
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

ERICK LIMA TRENTINI

SOLUÇÕES EM DETECÇÃO DE ANOMALIAS EM SÉRIES TEMPORAIS

MULTIVARIADAS UTILIZANDO MODELOS PREDITIVOS

FORTALEZA

2021



ERICK LIMA TRENTINI

SOLUÇÕES EM DETECÇÃO DE ANOMALIAS EM SÉRIES TEMPORAIS

MULTIVARIADAS UTILIZANDO MODELOS PREDITIVOS

Dissertação apresentada ao Curso de Mestrado
em Ciência da Computação do Programa de
Pós-Graduação em Ciência da Computação do
Centro de ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de mestre em Ciência da Computação.
Área de Concentração: Ciência de Dados

Orientador: Prof. Dr. José Antônio Fer-
nandes de Macedo

Coorientadora: Profª. Drª. Ticiana Linha-
res Coelho da Silva

FORTALEZA

2021



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

T729s Trentini, Erick Lima.
    Soluções em detecção de anomalias em séries temporais multivariadas utilizando modelos preditivos /
Erick Lima Trentini. – 2023.
    53 f. : il. color.

     Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Ciência da Computação, Fortaleza, 2023.
     Orientação: Prof. Dr. José Antônio Fernandes de Macedo.
     Coorientação: Profa. Dra. Ticiana Linhares Coelho da Silva.

    1. Séries temporais. 2. Detecção de anomalias. 3. Redes neurais. 4. Descoberta de períodos. 5.
Ensembles. I. Título.
                                                                                                                                         CDD 005



ERICK LIMA TRENTINI

SOLUÇÕES EM DETECÇÃO DE ANOMALIAS EM SÉRIES TEMPORAIS

MULTIVARIADAS UTILIZANDO MODELOS PREDITIVOS

Dissertação apresentada ao Curso de Mestrado
em Ciência da Computação do Programa de
Pós-Graduação em Ciência da Computação do
Centro de ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de mestre em Ciência da Computação.
Área de Concentração: Ciência de Dados

Aprovada em: 30 de Abril de 2021

BANCA EXAMINADORA

Prof. Dr. José Antônio Fernandes de Macedo (Orientador)
Universidade Federal do Ceará (UFC)

Profª. Drª. Ticiana Linhares Coelho da Silva (Coorientadora)
Universidade Federal do Ceará (UFC)

Prof. Dr. Leopoldo Melo Júnior
Universidade Federal do Ceará (UFC)

Prof. Dr. César Lincoln Cavalcante Mattos
Universidade Federal do Ceará (UFC)



À minha mãe e minha vó que pavimentaram

todos os caminhos que eu percorri. À minha

namorada que sempre me apoiou e incentivou.

Aos meus amigos que sempre acreditaram que

eu conseguiria.



AGRADECIMENTOS

À minha mãe que sempre me apoiou e ajudou em todos os momentos da vida e à

minha vó que sempre foi o pilar e a inspiração para todos da família.

Aos meus orientadores José Macedo e Ticiana Linhares, e ao meu amigo Leopoldo

Melo que me acompanharam e orientaram por todo o mestrado e foram pilares importantes para

a produção deste trabalho.

À minha namorada que esteve sempre ao meu lado durante todos esses anos desde o

início da graduação e me apoiou e incentivou em todas as decisões tomadas.

Aos meus colegas e amigos do Insight Data Science Lab que fizeram grande parte

do meu amadurecimento profissional e científico.

Aos meus amigos e minha família que sempre me apoiaram e me deram forças para

seguir em frente.

À Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUN-

CAP) pelo financiamento parcial deste trabalho, que contribuiu significativamente para seu

desenvolvimento.

Por fim, ao Doutorando em Engenharia Elétrica, Ednardo Moreira Rodrigues, e seu

assistente, Alan Batista de Oliveira, aluno de graduação em Engenharia Elétrica, pela adequação

do template utilizado neste trabalho para que o mesmo ficasse de acordo com as normas da

biblioteca da Universidade Federal do Ceará (UFC).



“I rarely end up where I was intending to go, but

often I end up somewhere I needed to be.”

(Douglas Adams)



RESUMO

Detecção de anomalias em séries temporais é uma área de estudo em rápido crescimento

atualmente, devido ao aumento exponencial da criação de novos dados temporais produzidos

por sensores de diversos contextos, como, por exemplo, a Internet das Coisas (IoT). Muitos

modelos preditivos foram propostos ao longo dos anos, e muitos trazem resultados promissores

na diferenciação de pontos normais e anômalos nas séries temporais. Neste trabalho, serão

propostas três contribuições. Em uma delas, buscamos encontrar e combinar os melhores

modelos preditivos em detecção de anomalias em séries temporais, para que as diferentes

estratégias e diferentes parâmetros na criação dos modelos possam contribuir para a análise

das séries, propondo um ensemble baseado em modelos chamado TSPME-AD (Time Series

Prediction Model Ensemble for Anomaly Detection, ou Ensemble de Modelos Preditivos em

Séries Temporais para a Detecção de Anomalias). O TSPME-AD utiliza os modelos preditivos

do estado-da-arte e combina seus scores de anomalias com uma função ponderada. As outras

duas contribuições desse trabalho são uma técnica dinâmica de segmentação de janelas, que

utiliza a periodicidade e o formato das séries para facilitar o treinamento dos modelos e a

descoberta de padrões, e um novo modelo de auto-encoder que modifica a estrutura de um dos

modelos do estado-da-arte. A efetividade das propostas do trabalho é analisada com o uso de

dois conjuntos de dados reais, sendo esses os dados de um ano de demanda de energia elétrica e

o banco de dados de eletrocardiogramas do MIT. Com os experimentos, demonstramos que a

técnica de ensemble proposta melhora o score F1 em até 22% comparado com o melhor score

dentre os modelos individuais que a compõem, com nossa função de combinação específica

apresentando uma melhora de até 13% com relação a outras funções de combinação mais simples.

Também demonstramos que nossa nova arquitetura de auto-encoder, combinada com a nova

estratégia de segmentação dinâmica de janelas, consegue melhorias de até 25% no score F1

comparado com uma das técnicas de auto-encoder do estado-da-arte, e uma melhoria de até 64%

comparado com um modelo de LSTM empilhada.

Palavras-chave: séries temporais; detecção de anomalias; redes neurais; descoberta de períodos;

ensembles.



ABSTRACT

Time-series anomalies detection is a fast-growing area of study, due to the exponential growth of

new data produced by sensors in many different contexts as the Internet of Things (IoT). Many

predictive models have been proposed, and they provide promising results in differentiating

normal and anomalous points in a time-series. In this work, we provide three contributions. We

aim to identify and combine the best models for detecting anomalies in time-series, so that the

different strategies or parameters of the models can contribute to the time series analysis by

proposing a model-centered ensemble called TSPME-AD (stands for Time Series Prediction

Model Ensemble for Anomaly Detection). TSPME-AD uses state-of-the-art predictive models,

combining their anomaly scores using a weighted function. Other contributions are a dynamic

window breaking technique based on scanning thresholds, leveraging the periodicity and shape

of the series to generate windows that aid in training and testing models, and a new auto-encoder

predictive model. The effectiveness of our proposals is analyzed using two real-world time-series

datasets, a year of power demand data, and the MIT electrocardiogram database. We show that

our ensemble technique improves on the F1 score up to 22% on the best score of the individual

models composing the ensemble, with our specific combination function improving on simpler

functions on up to 13% F1 score increase. We also show that our new auto-encoder architecture,

combined with the new window breaking technique, can have an up to 25% F1 score increase

compared to another proposed auto-encoder technique, and a 64% score increase over a stacked

LSTM model.

Keywords: time series; anomaly detection; neural networks; period discovery; ensembles.
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1 INTRODUÇÃO

Preços de ações, monitoramento do sono e trajetórias de objetos móveis são conjuntos

de dados que frequentemente apresentam alguma noção de tempo. Quando um ou múltiplos

parâmetros de algum desses contextos são coletados em uma sequência de tempo, obtém-se o

que é chamado de série temporal.

A coleta de grandes volumes de dados de séries temporais abre várias oportunidades

de descobertas de padrões desconhecidos nesses dados, assim como a possibilidade de identi-

ficação de desvios nesses padrões, os quais podem indicar informações muito relevantes. Por

exemplo, médicos podem buscar anomalias no padrão de sono de um paciente para investigar

algum diagnóstico. Uma aplicação de trajetórias em mapa pode identificar anomalias no fluxo de

veículos em uma via e tomar decisões ideais de trajetória em tempo real para seus usuários. Apli-

cações bancárias podem detectar anomalias nos fluxos de transferências de usuários, alertando

sobre possíveis fraudes em tempo real, entre outras inúmeras aplicações possíveis.

Existem várias abordagens para o problema de detecção de anomalias em séries

temporais. Diversas técnicas são apresentadas na literatura, incluindo modelos preditivos,

baseados em clusterização, em distância, entre outros (MENG et al., 2018). Devido à dificuldade

de modelar séries temporais, especialmente por conta do fator sequencial dos dados, o estado da

arte tem investigado redes neurais utilizando LSTM (HOCHREITER; SCHMIDHUBER, 1997)

para modelar o comportamento normal das séries temporais e utilizar desvios do comportamento

padrão para detectar anomalias, sem a necessidade de um threshold pré-determinado ou fase de

pré-processamento (MALHOTRA et al., 2015; MALHOTRA et al., 2016).

Os modelos baseados em LSTM são muito dependentes de um grande conjunto

de dados. No entanto, como as anomalias, por definição, são eventos raros no mundo real,

os modelos preditivos se beneficiam do fato de que a maior parte dos dados disponíveis para

treinamento é composta por séries sem anomalias. Essa abordagem baseia-se na premissa de que,

ao treinar um modelo para reconstruir pontos de uma série temporal normal, ele será incapaz de

reconstruir adequadamente uma série que contenha um ou mais pontos anômalos, resultando em

erros de reconstrução atípicos, que são utilizados para identificar as anomalias.

Este trabalho investiga um problema desafiador, pois a detecção de anomalias é

realizada sobre séries temporais multivariadas. Como apresentado em (WANG et al., 2018),

anomalias podem ocorrer em sub-conjuntos de dimensões, os locais e tamanhos dessas anomalias

podem variar entre as diferentes dimensões. Além disso, uma série com anomalias pode parecer
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normal em suas componentes individuais, mas a combinação delas revela a anomalia.

