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RESUMO

Deteccdo de anomalias em séries temporais € uma drea de estudo em ripido crescimento
atualmente, devido ao aumento exponencial da criagdo de novos dados temporais produzidos
por sensores de diversos contextos, como, por exemplo, a Internet das Coisas (IoT). Muitos
modelos preditivos foram propostos ao longo dos anos, e muitos trazem resultados promissores
na diferenciacdo de pontos normais e andmalos nas séries temporais. Neste trabalho, serdo
propostas trés contribuicdes. Em uma delas, buscamos encontrar € combinar os melhores
modelos preditivos em deteccdo de anomalias em séries temporais, para que as diferentes
estratégias e diferentes pardmetros na criacdo dos modelos possam contribuir para a andlise
das séries, propondo um ensemble baseado em modelos chamado TSPME-AD (7ime Series
Prediction Model Ensemble for Anomaly Detection, ou Ensemble de Modelos Preditivos em
Séries Temporais para a Deteccdo de Anomalias). O TSPME-AD utiliza os modelos preditivos
do estado-da-arte e combina seus scores de anomalias com uma func@o ponderada. As outras
duas contribuicdes desse trabalho sdo uma técnica dindmica de segmentacao de janelas, que
utiliza a periodicidade e o formato das séries para facilitar o treinamento dos modelos e a
descoberta de padrdes, e um novo modelo de auto-encoder que modifica a estrutura de um dos
modelos do estado-da-arte. A efetividade das propostas do trabalho é analisada com o uso de
dois conjuntos de dados reais, sendo esses os dados de um ano de demanda de energia elétrica e
o banco de dados de eletrocardiogramas do MIT. Com os experimentos, demonstramos que a
técnica de ensemble proposta melhora o score F; em até 22% comparado com o melhor score
dentre os modelos individuais que a compdem, com nossa fun¢do de combinagdo especifica
apresentando uma melhora de até 13% com relacdo a outras funcdes de combina¢do mais simples.
Também demonstramos que nossa nova arquitetura de auto-encoder, combinada com a nova
estratégia de segmentacdo dindmica de janelas, consegue melhorias de até 25% no score F}
comparado com uma das técnicas de auto-encoder do estado-da-arte, e uma melhoria de até 64%

comparado com um modelo de LSTM empilhada.

Palavras-chave: séries temporais; deteccao de anomalias; redes neurais; descoberta de periodos;

ensembles.



ABSTRACT

Time-series anomalies detection is a fast-growing area of study, due to the exponential growth of
new data produced by sensors in many different contexts as the Internet of Things (IoT). Many
predictive models have been proposed, and they provide promising results in differentiating
normal and anomalous points in a time-series. In this work, we provide three contributions. We
aim to identify and combine the best models for detecting anomalies in time-series, so that the
different strategies or parameters of the models can contribute to the time series analysis by
proposing a model-centered ensemble called TSPME-AD (stands for Time Series Prediction
Model Ensemble for Anomaly Detection). TSPME-AD uses state-of-the-art predictive models,
combining their anomaly scores using a weighted function. Other contributions are a dynamic
window breaking technique based on scanning thresholds, leveraging the periodicity and shape
of the series to generate windows that aid in training and testing models, and a new auto-encoder
predictive model. The effectiveness of our proposals is analyzed using two real-world time-series
datasets, a year of power demand data, and the MIT electrocardiogram database. We show that
our ensemble technique improves on the F; score up to 22% on the best score of the individual
models composing the ensemble, with our specific combination function improving on simpler
functions on up to 13% F; score increase. We also show that our new auto-encoder architecture,
combined with the new window breaking technique, can have an up to 25% Fj score increase
compared to another proposed auto-encoder technique, and a 64% score increase over a stacked

LSTM model.

Keywords: time series; anomaly detection; neural networks; period discovery; ensembles.
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1 INTRODUCAO

Precos de a¢des, monitoramento do sono e trajetdrias de objetos mdveis sao conjuntos
de dados que frequentemente apresentam alguma nocdo de tempo. Quando um ou multiplos
parametros de algum desses contextos sdo coletados em uma sequéncia de tempo, obtém-se o
que € chamado de série temporal.

A coleta de grandes volumes de dados de séries temporais abre varias oportunidades
de descobertas de padrdes desconhecidos nesses dados, assim como a possibilidade de identi-
ficacdo de desvios nesses padrdes, os quais podem indicar informag¢des muito relevantes. Por
exemplo, médicos podem buscar anomalias no padrao de sono de um paciente para investigar
algum diagnodstico. Uma aplicag@o de trajetérias em mapa pode identificar anomalias no fluxo de
veiculos em uma via e tomar decisdes ideais de trajetéria em tempo real para seus usudrios. Apli-
cacgdes bancdrias podem detectar anomalias nos fluxos de transferéncias de usudrios, alertando
sobre possiveis fraudes em tempo real, entre outras inimeras aplicacdes possiveis.

Existem vérias abordagens para o problema de detec¢cao de anomalias em séries
temporais. Diversas técnicas sdo apresentadas na literatura, incluindo modelos preditivos,
baseados em clusterizagdo, em distancia, entre outros (MENG et al., 2018). Devido a dificuldade
de modelar séries temporais, especialmente por conta do fator sequencial dos dados, o estado da
arte tem investigado redes neurais utilizando LSTM (HOCHREITER; SCHMIDHUBER, 1997)
para modelar o comportamento normal das séries temporais e utilizar desvios do comportamento
padrdo para detectar anomalias, sem a necessidade de um threshold pré-determinado ou fase de
pré-processamento (MALHOTRA et al., 2015; MALHOTRA et al., 2016).

Os modelos baseados em LSTM sdo muito dependentes de um grande conjunto
de dados. No entanto, como as anomalias, por defini¢do, sdo eventos raros no mundo real,
os modelos preditivos se beneficiam do fato de que a maior parte dos dados disponiveis para
treinamento é composta por séries sem anomalias. Essa abordagem baseia-se na premissa de que,
ao treinar um modelo para reconstruir pontos de uma série temporal normal, ele serd incapaz de
reconstruir adequadamente uma série que contenha um ou mais pontos andmalos, resultando em
erros de reconstrucao atipicos, que sdo utilizados para identificar as anomalias.

Este trabalho investiga um problema desafiador, pois a deteccao de anomalias é
realizada sobre séries temporais multivariadas. Como apresentado em (WANG et al., 2018),
anomalias podem ocorrer em sub-conjuntos de dimensdes, os locais e tamanhos dessas anomalias

podem variar entre as diferentes dimensdes. Além disso, uma série com anomalias pode parecer
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normal em suas componentes individuais, mas a combinac¢do delas revela a anomalia.

1.1 Definicao do Problema

Considere a série temporal multivariada X = [x(l),x(z), el ,x(”)] tal que x\) ¢ R

é um vetor m-dimensional x() = [xgi),xéi), . ,x,(,? ] no ponto ¢ = i. Normalmente, os modelos
preditivos procuram prever o préximo ponto, dada uma série como entrada. Ou seja, para um
modelo preditivo M e uma série temporal X = [x(),x()  x®] M(xD) = x+D_ Alguns
modelos podem variar um pouco desta perspectiva, como, por exemplo, ao tentar prever mais
de um ponto no futuro, M(x()) = [x"1) x(2)] ou reconstruindo a série de forma retroativa,
M(xDy = xU=1),

Dado um modelo preditivo M e uma série temporal X, ¥ = M(X) representa a

2 ...,y"], onde y() &

sequéncia gerada a partir de X com o uso de M, tal que ¥ = b)(l),y(
uma tentativa de reconstrucao de x) por M. O objetivo principal € reconstruir a sequéncia X
utilizando M, computar os erros de reconstru¢cao baseados na predicao M (x(i)) em comparacao
com x;, calcular os escores de anomalias com base na distribui¢do de erros computados, e utilizar

os escores para identificar as anomalias em X.

1.2 Contribuicoes

Uma das técnicas que pode ser utilizada no contexto de séries temporais € o ensemble
de modelos, que visa treinar varios modelos com propriedades diferentes sob um mesmo conjunto
de dados, e combinar seus resultados utilizando algum tipo de funcdo de combinacdo. Varios
esquemas de combinagdo foram propostos ao longo dos anos, com alguns deles conseguindo
demonstrar empiricamente serem consistentemente melhores que seus modelos individuais
(KITTLER et al., 1996). A literatura apresenta varias utilizacdes de ensembles, como para
problemas de classificacdo, regressio, predi¢do em séries temporais, entre outras utilizacoes
possiveis.

Neste trabalho, € feito um estudo sobre a utilizacao de ensembles para detec¢do de
anomalias em séries temporais, por meio da combina¢do de modelos preditivos. Além disso, o
trabalho propde o Time Series Prediction Model Ensemble for Anomaly Detection (TSPME-AD),
um ensemble focado na combinacdo de modelos que treinam sob todo o conjunto de treino,

utilizando uma fun¢do de damping (AGGARWAL, 2013) para a normalizacdo dos resultados
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dos modelos individuais e utilizando uma média ponderada como fun¢do de combinacao.
Também serd proposta uma nova arquitetura baseada em LSTM, que modifica o
modelo de Encoder-Decoder proposto em Malhotra et al. (2016), em que, em vez de usar os
estados internos do LSTM do encoder como estado inicial do decoder para a reconstrug¢do da
série, se utiliza uma camada densa entre o Encoder e o Decoder que servird como entrada
para o Decoder. Além disso, como as técnicas de detec¢do de anomalias em séries temporais
apresentadas nesse trabalho, e as do estado da arte, incluindo as apresentadas nos trabalhos
relacionados, como (MALHOTRA et al., 2015; MALHOTRA et al., 2016), normalmente
quebram as séries temporais em janelas de tamanho igual para serem passadas como input para
os modelos, também serd proposta uma técnica de quebra de janelas dindmica, que utiliza a
similaridade entre as janelas geradas para escolher uma segmentacio em janelas que melhor

represente os periodos da série temporal.

