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RESUMO

Os sistemas autoadaptativos, do inglês Self-Adaptive Systems (SAS), são sistemas capazes de se

modificar automaticamente de acordo com o ambiente no qual estão inseridos. Essas adaptações

dinâmicas trazem mais flexibilidade ao sistema, mas também podem resultar em falhas durante a

sua execução, problemas com desempenho e operações indesejadas. Para os SAS, as abordagens

de teste tradicionais são ineficazes devido aos aspectos dinâmicos desses sistemas, tornando a

detecção de falhas uma tarefa complexa. Dessa maneira, várias abordagens de teste para estes

sistemas foram propostas na literatura como forma de resolver os principais desafios, sendo uma

delas o teste em tempo de execução. No entanto, ainda há uma carência em relação a cobertura

e o custo de execução de testes em tempo de execução. Em razão disso, este trabalho propõe

um mecanismo para diminuir o custo de execução e auxiliar a cobertura de testes em tempo

de execução, com o objetivo de contribuir para a identificação de falhas em SAS. Para avaliar

este mecanismo foi desenvolvida uma prova de conceito juntamente com simulações de SAS

artificialmente gerados, abrangendo diferentes complexidades e níveis de variabilidade (baixa,

média e alta). O mecanismo mostrou-se eficiente em termos de tempo de execução e capaz

de selecionar casos de teste eficazes para os objetivos em diferentes cenários. As principais

contribuições deste trabalho são: o mecanismo de geração de sequências de casos de teste, que

visa minimizar o custo de execução e aumentar a cobertura de testes utilizando a métrica de

variabilidade de contexto, e uma ferramenta para geração de casos de teste em binário e cálculo

de seus custos.

Palavras-chave: sistemas autoadaptativos; sensibilidade ao contexto; teste em tempo de execu-

ção; otimização.



ABSTRACT

Self-adaptive systems (SAS) can modify themselves automatically according to their environment.

These dynamic adaptations give the system more flexibility, but it can also result in failures

during execution, performance problems, and unwanted operations. For SAS, traditional testing

approaches are ineffective due to the dynamic aspects of these systems, making fault detection

a complex task. Then, various testing approaches for these systems have been proposed in

the literature to solve the main challenges, one of which is runtime testing. However, there

is still lack of information regarding the coverage and cost of running tests at runtime. Thus,

this research proposes a mechanism to reduce the cost of execution and help cover runtime

tests to contribute to the identification of faults in SAS. To evaluate this, a proof of concept

was developed along with simulations of artificially generated SAS systems covering different

covering different complexities and levels of variability (low, medium and high). The mechanism

performed efficiently in terms of execution time and was able to select effective test cases in

relation to the objectives in different scenarios. The main contributions of this work are a

mechanism for generating sequences of test cases, which aims to minimize the cost of execution

and increase test coverage using the context variability metric, and a tool for generating test

cases in binary and calculating their costs.

Keywords: self-adaptive systems; context awareness; runtime testing; optimization.
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1 INTRODUÇÃO

Esta dissertação de mestrado apresenta uma mecanismo que utiliza técnicas de

otimização para sequenciar casos de teste, visando reduzir o custo dos testes em sistemas

adaptativos e aumentar a diversidade de estados avaliados.

A Seção 1.1 deste capítulo apresenta o contexto em que a pesquisa desta dissertação

está inserida, oferecendo uma visão abrangente do tema. A Seção 1.2 destaca a importância e a

necessidade do mecanismo proposto. A Seção 1.3 discute o objetivo e a metodologia adotados,

detalhando as abordagens e técnicas utilizadas para atingir os resultados esperados. Por fim, na

Seção 1.4 é apresentada a estrutura do documento de dissertação.

1.1 Contextualização

Os sistemas de informação modernos estão se tornando cada vez mais complexos.

Isso ocorre devido ao aumento no uso de dispositivos móveis e à necessidade de que eles

funcionem continuamente em qualquer ambiente. Para atender a essas demandas, a indústria de

software teve que se adaptar, utilizando sistemas altamente distribuídos. Operando em contextos

altamente diversos, esses sistemas precisam integrar dispositivos especializados e heterogêneos,

além de lidar com a variabilidade dos recursos de rede (KRUPITZER et al., 2015). Os sistemas

de Internet of Things (IoT) e a Indústria 4.0 são exemplos disso (MATALONGA et al., 2022).

Todavia, desenvolver, configurar e manter esses sistemas é uma tarefa muito difícil,

sujeita a erros e custosa (KRUPITZER et al., 2015), uma vez que o contexto é imprevisível

e pode mudar a qualquer momento, alterando a saída do sistema (PRIYA; RAJALAKSHMI,

2022). Uma solução para esse problema é a autoadaptação, de modo que espera-se que o

software cumpra os seus requisitos em tempo de execução, em resposta as alterações (SALEHIE;

TAHVILDARI, 2009). Este tipo de software é chamado de Self-Adaptive Systems (SAS) e é

capaz de se autorreconfigurar em resposta a mudanças de requisitos e condições ambientais

(FREDERICKS et al., 2013)1.

1 Alguns autores também utilizam os termos sistemas autônomos e sistemas dinâmicamente adaptativos (HEZA-
VEHI et al., 2021)
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1.2 Motivação

As adaptações dinâmicas dos SAS enquanto eles estão em produção podem levar a

alterações em tempo de execução que podem levar a novos riscos de bugs, interações inesperadas,

degradação de desempenho e modos de operação indesejados (LAHAMI; KRICHEN, 2021).

Além disso, detectar falhas neste tipo de sistema de forma eficaz não é uma tarefa trivial

(SIQUEIRA et al., 2016).

No contexto de SAS, as abordagens de teste tradicionais são ineficazes devido às

características inerentes a esses sistemas e os seguintes desafios tornam a atividade de teste

complexa:

(i) muitas das adaptações são realizadas em tempo de execução (SIQUEIRA et al., 2021);

(ii) a quantidade de cenários gerados a partir de alternativas de adaptação ainda pode ser muito

grande e inviável do ponto de vista do teste (SIQUEIRA et al., 2021); e

(iii) a geração automática de casos de testes em um ambiente dinâmico(SANTOS, ).

A partir disso, o teste em tempo de execução tem potencial para ser uma solução

apropriada para a validação de sistemas autoadaptativos (LAHAMI et al., 2013) e podem atuar

de várias formas para resolução dos desafios mencionados (SANTOS, 2020). Contudo, há uma

carência em abordagens e ferramentas que gerenciem e executem de forma eficiente os testes em

tempo de execução podendo gerar preocupações relacionadas a custo de execução e manutenção

dos casos de teste (LAHAMI; KRICHEN, 2021; SILVA et al., 2022). Este cenário motiva a

proposta deste trabalho, que visa a criação de um mecanismo de geração de sequências de casos

de teste com maior variabilidade e com menor custo.

1.3 Objetivo e Metodologia

Com o objetivo de contribuir para a identificação de falhas em SAS, esta pesquisa

propõe um mecanismo que utiliza um algoritmo multiobjetivo de otimização para geração

de sequências de casos de testes com maior variabilidade de contexto e com menor custo de

execução.

Para atingir este objetivo, esta pesquisa possui as seguintes metas:

– Realizar uma revisão sistemática da literatura para identificar os desafios de testar sistemas

adaptativos, as abordagens de teste atuais e as possíveis maneiras de testar SAS;
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– Modelar o problema como uma função fitness2;

– Implementar uma ferramenta para auxiliar na geração e cálculo dos custos dos casos de

teste;

– Implementar e avaliar o mecanismo proposto para geração de sequências de casos de teste

utilizando a função fitness;

A Figura 1 apresenta a metodologia utlizada durante este trabalho, a qual foi definida

a partir do objetivo e das metas e foi organizada em três fases principais: i) Concepção, onde

é definido o objetivo do trabalho baseado em uma revisão sistemática da literatura, ii) Desen-

volvimento, onde o mecanismo é implementado, e, por fim, iii) Avaliação, onde o mecanismo é

avaliado.

Figura 1 – Metodologia do trabalho

Fonte: elaborada pelo autora.

Na fase de Concepção foi realizada uma revisão sistemática da literatura seguindo

guideline de Kitchenham et al. (2016) com o objetivo de identificar os desafios, abordagens,

fatores de influência e tendências em testes de sistemas autoadaptativos. A partir dessa revisão,
2 Uma função fitness é uma função objetiva que é utilizada para avaliar soluções (ARRIETA et al., 2019).
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foi definido e revisado o objetivo desta pesquisa. Ainda na fase de Concepção, uma pesquisa

na literatura em busca de trabalhos que abordassem técnicas de Search-Based Software Testing

(SBST) foi realizado para auxiliar nas atividades da próxima fase.

A fase de Desenvolvimento constituiu da modelagem do problema e definição da

função fitness, seguindo os passos de Harman e Jones (2001) e Harman (2007). Em seguida, foi

selecionado o algoritmo para implementação do mecanismo e execução do estudo de viabilidade.

Durante o estudo de viabilidade, houve a implementação de uma ferramenta de apoio e o

mecanismo e a ferramenta foram avaliados em busca de melhorias.

Por fim, na fase de Avaliação o mecanismo foi avaliado por meio de 14 simulações

de sistemas SAS sintéticos, abrangendo diferentes complexidades e graus de variabilidade.

1.4 Estrutura da Dissertação

O restante da dissertação está organizada em seis capítulos:

– Capítulo 2 (Fundamentação Teórica) descreve os principais conceitos relacionados a

dissertação: Sistemas autoadaptativos, otimização em engenharia de software e teste de

software;

– Capítulo 3 (Revisão Sistemática da Literatura) descreve a metodologia e resultados

obtidos através de uma revisão sistemática da literatura visando definir e revisar o objetivo

desta pesquisa;

– Capítulo 4 (Trabalhos Relacionados) compara a proposta desta dissertação com trabalhos

encontrados na literatura que abordam otimização e testes em sistemas SAS;

– Capítulo 5 (Optimus) apresenta em detalhes o mecanismo proposto nesta dissertação,

bem como as etapas para utilização do mesmo;

– Capítulo 6 (Avaliação) descreve as avaliações do mecanismo proposto por meio de um

estudo de viabilidade e experimentos;

– Capítulo 7 (Conclusão) resume as contribuições alcançadas, discute algumas limitações

da pesquisa e trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo são apresentados os conceitos fundamentais para a condução da

pesquisa. Na Seção 2.1 é apresentado o conceito de Sistemas autoadaptativos (SAS) e suas

propriedades. Ademais, são apresentadas as definições de autoconsciência, consciência de

contexto, adaptação e o ciclo MAPE-K. Na Seção 2.2 destaca-se as definições importantes

da Otimização em Engenharia de Software SBSE, como aplicar SBSE e apresenta a sub-área

Search-Based Software Testing (SBST). Por fim, na Seção 2.3 as definições básicas de teste de

software, atividade de testes e seus objetivos são apresentadas. Além disso, são apresentadas

propriedades e desafios do testes em sistemas SAS.

2.1 Sistemas autoadaptativos

Os sistemas baseados em componentes distribuídos podem mudar dinamicamente

durante sua execução contínua sem fim. Geralmente, essas mudanças dinâmicas são necessárias

para fornecer sistemas mais confiáveis, para apagar deficiências detectadas, ou para apoiar o

desenvolvimento rápido dos requisitos dos usuários e a crescente variabilidade dos ambientes de

execução (LAHAMI; KRICHEN, 2021). Esses sistemas são chamados de Sistemas autoAdapta-

tivos (em inglês, Self-adaptive Systems (SAS)), que podem ser definidos como sistemas que se

adaptam em resposta à mudança de condições ambientais (ALVES et al., 2009).

Os Self-Adaptive Systems proporcionam as chamadas propriedades fornecem pro-

priedades de autogestão como a autoconfiguração, a autorecuperação na presença de falhas, a

autootimização e a autoproteção contra ameaças (KRUPITZER et al., 2015). Para alcançar um

comportamento adaptativo, as propriedades básicas do sistema são: autoconsciência e consciên-

cia de contexto. A autoconsciência descreve a capacidade de um sistema de estar ciente de si

mesmo, ou seja, ser capaz de monitorar seus recursos, estado e comportamento. Consciência

de contexto significa que o sistema é ciente de seu ambiente operacional, o chamado contexto

(KRUPITZER et al., 2015).

Segundo Abowd et al. (1999):

“O contexto é qualquer informação que pode ser utilizada para caracterizar
a situação de uma entidade. Uma entidade é uma pessoa, lugar ou objeto
considerado relevante à interação entre um usuário e um aplicativo, incluindo o
usuário e os próprios aplicativos."

Por exemplo, a informação de contexto pode ser utilizada pelo sistema para se
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adaptar ao nível de bateria de um dispositivo e se o mesmo está ou não ligado a uma fonte de

energia (SANTOS, ).

A adaptação é então a capacidade de alterar um sistema de acordo com variações

de contexto (MULLER et al., 2009) e esta pode acontecer em todos os níveis no sistema (e.g.

software do sistema, comunicação, recursos técnicos, contexto e aplicação). Por exemplo,

aplicações em smartphone que mudam para o modo silencioso quando o usuário está em uma

reunião através da utilização de informações do calendário, oferecem adaptação ao nível da

aplicação (KRUPITZER et al., 2015). Um exemplo de adaptação de comunicação é mudar a

conexão de rede, por exemplo, de 3G para WLAN até um Conexão WLAN está disponível

(DOBSON et al., 2006). Os recursos de autocorreção permitem o início automático de sistemas

de backup, por exemplo, em um data center, o que altera a nível de recursos técnicos. Um

exemplo de adaptação ao contexto é uma sala de reunião inteligente que reduz automaticamente

a luz quando uma apresentação começa (KRUPITZER et al., 2015). Em exemplo de adaptação

a nível de software do sistema, um middleware 1 adaptável oferece a possibilidade para trocar

componentes de hardware em tempo de execução (SADJADI; MCKINLEY, 2003). A dinâmica

de adaptação, pode ocorrer em tempo de execução. Um sistema autoadaptativo (SAS) é um

sistema de software com adaptação em tempo de execução ativada (KRUPITZER et al., 2015;

SANTOS, ).

Uma vez que uma mudança de contexto é detectada, a lógica de sistemas adaptativos

pode usar diferentes tipos de critérios em seu processo de tomada de decisão: modelos, regras/-

políticas e objetivos (SANTOS, 2020). Os loops de controle autônomo fornecem um mecanismo

genérico de auto-adaptação que muitas vezes é modelado como o ciclo MAPE-K (ou MAPE-K

loop), este define como os sistemas adaptam seu comportamento para manter seus objetivos

controlados, com base em qualquer controle regulatório, rejeição de perturbações ou requisitos

de otimização. O MAPE-K loop é dividido em quatro atividades: Monitoramento (M), Análise

(A), Planejamento (P) e Execução (E). Essas atividades são baseadas de um Conhecimento (K,

da sigla em inglês) (ELEUTéRIO; RUBIRA, 2017; SANTOS, 2020). A Figura 2 apresenta os

elementos do MAPE-K loop, segundo a arquitetura proposta pela IBM (COMPUTING et al.,

2006). A seguir, são listados os seus elementos com suas respectivas descrições.

– Monitoramento: para deteção e processamento de eventos que possam requerer adaptação,

1 Uma camada de software que se situa entre a aplicação comercial e a camada de rede de plataformas e protocolos
heterogêneos (diversos). Separa as aplicações comerciais de quaisquer dependências da camada de conexão, que
consiste em sistemas operativos heterogêneos, plataformas de hardware e protocolos de comunicação (LIGHT;
ARUNACHALAN, 2006).
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a informação recolhida é enviada para a próxima atividade (SANTOS, 2020; ELEUTéRIO;

RUBIRA, 2017);

– Análise: com os dados de monitoramento essa atividade correlaciona a informação de

contexto para inferir dados do ambiente de tempo de execução e do comportamento

do sistema (ELEUTéRIO; RUBIRA, 2017). Em resumo, a função da Análise é prever

situações futuras que requerem ações de adaptação (SANTOS, 2020);

– Planejamento: a partir da informações de análise, a atividade de planejamento define

planos de adaptação (ELEUTéRIO; RUBIRA, 2017);

– Execução: esta implementa e executa os planos para adaptação do sistema em execução

para obter o comportamento desejado (ELEUTéRIO; RUBIRA, 2017; SANTOS, 2020); e

– Conhecimento: é um elemento que funciona como um repositório compartilhado que

envia e recebe dados para os demais elementos. Os dados armazenados incluem sintomas

de adaptação, políticas, requisições de mudança e planos de mudança (SANTOS, 2020).

Figura 2 – Ciclo MAPE-K

Fonte: adaptado de Computing et al. (2006)

2.2 Otimização em Engenharia de Software

Desde a sua emergência como uma técnica de otimização para problemas difíceis de

engenharia de software tem sido aplicada com sucesso ao longo do ciclo de vida do desenvolvi-



22

mento de software (SIMONS, 2013). A conciliação entre técnicas de otimização e Engenharia de

Software ficou conhecida como Otimização em Engenharia de Software, em inglês Search-Based

Software Engineering (SBSE) (MAIA et al., 2013). Pode-se definir otimização como a busca

da melhor solução para um dado problema, que consiste em tentar várias soluções e utilizar a

informação obtida neste processo de forma a encontrar soluções cada vez melhores (LACERDA;

CARVALHO, 1999).

Segundo Harman e Jones (2001), apenas dois componentes são necessários para

aplicar o SBSE:

– Uma representação (codificação) do problema (por exemplo, utilizando uma cadeia de

bits);

– A definição da função de fitness (por exemplo, similaridade com a consulta de entrada).

As soluções candidatas (que são codificadas a seguir a representação escolhida) são

evoluídas (através da aplicação do operações) e são avaliados (pela função de fitness) numa

processo iterativo até que uma condição de parada seja cumprida (por exemplo, um número de

iterações). Como resultado, soluções ótimas são encontradas para o problema (PÉREZ et al.,

2021).

A função fitness (ou função quantitativa) é necessária para que o algoritmo possa

discriminar entre soluções promissoras e más. Essa noção de qualidade é geralmente definida

apenas em termos de métricas software, ainda que os engenheiros de software possam fazer

uso de outros mecanismos mais subjetivos para avaliar a qualidade (RAMIREZ et al., 2018). A

função fitness determina a proximidade entre a solução dada e a solução ótima.

Para a abordagem de objetivo único, a função fitness é a função de objetivo do

problema, que maximiza ou minimiza para obter soluções ótimas. Por outro lado, a abordagem

multiobjetiva tem várias funções objetivo para cada meta, que se maximizam ou minimizam

individualmente para obter as soluções ideais. A abordagem multi-objetiva pode comportar-se

como uma abordagem de objetivo único se combinarmos as funções objetivo em uma única fun-

ção fitness, atribuindo pesos a cada objetivo de acordo com o seu objetivo (BAJAJ; SANGWAN,

2019).