1.1 Definição do Problema

Considere a série temporal multivariada X = [x(1),x(2), . . . ,x(n)] tal que x(i) ∈ R
m

é um vetor m-dimensional x(i) = [x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
m ] no ponto t = i. Normalmente, os modelos

preditivos procuram prever o próximo ponto, dada uma série como entrada. Ou seja, para um

modelo preditivo M e uma série temporal X = [x(1),x(2), . . . ,x(n)], M(x(i)) = x(i+1). Alguns

modelos podem variar um pouco desta perspectiva, como, por exemplo, ao tentar prever mais

de um ponto no futuro, M(x(i)) = [x(i+1),x(i+2)], ou reconstruindo a série de forma retroativa,

M(x(i)) = x(i−1).

Dado um modelo preditivo M e uma série temporal X , Y = M(X) representa a

sequência gerada a partir de X com o uso de M, tal que Y = [y(1),y(2), . . . ,y(n)], onde y(i) é

uma tentativa de reconstrução de x(i) por M. O objetivo principal é reconstruir a sequência X

utilizando M, computar os erros de reconstrução baseados na predição M(x(i)) em comparação

com xi, calcular os escores de anomalias com base na distribuição de erros computados, e utilizar

os escores para identificar as anomalias em X .

1.2 Contribuições

Uma das técnicas que pode ser utilizada no contexto de séries temporais é o ensemble

de modelos, que visa treinar vários modelos com propriedades diferentes sob um mesmo conjunto

de dados, e combinar seus resultados utilizando algum tipo de função de combinação. Vários

esquemas de combinação foram propostos ao longo dos anos, com alguns deles conseguindo

demonstrar empiricamente serem consistentemente melhores que seus modelos individuais

(KITTLER et al., 1996). A literatura apresenta várias utilizações de ensembles, como para

problemas de classificação, regressão, predição em séries temporais, entre outras utilizações

possíveis.

Neste trabalho, é feito um estudo sobre a utilização de ensembles para detecção de

anomalias em séries temporais, por meio da combinação de modelos preditivos. Além disso, o

trabalho propõe o Time Series Prediction Model Ensemble for Anomaly Detection (TSPME-AD),

um ensemble focado na combinação de modelos que treinam sob todo o conjunto de treino,

utilizando uma função de damping (AGGARWAL, 2013) para a normalização dos resultados
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dos modelos individuais e utilizando uma média ponderada como função de combinação.

Também será proposta uma nova arquitetura baseada em LSTM, que modifica o

modelo de Encoder-Decoder proposto em Malhotra et al. (2016), em que, em vez de usar os

estados internos do LSTM do encoder como estado inicial do decoder para a reconstrução da

série, se utiliza uma camada densa entre o Encoder e o Decoder que servirá como entrada

para o Decoder. Além disso, como as técnicas de detecção de anomalias em séries temporais

apresentadas nesse trabalho, e as do estado da arte, incluindo as apresentadas nos trabalhos

relacionados, como (MALHOTRA et al., 2015; MALHOTRA et al., 2016), normalmente

quebram as séries temporais em janelas de tamanho igual para serem passadas como input para

os modelos, também será proposta uma técnica de quebra de janelas dinâmica, que utiliza a

similaridade entre as janelas geradas para escolher uma segmentação em janelas que melhor

represente os períodos da série temporal.

1.3 Estrutura da Dissertação

Esta dissertação é estruturada da seguinte forma: No capítulo 2 apresenta-se a

fundamentação teórica do trabalho. O capítulo 3 apresenta alguns trabalhos do estado da arte em

detecção de anomalias em séries temporais utilizando modelos preditivos. O capítulo 4 apresenta

uma análise de ensembles para o problema e propõe uma função de combinação. No capítulo 5,

será apresentada uma nova arquitetura de modelo preditivo para a detecção de anomalias, além

de uma técnica de quebra de janelas para pré-processamento das séries. Por fim, no capítulo 6

são apresentadas as conclusões finais do trabalho e possíveis linhas de pesquisa futuras.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo serão apresentadas algumas definições e arquiteturas que servirão de

base teórica para os modelos propostos neste trabalho, e para a compreensão das arquiteturas

apresentadas ao longo da dissertação.

O capítulo irá apresentar os seguintes conceitos: Séries Temporais, Anomalias em

Séries Temporais, Redes Neurais Artificiais, Redes Neurais Recorrentes e LSTMs.

2.1 Séries Temporais

Uma série temporal X é uma sequência de pontos ou vetores x ∈R
n, onde cada ponto

possui uma marcação de tempo, com intervalos de tempo constantes ou variáveis entre os pontos.

Ciclos em uma série temporal podem ser definidos como um padrão identificável

que se repete ao longo da série, e, com base neles, uma série temporal pode ser classificada

de três formas: Não Periódica, Quasi-Periódica e Periódica. Uma série periódica, como

exemplificado na Figura 1, possui ciclos bem definidos, em que a duração dos ciclos é constante.

Uma série quase-periódica possui ciclos bem definidos, mas as durações dos ciclos e o padrão

dos ciclos podem ter pequenas variações, como exemplificado na Figura 2. Por fim, uma série

não periódica não apresenta ciclos identificáveis, o que a torna mais complexa para análise,

como exemplificado na Figura 3.

Figura 1 – Série temporal periódica com dois ciclos identificáveis e constantes

2.2 Anomalias em Séries Temporais

Anomalias em séries temporais podem ser descritas como "quebras"nos padrões

dos ciclos da série, que podem se apresentar de diversas formas conforme apresentado em
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Figura 2 – Série quasi-periódica de um electrocardiograma que pode apresentar pequenas varia-
ções nos ciclos

Figura 3 – Série não periódica gerada randomicamente

(CHEBOLI, 2010), como um valor baixo em um local de um ciclo que se esperaria um valor

alto, ou um valor alto em um local que se espera um valor baixo, chamadas de anomalias de

contexto, exemplificadas na Figura 4, sequências de valores que não seguem o padrão esperado

da série, chamadas de anomalias de sub-sequências e exemplificadas na Figura 5, e em séries

multivariadas, anomalias podem se apresentar de forma mais complexa, sendo detectadas apenas

por meio de uma combinação de suas dimensões.

2.3 Redes Neurais Artificiais

Redes neurais artificiais são modelos de camadas de nós interconectados que tentam

mimetizar o comportamento dos neurônios do cérebro humano, utilizando essa estrutura para

aprender padrões em conjuntos de dados, resolvendo problemas de classificação, regressão, entre

outros.

Como no neurônio biológico, o neurônio ou nó da rede neural, exemplificado na

Figura 6, recebe várias entradas com um peso para cada um, soma os valores ponderados e aplica

uma função de ativação como a sigmoid ou tanh sobre esse resultado para obter a saída do nó.

A rede neural artificial é construída a partir da junção de camadas desses nós, como



19

Figura 4 – Anomalia contextual em série temporal apresentada por (CHEBOLI, 2010)

Figura 5 – Anomalias de sub-sequência onde sequências de altas esperadas não ocorreram

exemplificado na Figura 7, em que cada nó de uma camada posterior tem conexões com todos

os nós da camada anterior, sendo composta por uma camada de input, que recebe os dados de

entrada e precede todas as outras camadas, e uma camada de output ao final, responsável por

retornar o valor computado da rede neural.

O treinamento para reconhecimento de padrões com redes neurais é dependente do

contexto do problema, mas segue um certo conjunto de etapas comuns. Por exemplo, em um

problema de classificação, a camada de output deve retornar a classe correta a partir de uma

determinada entrada. Para isso, o treinamento da rede utiliza os erros de classificação para ajustar

gradualmente os pesos dos nós da rede, e com essas alterações, reduzir progressivamente os

erros de classificação.

Existem vários algoritmos de otimização desses pesos, como algoritmos genéticos,

buscas aleatórias, sendo o mais comumente utilizado o backpropagation, que emprega um

processo que calcula a derivada da função de ativação com os pesos e erros obtidos em uma
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Ativação

W1

W2

W3

W4

W5

Output

Figura 6 – Nó (neurônio) de uma rede neural artificial

Figura 7 – Rede neural artificial simples com apenas uma camada interna

camada e ajusta os pesos com base nesses gradientes, o que acelera o processo de treinamento e

convergência do modelo ao direcionar a atualização dos pesos em direção a um mínimo local da

função de erro.
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2.4 Redes neurais recorrentes e LSTMs

Redes neurais recorrentes ou RNNs são uma classe de redes neurais que recebem

como input uma sequência temporal de dados de entrada, e utilizam o output de camadas internas

da rede como input da própria camada, agindo como um tipo de "memória"para o reconhecimento

de padrões em dados sequenciais.

A RNN é uma tentativa mais simples de modelar dados sequenciais com redes

neurais, mas por sua "simplicidade"acaba sofrendo com problemas de "esquecimento"de padrões

em sequências mais longas, comprometendo sua capacidade de modelagem à medida que a

sequência de dados de entrada aumenta em tamanho. Para resolver esse problema, algumas

variantes de redes recorrentes foram propostas, com a mais conhecida delas sendo a LSTM.

LSTM é uma abreviação para Long Short-Term Memory, e define uma arquitetura

de nós em redes neurais recorrentes que utiliza pesos internos dedicados apenas à "memória"de

padrões, e "portões"que controlam a memorização ou o esquecimento desses padrões com base

nos dados de entrada ou nos estados recorrentes, podendo ser visualizado na Figura 8.

Figura 8 – Nó LSTM onde a seta horizontal superior representa a memória interna do nó



22

Devido à sua memória interna, a LSTM é capaz de aprender padrões de sequências

bem maiores, obtendo resultados melhores que as RNNs nesses casos, com o ponto negativo de

uma convergência no treinamento mais demorada, tanto pela maior quantidade de pesos a serem

treinados em um único nó, quanto pela complexidade das funções utilizadas para cada "portão"e

output.
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3 TRABALHOS RELACIONADOS

Modelos de detecção de anomalias em séries temporais têm sido investigados na lite-

ratura utilizando-se técnicas de machine learning e métodos estatísticos, conforme apresentado

em Chandola et al. (2009), e uma nova gama de técnicas que vêm ganhando tração recentemente

são as redes neurais profundas, que são geralmente utilizadas para modelagens não-lineares.