1.3 Estrutura da Dissertacao

Esta dissertacdo € estruturada da seguinte forma: No capitulo 2 apresenta-se a
fundamentacdo tedrica do trabalho. O capitulo 3 apresenta alguns trabalhos do estado da arte em
detecc@o de anomalias em séries temporais utilizando modelos preditivos. O capitulo 4 apresenta
uma andlise de ensembles para o problema e propde uma fun¢do de combinacao. No capitulo 5,
serd apresentada uma nova arquitetura de modelo preditivo para a deteccdo de anomalias, além
de uma técnica de quebra de janelas para pré-processamento das séries. Por fim, no capitulo 6

sao apresentadas as conclusdes finais do trabalho e possiveis linhas de pesquisa futuras.
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2 FUNDAMENTACAO TEORICA

Neste capitulo serdo apresentadas algumas defini¢cOes e arquiteturas que servirdao de
base tedrica para os modelos propostos neste trabalho, e para a compreensao das arquiteturas
apresentadas ao longo da dissertacao.

O capitulo ira apresentar os seguintes conceitos: Séries Temporais, Anomalias em

Séries Temporais, Redes Neurais Artificiais, Redes Neurais Recorrentes e LSTMs.

2.1 Séries Temporais

Uma série temporal X € uma sequéncia de pontos ou vetores x € R", onde cada ponto
possui uma marcagao de tempo, com intervalos de tempo constantes ou varidveis entre 0s pontos.

Ciclos em uma série temporal podem ser definidos como um padréo identificavel
que se repete ao longo da série, e, com base neles, uma série temporal pode ser classificada
de trés formas: Nao Periddica, Quasi-Periddica ¢ Periddica. Uma série periddica, como
exemplificado na Figura 1, possui ciclos bem definidos, em que a duragdo dos ciclos € constante.
Uma série quase-periodica possui ciclos bem definidos, mas as duragdes dos ciclos e o padrao
dos ciclos podem ter pequenas variacdes, como exemplificado na Figura 2. Por fim, uma série
nao perioddica nio apresenta ciclos identificdveis, o que a torna mais complexa para andlise,

como exemplificado na Figura 3.

20
15
10
os
-05
i
50 100 150

o

0 50 00 350 a00

Figura 1 — Série temporal periddica com dois ciclos identificaveis e constantes

2.2 Anomalias em Séries Temporais

Anomalias em séries temporais podem ser descritas como "quebras'"nos padrdes

dos ciclos da série, que podem se apresentar de diversas formas conforme apresentado em
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Figura 2 — Série quasi-periodica de um electrocardiograma que pode apresentar pequenas varia-
¢oes nos ciclos

50 100 150 200 250 300 50 400

Figura 3 — Série nao periddica gerada randomicamente

(CHEBOLLI, 2010), como um valor baixo em um local de um ciclo que se esperaria um valor
alto, ou um valor alto em um local que se espera um valor baixo, chamadas de anomalias de
contexto, exemplificadas na Figura 4, sequéncias de valores que nio seguem o padrao esperado
da série, chamadas de anomalias de sub-sequéncias e exemplificadas na Figura 5, e em séries
multivariadas, anomalias podem se apresentar de forma mais complexa, sendo detectadas apenas

por meio de uma combinacio de suas dimensoes.

2.3 Redes Neurais Artificiais

Redes neurais artificiais sdo modelos de camadas de nds interconectados que tentam
mimetizar o comportamento dos neurénios do cérebro humano, utilizando essa estrutura para
aprender padrdes em conjuntos de dados, resolvendo problemas de classificacdo, regressao, entre
outros.

Como no neurdnio biolégico, o neurdnio ou nd da rede neural, exemplificado na
Figura 6, recebe vdrias entradas com um peso para cada um, soma os valores ponderados e aplica
uma fung¢do de ativagdo como a sigmoid ou tanh sobre esse resultado para obter a saida do né.

A rede neural artificial € construida a partir da juncdo de camadas desses nds, como
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Figura 4 — Anomalia contextual em série temporal apresentada por (CHEBOLI, 2010)
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Figura 5 — Anomalias de sub-sequéncia onde sequéncias de altas esperadas ndo ocorreram

exemplificado na Figura 7, em que cada n6 de uma camada posterior tem conexdes com todos
os n6s da camada anterior, sendo composta por uma camada de input, que recebe os dados de
entrada e precede todas as outras camadas, e uma camada de output ao final, responsavel por
retornar o valor computado da rede neural.

O treinamento para reconhecimento de padrdes com redes neurais € dependente do
contexto do problema, mas segue um certo conjunto de etapas comuns. Por exemplo, em um
problema de classificagdo, a camada de output deve retornar a classe correta a partir de uma
determinada entrada. Para isso, o treinamento da rede utiliza os erros de classificagdo para ajustar
gradualmente os pesos dos nds da rede, e com essas alteragdes, reduzir progressivamente os
erros de classificacao.

Existem varios algoritmos de otimizacdo desses pesos, como algoritmos genéticos,
buscas aleatdrias, sendo o mais comumente utilizado o backpropagation, que emprega um

processo que calcula a derivada da fun¢do de ativagdo com os pesos e erros obtidos em uma
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Figura 6 — N6 (neurdnio) de uma rede neural artificial

v

v

Figura 7 — Rede neural artificial simples com apenas uma camada interna

camada e ajusta os pesos com base nesses gradientes, o que acelera o processo de treinamento e
convergéncia do modelo ao direcionar a atualizacdo dos pesos em direcdo a um minimo local da

funcao de erro.
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2.4 Redes neurais recorrentes e LSTMs

Redes neurais recorrentes ou RNNs sdo uma classe de redes neurais que recebem
como input uma sequéncia temporal de dados de entrada, e utilizam o output de camadas internas
da rede como input da propria camada, agindo como um tipo de "meméoria"para o reconhecimento
de padrdes em dados sequenciais.

A RNN € uma tentativa mais simples de modelar dados sequenciais com redes
neurais, mas por sua "simplicidade"acaba sofrendo com problemas de "esquecimento"de padrdes
em sequéncias mais longas, comprometendo sua capacidade de modelagem a medida que a
sequéncia de dados de entrada aumenta em tamanho. Para resolver esse problema, algumas
variantes de redes recorrentes foram propostas, com a mais conhecida delas sendo a LSTM.

LSTM € uma abreviagdo para Long Short-Term Memory, e define uma arquitetura
de n6s em redes neurais recorrentes que utiliza pesos internos dedicados apenas a "memoria"de
padrdes, e "portdes"que controlam a memorizagdo ou o esquecimento desses padroes com base

nos dados de entrada ou nos estados recorrentes, podendo ser visualizado na Figura 8.

Figura 8 — N6 LSTM onde a seta horizontal superior representa a memoria interna do n6
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Devido a sua memoria interna, a LSTM € capaz de aprender padrdes de sequéncias
bem maiores, obtendo resultados melhores que as RNNSs nesses casos, com o ponto negativo de
uma convergéncia no treinamento mais demorada, tanto pela maior quantidade de pesos a serem
treinados em um tnico nd, quanto pela complexidade das funcdes utilizadas para cada "portdo"e

output.
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3 TRABALHOS RELACIONADOS

Modelos de deteccao de anomalias em séries temporais tém sido investigados na lite-
ratura utilizando-se técnicas de machine learning e métodos estatisticos, conforme apresentado
em Chandola et al. (2009), e uma nova gama de técnicas que vém ganhando tracdo recentemente
sao as redes neurais profundas, que sdo geralmente utilizadas para modelagens nao-lineares.
Apesar disso, poucos estudos consideram as redes profundas para abordar o problema de detec¢do
de anomalias no contexto de séries temporais, tendo ganhado mais destaque nos dltimos anos.

O estudo de (MALHOTRA et al., 2016) por exemplo, propde um modelo de encoder-
decoder baseado em LSTM, que € treinado para reconstruir instancias de séries temporais com
comportamento normal. A ideia é que quando uma série andmala € passada para o modelo,
ele ndo consegue reconstrui-la tdo bem como reconstroéi as séries normais, fazendo com que os
valores dos erros de reconstru¢do sejam significativamente mais altos que o normal, sinalizando as
anomalias. Outro trabalho que propde um modelo baseado em redes de LSTM é o (MALHOTRA
et al., 2015), que propde uma arquitetura de camadas de LSTM empilhadas. Similarmente,
(KIEU et al., 2018) propde um framework de deteccao de outliers para identificar anomalias em
séries multidimensionais, incorporando vérias redes de auto-encoders para reconstruir as séries
passadas como input e discriminar as anomalias baseadas em erros de reconstrucao.

A técnica proposta em (KONG et al., 2018) consegue detectar anomalias de trafego
em grandes espagos de tempo utilizando dados de trajetérias de dnibus. Segmentos de séries
temporais sdo extraidos dos dados de trajetdrias dos Onibus para descrever tanto os aspectos
espaciais quanto temporais da situacdo do trafego de toda a cidade. (KONG et al., 2018) extrai
a velocidade média e o tempo de parada médio dos Onibus, que descrevem, respectivamente,
as condig¢des do transito e a demanda. Depois, segmentos "ruins"sdo encontrados nos dados
pelo calculo dos indices de anomalia dos segmentos. Ja o trabalho (TARIQ et al., 2019) propde
um detector de anomalias para um sistema de satélite utilizando uma LSTM convolucional
multivariada, combinada com um modelo de Mixtures of Probabilistic Principal Component
Analyzer. O modelo proposto treina em um grande conjunto de dados normais de telemetria e
discrimina entre sequéncias de telemetria normais e andmalas.

Outros tipos de algoritmos de detec¢do de anomalias utilizam técnicas de clusteriza-
¢do. Por exemplo, o trabalho (WANG et al., 2018) propde um algoritmo de clusteriza¢ido que
discretiza a série temporal em janelas de tempo e clusteriza todas as subsequéncias dentro de

cada janela. Subsequéncias univariadas no mesmo cluster dentro de uma janela sio similares
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umas com as outras; assim, os padroes de comportamento dos objetos sdo obtidos pelos centros
dos clusters e, caso uma série temporal nao siga esse padrao de comportamento, ela € considerada
anOmala. Para séries multivariadas, o algoritmo transforma a série original em um novo espaco
de features, onde cada feature € a distancia para um padrao, fazendo com que, quanto menor
for a distancia, mais similar € o dado do padrdao. (WANG et al., 2018) realiza a clusterizacdo
no dado transformado, e calcula um escore de anomalia para cada série temporal, baseado nos
resultados da clusterizacdo e das distancias para os clusters normais. Outras técnicas baseadas
em clusterizacao sao propostas por (GAO et al., 2012; IVERSON, 2004).

