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RESUMO

Dado um inteiro g > 2, um grafo G e um subgrafo gerador H de G, chamado de backbone de G,
definimos uma k-colorag@o g-backbone de (G,H) como sendo uma k-coloragdo prépria ¢ de G
tal que, para todo uv € E(H ), a seguinte condi¢do € satisfeita: |c(u) —c(v)| > g. Neste trabalho,
apresentamos uma revisao bibliografica que aborda resultados gerais sobre um parametro crucial
relacionado a essa coloragdo, conhecido como nimero cromdtico g-backbone, denotado por
BBC,(G,H). O nimero cromdtico g-backbone é o menor inteiro k tal que existe uma k-coloragdo
g-backbone de (G,H). Adicionalmente, apresentamos nossas contribui¢des para essa coloragio e
introduzimos uma variagado direcionada, denominada Colora¢do Backbone Direcionada. Também

discutimos os resultados obtidos referentes ao seu niimero cromatico correspondente.

Palavras-chave: coloragdo de grafos; colora¢do backbone; nimero cromético; coloracdo back-

bone direcionada.



ABSTRACT

Given an integer ¢ > 2, a graph G, and a spanning subgraph H of G, called the backbone
of G, we define a g-backbone k-coloring of (G,H) as a proper k-coloring ¢ of G such that,
for every uv € E(H), the following condition is satisfied: |c(u) —c(v)| > ¢. In this work, we
present a literature review that covers general results on a crucial parameter related to this
coloring, known as the g-backbone chromatic number, denoted by BBC, (G, H). The g-backbone
chromatic number is the smallest integer k such that there exists a g-backbone k-coloring of
(G,H). Additionally, we present our contributions to this coloring and introduce a directed
variation, called the Directed Backbone Coloring. We also discuss the results obtained regarding

its corresponding chromatic number.

Keywords: graph coloring; backbone coloring; chromatic number; directed backbone coloring.
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1 INTRODUCAO

O problema da Coloracao de Vértices € um problema cldssico na Teoria dos Grafos.
Uma k-coloragdo propria de um grafo G, ou simplesmente uma k-coloragdo de G, é uma funcio
f:V(G) — {1,2,...,k} que atribui cores aos vértices de modo que vértices adjacentes ndo
compartilhem a mesma cor. O problema consiste em determinar o menor nimero de cores
necesséarias para colorir o grafo respeitando essa restricdo, valor conhecido como o niimero
cromdtico do grafo, representado por x(G). Uma coloragdo de vértices que utiliza exatamente
% (G) cores é denominada coloragdo dtima do grafo G.

Uma maneira simples de obter uma coloracdo de vértices € usar cores diferentes para
cada um deles. Na Figura 1, os vértices do grafo de Petersen estao coloridos de forma distinta,

requerendo assim 10 cores, que coincidem com o nimero de vértices desse grafo.

Figura 1 — O grafo de Petersen colorido com cores distintas.
e

Fonte: Autoria propria, 2024.

Ao estudarmos coloragdes de vértices em grafos, nosso objetivo € reduzir o niimero
de cores utilizadas, ou seja, descobrir o nimero cromético do grafo. Podemos construir uma
coloracdo 6tima no grafo de Petersen da seguinte maneira: inicialmente, colorimos o vértice a
com uma cor, como o vermelho. Em seguida, para respeitar a condi¢@o da coloracdo de vértices,
precisamos colorir os vizinhos de a com cores diferentes. Como b, e e f ndo compartilham
arestas € nosso objetivo € minimizar o nimero de cores utilizadas, podemos atribuir a cor verde
a esses trés vértices. Na Figura 2, € possivel visualizar a coloragdo que estamos construindo para
o grafo de Petersen.

Para continuar a construg¢io da coloracdo 6tima no grafo de Petersen, seguindo as
restricdes da coloragdo de vértices e buscando minimizar o nimero de cores utilizadas, podemos
observar que os vértices d, g € h ndo t€m arestas entre si nem com o vértice vermelho a, mas

estdo conectados a vértices verdes. Portanto, podemos colori-los de vermelho. Ja os vértices c,
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Figura 2 — Constru¢do de uma coloragdo 6tima para o grafo de Petersen.
e

Fonte: Autoria prépria, 2024.

i e j, que ndo compartilham arestas entre si, mas compartilham arestas com vértices de cores
verde e vermelha, devem receber uma nova cor, como o azul. Assim, na Figura 3, € possivel
visualizar essa coloracdo do grafo de Petersen usando apenas 3 cores.