Apesar disso, poucos estudos consideram as redes profundas para abordar o problema de detecção

de anomalias no contexto de séries temporais, tendo ganhado mais destaque nos últimos anos.

O estudo de (MALHOTRA et al., 2016) por exemplo, propõe um modelo de encoder-

decoder baseado em LSTM, que é treinado para reconstruir instâncias de séries temporais com

comportamento normal. A ideia é que quando uma série anômala é passada para o modelo,

ele não consegue reconstruí-la tão bem como reconstrói as séries normais, fazendo com que os

valores dos erros de reconstrução sejam significativamente mais altos que o normal, sinalizando as

anomalias. Outro trabalho que propõe um modelo baseado em redes de LSTM é o (MALHOTRA

et al., 2015), que propõe uma arquitetura de camadas de LSTM empilhadas. Similarmente,

(KIEU et al., 2018) propõe um framework de detecção de outliers para identificar anomalias em

séries multidimensionais, incorporando várias redes de auto-encoders para reconstruir as séries

passadas como input e discriminar as anomalias baseadas em erros de reconstrução.

A técnica proposta em (KONG et al., 2018) consegue detectar anomalias de tráfego

em grandes espaços de tempo utilizando dados de trajetórias de ônibus. Segmentos de séries

temporais são extraídos dos dados de trajetórias dos ônibus para descrever tanto os aspectos

espaciais quanto temporais da situação do tráfego de toda a cidade. (KONG et al., 2018) extrai

a velocidade média e o tempo de parada médio dos ônibus, que descrevem, respectivamente,

as condições do trânsito e a demanda. Depois, segmentos "ruins"são encontrados nos dados

pelo cálculo dos índices de anomalia dos segmentos. Já o trabalho (TARIQ et al., 2019) propõe

um detector de anomalias para um sistema de satélite utilizando uma LSTM convolucional

multivariada, combinada com um modelo de Mixtures of Probabilistic Principal Component

Analyzer. O modelo proposto treina em um grande conjunto de dados normais de telemetria e

discrimina entre sequências de telemetria normais e anômalas.

Outros tipos de algoritmos de detecção de anomalias utilizam técnicas de clusteriza-

ção. Por exemplo, o trabalho (WANG et al., 2018) propõe um algoritmo de clusterização que

discretiza a série temporal em janelas de tempo e clusteriza todas as subsequências dentro de

cada janela. Subsequências univariadas no mesmo cluster dentro de uma janela são similares
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umas com as outras; assim, os padrões de comportamento dos objetos são obtidos pelos centros

dos clusters e, caso uma série temporal não siga esse padrão de comportamento, ela é considerada

anômala. Para séries multivariadas, o algoritmo transforma a série original em um novo espaço

de features, onde cada feature é a distância para um padrão, fazendo com que, quanto menor

for a distância, mais similar é o dado do padrão. (WANG et al., 2018) realiza a clusterização

no dado transformado, e calcula um escore de anomalia para cada série temporal, baseado nos

resultados da clusterização e das distâncias para os clusters normais. Outras técnicas baseadas

em clusterização são propostas por (GAO et al., 2012; IVERSON, 2004).

O trabalho (GAO; TAN, 2006) apresenta um modelo de ensemble que se assemelha,

no processo de combinação, ao modelo proposto neste trabalho, utilizando uma combinação

dos escores de anomalia obtidos pelos modelos base do ensemble, embora seja aplicado em um

contexto mais geral de detecção de anomalias.

Nesse capítulo serão enfatizados os modelos propostos por (MALHOTRA et al.,

2015; MALHOTRA et al., 2016), pois são técnicas de detecção de anomalias em séries temporais

utilizando modelos preditivos, o que segue a proposta deste trabalho, e, além disso, são os mode-

los utilizados para a criação do ensemble apresentado no Capítulo 4, sendo que, especialmente,

o modelo proposto por (MALHOTRA et al., 2016) serve de base para a proposta de uma nova

arquitetura no Capítulo 5.

3.1 LSTM Empilhada

Considere quatro conjuntos de séries temporais: sN e vN , contendo apenas instâncias

de séries temporais sem anomalias, vA e tA, contendo tanto séries normais quanto séries anômalas,

o conjunto sN será usado para o treinamento do modelo preditivo M, vN para a geração da

distribuição normal dos vetores de erro, vA para a definição do threshold de discriminação de

anomalias, e tA para a avaliação da qualidade do modelo M. Seja sN = [s
(1)
N ,s

(2)
N , . . . ,s

(n)
N ], tal que

s
(i)
N ∈R

m é um vetor m-dimensional e s
(i)
N = [s

(i)
N1
,s

(i)
N2
, . . . ,s

(i)
Nm
] no ponto temporal t = i. O mesmo

se aplica aos conjuntos vN , vA e tA.

Para s
(i)
N , cada uma das m dimensões (s(i)N ∈R

m) é lida por um nó na camada de input

do modelo. Na camada de output, existe um nó para cada um dos l pontos temporais futuros

previstos, e m dimensões para cada ponto, ou seja, l ×m nós na camada de output. Os nós de

LSTM na camada oculta são totalmente conectados através de conexões recorrentes. Malhotra

et al. (2015) empilha camadas de nós LSTM de forma que cada nó em uma camada inferior é
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totalmente conectado com todos os nós da camada posterior, por meio de conexões simples de

feedforward. A figura 9 mostra a arquitetura do modelo de LSTM empilhada.

Input
Layer LSTM LSTM Output

Layer
Figura 9 – Arquitetura do modelo de LSTM empilhada proposta por (MALHOTRA et al., 2015)

Seja M o modelo de LSTM empilhada, X uma série temporal e l o número de pontos

futuros preditos. Para cada ponto de tempo t na série temporal X (onde l < t f n− l) e para cada

uma das suas d dimensões, o modelo prevê l pontos no futuro. Vetores de erro são computados

para cada x(t), tal que e(t) = [e
(t)
11 , . . . ,e

(t)
1l , . . . ,e

(t)
d1, . . . ,e

(t)
dl ] onde e

(t)
i j é a diferença entre x

(t)
i e

o valor predito pelo modelo M no ponto de tempo t − j. Conforme Malhotra et al. (2015), o

modelo preditivo, treinado no conjunto de treinamento sN , é usado para computar os vetores de

erro para cada ponto nas sequências de dados de validação e teste. O conjunto de vetores de

erro gerados pelo modelo M no conjunto de treinamento é modelado para criar uma distribuição

gaussiana multivariada N (µ, Σ) . O conjunto de validação é utilizado para estimar os valores

de µ e Σ através da Estimativa de Máxima Verossimilhança (Maximum Likelihood Estimation).

O escore de anomalia p(t) de um vetor de erro e(t) é dado pelo valor da distribuição N em e(t),

ou seja, p(t) é computado como (e(t)−µ)T Σ(−1)(e(t)−µ) para uma observação x(t). Em x(t), o

valor predito é considerado anômalo se p(t) > τ , senão, o ponto é considerado normal. O valor

de τ é determinado utilizando o conjunto de validação vA, com o objetivo de maximizar o escore

Fβ . A escolha de β no escore Fβ depende da natureza do problema: β < 1 enfatiza a redução de

falsos positivos, enquanto β > 1 enfatiza a redução de falsos negativos. Por fim, o modelo M é

avaliado pelo escore Fβ utilizando-se o conjunto tA.

Essa técnica é mais simples de ser treinada e converge mais rápido que o modelo

apresentado a seguir, devido ao uso mais natural do modelo de LSTM, que reconstrói uma

sequência lendo cada elemento e predizendo os próximos. Contudo, este método apresenta

uma desvantagem: a sua alta sensibilidade. Um único ponto anômalo na série temporal pode

propagar-se e causar múltiplos erros de predição nos pontos de tempo subsequentes.
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3.2 Encoder-Decoder

A arquitetura descrita nesta seção é constituída por um modelo Encoder baseado em

LSTMs. Este Encoder aprende representações vetoriais de tamanho fixo para séries temporais

passadas como input. A arquitetura inclui também um modelo Decoder, igualmente baseado em

LSTMs, que utiliza essa representação vetorial para reconstruir a série temporal passada como

input ponto a ponto. Em cada passo da reconstrução, o Decoder utiliza como input o estado

interno atual dos nós de LSTM e o valor do ponto predito no passo precedente.

Para a criação e o treinamento deste modelo, utilizam-se os mesmos conjuntos

sN ,VN ,vA, tA que foram apresentados na Seção 3.1. Essa arquitetura foi proposta por (MALHO-

TRA et al., 2016) e é ilustrada na figura 10.

 LSTM
 Decoder

 LSTM 
 Encoder h1 h2 h3

x1 x2 x3

x'1 x'2 x'3

h4

x4

h'1 h'2 h'3 h'4

Initialize with 
internal state

x'4

Input

Output
Figura 10 – Modelo de Encoder-Decoder proposto por (MALHOTRA et al., 2016)

Dado um conjunto de treinamento sN contendo séries temporais normais X =

[x(1), . . . ,x(n)], o modelo de predição M é treinado da seguinte forma: Para cada ponto de

tempo ti (onde i ∈ {1,2, ...,n}), h
(i)
E representa o estado interno do encoder. Cada h

(i)
E é um vetor

em R
c, onde c corresponde ao número de nós de LSTM na camada oculta do encoder. O encoder

e o decoder são treinados em conjunto para reconstruir a série de input em ordem inversa, ou

seja, ele é treinado para que M(X) = {x(n),x(n−1), . . . ,x(1)}. O estado final do encoder, h
(n)
E , é

então utilizado como o estado inicial do decoder. Adicionalmente, uma camada linear conectada

à camada interna de LSTM do decoder é empregada para realizar as predições dos valores.

Durante a fase de decodificação, o decoder utiliza x(i) e o estado interno das LSTMs h
(i−1)
D para

gerar o valor x‘(i−1) correspondente ao objetivo x(i−1). Considerando que sN é um conjunto

de séries temporais sem anomalias, o modelo Encoder-Decoder é treinado para minimizar a
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seguinte função objetivo: ∑X∈sN
∑

n
i=1

∥

∥

∥
x(i)− x‘(i)

∥

∥

∥

2
. Por fim, para uma observação x(t), o escore

de anomalia p(t) em (MALHOTRA et al., 2016) é computado de forma similar à abordagem

apresentada e explicada na Seção 3.1.