O trabalho (GAO; TAN, 2006) apresenta um modelo de ensemble que se assemelha,
no processo de combinacdo, ao modelo proposto neste trabalho, utilizando uma combinacdo
dos escores de anomalia obtidos pelos modelos base do ensemble, embora seja aplicado em um
contexto mais geral de detec¢do de anomalias.

Nesse capitulo serdo enfatizados os modelos propostos por (MALHOTRA et al.,
2015; MALHOTRA et al., 2016), pois sdo técnicas de deteccido de anomalias em séries temporais
utilizando modelos preditivos, o que segue a proposta deste trabalho, e, além disso, sdo os mode-
los utilizados para a criacao do ensemble apresentado no Capitulo 4, sendo que, especialmente,
o0 modelo proposto por MALHOTRA et al., 2016) serve de base para a proposta de uma nova

arquitetura no Capitulo 5.

3.1 LSTM Empilhada

Considere quatro conjuntos de séries temporais: sy € vy, contendo apenas instancias
de séries temporais sem anomalias, v4 € 4, contendo tanto séries normais quanto séries anomalas,
0 conjunto sy serd usado para o treinamento do modelo preditivo M, vy para a geragdo da
distribuicdo normal dos vetores de erro, v4 para a defini¢do do threshold de discriminagao de

(1) (2) (n)

anomalias, e 74 para a avaliagdo da qualidade do modelo M. Seja sy = [sy .85, --,Sy |, tal que
Sz(\j) € R™ é um vetor m-dimensional e 51(\? = [SI(\Z , sl(\g yen ,s](\;'r)n] no ponto temporal £ = i. O mesmo
se aplica aos conjuntos vy, v4 € 4.

Para sl(\i), cada uma das m dimensdes (sl(\? € R™) € lida por um n6 na camada de input
do modelo. Na camada de output, existe um n6 para cada um dos [/ pontos temporais futuros
previstos, e m dimensdes para cada ponto, ou seja, [ X m nds na camada de output. Os nés de
LSTM na camada oculta sao totalmente conectados através de conexdes recorrentes. Malhotra

et al. (2015) empilha camadas de n6s LSTM de forma que cada né em uma camada inferior é
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totalmente conectado com todos os nds da camada posterior, por meio de conexdes simples de

feedforward. A figura 9 mostra a arquitetura do modelo de LSTM empilhada.

Input ) LSTM ) LSTM Output
Layer Layer

Figura 9 — Arquitetura do modelo de LSTM empilhada proposta por (MALHOTRA et al., 2015)

Y

Seja M o modelo de LSTM empilhada, X uma série temporal e / o niimero de pontos
futuros preditos. Para cada ponto de tempo ¢ na série temporal X (onde [ <t < n—1) e para cada
uma das suas d dimensdes, o modelo prevé [ pontos no futuro. Vetores de erro sdo computados

M 0 0 (1 (1

para cada x), tal que (") = [egtl),...,e” soes€yls.. -, e ) onde ¢;;/ € adiferenca entre x; e
o valor predito pelo modelo M no ponto de tempo ¢ — j. Conforme Malhotra et al. (2015), o
modelo preditivo, treinado no conjunto de treinamento sy, € usado para computar os vetores de
erro para cada ponto nas sequéncias de dados de validacdo e teste. O conjunto de vetores de
erro gerados pelo modelo M no conjunto de treinamento € modelado para criar uma distribui¢dao
gaussiana multivariada .4"(u, X). O conjunto de validagdo é utilizado para estimar os valores
de u e X através da Estimativa de Mdxima Verossimilhanca (Maximum Likelihood Estimation).
O escore de anomalia p*) de um vetor de erro e(*) é dado pelo valor da distribui¢do .4 em el
ou seja, p) é computado como (el) — u)TE(=1) (e() — 1) para uma observacio x). Em x\*), o
valor predito € considerado andmalo se p(’ ) > 1, sendo, o ponto é considerado normal. O valor
de 7 € determinado utilizando o conjunto de validacio v4, com o objetivo de maximizar o escore
Fg. A escolha de 8 no escore Fjg depende da natureza do problema: < 1 enfatiza a redugdo de
falsos positivos, enquanto 3 > 1 enfatiza a reducio de falsos negativos. Por fim, o modelo M é
avaliado pelo escore Fj utilizando-se o conjunto #4.

Essa técnica € mais simples de ser treinada e converge mais rapido que o modelo
apresentado a seguir, devido ao uso mais natural do modelo de LSTM, que reconstréi uma
sequéncia lendo cada elemento e predizendo os préximos. Contudo, este método apresenta

uma desvantagem: a sua alta sensibilidade. Um tnico ponto andémalo na série temporal pode

propagar-se e causar multiplos erros de predicao nos pontos de tempo subsequentes.
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3.2 Encoder-Decoder

A arquitetura descrita nesta se¢do € constituida por um modelo Encoder baseado em
LSTMs. Este Encoder aprende representagdes vetoriais de tamanho fixo para séries temporais
passadas como input. A arquitetura inclui também um modelo Decoder, igualmente baseado em
LSTMs, que utiliza essa representacao vetorial para reconstruir a série temporal passada como
input ponto a ponto. Em cada passo da reconstru¢do, o Decoder utiliza como input o estado
interno atual dos n6és de LSTM e o valor do ponto predito no passo precedente.

Para a criac@o e o treinamento deste modelo, utilizam-se os mesmos conjuntos
SN, VN, va,ta que foram apresentados na Secao 3.1. Essa arquitetura foi proposta por (MALHO-

TRA et al., 2016) e € ilustrada na figura 10.

Y Y Y
LSTM
Encoder

h1 > h2 > h3

h 4
-y
N

Initialize with
internal state

LSTM | : : |
Decoder hl1 h|2 hl3 h|4

Figura 10 — Modelo de Encoder-Decoder proposto por MALHOTRA et al., 2016)

A

AA
AA
AA

Dado um conjunto de treinamento sy contendo séries temporais normais X =
[x(l), . ,x(”)], o modelo de predicao M € treinado da seguinte forma: Para cada ponto de
tempo ¢; (onde i € {1,2,...,n}), hg) representa o estado interno do encoder. Cada hg) € um vetor
em R¢, onde ¢ corresponde ao niimero de nés de LSTM na camada oculta do encoder. O encoder
e 0 decoder sao treinados em conjunto para reconstruir a série de input em ordem inversa, ou
seja, ele é treinado para que M(X) = {x"), x("=1) . x(D}. O estado final do encoder, hg'), é
entdo utilizado como o estado inicial do decoder. Adicionalmente, uma camada linear conectada
a camada interna de LSTM do decoder € empregada para realizar as predi¢des dos valores.
Durante a fase de decodificacdo, o decoder utiliza x\) ¢ o estado interno das LSTMs hg_l) para

gerar o valor x<i=1) correspondente ao objetivo x=1). Considerando que sy € um conjunto

de séries temporais sem anomalias, 0 modelo Encoder-Decoder € treinado para minimizar a
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, 112
@ — x|, Por fim, para uma observacao x(’), 0 escore

seguinte fungdo objetivo: Yy, Y1
de anomalia p*) em (MALHOTRA et al., 2016) é computado de forma similar 2 abordagem
apresentada e explicada na Secao 3.1.

Diferentemente do modelo de LSTM empilhada, este modelo apresenta a vantagem
de processar a totalidade da série temporal antes de efetuar sua reconstrugcdo. Essa caracteristica
torna as anomalias individuais menos impactantes na precisao da reconstru¢ao dos pontos de
tempo vizinhos, resultando em reconstru¢des mais estdveis, mesmo em séries temporais que
contenham anomalias. A contrapartida deste beneficio € um processo de treinamento mais

intensivo e uma convergéncia potencialmente mais demorada.
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4 ENSEMBLE DE MODELOS PREDITIVOS EM SERIES TEMPORAIS PARA DE-
TECCAO DE ANOMALIAS

4.1 Introducao

Neste capitulo, apresentaremos um ensemble de modelos preditivos, denominado
TSPME-AD, que utiliza os modelos propostos por (MALHOTRA et al., 2015) e (MALHOTRA
et al., 2016), com variacdes em seus hiper-parametros. O sistema calcula os escores de anomalias
para cada ponto das séries temporais, aplica uma fun¢do de normalizac¢ao nestes escores, combina-
os utilizando uma média ponderada dos valores e emprega um threshold para discriminar entre
pontos andmalos e normais das séries. O objetivo do ensemble € aproveitar modelos que
apresentam comportamentos diferentes quando aplicados sobre uma mesma série temporal,
realizando um processo semelhante a uma vota¢ao ponderada. Isto €, quando mais modelos, ou
modelos com maior peso de importancia, concordam sobre a classificacdo de um ponto como
andmalo ou normal, obtemos um resultado mais preciso e estdvel sobre sua real natureza.

Existem alguns desafios no processo de combinacdo do ensemble e, de acordo com
o trabalho de (AGGARWAL, 2013), os principais sdo a normalizacdo e a fun¢do de combinagao.
A normalizag@o aborda o problema de diferentes modelos gerarem outputs em escalas diferentes
ou até em formatos diferentes que nao siao facilmente compardveis. Ja o segundo desafio
consiste em descobrir qual a melhor funcao de combinacao a ser utilizada (Minimo, Maximo,
Média, etc.). Essas sdo questdes ainda em aberto, conforme apontado por (AGGARWAL,
2013). Apesar do vasto uso de ensembles em outros contextos na literatura, como classificagdes
e regressoes, os trabalhos em andlises de anomalias utilizando ensembles ainda sdo muito
esparsos, e, consequentemente, as solugdes para esses tipos de problemas nio sao completamente
conhecidas.