Os problemas de otimização multiobjetivos podem ser definidos de forma resumida

como: encontrar um vetor de variáveis de decisão, que otimiza um vetor de funções objetivas.

Sendo as funções objetivas de um problema multiobjetivo, a descrição matemática dos critérios de

otimização, que frequentemente estão em conflito entre si (YOO; HARMAN, 2007). Dentro da
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multiobjetividade, existe o conceito de Dominância de Pareto (Definição 2.2.1) e de Otimalidade

de Pareto (Definição 2.2.2) (VELDHUIZEN et al., 1998).

Definição 2.2.1 (Dominância de Pareto) Um vetor u=(u1, ...,up) domina um vetor v=(v1, ...,vp)

se, e somente se, u é parcialmente menor ou maior (dependendo do objetivo) que v, ou seja,

∀i ∈ {1, ..., p},ui f vi '∃i ∈ {1, ..., p} : ui < vi.

Todos os vetores de decisão que não são dominados por nenhum outro vetor de

decisão formam o conjunto ótimo de Pareto, enquanto os vetores objetivos correspondentes

formam a Fronteira de Pareto (YOO; HARMAN, 2007).

Definição 2.2.2 (Otimalidade de Pareto) ) Uma solução xu ∈U é dita ser Pareto ótima se, e

somente se, não existe nenhuma outra solução x ∈ U tal que o vetor v = f (x) = (v1, ...,vp)

domine o vetor u = f (xu) = (u1, ...,up).

Identificar a Fronteira de Pareto é útil pois pode ser utilizada para uma tomada de

decisão bem informada que equilibre as compensações entre os objetivos (YOO; HARMAN,

2007).

Os conceitos abordados encontram aplicação prática por meio de algoritmos de

otimização. Sendo o random search é o mais simples de se implementar. No entanto, não utiliza

uma função de fitness (chamado de algoritmo, não guiado), logo não atinge frequentemente

soluções globalmente ótimas. Os Algoritmos Genéticos (AG) são considerados pesquisas globais,

mostrando muitos pontos no espaço de pesquisa de uma só vez, oferecendo mais robustez aos

ótimos locais (HARMAN et al., 2008). Estes utilizam utilizam os conceitos de população

e recombinação (GARGARI; KEYVANPOUR, 2022). Frequentemente, um AG utiliza uma

representação binária, ou seja, as soluções candidatas são codificadas como sequências de 1s e 0s

(HARMAN et al., 2008). Na Figura 4 é descrito em alto nível os passos do algoritmo genético.

Inicialmente, a resposta do problema é formulada como um gene neste algoritmo

e um conjunto de respostas é considerado aleatoriamente. Em seguida, dependendo da sua

compatibilidade e adequação, três tipos de funções denominadas seleção, crossover e mutação

são executadas e são criados novos conjuntos de respostas. Estas respostas substituem as piores

respostas do conjunto inicial. Por fim, a resposta é dada satisfazendo a condição de parada

(GARGARI; KEYVANPOUR, 2022).
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Figura 3 – Algoritmo Genético AG

Fonte: adaptado de Gargari e Keyvanpour (2022)

2.3 Teste de software

O teste de software consiste na verificação dinâmica de que um programa fornece

comportamentos esperados em um conjunto finito de casos de teste, adequadamente selecionados

do domínio de execução geralmente infinito (BOURQUE et al., 2014). Outra definição que pode

ser citada, seria a da ISO 29119, que define como um conjunto de atividades realizadas para

facilitar a descoberta e/ou avaliação de propriedades de um ou mais itens (HASS, 2014).

A atividade de testes faz parte do processo de Verificação e Validação de software, que

tem como objetivo conferir se o produto desenvolvido cumpre sua especificação e funcionalidade

para seus usuários (SOMMERVILLE, 2019). Outros objetivos importantes incluem identificação

de vulnerabilidades de segurança, avaliação de usabilidade e aceitação de software, para os

quais diferentes abordagens seriam tomadas. O propósito de teste varia de acordo com o alvo

a ser testado (BOURQUE et al., 2014). Dessa forma, testar é uma forma de corroborar com a

qualidade do software desenvolvido (HASS, 2014).

Alguns termos são importantes quando se fala de teste de software, pois ajudam a

distinguir a causa de um mau funcionamento e um efeito indesejado no serviço prestado pelo

sistema (BOURQUE et al., 2014). Segundo a ISO/IEC/IEEE 24765:2010 (ELECTRICAL;

ENGINEERS, 2010), dispõe-se os seguintes termos que auxiliam nesta distinção:

– Engano (Mistake) – ação humana que produz um resultado incorreto.

– Defeito (Fault) – um passo, processo, ou definição de dados incorreta em um produto de

software.

– Erro (Error) – diferença entre o valor computado, observado ou medido e o valor teorica-

mente correto de acordo com a especificação.

– Falha (Failure) – inabilidade do sistema ou componente realizar a função requerida,

considerando as questões de desempenho exigidas.

A essência do teste de software é determinar um conjunto de casos de teste para o
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item a ser testado. Um caso de teste completo deve possuir um identificador de caso de teste,

uma breve declaração de propósito (por exemplo, uma regra de negócio), as pré-condições, as

entradas reais do caso de teste, as saídas esperadas, pós-condições esperadas e um histórico

de execução. O histórico de execução é usado para gerenciamento de teste, nele pode conter

a data em que o teste foi executado, a pessoa que o executou, a versão em que foi executado

e o resultado (JORGENSEN, 2021). A atividade de teste é dispendiosa, pois o tamanho do

conjunto de casos de teste tende a aumentar à medida que o software evolui, e se fosse seguir o

seu objetivo ideal seria uma tarefa extremamente exaustiva (BARBOSA et al., 2022). Há outras

razões para justificar que testes exaustivos são improváveis como: o domínio de as entradas

possíveis de um programa são muito grandes e pode não ser viável simular todas as condições

do ambiente do sistema (SANTOS, ; MYERS et al., 2013).

Existem duas maneiras de executar o teste de software: de forma manual e de

forma automatizada. No manual, o testador executa os passos especificados pelo caso de teste.

Enquanto na forma automatizada, há a utilização de ferramentas de teste que simulam usuários

ou processos (MAIA et al., 2013). O uso de ferramentas de teste automatizadas pode minimizar

parte do custo do processo de teste (MYERS et al., 2013), mesmo que o processo de implantação

dos testes automatizados inicialmente tem um elevado custo, devido à compra de ferramentas

apropriadas para a criação e execução dos testes, treinamento da equipe, contratação de pessoas

qualificadas, e entre outros (SILVA et al., 2011).

O teste de software geralmente é realizado em diferentes níveis ao longo do desen-

volvimento e manutenção processos. Os níveis podem ser definidos com base no objeto de teste,

que é chamado o alvo, ou no propósito, que é chamado de objetivo (do nível de teste). O alvo de

teste pode ser: um único módulo, grupo de módulo ou o sistema em sua totalidade. Dessa forma,

existem três níveis de teste: unidade, integração e de sistema. Sendo o de unidade a verificação

de elementos do software de maneira isolada, onde normalmente o testador tem acesso ao código.

Já o teste de integração verifica as interações entre os componentes, utilizando estratégias como

a de topdown (de baixo para cima). E por fim, o teste de sistema que analisa o comportamento

do sistema por inteiro (BOURQUE et al., 2014).

Além disso, existem as estratégias de teste, sendo a caixa-preta e a caixa-branca as

mais conhecidas (MYERS et al., 2013). A técnica caixa-preta tem como característica os casos

de teste dependerem apenas do comportamento de entrada e saída do software. Em contrapartida,

a caixa-branca define seus testes de acordo com informações de estrutura de codificação do
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software (BOURQUE et al., 2014).

A atividade de teste leva cerca de metade do custo total de desenvolvimento de

software, sendo um processo demorado e caro (BAJAJ; SANGWAN, 2019). Dadas as restrições

de tempo e custo, uma das principais questões do teste se torna: qual subconjunto de todos os

casos de teste possíveis tem a maior probabilidade de detectar a maioria dos erros (MYERS

et al., 2013). A partir disso, foram definidos critérios de adequação de teste que podem ser

usados para decidir quantos testes serão suficientes ou foram realizados (BOURQUE et al.,

2014). Um critério de seleção de teste é um meio de selecionar casos de teste ou determinar que

um conjunto de casos de teste é suficiente para um propósito específico. Segundo (COPELAND,

2004), existem cinco critérios básicos para definir até onde deve-se testar um software, são eles:

Critérios de cobertura, Taxa de descoberta de defeitos; Custo marginal de encontrar o próximo

defeito; Consenso da equipe e Definição do chefe.

A cobertura é uma medida de quanto foi testado em comparação com quanto está

disponível para teste. A nível de código pode ser definida com métricas de instrução, cobertura

de ramificação e cobertura de caminho. A nível de integração pode ser por meio de quantidade

de APIs testadas ou combinações de API e parâmetros. Em nível de sistema, pode ser mensurada

por termos de funções testadas, casos de uso ou histórias de usuário testados ou cenários de casos

de uso. Uma vez que os casos de testes executados tenham sido suficientes para os critérios de

cobertura previamente definidos, pode-se considerar um critério de parada (COPELAND, 2004).

A abordagem de taxa de descoberta de defeitos utiliza do seguinte cálculo: a cada

semana (ou curto período de tempo) é contado o número de defeitos descobertos e quando a taxa

de descoberta for menor que um limite previamente selecionado os testes podem ser parados

(COPELAND, 2004). Algumas situações podem gerar a baixa da taxa, como: criação de testes

menos eficazes e testadores de férias, em razão disso (COPELAND, 2004) sugere não depender

apenas de um critério para definir a parada dos testes.

O “custo marginal” é associado a uma unidade adicional de produção, que no caso

do teste de software seriam os defeitos. O custo de encontrar defeitos vai aumentando uma vez

que encontrar os primeiros defeitos é mais simples e menos custosos, enquanto os “próximos”

defeitos são mais complexos e consequentemente possuem maior custo. No momento em que o

custo do defeito excede a perda que a organização incorreria se entregasse o produto com esse

defeito pode-se parar os testes. Vale ressaltar que nem todos os sistemas podem utilizar desse

critério de parada, como os que exigem alta confiabilidade. (COPELAND, 2004)
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O consenso da equipe pode tomar como base fatores técnicos, financeiros, políticos

ou “intuições". A equipe decide que entregar o software após um consenso e assim a atividade

de teste é suspensa. E por fim, a definição do “chefe” é associada a entrega do software e

consequentemente a parada dos testes quando uma figura de autoridade do produto define que o

software deve ser entregue mesmo sem a execução de todos os testes (COPELAND, 2004).

Além disso, existem atividades que auxiliam na determinação de uma ordem de

execução mais eficaz (a eficácia dos testes é determinada através da análise um conjunto de

execuções de programas) e quais testes devem ser realizados no sistema (FREITAS et al., 2010;

BOURQUE et al., 2014). São elas:

– Priorização de testes: Esta atividade trata da determinação da melhor ordem de execução

dos casos de teste de um sistema. A definição da qualidade de uma ordem é realizada por

meio de uma métrica de cobertura definida matematicamente para calcular o quanto tal

ordem executa cedo todo o sistema (FREITAS et al., 2010).

– Seleção de casos de teste: Consiste da escolha de quais testes devem ser realizados em um

sistema, seja para a primeira versão ou para versões posteriores (FREITAS et al., 2010).

2.3.1 Teste em SAS

A principal característica do sistema autoadaptativo é que ele pode adaptar-se em

tempo de execução de acordo com a informação do contexto. Tanto a utilização da informação

de contexto como a reconfiguração do software em tempo de execução, traz vários desafios para

a atividade de teste de software (SANTOS, ), como:

– Muitas das adaptações são realizadas em tempo de execução (SIQUEIRA et al., 2021),

não sendo possível analisá-las durante o tempo de desenvolvimento;

– Mesmo que o ambiente de execução possa restringir o número de possíveis adaptações

(SHEVTSOV et al., 2015), a quantidade de cenários gerados a partir de alternativas de

adaptação ainda pode ser muito grande e inviável do ponto de vista do teste (SIQUEIRA et

al., 2021). Isso ocorre porque muitos dos cenários são imprevistos pelos desenvolvedores

(SIQUEIRA et al., 2021);

– A geração automática de casos de testes em um ambiente dinâmico (SANTOS, ). O

desenvolvimento de testes automatizados em aplicações com estruturas tão complexas

torna-se um desafio. (SIQUEIRA et al., 2016).

Os testes durante a fase de concepção (Design-time) servem para verificar e validar
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que um SAS satisfaz as suas especificações dentro de um determinado conjunto de contextos

operacionais previstos (FREDERICKS et al., 2013). Os casos de teste em tempo de concepção

são frequentemente estáticos, de forma que o sistema não é executado, e podem ocorrer situações

inesperadas por falta de informações em seus requisitos e até mesmo situações de contexto

diferentes do esperado. Além disso, podem tornar-se limitados considerando a natureza de

auto-reconfiguração dos sistemas autoadaptativos (FREDERICKS et al., 2013).

O teste em tempo de execução tem potencial para ser uma nova solução para a vali-

dação de sistemas adaptáveis, devido a dificuldade de identificar em tempo de desenvolvimento

todo contexto operacional possível que um SAS pode encontrar em tempo de execução. Segundo

(LAHAMI et al., 2015) o teste em tempo de execução (ou Runtime Testing) é definido como

um método de teste que é realizado em ambiente de execução final de um sistema quando o

sistema ou uma parte dele está operacional. Pode ser realizado no momento da implantação

ou em tempo de serviço. Para garantir sua alta disponibilidade em tempo de execução, estes

sistemas de software são projetados para acomodar novos recursos após os estágios de design

e implantação. Eles precisam adaptar-se e evoluir dinamicamente em tempo de execução para

atingir novos requisitos e evitar falhas (FREDERICKS et al., 2013). Utilizando as definições

de Field-based Testing Techniques (BERTOLINO et al., 2021), o teste em tempo de execução

que tratamos neste trabalho se adequa a definição de Online Testing. O Online testing indica

atividades de teste de campo realizadas no ambiente de produção no sistema de software real.

Vários métodos foram propostos para apoiar os testes em sistemas autoadaptativos,

sendo um deles o Testing method for Dynamic Adaptive System (TestDAS) (SANTOS, ). O

TestDAS utiliza como entrada um modelo de features do SAS com as regras de adaptação e um

modelo de variação de contexto. O método tem como objetivo a verificação do modelo SAS e

gera um conjunto de testes para validar o comportamento adaptativo do sistema.

O TestDAS inicia com a etapa de especificação do SAS usando o Dynamic Feature

Transition System (DFTS). Na etapa seguinte, há a verificação as propriedades comportamentais

do DFTS utilizando uma ferramenta e por fim a geração e execução de testes é feita a partir das

propriedades definidas na etapa anterior.

O DFTS modela as mudanças das configurações do SAS de acordo com as mudanças

de contexto e as regras de adaptação acionadas. O DFTS é derivado do Context Kripke Structure

(C-KS) (ROCHA; ANDRADE, 2012) e de um modelo de features do SAS com suas regras

de adaptação (SANTOS et al., 2016). O DFTS é um grafo cujos nós representam os estados
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de contexto e as features ativas, enquanto as arestas representam as variações de contexto do

sistema (SANTOS, 2020). Este possui dois tipos de proposições atômicas: as proposições de

contexto (Pc) e as proposições de feature (Pf ). As proposições em Pc representam o contexto. As

proposições Pf representam todas as características do modelo de features (FM) do SAS.

Definição 2.3.1 (DFTS) Dada uma Context Kripke Structure (C-KS) = ïS, I,C,L →ð, um SAS

com modelo de features FM, um conjunto R de regras de adaptação e um conjunto E de

configurações inicias do produto, a Dynamic Feature Transition System (DFTS) é dada pela

tupla ïS′, I′,C′,L′ →′ð onde Santos et al. (2016):

– S’ é um conjunto de estados de configuração que contém as features ativas e o estado de

contexto atual;

– I’ ¦ S’ é o conjunto de estados de configurações iniciais;

– P = Pc ⊎ Pf é o conjunto de é um conjunto de proposições atômicas que é particionada em

contexto e proposições de features. As proposições em Pc vem do C-KS. As proposições

em Pf representam todas as features no modelo de features FM do SAS

– L’ é uma função de rotulamento tal que L’ :S’ →′ 2P; e

– →′¦ (S′×Pc ×S′) é uma relação de transição.

A Figura 4 ilustra um exemplo de DFTS em uma aplicação que considera as features:

Login, Vídeo, Foto e Texto e os contextos: Bateria, Conexão com carregador de bateria e

Conexão com a internet. No DFTS, cada nó representa um estado das features do sistema e do

contexto. Dessa forma, o DFTS reflete os efeitos das regras de adaptação sobre as características

do SAS. Por exemplo, no estado S3 possui as features Foto, Vídeo e Login ativadas e OS

contextos: Bateria média, Acesso a Internet e Sem conexão com fonte de energia, quando o

sistema se reconfigura para o estado S2 havendo a alteração do contexto para Sem conexão com

a internet a feature de Login é desativada.

Uma evolução do trabalho de Santos () é a abordagem RuntimE Testing of dynami-

cally Adaptive systEms (RETAkE) de Santos (2020). Esta utiliza os conceitos do modelo de

contexto e features, tendo como objetivo executar uma sequência de teste no mecanismo de

adaptação para verificar as regras de adaptação e checar as propriedades comportamentais. Dife-

rentemente do trabalho de (SANTOS, ) que focava em testes em tempo de projeto, o RETAkE

tem como objetivo testar a variabilidade sensível ao contexto do SAS durante sua execução,

considerando falhas em tempo de execução.
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Figura 4 – Exemplo de modelo DFTS

Fonte: Santos (2020)

A abordagem possui 3 etapas que são: Instrumentação do SAS onde o engenheiro de

software utiliza o modelo DFTS e Extended Context Feature Model (eCFM) de (SANTOS et

al., 2016) para representar features ativas, contexto atual do sistema e modela a variabilidade do

SAS. O eCFM é uma versão extendida do Context Feature Model (CFM) proposto por Saller et

al. (2013) que visa modelar sistemas que adaptam suas features em tempo de execução de acordo

com o contexto no qual estão inseridos permitindo especificar restrições nas features. Essas

restrições na features de contexto são feitas através do uso dos Grupos de Contexto que separam

em grupos OR e XOR. No grupo XOR, um conjunto de features filhas tem relacionamento

alternativo com a feature pai e somente uma delas pode ser acionada ao mesmo tempo que o pai

e no grupo OR, um conjunto de features filhas de uma feature pai tem um relacionamento de

modo que mais de uma delas pode ser ativada ao mesmo tempo em conjunto com o pai.

A segunda etapa do RETAkE é a implantação do SAS na ferramenta proposta pelo

autor podendo optar pela execução no ambiente final ou no ambiente controlado. A ferramenta

atualiza as regras e modelo de features e por fim, inicia a verificação em tempo de execução, com

as etapas de checagem de propriedades comportamentais, análise do estado do sistema, geração

da sequência de testes e execução dos testes.