Diferentemente do modelo de LSTM empilhada, este modelo apresenta a vantagem

de processar a totalidade da série temporal antes de efetuar sua reconstrução. Essa característica

torna as anomalias individuais menos impactantes na precisão da reconstrução dos pontos de

tempo vizinhos, resultando em reconstruções mais estáveis, mesmo em séries temporais que

contenham anomalias. A contrapartida deste benefício é um processo de treinamento mais

intensivo e uma convergência potencialmente mais demorada.
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4 ENSEMBLE DE MODELOS PREDITIVOS EM SÉRIES TEMPORAIS PARA DE-

TECÇÃO DE ANOMALIAS

4.1 Introdução

Neste capítulo, apresentaremos um ensemble de modelos preditivos, denominado

TSPME-AD, que utiliza os modelos propostos por (MALHOTRA et al., 2015) e (MALHOTRA

et al., 2016), com variações em seus hiper-parâmetros. O sistema calcula os escores de anomalias

para cada ponto das séries temporais, aplica uma função de normalização nestes escores, combina-

os utilizando uma média ponderada dos valores e emprega um threshold para discriminar entre

pontos anômalos e normais das séries. O objetivo do ensemble é aproveitar modelos que

apresentam comportamentos diferentes quando aplicados sobre uma mesma série temporal,

realizando um processo semelhante a uma votação ponderada. Isto é, quando mais modelos, ou

modelos com maior peso de importância, concordam sobre a classificação de um ponto como

anômalo ou normal, obtemos um resultado mais preciso e estável sobre sua real natureza.

Existem alguns desafios no processo de combinação do ensemble e, de acordo com

o trabalho de (AGGARWAL, 2013), os principais são a normalização e a função de combinação.

A normalização aborda o problema de diferentes modelos gerarem outputs em escalas diferentes

ou até em formatos diferentes que não são facilmente comparáveis. Já o segundo desafio

consiste em descobrir qual a melhor função de combinação a ser utilizada (Mínimo, Máximo,

Média, etc.). Essas são questões ainda em aberto, conforme apontado por (AGGARWAL,

2013). Apesar do vasto uso de ensembles em outros contextos na literatura, como classificações

e regressões, os trabalhos em análises de anomalias utilizando ensembles ainda são muito

esparsos, e, consequentemente, as soluções para esses tipos de problemas não são completamente

conhecidas.

Este capítulo será estruturado nas seguintes seções: Na seção 4.2, a arquitetura

geral do TSPME-AD será apresentada e explicada. Na seção 4.3, serão apresentadas algumas

funções de combinação além da proposta para o modelo, explicando o processo de treinamento

dos pesos para a função ponderada, e apresentando o processo de descoberta do threshold

para a discriminação das anomalias. Na seção 4.4, serão apresentados os conjuntos de dados

utilizados na experimentação, os processamentos realizados nos dados, e os resultados obtidos

pelo TSPME-AD em comparação com os modelos individuais utilizados e outras funções de

combinação. Por fim, na seção 4.5, serão apresentadas algumas conclusões sobre o modelo e os



29

Calcular scores de
anomalias para cada

modelo individual

Utilizar uma função de
amortecimento

(damping) nos scores

Agregar os scores
amortecidos utilizando
uma função de média

ponderada

Utilizar um threshold e
calcular algum score para o

ensemble como o F1

Otimizar pesos da função
ponderada e threshold para

maximizar o score do
ensemble

Figura 11 – Passo a passo completo da arquitetura do TSPME-AD

resultados.

4.2 Arquitetura

Uma das principais diferenças entre o ensemble proposto e outros ensembles está na

não junção dos resultados dos modelos para gerar uma predição melhorada. Ao invés disso, os

modelos treinam e predizem as séries individualmente, calculando seus escores de anomalias

conforme proposto em seus respectivos trabalhos originais. O TSPME-AD é aplicado apenas

após a geração dos escores de anomalias de cada modelo, seguindo os cinco passos representados

pela figura 11 que são:

• Para cada série temporal, utilizar os modelos treinados para reconstruí-las e calcular os

escores de anomalia de cada ponto da série

• Utilizar uma função de amortecimento para normalizar os escores de anomalia entre

modelos

• Utilizar uma função de média ponderada para unir os escores de anomalias entre modelos

• Escolher um threshold que irá discriminar, baseado no resultado da função ponderada, os

pontos anômalos e normais, e calcular um score para o ensemble como o F1

• Otimizar os pesos da função de média ponderada e o threshold, visando maximizar o score

do ensemble

Sejam os conjuntos de séries temporais sN , vA e tA, onde sN possui apenas séries sem

anomalias, e os outros dois possuem algumas séries com pontos anômalos. Para os modelos

preditivos M1,M2, . . . ,Mp, todos treinarão sobre o conjunto sN de modo que, dada uma série

temporal X = [x1, . . . ,xn] ∈ sN , e um modelo qualquer M, o objetivo é que M(X) = X . Como

as reconstruções das séries não são perfeitas, se M(X) = Y , a diferença Y −X será um vetor

de erros E = [ε1, ...,εn], onde ε ∈ R
÷ é um vetor m-dimensional, com m sendo o número de
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a1 a2 ap...

M1 ...M2 Mp

Figura 12 – Primeiro, todos os modelos tentam reconstruir a série temporal, e são calculados os
escores de anomalia

dimensões das séries passadas como input.

Com isso, cria-se uma distribuição normal dos vetores de erro. Se E
( j)
i é o conjunto

de vetores de erro gerados por M( j)(Xi), é criada a distribuição N (⃗µ,Σ), onde µ⃗ é o vetor médio

de todos os vetores de erro ε ∈ E
( j)
i ,∀i, j e Σ é a matriz de covariância desses vetores. A partir

dessa distribuição, os escores de anomalia são calculados utilizando a distância de Mahalanobis

(MAESSCHALCK et al., 2000), que mede a distância de um vetor x⃗ a uma distribuição com vetor

médio µ⃗ e matriz de covariância Σ, por meio da função
√

(⃗x− µ⃗)TΣ−1(⃗x− µ⃗), cujo resultado é

um valor pertencente ao conjunto dos Reais. Assim, para cada X = [x1, . . . ,xn] ∈ sN e para cada

modelo M, é gerado um vetor de escores de anomalias A⃗ = [a1, . . . ,an], como representado na

figura 12.

Como os escores de anomalias são gerados a partir da distância dos vetores de

erro para uma distribuição de vetores, caso o erro desvie completamente do padrão, o escore

de anomalia pode se tornar muito alto, com a possibilidade de sobrepor escores de outros

modelos no passo de combinação do ensemble (AGGARWAL, 2013). Para diminuir o impacto
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a1 a2 ap...

da1 da2 dap...

ln(x) ln(x) ln(x)

Figura 13 – Aplicando uma função de amortecimento nos escores de anoma-
lias, como a função de logaritmo natural

desses escores, utilizamos uma função de amortecimento que diminui escores muito altos, como

representado na figura 13. Várias funções podem ser utilizadas para esse propósito, como

f (x) =
√

x, f (x) = 1− 1
x+1 e a função logarítmica f (x) = ln(x+1). Esta última será utilizada

no TSPME-AD por ter uma boa capacidade de amortecer escores muito altos e por apresentar a

vantagem de não limitar os valores a um intervalo. Isso mantém um certo impacto de escores

mais altos que não devem ser descartados, sem fazê-los sobrepor de forma absoluta os outros

escores. Além disso, com a adição de 1 no argumento, o escore amortecido sempre será positivo

e permite ai = 0.

4.3 Combinação e Discriminação

Com os escores de anomalias calculados e amortecidos, o próximo passo é combiná-

los utilizando alguma função de combinação. Diversas funções podem ser utilizadas, como o

máximo, o mínimo, a média simples, média harmônica, média ponderada, entre outras. Funções

como máximo e mínimo possuem desvantagens quando existem escores dissonantes. Por

exemplo, se a grande maioria dos modelos aponta um escore baixo e apenas um dos modelos

aponta um escore alto, ao utilizar a função de máximo, os modelos que formam a maioria seriam

descartados. O mesmo ocorre na situação inversa quando se utiliza a função de mínimo. Já

as funções de média simples e média harmônica podem sofrer com alguns modelos "ruins",

pois atribuem o mesmo peso a todos os modelos participantes do ensemble. Ou seja, se uma
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da1 da2 dap...

A

W1 W2 Wp

Figura 14 – Agregação dos conjuntos de escores de anomalia utilizando uma função de média
ponderada

pequena minoria de modelos obtiver escores de anomalia muito divergentes dos demais, eles

podem dominar o valor do escore resultante, influenciando negativamente na discriminação das

anomalias.

O TSPME-AD utiliza uma função de combinação de média ponderada, que atribui e

treina pesos para cada modelo do ensemble, como representado na figura 14. Com isso, modelos

que não conseguem obter resultados satisfatórios na contribuição para o escore de anomalia final

têm sua influência atenuada com um peso baixo, enquanto modelos eficientes são beneficiados

com pesos altos.

O passo de combinação pode ser definido como: Sejam M(1),M(2), . . . ,M(p) mo-

delos preditivos para reconstrução de série temporal, X = [x1, . . . ,xn] uma série temporal, e

[a
( j)
1 , . . . ,a

( j)
n ] os escores de anomalia obtidos através dos erros de predição de M( j)(X) para cada

j f p. Considerando [w(1),w(2), . . . ,w(p)] como os pesos atribuídos a cada modelo do ensemble,

com w( j) ∈ [0,1], o score de anomalia αi referente ao ponto xi ∈ X é definido por

αi =
w(1) ln(a(1)i +1)+w(2) ln(a(2)i +1)+ · · ·+w(p) ln(a(p)

i +1)

w(1)+w(2)+ · · ·+w(p)
g 0 (4.1)

Com isso, dada a série temporal X = [x1, . . . ,xn], o TSPME-AD computa os escores

de anomalias [α1, . . . ,αn]. Assim, as anomalias serão discriminadas a partir de um threshold

τ > 0, onde para cada 1 f i f n, se αi f τ , o ponto xi é considerado normal, e caso contrário, se

αi > τ , xi é considerado anômalo, como exemplificado na figura 15.
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Figura 15 – Utilizando um threshold para discriminar entre pontos normais e anômalos na série

Por último, é necessário descobrir os pesos e threshold ótimos para a maximização

do escore desejado. Para isso, utilizamos o conjunto vA definido na seção 4.2, que contém séries

com anomalias anotadas, e treinamos pesos e um threshold que maximizem o escore F1 do

ensemble. Um processo de Busca Randômica Direcionada (Directed Random Search), proposto

por (SEIFFERT; MICHAELIS, 2001) como método alternativo de treinamento de redes neurais,

é aplicado aos pesos limitados entre 0 e 1 e simultaneamente ao threshold τ g 0, visando a

maximização do score F1 sobre o conjunto de dados vA.