Este capitulo serd estruturado nas seguintes se¢des: Na secdo 4.2, a arquitetura
geral do TSPME-AD sera apresentada e explicada. Na secdo 4.3, serdo apresentadas algumas
func¢des de combinacdo além da proposta para o modelo, explicando o processo de treinamento
dos pesos para a fun¢cdo ponderada, e apresentando o processo de descoberta do threshold
para a discriminac@o das anomalias. Na secdo 4.4, serdo apresentados os conjuntos de dados
utilizados na experimentacdo, os processamentos realizados nos dados, e os resultados obtidos
pelo TSPME-AD em comparacdo com os modelos individuais utilizados e outras funcdes de

combinac¢do. Por fim, na secdo 4.5, serdo apresentadas algumas conclusdes sobre o modelo e os
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Agregar os scores Otimizar pesos da funcao
amortecidos utilizando ponderada e threshold para
uma fungao de média maximizar o score do

ponderada ensemble

Calcular scores de
anomalias para cada
modelo individual

Utilizar uma fungédo de Utilizar um threshold e
amortecimento calcular algum score para o
(damping) nos scores ensemble como o F4

Figura 11 — Passo a passo completo da arquitetura do TSPME-AD

resultados.

4.2 Arquitetura

Uma das principais diferencas entre o ensemble proposto e outros ensembles estd na
nao juncao dos resultados dos modelos para gerar uma predi¢ao melhorada. Ao invés disso, os
modelos treinam e predizem as séries individualmente, calculando seus escores de anomalias
conforme proposto em seus respectivos trabalhos originais. O TSPME-AD ¢€ aplicado apenas
apos a geracao dos escores de anomalias de cada modelo, seguindo os cinco passos representados
pela figura 11 que sdo:

* Para cada série temporal, utilizar os modelos treinados para reconstrui-las e calcular os
escores de anomalia de cada ponto da série

 Utilizar uma funcdo de amortecimento para normalizar os escores de anomalia entre
modelos

 Utilizar uma fun¢@o de média ponderada para unir os escores de anomalias entre modelos

* Escolher um threshold que ira discriminar, baseado no resultado da funcao ponderada, os
pontos andmalos e normais, e calcular um score para o ensemble como o F)

* Otimizar os pesos da func¢do de média ponderada e o threshold, visando maximizar o score
do ensemble

Sejam os conjuntos de séries temporais sy, v4 € f4, onde sy possui apenas séries sem
anomalias, e os outros dois possuem algumas séries com pontos andmalos. Para os modelos
preditivos My, M5, ... ,M,, todos treinardo sobre o conjunto sy de modo que, dada uma série
temporal X = [xj,...,x,] € sy, e um modelo qualquer M, o objetivo é que M(X) = X. Como
as reconstrucdes das séries ndo sdo perfeitas, se M(X) =Y, a diferenga ¥ — X serd um vetor

7z

de erros E = [g],...,&], onde € € R” é um vetor m-dimensional, com m sendo o nimero de
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Figura 12 — Primeiro, todos os modelos tentam reconstruir a série temporal, e sdo calculados os
escores de anomalia

dimensoes das séries passadas como input.

()

Com isso, cria-se uma distribui¢do normal dos vetores de erro. Se E;”” € o conjunto

de vetores de erro gerados por M(/)(X;), é criada a distribui¢do .4 (fi,X), onde i é o vetor médio
()

de todos os vetores de erro € € E;”’, Vi, j e ¥ € a matriz de covariincia desses vetores. A partir
dessa distribui¢do, os escores de anomalia sdo calculados utilizando a distancia de Mahalanobis

(MAESSCHALCK et al., 2000), que mede a distancia de um vetor X a uma distribui¢do com vetor

médio fi e matriz de covariancia ¥, por meio da fungio /(¥ — )T 1 (¥ — i), cujo resultado é

um valor pertencente ao conjunto dos Reais. Assim, para cada X = [x1,...,x,| € sy e para cada
modelo M, é gerado um vetor de escores de anomalias A = [ay,...,a,], como representado na
figura 12.

Como os escores de anomalias sd@o gerados a partir da distancia dos vetores de
erro para uma distribuicao de vetores, caso o erro desvie completamente do padrao, o escore
de anomalia pode se tornar muito alto, com a possibilidade de sobrepor escores de outros

modelos no passo de combinagdo do ensemble (AGGARWAL, 2013). Para diminuir o impacto
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Figura 13 — Aplicando uma fun¢ao de amortecimento nos escores de anoma-
lias, como a func¢do de logaritmo natural

desses escores, utilizamos uma fun¢do de amortecimento que diminui escores muito altos, como
representado na figura 13. Varias fun¢des podem ser utilizadas para esse propdsito, como
Ffx)=vx f(x)=1— ﬁ e a funcdo logaritmica f(x) = In(x+ 1). Esta dltima serd utilizada
no TSPME-AD por ter uma boa capacidade de amortecer escores muito altos e por apresentar a
vantagem de ndo limitar os valores a um intervalo. Isso mantém um certo impacto de escores
mais altos que ndo devem ser descartados, sem fazé-los sobrepor de forma absoluta os outros
escores. Além disso, com a adi¢do de 1 no argumento, o escore amortecido sempre serd positivo

e permite a; = 0.

4.3 Combinacao e Discriminacao

Com os escores de anomalias calculados e amortecidos, 0 proximo passo é combind-
los utilizando alguma fun¢do de combinacgdo. Diversas fungdes podem ser utilizadas, como o
maximo, o minimo, a média simples, média harmdnica, média ponderada, entre outras. Func¢des
como maximo e minimo possuem desvantagens quando existem escores dissonantes. Por
exemplo, se a grande maioria dos modelos aponta um escore baixo e apenas um dos modelos
aponta um escore alto, ao utilizar a fun¢do de maximo, os modelos que formam a maioria seriam
descartados. O mesmo ocorre na situagcdo inversa quando se utiliza a funcdo de minimo. Ja
as fungdes de média simples e média harmonica podem sofrer com alguns modelos "ruins",

pois atribuem o mesmo peso a todos os modelos participantes do ensemble. Ou seja, se uma
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Figura 14 — Agregacdo dos conjuntos de escores de anomalia utilizando uma funcdo de média
ponderada

pequena minoria de modelos obtiver escores de anomalia muito divergentes dos demais, eles
podem dominar o valor do escore resultante, influenciando negativamente na discriminacao das
anomalias.

O TSPME-AD utiliza uma funcdo de combinacao de média ponderada, que atribui e
treina pesos para cada modelo do ensemble, como representado na figura 14. Com isso, modelos
que ndo conseguem obter resultados satisfatdrios na contribui¢@o para o escore de anomalia final
tém sua influéncia atenuada com um peso baixo, enquanto modelos eficientes sao beneficiados

com pesos altos.

O passo de combinagdo pode ser definido como: Sejam M1y, M(y),...,M(,) mo-
delos preditivos para reconstrugdo de série temporal, X = [xi,...,x,| uma série temporal, e
[agj ), e ,a,gj )] os escores de anomalia obtidos através dos erros de predicdo de M(/)(X) para cada

2)

j < p. Considerando [w(l),w( yene ,w(p)] como os pesos atribuidos a cada modelo do ensemble,

com wl) € [0, 1], o score de anomalia ¢; referente ao ponto x; € X é definido por

W(l)ln(a§1)+1)+W(2)1H(a(2)—|—1)+-~-—|—w(1’)ln(a§p)+1)

i

e > .
% D W 20 @D
Com isso, dada a série temporal X = [x1,...,x,|, 0o TSPME-AD computa os escores
de anomalias [0, .., Q,). Assim, as anomalias serdo discriminadas a partir de um threshold

T >0, onde paracada 1 <i<n,se q; < 7,0 ponto x; é considerado normal, e caso contrério, se

a; > 7, x; é considerado andomalo, como exemplificado na figura 15.
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Figura 15 — Utilizando um threshold para discriminar entre pontos normais € andmalos na série

Por dltimo, € necessario descobrir os pesos e threshold 6timos para a maximizacao
do escore desejado. Para isso, utilizamos o conjunto v4 definido na se¢do 4.2, que contém séries
com anomalias anotadas, e treinamos pesos € um threshold que maximizem o escore F| do
ensemble. Um processo de Busca Randdomica Direcionada (Directed Random Search), proposto
por (SEIFFERT; MICHAELIS, 2001) como método alternativo de treinamento de redes neurais,
€ aplicado aos pesos limitados entre 0 e 1 e simultaneamente ao threshold T > 0, visando a
maximizacdo do score F; sobre o conjunto de dados vy4.

Outras técnicas de otimizacdo de pesos foram consideradas, como a Otimizacdo por
Enxame de Particulas (Particle Swarm Optimization) proposta em (KENNEDY; EBERHART,
1995), mas verificou-se que a técnica de busca randomica converge mais rapidamente a um score
6timo, além de trabalhar melhor com valores nao limitados, ja que o threshold também faz parte

do campo de busca e, diferentemente dos pesos dos modelos, pode ser maior que um.

4.4 Experimentacao

Nesta secdo, apresentamos os experimentos realizados sobre dois conjuntos de dados
reais e comparamos os escores F; obtidos pelos modelos propostos por (MALHOTRA et al.,
2015; MALHOTRA et al., 2016), descritos no capitulo 3. Utilizamos variacdes nos hiper-
parametros dos modelos para obter maior diversidade nos resultados de reconstrucdo das séries
temporais e, consequentemente, melhorar o desempenho dos ensembles. Também analisamos
diferentes funcdes de combinacdo dos escores de anomalias para avaliar seus impactos sobre o

score final.
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4.4.1 Datasets

Para a experimentagdo, utilizamos dois conjuntos de dados reais: uma série temporal
de demanda de energia elétrica durante um ano e um conjunto de eletrocardiogramas disponibili-
zados pela Universidade do MIT. Ambos os conjuntos sdo detalhados nas subsecdes 4.4.1.1 e

4.4.1.2, respectivamente.