Figura 3 — Uma colorag@o 6tima do grafo de Petersen.
e

Fonte: Autoria prépria, 2024.

Um dos teoremas mais famosos da Teoria dos Grafos relacionado a Coloragao
de Vértices € o Teorema das Quatro Cores. Esse teorema foi inicialmente conjecturado em
1852 pelo matemdtico sul-africano Francis Guthrie enquanto estudava a coloragdao do mapa
politico do mundo, chegando a compartilhar sua conjectura com seu irmao Frederick (APPEL;
HAKEN, 1978). Sua conjectura afirmava que, para qualquer mapa politico, sdo suficientes
apenas quatro cores para colorir os paises de modo que paises vizinhos ndo compartilhem a
mesma cor. Note que, em um mapa politico, ndo ocorrem situagdes em que as fronteiras de
dois paises se intersectam em apenas um nimero finito de pontos. Portanto, consideramos como
vizinhos os paises cujas fronteiras se intersectam em um nimero infinito de pontos.

Por exemplo, considerando os estados de um pais em vez de paises, podemos colorir
os estados brasileiros no mapa do Brasil usando apenas quatro cores, garantindo que estados

vizinhos ndo tenham a mesma cor. Essa coloragcdo pode ser vista na Figura 4, onde cada cor
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representa um grupo de estados ndo vizinhos.

Figura 4 — Uma coloragdo do mapa do Brasil utilizando 4 cores.

0 Teorema das Quatro Cores
aplicado no mapa do Brasil
M Cort

W corz
n

Cor3
Cora

Fonte: Imagem criada em site www.mapchart.net, 2024.

No contexto da Teoria dos Grafos, o mapa politico pode ser representado como um
grafo planar: cada pais € associado a um vértice, e dois vértices sdo conectados por uma aresta
se 0s respectivos paises forem vizinhos no mapa politico. Assim, o Teorema das Quatro Cores
afirma que dado um grafo planar (um grafo que pode ser desenhado no plano sem cruzamento
de arestas), € possivel colorir seus vértices com apenas quatro cores, de modo que vértices
adjacentes ndo compartilhem a mesma cor. A demonstracdo do Teorema das Quatro Cores
ocorreu apenas em 1976, quando os matematicos Kenneth Appel e Wolfgang Haken publicaram
o artigo “Todo mapa plano é 4-colorivel” (APPEL; HAKEN, 1976), utilizando a ajuda de um
computador para a prova.

No artigo de Hajo Broersma (BROERSMA, 2003), foram apresentadas algumas
variagoes da Coloragdo de Vértices. Considerando dois grafos G e G2, em que G € um subgrafo
gerador de G;. O problema envolve encontrar uma coloracdo para os vértices de G, que atenda a
determinadas restri¢cdes em G e também a outras restricdes em Gy.

Dado um grafo simples G, a distdncia entre dois de seus vértices € definida como
o comprimento de um menor caminho que os conecta. Agora, podemos introduzir uma das
variagdes apresentadas por Broersma (BROERSMA, 2003). A coloragdo distancia-2 (2-distance
coloring) de um grafo G consiste em atribuir cores aos vértices de G de forma que vértices
que estejam a uma distancia de no mdximo 2 tenham cores distintas. No contexto dos grafos

mencionados anteriormente, G, € obtido a partir de G| pela inclusdo de arestas entre os vértices
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que estio a uma distdncia 2 em Gy, ou seja, Go = G12. A coloracgdo distancia-2 consiste em
encontrar uma coloracao de vértices para G; e, por conseguinte, para Gj.

Similar a Coloracao de Vértices, o niimero cromdtico distancia-2, denotado por
x2(G), é o menor inteiro k para o qual G admite uma coloracgdo distdncia-2 que usa exatamente
k cores. Essa colora¢do de G, que atinge ¥»(G), é chamada de dtima. No exemplo do grafo
de Petersen, como todo vértice do grafo € vizinho ou estd a distancia 2 dos demais vértices,
precisamos de cores distintas para todos os vértices do grafo. Na Figura 5, podemos ver uma
coloracdo distancia-2 do grafo de Petersen, onde o nimero cromético distncia-2 € 10, pois o

grafo de Petersen tem 10 vértices.