A geração dos casos de teste e sequências de testes do RETAkE são baseadas nos

conceitos de Santos (). Os casos de testes focam na configuração do sistema pós-reconfiguração

e verificam o mecanismo de adaptação que é abstraído em um componente, dessa forma os

testes gerados são de nível unitário. A verificação do estado correto das features é obtido a partir

do modelo eCFM. Para a geração das sequências de teste é definida uma sequência finita de n
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transições de estado de sistema e testar essas sequências significa avaliar se as features ativas no

estado estão de acordo com a ação disparada pelo contexto. Para isso, o engenheiro de software

deve definir um tamanho n para a sequência. Em seguida, o RETAkE seleciona n estados no

DFTS e utilizando uma adaptação da métrica Diversidade de Contexto de Wang e Chan (2009),

Wang et al. (2014). Dessa forma para o RETAkE, uma sequência de teste é um número finito de

transições consecutivas no DFTS.

Definição 2.3.2 (Diversidade de contexto) A Diversidade de Contexto (DC) de um fragmento

de fluxo de contexto cstream (C) é denotado por DC (cstream(C)) e é definido pela equação:

DC(cstream(C)) = ∑
n−1
i=1 HD(ins(C)i, ins(C)i+1)n = |cstream(c)|,

onde HD(ins(C)i, ins(C)i+1)i é a distância de Hamming de um par de instâncias de

contexto ins(C)i e ins(C)i+1, e n é o tamanho de um fragmento de stream de contexto C.

Apesar dos métodos propostos apoiarem os testes, ainda possuem desafios relaciona-

dos a necessidade de reduzir o número de testes que são automaticamento gerados (SIQUEIRA

et al., 2021; PRIYA; RAJALAKSHMI, 2022) e overhead em termos de memória, rede e tempo

de execução (SILVA et al., 2022). Portanto, há uma necessidade de explorar técnicas eficazes em

termos de custos que reduzam o tempo de teste e os riscos de danificar hardware; e técnicas de

teste multiobjetivas, search-based e verificação de modelos podem ser aplicadas para reduzir os

custos dos processos de teste (MATALONGA et al., 2022).

2.3.2 Search-Based Software Testing

Dada a importância da fase de Teste de Software, a subárea denominada Teste de

Software Baseado em Busca (em inglês, Search-Based Software Testing (SBST)) se destaca

em Search-Based Software Engineering (SBSE) (MCMINN, 2011; FREITAS et al., 2010).

Este destaque é dado principalmente pela quantidade de problemas de teste de software que

já se mostraram possíveis de serem modelados e resolvidos através de técnicas de otimização

matemática (FREITAS et al., 2010).

A Search-Based Software Testing (SBST) é a utilização de técnicas de pesquisa meta-

heurística otimizada para automatizar total ou parcialmente uma tarefa de teste; por exemplo, a

geração automática de dados de teste. A chave para o processo de otimização é a função fitness

específica ao problema (MCMINN, 2011). Vale destacar que a SBST, complementa as técnicas

tradicionais da Engenharia de Software para desenvolvimento de sistemas. Assim, problemas que
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não eram completamente resolvidos ou eram resolvidos de maneira insastifastória começaram a

ser solucionados com a utilização do SBST. Alguns dos principais problemas estudados são: a

geração de dados de teste, seleção de casos de teste e priorização de casos de teste (FREITAS et

al., 2010).
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3 REVISÃO SISTEMÁTICA DA LITERATURA

Neste capítulo são apresentados os resultados da revisão sistemática da literatura,

cujo objetivo foi identificar os desafios, as abordagens e as tendências em testes de sistemas

autoadaptativos. Na Seção 3.1 é apresentada a motivação e objetivo da execução da revisão

sistemática. Na Seção 3.2 são apresentadas as questões de pesquisa, as questões de extração,

bases de dados, string de busca e descrição da metodologia. Na Seção 3.3 são apresentados

e discutidos os resultados encontrados ao longo da revisão. Por fim, nesta mesma seção, é

apresentado um resumo sobre a revisão, destacando as principais contribuições e implicações a

partir dos dados coletados.

3.1 Motivação e objetivo

Uma pesquisa na literatura em busca de revisões sistemáticas da literatura (do

inglês, Systematic Literature Review (SLR)) que contribuíssem para a justificativa deste trabalho.

Contudo, a revisão mais atual encontrada foi a de (SIQUEIRA et al., 2021) que possui apenas

trabalhos publicados até 2019 e um trabalho de 2020. Vale ressaltar, que nesta SLR foram

identificados poucos trabalhos que utilizavam otimização em testes de sistemas SAS.

Ao identificar a necessidade de alcançar trabalhos atuais e em busca de realizar uma

pesquisa da literatura voltada para o objetivo deste trabalho de mestrado, uma revisão sistemática

da literatura foi realizada. Esta SLR teve como objetivo identificar os desafios, abordagens,

fatores de influência e tendências em testes de sistemas autoadaptativos.

3.2 Metodologia

A metodologia utilizada para essa SLR foi o guideline de Kitchenham et al. (2016).

Além disso, procedimentos de Grounded Theory (GT) (STRAUSS; CORBIN, 1990) foram

aplicados para uma parte dos dados obtidos pela etapa de síntese da SLR para uma análise mais

aprofundada dos resultados relacionados aos desafios. A Figura 5 ilustra o processo metodológico

da revisão sistemática.

Nesta revisão os critérios de inclusão foram: O artigo tratar de teste em SAS e o

artigo ser um trabalho primário. O critério de exclusão, por sua vez foi: artigos com uma língua

diferente do inglês, artigos publicados antes de 2020. As questões de pesquisa foram definidas a

partir do objetivo da revisão sistemática e são as seguintes:
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Figura 5 – Metodologia da revisão sistemática da literatura

Fonte: adaptado de Kitchenham et al. (2016)

– RQ1) Quais são as características das abordagens atuais para testar SAS? Esta questão

de pesquisa teve como objetivo apresentar as abordagens de teste para SASs, categorizando

o tipo de teste que a abordagem realiza, o nível de teste e o tipo de atividade em que a

abordagem está inserida, o tipo de domínio do sistema sob teste ao qual a abordagem é

aplicada e quando a abordagem é aplicada.

– RQ2) Quais são os atuais desafios relacionados ao teste de SAS? Essa pergunta de

pesquisa apresenta os desafios dos testes de SASs, categorizando-os por meio dos procedi-

mentos de Grounded Theory.

As seguintes perguntas de extração foram definidas para obter as informações neces-

sárias para responder as perguntas da pesquisa. A relação com as perguntas de pesquisa pode ser

visualizada por meio dos IDs, onde as perguntas RQ1.1 a RQ1.3 apoiam a busca pela resposta ä

pergunta RQ1, e a RQ2.1 apoia a busca pela resposta da pergunta RQ2.

– RQ1.1) Quais são as abordagens para testar sistemas adaptáveis?

– RQ1.2) Quais säo os tipos de sistema sob teste (SUT) da abordagem?

– RQ1.3) As abordagens de teste são aplicadas em tempo de execugäo ou em tempo de

projeto?

– RQ2.1) Quais são os desafios de testes em SAS?

A estratégia de busca utilizada para pesquisar os artigos foi por meio de pesquisa

automática. A string de busca de (SIQUEIRA et al., 2021) foi utilizada. Em razão de ser a

revisão sistemática mais atualizada (com artigos até 2019 e um trabalho de 2020) e possuir

uma string de busca com keywords abrangentes. O guideline de (KITCHENHAM et al., 2016)

foi seguido para validar a string de busca e identificar banco de dados relevantes. Em seguida,
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alguns artigos encontrados pela string na base de dados do IEEE foram analisados e, com base

nos critérios de inclusão e exclusão, confirmou-se que a string estava fornecendo resultados

satisfatórios. Por fim, foi efetuada uma pesquisa automatizada.

A motivação para uma nova revisão sistemática em vez de uma atualização da revisão

de (SIQUEIRA et al., 2021) baseou-se na lista de verificação 3PDF (MENDES et al., 2020) para

definir quando atualizar uma revisão sistemática. Mendes et al. (2020) define pode-se dizer que

é uma atualização de uma revisão sistemática apenas que for seguida a mesma metodologia da

revisão anterior. Além disso, não é possível comparar os resultados de revisões que seguiram

protocolos diferentes. A partir dessa definição, foram observadas diferenças em relação a esta

revisão e a (SIQUEIRA et al., 2021), como: bases de dados diferentes, este trabalho não utilizou

snowballing, como os sistemas foram categorizados, critérios de inclusão e exclusão diferentes,

a revisão anterior não utilizou checklist para avaliar a qualidade dos estudos ou procedimentos

de Grounded Theory para analisar os resultados.

As bases de dados selecionadas para este trabalho foram a IEEE1, ACM2, Scopus3 e

ScienceDirect4. Estas bases de dados foram escolhidas devido à sua utilização generalizada pela

comunidade acadêmica. Para além disso, foram escolhidas quatro bases de dados para abranger

uma maior diversidade de trabalhos.

A seguinte string de busca foi utilizada:

("Testing") AND ("adaptive systems"OR "adaptive system"OR "context aware"OR

"context-aware"OR "context awareness"OR "context-awareness"OR "adaptive soft-

ware"OR "autonomic")

Na etapa de condução, foram encontrados 312 artigos utilizando a string de busca.

Foi realizado um filtro para encontrar possíveis trabalhos duplicados, utilizando a ferramenta

Parsifal 5, que encontrou 109 duplicados entre as bases de dados. Em seguida, procedeu-se a

leitura do título e do resumo dos artigos, utilizando os critérios de inclusão e exclusão, obtendo-se

um total de 25 artigos para análise.

Para avaliar a qualidade dos 25 artigos selecionados para o estudo, estes foram

analisados de acordo com um checklist de qualidade para avaliar a qualidade dos estudos. Esse

checklist foi adaptado para identificar melhor informações relevantes para esta pesquisa, como a

1 https://ieeexplore.ieee.org/Xplore/home.jsp
2 https://dl.acm.org/
3 https://www.scopus.com/
4 https://www.sciencedirect.com/
5 https://parsif.al/
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descrição da abordagem e a forma como ela é apresentada, com base no checklist e escala de

avaliação sugeridas por (KITCHENHAM et al., 2010).

Seguindo a escala de avaliação sugerida por (KITCHENHAM et al., 2010), dez

artigos responderam “sim” a todas as perguntas e 15 artigos responderam à maioria das perguntas

(mas não a todas) com “sim”. A percentagem mais baixa de perguntas respondidas com “sim” foi

de 81,25%, e quanto mais próximo de 100%, melhor a qualidade do trabalho. Esta percentagem

foi calculada pelo número de perguntas da lista de verificação dividido pelo número de perguntas

respondidas com "sim". Assim, os artigos selecionados têm um grau de qualidade aceitável.

Esta revisão contou com a participação de três pesquisadores. A atividade de seleção

foi dividida entre dois, e a revisão e síntese dos resultados foi feita por todos os envolvidos.

Além disso, foram realizadas reuniões de alinhamento para garantir que os autores estivessem

de acordo na extração das informações, e o índice de concordância foi calculado a partir do

teste Kappa (COHEN, 1960) utilizando a ferramenta Jamovi (JAMOVI, 2022) para verificar

se os revisores estavam de acordo. Foi obtido um coeficiente de 0.8, que, dentro da escala de

interpretação indicada por (KITCHENHAM et al., 2010), se enquadra em "Substancial” e é

considerado um bom coeficiente de concordância entre autores.

Em seguida, os dados coletados foram sintetizados em duas formas: RQ1.1, RQ1.2,

e RQ1.3, que foram resumidos e analisados para responder à questão de investigação RQ1. Já os

dados recolhidos pela questão RQ2 e RQ2.1 foram analisados e sintetizados utilizando procedi-

mentos de Grounded Theory (GT). Para os dados recolhidos na fase de extração relacionados

com a questão de investigação RQ2, foram aplicados os procedimentos da Grounded Theory

(GT) para consolidar os resultados obtidos e sistematizar a análise destes dados qualitativos. Os

procedimentos efetuados foram:

Codificação aberta: Esta fase envolveu a definição dos códigos e identificadores de

códigos, apresentados na Tabela 4, e a sua associação às citações traduzidas. As citações seriam

trechos do artigo na fase de extração e os códigos foram elaborados a partir das próprias citações.

Codificação axial: Após a codificação aberta, nesta fase foram definidas as catego-

rias e subcategorias com base nos códigos previamente definidos. Além disso, as categorias e

subcategorias foram relacionadas através de proposições de causas e efeitos, condições interveni-

entes e estratégias de ação. As proposições utilizadas foram: está associado a, é a causa de, e

faz parte do.

Codificação selectiva: Finalmente, nesta fase, foi definida a categoria central e
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foram revistas as relações entre categorias e subcategorias. Foi criada uma vista de rede para

melhorar a visualização dos dados.

3.3 Resultados e discussão

Após a aplicação do processo descrito anteriormente, foram selecionados 25 artigos

para responder às questões de pesquisa. Estes artigos estão listados na Tabela 1. Além disso,

cada artigo é acompanhado da sua referência e do tipo de sistema tratado na abordagem de

teste do artigo (ou seja, Android, Web, Software Embarcado, Internet of Things (IoT), Sistemas

Ciberfísicos (CPS) e Indefinido).

Foi realizado um filtro dos artigos encontrados por ano de publicação para analisar a

quantidade de trabalhos relacionados a abordagens de testes em SASs nos últimos quatro anos.

O maior número de publicações foi em 2020 (10 artigos), seguido de 2021 (8 artigos), 2022 (5

artigos) e o menor número 2023 (2 artigos). O baixo número de artigos em 2023 é esperado

porque a busca na base de dados foi realizada até o início de 2023, em 16 de março de 2023. Na

Figura 6 é possível visualizar o percentual de artigos por ano de publicação.

Figura 6 – Artigos publicados por ano

Fonte: elaborada pelo autora.
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Tabela 1 – Artigos selecionados

Ref Título SUT
(MICHAELS et al.,
2022)

Data Driven Testing for Context Aware Apps Android

(DADEAU et al.,
2022)

Online Testing of Dynamic Reconfigurations w.r.t. Adaptation Policies Indefinido

(FANITABASI et al.,
2020)

A self-integration testbed for decentralized socio-technical systems IoT

(SANTOS et al.,
2021)

Runtime testing of context-aware variability in adaptive systems Android

(PIPARIA et al.,
2021)

Combinatorial Testing of Context Aware Android Applications Android

(DEVRIES et al.,
2021)

Analysis and Monitoring of Cyber-Physical Systems via Environmental
Domain Knowledge & Modeling

CPS

(CHEN et al., 2021) Context-Aware Regression Test Selection Web
(MANDRIOLI;
MAGGIO, 2022)

Testing Self-Adaptive Software With Probabilistic Guarantees on Perfor-
mace Metrics: Extended and Comparative Results

Indefinido

(SHAFIEI; RAF-
SANJANI, 2020)

A Test Case Design Method for Context Aware Android Applications Android

(MIRZA et al., 2021) ContextDrive: Towards a Functional Scenario-Based Testing Framework
for Context-Aware Applications

Indefinido

(YIGITBAS, 2020) Model-Driven Engineering and Usability Evaluation of Self-Adaptive
User Interfaces

Indefinido

(MANDRIOLI;
MAGGIO, 2020)

Testing Self-Adaptive Software with Probabilistic Guarantees on Perfor-
mace Metrics

Indefinido

(ALMEIDA et al.,
2020a)

Context-Aware Android Applications Testing Android

(ALMEIDA et al.,
2020b)

ENVIAR: ENVIronment DAta SimulatoR Android

(CHEN et al., 2020) Simulated or Physical? An Empirical Study on Input Validation for
Context-Aware Systems in Different Environments

CPS

(DORESTE; TRA-
VASSOS, 2023)

CATS: A Testing Technique to Support the Specification of Test Cases
for Context-Aware Software Systems

Indefinido

(USMAN et al.,
2020)

TEGDroid: Test case generation approach for android apps considering
context and GUI events

Android

(DORESTE; TRA-
VASSOS, 2020)

Towards supporting the specification of context-aware software system
test cases

Indefinido

(YI et al., 2022) Improving the Exploration Strategy of an Automated Android GUI
Testing Tool based on the Q-Learning Algorithm by Selecting Potential
Actions

Android

(DADEAU et al.,
2020)

Testing adaptation policies for software components CPS

(DADEAU et al.,
2021)

Automated Generation of Initial Configurations for Testing Component
Systems

Indefinido

(MAURIO et al.,
2021)

Agile services and analysis framework for autonomous and autonomic
critical infrastructure

CPS

(SILVA, 2020) Adaptation oriented test data generation for Adaptive Systems Indefinido
(CHEN et al., 2022) Simulation Might Change Your Results: A Comparison of Context-

Aware System Input Validation in Simulated and Physical Environments
CPS

(WANG et al., 2023) Design and implementation of a testing platform for ship control: A case
study on the optimal switching controller for ship motion

Embarcado

Fonte: elaborada pelo autora.

Os artigos selecionados também foram categorizados por base de dados, sendo:

– Scopus: Nove publicações (Usman et al. (2020), Doreste e Travassos (2020), Dadeau et al.
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(2020), Dadeau et al. (2021), Yi et al. (2022), Chen et al. (2022), Dadeau et al. (2022),

Michaels et al. (2022), Maurio et al. (2021));

– IEEE Xplorer: Sete publicações (Piparia et al. (2021), DeVries et al. (2021), Chen et al.

(2021), Mandrioli e Maggio (2022), Shafiei e Rafsanjani (2020), Mirza et al. (2021), Silva

(2020));

– ACM: Seis publicações (Yigitbas (2020), Mandrioli e Maggio (2020), Almeida et al.

(2020a), Chen et al. (2020), Doreste e Travassos (2023), Almeida et al. (2020b))

– ScienceDirect: Três publicações (Fanitabasi et al. (2020), Santos et al. (2021), Wang et al.

(2023)).

RQ1) Quais são as características das abordagens actuais para testar o SAS?

Os tipos e níveis de teste de Pierre e Richard (BOURQUE et al., 2014) e as definições

de actividades de teste de Garousi et al. (2020) foram utilizados para categorizar as abordagens.

Assim, as abordagens estão listadas na Tabela 2 por tipo de teste (ex.: Teste de desempenho),

por nível do teste (ex.: Unidade) e, finalmente, por tipo de atividade (ex.: Conceção de casos de

teste (baseada em critérios)). É importante notar que a atividade de teste indicada na tabela está

relacionada com o produto final da abordagem, o que significa que, apesar de a abordagem ajudar

noutras actividades, apenas foi considerado o produto final, uma vez que este é o objetivo da

abordagem. Além disso, foram utilizadas as siglas “I"e “S"para indicar os níveis de Integração e

Sistema na coluna nível de teste, respetivamente. As definições são apresentadas a seguir:

• Teste de aceitação: Determina se um sistema satisfaz os seus critérios de

aceitação, normalmente verificando os comportamentos desejados do sistema em

relação aos requisitos do cliente.