44.1.1 Power Demand

Figura 16 — Uma semana normal de demanda de energia elétrica, iniciando-se na quarta-feira

O conjunto de dados de demanda de energia elétrica fornecido por (KEOGH et
al., 2007) apresenta o registro de um ano de coleta de dados sobre a demanda de energia. O
comportamento normal dos dados caracteriza-se por alta demanda durante os dias uteis da
semana ¢ demanda mais baixa durante os finais de semana. Assim, altas demandas durante os
finais de semana e baixas demandas em dias tuteis indicam anomalias nos dados que sdo anotadas.

Com isso, realiza-se um pré-processamento nos dados em que € aplicada uma
subamostragem com fator 8, ou seja, cada 8 pontos da série sdo convertidos em um, utilizando
um algoritmo que mantém o formato da série o mais préximo possivel do original. Em seguida,

a série € dividida em janelas sem intersecoes com 84 pontos cada, representando exatamente
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uma semana de demanda, reproduzindo o mesmo processamento realizado por (MALHOTRA et
al.,2016). A figura 16 apresenta uma semana de comportamento normal da série, iniciando na
quarta-feira.

Para a experimentacdo, os conjuntos s, € v, foram construidos a partir dos primeiros
40% dos pontos da série anual, e o restante constituiu o conjunto #,. Assim, uma parte maior
da série foi utilizada para a etapa de testes, pois, como anomalias sdo eventos relativamente
raros, necessitamos de mais pontos andmalos no conjunto de teste para obter um score mais

representativo.
4.4.1.2 MIT Electrocardiogram Dataset

O conjunto de dados de eletrocardiogramas do MIT é um conjunto de dados reais
obtidos a partir de multiplas horas de registros dos batimentos cardiacos por sensores, em diversos
pacientes, como representado na Figura 17. Cada eletrocardiograma é composto por dois canais,
caracterizando o dado como uma série temporal multivariada. Esses dados também incluem
anotacgdes de tipos de eventos que podem ocorrer nos batimentos, as quais serdo utilizadas para

definir as anomalias nos conjuntos de validacdo e teste dos experimentos.
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Figura 17 — Exemplos de partes dos dados dos electrocardiogramas dos dados do MIT

Para os experimentos deste capitulo serd utilizado um dos eletrocardiogramas dos
dados do MIT, o mitdbx_108, que também € fornecido e utilizado em (KEOGH et al., 2007), por
ser o mesmo conjunto de dados empregado para o teste dos modelos de (MALHOTRA et al.,
2015; MALHOTRA et al., 2016) que servirdo como base para a constru¢do do ensemble. Esse

eletrocardiograma apresenta trés anomalias distintas e, diferentemente dos dados de demanda
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Figura 18 — Quatro batimentos cardiacos de um dos eletrocardiogramas do conjunto de dados

de energia, ndo € tdo bem comportado. Enquanto os dados de energia apresentam um ciclo
bem definido de semanas com uma quantidade exata de pontos entre os ciclos, as séries dos
eletrocardiogramas podem apresentar batimentos espacados de forma irregular, pois o coragcao
pode acelerar ou desacelerar normalmente sem apresentar anomalias, e possiveis anomalias
podem ocorrer em pontos aleatérios da série.

No pré-processamento, assim como nos dados de demanda de energia, a série passarda
por um processo de subamostragem com fator de 4 e sera dividida em janelas com 93 pontos
cada, o que representa da melhor forma possivel um ciclo de batimento cardiaco do paciente.
Por exemplo, a Figura 18 mostra quatro ciclos de batimentos cardiacos, ou quatro janelas
em sequéncia da série. Por fim, também como realizado no conjunto de dados anterior, o
eletrocardiograma serd dividido de forma que os primeiros 40% da série gerarao os conjuntos sy,
v, para treinamento dos modelos individuais, distribui¢do normal dos vetores de erro e pesos
com threshold do ensemble, e o restante da série formara o conjunto 7, para teste e comparagao

dos escores.

4.4.2 Resultados

Nesta subsecdo, serdo apresentados os resultados obtidos pelo TSPME-AD, suas
variantes e seus modelos individuais. O modelo proposto serd comparado com os resultados de
variacdes nos modelos de LSTM empilhada ou Stacked LSTM (SL) e do Encoder-Decoder (ED)
propostos por (MALHOTRA et al., 2015; MALHOTRA et al., 2016) respectivamente. Também
serdo avaliados os resultados provenientes da combinacdo dessas técnicas utilizando as funcdes
de combinagao:

* Média Simples (SA);
e Média atenuada (DA);
* Média ponderada simples (SWA);
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* Média ponderada atenuada (TSPME-AD).
Como mencionado anteriormente, para a avaliagdo dessas técnicas de deteccao de
anomalias, serdo utilizados os conjuntos de dados de demanda de energia elétrica e de um

eletrocardiograma. Os desempenhos serdo medidos em termos do escore Fg com 8 > 0, tal que:

precision X recall

Fg = (1+p%) (42)

(B2%precision) + recall

em que o valor de 3 define o peso dado a propor¢do de falsos positivos em compara-
¢do com a propor¢do de falsos negativos, sendo que um 3 > 1 tende a dar mais peso ao recall,
enfatizando a minimizag¢do do nimero de falsos negativos, e um 8 < 1 confere mais &énfase
na minimizagao de falsos positivos. Nos resultados apresentados, serdo comparados tanto os
valores de precision e recall, quanto os escores F; e Fj 1, em que a utilizacio do score F; ocorre
por ser mais comum na literatura como forma de comparagdo de modelos de classificagdo, e o
Fo.1 traz uma €nfase significativa na precisdo, pois como os "positivos"sao anomalias nas séries,
e anomalias tendem a ser relativamente raras, um alto nimero de falsos positivos acaba por
descredibilizar o modelo de deteccdo, mas encontrar uma anomalia dentre algumas que possam
existir ja traz uma informac¢do importante do comportamento da série, como argumentado por

(MALHOTRA et al., 2015), que utiliza o score Fp | para realizar suas comparacoes.
4.4.2.1 Resultados sobre os dados de demanda de energia elétrica

O conjunto de dados de demanda de energia é uma série temporal periddica, ou
seja, o numero de pontos por ciclo é constante durante toda a série. Isso ajuda no processo de
reconhecimento de padrio e detec¢do de anomalias por permitir a quebra da série em janelas de
tamanho constante que representem bem o padrao normal de um ciclo da série.

A tabela 1 apresenta o precision, recall, e os escores Fy 1 e F] para todos os modelos
base e variagdes em seus hiperparametros, além do modelo de ensemble com as diferentes
fun¢des de combinagdo, treinados e testados com os dados de demanda de energia. Como
podemos observar, os ensembles que utilizam as funcdes de combinagdo Média Simples (SA)
e Média Atenuada (DA) alcangcaram os melhores resultados em termos dos escores Fy | € Fi,
respectivamente, com o modelo proposto do TSPME-AD obtendo o segundo melhor resultado
em ambos 0s escores.

O experimento mostra que a estratégia do TSPME-AD com a fun¢@o de combinacao
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Tabela 1 — Resultados do teste sobre os dados de demanda de energia elétrica

’ MODELO? \ Precision Recall Fp; \ F ‘
SL [K =2] 4.42%  717.78% 0.04 0.08
SL [K =4] 549%  77.78% 0.05 0.10
SL [K = 8] 22.86% 44.44% 0.22 0.30
SL [K=16] 12.77%  66.67% 0.12 0.21
ED[H=16] | 47.06% 44.44% 0.47 0.45
ED [H = 32] 339%  22.22% 0.03 0.05
ED[H=64] | 59.09% 7222% 0.59 0.65
ED[H=128] | 1852% 27.78% 0.18 0.22
SA 100.0% 44.44%  0.98 0.61
DA 76.19%  88.89% 0.76 0.82
SWA 25.00% 72.22% 0.25 0.37

| TSPME-AD | 7647% 72.22% 0.76 | 0.74 |

4 SL: Stacked LSTM, ED: Encoder Decoder, SA: Simple Ave-
rage Ensemble, DA: Damped Average ensemble, SWA: Simple
Weighted Average Ensemble, TSPME-AD: Time Series Pre-
diction Model Ensemble for Anomaly Detection.

de média ponderada atenuada, apesar de ndo apresentar os melhores escores em todos os
cendrios, ainda consegue obter bons resultados, sendo superior a todos os modelos individuais
que o compdem em ambos o0s escores Fj 1 € F;. Também podemos observar a diferenca que a
funcdo de atenuagdo proporciona no resultado final quando comparamos os escores da média
simples (SA) e da média atenuada (DA), que, apesar de introduzir mais falsos positivos na
detec¢do, compensa na significativa reducdo de falsos negativos. J4 os ensembles que utilizaram
funcdes de combinacio ponderadas apresentaram um resultado um pouco inferior, provavelmente
devido as poucas instancias de anomalias no conjunto de validacdo que € utilizado para treinar

0s pesos, aumentando assim a possibilidade de overfitting.

4.4.2.2 Resultados sobre o conjunto de dados de eletrocardiogramas

Como a duragdo de um ciclo em um eletrocardiograma, que representa um ciclo
completo de batimento cardiaco, varia de uma instancia de electrocardiograma para outras, e até
dentro do mesmo eletrocardiograma, esse tipo de série temporal é chamada de quasi-periddica.
Essa classe de séries temporais € mais dificil de lidar e dificulta a constru¢ao de modelos
preditivos, pois, além de apresentar um padrdao mais dificil de identificar, como os modelos
esperam receber janelas de tamanho igual como entrada (input), € necessario definir um tamanho
de janela que consiga representar da melhor forma possivel os ciclos da série em cada janela,

conforme realizado em (MALHOTRA et al., 2016).
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Como na sec¢do anterior, a Tabela 2 apresenta o precision, recall, e os escores Fy |
e F] para todos os modelos base e para o modelo de ensemble com as mesmas funcoes de
agregacdo utilizadas na subsecdo 4.4.2.1. Diferentemente da experimenta¢ao no conjunto de
dados de demanda de energia, o TSPME-AD conseguiu atingir os melhores resultados em relacao
aos escores de precision, Fy 1 e F1, com uma melhoria sobre o escore F| de aproximadamente
12.8% quando comparado ao segundo melhor resultado, obtido utilizando o ensemble com a
fungdo de agregacdo de média simples ponderada (SWA), e um resultado 22.2% superior quando
comparado com o melhor dos modelos individuais.

