

A CONSTRUTIBILIDADE NO PROCESSO DE PROJETO DE EDIFICAÇÕES

Marco Antonio Arancibia RODRÍGUEZ

Eng. Civil, M.Sc., Doutorando em Engenharia de Produção da UFSC, Professor Titular da UNERJ/SC. Rua Tijucas, n° 243/202, CEP 89204-020, Joinville (SC) Brasil - Correio eletrônico: marancibia@terra.com.br

Luiz Fernando Mahlmann HEINECK

Eng. Civil, Phd, Professor Titular do PPGEP – UFSC. Departamento de Engenharia de Produção e Sistemas, CTC/EPC, Campus Universitário, Trindade, Cx. Postal 476, CEP 88040-900, Florianópolis (SC), Brasil - Correio eletrônico: heineck@eps.ufsc.br

RESUMO

O presente trabalho apresenta a aplicação dos conceitos de construtibilidade no processo de projeto de edificações, sob a ótica do trabalho desenvolvido pelo coordenador de projeto e os projetistas. Primeiramente são revisados os conceitos de relacionados à construtibilidade e as diretrizes que podem ser aplicadas para melhora-la na etapa de projeto. Logo, a aplicação dessas é exemplificada pelas ações tomadas pelo primeiro autor na a coordenação do projeto de um empreendimento comercial. Finalmente são indicadas as conclusões sobre a aplicação da construtibilidade no processo de projeto.

1. INTRODUÇÃO

Existe nos últimos anos uma preocupação maior dos participantes do processo de construção de edificações com o processo de projeto; pois consultores e pesquisadores nacionais tais como Melhado (1998), Tzortzopoulos (1999) e Rodríguez e Heineck (2001), apontam o grande potencial de melhoria do desempenho das edificações a partir da gestão desse processo.

Embora o ganho a obter com a adequada gestão do projeto seja evidente, ainda não é possível quantificar o mesmo de forma exata em termos de desempenho ou custo. Autores como Picchi (1993) e Rodríguez e Heineck (2001) apontam que uma adequada gestão do processo de projetos pode significar uma redução de 6% do custo direto das obras.

Sendo um dos objetivos da gestão do projeto a racionalização de recursos; na sua obtenção podem ser empregados os conceitos de construtibilidade, sistemas de gestão da qualidade e coordenação de projetos entre outras ferramentas. A seguir é feita uma breve revisão dos conceitos de racionalização, construtibilidade e coordenação de projetos, necessária ao desenvolvimento dos seguintes itens.

1.1 Racionalização

Sabattini (1989) separa a racionalização na construção em dois níveis: para o setor e para as técnicas construtivas. Neste último contexto o autor define a racionalização construtiva como:: "um processo composto por um conjunto de ações que tenham como objetivo otimizar o uso dos recursos materiais, humanos, organizacionais, energéticos, temporais e financeiros disponíveis na construção em todas suas fases".

1.2 Construtibilidade

A construtibilidade é definida pelo Construction Industry Institute CII (1987) apud Griffith e Sidwell (1995) como: "O uso ótimo do conhecimento e da experiência em construção no planejamento, projeto, contratação e trabalho no canteiro, para atingir os objetivos globais do empreendimento".

Por sua vez, Griffith e Sidwell (1995) definem a construtibilidade no projeto como a "consideração detalhada dos elementos de projeto para atender os requerimentos técnicos e financeiros do empreendimento, considerando quando possível a relação projeto - construção para melhorar a efetividade do projeto e com isto subsidiar o processo de construção no canteiro".

A partir dessas definições, pode-se dizer que a construtibilidade refere-se ao emprego adequado do conhecimento e da experiência técnica em vários níveis para racionalizar a execução dos empreendimentos, enfatizando a inter-relação entre as etapas de projeto e execução. A construtibilidade no projeto pode ser considerada como a aplicação desse conhecimento e experiência durante o desenvolvimento dos projetos, junto as diretrizes gerais que permitam racionalizar a execução dos empreendimentos.

1.3 Coordenação de projetos

A coordenação de projetos pode ser definida como: um processo que compreende a organização das etapas do projeto, a análise, controle e compatibilização das soluções técnicas, a elaboração de projetos executivos e o acompanhamento do desempenho desses.