• Teste de regressão: É um reteste seletivo de um sistema ou componente para

verificar se as modificações não causaram efeitos indesejados e se o sistema ou

componente continua a cumprir os requisitos especificados.

• Teste de desempenho: Verifica se o software cumpre os requisitos de desem-

penho especificados e avalia as características de desempenho - por exemplo,

capacidade e tempo de resposta.

• Testes de segurança: Foca na verificação de que o software está protegido

contra ataques externos. Em particular, os testes de segurança verificam a

confidencialidade, integridade e disponibilidade dos sistemas e dos seus dados.

• Testes de interface: Visa verificar se os componentes estabelecem uma interface
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correta para proporcionar a troca correta de dados e informações de controle.

• Atividade de Design de casos de teste (baseado em critérios): Design de

conjuntos de testes (conjunto de casos de teste) ou requisitos de teste para

satisfazer critérios de cobertura.

• Execução de testes: Executar casos de teste no sistema sob teste (SUT) e registar

os resultados.

Tabela 2 – Categorização da abordagens por tipo, nível e atividade de teste

Ref Tipo de teste Nível de teste Atividade de teste
(FANITABASI et al., 2020) Performace I Execução de teste

(SANTOS et al., 2021) Aceitação S Execução de teste
(PIPARIA et al., 2021) Aceitação S Execução de teste
(DEVRIES et al., 2021) Aceitação S Execução de teste

(CHEN et al., 2021) Regression S Execução de teste
(MANDRIOLI; MAGGIO, 2022) Performace S Execução de teste
(SHAFIEI; RAFSANJANI, 2020) Aceitação S Atividade de Design de casos de teste

(baseado em critérios)
(MIRZA et al., 2021) Aceitação S Execução de teste
(YIGITBAS, 2020) Interface S Execução de teste

(MANDRIOLI; MAGGIO, 2020) Performace S Execução de teste
(ALMEIDA et al., 2020a) Aceitação S Execução de teste

(CHEN et al., 2020) Aceitação S Execução de teste
(DORESTE; TRAVASSOS, 2023) Aceitação S Atividade de Design de casos de teste

(baseado em critérios)
(USMAN et al., 2020) Aceitação S Execução de teste

(DORESTE; TRAVASSOS, 2020) Aceitação S Atividade de Design de casos de teste
(baseado em critérios)

(DADEAU et al., 2020) Aceitação S Execução de teste
(DADEAU et al., 2021) Aceitação S Execução de teste

(YI et al., 2022) Aceitação S Execução de teste
(CHEN et al., 2022) Aceitação S Execução de teste

(DADEAU et al., 2022) Aceitação S Execução de teste
(MICHAELS et al., 2022) Aceitação S Execução de teste

(WANG et al., 2023) Aceitação S Execução de teste
(SILVA, 2020) Aceitação S Execução de teste

(ALMEIDA et al., 2020b) Aceitação S Execução de teste
(MAURIO et al., 2021) Segurança S Execução de teste

Fonte: elaborada pelo autora.

Com base na categorização da Tabela 2 e seguindo a definição de Pierre e Richard

(BOURQUE et al., 2014), foi analisada a porcentagem de abordagens de testes funcionais e

não-funcionais. Como resultado, obtivemos 20 abordagens funcionais (80%) (SANTOS et

al., 2021) (PIPARIA et al., 2021) (DEVRIES et al., 2021) (CHEN et al., 2021) (SHAFIEI;

RAFSANJANI, 2020) (MIRZA et al., 2021) (ALMEIDA et al., 2020a) (CHEN et al., 2020)

(DORESTE; TRAVASSOS, 2023) (USMAN et al., 2020) (DORESTE; TRAVASSOS, 2020)

(DADEAU et al., 2020) (DADEAU et al., 2021) (YI et al., 2022) (CHEN et al., 2022) (DADEAU
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et al., 2022) (MICHAELS et al., 2022) (WANG et al., 2023) (SILVA, 2020) (ALMEIDA et al.,

2020b), incluindo Testes de Aceitação e Testes de Regressão, e cinco (20%) (FANITABASI

et al., 2020) (MANDRIOLI; MAGGIO, 2022) (YIGITBAS, 2020) (MANDRIOLI; MAGGIO,

2020) (MAURIO et al., 2021) abordagens não-funcionais, divididas em Testes de Segurança,

Testes de Interface e Testes de Desempenho.

Conforme mostrado na Tabela 1, não ficou claro na maioria dos artigos (9 artigos)

que tipo de SUT a abordagem se destina. No entanto, os principais tipos identificados foram

Android (8 artigos), Sistemas ciber-físicos (CPS) (5 artigos) e Web, IoT e Embarcado com um

artigo cada. A Figura 7 mostra a percentagem de tipos de sistemas alvo por publicação.

Figura 7 – Percentagem de tipos de SUT por publicação

Fonte: elaborada pelo autora.

A partir da RQ1.3, obtivemos as características elacionadas a quando as abordagens

de teste são aplicadas, em tempo de execução ou em tempo de projeto.

Na maioria das publicações analisadas (10 artigos), não foi possível identificar se a

abordagem apresentada pelo autor era aplicada em tempo de execução ou em tempo de projeto,

pois a distinção entre os dois tipos de execução é o ambiente em que a abordagem será executada.

Os artigos não indicam explicitamente o foco. Então, há oito abordagens em tempo de execução,

5 em tempo de projeto e duas que podem ser executadas em tempo de execução e em tempo de
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projeto. A tabela 3 relaciona o tempo de execução da abordagem apresentada no artigo com a

referência da publicação.

Tabela 3 – Tipo de execução por artigo

Tipo de execução Artigos

Indefinida (MIRZA et al., 2021), (CHEN et al., 2020), (DORESTE; TRA-
VASSOS, 2023), (DORESTE; TRAVASSOS, 2020), (DADEAU
et al., 2021), (YI et al., 2022), (CHEN et al., 2022), (DADEAU
et al., 2022), (WANG et al., 2023), (SILVA, 2020)

Tempo de execução (SANTOS et al., 2021), (YIGITBAS, 2020), (ALMEIDA et al.,
2020a), (USMAN et al., 2020), (DADEAU et al., 2020), (MI-
CHAELS et al., 2022), (ALMEIDA et al., 2020b), (MAURIO et
al., 2021)

Tempo de projeto (FANITABASI et al., 2020), (PIPARIA et al., 2021), (DEVRIES
et al., 2021), (CHEN et al., 2021), (SHAFIEI; RAFSANJANI,
2020)

Ambas (MANDRIOLI; MAGGIO, 2022), (MANDRIOLI; MAGGIO,
2020)

Fonte: elaborada pelo autora.

Ao analisar os artigos através da RQ1, foi também possível obter dados relativos a

abordagens que utilizavam mecanismos de otimização na sua estrutura.

A maioria dos artigos não utiliza otimização nas suas abordagens de teste (20 artigos).

Apenas cinco artigos ((FANITABASI et al., 2020), (FANITABASI et al., 2020), (DADEAU et

al., 2021), (MAURIO et al., 2021) e (SILVA, 2020)) utilizam mecanismos de otimização para

resolver desafios relacionados com testes SAS dentro da definição de Search-Based Software

Engineering.

RQ2) Quais são os atuais desafios relacionados ao teste de SAS?

Entre os 25 trabalhos analisados, 18 artigos (FANITABASI et al., 2020), (SANTOS

et al., 2021), (PIPARIA et al., 2021), (DEVRIES et al., 2021), (MANDRIOLI; MAGGIO, 2022),

(MIRZA et al., 2021), (YIGITBAS, 2020), (MANDRIOLI; MAGGIO, 2020), (ALMEIDA et

al., 2020a), (CHEN et al., 2020), (USMAN et al., 2020), (DORESTE; TRAVASSOS, 2020),

(DADEAU et al., 2020), (YI et al., 2022), (SILVA, 2020), (DADEAU et al., 2022), (ALMEIDA

et al., 2020b), (MAURIO et al., 2021) mencionaram desafios de testar SASs e apenas em 7

artigos (CHEN et al., 2021), (SHAFIEI; RAFSANJANI, 2020), (DORESTE; TRAVASSOS,

2023), (DADEAU et al., 2021), (CHEN et al., 2022), (MICHAELS et al., 2022), (WANG et al.,

2023) não foi identificada qualquer menção a desafios.

Seguindo os procedimentos Grounded Theory (GT) procedeu-se inicialmente a uma

codificação aberta onde foram identificadas citações relacionadas com os desafios de testar as
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SAS, tendo sido definidos os códigos associados a essas citações. Os códigos da Tabela 4 foram

definidos de acordo com a leitura das citações selecionadas. Foram definidos IDs para cada

código para melhor organização e manutenção dos códigos.

Tabela 4 – Códigos

ID Códigos
COD01 A camada de adaptação que reage explicitamente à incerteza
COD02 Dificuldade de detecção de configurações incorretas em tempo de execução
COD03 Como identificar os eventos de contexto de uma aplicação
COD04 Complexidade da atividade de teste
COD05 Custo elevado de manutenção dos testes
COD06 Dados de contexto inconsistentes e imprecisos
COD07 Dependência de monitoramento de contexto dinâmico em tempo de execução para

validação e verificação
COD08 Diferentes cenários de execução que podem ser difíceis de reproduzir manualmente
COD09 Ecossistema fragmentado
COD10 Explosão de combinações de cenários
COD11 Falta de abordagens em tempo de execução
COD12 Heterogeneidade do contexto
COD13 Incertezas na mudança que afetam na validade
COD14 Limitação de técnicas de validação e verificação
COD15 Metodologias limitadas que não consideram contexto
COD16 Metodologias limitadas que não consideram adaptação
COD17 Mudança e adaptação contínua
COD18 Necessidade de uma linguagem de modelação de adaptação
COD19 Necessidade de uma linguagem de modelação de contexto
COD20 Plataformas de teste limitadas
COD21 Grande quantidade de eventos GUI e de contexto
COD22 Tempo oneroso para testar muitas combinações
COD23 Custo para testar muitas combinações

Fonte: elaborada pelo autora.

A Tabela 5 refere-se a uma parte da codificação aberta traduzida, uma vez que os

artigos selecionados estavam todo em língua inglesa contendo a associação dos artigos, com a

citação extraída e o código relacionado à citação.

Na fase de codificação axial, as categorias foram definidas com base nos códigos

previamente definidos: A camada de adaptação que reage explicitamente à incerteza (COD01),

Complexidade da atividade de teste (COD04) e Limitação das técnicas de validação e verificação

(COD14)7.

Finalmente, na fase de codificação seletiva, a categoria central foi "Desafios de testes

em sistemas adaptativos". A Figura 8 mostra o resultado final do Grounded Theory, com a

categoria central, as subcategorias e suas relações apresentadas por uma visão de rede.

Para identificar os desafios atuais, os dados coletados foram analisados para verificar

quantas vezes os códigos da Tabela 4 foram citados nos 25 artigos desta pesquisa. O desafio
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Tabela 5 – Parte da codificação aberta traduzida

Ref. Trecho ID do Código
(SANTOS et al., 2021) “Entre os principais desafios, destaca-se a deteção de configura-

ções incorretas em tempo de execução na presença de alterações
de contexto. "

COD02

(PIPARIA et al., 2021) “O grande número de eventos de GUI e eventos de contexto
geralmente complicam o processo de teste."

COD22

(PIPARIA et al., 2021) “Devido às infinitas combinações de eventos e à fragmentação
de dispositivos suportados para aplicativos GUI, testá-los é um
desafio em termos de tempo e custos."

COD22

Fonte: elaborada pelo autora.

Figura 8 – Visão de rede de categorias e subcategorias

Fonte: elaborada pelo autora.

mais citado entre os artigos foi o Mudança contínua e adaptação (citado oito vezes), seguido do

Complexidade da atividade de teste e do Explosão de combinações de cenários, ambos citados

sete vezes. Outros desafios envolvem Incertezas na mudança que afectam a validade (citado

seis vezes) e, finalmente, Metodologias limitadas que não consideram o contexto (citado quatro

vezes).

As categorias 1 (A camada de adaptação que reage explicitamente à incerteza)

e 3 (Técnicas limitadas de validação e verificação) são as que têm mais subcategorias, oito

respetivamente. Pode ver-se que os desafios significativos no testede SASs são a camada de

adaptação relacionada com:

– Alto custo de manutenção de testes;

– Diferentes cenários de execução que podem ser difíceis de reproduzir manualmente;

– Heterogeneidade do contexto;

– Incertezas na mudança que afetam a validade;

– Mudança e adaptação contínuas;
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– Grande número de eventos de GUI e de contexto;

– Tempo dispendioso para testar muitas combinações;

– Custo para testar muitas combinações.

Além disso, a limitação de técnicas para ajudar a validar e verificar esses sistemas,

que estão associados a:

– Dificuldade em detectar configurações incorretas em tempo de execução;

– Dependência da monitorização dinâmica do contexto em tempo de execução para validação

e verificação;

– Falta de abordagens em tempo de execução;

– Metodologias limitadas que não consideram o contexto ;

– Metodologias limitadas que não têm em conta a adaptação;

– Necessidade de uma linguagem de modelação da adaptação;

– Necessidade de uma linguagem de modelação do contexto;

– Plataformas de teste limitadas.

Além disso, a Categoria 2 (Complexidade da atividade de teste) também é significa-

tiva, com quatro subcategorias, pois também se pode verificar que vários fatores tornam o teste

destes sistemas complexo (Como identificar os eventos de contexto de uma aplicação, Dados de

contexto inconsistentes e imprecisos e Explosão de combinações de cenários).

Com base nos resultados relacionados as características das atuais abordagens de

teste em SAS. existem poucas abordagens aos testes não funcionais; apenas cinco artigos tratam

deste tipo de testes. Além disso, apenas os testes não-funcionais de Desempenho, Interface e

Segurança são abordados. Além disso, a maioria das abordagens centra-se mais na atividade de

execução de testes em SASs e em testes ao nível do sistema. Desta forma, abordagens para testes

não-funcionais que se concentram em outras atividades e níveis de testes são uma oportunidade

de estudo.

A partir dos resultados obtidos pela pergunta de extração RQ1.2, nota-se uma

carência de abordagens focadas em sistemas Embarcados, Web e IoT nos últimos anos. Portanto,

apresentar novas abordagens para Self-Adaptive Systems voltadas para esses sistemas pode ser

um tópico interessante para pesquisas futuras.

Pode-se observar que a maioria dos estudos que indicam o tipo de execução da

abordagem de teste é voltada para testes em tempo de execução, e apenas dois estudos apresentam

abordagens que podem ser tanto em tempo de execução quanto em tempo de projeto. A proposta
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de abordagens de teste para SASs flexíveis que possam ser executadas em tempo de execução e

em tempo de projeto pode também ser uma oportunidade para investigação futura.

Ademais, foram encontradas poucas abordagens focadas em testes não funcionais;

apenas cinco artigos tratam deste tipo de testes. Além disso, apenas os testes não-funcionais

de Desempenho, Interface e Segurança são abordados. Além disso, a maioria das abordagens

centra-se mais na atividade de execução de testes em SASs e em testes ao nível do sistema. Desta

forma, abordagens para testes não-funcionais que se concentram em outras atividades e níveis de

testes são uma oportunidade de estudo.

Nota-se também uma carência de abordagens focadas em sistemas Embarcados, Web

e IoT nos últimos anos. Portanto, apresentar novas abordagens para SAS voltadas para esses

sistemas pode ser um tópico interessante para pesquisas futuras.

Os trabalhos relacionados com as abordagens de otimização são escassos. Apenas

cinco artigos em 4 anos tratam de mecanismos de otimização dentro de abordagens de testes em

SASs. Vale ressaltar que o uso de mecanismos de otimização em abordagens de testes para SASs

pode ser promissor devido aos benefícios já observados com o uso de Search-Based Software

Testing (SBST) em outros domínios (MCMINN, 2011).

Em resumo, através da revisão sistemática pode-se ter uma visão geral do contexto

de testes de SASs nos últimos três anos e vislumbrar desafios e oportunidades. Também foi

possível identificar a necessidade de abordagens focadas em sistemas Embarcados, Web e IoT e

que apenas duas abordagens são flexíveis quanto ao tipo de execução, sendo possível executá-las

em tempo de execução e em tempo de projeto. Além disso, faltam abordagens voltadas para

testes não funcionais que suportem vários níveis e atividades de testes. Vale ressaltar ainda

que, dos 25 artigos selecionados, apenas cinco aplicavam mecanismos de otimização em suas

abordagens de teste.

Por fim, nota-se que existem vários desafios relacionados ao teste de SASs, principal-

mente ligados à camada de adaptação, ao número limitado de técnicas de teste e à complexidade

do teste desses sistemas. Os resultados podem então auxiliar futuras pesquisas sobre testes

de sistemas autoadaptativos e incentivar a produção científica que busca mitigar os desafios

identificados.
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4 TRABALHOS RELACIONADOS

Neste capítulo são apresentados trabalhos relacionados a esta pesquisa, identificados

por meio da revisão sistemática da literatura descrita no Capítulo 3. A Seção 4.1 enumera os

trabalhos que utilizam otimização para auxiliar na execução de abordagens de teste em sistemas

SAS e, por fim, a Seção 4.2 apresenta uma comparação entre os trabalhos relacionados e ao que

é proposto nesta dissertação.

4.1 Abordagens de teste para SAS com otimização

Os sistemas autoadaptativos têm a característica de se ajustar em tempo de execução

com base nas informações do contexto. Essa característica acarreta desafios relacionados à

quantidade de adaptações realizadas durante a execução, à quantidade e complexidade dos

cenários de teste para esses sistemas (SIQUEIRA et al., 2021; FANITABASI et al., 2020), e às

dificuldades associadas à automatização dos testes nesse contexto (SIQUEIRA et al., 2016).

Diversos métodos foram propostos para apoiar os testes em sistemas autoadaptativos,

com destaque para os trabalhos de Dadeau et al. (2021), Maurio et al. (2021), Mandrioli e

Maggio (2022) e Santos (2020), que são apresentados em detalhes nesta seção.

Dadeau et al. (2021) apresentam uma abordagem para gerar automaticamente confi-

gurações para testar sistemas baseados em componentes. Para tanto, um algoritmo combinatório

é utilizado para enumerar todas as soluções possíveis sem simetria do Constraint Satisfaction

Problems (CSP)1 definido pelo modelo componente, a fim de produzir configurações iniciais.

Este algoritmo integra padrões de eliminação de simetria que reduzem as combinações a serem

consideradas.