Figura 5 — Uma coloracdo distancia-2 6tima do grafo de Petersen.

Fonte: Autoria propria, 2024.

Outra variacdo, descrita em (BROERSMA, 2003), é a L(2, 1)-rotulagdo (L(2,1)-
labeling), também conhecida como A-rotulagdo. Uma L(2, 1)-rotulacdo de um grafo G = (V,E)
é uma fungdo f: V — N7 que satisfaz |f(u) — f(v)| > 2 para vértices adjacentes u e v, €
|f(u) — f(v)| > 1 para pares de vértices u e v a uma distancia 2. A amplitude (span) de uma
L(2,1)-rotulagdo f é definida como max,cy f(v), ou seja, é o maior inteiro atribuido aos vértices
de G. Dizemos que a L(2, 1)-rotulagdo de um grafo G é dtima, quando alcangamos a menor
amplitude possivel para G e a amplitude dessa rotulac@o é representada por A (G).

Na Figura 6, podemos observar uma L(2, 1)-rotulagdo 6tima do grafo de Petersen,
onde cada vértice recebe um rétulo distinto devido a sua distdncia no mdximo 2 em relacao
aos demais vértices. A construcdo dessa rotulacdo foi realizada da seguinte maneira: nos
vértices do ciclo externo de tamanho 5 do grafo, atribuimos rétulos com ndmeros impares,
garantindo que vértices adjacentes nesse ciclo tenham rétulos distanciados em 2 unidades. Para
os vértices do ciclo interno de tamanho 5, utilizamos rétulos com nimeros pares, assegurando
que vértices vizinhos nesse ciclo também tenham rétulos distanciados em 2 unidades. No entanto,
ao selecionar os rétulos para o ciclo interno, fizemos essa escolha de forma a evitar rétulos

consecutivos aos rotulos dos vértices vizinhos do ciclo externo no grafo de Petersen.
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Figura 6 — Uma L(2, 1)-rotulag@o 6tima do grafo de Petersen.

Fonte: Autoria prépria, 2024.

Coloracoes Backbone. A variacao da Coloragao de Vértices que serd abordada neste
trabalho, introduzida em (BROERSMA et al., 2003), é conhecida como Coloragao Backbone. A
atribuicdo de frequéncias € uma motivacao fundamental na aplicacdo da Coloracdo Backbone,
onde os grafos sdo usados para modelar as redes de transmissores, como antenas. Nesse problema,
as antenas sdo representadas pelos vértices do grafo, e uma aresta entre dois vértices indica
que as antenas correspondentes estdo suficientemente préximas para causar interferéncia caso
operem no mesmo canal de frequéncia. Na Figura 7, apresentamos uma distribui¢do de antenas

que atende as condi¢cdes mencionadas.

Figura 7 — Uma distribui¢ao de antenas.

Fonte: Autoria prépria, 2024.

A Coloragdo de Vértices permite atribuir diferentes canais de frequéncia as antenas,
evitando interferéncias na comunicagdo. Cada vértice do grafo, representando uma antena,
recebe uma cor que representa um canal de frequéncia, assegurando que antenas adjacentes
nao compartilhem a mesma cor. Na Figura 8, apresentamos uma coloragdo da distribuicao de
antenas, onde cada canal de frequéncia € distinto para os vértices, garantindo que quaisquer
antenas vizinhas ndo tenham a mesma cor.

Ao tentar minimizar o nimero de cores utilizadas, apresentamos na Figura 9 uma
coloracdo 6tima que utiliza apenas 3 cores. Observe que hi trés vértices que sdo mutuamente

adjacentes, o que torna impossivel a coloragdo com um niimero menor de cores.
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Figura 8 — Uma coloracdo dos vértices da distribui¢do de antenas.

Fonte: Autoria prépria, 2024.

Figura 9 — Uma coloracio 6tima dos vértices da distribuicao de antenas.

Fonte: Autoria propria, 2024.