Neste experimento, as outras fun¢des de combinagao, como a SA, DA e SWA, ndo
conseguiram um resultado tdo bom na combina¢do dos modelos de (MALHOTRA et al., 2015;
MALHOTRA et al., 2016). Isso pode ser explicado devido ao baixo desempenho dos modelos
baseados em encoder-decoder, pois tanto quando ndo se utilizam pesos para a combinacdo dos
modelos quanto quando ndo se utiliza uma fun¢do de amortecimento para estabilizar escores
muito altos, modelos de qualidade inferior, como todas as varia¢cdes do modelo de encoder-
decoder no caso deste experimento, podem afetar negativamente o resultado do ensemble.

O motivo para a baixa efetividade do modelo de encoder-decoder deve-se prova-
velmente ao fato de o eletrocardiograma ser uma série quasi-periddica, ou seja, com a maior
variabilidade dos ciclos representados pelas janelas, o modelo apresenta uma dificuldade sig-
nificativamente maior de reconstrui-las. No caso do LSTM empilhado, como ele processa
ponto a ponto para fazer as predi¢des, € mais ficil adaptar-se a mudancgas sutis na série. Ja
0 encoder-decoder 1€ a janela por completo e a representa com seu estado interno ao fim da
leitura, tornando assim o processo de aprendizado do padrdo muito mais complexo diante dessa

variabilidade da janela.

4.5 Conclusao

Até o momento, ndo se tem conhecimento de trabalhos anteriores que tenham
proposto ensembles baseados em modelos para detec¢do de anomalias em séries temporais que
utilizassem essas fung¢des de combinacido ou modelos baseados em LSTMs (AGGARWAL, 2013;
LIU et al., 2012). Existem algumas técnicas similares que propdem modelos de ensemble para
deteccdo de anomalias (AGGARWAL, 2013), como (LIU et al., 2012; GAO; TAN, 2006), mas
nenhuma dessas técnicas modela o comportamento padrdao de conjuntos de dados utilizando

LSTMs e seus beneficios na modelagem de séries temporais multidimensionais.
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Tabela 2 — Resultados dos testes no electrocardiograma

’ MODELS? \ Precision Recall Fy; \ P ‘
SL[K=2] | 2237% 47.80% 0.22 0.30
SL[K=4] | 1837% 57.07% 0.18 0.28
SL[K=8] | 2097% 4829% 0.21 0.29
SL[K=16] | 4228% 30.73% 0.42 0.36

ED[H=16] | 7.02%  100% 0.07 0.13
ED[H=32] | 736%  100% 0.07 0.14
ED[H=64] | 737%  100% 0.07 0.14
ED[H=128]| 7.37%  100% 0.07 0.14
SA 30.84% 48.29% 0.31 0.38

DA 11.33% 60.00% 0.11 0.19

SWA 34.05% 46.34% 0.34 0.39

| TSPME-AD | 41.00% 47.80% 0.41 | 0.44 |

2 SL: LSTM empilhada, ED: Encoder-Decoder, SA: Ensemble
de Média Simples, DA: Ensemble de Média Amortecida, SWA:
Ensemble de Média Ponderada

Podemos concluir, principalmente com base nos resultados apresentados na sec¢ao
4.4.2.2, que a técnica de combinagdo utilizada pelo TSPME-AD (que utiliza tanto o amorteci-
mento dos escores de anomalias quanto uma média ponderada para os escores dos modelos)
consegue compensar resultados inferiores de alguns modelos base e pode produzir um ensemble
com resultados de qualidade superior quando comparado tanto com a utilizacao de outras fun¢des
de agregacdo quanto com os modelos base utilizados.

Também € valido mencionar que o TSPME-AD, em geral, obtém melhores resultados
que os dois modelos do estado da arte apresentados por Malhotra et al. (2015), Malhotra et al.
(2016), o que € esperado, ja que estd comprovado, como mencionado em (OPITZ; MACLIN,
1999), que ensembles de modelos de classificagdo que obtém bons resultados individualmente e
possuem discordancias nos locais de seus erros em relacdo ao mesmo dado de entrada sempre
obtém melhores resultados que os modelos que os compdem. Os modelos individuais do
TSPME-AD possuem certas diferencas nos locais de erros, pois o0 LSTM empilhado apresenta
erros mais altos apds a ocorréncia de uma anomalia, € o Encoder-Decoder apresenta erros mais
altos em locais anteriores as anomalias devido a sua caracteristica de reconstrucao de tras para
frente. Com isso e os bons resultados obtidos por esses modelos, as premissas para um bom
ensemble sdo atendidas, e os resultados sdo verificados neste trabalho.

Portanto, os resultados mostram que modelos de ensemble podem ser boas alter-

nativas na deteccdo de anomalias em séries temporais, pois trés modelos simples de ensemble
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ja obtém resultados superiores aos modelos base utilizados sob 0 mesmo conjunto de dados,
como demonstrado na Tabela 2. Também € demonstrado que diferentes fun¢des de combinagao
podem apresentar resultados completamente distintos, como a Média Ponderada, que obteve um
resultado inferior aos outros modelos nos dados de demanda elétrica, e a Média Amortecida, com
um resultado inferior no conjunto de dados de eletrocardiogramas. O TSPME-AD obteve bons

resultados em comparac¢ido com os outros em ambos os cendrios, tornando-o uma boa escolha de

modelo de forma geral.
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5 ENCODER-DECODER DE REPRESENTACAO CONCRETA E NOVAS TECNICAS
PARA SEGMENTACAO DE JANELAS

5.1 Introducao

No capitulo anterior, foram realizadas andlises de anomalias em séries temporais
utilizando ensembles, que aplicam modelos j4 propostos € os combinam para obter melhores
resultados. Neste capitulo, a andlise serd estendida pela apresentacdo de um novo modelo de
detec¢do de anomalias em séries temporais utilizando LSTMs, que modifica a estrutura do
modelo proposto em (MALHOTRA et al., 2016), no qual o modelo continua sendo um auto-
encoder, mas a representacdo interna da série analisada serd representada por uma camada densa
em vez do estado interno final do encoder.

Como demonstrado nos resultados do modelo de encoder-decoder na Tabela 2, o
encoder-decoder apresenta resultados inferiores em séries quasi-periodicas devido ao problema
de representacdo dos ciclos na segmentagdo da série em janelas. Por isso, este capitulo também
apresentara técnicas de segmentacdo de janelas que utilizam caracteristicas especificas da série
para definir a melhor separagdo entre os ciclos, permitindo segmentar as janelas de acordo com
eles.

Com isso, como as técnicas de segmentacao de janelas serdo avaliadas nesse capitulo,
nao € adequado avalid-las no conjunto de dados de demanda de energia elétrica, visto que se
trata de uma série periddica com um ciclo bem definido de uma semana, com uma quantidade
exata de pontos em todos os ciclos. Apesar disso, serd utilizado todo o conjunto de dados de
eletrocardiogramas do MIT apresentado na sec¢do 4.4.1.2, o que servird tanto para comparar os
modelos de predicdo em um cendrio mais complexo com vérios eletrocardiogramas diferentes,
quanto para verificar o impacto de uma técnica eficiente de segmentacdo de janelas ao auxiliar
os modelos preditivos.

Este capitulo serd dividido da seguinte maneira: a Se¢ao 5.2 apresentard o novo mo-
delo baseado em encoder-decoder para deteccao de anomalias; na Secao 5.3 serdo apresentadas
algumas técnicas de segmentagdo de janelas mais simples e serd proposta uma segmentacao
de janela dinamica; a Sec¢ao 5.4 apresenta a experimentacdo e os resultados comparados dos
modelos e técnicas de segmentacdo de janelas; e, por fim, a Secao 5.5 apresenta as conclusdes

sobre as técnicas e os resultados.
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5.2 Encoder-Decoder de Representaciao Concreta (CRED)

Esta proposta traz uma variagao sobre o modelo de Encoder-Decoder proposto por
Malhotra et al. (2016). Essa técnica anterior inicializa os pesos do estado interno do decoder
com os pesos do estado interno do encoder apds ler completamente uma janela da série temporal
e, a partir disso, reconstréi a série fornecida como input ponto a ponto de trds para a frente,
conforme (SUTSKEVER et al., 2014), utilizando cada ponto reconstruido como input para a
reconstru¢do do ponto seguinte, como apresentado na Figura 10.

O modelo proposto, Concrete Representation Encoder-Decoder (CRED), utiliza em
sua arquitetura uma camada densa com niimero de nés menor que o tamanho da janela fornecida
como input, a qual serd a camada de output para o encoder. O nimero menor de nds na camada
interna tem por objetivo obter uma representacao mais generalizada da série passada como input,
como uma andlise de componentes principais ou PCA, para que anomalias em uma série passada
como input tenham menos impacto na representacao da série na camada interna. Com isso, o
decoder inicia seus estados iniciais com zeros para manter a consisténcia das reconstru¢des
e iniciard a reconstru¢do da série recebendo como input a camada densa, utilizando-a para
reconstruir cada ponto na ordem normal da série, até que toda a janela seja reconstruida, como

apresentado na Figura 19.

input (1] {¥e] (xs] (¥

Yy v v v

LSTM Encoder —>{ Dense Layer

LSTM Y, Y Y ¥

hy —>»{ho —>»{h3 —>»{hy4
Decoder

output (1] [v2] [vs] [

Figura 19 — Arquitetura do modelo proposto (CRED)

Seja X = [x1, ..., X,] uma janela de tamanho n de uma série temporal, ENC a camada
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LSTM de encoder do modelo, D a camada densa de tamanho k no centro do modelo, e DEC
a camada LSTM de decoder do modelo. O primeiro passo é calcular I = D(ENC(X)), onde
IeRk¢a representacao intermedidria da série de input. Entdo, o vetor I € repetido n vezes,
como I, = [I,...,1] onde ||I|| = n. Essa repeti¢do acontece para que todos os pontos que forem
ser reconstruidos pelo decoder tenham como input o vetor intermedidrio, evitando assim o
"esquecimento"dessa representacao intermedidria pelos nés de LSTM, que pode acontecer no
modelo proposto por (MALHOTRA et al., 2016), onde o tnico momento em que o modelo
possui a representacio da série gerada pelo encoder € no passo inicial do processo de decoding,
podendo assim dificultar a convergéncia do modelo no treinamento e afetar o resultado da
reconstrucao.