Outras técnicas de otimização de pesos foram consideradas, como a Otimização por

Enxame de Partículas (Particle Swarm Optimization) proposta em (KENNEDY; EBERHART,

1995), mas verificou-se que a técnica de busca randômica converge mais rapidamente a um score

ótimo, além de trabalhar melhor com valores não limitados, já que o threshold também faz parte

do campo de busca e, diferentemente dos pesos dos modelos, pode ser maior que um.

4.4 Experimentação

Nesta seção, apresentamos os experimentos realizados sobre dois conjuntos de dados

reais e comparamos os escores F1 obtidos pelos modelos propostos por (MALHOTRA et al.,

2015; MALHOTRA et al., 2016), descritos no capítulo 3. Utilizamos variações nos hiper-

parâmetros dos modelos para obter maior diversidade nos resultados de reconstrução das séries

temporais e, consequentemente, melhorar o desempenho dos ensembles. Também analisamos

diferentes funções de combinação dos escores de anomalias para avaliar seus impactos sobre o

score final.
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4.4.1 Datasets

Para a experimentação, utilizamos dois conjuntos de dados reais: uma série temporal

de demanda de energia elétrica durante um ano e um conjunto de eletrocardiogramas disponibili-

zados pela Universidade do MIT. Ambos os conjuntos são detalhados nas subseções 4.4.1.1 e

4.4.1.2, respectivamente.

4.4.1.1 Power Demand

Figura 16 – Uma semana normal de demanda de energia elétrica, iniciando-se na quarta-feira

O conjunto de dados de demanda de energia elétrica fornecido por (KEOGH et

al., 2007) apresenta o registro de um ano de coleta de dados sobre a demanda de energia. O

comportamento normal dos dados caracteriza-se por alta demanda durante os dias úteis da

semana e demanda mais baixa durante os finais de semana. Assim, altas demandas durante os

finais de semana e baixas demandas em dias úteis indicam anomalias nos dados que são anotadas.

Com isso, realiza-se um pré-processamento nos dados em que é aplicada uma

subamostragem com fator 8, ou seja, cada 8 pontos da série são convertidos em um, utilizando

um algoritmo que mantém o formato da série o mais próximo possível do original. Em seguida,

a série é dividida em janelas sem interseções com 84 pontos cada, representando exatamente



35

uma semana de demanda, reproduzindo o mesmo processamento realizado por (MALHOTRA et

al., 2016). A figura 16 apresenta uma semana de comportamento normal da série, iniciando na

quarta-feira.

Para a experimentação, os conjuntos sn e va foram construídos a partir dos primeiros

40% dos pontos da série anual, e o restante constituiu o conjunto ta. Assim, uma parte maior

da série foi utilizada para a etapa de testes, pois, como anomalias são eventos relativamente

raros, necessitamos de mais pontos anômalos no conjunto de teste para obter um score mais

representativo.

4.4.1.2 MIT Electrocardiogram Dataset

O conjunto de dados de eletrocardiogramas do MIT é um conjunto de dados reais

obtidos a partir de múltiplas horas de registros dos batimentos cardíacos por sensores, em diversos

pacientes, como representado na Figura 17. Cada eletrocardiograma é composto por dois canais,

caracterizando o dado como uma série temporal multivariada. Esses dados também incluem

anotações de tipos de eventos que podem ocorrer nos batimentos, as quais serão utilizadas para

definir as anomalias nos conjuntos de validação e teste dos experimentos.

Figura 17 – Exemplos de partes dos dados dos electrocardiogramas dos dados do MIT

Para os experimentos deste capítulo será utilizado um dos eletrocardiogramas dos

dados do MIT, o mitdbx_108, que também é fornecido e utilizado em (KEOGH et al., 2007), por

ser o mesmo conjunto de dados empregado para o teste dos modelos de (MALHOTRA et al.,

2015; MALHOTRA et al., 2016) que servirão como base para a construção do ensemble. Esse

eletrocardiograma apresenta três anomalias distintas e, diferentemente dos dados de demanda
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Figura 18 – Quatro batimentos cardíacos de um dos eletrocardiogramas do conjunto de dados

de energia, não é tão bem comportado. Enquanto os dados de energia apresentam um ciclo

bem definido de semanas com uma quantidade exata de pontos entre os ciclos, as séries dos

eletrocardiogramas podem apresentar batimentos espaçados de forma irregular, pois o coração

pode acelerar ou desacelerar normalmente sem apresentar anomalias, e possíveis anomalias

podem ocorrer em pontos aleatórios da série.

No pré-processamento, assim como nos dados de demanda de energia, a série passará

por um processo de subamostragem com fator de 4 e será dividida em janelas com 93 pontos

cada, o que representa da melhor forma possível um ciclo de batimento cardíaco do paciente.

Por exemplo, a Figura 18 mostra quatro ciclos de batimentos cardíacos, ou quatro janelas

em sequência da série. Por fim, também como realizado no conjunto de dados anterior, o

eletrocardiograma será dividido de forma que os primeiros 40% da série gerarão os conjuntos sn,

va para treinamento dos modelos individuais, distribuição normal dos vetores de erro e pesos

com threshold do ensemble, e o restante da série formará o conjunto ta para teste e comparação

dos escores.

4.4.2 Resultados

Nesta subseção, serão apresentados os resultados obtidos pelo TSPME-AD, suas

variantes e seus modelos individuais. O modelo proposto será comparado com os resultados de

variações nos modelos de LSTM empilhada ou Stacked LSTM (SL) e do Encoder-Decoder (ED)

propostos por (MALHOTRA et al., 2015; MALHOTRA et al., 2016) respectivamente. Também

serão avaliados os resultados provenientes da combinação dessas técnicas utilizando as funções

de combinação:

• Média Simples (SA);

• Média atenuada (DA);

• Média ponderada simples (SWA);
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• Média ponderada atenuada (TSPME-AD).

Como mencionado anteriormente, para a avaliação dessas técnicas de detecção de

anomalias, serão utilizados os conjuntos de dados de demanda de energia elétrica e de um

eletrocardiograma. Os desempenhos serão medidos em termos do escore Fβ com β g 0, tal que:

Fβ = (1+β 2)
precision× recall

(β 2 precision)+ recall
(4.2)

em que o valor de β define o peso dado à proporção de falsos positivos em compara-

ção com a proporção de falsos negativos, sendo que um β > 1 tende a dar mais peso ao recall,

enfatizando a minimização do número de falsos negativos, e um β < 1 confere mais ênfase

na minimização de falsos positivos. Nos resultados apresentados, serão comparados tanto os

valores de precision e recall, quanto os escores F1 e F0.1, em que a utilização do score F1 ocorre

por ser mais comum na literatura como forma de comparação de modelos de classificação, e o

F0.1 traz uma ênfase significativa na precisão, pois como os "positivos"são anomalias nas séries,

e anomalias tendem a ser relativamente raras, um alto número de falsos positivos acaba por

descredibilizar o modelo de detecção, mas encontrar uma anomalia dentre algumas que possam

existir já traz uma informação importante do comportamento da série, como argumentado por

(MALHOTRA et al., 2015), que utiliza o score F0.1 para realizar suas comparações.

4.4.2.1 Resultados sobre os dados de demanda de energia elétrica

O conjunto de dados de demanda de energia é uma série temporal periódica, ou

seja, o número de pontos por ciclo é constante durante toda a série. Isso ajuda no processo de

reconhecimento de padrão e detecção de anomalias por permitir a quebra da série em janelas de

tamanho constante que representem bem o padrão normal de um ciclo da série.

A tabela 1 apresenta o precision, recall, e os escores F0.1 e F1 para todos os modelos

base e variações em seus hiperparâmetros, além do modelo de ensemble com as diferentes

funções de combinação, treinados e testados com os dados de demanda de energia. Como

podemos observar, os ensembles que utilizam as funções de combinação Média Simples (SA)

e Média Atenuada (DA) alcançaram os melhores resultados em termos dos escores F0.1 e F1,

respectivamente, com o modelo proposto do TSPME-AD obtendo o segundo melhor resultado

em ambos os escores.

O experimento mostra que a estratégia do TSPME-AD com a função de combinação
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Tabela 1 – Resultados do teste sobre os dados de demanda de energia elétrica
MODELOa Precision Recall F0.1 F1

SL [K = 2] 4.42% 77.78% 0.04 0.08
SL [K = 4] 5.49% 77.78% 0.05 0.10
SL [K = 8] 22.86% 44.44% 0.22 0.30
SL [K = 16] 12.77% 66.67% 0.12 0.21
ED [H = 16] 47.06% 44.44% 0.47 0.45
ED [H = 32] 3.39% 22.22% 0.03 0.05
ED [H = 64] 59.09% 72.22% 0.59 0.65
ED [H = 128] 18.52% 27.78% 0.18 0.22

SA 100.0% 44.44% 0.98 0.61
DA 76.19% 88.89% 0.76 0.82

SWA 25.00% 72.22% 0.25 0.37

TSPME-AD 76.47% 72.22% 0.76 0.74
a SL: Stacked LSTM, ED: Encoder Decoder, SA: Simple Ave-
rage Ensemble, DA: Damped Average ensemble, SWA: Simple
Weighted Average Ensemble, TSPME-AD: Time Series Pre-
diction Model Ensemble for Anomaly Detection.

de média ponderada atenuada, apesar de não apresentar os melhores escores em todos os

cenários, ainda consegue obter bons resultados, sendo superior a todos os modelos individuais

que o compõem em ambos os escores F0.1 e F1. Também podemos observar a diferença que a

função de atenuação proporciona no resultado final quando comparamos os escores da média

simples (SA) e da média atenuada (DA), que, apesar de introduzir mais falsos positivos na

detecção, compensa na significativa redução de falsos negativos. Já os ensembles que utilizaram

funções de combinação ponderadas apresentaram um resultado um pouco inferior, provavelmente

devido às poucas instâncias de anomalias no conjunto de validação que é utilizado para treinar

os pesos, aumentando assim a possibilidade de overfitting.