Neste contexto geral, pode-se então dizer que a aplicação do conceito de construtibilidade está implicitamente inserido dentro da coordenação de projetos, tendo como objetivo específico racionalizar os recursos e como objetivo geral melhorar o desempenho do empreendimento, eles podem assim, participar de um sistema de gestão da qualidade.

2. CONSTRUTIBILIDADE NO PROJETO

Para uma adequada gestão do processo de projeto e aplicação de conceitos como construtibilidade, esse deve ser dividido em etapas. Tomando como base modelos indicados por diversos pesquisadores como Melhado (1996) apud Melhado (1998), Tzortzopoulos (1999) e Rodríguez e Heineck (2001), na Figura 1 é apresentado um modelo geral para esse processo, onde o conceito de construtibilidade pode ser aplicado em cada uma das etapas apresentadas. Nelas pode-se identificar os seguintes participantes: proprietário; coordenador do projeto; engenheiros e encarregados de obra; arquiteto; engenheiro de estruturas; engenheiros de sistemas prediais e outros consultores (custos, solos, tecnologias construtivas).

Nessa realidade, a seguir são apresentadas algumas diretrizes para o coordenador de projetos e os projetistas.

2.1 Diretrizes de construtibilidade para o coordenador de projetos

O coordenador de projetos é o responsável por realizar e fomentar ações de organização controle e troca de informações entre os projetistas, para que os projetos sejam elaborados de forma organizada, nos prazos especificados e cumprindo os objetivos definidos para cada um deles. Sob a ótica da construtibilidade, podem ser desempenhadas as seguintes ações a serem realizadas pelo coordenador:

- Estabelecer junto ao proprietário os requisitos e planos globais de construtibilidade;
- Informar aos demais participantes os requisitos de construtibilidade;
- Analisar os resultados de desempenho em empreendimentos similares já executados;
- Analisar as soluções alternativas de projeto junto aos projetistas e proprietário, distinguindo quais as características que fazem uma solução particular mais efetiva que outra;
- Identificar as restrições de projeto (custo, prazo, clima, materiais, componentes, mão-de-obra);
- Identificar os níveis de complexidade dos diferentes sistemas prediais;
- Identificar as interfaces entre materiais e elementos construtivos; e
- Identificar a complexidade da seqüência de operações no canteiro as tolerâncias a serem consideradas.

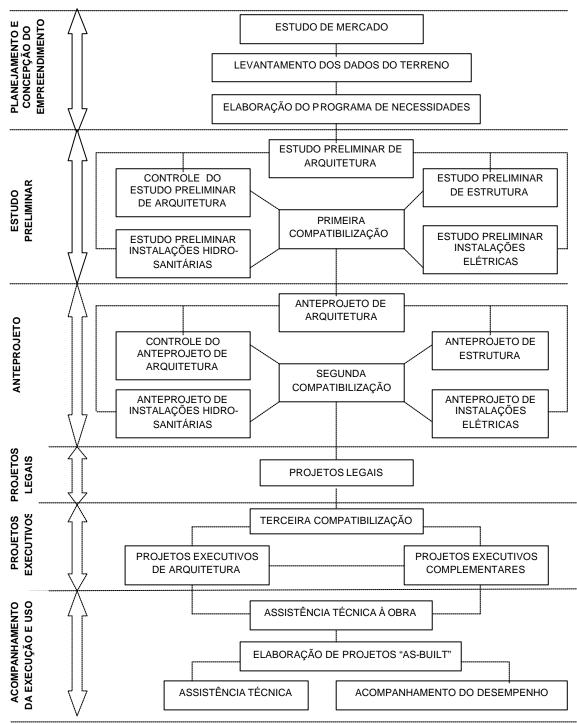


Figura 1 – Modelo do processo de projeto de edificações

2.2 Diretrizes de construtibilidade para os projetistas

Os projetistas quando inseridos num processo de gestão do processo de projeto como o apresentado na Figura 1, deverão se preocupar com a racionalização das soluções técnicas, a racionalização do custo do trabalho (que essas soluções implicam) e com a racionalização dos custos de operação e manutenção. Em função das características dos diferentes tipos de sistemas prediais, cada projetista deverá ter uma abordagem particular, mas podem ser indicadas as seguintes diretrizes gerais para todos os projetistas, conforme Griffith e Sidwell (1995):

- Simplificar os detalhes de projeto para simplificar a execução;
- Projetar para a habilidade e a experiência de mão-de-obra disponível;
- Projetar para següências práticas e simples das operações de construção;

- Projetar para substituições e tolerâncias práticas dos materiais/componentes no local do trabalho;
- Projetar para padronizar e usar o número máximo de repetições quando apropriado;
- Projetar para simplificar as substituições; e
- Projetar para uma fácil comunicação com o construtor.