No entanto, no contexto da Coloragdo Backbone, temos uma estrutura especial
chamada de backbone do grafo. Nesse caso, as conexdes entre alguns pares de antenas sdo tao
fortes que a simples atribuicdo de canais distintos ndo é suficiente para evitar interferéncias. E
necessario manter uma certa distancia nos canais atribuidos as antenas no backbone, a fim de
garantir um nivel aceitdvel de interferéncia.

Agora, podemos definir formalmente a Coloragdo Backbone. Considerando um grafo
G = (V,E) e um subgrafo gerador H de G, chamado de backbone de G, uma k-coloragdo q-
backbone de (G,H) é uma funcdo f: V(G) — {1,2, ...,k} que atende as seguintes condi¢des:
|f(u) — f(v)| > 1 paratoda uv € E(G) e |f(u) — f(v)| > g para toda uv € E(H). Esta dltima
serd chamada de condicdo do backbone.

O niimero cromdtico q-backbone de (G,H), denotado por BBC,(G,H ), é o menor
inteiro k para o qual existe uma k-colorag@o g-backbone de (G, H ). Quando temos uma colorag¢do
g-backbone do par (G,H) que utiliza exatamente BBC,(G,H) cores, chamamos essa coloracao
de otima. Dizemos que duas cores ¢y € ¢, em uma coloragdo g-backbone sao vizinhas se

|c; — ¢2| < g. Observe que duas cores vizinhas ndo podem ser usadas nas extremidades de uma

aresta no backbone, pois isso violaria a condicao do backbone.
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Outra definicdo importante para a Coloracdo Backbone é a de coloragdo simétrica,
mencionada brevemente no artigo de Broersma et al. (BROERSMA et al., 2007), sem ser
formalmente definida. No entanto, no artigo de Bu et al., essa definicdo aparece explicitamente
em um lema, ao citar o resultado de Broersma et al. (BU; LI, 2011).

Sejam G um grafo, H um subgrafo gerador de G, e f e g duas k-coloracdes de G
que satisfacam f(v) + g(v) = k+ 1 para todo vértice v de G. Note que, se f é uma k-coloragio
g-backbone de (G,H), entdo a coloragdo g também ¢é uma k-coloragdo g-backbone de (G,H).
Diz-se, entdo, que f € uma coloracdo simétrica (ou simplesmente simétrica) de g (BROERSMA
et al., 2007; BU; LI, 2011). Vale ressaltar que esses autores definiram coloragdes simétricas
apenas no contexto de drvores como backbone e para g = 2, embora a definicdo possa ser
estendida para um backbone qualquer e para um inteiro g > 2.

Voltando a distribuicdo de antenas vista anteriormente, se considerarmos que as
arestas em negrito pertencem ao backbone, conforme mostrado na Figura 10, podemos tentar

construir uma coloragdo 2-backbone 6tima para esse grafo.

Figura 10 — Uma distribui¢do de antenas (com as arestas do backbone em negrito).

Fonte: Autoria propria, 2024.

Sendo (G, H) o par da Figura 10, como mencionado ao tentar mostrar que x(G) = 3,
os vértices ¢, d e e formam uma clique, ou seja, sao mutuamente adjacentes. Assim, € impossivel
utilizar menos de 3 cores na coloracdo. Ao tentar construir uma 3-colora¢ao 2-backbone de
(G,H), ndo podemos colorir os vértices u ou v com a cor 2 para qualquer aresta uv no backbone,
pois 2 € uma cor vizinha de 1 e 3, as tnicas cores disponiveis para serem usadas nesta coloracdo.
Como os vértices ¢, d e e formam uma clique, sdo extremidades de arestas no backbone e a cor
2 ndo pode ser usada, ndo conseguimos completar uma 3-colorag@o 2-backbone de (G,H). Na
Figura 11, vemos uma 4-coloracdo 2-backbone desse par, e como nao conseguimos fazer com
menos cores, concluimos que BBC,(G,H) = 4.

Bu et al. comparam a L(2, 1)-rotulagdo com a Colorag¢do Backbone. Dado um grafo
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Figura 11 — Uma 4-colorag@o 2-backbone de (G,H) (com as arestas do backbone
em negrito) com BBC,(G,H) = 4.