4.4.2.2 Resultados sobre o conjunto de dados de eletrocardiogramas

Como a duração de um ciclo em um eletrocardiograma, que representa um ciclo

completo de batimento cardíaco, varia de uma instância de electrocardiograma para outras, e até

dentro do mesmo eletrocardiograma, esse tipo de série temporal é chamada de quasi-periódica.

Essa classe de séries temporais é mais difícil de lidar e dificulta a construção de modelos

preditivos, pois, além de apresentar um padrão mais difícil de identificar, como os modelos

esperam receber janelas de tamanho igual como entrada (input), é necessário definir um tamanho

de janela que consiga representar da melhor forma possível os ciclos da série em cada janela,

conforme realizado em (MALHOTRA et al., 2016).
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Como na seção anterior, a Tabela 2 apresenta o precision, recall, e os escores F0.1

e F1 para todos os modelos base e para o modelo de ensemble com as mesmas funções de

agregação utilizadas na subseção 4.4.2.1. Diferentemente da experimentação no conjunto de

dados de demanda de energia, o TSPME-AD conseguiu atingir os melhores resultados em relação

aos escores de precision, F0.1 e F1, com uma melhoria sobre o escore F1 de aproximadamente

12.8% quando comparado ao segundo melhor resultado, obtido utilizando o ensemble com a

função de agregação de média simples ponderada (SWA), e um resultado 22.2% superior quando

comparado com o melhor dos modelos individuais.

Neste experimento, as outras funções de combinação, como a SA, DA e SWA, não

conseguiram um resultado tão bom na combinação dos modelos de (MALHOTRA et al., 2015;

MALHOTRA et al., 2016). Isso pode ser explicado devido ao baixo desempenho dos modelos

baseados em encoder-decoder, pois tanto quando não se utilizam pesos para a combinação dos

modelos quanto quando não se utiliza uma função de amortecimento para estabilizar escores

muito altos, modelos de qualidade inferior, como todas as variações do modelo de encoder-

decoder no caso deste experimento, podem afetar negativamente o resultado do ensemble.

O motivo para a baixa efetividade do modelo de encoder-decoder deve-se prova-

velmente ao fato de o eletrocardiograma ser uma série quasi-periódica, ou seja, com a maior

variabilidade dos ciclos representados pelas janelas, o modelo apresenta uma dificuldade sig-

nificativamente maior de reconstruí-las. No caso do LSTM empilhado, como ele processa

ponto a ponto para fazer as predições, é mais fácil adaptar-se a mudanças sutis na série. Já

o encoder-decoder lê a janela por completo e a representa com seu estado interno ao fim da

leitura, tornando assim o processo de aprendizado do padrão muito mais complexo diante dessa

variabilidade da janela.

4.5 Conclusão

Até o momento, não se tem conhecimento de trabalhos anteriores que tenham

proposto ensembles baseados em modelos para detecção de anomalias em séries temporais que

utilizassem essas funções de combinação ou modelos baseados em LSTMs (AGGARWAL, 2013;

LIU et al., 2012). Existem algumas técnicas similares que propõem modelos de ensemble para

detecção de anomalias (AGGARWAL, 2013), como (LIU et al., 2012; GAO; TAN, 2006), mas

nenhuma dessas técnicas modela o comportamento padrão de conjuntos de dados utilizando

LSTMs e seus benefícios na modelagem de séries temporais multidimensionais.
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Tabela 2 – Resultados dos testes no electrocardiograma
MODELSa Precision Recall F0.1 F1

SL [K = 2] 22.37% 47.80% 0.22 0.30
SL [K = 4] 18.37% 57.07% 0.18 0.28
SL [K = 8] 20.97% 48.29% 0.21 0.29
SL [K = 16] 42.28% 30.73% 0.42 0.36
ED [H = 16] 7.02% 100% 0.07 0.13
ED [H = 32] 7.36% 100% 0.07 0.14
ED [H = 64] 7.37% 100% 0.07 0.14
ED [H = 128] 7.37% 100% 0.07 0.14

SA 30.84% 48.29% 0.31 0.38
DA 11.33% 60.00% 0.11 0.19

SWA 34.05% 46.34% 0.34 0.39

TSPME-AD 41.00% 47.80% 0.41 0.44
a SL: LSTM empilhada, ED: Encoder-Decoder, SA: Ensemble
de Média Simples, DA: Ensemble de Média Amortecida, SWA:
Ensemble de Média Ponderada

Podemos concluir, principalmente com base nos resultados apresentados na seção

4.4.2.2, que a técnica de combinação utilizada pelo TSPME-AD (que utiliza tanto o amorteci-

mento dos escores de anomalias quanto uma média ponderada para os escores dos modelos)

consegue compensar resultados inferiores de alguns modelos base e pode produzir um ensemble

com resultados de qualidade superior quando comparado tanto com a utilização de outras funções

de agregação quanto com os modelos base utilizados.

Também é válido mencionar que o TSPME-AD, em geral, obtém melhores resultados

que os dois modelos do estado da arte apresentados por Malhotra et al. (2015), Malhotra et al.

(2016), o que é esperado, já que está comprovado, como mencionado em (OPITZ; MACLIN,

1999), que ensembles de modelos de classificação que obtêm bons resultados individualmente e

possuem discordâncias nos locais de seus erros em relação ao mesmo dado de entrada sempre

obtêm melhores resultados que os modelos que os compõem. Os modelos individuais do

TSPME-AD possuem certas diferenças nos locais de erros, pois o LSTM empilhado apresenta

erros mais altos após a ocorrência de uma anomalia, e o Encoder-Decoder apresenta erros mais

altos em locais anteriores às anomalias devido à sua característica de reconstrução de trás para

frente. Com isso e os bons resultados obtidos por esses modelos, as premissas para um bom

ensemble são atendidas, e os resultados são verificados neste trabalho.

Portanto, os resultados mostram que modelos de ensemble podem ser boas alter-

nativas na detecção de anomalias em séries temporais, pois três modelos simples de ensemble
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já obtêm resultados superiores aos modelos base utilizados sob o mesmo conjunto de dados,

como demonstrado na Tabela 2. Também é demonstrado que diferentes funções de combinação

podem apresentar resultados completamente distintos, como a Média Ponderada, que obteve um

resultado inferior aos outros modelos nos dados de demanda elétrica, e a Média Amortecida, com

um resultado inferior no conjunto de dados de eletrocardiogramas. O TSPME-AD obteve bons

resultados em comparação com os outros em ambos os cenários, tornando-o uma boa escolha de

modelo de forma geral.
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5 ENCODER-DECODER DE REPRESENTAÇÃO CONCRETA E NOVAS TÉCNICAS

PARA SEGMENTAÇÃO DE JANELAS

5.1 Introdução

No capítulo anterior, foram realizadas análises de anomalias em séries temporais

utilizando ensembles, que aplicam modelos já propostos e os combinam para obter melhores

resultados. Neste capítulo, a análise será estendida pela apresentação de um novo modelo de

detecção de anomalias em séries temporais utilizando LSTMs, que modifica a estrutura do

modelo proposto em (MALHOTRA et al., 2016), no qual o modelo continua sendo um auto-

encoder, mas a representação interna da série analisada será representada por uma camada densa

em vez do estado interno final do encoder.

Como demonstrado nos resultados do modelo de encoder-decoder na Tabela 2, o

encoder-decoder apresenta resultados inferiores em séries quasi-periódicas devido ao problema

de representação dos ciclos na segmentação da série em janelas. Por isso, este capítulo também

apresentará técnicas de segmentação de janelas que utilizam características específicas da série

para definir a melhor separação entre os ciclos, permitindo segmentar as janelas de acordo com

eles.

Com isso, como as técnicas de segmentação de janelas serão avaliadas nesse capítulo,

não é adequado avaliá-las no conjunto de dados de demanda de energia elétrica, visto que se

trata de uma série periódica com um ciclo bem definido de uma semana, com uma quantidade

exata de pontos em todos os ciclos. Apesar disso, será utilizado todo o conjunto de dados de

eletrocardiogramas do MIT apresentado na seção 4.4.1.2, o que servirá tanto para comparar os

modelos de predição em um cenário mais complexo com vários eletrocardiogramas diferentes,

quanto para verificar o impacto de uma técnica eficiente de segmentação de janelas ao auxiliar

os modelos preditivos.

Este capítulo será dividido da seguinte maneira: a Seção 5.2 apresentará o novo mo-

delo baseado em encoder-decoder para detecção de anomalias; na Seção 5.3 serão apresentadas

algumas técnicas de segmentação de janelas mais simples e será proposta uma segmentação

de janela dinâmica; a Seção 5.4 apresenta a experimentação e os resultados comparados dos

modelos e técnicas de segmentação de janelas; e, por fim, a Seção 5.5 apresenta as conclusões

sobre as técnicas e os resultados.
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5.2 Encoder-Decoder de Representação Concreta (CRED)

Esta proposta traz uma variação sobre o modelo de Encoder-Decoder proposto por

Malhotra et al. (2016). Essa técnica anterior inicializa os pesos do estado interno do decoder

com os pesos do estado interno do encoder após ler completamente uma janela da série temporal

e, a partir disso, reconstrói a série fornecida como input ponto a ponto de trás para a frente,

conforme (SUTSKEVER et al., 2014), utilizando cada ponto reconstruído como input para a

reconstrução do ponto seguinte, como apresentado na Figura 10.

O modelo proposto, Concrete Representation Encoder-Decoder (CRED), utiliza em

sua arquitetura uma camada densa com número de nós menor que o tamanho da janela fornecida

como input, a qual será a camada de output para o encoder. O número menor de nós na camada

interna tem por objetivo obter uma representação mais generalizada da série passada como input,

como uma análise de componentes principais ou PCA, para que anomalias em uma série passada

como input tenham menos impacto na representação da série na camada interna. Com isso, o

decoder inicia seus estados iniciais com zeros para manter a consistência das reconstruções

e iniciará a reconstrução da série recebendo como input a camada densa, utilizando-a para

reconstruir cada ponto na ordem normal da série, até que toda a janela seja reconstruída, como

apresentado na Figura 19.