O score de anomalia é calculado exatamente como nos outros modelos apresentados,
computando-se a matriz de erros E = [eq, ..., e,] entre a janela original X = [x1,...,x,] e a janela
reconstruida ¥ = DEC(D(ENC(X))) = [y1,---,¥n], com e; = y; —x;. Com isso, cria-se uma
distribui¢do gaussiana multivariada .4"(u, X) sobre todos os vetores de erros individuais e
calcula-se os scores de anomalia a partir da equacio o = (e; — u)TZ(~1(e; — i) para cada ponto
na janela da série temporal.

O modelo proposto por Malhotra et al. (2016) se aproxima mais de modelos sequence-
to-sequence, comumente utilizados em predicao de texto, mas quando o modelo € utilizado sobre
dados de séries temporais, ele passa a ler janelas de input bem maiores. Com isso, conforme
mencionado anteriormente, como a saida da camada de encoder se torna o estado interno inicial
da camada de decoder, a medida que o tamanho da janela analisada aumenta, torna-se cada
vez mais dificil manter a informac¢do do estado interno inicial, pois este se altera a cada ponto
processado.

Quando uma camada densa central € utilizada e repetida como input para todas as
reconstrucdes do decoder, ela consegue manter a representacio da janela obtida pelo encoder
durante todo o processo de reconstru¢cdo, com a desvantagem da necessidade de um tamanho de
janela fixo, definido antes do treinamento, mas com a vantagem de uma convergéncia mais facil

no treinamento e melhores resultados, como apresentados na secio 5.4.

5.3 Estratégias de segmentacao de janelas

Nesta secao, serdo apresentadas trés técnicas de segmentacao de janelas, que t€m

como objetivo dividir a série temporal em janelas semanticas que consigam representar um
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ciclo da série e facilitar a descoberta de padrdes e anomalias pelos modelos. A primeira técnica,
apresentada na secdo 5.3.1, é a segmentagao por valor constante, que € utilizada pelos trabalhos
(MALHOTRA et al., 2015; MALHOTRA et al., 2016), na qual se escolhe arbitrariamente um
valor de segmentacdo para seccionar a série a partir de uma andlise manual dos dados. A segunda
técnica, apresentada na Se¢do 5.3.2, € baseada em picos, na qual o tamanho da janela é definido
a partir da distancia mediana entre maximos locais da série, separados por uma certa distancia.
A terceira técnica, que € proposta por este trabalho e apresentada na Secdo 5.3.3, utiliza um
threshold de varredura, que secciona a série em todos os pontos de travessia do threshold pela

série e tenta maximizar a similaridade entre as janelas obtidas.

5.3.1 Segmentagcdo Baseada em Tamanho de Janela Constante

Na segmentacdo de janelas baseada em tamanho constante, um valor % € escolhido
com base na andlise manual da periodicidade da série e € utilizado para seccionar a série em
janelas de tamanho 4 ndo sobrepostas. A ideia € escolher A tal que as janelas sejam o mais
semelhantes possivel.

Essa técnica € facil de entender e implementar, mas apresenta algumas desvantagens,
como a necessidade de escolher manualmente um valor para a segmentacdo, o que depende de um
conhecimento prévio sobre o conjunto de dados, além de um certo nivel de especializacdo para
identificar os ciclos presentes nas séries. Outra desvantagem mais importante é que diferentes
séries do mesmo conjunto de dados, ou até mesmo trechos diferentes na mesma série, podem
apresentar duragdes de ciclos com variagdes que comprometem a similaridade das janelas,
mesmo com uma escolha 6tima de tamanho constante das janelas.

Existem algumas possibilidades para se enfrentar o problema da variabilidade da
duracgdo dos ciclos entre séries diferentes, como, por exemplo, escolher um tamanho de janela
especifico para cada série do conjunto de dados e, ao final, realizar uma reamostragem das séries
para ajusté-las todas ao mesmo tamanho de janela. Contudo, o problema da variabilidade dentro
da propria série ainda persiste, e a necessidade de analisar manualmente a duracdo dos ciclos de

cada uma das séries no conjunto de dados torna o problema ainda mais complexo.

5.3.2 Segmentacdo Baseada em Picos

A técnica apresentada nesta se¢@o visa utilizar a estrutura da propria série para definir

um tamanho de janela 6timo, na qual todos os mdximos locais da série sdo encontrados e, dado



46

um tamanho de vizinhanga escolhido arbitrariamente, excluem-se os maximos locais que habitam
a mesma vizinhanca de outro maximo local com base no tamanho escolhido. Ou seja, dada uma
série temporal X e uma distancia h € N T, esta técnica encontra todos os maximos locais de X de
modo que a distancia minima entre qualquer par de maximos locais seja .

Dada uma série temporal X = [xy,...,x,], dizemos que x; é um maximo local se
X; > Xj+1, ou se x; € o ponto central em um platé P = [x;_p, ..., X;, ...,Xi+p] onde Vx € X, x = x;,
Xi > Xi—p—1 € X; > Xifpt1. SejaM = [my,...,m;] onde V(1 <i<k),m; <mjy, alista ordenada
de méaximos locais de X. Para cadai € {1,...,k}, se existe algum outro ponto de méximo local na
vizinhancga de distancia & de m;, remove-se m;. Ao final do algoritmo, teremos todos 0os maximos
locais de X com pelo menos distincia 4 em relacdo a qualquer outro maximo.

Esta técnica possui vantagens em relagcdo a técnica de segmentagdo por tamanho
constante, pois ndo requer o conhecimento de um tamanho exato que capture o ciclo das séries,
além de permitir uma melhor segmentacdo de séries quasi-periddicas ao capturar os pequenos
desvios que podem ocorrer nos ciclos pela utilizagdo dos picos da série. Apesar disso, ainda é
necessdria a definicdo de um hiperparametro 4, ja que um s pequeno pode levar a separacdo em
janelas diferentes de multiplos picos que pertencem a um mesmo ciclo, € um 4 muito grande

pode agregar varios ciclos dentro de uma unica janela.
5.3.3 Segmentacdo por Similaridade de Janelas através de Varredura de Threshold (WSST)

Como podemos observar nas técnicas anteriores, elas requerem ou algum conhe-
cimento prévio do conjunto de dados, uma andlise individual de cada série nos dados, ou sdao
extremamente sensiveis a pequenas variacdes nos ciclos da série.

Para enfrentar esses problemas, é proposta uma técnica de segmentag¢ao dinamica de
janelas, o Window Similarity Scanning Threshold (WSST), que realiza uma varredura de um
threshold no eixo y da série, com esse threshold variando do ponto minimo da série até o ponto
maximo, e a segmentacdo em janelas nos pontos em que a série atravessa o valor do threshold.
Com isso, para cada threshold é calculada a dissimilaridade média entre todas as janelas criadas,
escolhendo-se assim o threshold que minimiza essa dissimilaridade.

A importancia da escolha do threshold é exemplificada nas figuras 20, 21 e 22. Na
Figura 20, o threshold escolhido divide a série em janelas completamente cadticas, sem um
padrao identificavel. Na Figura 21, um threshold melhor € escolhido, ja existe um padrdo nas

janelas obtidas, mas € possivel identificar que o ciclo presente na série é segmentado de forma
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Figura 21 — Uma escolha de threshold aceitdvel, mas que pode ser melhorada

00 600 e

Figura 22 — Uma boa escolha de threshold que divide a série em cada um de seus ciclos

que cada ciclo acaba sendo seccionado em duas janelas separadas. Por fim, para reforcar a
importancia da escolha de um bom threshold, na Figura 22 € possivel visualizar a segmentagao
bem definida dos ciclos, onde cada ciclo serd representado em uma janela correspondente.
Seja X = [x1,...,Xx,] uma série temporal de tamanho n, e T = [1y, ..., 7|, onde 7| =
min(X), 7 =max(X) e V(1 <i <), Ty — T = T;— Ti—1, uma lista de thresholds ordenada, para

cada 7 € T é calculada a lista de pontos

P=qdpeN|x,>1 5.1
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onde P € a lista de pontos em X que atravessam T de baixo para cima, ou seja, x; € um
ponto escolhido se x;_j < T ex; > 7. Comisso, calcula-se d = median { pj1 —pi | 1 <i < ||P|}
como a distincia mediana entre os pontos de P e [Ji,...,J,;] a lista de janelas de X tal que
Ji = [Xp;s s Xp4a]. Assim, é calculada a janela mediana J,,.4, onde se J; = [Jl-(l), ... ,Ji(d)], V(1<

i < m), a janela mediana é definida como

JISi,)d = median{Ji(j) |[1<i< m} (5.2)
Jmed = [1,5116)[17 I aJ,(,,de)d] (5.3)

A partir da janela mediana J,,,.4, € calculada a matriz de erros E= le1,...,em], onde

e; € o erro quadratico médio entre a janela J; e J,,,.4, definido por:

GO =gy (gD g )2

1 m m
d

(5.4)

€ =

Por fim, é calculado o erro geral £(t) = mean(E), que determina o erro dado pelo

threshold 7 escolhido. O objetivo da técnica € encontrar

min€(7) (5.5)

teT

e utilizar as janelas geradas a partir do valor 6timo de 7 para treinar e testar os modelos preditivos
na detec¢do de anomalias.

Assim, por utilizar uma varredura de thresholds, essa técnica evita 0os processos
manuais na obtencao de um tamanho de janela, diferentemente das técnicas apresentadas ante-
riormente. A abordagem consegue adaptar-se a periodicidade das séries temporais ao utilizar
tamanhos de janelas varidveis para cada ciclo de cada série, além de ser capaz de segmentar
séries em seus ciclos caracteristicos sem a necessidade de um conhecimento prévio sobre o

conjunto de dados.