3. APLICAÇÃO DAS DIRETRIZES DE CONSTRUTIBILIDADE NO PROJETO

A aplicação de diretrizes tanto pelo coordenador como pelos projetistas é exemplificada de modo sucinto nas figuras 2 e 3, na forma de definições, medidas e ações tomadas durante a coordenação do projeto de um empreendimento comercial de 10.000 m2 distribuídos em 11 andares, sendo atualmente desenvolvido em Joinville/SC. Os exemplos da figura 2 referem-se ao projetista de sistemas hidro-sanitários.

Diretrizes de	Definições, medidas e ações
construtibilidade	
Estabelecer junto ao proprietário dos requisitos e planos globais de construtibilidade	 Projeto que permita opções de leiaute nas salas e sua integração num mesmo andar. Projeto que permita uma rápida execução da estrutura da torre (4 meses). Opção de aparelhos de ar condicionado de parede e tipo <i>split</i> nas salas Amplas áreas de circulação nos andares Custo de execução por m2 sem terreno de 0,75 CUB a 0,80 CUB médio/ SC
Informar aos projetistas dos requisitos de construtibilidade	 Foram estabelecidos o cronograma geral do projeto e os critérios de fluxo de informações entre proprietário, coordenador e projetistas. Foi estabelecido cronograma específico para cada projetista, com definição de etapas ou pacotes de trabalho a serem entregues; assim como as informações externas necessárias para concluir cada etapa. Por exemplo, para o projetista de instalações concluir o projeto de furação, ele deverá receber antecipadamente o arquivo digital de projeto executivo de arquitetura, ajustado à forma de estrutura e com o posicionamento final de peças sanitárias e prumadas.
Analisar resultados de desempenho em empreendimentos similares já executados	 O espaço de circulação nos andares não deverá ser maior que 25% da área do pavimento, para que a relação final área real/área privativa das unidades não ultrapasse de 1,7; valor máximo admitido pelo mercado imobiliário. Análise de projetos similares já executados indica que de preferência as vagas de garagem não devem ser presas (duplas). Deverá ser tomado cuidado especial no dimensionamento de elevadores e cálculo de tráfego, pois o atendimento às normas atuais não tem proporcionado o nível de conforto desejado aos usuários.
Análise de soluções alternativas de projeto	 Os projetistas de instalações sugerem emprego de sistemas de distribuição nos andares entre o forro rebaixado e a laje, com espaço entre forro e laje de H=30 cm nos banheiros e H=20 cm no restante das áreas. Outra alternativa é o emprego de piso elevado. Em cada caso verificar o pé direito necessário do pavimento tipo. O tipo de estrutura mais econômica que atende aos requisitos de custo e prazo do cliente é de concreto armado com emprego de lajes planas nervuradas, treliçadas ou protendidas.
	 Volumes, faixas e ressaltos sobre os panos da fachada serão executados com elementos de baixa densidade após a execução da estrutura. As fundações profundas serão executadas com estaca hélice na região da torre e perto da divisa com edificação vizinha de estabilidade comprometida. No restante da edificação serão cravadas estacas pré-moldadas. As opções de aparelhos de ar condicionado condicionam a criação de espaços externos às salas, que comportarão a unidade externa do <i>split</i> ou o volume externo do aparelho de parede.
Identificar restrições de projeto	 Foi identificada edificação vizinha com problemas de estabilidade ao longo de 30% de uma das divisas. Isto implica que a edificação a ser projetada deverá ficar afastada desse imóvel nessa região numa distância aproximada de 2m. A topografia e o nível do lençol freático vão interferir na circulação e execução de serviços no canteiro, portanto o piso do subsolo será executado na seqüência das fundações.