 LSTM
 Decoder

 LSTM Encoder

x1 x2 x3

y1 y2 y3

x4

h1 h2 h3 h4

Input

Output

Dense Layer

y4
Figura 19 – Arquitetura do modelo proposto (CRED)

Seja X = [x1, ...,xn] uma janela de tamanho n de uma série temporal, ENC a camada
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LSTM de encoder do modelo, D a camada densa de tamanho k no centro do modelo, e DEC

a camada LSTM de decoder do modelo. O primeiro passo é calcular I = D(ENC(X)), onde

I ∈ R
k é a representação intermediária da série de input. Então, o vetor I é repetido n vezes,

como Ir = [I, ..., I] onde ||Ir||= n. Essa repetição acontece para que todos os pontos que forem

ser reconstruídos pelo decoder tenham como input o vetor intermediário, evitando assim o

"esquecimento"dessa representação intermediária pelos nós de LSTM, que pode acontecer no

modelo proposto por (MALHOTRA et al., 2016), onde o único momento em que o modelo

possui a representação da série gerada pelo encoder é no passo inicial do processo de decoding,

podendo assim dificultar a convergência do modelo no treinamento e afetar o resultado da

reconstrução.

O score de anomalia é calculado exatamente como nos outros modelos apresentados,

computando-se a matriz de erros E = [e1, ...,en] entre a janela original X = [x1, ...,xn] e a janela

reconstruída Y = DEC(D(ENC(X))) = [y1, ...,yn], com ei = yi − xi. Com isso, cria-se uma

distribuição gaussiana multivariada N (µ, Σ) sobre todos os vetores de erros individuais e

calcula-se os scores de anomalia a partir da equação αi = (ei−µ)T
Σ
(−1)(ei−µ) para cada ponto

na janela da série temporal.

O modelo proposto por Malhotra et al. (2016) se aproxima mais de modelos sequence-

to-sequence, comumente utilizados em predição de texto, mas quando o modelo é utilizado sobre

dados de séries temporais, ele passa a ler janelas de input bem maiores. Com isso, conforme

mencionado anteriormente, como a saída da camada de encoder se torna o estado interno inicial

da camada de decoder, à medida que o tamanho da janela analisada aumenta, torna-se cada

vez mais difícil manter a informação do estado interno inicial, pois este se altera a cada ponto

processado.

Quando uma camada densa central é utilizada e repetida como input para todas as

reconstruções do decoder, ela consegue manter a representação da janela obtida pelo encoder

durante todo o processo de reconstrução, com a desvantagem da necessidade de um tamanho de

janela fixo, definido antes do treinamento, mas com a vantagem de uma convergência mais fácil

no treinamento e melhores resultados, como apresentados na seção 5.4.

5.3 Estratégias de segmentação de janelas

Nesta seção, serão apresentadas três técnicas de segmentação de janelas, que têm

como objetivo dividir a série temporal em janelas semânticas que consigam representar um
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ciclo da série e facilitar a descoberta de padrões e anomalias pelos modelos. A primeira técnica,

apresentada na seção 5.3.1, é a segmentação por valor constante, que é utilizada pelos trabalhos

(MALHOTRA et al., 2015; MALHOTRA et al., 2016), na qual se escolhe arbitrariamente um

valor de segmentação para seccionar a série a partir de uma análise manual dos dados. A segunda

técnica, apresentada na Seção 5.3.2, é baseada em picos, na qual o tamanho da janela é definido

a partir da distância mediana entre máximos locais da série, separados por uma certa distância.

A terceira técnica, que é proposta por este trabalho e apresentada na Seção 5.3.3, utiliza um

threshold de varredura, que secciona a série em todos os pontos de travessia do threshold pela

série e tenta maximizar a similaridade entre as janelas obtidas.

5.3.1 Segmentação Baseada em Tamanho de Janela Constante

Na segmentação de janelas baseada em tamanho constante, um valor h é escolhido

com base na análise manual da periodicidade da série e é utilizado para seccionar a série em

janelas de tamanho h não sobrepostas. A ideia é escolher h tal que as janelas sejam o mais

semelhantes possível.

Essa técnica é fácil de entender e implementar, mas apresenta algumas desvantagens,

como a necessidade de escolher manualmente um valor para a segmentação, o que depende de um

conhecimento prévio sobre o conjunto de dados, além de um certo nível de especialização para

identificar os ciclos presentes nas séries. Outra desvantagem mais importante é que diferentes

séries do mesmo conjunto de dados, ou até mesmo trechos diferentes na mesma série, podem

apresentar durações de ciclos com variações que comprometem a similaridade das janelas,

mesmo com uma escolha ótima de tamanho constante das janelas.

Existem algumas possibilidades para se enfrentar o problema da variabilidade da

duração dos ciclos entre séries diferentes, como, por exemplo, escolher um tamanho de janela

específico para cada série do conjunto de dados e, ao final, realizar uma reamostragem das séries

para ajustá-las todas ao mesmo tamanho de janela. Contudo, o problema da variabilidade dentro

da própria série ainda persiste, e a necessidade de analisar manualmente a duração dos ciclos de

cada uma das séries no conjunto de dados torna o problema ainda mais complexo.

5.3.2 Segmentação Baseada em Picos

A técnica apresentada nesta seção visa utilizar a estrutura da própria série para definir

um tamanho de janela ótimo, na qual todos os máximos locais da série são encontrados e, dado
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um tamanho de vizinhança escolhido arbitrariamente, excluem-se os máximos locais que habitam

a mesma vizinhança de outro máximo local com base no tamanho escolhido. Ou seja, dada uma

série temporal X e uma distância h ∈ N
+, esta técnica encontra todos os máximos locais de X de

modo que a distância mínima entre qualquer par de máximos locais seja h.

Dada uma série temporal X = [x1, ...,xn], dizemos que xi é um máximo local se

xi > xi±1, ou se xi é o ponto central em um platô P = [xi−p, ...,xi, ...,xi+p] onde ∀x ∈ X ,x = xi,

xi > xi−p−1 e xi > xi+p+1. Seja M⃗ = [m1, ...,mk] onde ∀(1 f i f k),mi f mi+1, a lista ordenada

de máximos locais de X . Para cada i ∈ {1, ...,k}, se existe algum outro ponto de máximo local na

vizinhança de distância h de mi, remove-se mi. Ao final do algoritmo, teremos todos os máximos

locais de X com pelo menos distância h em relação a qualquer outro máximo.

Esta técnica possui vantagens em relação à técnica de segmentação por tamanho

constante, pois não requer o conhecimento de um tamanho exato que capture o ciclo das séries,

além de permitir uma melhor segmentação de séries quasi-periódicas ao capturar os pequenos

desvios que podem ocorrer nos ciclos pela utilização dos picos da série. Apesar disso, ainda é

necessária a definição de um hiperparâmetro h, já que um h pequeno pode levar à separação em

janelas diferentes de múltiplos picos que pertencem a um mesmo ciclo, e um h muito grande

pode agregar vários ciclos dentro de uma única janela.

5.3.3 Segmentação por Similaridade de Janelas através de Varredura de Threshold (WSST)

Como podemos observar nas técnicas anteriores, elas requerem ou algum conhe-

cimento prévio do conjunto de dados, uma análise individual de cada série nos dados, ou são

extremamente sensíveis a pequenas variações nos ciclos da série.

Para enfrentar esses problemas, é proposta uma técnica de segmentação dinâmica de

janelas, o Window Similarity Scanning Threshold (WSST), que realiza uma varredura de um

threshold no eixo y da série, com esse threshold variando do ponto mínimo da série até o ponto

máximo, e a segmentação em janelas nos pontos em que a série atravessa o valor do threshold.

Com isso, para cada threshold é calculada a dissimilaridade média entre todas as janelas criadas,

escolhendo-se assim o threshold que minimiza essa dissimilaridade.

A importância da escolha do threshold é exemplificada nas figuras 20, 21 e 22. Na

Figura 20, o threshold escolhido divide a série em janelas completamente caóticas, sem um

padrão identificável. Na Figura 21, um threshold melhor é escolhido, já existe um padrão nas

janelas obtidas, mas é possível identificar que o ciclo presente na série é segmentado de forma
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Figura 20 – Uma escolha ruim de threshold

Figura 21 – Uma escolha de threshold aceitável, mas que pode ser melhorada

Figura 22 – Uma boa escolha de threshold que divide a série em cada um de seus ciclos

que cada ciclo acaba sendo seccionado em duas janelas separadas. Por fim, para reforçar a

importância da escolha de um bom threshold, na Figura 22 é possível visualizar a segmentação

bem definida dos ciclos, onde cada ciclo será representado em uma janela correspondente.

Seja X = [x1, ...,xn] uma série temporal de tamanho n, e T = [τ1, ...,τl], onde τ1 =

min(X), τl = max(X) e ∀(1 < i < l),τi+1−τi = τi−τi−1, uma lista de thresholds ordenada, para

cada τ ∈ T é calculada a lista de pontos

P =























p ∈ N

1 f p f n

xp g τ

xp−1 < τ























(5.1)
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onde P é a lista de pontos em X que atravessam τ de baixo para cima, ou seja, xi é um

ponto escolhido se xi−1 < τ e xi g τ . Com isso, calcula-se d =median
{

pi+1 − pi | 1 f i < ∥P∥
}

como a distância mediana entre os pontos de P e [J1, . . . ,Jm] a lista de janelas de X tal que

Ji = [xpi
, ..,xpi+d]. Assim, é calculada a janela mediana Jmed , onde se Ji = [J

(1)
i , . . . ,J

(d)
i ], ∀(1 f

i f m), a janela mediana é definida como

J
( j)
med = median

{

J
( j)
i | 1 f i f m

}

(5.2)

Jmed = [J
(1)
med, . . . ,J

(d)
med] (5.3)

A partir da janela mediana Jmed , é calculada a matriz de erros E⃗ = [e1, ...,em], onde

ei é o erro quadrático médio entre a janela Ji e Jmed , definido por:

ei =
(J

(1)
i − J

(1)
med)

2 + . . .+(J
(d)
i − J

(d)
med)

2

d
(5.4)

Por fim, é calculado o erro geral ε(τ) = mean(E⃗), que determina o erro dado pelo

threshold τ escolhido. O objetivo da técnica é encontrar

min
τ∈T

ε(τ) (5.5)

e utilizar as janelas geradas a partir do valor ótimo de τ para treinar e testar os modelos preditivos

na detecção de anomalias.