No trabalho de Maurio et al. (2021), os autores descrevem duas abordagens de teste

de segurança de sistemas físicos cibernéticos. A primeira abordagem reabilita os sistemas de

controle industrial com propriedades autônomas permitindo detectar e recuperar automaticamente

de ciberataques e outras falhas através da utilização de microsserviços que reconfiguram os

sistemas de forma dinâmica durante os ataques ou falhas. A segunda abordagem utiliza agentes

inteligentes numa modelação e quadro de simulação para testar a resiliência de sistemas aéreos

autônomos não tripulados. Usando uma abordagem de programação de restrição baseada em

algoritmo genético, o escalonador/alocador produz uma configuração inicial contendo os horários

1 Constraint Satisfaction Problems (CSP) são problemas matemáticos definidos como um conjunto de objetos
cujo estado dos mesmos deve satisfazer uma série de restrições
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de início e locais para todos os microsserviços. Os autores indicam que as duas abordagens

em conjunto fornecem a garantia e a resiliência dos sitemas de continuar a operar durante

falhas e ataques, e um mecanismo para testar a sua resiliência sob uma série de condições de

funcionamento.

Mandrioli e Maggio (2022) apresentam uma abordagem para aspectos não funcionais.

Estes buscaram encontrar limites para um desempenho parâmetro de um sistema adaptativo (ou

seja, do software e de uma dada estratégia de adaptação implementada sobre o mesmo). Na

metodologia de teste proposta pelos autores, a variável de decisão é o desempenho de pior caso

da estratégia de adaptação (ou seja, o melhor valor da métrica de desempenho que se garantir com

segurança), a função de custo é o próprio desempenho de pior caso e cada um dos os resultados

dos testes são uma restrição. A avaliação do limite de desempenho torna-se então, o problema

de otimização: maximizar o desempenho que sempre pode ser garantido, sob a restrição de que

não pode exceder o que é experimentado nos testes realizados. O objetivo desta abordagem é

fornecer garantias empíricas sobre o comportamento do sistema.

O RETAkE de Santos (2020) é uma abordagem para executar o teste em tempo de

execução com base na variabilidade do contexto do sistema e na modelação de características. O

RETAkE testa o mecanismo de adaptação, permitindo a verificação das suas regras de adaptação

com o modelo de variabilidade do sistema. O teste em tempo de execução é apoiado pela

verificação das propriedades comportamentais. Esta abordagem gera sequências de testes,

contudo de forma aleatória e utilizando o algoritmo de Hamming para calcular a distância de

Hamming entre o contexto do estado atual do SAS no Dynamic Feature Transition System

(DFTS) em relação aos seus vizinhos. Esta abordagem já gera sequências de testes, contudo

de forma aleatória e utilizando o algoritmo de Hamming para calcular a distância de Hamming

entre o contexto do estado atual do SAS no DFTS em relação aos seus vizinhos.

4.2 Comparação com o trabalho proposto

Diferente dos trabalhos relacionados identificados na literatura, o objetivo deste

trabalho é trazer um mecanismo de otimização de sequências de testes que possa ser utilizado de

forma ampla em abordagens de testes em sistemas DAS. Assim, as abordagens que busquem

os objetivos de diversidade de contexto, cobertura de teste e custo de execução podem utilizar

este mecanismo. A Tabela 6 resume as diferenças entre os trabalhos encontrados na literatura

e o proposto neste estudo, indicando com "V"os elementos presentes no trabalho e com "X"os
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ausentes.

Tabela 6 – Trabalhos relacionados e o Optimus

Trabalho Runtime Testing Tipo de teste Otimização Algoritmos genéticos
Dadeau et al. (2021) X Funcional V X
Maurio et al. (2021) V Segurança V V
Mandrioli e Maggio (2022) V Performace V X
Santos (2020) V Funcional X X
Optimus V Funcional V V

Fonte: elaborada pelo autora.
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5 OPTIMUS

Neste capítulo é apresentada a proposta desta dissertação, o mecanismo Optimus 1.

Primeiro, uma visão geral do mecanismo é descrita (Seção 5.1). Ademais, são apresentadas as

etapas para aplicação do mecanismo (Seção 5.2) nas quais se apresenta sobre a especificação

do SUT (Seção 5.2.1), utilização da ferramenta Bumblebin (Seção 5.2.2) e mais detalhes do

Optimus (Seção 5.2.3).

5.1 Visão Geral

Neste trabalho de mestrado é proposto o mecanismo Optimus que busca auxiliar na

geração de sequências de casos de teste para Self-Adaptive Systems (SAS), utilizando algoritmo

genético para maximizar a cobertura de testes e minimizar o custo de execução dos testes.

Isso é feito selecionando os melhores casos de teste a partir de parâmetros. A relevância do

mecanismo é vista por meio resultados encontrados durante a execução da revisão sistemática da

literatura (descrita no Capítulo 3), onde entre os desafios mais citados por autores está a explosão

combinatorial de cenários e o custo de testar muitas combinações. Ademais, poucos trabalhos

foram encontrados na literatura que utilizassem de otimização para testes em SAS, mesmo com

os benefícios já observados em outros domínios (MCMINN, 2011).

O mecanismo é desacoplado de abordagens e sistemas, o que facilita sua integração

e evita impactos no código da aplicação ou do sistema a ser testado. Ademais, o Optimus utilizou

e evoluiu alguns os conceitos dos trabalhos de Santos () e Santos (2020). Santos () apresenta

um método de teste em SAS (TestDAS) baseado no Dynamic Feature Transition System (DFTS)

que envolve uma abordagem de verificação de modelos para identificar falhas de design na

geração de testes para validar os SASs em tempo de projeto. Enquanto isso, o RETAkE de Santos

(2020) busca testar a variabilidade sensível ao contexto de SAS em tempo de execução, isto é,

considerando falhas ocorridas durante a execução do sistema em seu ambiente final. Por sua

vez, o Optimus é um mecanismo que pode auxiliar, por exemplo, na otimização da execução dos

testes de Santos () e Santos (2020). Assim como de outras abordagens ou métodos de teste em

sistemas SAS que utilizem o modelo DFTS. Outra característica do mecanismo é que este pode

ser aplicado tanto para testes em tempo de execução, como também em testes em Design-time.

1 O nome Optimus foi inspirado no robô Optimus Prime do filme Transformers. Uma vez que o mecanismo
pretende receber informações e transformá-las, assim como o robô Optimus prime possui essa caractetística de
transformação.
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Neste trabalho focamos em testes em tempo de execução.

O mecanismo recebe casos de testes e gera uma sequência otimizada por meio das

métricas de diversidade de contexto e custo da feature. A Figura 9 apresenta uma visão geral de

como funciona a aplicação do mecanismo. Inicialmente, o analista de testes especifica o SAS

definindo quais features serão testadas, o custo da feature, o estado do sistema (podendo ser

o atual ou o que se deseja testar) e os grupos de contexto (ver Seção 2.3.1). Em seguida, ele

utiliza o conversor binário de features e contextos (Bumblebin) para geração e seleção de casos

de teste a partir do contexto atual. Por fim, o Optimus avalia os casos de testes por meio da

função fitness tendo como objetivos: maximização da diversidade de contexto e minimização do

custo da feature e retorna a sequência de testes com os melhores casos de teste.

Figura 9 – Visão geral das etapas para uso do Optimus

Fonte: elaborada pelo autora.

5.2 Etapas para o uso do Optimus

Para a execução do Optimus faz-se necessária a realização de algumas etapas para

preparar as informações a serem recebidas pelo mecanismo. As seções 5.2.1, 5.2.2 e 5.2.3

elucidam cada etapa.

5.2.1 Analista de testes - Especificar SAS

Inicialmente, para a geração dos casos de teste o analista de teste deve modelar o

System Under Test (SUT) no modelo de features usando o Dynamic Feature Transition System

(DFTS). Para isso, foi feita uma adaptação do modelo DFTS proposto por (SANTOS, 2020). O
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modelo utilizado por (SANTOS, 2020) define que em um arquivo JavaScript Object Notation

(JSON) devem ser determinadas as features, contextos e caminhos, seguindo a definição do

DFTS. Para este trabalho, essa estrutura foi alterada, de forma que devem ser definidas: features

a serem testadas, custo de cada feature, o estado do sistema (que se deseja testar ou estado atual,

sendo o estado atual igual a(s) feature(s) e contexto(s) ativados) e os conjuntos de contextos

relacionados as features. Esta alteração foi realizada para que não houvesse a necessidade de

definir caminhos para a realização dos testes, uma vez que os casos de teste devem ser escritos

para condições de entrada que são inválidas e inesperadas, bem como para aquelas que são

válidas e esperadas (MYERS et al., 2013).

Assim, diferentemente da abordagem de geração de Santos () e Santos (2020) o

Optimus gera uma sequência de testes baseada em um contexto do sistema, consequentemente

expandindo a variabilidade de cenários a serem testados. Para utilizar o Optimus em testes

realizados em design-time, o analista de teste pode especificar qualquer estado que deseja testar.

Para testes em tempo de execução, deve ser utilizado o estado atual do sistema. Orienta-se que o

analista concentre-se nas features e contextos que deseja testar, selecionando assim o Test_set. O

Test_set para este trabalho é configurado para possibilitar que o analista teste diversos grupos de

features e contextos especificados em um único arquivo JSON.

Ademais, foi acrescentada a definição dos custos das features baseada na definição

dos autores Santos et al. (2018), que sugerem que o custo seja calculado considerando:

– O custo inerente de usar a feature, que inclui o valor de uso da feature e seus ativos que

foram criados durante o processo de engenharia;

– O custo médio de consumo de energia da feature no ambiente de implantação;

– O custo de personalizar ativos da feature para o sistema;

– O custo da inserção da lógica de adaptação do tempo de execução (esse custo está relacio-

nado à percepção do contexto).

Para este trabalho, os custos das features foram definidos entre 0 e 5 de acordo

com nível de complexidade de atividades consideradas. O nível de complexidade envolve a

dificuldade de execução da feature, o tempo gasto e o impacto no sistema, onde tem-se o valor:

• 0, se não existir;

• 1, se for muito baixo;

• 2, se for baixo;

• 3, se for moderado;
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• 4, se for alto;

• 5, se for muito alto.

É importante destacar que esta é apenas uma sugestão para a definição dos custos

de cada feature, e o analista de teste tem liberdade para estabelecer esses valores, desde que

se mantenha a escala de zero a cinco. No entanto, a definição do custo é essencial para que o

mecanismo possa selecionar os casos de teste levando em consideração o custo de cada um.

A Figura 10 ilustra como o arquivo JSON de Santos (2020) (A) é estruturado em

comparação com o arquivo desta pesquisa (B). No arquivo de Santos (2020) existe o campo

edges que é organizado por id indicando o caminho no DFTS a ser seguido, em contrapartida no

arquivo do Optimus possui o grupo de contexto e adicionalmente o campo de estado do sistema

(atual ou o estado que se deseja testar) que possui as features ativadas e contextos; e o campo

de custo das features. O campo de estado do sistema é indicado em formato binário seguindo a

definição de Santos et al. (2018), onde as features e contextos ativados devem ser representados

por 1 e os desativados por zero.

Figura 10 – Exemplos de (A) DFTS no RETAkE e (B) DFTS no Optimus

Fonte: elaborada pelo autora.

Na Figura 10 (B), o campo "Test_set” indica um idenficador do conjunto de features

e grupos de contexto para teste que é igual a 1. No campo "features” são identificadas as features
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a serem testadas, que são: Login, Video, Photo e Text. Em seguida no campo "features_cost”

são definidos os custos de cada feature a ser testada, sendo: Login com custo = 1, Video = 3,

Photo = 5 e Text = 4. O campo "current_context” indica a partir de qual estado será testado

(no caso é o atual). O campo "feat” informa quais features estão ativas no estado a ser testado,

que são todas: 1111 ("Login", "Video", "Photo", "Text"). O campo "cont” são os contextos

ativados no estado a ser testado, sendo: 0011010, que quer dizer que está: "Low Battery"(001),

"No Internet"(10) e "Not charging"(10). A combinação do campo feat e cont formam o estado a

ser testado: 11110011010. Por fim, o campo "context_or” apresenta os grupos de contexto do

tipo OR relacionados as features que são: "High Battery", "Medium Battery", "Low Battery",

"No Internet", "Internet", "Not charging"e "Charging".

5.2.2 Bumblebin

O Bumblebin 2 é uma ferramenta desenvolvida nesta pesquisa para gerar casos de

teste em binário, filtrar os relacionados ao estado do sistema e calcular seus custos. A modelagem

com números binários foi escolhida pela eficiência no armazenamento (NOROUZI et al., 2012)

e pela capacidade de gerar infinitas combinações. A implementação dessa ferramenta se tornou

necessária, em razão de que as primeiras versões do mecanismo Optimus agregavam várias

etapas: de filtragem, geração e seleção dos casos de teste. Assim, o desempenho das primeiras

versões do Optimus era inferior e com o Bumblebin pode-se separar as atividades e melhorar o

desempenho do mecanismo. Além disso, resultou em uma ferramenta desacoplada que pode ser

utilizada em outros cenários, como por exemplo, quando um analista de teste precisa de todos os

possíveis casos de testes e seus respectivos custos. A Figura 11 apresentação uma visão geral

das atividades realizadas pelo Bumblebin.

Figura 11 – Atividades realizadas pelo Bumblebin

Fonte: elaborada pelo autora.

Após a especificação do SAS o Bumblebin recebe o arquivo JSON e retorna três
2 O nome Bumblebin foi inspirado no robô Bumblebee do Transformers. Este robô também possui a capacidade

de se transformar, assim como a ferramenta propõe a transformação de informações.
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arquivos de texto, um contendo todas as informações geradas pela ferramenta (as features, os

custo das features, os contextos e todos os possíveis casos de testes), outro contendo os casos de

teste filtrados pelo estado do sistema e por fim; um com os custos dos casos de teste filtrados.

Os casos de teste definidos pelo Bumblebin tem como base o conceito aplicado no RETAkE

de Santos (2020), onde cada estado do sistema no DFTS gera um caso de teste para avaliar o

mecanismo de adaptação. Por exemplo, na Figura 10 B, um caso de teste seria: 11110100110,

onde os 4 primeiros dígitos são relacionados as features e os outros 7 dígitos são relacionados ao

contexto, a Figura 12 ilustra a relação entre dígitos, features e contextos. A presente dissertação

não tem o propósito de propor uma nova forma de avaliação ou discussão sobre a execução dos

casos de teste. O objetivo é a geração de sequências de configurações (casos de teste) com maior

variabilidade e menor custo.

Figura 12 – Relação entre dígitos, features e contextos

Fonte: elaborada pelo autora.

O analista de teste deve indicar no Bumblebin qual o Test_set desejado para conversão

binária. Em seguida, o Bumblebin converte as features e os contextos para binário seguindo

a mesma definição utilizada para a definição do estado do sistema no arquivo JSON. Após a

conversão, são geradas todas as combinações possíveis entre features e contextos para a geração

dos casos de teste (ver Apêndice A). A partir das combinações, um filtro é realizado selecionando

apenas casos de testes relacionados ao estado do sistema (ver Apêndice B). Para selecionar

apenas os casos de teste relacionados ao estado do sistema foi definido que apenas casos de teste

que tivessem o primeiro grupo de contexto igual ao primeiro grupo de contexto do estado do

sistema seriam selecionados. Essa decisão foi feita uma vez que as features podem ser ativadas e
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desativadas mediante mudança de contexto (SANTOS et al., 2016) e devia-se manter relação

com o estado do sistema. A Figura 13 ilustra a um exemplo da geração dos casos de testes

relacionados ao primeiro grupo de contexto do estado do sistema.

Figura 13 – Exemplo de geração de casos de teste relacionados

Fonte: elaborada pelo autora.

No exemplo da Figura 13, os 4 primeiros dígitos dos casos de teste são relacionados

as features ["Login”, "Video”, "Photo” e "Text”] e o restante aos grupos de contexto, sendo o

primeiro grupo de contexto igual para todos os casos para manter a relação com o estado do

sistema. O primeiro grupo de contexto do estado selecionado a ser testado é 001 ["High_Battery”,

"Medium_Battery”, "Low_Battery”], logo os casos listados todos possuem o primeiro grupo

igual a 001 como ilustrado na imagem.

Por fim, o cálculo dos custos é feito por meio da leitura dos casos de teste. O

Bumblebin verifica quais features estão ativas no caso de teste e realiza o somatório dos custos

quando mais de uma feature está ativa e se estiver somente uma ativa o custo do caso de teste é

o custo da feature. Considerando o caso de teste: 00110011001, sendo os 4 primeiros dígitos

relacionados as features e os custos sendo 1, 3, 5 e 4 (Como na Figura 14 abaixo), o custo desse

caso de teste é 9 (0011 = 0+0+5+4), por exemplo.

A Figura 15 apresenta o arquivo de resumo com o Test_set selecionado pelo analista

de testes, as features, os custos das features, os contextos em binário e por fim; as combinações

possíveis de features e contextos (casos de teste). O arquivo JSON utilizado para esse exemplo é

o da Figura 10.

A geração de um arquivo de resumo tem como objetivo fazer com que o analista

tenha uma visão geral de quantos casos de teste podem ser gerados a partir das features e

contextos definidos no arquivo JSON. Em contrapartida, os arquivos com casos de teste filtrados

e o de custo serão utilizados no Optimus.
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Figura 14 – Exemplo do cálculo do custo do caso de teste

Fonte: elaborada pelo autora.

Figura 15 – Exemplo de arquivo de resumo gerado pelo Bumblebin

Fonte: elaborada pelo autora.

5.2.3 Implementação do Optimus

O Optimus é um mecanimo para geração de sequência de testes otimizadas em rela-

ção a custo e diversidade de estados do sistema. O mecanismo busca maximizar a variabilidade

de estados do sistema e minimizar o custo execução, dessa forma selecionados os melhores casos

de teste em vista à esses objetivos.

Em relação a implementação do Optimus, inicialmente houve a definição do pro-

blema. O problema consiste na seleção de casos de testes para a geração de sequência(s) de

testes mais eficaz(es). Para selecionar os casos de teste mais adequados, foram considerados os

seguintes objetivos:

• Selecionar um subconjunto de casos de teste com maior diversidade de estados

do sistema;

• Selecionar um subconjunto de casos de teste com menor custo de execução.
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A variabilidade de features e contextos nos casos de teste está diretamente relacionada

a cobertura de teste do sistema, uma vez que tratando-se de SAS que utilizam o DFTS as features

e contextos são o que definem como o sistema funciona. Em relação ao custo, esse objetivo

torna-se igualmente importante para o Optimus uma vez que para executar testes em tempo

de execução pode causar perturbações no estado do sistema (LAHAMI et al., 2016), então

quão menos custoso for o teste para o sistema então menos ações indesejadas poderão ocorrer.

Portanto, os dois objetivos tem o mesmo peso, isto é, possuem a mesma importância.