Figura 2 – Aplicação de diretrizes de construtibilidade para o coordenador de projetos

Diretrizes de	Definições, medidas e ações
construtibilidade	
Simplificar detalhes de	Emprego de caixas de passagem padronizadas e pré-fabricadas.
projeto para simplificar a	Parede única para instalações por banheiro. Shaft unificado para Wcs lado a lado
execução no canteiro	Evitar interferência de descidas de pontos de esgoto com vigas.
Projetar para a habilidade	A execução das instalações será feita por empresa especializada com supervisão da
e experiência da mão-de-	engenharia. Portanto, o dimensionamento será rigoroso para atender às normas e aos
obra disponível	requerimentos de montagem, sem nenhum critério de super-dimensionamento.
Projetar para seqüências	• Os pacotes de trabalho serão separados pelas as etapas a serem executadas na
práticas e simples de	obra: drenagem e captação de águas de superfície, furações, distribuição dos
operações de construção	pavimentos, prumadas, detalhes isométricos, detalhes de esgoto e coletores
Projetar para padronizar e	• Serão seguidos os padrões da construtora a respeito de altura de pontos de
aumentar repetições	água/esgoto em parede e altura de ramais horizontais de água esgoto nas paredes
Projetar para substituições	As passagens para bacias sanitárias e ralos terão uma folga de 2,5 cm de cada lado.
e tolerâncias práticas no	• As medidas de tiros, e locação de pontos em planta sempre serão dadas em
canteiro	centímetros, com aproximação de +/- 0,5 cm.
Projetar para simplificar	 Consideração de inspeções no pé das prumadas para reparos e manutenções.
substituiçoes	 Considerar acesso a dutos de banheiros pelas áreas comuns quando possível.
	• As escalas deverão seguir a norma da construtora. Plantas de distribuição 1:50 ou
Projetar para uma fácil	1:75 e detalhes de esgoto e isométricos 1:20 ou 1:25.
comunicação com o	• Em cada planta e detalhe será indicado o código das conexões e tubulações
construtor	empregadas, segundo fabricante a ser indicado pelo proprietário.
	 Todos os cruzamentos de tubulações deverão ser mostrados nas plantas e detalhes.

Figura 3 – Aplicação de diretrizes de construtibilidade para o projetista de instalações

4. CONCLUSÕES

Do presente trabalho e do acompanhamento do projeto de diferentes empreendimentos pode-se concluir que a aplicação da construtibilidade no processo de projeto faz parte de sua gestão e deveria ser encorajada pelos participantes comprometidos com a racionalização e melhoria do desempenho do processo global dos empreendimentos.

Verifica-se que o coordenador de projetos é o profissional mais indicado para gerenciar a aplicação do conhecimento técnico e experiência da execução durante o projeto, tanto em nível geral como de detalhamento, sendo essencial a participação dos projetistas e dos responsáveis pela execução, para assim obter uma efetiva racionalização das soluções técnicas e um melhor desempenho das edificações.

REFERÊNCIAS BIBLIOGRÁFICAS

- GRIFFITH A., SIDWELL T., Constructability in building and engineering projects. London, Macmillan, 1995.
- MELHADO, S.B. Metodologia de projeto voltada à qualidade na construção de edifícios: metodologia envolvendo os novos procedimentos de projeto. In: VII Encontro nacional de tecnologia do ambiente construído, ENTAC, 1998. **Anais**. Florianópolis.
- PICCHI; F.A. **Sistemas de qualidade: uso em empresas de construção de edifícios.** São Paulo: Escola Politécnica, 1993. Tese (Doutorado em Engenharia) USP.
- RODRÍGUEZ, M.A.A.; HEINECK, L..F.M. Coordenação de projetos: uma experiência de 10 anos dentro de empresas construtoras de médio porte. In: Il Simpósio brasileiro de gestão da qualidade e organização do trabalho no ambiente construído, **Anais**, Fortaleza, 2001
- SABATTINI, E.H. **Desenvolvimento de métodos, processos e sistemas construtivos: formulação e aplicação de uma metodologia**. EPUSP, São Paulo, 1989. (Tese de Doutorado).
- TZORTZOPOULOS, P. Contribuições para o desenvolvimento de um modelo do processo de projeto de edificações em empresas construtoras incorporadoras de pequeno porte. Porto Alegre: CPGEC UFRGS, 1999. (Dissertação de Mestrado).