Assim, por utilizar uma varredura de thresholds, essa técnica evita os processos

manuais na obtenção de um tamanho de janela, diferentemente das técnicas apresentadas ante-

riormente. A abordagem consegue adaptar-se à periodicidade das séries temporais ao utilizar

tamanhos de janelas variáveis para cada ciclo de cada série, além de ser capaz de segmentar

séries em seus ciclos característicos sem a necessidade de um conhecimento prévio sobre o

conjunto de dados.

5.4 Experimentação e Resultados

Para os experimentos, utilizou-se o conjunto de dados de eletrocardiogramas do MIT

apresentado na Seção 4.4.1.2. O objetivo foi comparar os escores obtidos pelos modelos de

LSTM Empilhada (MALHOTRA et al., 2015), Encoder-Decoder (MALHOTRA et al., 2016) e o

modelo proposto na Seção 5.2. Como etapa de pré-processamento das séries temporais, foram

aplicadas as técnicas de segmentação de janela descritas na Seção 5.3.
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Antes da aplicação das técnicas de segmentação de janelas, as séries temporais

foram divididas nos conjuntos de treino, validação e teste. Esta divisão prévia garante que,

após a segmentação e o embaralhamento das janelas para o treinamento dos modelos, não haja

vazamento de informações entre os conjuntos, o que poderia ocasionar viés durante a fase de

teste. Tal abordagem previne que os modelos tenham acesso a fragmentos de todas as séries

durante o treinamento.

De modo similar à experimentação do capítulo anterior, a Tabela 3 apresenta a

comparação dos valores de precision, recall e das métricas F1 e F0.1, com a inclusão da métrica

F2 nos resultados. Esta última atribui maior ênfase à redução de falsos negativos, podendo

constituir outro parâmetro relevante para a comparação dos modelos.

Tabela 3 – Resultados dos testes para os dados de eletrocardiogramas do MIT
W. BREAKING MODELS Precision Recall F2 F0.1 F1

Constant LSTM 6.22% 25.18% 0.1565 0.0627 0.0998
Constant Enc-Dec 9.28% 22.07% 0.1730 0.0933 0.1306
Constant CRED 8.58% 22.15% 0.1682 0.0863 0.1237

Peaks LSTM 6.01% 25.26% 0.1540 0.0606 0.0971
Peaks Enc-Dec 8.78% 17.15% 0.1441 0.0883 0.1162
Peaks CRED 9.34% 26.64% 0.1944 0.0941 0.1384
WSST LSTM 5.53% 20.31% 0.1323 0.0557 0.0869
WSST Enc-Dec 10.54% 30.89% 0.2229 0.1061 0.1572
WSST CRED 10.55% 36.42% 0.2444 0.1062 0.1636

A partir dos resultados apresentados na Tabela 3, observa-se que a técnica proposta

WSST alcança desempenho superior em todos os aspectos avaliados nos modelos baseados

em encoder-decoder. Esta técnica proporciona melhorias de até 35% quando comparada às

diferentes técnicas de segmentação de janelas aplicadas ao modelo Encoder-Decoder, e melhorias

de até 32% quando aplicada ao modelo CRED.

Além disso, os resultados demonstram que, na maioria dos casos, o modelo preditivo

proposto, WSST, apresenta desempenho superior a ambos os modelos do estado da arte, com

melhorias de até 19% em relação ao modelo Encoder-Decoder e de até 88% quando comparado

ao modelo de LSTM Empilhada.

Por fim, destacam-se os resultados obtidos quando combinada a técnica de segmen-

tação de janelas proposta com o modelo preditivo de detecção de anomalias proposto. Esta

combinação alcança desempenho superior em todas as métricas de avaliação, com destaque para

o recall que apresenta uma melhoria de 18% quando comparado ao segundo melhor recall obtido
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nos experimentos.

5.5 Conclusão

Neste capítulo, foi apresentado um novo modelo preditivo para detecção de anomalias

em séries temporais, um auto-encoder baseado em LSTM que traz uma variação sobre o

modelo anteriormente proposto por (MALHOTRA et al., 2016). O modelo desenvolvido

obteve resultados expressivos nos testes, mostrando-se superior aos modelos do estado da arte

na maior parte dos cenários avaliados. O desempenho superior em comparação ao modelo

de (MALHOTRA et al., 2016) pode ser explicado pelo fato de o modelo proposto manter a

representação gerada pelo encoder como entrada durante todo o processo de reconstrução da série

pelo decoder. Esta abordagem previne o problema de "esquecimento"característico das LSTMs

no processo de reconstrução, fenômeno que pode ocorrer com o modelo de (MALHOTRA et al.,

2016), especialmente na reconstrução de janelas extensas, uma vez que, quanto maior a série de

entrada, maior o impacto do "esquecimento"na reconstrução ponto a ponto.

Também foram apresentadas técnicas de segmentação de janelas utilizadas no pré-

processamento das séries temporais, as quais possuem menção escassa na literatura, onde

predominam processos manuais, frequentemente com auxílio de especialistas. Esse capítulo

propõe uma técnica que utiliza a própria estrutura intrínseca da série para determinar os pontos

ótimos de segmentação, maximizando a similaridade entre as janelas resultantes. Esta abordagem

não apenas reduz a necessidade de intervenção manual sobre os dados, como também aprimora

a qualidade das janelas fornecidas como entrada para os modelos preditivos. Tal melhoria é

evidenciada pelos resultados apresentados na Seção 5.4, nos quais o WSST demonstra desempe-

nho superior em comparação a outras técnicas, especialmente quando aplicado aos modelos de

Auto-Encoder que são mais sensíveis à qualidade das janelas de entrada.

Por fim, quando combinadas as técnicas propostas nesse capítulo, obtém-se uma

abordagem robusta para a análise de anomalias em séries temporais, apresentando desempenho

superior a qualquer outra combinação de técnicas avaliadas neste estudo. Tal contribuição abre

perspectivas promissoras para aprimoramentos e aplicações em trabalhos futuros.
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6 CONCLUSÃO

Nesse trabalho, foram apresentadas técnicas de análise de anomalias em séries

temporais, com revisão de abordagens existentes na literatura. A partir desse estudo, foram

propostas novas arquiteturas e técnicas de pré-processamento de séries temporais capazes de

aprimorar o desempenho tanto de modelos da literatura quanto dos modelos desenvolvidos nesta

pesquisa.

Foi proposta uma técnica de ensemble de modelos, denominada TSPME-AD, que

obtém resultados consistentemente superiores quando comparada aos seus modelos base, mesmo

quando alguns dos modelos componentes do ensemble apresentam desempenho inferior aos

demais. Adicionalmente, foram apresentadas e analisadas diversas funções de combinação,

sendo que a função implementada no TSPME-AD demonstrou desempenho superior de forma

consistente nos testes realizados.

Também foi proposto um novo modelo preditivo de detecção de anomalias em séries

temporais, denominado CRED, que utiliza como base o modelo proposto por (MALHOTRA et

al., 2016). A arquitetura foi modificada com o objetivo de solucionar o problema do esquecimento

característico das LSTMs. Conforme demonstrado nos resultados experimentais, o modelo

proposto obtém consistentemente desempenho equivalente ou superior aos demais modelos

analisados neste estudo.

Por fim, este trabalho abordou o problema da segmentação de janelas como etapa de

pré-processamento das séries temporais, fundamental para viabilizar o treinamento e teste dos

modelos preditivos estudados. Foram comparadas diferentes técnicas de segmentação, sendo

as mais básicas aquelas utilizadas em trabalhos correlatos, que demandam maior intervenção

manual e podem ser prejudicadas pela variabilidade da periodicidade das séries. A técnica de

segmentação dinâmica proposta, denominada WSST, reduz significativamente a necessidade de

processos manuais no pré-processamento, além de gerar janelas alinhadas com a periodicidade

intrínseca de cada série. Esta abordagem facilita a identificação de padrões pelos modelos

preditivos, resultando em desempenho superior na maioria dos cenários avaliados, conforme

evidenciado pelos experimentos realizados.
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6.1 Trabalhos Futuros

A área de detecção de anomalias em séries temporais é bastante ampla e, apesar

das várias análises apresentadas nesse trabalho, a possibilidade de novas investigações é ex-

tremamente vasta. Essas possibilidades incluem: novas arquiteturas de modelos de detecção,

técnicas aprimoradas de pré-processamento de séries, diferentes abordagens para combinação de

modelos e a obtenção de conjuntos de dados mais extensos para melhor avaliação da qualidade

das técnicas, entre muitas outras análises possíveis.

Com base nisso, uma possível direção futura é a avaliação dos modelos aqui propos-

tos utilizando novos conjuntos de dados reais, como o do MIT-BIH (MOODY; MARK, 2001),

com o objetivo de analisar seus comportamentos em diferentes cenários. Esses cenários incluem

séries com ciclos de variabilidade diversa, ciclos de diferentes níveis de complexidade, entre

outras características.

Outro ponto para análise futura em relação ao modelo de ensemble proposto é a

possibilidade de utilizar outros modelos base para sua composição, bem como implementar

novas funções de atenuação e combinação dos escores. Um exemplo seria a aplicação de redes

neurais como função de combinação, abordagem já apresentada em outros contextos de ensemble

na literatura.

Da mesma forma que este trabalho propôs um novo modelo preditivo de detecção de

anomalias, estudos futuros podem propor novos modelos como variações dos existentes ou até

arquiteturas completamente novas. A exploração do uso de modelos preditivos para detecção de

anomalias em séries temporais tem ganhado relevância mais recentemente, o que abre diversas

possibilidades para o desenvolvimento de novos modelos capazes de obter bons resultados nos

conjuntos de dados consolidados da literatura.

Por fim, a análise de técnicas de segmentação de janelas em séries temporais é

uma área pouco explorada na literatura, mas que, como mostrado nos resultados obtidos neste

trabalho, pode apresentar impactos significativos no desempenho dos modelos preditivos. Com

isso, como trabalhos futuros, podem ser propostas novas técnicas de segmentação de janelas

mais robustas e menos dependentes de interferência manual, potencialmente afetando de forma

positiva o desempenho de outros modelos já apresentados anteriormente na literatura.
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