A Diversidade de contexto (Definição 2.3.2) de Santos (2020) foi utilizada para

determinar a variabilidade do estado do sistema. Utilizando a Distância de Hamming para

calcular a similaridade entre dos casos de teste e buscar aquele com maior diversidade. O caso

de teste com maior distância de Hamming possui maior variabilidade. Como parâmetro para

cálculo da distância foi utilizado o estado do sistema, podendo também utilizar o primeiro caso

de teste do arquivo gerado pelo Bumblebin.

Com base nos objetivos, as funções fitness são as seguintes:

• máx | variabilidade de estados |, sendo

| variabilidade de estados | = ∑
n−1
i=1 DH(ct(fc)i, ct(fc)i+1)n, onde

– DH(ct(fc)i, ct(fc)i+1) é a distância de Hamming de um par de casos de teste

ct(fc)i e ct(fc)i+1.

– n sendo o tamanho do caso de teste.

• min | custo |, sendo

| custo | = ∑
n
i=1 xi · ci, onde

– xi é o valor binário indicando se o caso de teste i é selecionado (1) ou não

(0).

– ci é o custo associado ao caso de teste i.

O Algoritmo 1 detalha como é realizado o cálculo da Distância de Hamming. A

entrada se trata do estado do sistema (ou o primeiro caso de teste da lista) e um caso de teste da

lista. Para cada bit diferente entre as duas entradas é somado o valor da Distância de Hamming

entre as duas entradas.

O algoritmo utilizado para implementação do Optimus foi o NSGA-II (DEB et

al., 2002) em razão da sua propriedade multiobjetiva e preservação do elitismo (mantém os

melhores indivíduos da população pai e filho) e a diversidade de soluções. Além disso, o

NSGA-II é usado por 30% dos pesquisadores para seleção multiobjetiva de testes em sistemas
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Algoritmo 1: Algoritmo do cálculo da Distância de Hamming
Entrada: Estado do sistema

Entrada: Um caso de teste da lista

início
cs← Estado do sistema;

ct← Caso de teste da lista;

contador← 0;

para cada bit ∈ ct faça
se bit do cs ̸= bit de ct:

contador← contador + 1;

fim

fim

(BAJAJ; SANGWAN, 2019). Dessa forma, o NSGA-II foi escolhido por melhor se adequar as

características do problema desta pesquisa que seriam: multiobjetivo, busca por diversidade de

soluções e ser um algoritmo amplamente empregado pelos pesquisadores para seleção de testes.

Vale salientar que para a definição do algoritmo e objetivos, foi analisada a possibilidade de

se utilizar somente um objetivo e assim utilizar um algoritmo mono-objetivo. Contudo, pela

característica do problema de possuir objetivos contraditórios entre si, isto é uma solução pode

ser boa para um objetivo pode ser ruim para outro objetivo, optou-se por seguir as indicações das

pesquisas bibliográficas para a seleção de objetivos e algoritmos (CUI et al., 2017).

Para a parametrização do algoritmo, foi definido o tamanho da população igual a 100

(caso a quantidade de casos de teste relacionados seja menor que 100 o tamanho será igual a essa

quantidade), sendo possível configurar outros valores. Essa escolha foi feita uma vez que cerca

de 40% dos estudos sobre testes de software baseados em algoritmos genéticos estabeleceram o

tamanho da população em 100. Entretanto, a definição desses parâmetros não segue uma regra

fixa, pois varia conforme a natureza do problema e os objetivos do analista de testes (BAJAJ;

SANGWAN, 2019).

O operador de seleção sendo por torneio, que realiza vários torneios entre os indiví-

duos selecionados aleatoriamente e usa os vencedores para crossover. O operador de mutação

consiste no bit flit que permite com que cada bit da representação do indivíduo seja trocado (de 0

para 1 ou de 1 para 0) com uma determinada probabilidade (EIBEN et al., 2003), a probabilidade

selecionada foi 0.01. O crossover sendo de um único ponto de corte e com taxa de 0.5.

Em seguida, o analista de teste define o tamanho da sequência de teste ou alter-
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nativamente, pode-se manter o valor padrão de 10, correspondente a 10% da população total

definida no algoritmo. No entanto, não há uma regra fixa para essa definição, pois ela depende

das necessidades do analista. Por exemplo, quanto maior o tempo disponível para a execução

dos testes, maior pode ser a quantidade de testes selecionados. Da mesma forma, com menos

tempo disponível, a quantidade de testes a serem executados tende a ser reduzida.

Por fim, após a definição do tamanho da sequência, procede-se à definição do estado

do sistema em binário para cálculo da Distância de Hamming (podendo manter por padrão a

seleção do primeiro caso de teste do arquivo) e o Optimus segue o fluxo de execução do NSGA-II,

sendo:

– Inicialização da população: A população inicial são os casos de testes gerados pelo

Bumblebin

– Classificação: Processo de classificação com base em critérios de não dominação da

população que foi inicializada.

– Crowding distance: Nesta etapa ao invés de utilizar o valor da crowding distance (que

mede o quão longe um indivíduo está do resto da população, isto é, o quão diferente o caso

de teste é em relação aos outros) para selecionar os indivíduos, foi utilizada a avaliação

do | custo | e | variabilidade de estados | dos indivíduos para selecioná-los. A adaptação

foi motivada em razão de que a crowding distance possui uma definição bem próxima

da | variabilidade de estados |, assim seria uma adição no custo computacional para duas

avaliações semelhantes.

– Seleção por torneio: Para selecionar um caso de teste para a próxima geração ou para cru-

zamento/mutação os casos de são escolhidos aleatoriamente da população e o selecionado

é aquele que tem soluções mais dominantes que no caso são aqueles que possuem o menor

custo e maior variabilidade de estados

– Repetição do processo: Todas as etapas anteriores são repetidas até que o tamanho da

população exceda o tamanho da população atual.

Na etapa de geração de uma nova população, os casos de testes gerados são analisados

para verificar se são estados válidos, isto é, se estão dentro da lista de casos de testes definidos

anteriormente pelo Bumblebin. Ademais, também retira-se possíveis duplicados na mesma

população.

Ao final da execução, o Optimus retorna a sequência de casos de testes ótimos

em relação aos objetivos definidos por meio de um arquivo txt. Ademais, para garantir que
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o mecanismo produzisse os mesmos resultados em execuções diferente, afim de manter a

reprodutabilidade foi definida uma seed. Ao definir uma seed para a geração de números

aleatórios, significa que o gerado de números aleatórios inicializa em um estado específico. O

gerador então produz uma sequência de números que será sempre a mesma para aquela semente,

garantindo que os mesmos “números aleatórios” sejam gerados em execuções subsequentes. Na

Figura 16 temos o fluxo de execução do Optimus.

Figura 16 – Fluxo de execução do Optimus

Fonte: elaborada pelo autora.

5.3 Aplicação do Optimus

Para aplicação do Optimus em testes em tempo de execução, na etapa de Especifica-

ção do SAS (Detalhada na subseção 5.2.1) deve ser utilizado o estado atual do sistema, sendo o

estado atual igual a(s) feature(s) e contexto(s) ativados. Embora a execução de testes não esteja

incluída no escopo deste trabalho, podem ser utilizados os conceitos de Santos (2020) para testes

em tempo de execução em SAS. Santos (2020) define que o mecanismo de adaptação deve ser

isolado para execução dos testes, de forma que o mecanismo de adaptação do SUT entre em

modo teste através de técnicas de bloqueio e orientação a aspectos. Dessa forma, o analista

poderia capturar o estado atual do sistema durante o modo teste do sistema e executar as etapas

necessárias (5.2.1, 5.2.2 e 5.2.3) para execução do Optimus e gerar a sequência de teste ótima,

assim podendo executar de forma manual ou automatizada os casos de teste. Vale ressaltar, que

utilização do Optimus resulta numa diminuição do impacto negativo do bloqueio do mecanismo

de adaptação, uma vez que apenas os melhores casos de testes (em relação a custo e diversidade)

seriam executados diminuindo o tempo de bloqueio do SUT.
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Para aplicação do Optimus em testes em Design-time, na etapa de Especificação do

SAS deve ser utilizado o estado a ser testado e as outras etapas deve ser seguidas de acordo com

as orientações das subseções 5.2.1, 5.2.2 e 5.2.3.
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6 AVALIAÇÃO

Este Capítulo apresenta um estudo de viabilidade e três avaliações do Optimus. A

Seção 6.1 detalha o estudo de viabilidade, enquanto a Seção 6.2 apresenta as simulações em

sistemas de baixa, média e alta complexidade e variabilidade. Por fim, a Seção 6.3 discute os

resultados e a validação da hipótese inicial.

6.1 Estudo de viabilidade

Como forma de avaliação do Optimus, um estudo de viabilidade foi realizado com o

objetivo de responder a seguinte pergunta: É viável utilizar o mecanismo para gerar sequências

de casos de teste otimizadas?

Para isso, a aplicação SAS móvel GREat Tour de Marinho et al. (2013) foi selecio-

nada para ser especificada. O GREat Tour é um aplicativo de guia turístico de um laboratório

de pesquisa e desenvolvimento da Universidade Federal do Ceará, o GREat 1. Este aplicativo

fornece informações sobre o ambiente do laboratório e pesquisadores. A aplicação se adapta

seguindo o modelo de features de acordo com o contexto atual do visitante, composto pela

localização, perfil/preferências e caraterísticas do dispositivo.

As features selecionadas para a especificação do SAS foram: Login, Video, Photo e

Text;. E os contextos selecionados foram: Bateria alta, Bateria média, Bateria baixa, Sem acesso

a internet, Com acesso a internet, Conectado ao carregador e Sem conexão com o carregador

(High_Battery, Medium_Battery, Low_Battery, No_Internet, Internet, Not_charging, Charging).

Dessa forma, são 4 features e 7 contextos no total.

A Figura 17 ilustra o resultado da especificação do GREat Tour. Vale notar que, de

acordo com a especificação utilizada para a avaliação, o estado de contexto atual do aplicativo é

0011010, significando que estão ativos os contextos Low_Battery, No_Internet e Not_charging.

Após especificação do SAS, utilizando o Bumblebin, foram gerados os casos de teste

em binário. Ao total foram obtidos 180 casos de testes, mas somente 60 estavam relacionados ao

primeiro grupo de contexto atual referente aos contextos ["High_Battery", "Medium_battery",

"Low_Battery"], definidos na etapa de especificação do sistema. Considerando que o estado atual

é Low Battery, o valor correspondente é (001), indicando que, deste grupo de contexto, apenas

o último ("Low_Battery") está ativo. Na Figura 18 é exibido uma parcela dos casos de teste

1 https://www.great.ufc.br/
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Figura 17 – Especificação do GREat Tour

Fonte: elaborada pelo autora.

relacionados ao contexto atual, sendo cada linha do arquivo um caso de teste. Por exemplo, a

linha 1 possui o caso de teste 00010011010, que seria somente a feature Text ativa e os contextos

Low_Battery, No_Internet e Not_charging.

Figura 18 – Parte dos casos de teste gerados pelo Bumblebin para o GREat Tour

Fonte: elaborada pelo autoraa.

Para fins de avaliação foram analisados dois cenários de execução do Optimus: o

primeiro cenário utilizando o primeiro caso de teste para cálculo da Distância de Hamming e

o segundo cenário utilizando o estado atual do sistema para este cálculo. A motivação para

avaliar os dois cenários foi analisar o comportamento do mecanismo em termos de desempenho

e qualidade dos casos de teste, modificando o estado inicial para a geração desses casos. Isso se

justifica porque, devido à quantidade de casos gerados, a busca por um estado específico pode

demandar mais tempo do que simplesmente utilizar o primeiro estado listado.
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6.1.1 Cenário 1

Utilizando os arquivos gerados pelo Bumblebin (de custo e com os casos de teste), o

Optimus selecionou os 10 melhores casos de teste em relação a custo e diversidade (utilizando

como parâmetro de cálculo da distância de Hamming o primeiro caso de teste da lista de casos)

em uma média de tempo de 63,38 segundos. A Figura 19 apresenta os casos de teste selecionados

pelo mecanismo.

Figura 19 – Casos de teste selecionados pelo Optimus

Fonte: elaborada pelo autora.

Cada caso de teste selecionado foi avaliado individualmente, a fim de analisar o

seu custo individual e sua diversidade de estados. A Tabela 7 apresenta os 10 casos de teste

selecionados pelo Optimus.

Tabela 7 – Casos de teste selecionados pelo Optimus

Casos de teste Distância de Hamming Custo
10000011010 2 1
10000010110 4 1
10000011001 4 1
10000010101 6 1
01000011001 4 3
01000010101 6 3
01000011010 2 3
01000010110 4 3
00010010101 4 4
11000010110 5 4

Fonte: elaborada pelo autora.

Ao analisar os dados da Figura 18, nota-se que a Distância de Hamming máxima é 8,

uma vez que o primeiro grupo de contexto atual, que são 3 dígitos, estarem sempre no mesmo

local no caso de teste. Logo, a Distância de Hamming máxima para estados relacionados a esse
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estado atual é de 11 - 3, que resulta em 8. Dessa forma, analisando os dados da Tabela 7 infere-se

que o Optimus conseguiu bons resultados balanceando o custo de toda a execução da sequência

em relação a variabilidade.

Em relação ao custo (Definição citada na Seção 5.2.1), dentre os casos de teste

analisados pelo Optimus existiam casos com os mais diversos custos (1, 3, 4, 5, 9, 7, 8, 9, 10,

12 e 13). O mecanismo conseguiu selecionar os casos de teste com menor custo mantendo uma

significativa variabilidade, uma vez que se deve considerar o custo total da sequência.

Ademais, as soluções foram analisadas do ponto de vista de fronteira de Pareto (ver

Definições 2.2.2 e 2.2.1). A Figura 20 apresenta a fronteira de Pareto (em azul) e as melhores

soluções (em vermelho) em relação a dois objetivos: custo e distância de Hamming. A distância

está ilustrada negativa pois visa a maximização. Ao observar o Gráfico, pode-se notar que:

– A distribuição das soluções ao longo da fronteira de Pareto parece ser uniforme, o que é

desejável, pois indica uma boa diversidade nas soluções encontradas.

– As melhores soluções estão bastante concentradas em regiões de menor custo. Isso pode

indicar que essas soluções são viáveis e dominantes em relação ao custo.

– Observa-se que algumas das "melhores soluções"coincidem com pontos da fronteira de

Pareto, o que é positivo, uma vez que essas soluções são não dominadas e, portanto, fazem

parte da melhor frente de soluções. Isso significa que as soluções escolhidas são eficientes

em termos dos dois objetivos.

Figura 20 – Relação entre fronteira de Pareto e melhores casos de teste

Fonte: elaborada pelo autora.
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6.1.2 Cenário 2

As mesmas etapas e dados do Cenário 1 (Seção 6.1.1) foram utilizados para a

execução do Cenário 2, tendo como diferença o parâmetro de cálculo da distância de Hamming

sendo o estado atual do sistema (11110011010, na Figura 18). A média de execução foi de 88.22

segundos, indicando um aumento no tempo de execução comparado com o Cenário 1.

Assim como no Cenário 1, cada caso de teste selecionado foi avaliado individual-

mente, afim de analisar o seu custo individual e sua diversidade de estados. Ademais, A Tabela 8

apresenta os 10 casos de teste selecionados pelo Optimus.

Tabela 8 – Casos de teste selecionados selecionados pelo Optimus

Casos de teste Distância de Hamming Custo
10000010101 7 1
10000010110 5 1
10000011001 5 1
10000011010 3 1
01000011001 5 3
01000010101 7 3
01000011010 3 3
01000010110 5 3
00010010101 7 4
11000011001 4 4

Fonte: elaborada pelo autora.

A Distância de Hamming máxima continua sendo a mesma do Cenário 1, de 8. Logo,

analisando os dados da Tabela 8 é possível perceber que houve um aumento no valor da distância

e o custo se manteve o mesmo. Ademais, mesmo com esse aumento na distância os casos de

teste selecionados são em grande parte os mesmos. Somente o caso de teste 11000011001 difere

dos selecionados no Cenário 1 para o Cenário 2.

As soluções também foram analisadas do ponto de vista de fronteira de Pareto. A

Figura 21 apresenta a fronteira de Pareto (em azul) e as melhores soluções (em vermelho) em

relação a dois objetivos: custo e distância de Hamming. Em comparação com o Cenário 1, é

possível ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram os mesmos.

6.1.3 Conclusão dos resultados obtidos

A análise das soluções propostas na avaliação de viabilidade do Optimus revela uma

boa distribuição ao longo da Fronteira de Pareto, indicando que as estratégias de otimização utili-
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Figura 21 – Relação entre fronteira de Pareto e casos de teste

Fonte: elaborada pelo autora.

zadas conseguiram capturar uma bons casos de teste. Ademais, o valor da distância de Hamming

obtida é satisfatória, indicando que os casos de teste alcançaram o objetivo de variabilidade de

estados e o resultado dos valores de custos também foram satisfatórios.

A análise da sequência de casos de teste gerada: 10000010101, 10000010110,

10000011001, 10000011010, 01000011001, 01000010101, 01000011010, 01000010110, 00010010101

e 11000011001, indica que ela pode ser considerada ótima. Isso se deve ao fato de que a soma das

distâncias de Hamming nos cenários 1 e 2 é de 41 e 51, respectivamente. Valores elevados para

essas somas indicam maior variabilidade na relação entre o contexto comparado e o selecionado

na sequência, o que está alinhado com o objetivo de maximizar a variabilidade. Além disso, o

custo associado nos cenários 1 e 2 é de 24, resultando em uma média de custo de 2,4 por caso de

teste, o que atende ao objetivo de minimizar o custo.

Ademais ao comparar os Cenários 1 e 2 é possível perceber resultados similares em

relação a custo e seleção de testes, mas o desempenho do Cenário 2 foi inferior ao Cenário 1 no

que se refere à tempo de execução. Isso possivelmente aconteceu pois no Cenário 2 o Optimus

precisa inicialmente encontrar o estado atual e seu custo dentro da lista de casos de casos e

apenas depois começar o cálculo da Distância de Hamming.

Com base nos dados coletados nesta avaliação, é possível responder a pergunta “É

viável utilizar o mecanismo para gerar sequências de casos de teste otimizadas?” de forma

afirmativa.
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6.2 Simulações

A fim de avaliar o impacto da complexidade estrutural e variabilidade dinâmica dos

SAS sobre o Optimus, foram realizadas simulações, com SAS sinteticamente gerados, seguindo

os passos de um experimento como definido por Wohlin et al. (2012).

Para definir o grau de complexidade e variabilidade dos sistemas foi utilizado o

CatalOg of measures for Feature modEl quality Evaluation (COfFEE) de Bezerra et al. (2014)

que define medidas para avaliação de qualidade de modelos de features. O catálogo estabelece

que quanto menor o valor das medidas de complexidade e variabilidade, menor a complexidade

e variabilidade do modelo de features. As medidas utilizadas foram: o número de features e o

número de grupos de contexto, conforme definidos no catálogo COfFEE de Bezerra et al. (2014).