5.4 Experimentacdo e Resultados

Para os experimentos, utilizou-se o conjunto de dados de eletrocardiogramas do MIT
apresentado na Se¢do 4.4.1.2. O objetivo foi comparar os escores obtidos pelos modelos de
LSTM Empilhada MALHOTRA et al., 2015), Encoder-Decoder (MALHOTRA et al., 2016) e o
modelo proposto na Secdo 5.2. Como etapa de pré-processamento das séries temporais, foram

aplicadas as técnicas de segmentacao de janela descritas na Secdo 5.3.
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Antes da aplicacdo das técnicas de segmentacdo de janelas, as séries temporais
foram divididas nos conjuntos de treino, validacdo e teste. Esta divisdo prévia garante que,
apods a segmentacdo e o embaralhamento das janelas para o treinamento dos modelos, ndo haja
vazamento de informacdes entre os conjuntos, o que poderia ocasionar viés durante a fase de
teste. Tal abordagem previne que os modelos tenham acesso a fragmentos de todas as séries
durante o treinamento.

De modo similar a experimentacdo do capitulo anterior, a Tabela 3 apresenta a
comparacao dos valores de precision, recall e das métricas F; e Fy 1, com a inclusdo da métrica
F, nos resultados. Esta dltima atribui maior énfase a redugdo de falsos negativos, podendo

constituir outro parametro relevante para a comparagdo dos modelos.

Tabela 3 — Resultados dos testes para os dados de eletrocardiogramas do MIT

| W. BREAKING | MODELS | Precision  Recall P Fa | R
Constant LSTM 6.22%  25.18% 0.1565 0.0627 | 0.0998
Constant Enc-Dec | 9.28%  22.07% 0.1730 0.0933 | 0.1306
Constant CRED 8.58%  22.15% 0.1682 0.0863 | 0.1237
Peaks LSTM 6.01% 2526% 0.1540 0.0606 | 0.0971
Peaks Enc-Dec | 8.78%  17.15% 0.1441 0.0883 | 0.1162
Peaks CRED 934%  26.64% 0.1944 0.0941 | 0.1384
WSST LSTM 553% 20.31% 0.1323 0.0557 | 0.0869
WSST Enc-Dec | 10.54% 30.89% 0.2229 0.1061 | 0.1572
WSST CRED 10.55% 36.42% 0.2444 0.1062 | 0.1636

A partir dos resultados apresentados na Tabela 3, observa-se que a técnica proposta
WSST alcanca desempenho superior em todos os aspectos avaliados nos modelos baseados
em encoder-decoder. Esta técnica proporciona melhorias de até 35% quando comparada as
diferentes técnicas de segmentacdo de janelas aplicadas ao modelo Encoder-Decoder, e melhorias
de até 32% quando aplicada ao modelo CRED.

Além disso, os resultados demonstram que, na maioria dos casos, 0 modelo preditivo
proposto, WSST, apresenta desempenho superior a ambos os modelos do estado da arte, com
melhorias de até 19% em relacdo ao modelo Encoder-Decoder e de até 88% quando comparado
ao modelo de LSTM Empilhada.

Por fim, destacam-se os resultados obtidos quando combinada a técnica de segmen-
tacdo de janelas proposta com o modelo preditivo de detec¢do de anomalias proposto. Esta
combinagdo alcanca desempenho superior em todas as métricas de avaliagdo, com destaque para

o recall que apresenta uma melhoria de 18% quando comparado ao segundo melhor recall obtido
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nos experimentos.

5.5 Conclusao

Neste capitulo, foi apresentado um novo modelo preditivo para detec¢do de anomalias
em séries temporais, um auto-encoder baseado em LSTM que traz uma variagdo sobre o
modelo anteriormente proposto por (MALHOTRA et al., 2016). O modelo desenvolvido
obteve resultados expressivos nos testes, mostrando-se superior aos modelos do estado da arte
na maior parte dos cendrios avaliados. O desempenho superior em comparagdo ao modelo
de (MALHOTRA et al., 2016) pode ser explicado pelo fato de o modelo proposto manter a
representacio gerada pelo encoder como entrada durante todo o processo de reconstrucao da série
pelo decoder. Esta abordagem previne o problema de "esquecimento"caracteristico das LSTMs
no processo de reconstrucio, fendmeno que pode ocorrer com o modelo de (MALHOTRA et al.,
2016), especialmente na reconstrucdo de janelas extensas, uma vez que, quanto maior a série de
entrada, maior o impacto do "esquecimento'na reconstru¢ao ponto a ponto.

Também foram apresentadas técnicas de segmentacdo de janelas utilizadas no pré-
processamento das séries temporais, as quais possuem meng¢do escassa na literatura, onde
predominam processos manuais, frequentemente com auxilio de especialistas. Esse capitulo
propde uma técnica que utiliza a propria estrutura intrinseca da série para determinar os pontos
6timos de segmentacdo, maximizando a similaridade entre as janelas resultantes. Esta abordagem
ndo apenas reduz a necessidade de interven¢do manual sobre os dados, como também aprimora
a qualidade das janelas fornecidas como entrada para os modelos preditivos. Tal melhoria é
evidenciada pelos resultados apresentados na Se¢do 5.4, nos quais 0 WSST demonstra desempe-
nho superior em comparagdo a outras técnicas, especialmente quando aplicado aos modelos de
Auto-Encoder que sao mais sensiveis a qualidade das janelas de entrada.

Por fim, quando combinadas as técnicas propostas nesse capitulo, obtém-se uma
abordagem robusta para a andlise de anomalias em séries temporais, apresentando desempenho
superior a qualquer outra combinacao de técnicas avaliadas neste estudo. Tal contribui¢ao abre

perspectivas promissoras para aprimoramentos e aplicacdes em trabalhos futuros.
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6 CONCLUSAO

Nesse trabalho, foram apresentadas técnicas de andlise de anomalias em séries
temporais, com revisdo de abordagens existentes na literatura. A partir desse estudo, foram
propostas novas arquiteturas e técnicas de pré-processamento de séries temporais capazes de
aprimorar o desempenho tanto de modelos da literatura quanto dos modelos desenvolvidos nesta
pesquisa.

Foi proposta uma técnica de ensemble de modelos, denominada TSPME-AD, que
obtém resultados consistentemente superiores quando comparada aos seus modelos base, mesmo
quando alguns dos modelos componentes do ensemble apresentam desempenho inferior aos
demais. Adicionalmente, foram apresentadas e analisadas diversas fun¢des de combinagao,
sendo que a funcdo implementada no TSPME-AD demonstrou desempenho superior de forma
consistente nos testes realizados.

Também foi proposto um novo modelo preditivo de deteccao de anomalias em séries
temporais, denominado CRED, que utiliza como base o modelo proposto por (MALHOTRA et
al.,2016). A arquitetura foi modificada com o objetivo de solucionar o problema do esquecimento
caracteristico das LSTMs. Conforme demonstrado nos resultados experimentais, o modelo
proposto obtém consistentemente desempenho equivalente ou superior aos demais modelos
analisados neste estudo.

Por fim, este trabalho abordou o problema da segmentagado de janelas como etapa de
pré-processamento das séries temporais, fundamental para viabilizar o treinamento e teste dos
modelos preditivos estudados. Foram comparadas diferentes técnicas de segmentagdo, sendo
as mais bdsicas aquelas utilizadas em trabalhos correlatos, que demandam maior intervengao
manual e podem ser prejudicadas pela variabilidade da periodicidade das séries. A técnica de
segmentacdo dindmica proposta, denominada WSST, reduz significativamente a necessidade de
processos manuais no pré-processamento, além de gerar janelas alinhadas com a periodicidade
intrinseca de cada série. Esta abordagem facilita a identificagdo de padrdes pelos modelos
preditivos, resultando em desempenho superior na maioria dos cendrios avaliados, conforme

evidenciado pelos experimentos realizados.
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6.1 Trabalhos Futuros

A érea de detec¢ao de anomalias em séries temporais € bastante ampla e, apesar
das varias andlises apresentadas nesse trabalho, a possibilidade de novas investigacdes € ex-
tremamente vasta. Essas possibilidades incluem: novas arquiteturas de modelos de deteccao,
técnicas aprimoradas de pré-processamento de séries, diferentes abordagens para combinagao de
modelos e a obtencao de conjuntos de dados mais extensos para melhor avaliagdo da qualidade
das técnicas, entre muitas outras andlises possiveis.

Com base nisso, uma possivel direcao futura é a avaliagdo dos modelos aqui propos-
tos utilizando novos conjuntos de dados reais, como o do MIT-BIH (MOODY; MARK, 2001),
com o objetivo de analisar seus comportamentos em diferentes cendrios. Esses cendrios incluem
séries com ciclos de variabilidade diversa, ciclos de diferentes niveis de complexidade, entre
outras caracteristicas.

Outro ponto para andlise futura em relagdo ao modelo de ensemble proposto € a
possibilidade de utilizar outros modelos base para sua composi¢do, bem como implementar
novas funcdes de atenuacdo e combinacgado dos escores. Um exemplo seria a aplicacdo de redes
neurais como fun¢@o de combinacdo, abordagem j4 apresentada em outros contextos de ensemble
na literatura.

Da mesma forma que este trabalho propés um novo modelo preditivo de deteccao de
anomalias, estudos futuros podem propor novos modelos como variagdes dos existentes ou até
arquiteturas completamente novas. A exploracdo do uso de modelos preditivos para deteccao de
anomalias em séries temporais tem ganhado relevincia mais recentemente, o que abre diversas
possibilidades para o desenvolvimento de novos modelos capazes de obter bons resultados nos
conjuntos de dados consolidados da literatura.

Por fim, a andlise de técnicas de segmentacdo de janelas em séries temporais é
uma drea pouco explorada na literatura, mas que, como mostrado nos resultados obtidos neste
trabalho, pode apresentar impactos significativos no desempenho dos modelos preditivos. Com
isso, como trabalhos futuros, podem ser propostas novas técnicas de segmentacao de janelas
mais robustas e menos dependentes de interferéncia manual, potencialmente afetando de forma

positiva o desempenho de outros modelos ja apresentados anteriormente na literatura.
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