Simulação 4 - Cenário 2
	Simulação 5 - Cenário 1
	Simulação 6 - Cenário 2
	Simulação 7 - Cenário 1
	Simulação 8 - Cenário 2
	Simulação 9 - Cenário 1
	Simulação 10 - Cenário 2
	Simulação 11 - Cenário 1
	Simulação 12 - Cenário 2

	SAS com grande complexidade e variabilidade
	Simulação 13 - Cenário 1
	Simulação 14 - Cenário 2

	Conclusão da avaliação
	Ameaças à validade

	Conclusão
	Visão geral
	Resultados
	Limitações
	Trabalhos futuros

	REFERÊNCIAS
	Pseudo-cógido: Geração de Casos de teste
	PSEUDO-CÓGIDO: seleção de testes conforme o estado do sistema