Essa geração dos SAS foi feita manualmente, inicialmente supunha-se um Self-

Adaptive Systems em um domínio de aplicação. Em seguida, foram definidas as features com

base na aplicação, na complexidade e variabilidade da Simulação. Foram elencadas adaptações

em cima destas features, para com isso definir os estados e grupos de contexto. Além disso, foi

feita uma revisão para garantir que todos os contextos afetavam todas as features, respeitando o

formato de modelo de features (descrito na Seção 5.2.1).

Nesse sentido, foram definidos 3 cenários distintos, variando a complexidade e

variabilidade dos Self-Adaptive Systems (SAS). A complexidade e variabilidade do sistema foi

diretamente proporcional à quantidade de features e contextos que ele abrangia, seguindo a

definição do COfFEE. Para cada cenário, o Optimus foi executado 3 vezes para calcular a média

de tempo de execução do algoritmo e verificar consistência dos resultados. Assim como no

estudo de viabilidade (Seção 6.1), também foram analisados os dois cenários de: cálculo de

Hamming com referência ao estado atual e ao primeiro caso de teste da lista (Cenários 1 e 2

respectivamente na Tabela 9). Ademais, foi mantido o valor padrão de 10 casos de teste para a

sequência.

Para orientar o experimento a seguinte pergunta foi definida: Como mecanismo se

comporta para os mais complexos e variados SAS?.

Os resultados obtidos e discutidos neste capítulo apresentam indícios da capacidade

do mecanismo de encontrar soluções otimizadas em um tempo significativamente curto, infe-

rior a 7 minutos, mesmo quando aplicado a sistemas complexos e com considerável nível de

variabilidade.

Na Seção 6.2.1 são apresentados os resultados da simulação de um sistema de
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Tabela 9 – Design da avaliação - Simulações

Simulações Cenários Descrição
1 1 Baixa complexidade e variabilidade (5 features e 13 contexts)
2 2 Baixa complexidade e variabilidade (5 features e 13 contexts)
3 1 Média complexidade e variabilidade (9 features e 17 contexts)
4 2 Média complexidade e variabilidade (9 features e 17 contexts)
5 1 Média complexidade e variabilidade (4 features e 17 contexts)
6 2 Média complexidade e variabilidade (4 features e 17 contexts)
7 1 Média complexidade e variabilidade (4 features e 11 contexts)
8 2 Média complexidade e variabilidade (4 features e 11 contexts)
9 1 Média complexidade e variabilidade (5 features e 15 contexts)

10 2 Média complexidade e variabilidade (5 features e 15 contexts)
11 1 Média complexidade e variabilidade (9 features e 19 contexts)
12 2 Média complexidade e variabilidade (8 features e 19 contexts)
13 1 Alta complexidade e variabilidade (10 features e 17 contexts)
14 2 Alta complexidade e variabilidade (10 features e 17 contexts)

complexidade e variabilidade baixa. A Seção 6.2.2 apresenta dois aspectos: um sistema de média

complexidade e variabilidade e o mesmo sistema sendo executado fragmentado. Por fim, na

Seção 6.2.3 é apresentada uma simulação de estresse, onde o sistema é de alta variabilidade e

complexidade.

6.2.1 SAS com Baixa complexidade

6.2.1.1 Simulação 1 - Cenário 1

Para a simulação de um sistema de baixa complexidade e variabilidade foram consi-

deradas 5 features e 13 contextos, que são apresentados na Figura 22.

Com o Bumblebin, foram gerados 2.976 casos de teste em binário e 992 casos de

teste relacionados ao grupo de contexto atual (100). O tamanho do caso de teste é de 18, sendo

5 bits relacionados as features e 13 relacionados aos contextos. O tamanho do caso de teste é

relevante pois pode atingir o desempenho do Optimus, especialmente na etapa de crossover. Na

Figura 23 (A) apresenta uma parte dos casos de teste relacionados ao contexto atual e (B) parte

dos custos dos mesmos. A Figura 23 (B) evidencia a variabilidade nos custos dos casos de teste.

O Optimus retornou os 10 melhores casos de teste em uma média de tempo de 0,92

segundos. A Tabela 10 apresenta os casos de teste, as distâncias de Hamming de cada caso de

teste e seu custo individual.

Do ponto vista da Fronteira de Pareto (ver Figura 24), pode-se perceber que o Opti-
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Figura 22 – Especificação do sistema de baixa complexidade e variabilidade

Fonte: elaborada pelo autora.

Figura 23 – (A) parte dos casos de teste relacionados ao contexto atual e (B) custos dos casos de
teste

Fonte: elaborada pelo autora.

mus foi capaz de encontrar um conjunto diversificado de soluções não dominadas, representando

um bom compromisso entre a distância de Hamming e o custo. Ademais, Apesar de ter sido

submetido a um conjunto de 992 casos de teste, o mecanismo demonstrou bom desempenho,

executando em apenas 0,92 segundos e retornando os bons casos de teste em relação a custo e

distância de Hamming.
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Tabela 10 – Casos de teste selecionados - Simulação 1

Casos de teste Distância de Hamming Custo
000011001010010101 6 1
000011001010101001 2 1
000011000110101001 4 1
010001000110010110 8 1
000011000110011010 4 1
000011001001100110 4 1
010001000110101001 6 1
000011001010011010 2 1
000011000101010110 8 1
010001001010101010 2 1

Fonte: elaborada pelo autora.

Figura 24 – Relação entre fronteira de Pareto e casos de teste da Simulação 1 no Cenário 1

Fonte: elaborada pelo autora.

6.2.1.2 Simulação 2 - Cenário 2

As mesmas etapas e dados do Cenário 1 (Seção 6.2.1.1) foram utilizados para a

execução do Cenário 2, tendo como diferença o parâmetro de cálculo da distância de Hamming

sendo o estado atual do sistema (011111000110010110, na Figura 22). A média de execução foi

de 1.12 segundos, indicando um aumento no tempo de execução comparado com o Cenário 1.

Assim como no Cenário 1, cada caso de teste selecionado foi avaliado individual-

mente, afim de analisar o seu custo individual e sua diversidade de estados. Ademais, A Tabela

11 apresenta os 10 casos de teste selecionados pelo Optimus.

A Distância de Hamming máxima é de 15 (18 - 3, sendo 3 dígitos o contexto atual).

Logo, analisando os dados da Tabela 11 é possível perceber que houve um aumento no valor da

distância e o custo se manteve o mesmo. Ademais, diferente do resultado do estudo de viabilidade
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Tabela 11 – Casos de teste selecionados - Simulação 2

Casos de teste Distância de Hamming Custo
010001000110100101 7 1
010001000110101010 7 1
000011000110011001 7 1
000011000110011010 5 1
000011000101010110 5 1
000011000101010101 7 1
010001000110011001 7 1
010001000101010110 5 1
010001001001010110 7 1
000011000110010101 5 1

Fonte: elaborada pelo autora.

apenas 2 casos de testes foram selecionados igualmente nos dois cenários. Esse resultado pode

indicar que em sistemas de baixa complexidade e variabilidade, a melhor abordagem seria utilizar

o estado atual dependendo do objetivo de teste. Por exemplo, se o objetivo é gerar os casos de

teste de forma rápida e alheio ao estado atual do sistema, poderia utilizar o cálculo a partir do

primeiro caso de teste da lista.

As soluções também foram analisadas do ponto de vista de fronteira de Pareto. A

Figura 25 apresenta a fronteira de Pareto (em azul) e as melhores soluções (em vermelho) em

relação a dois objetivos: custo e distância de Hamming. Em comparação com o Cenário 1, é

possível ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram os mesmos.

Figura 25 – Relação entre fronteira de Pareto e casos de teste da Simulação 2 no Cenário 2

Fonte: elaborada pelo autora.
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6.2.2 SAS com média complexidade e variabilidade

Para o SAS de média complexidade e variabilidade foram executadas 10 simulações

para avaliar o impacto que o número de features e contextos no desempenho do sistema.

6.2.2.1 Simulação 3 - Cenário 1

Para essa simulação foram consideradas 9 features e 17 contextos, que são apresen-

tados na Figura 26.

Figura 26 – Especificação do sistema de média complexidade e variabilidade

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 196.224 casos de teste em binário e 65.408 casos

de teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O tamanho

do caso de teste é de 26, sendo 9 bits relacionados as features e 17 relacionados aos contextos. O

Optimus retornou os 10 melhores casos de teste em uma média de tempo de 87 segundos. Na

Tabela 15 são apresentados os casos de teste selecionados pelo Optimus nesta simulação bem

como Distância de Hamming e custo de cada.

Do ponto vista da Fronteira de Pareto (ver Figura 27), pode-se perceber que o

Optimus teve resultados semelhantes ao da simulação 1 no que se refere a soluções não dominadas

e relação entre distância de Hamming e custo, mesmo submetido a 65.408 casos de teste.
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Tabela 12 – Casos de teste selecionados - Simulação 3

Casos de teste Distância de Hamming Custo
10000000001001101010101010 4 1
10000000001010101010100110 4 1
00000010001010101001101010 4 1
00000010001010101001101001 6 1
00000100001010101010101001 4 1
00000010001001101010100110 6 1
00000010001010101010011010 4 1
00000100001010101010100110 4 1
10000000001010101001101010 4 1
00000100001010101001101010 4 1

Fonte: elaborada pelo autora.

Figura 27 – Relação entre fronteira de Pareto e casos de teste da Simulação 3 no Cenário 1

Fonte: elaborada pelo autora.

6.2.2.2 Simulação 4 - Cenário 2

As mesmas etapas e dados do Cenário 1 (Seção 6.2.2.1) foram utilizados para a

execução do Cenário 2, tendo como diferença o parâmetro de cálculo da distância de Hamming

sendo o estado atual do sistema que é 01001101001101010 (apresentado na Figura 26). O

Optimus não conseguiu ser executado, uma vez que pelo número elevado de casos de teste em

conjunto com o cálculo de Hamming a partir do estado atual do sistema, afetou o desempenho

do mecanismo que solicitou mais poder computacional para executar. Assim, por limitações de

ambiente (máquina) não foi possível executá-lo.
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6.2.2.3 Simulação 5 - Cenário 1

Nesta simulação foram consideradas 4 features e 17 contextos, que são apresentados

na Figura 28.

Figura 28 – Especificação do sistema para simulação 5

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 5.760 casos de teste em binário e 1.920 casos de

teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus

retornou os 10 melhores casos de teste em uma média de tempo de 1.10 segundos. Na Tabela

15 são apresentados os casos de teste selecionados pelo Optimus nesta simulação bem como

Distância de Hamming e custo de cada.

Tabela 13 – Casos de teste selecionados - Simulação 5

Casos de teste Distância de Hamming Custo
100001010011010100101 8 1
100001001101010101001 6 1
100001010100110101010 4 1
100001010100110101001 6 1
100001010011010101001 6 1
100001010011010101010 4 1
100001001101010101010 4 1
100001010101010101001 4 1
100001010011001101010 6 1
100001010100110100110 6 1

Fonte: elaborada pelo autora.
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Do ponto vista da Fronteira de Pareto (ver Figura 29), pode-se perceber resultados

semelhantes a Simulação 3 em relação a soluções e compromisso entre a distância de Hamming

e o custo. Ademais, o mecanismo demonstrou bom desempenho, executando em 7.6 segundos

sendo submetido a um conjunto de 1920 casos de teste.

Figura 29 – Relação entre fronteira de Pareto e casos de teste da Simulação 5 no Cenário 1

Fonte: elaborada pelo autora.

6.2.2.4 Simulação 6 - Cenário 2

As mesmas etapas e dados do Cenário 1 (Seção 6.2.2.3) foram utilizados para a

execução do Cenário 2, tendo como diferença o parâmetro de cálculo da distância de Hamming

sendo o estado atual do sistema (111101001101001101010, na Figura 28). A média de execução

foi de 1.33 segundos, indicando um aumento no tempo de execução comparado com o Cenário 1.

Assim como no Cenário 1, cada caso de teste selecionado foi avaliado individual-

mente, afim de analisar o seu custo individual e sua diversidade de estados. Ademais, a Tabela

14 apresenta os 10 casos de teste selecionados pelo Optimus.

Analisando os dados da Tabela 14 é possível perceber que houve um aumento no

valor da distância e o custo se manteve o mesmo. Ademais, diferente do resultado do estudo de

viabilidade apenas 1 caso de teste foi selecionado igualmente nos dois cenários.

As soluções também foram analisadas do ponto de vista de fronteira de Pareto. A

Figura 25 apresenta a fronteira de Pareto (em azul) e as melhores soluções (em vermelho) em
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Tabela 14 – Casos de teste selecionados - Simulação 6

Casos de teste Distância de Hamming Custo
100001010101010101010 7 1
100001001101001101010 3 1
100001001101001100101 7 1
100001001011001101010 5 1
100001010101010101001 9 1
100001001101001101001 5 1
100001001101010100110 7 1
100001010100101101001 9 1
100001001100101101001 7 1
100001001011001101001 7 1

Fonte: elaborada pelo autora.

relação a dois objetivos: custo e distância de Hamming. Em comparação com o Cenário 1, é

possível ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram os mesmos.

Figura 30 – Relação entre fronteira de Pareto e casos de teste da Simulação 6 no Cenário 2

Fonte: elaborada pelo autora.

6.2.2.5 Simulação 7 - Cenário 1

Nesta simulação foram consideradas 4 features e 11 contextos, que são apresentados

na Figura 31.

Com o Bumblebin, foram gerados 720 casos de teste em binário e 240 casos de

teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus

retornou os 10 melhores casos de teste em uma média de tempo de 1.22 segundos. Na Tabela
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Figura 31 – Especificação do sistema para simulação 7

Fonte: elaborada pelo autora.

15 são apresentados os casos de teste selecionados pelo Optimus nesta simulação bem como

Distância de Hamming e custo de cada.

Tabela 15 – Casos de teste selecionados - Simulação 7

Casos de teste Distância de Hamming Custo
100001010101010 2 1
100001001100110 6 1
100001001011010 6 1
100001010101001 4 1
100001001101010 4 1
100001010100110 4 1
100001010011010 4 1
100001010011001 6 1
100001010100101 6 1
100001001101001 6 1

Fonte: elaborada pelo autora.

Do ponto vista da Fronteira de Pareto (ver Figura 32), pode-se perceber resultados

semelhantes a Simulação 3 em relação a soluções e compromisso entre a distância de Hamming

e o custo.

6.2.2.6 Simulação 8 - Cenário 2

As mesmas etapas e dados do Cenário 1 (Seção 6.2.2.5) foram utilizados para a

execução do Cenário 2, tendo como diferença o parâmetro de cálculo da distância de Hamming
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Figura 32 – Relação entre fronteira de Pareto e casos de teste da Simulação 7 no Cenário 1

Fonte: elaborada pelo autora.

sendo o estado atual do sistema (110101001101001, na Figura 31). A média de execução foi de

1.42 segundos, indicando um aumento no tempo de execução comparado com o Cenário 1.

Assim como no Cenário 1, cada caso de teste selecionado foi avaliado individu-

almente, afim de analisar o seu custo individual e sua diversidade de estados. A Tabela 16

apresenta os 10 casos de teste selecionados pelo Optimus.

Tabela 16 – Casos de teste selecionados - Simulação 8

Casos de teste Distância de Hamming Custo
100001001011010 6 1
100001001101001 2 1
100001010011001 6 1
100001001101010 4 1
100001001100110 6 1
100001010100101 6 1
100001001100101 4 1
100001010101001 4 1
100001010010101 8 1
100001001010101 6 1

Fonte: elaborada pelo autora.

A Distância de Hamming máxima é de 12. Logo, analisando os dados da Tabela

16 é possível perceber que houve um aumento no valor da distância e o custo se manteve o

mesmo. Ademais, diferente do resultado do estudo de viabilidade apenas 7 casos de testes foram

selecionados igualmente nos dois cenários.

As soluções também foram analisadas do ponto de vista de fronteira de Pareto. A
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Figura 33 apresenta a fronteira de Pareto (em azul) e as melhores soluções (em vermelho) em

relação a dois objetivos: custo e distância de Hamming. Em comparação com o Cenário 1, é

possível ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram os mesmos.

Figura 33 – Relação entre fronteira de Pareto e casos de teste da Simulação 8 no Cenário 2

Fonte: elaborada pelo autora.

6.2.2.7 Simulação 9 - Cenário 1

Nesta simulação foram consideradas 5 features e 15 contextos, que são apresentados

na Figura 34. Com o Bumblebin, foram gerados 5.952 casos de teste em binário e 1.984 casos de

teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus

retornou os 10 melhores casos de teste em uma média de tempo de 1.03 segundos. Na Tabela

17 são apresentados os casos de teste selecionados pelo Optimus nesta simulação bem como

Distância de Hamming e custo de cada.

Do ponto vista da Fronteira de Pareto (ver Figura 35), pode-se perceber resultados

semelhantes a Simulação 3 em relação a soluções e compromisso entre a distância de Hamming

e o custo.
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Figura 34 – Especificação do sistema para simulação 9

Fonte: elaborada pelo autora.

Tabela 17 – Casos de teste selecionados - Simulação 9

Casos de teste Distância de Hamming Custo
00100010100110101001 6 1
00100010101010100110 4 1
00100010100110101010 4 1
01000010101010101010 2 1
01000010011010101010 4 1
01000010101001101001 6 1
01000010100110011010 6 1
00100010101010101010 2 1
01000010011010101001 6 1
01000010101001100110 6 1

Fonte: elaborada pelo autora.

6.2.2.8 Simulação 10 - Cenário 2

As mesmas etapas e dados do Cenário 1 (Seção 6.2.2.7) foram utilizados para a

execução do Cenário 2, tendo como diferença o parâmetro de cálculo da distância de Hamming

sendo o estado atual do sistema (11010010011010011010, na Figura 34). A média de execução

foi de 1.02 segundos, indicando uma diminuição no tempo de execução comparado com o

Cenário 1, isto pode ocorrer por condições ambientais, como por exemplo processamento da

máquina.

Assim como no Cenário 1, cada caso de teste selecionado foi avaliado individu-

almente, afim de analisar o seu custo individual e sua diversidade de estados. A Tabela 18

apresenta os 10 casos de teste selecionados pelo Optimus.
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Figura 35 – Relação entre fronteira de Pareto e casos de teste da Simulação 9 no Cenário 1

Fonte: elaborada pelo autora.

Tabela 18 – Casos de teste selecionados - Simulação 10

Casos de teste Distância de Hamming Custo
01000010010110010110 6 1
01000010010110101010 6 1
01000010101010011001 6 1
01000010011010010110 4 1
01000010011001101010 6 1
01000010011010011010 2 1
01000010011001010110 6 1
01000010010110011010 4 1
01000010010110011001 6 1
01000010011010101010 4 1

Fonte: elaborada pelo autora.

A Distância de Hamming máxima é de 17. Logo, analisando os dados da Tabela 18

é possível perceber que houve um aumento na média de valor da distância (o Cenário 1 teve

uma média de 4.6 e no Cenário 2 de 5) e o custo se manteve o mesmo. Ademais, diferente do

resultado do estudo de viabilidade apenas 1 caso de teste foram selecionado igualmente nos dois

cenários.

As soluções também foram analisadas do ponto de vista de fronteira de Pareto. A

Figura 36 apresenta a fronteira de Pareto (em azul) e as melhores soluções (em vermelho) em

relação a dois objetivos: custo e distância de Hamming. Em comparação com o Cenário 1, é

possível ver que existem casos de teste com maior variabilidade, mas os resultados relacionados

ao custo se mantiveram os mesmos.
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Figura 36 – Relação entre fronteira de Pareto e casos de teste da Simulação 10 no Cenário 2

Fonte: elaborada pelo autora.

6.2.2.9 Simulação 11 - Cenário 1

Nesta simulação foram consideradas 8 features e 19 contextos, que são apresentados

na Figura 37.

Figura 37 – Especificação do sistema para simulação 11

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 195.840 casos de teste em binário e 65.280 casos
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de teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O Optimus

retornou os 10 melhores casos de teste em uma média de tempo de 85.02 segundos. Na Tabela

19 são apresentados os casos de teste selecionados pelo Optimus nesta simulação bem como

Distância de Hamming e custo de cada.

Tabela 19 – Casos de teste selecionados - Simulação 11

Casos de teste Distância de Hamming Custo
100000000101010101001101010 4 1
000001000101010101010101001 4 1
100000000101001101010100110 6 1
000001000101010011010100110 6 1
000001000101010101010101010 2 1
000001000101010011010101010 4 1
100000000100110100110101010 6 1
100000000100110101010100110 6 1
000001000100110101010101010 4 1
000001000100110101010101010 4 1

Fonte: elaborada pelo autora.

Do ponto vista da Fronteira de Pareto (ver Figura 38), pode-se perceber resultados

semelhantes a Simulação 3 em relação a soluções e compromisso entre a distância de Hamming

e o custo.

Figura 38 – Relação entre fronteira de Pareto e casos de teste da Simulação 11 no Cenário 1

Fonte: elaborada pelo autora.
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6.2.2.10 Simulação 12 - Cenário 2

O Optimus não conseguiu ser executado pelas motivações já citadas (ver Seção

6.2.2.2).

6.2.3 SAS com grande complexidade e variabilidade

6.2.3.1 Simulação 13 - Cenário 1

Para a simulação de um sistema de grande complexidade e variabilidade foram

consideradas 10 features e 17 contextos, que são apresentados na Figura 39.

Figura 39 – Especificação do sistema de grande complexidade e variabilidade

Fonte: elaborada pelo autora.

Com o Bumblebin, foram gerados 392.832 casos de teste em binário e 130.944 casos

de teste relacionados ao primeiro grupo de contexto do estado atual do sistema (010). O tamanho

do caso de teste é de 27, sendo 5 bits relacionados as features e 17 relacionados aos contextos.

O Optimus retornou os 10 melhores casos de teste em uma média de tempo de 330,4

segundos. Na Tabela 20 são apresentados os casos de teste selecionados pelo Optimus nesta

simulação bem como Distância de Hamming e custo de cada.

Assim como nas outras simulações, a Fronteira de Pareto foi analisada (ver Figura

40). Apesar de ter sido submetido a um conjunto de 130.944 casos de teste, o mecanismo
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Tabela 20 – Casos de teste selecionados - Simulação 13

Casos de teste Distância de Hamming Custo
000000100001010011010101010 4 1
100000000001010101010011001 6 1
100000000001001100110101010 6 1
000001000001010011001101010 6 1
000001000001010011010011010 6 1
000000100001001101001101010 6 1
000000100001010100110101010 4 1
000001000001010101001101010 4 1
000000100001010101001101001 6 1
000001000001010101001101001 6 1

Fonte: elaborada pelo autora.

demonstrou bom desempenho, executando em 330,4 segundos e retornando bons casos de teste

em relação a distância de Hamming e custo.

Figura 40 – Relação entre fronteira de Pareto e casos de teste da Simulação 13
no Cenário 1

Fonte: elaborada pelo autora.

6.2.3.2 Simulação 14 - Cenário 2

O Optimus não conseguiu ser executado pelas motivações já citadas (ver Seção

6.2.2.2).
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6.3 Conclusão da avaliação

Considerando os resultados apresentados, pode-se inferir que o mecanismo Op-

timus demonstrou bons resultados na geração de casos de teste, apresentando as seguintes

características:

– Eficiência: O mecanismo foi capaz de gerar os 10 melhores casos de teste em um tempo

relativamente hábil, mesmo lidando com um conjunto de 130.944 casos de teste;

– Qualidade: Os casos de teste gerados pelo Optimus apresentaram um bom compromisso

entre a distância de Hamming e o custo, indicando a capacidade do mecanismo de encontrar

soluções diversificadas e não dominadas;

Ademais, pode-se perceber que o parâmetro de cálculo da Distância de Hamming

pode afetar a seleção dos casos de teste, mas ao utilizar o estado atual do sistema o mecanismo

perde parte do seu desempenho. Também se observou que a divisão do processo de geração de

casos de teste em etapas menores demonstra ser uma estratégia eficaz para garantir a escalabili-

dade. Ao fragmentar a geração, é possível lidar com grandes conjuntos de dados e complexidades

crescentes, evitando sobrecarregar os recursos computacionais.

Em resumo, os resultados obtidos (Tabela 21) indicam que o mecanismo Optimus é

uma ferramenta promissora para a geração de sequência de casos de teste, oferecendo um bom

equilíbrio entre eficiência, qualidade e escalabilidade. Dessa forma, respondendo a pergunta

(Como mecanismo se comporta para os mais complexos SAS?).

Tabela 21 – Resumo dos resultados da avaliação

Simulações Qtd. de casos de testes Tempo Grau de complexidade e variabilidade
1 992 0.92 segundos Baixo
2 992 1.12 segundos Baixo
3 65.408 87 segundos Médio
4 65.408 - Médio
5 1.920 1.10 segundos Médio
6 1.920 1.33 segundos Médio
7 240 1.22 segundos Médio
8 240 1.42 segundos Médio
9 1.984 1.03 segundos Médio
10 1.984 1.02 segundos Médio
11 65.280 85.02 segundos Médio
12 65.280 - Médio
13 130.944 330.4 segundos Grande
14 65.280 - Grande

Fonte: elaborada pelo autora.
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6.4 Ameaças à validade

As principais ameaças à validade avaliadas são relacionadas a validade interna e

externa. A validade interna considera a relação causal entre fatores, avaliando se há influência

de variáveis externas não identificadas que possam comprometer os resultados, enquanto as

ameaças à validade validade externas avaliam a generalização dos resultados obtidos (WOHLIN

et al., 2012).

A implementação do algoritmo NSGA-II apresenta uma ameaça à validade interna

deste trabalho. Para assegurar a implementação correta foram realizados testes com pequenas

populações para avaliar soluções de diferentes níveis de dominância, análise da mutação e

cruzamento para verificar se a soluções estavam dentro das restrições, variação dos tamanhos

dos parâmetros (tamanho da população, número de gerações e probabilidades de cruzamento e

mutação) e avaliação das soluções em relação a convergência para a frente de Pareto.

Outra ameaça à validade interna é a implementação do Bumblebin. Para assegurar o

correto funcionamento do Bumblebin foram realizados testes com diferentes especificações de

SAS (níveis de complexidade e variabilidade), verificando se os casos de teste gerados estavam

consistentes com as informações fornecidas pelas especificações.

A principal ameaça à validade externa é a elaboração manual dos modelos de features

dos SAS utilizados para simulação. Para mitigar foi utilizado como base o modelo de features

do GREat Tour de Marinho et al. (2013) e utilizadas as métricas de avaliação de modelos de

features de Bezerra et al. (2014) para a definição dos sistemas das simulações.

Outra ameaça à validade externa é a quantidade limitada de modelos utilizados na

avaliação. Essa restrição implica que os resultados obtidos não podem ser generalizados para

Self-Adaptive Systems de todos os tamanhos. Para mitigar essa limitação, foram realizadas 14

simulações utilizando diferentes configurações, variando a quantidade de features e contextos.
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7 CONCLUSÃO

Este capítulo apresenta as nossa considerações finais com uma visão geral do meca-

nismo proposto nesta dissertação (Seção 7.1), os resultados obtidos pela pesquisa (Seção 7.2), as

limitações (Seção 7.3) e os trabalhos futuros (Seção 7.4).

7.1 Visão geral

O crescente uso de dispositivos móveis e a necessidade de que estes funcionem

ininterruptamente em qualquer ambiente resulta, consequentemente, em sistemas mais complexos.

Uma vez que a indústria de software busca se adaptar a esta demanda, sistemas altamente

distribuídos são desenvolvidos para integrar os mais diversos dispositivos e fluxos de dados em

diferentes contextos. Contudo, desenvolver, configurar e manter esses sistemas é uma tarefa

difícil, sujeita a erros e custosa. A autoadaptação surge como uma solução para auxiliar esta

tarefa. Um sistema autoadaptativo deve responder às alterações do ambiente cumprindo os

seus requisitos em tempo de execução. Assim, um Self-Adaptive Systems (SAS) é capaz de

automaticamente modificar-se em resposta às mudanças em seu ambiente operacional.

Apesar de suas vantagens, as adaptações em tempo de execução podem levar a falhas,

bugs e à degradação do desempenho, uma vez que é desafiador prever e tratar todos os cenários

possíveis que podem surgir durante a execução do sistema. Por isso, testar esses sistema não é

uma tarefa trivial.

Essa atividade de teste para SAS torna-se complexa devido a: múltiplas adaptações

realizadas em tempo de execução, quantidade de cenários a partir da diversidade de adaptações e

dificuldade de gerar automáticamente casos de teste em um ambiente dinâmico.

Sendo assim, o teste em tempo de execução surge como uma alternativa promissora

para a validação de sistemas dinamicamente adaptativos. Contudo, a ausência de mecanismos

eficazes para gerenciar e manter esses testes em tempo de execução representa um desafio

significativo. A principal preocupação reside no alto custo computacional associado a essa

abordagem.

A partir dessa problemática, este trabalho prôpos o Optimus cujo objetivo é auxiliar

na geração de sequências de casos de teste com maior variabilidade de estados do sistema com

menor custo. Por sua característica de desacoplamento, o Optimus é capaz de ser utilizado por

abordagens de teste que utilizem um modelo de features na especificação do SAS a ser testado.
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Ademais, a ferramenta Bumblebin foi desenvolvida para auxiliar na geração dos

casos de teste e valoração dos custos. Por meio do Bumblebin, foi possível gerar e converter

casos de teste em binário através de um arquivo de especificação. Além disso, esta ferramenta

auxiliou na definição dos custos associados a cada caso de teste, otimizando a utilização do

Optimus.

Para avaliar o mecanismo, foi realizado um estudo de viabilidade com o objetivo de

responder a pergunta: "É viável utilizar o mecanismo para gerar sequências de casos de teste

otimizadas?"Com os resultado foi possível afirmar que o Optimus alcança sequências de casos

de teste ótimas em relação a custo e diversidade de estados.

Por fim, para avaliar o impacto da complexidade dos SAS sobre o Optimus foram

realizadas simulações com sistemas sinteticamente gerados. Três simulações foram executadas

por ordem de complexidade (baixa, média e alta). Os resultados das simulações indicaram que

o Optimus consegue manter a eficiência em relação ao tempo de execução, como também a

qualidade dos casos de teste selecionados. Adicionalmente, foi possível observar que dividir o

processo de geração dos casos de teste demonstra ser uma estratégia eficaz para diminuição de

tempo de execução e custo computacional, asism como o caso de teste parâmetro para o cálculo

da distância afeta o desempenho do mecanismo.

7.2 Resultados

Os principais resultados desta pesquisa estão listados a seguir:

– Optimus. Um mecanismo para geração de sequências de casos de teste para SAS utilizando

NSGA-II para minimizar o custo de execução e maximizar a cobertura de teste. O

mecanismo recebe casos de teste em binário e seus respectivos custos, e por meio de

funções fitness seleciona os casos de teste ótimos. Ao final, o mecanismo retorna uma

sequência de casos de teste e seus respectivos custos.

– Bumblebin. É uma ferramenta de geração binária de casos de teste. Este artefato permitiu

que através de um arquivo JSON com especificações do SAS, fossem geradas todas

as combinações possíveis entre features e contextos para definição dos casos de teste.

Adicionalmente, a ferramenta seleciona todos os casos de teste relacionados ao estado

atual do sistema e seus respectivos custos.

Além dos resultados da dissertação propriamente dita, citados anterioremente, du-

rante o período de mestrado foram publicados 2 artigos, listados na Tabela 22, diretamente
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relacionados ao tema deste trabalho. O artigo (COSTA et al., 2023) apresenta a ideia inicial da

dissertação e o artigo (COSTA. et al., 2024) descreve a revisão sistemática da literatura descrita

no Capítulo 3.

Tabela 22 – Artigos relacionados ao tema desta pesquisa

Autores Trabalho Evento Qualis (2024)
COSTA, I. N.; AN-
DRADE, R. M. C. ;
SANTOS, I. S.

Optimus: Mecanismo de oti-
mização de execução de tes-
tes em sistemas autoadaptati-
vos

XXII Simpósio Brasileiro de
Qualidade de Software: XXI
Workshop de Teses e Disser-
tações em Qualidade de Soft-
ware (2023)

-

COSTA, I. N.; SAN-
TOS, I. S. ; AN-
DRADE, R. M. C.

Testing on Dynamically
Adaptive Systems: Challen-
ges and Trends

26th International Confe-
rence on Enterprise Informa-
tion Systems (2024)

A3

Fonte: elaborada pelo autora.

Outro artigo, relacionado à área de testes, foi publicado durante o período do mes-

trado, mas não está diretamente ligado ao tema principal desta pesquisa. Este artigo (COSTA et

al., 2022) apresenta uma biblioteca para auxiliar na execução do Monkey Testing1 em várias telas

de um dispositivo móvel. O trabalho foi apresentado no 17th Iberian Conference on Information

Systems and Technologies (CISTI) em 2022.

7.3 Limitações

Após a finalização deste trabalho, foram identificadas limitações relacionadas às

decisões de design do mecanismo e ao próprio escopo da pesquisa. A seguir são apresentadas as

principais limitações:

– Execução da sequência de teste. Apesar das simulações evidenciarem que o mecanismo

produz casos de teste ótimos em relação a custo e variabilidade, a execução da sequência

de teste em um ambiente real poderia fornecer dados relacionados a desempenho e comu-

nicação com uma ferramenta ou abordagem de teste. Embora a execução de testes não

estvesse incluída no escopo deste trabalho, a realização de testes poderia contribuir para a

identificação de possíveis melhorias no Optimus.

– Modelo de features e contextos. Embora o modelo seja adequado para os SAS, a sua

utilização limita a utilização do Optimus. Para diminuir o impacto dessa limitação foi

apresentado um modelo menos complexo, uma vez que é necessária a especificação do

SAS usando este modelo.

1 O Monkey é um programa que gera fluxos pseudoaleatórios de eventos do usuário em um dispositivo.
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– Atribuição de pesos iguais aos objetivos. Apesar do SAS considerar a mesma importância

à diversidade de estados e ao custo, a possibilidade de atribuir pesos distintos a esses

objetivos permitiria um ajuste mais fino das soluções, possibilitando que o analista de teste

priorize aspectos específicos de acordo com suas necessidades

– Criação dos dados sintéticos. Os dados sintéticos foram gerados manualmente. Apesar

de utilizar do modelo de features e simular sistemas reais, a utilização de sistemas reais

possibilitaria uma visualização concreta de como o mecanismo se comportaria no ambiente

real.

7.4 Trabalhos futuros

Nesta Seção são apresentadas possibilidades de evolução desta pesquisa e direções

para s novos desafios que surgiram.

– Pesos diferentes para os objetivos. O Optimus atualmente trata dos dois objetivos

com pesos iguais. Um direcionamneto seria adaptar abordagem multiobjetiva para se

comportar como uma abordagem de objetivo único combinando as funções objetivo em

uma única função de aptidão, atribuindo pesos a cada objetivo de acordo com sua meta

como discutido no trabalho de Bajaj e Sangwan (2019). Ao variar os pesos, seria possível

ajustar o comportamento do Optimus de acordo com o grau de importância dado aquele

objetivo.

– Utilização de outras metaheurísticas. A versão atual do mecanismo utiliza a metaheurís-

tica NGSA-II. Ao utilizar outras metaheurísticas pode-se permitir diversificar as soluções

encontradas e encontrar pontos de melhoria no mecanismo. Ademais, a metaheurística

atual poderia ser combinada com uma nova, a fim de tomar proveito das vantagens de

cada uma. O trabalho de Ramirez et al. (2018) apresenta algumas metaheurísticas e suas

aplicações dentro do SBSE.

– Avaliação com execução dos testes. O presente trabalho conduziu a avaliação por meio

de simulações com o objetivo de verificar a eficácia e viabilidade do mecanismo. Novas

avaliações podem ser realizadas para quantificar a cobertura de falhas proporcionada pelas

sequências de teste, permitindo avaliar sua qualidade.

– Geração dos casos de testes de forma implícita. A versão atual do mecanismo Optimus

necessita do Bumblebin para geração dos casos de teste. Pode-se explorar a geração dos

casos de teste implícita, através de regras para geração e validação dos casos de teste no
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próprio mecanismo. Desse modo, torna-se possível avaliar o impacto na execução e no

desempenho do mecanismo por meio de uma metodologia alternativa de geração de casos

de teste.
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APÊNDICE A – PSEUDO-CÓGIDO: GERAÇÃO DE CASOS DE TESTE

Algoritmo 2: Geração de Casos de teste: Combinando Features e contextos
Require: Array A (Features) e lista de dicionários L (Contextos)
Ensure: Lista de strings combinadas R

1: R← lista vazia
2: if algum elemento de L não é dicionário then
3: Erro: “Lista inválida”
4: end if
5: for cada v em A do
6: C← todas as combinações possíveis dos valores de cada dicionário em L
7: for cada combinação c em C do
8: s← string formada por v seguido dos valores de c
9: Adicione s em R

10: end for
11: end for
12: return R
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APÊNDICE B – PSEUDO-CÓGIDO: SELEÇÃO DE TESTES CONFORME O

ESTADO DO SISTEMA

Algoritmo 3: Filtrar Casos de teste a partir do primeiro grupo de contexto
Require: Array de strings A (Todos os casos de teste gerados), contexto inicial C, tamanho do

contexto inicial P
Ensure: Lista de Casos de teste filtrados pelo Contexto R

1: R← lista vazia
2: for cada s em A do
3: if P < tamanho de s then
4: if substring de s começando em P é igual a C then
5: Adicione s em R
6: end if
7: end if
8: end for
9: return R
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