Fonte: Autoria prépria, 2024.

G, uma L(2, 1)-rotulagdo de G é equivalente a uma coloragio 2-backbone de (G*,G), onde G? é
o quadrado de G, isto é, o grafo G é obtido a partir de G ao adicionar arestas entre os vértices
de G que estdo a uma distancia 2 em G (BU et al., 2013).

Se o backbone for um grafo vazio, ou seja, sem arestas, Havet et al. afirmam que
BBC,(G,H) = x(G), pois, nesse caso, a coloragdo realizada em (G,H) é simplesmente uma
coloracdo propria de G (HAVET et al., 2014).

Como toda coloracao g-backbone é, em particular, uma coloragdo prépria dos vértices
de um grafo G, temos o seguinte resultado de complexidade computacional: para k > 3, decidir
se o nimero cromdtico backbone do par (G,H) é menor ou igual a k € NP-completo. Isso se
deve ao fato de que o problema de decidir se um grafo pode ser propriamente colorido com k
cores ¢ NP-completo para k > 3 (GAREY; JOHNSON, 1979).

Em (HAVET et al., 2014), também sdo discutidos limitantes gerais do numero
cromatico da Coloracdo Backbone. Considerando G como um grafo e H como um subgrafo

gerador de G, os limitantes apresentados sdo os seguintes:
BBC,(H,H) <BBC,(G,H) <BBC,(G,G) (1.1)
g-X(H)—q+1<BBC,(G,H)<q-x(G)—q+1 (1.2)

Note que toda coloragdo g-backbone de um par (G, H) serd também uma colorag@o g-
backbone para qualquer par (G',H’), onde G' C G e H' C H. Isso explica os limitantes em (1.1).
Seja f uma y(G)-coloragdo de G. Definimos uma nova fungéo g como g(v) =q- f(v) —g+1,
onde a ideia é garantir que todas as cores estejam a uma distancia de ¢, assegurando que a
condi¢@o do backbone seja satisfeita. Portanto, g é uma (¢ - x(G) — g+ 1)-coloragdo g-backbone
de (G,H). Como g é uma coloragdo 6tima quando G = H, obtemos os limitantes descritos em

(1.2).
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Na Figura 12, podemos observar uma coloracdo 6tima e uma coloragdo 2-backbone
otima do grafo de Petersen, quando o backbone € o préprio grafo de Petersen. Para construir
a coloragdo 2-backbone 6tima, utilizamos a func¢io g conforme discutido para demonstrar o

limitante de (1.2), onde f € uma coloracdo 6tima do grafo de Petersen ilustrada na Figura 12.

Figura 12 — Uma coloragéo 6tima de G e uma coloragdo 2-backbone 6tima de (G, G)
(com as arestas do backbone em negrito), onde G € o grafo de Petersen.

Fonte: Autoria propria, 2024.

Nossas contribuicoes. Um dos nossos primeiros resultados esté relacionado com um
teorema demonstrado em (HAVET er al., 2014). Para enunciar esse teorema, é necessario definir
algumas classes de grafos. Uma floresta ¢ um grafo que nao possui ciclos, ou seja, um grafo
aciclico. Por outro lado, uma drvore é um grafo conexo sem ciclos. Uma estrela € uma arvore
em que um vértice x, denominado centro da estrela, é adjacente a todos os outros vértices do
grafo. Finalmente, uma galdxia é uma floresta de estrelas. Na Figura 13, s@o ilustrados exemplos
de uma estrela com centro no vértice x € de uma galaxia como backbone no grafo de Petersen,

com centros das estrelas nos vértices a, d e j.

Teorema 1. (HAVET et al., 2014) Para todo inteiro q > 3, o seguinte problema é NP-completo.
Entrada: Um grafo planar G e uma galdxia F em G com grau mdximo 3.

Pergunta: BBC,(G,F) < q+3?

No VII Encontro de Teoria da Computacdo (ETC), apresentamos um resumo esten-
dido (CASTRO et al., 2022), no qual corrigimos a demonstra¢do do Teorema 1. Para demonstrar
o Teorema 1, Havet et al. provam o seguinte lema sobre um gadget utilizado na demonstragao,

denominado pipa (representado na Figura 14):
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Figura 13 — Uma estrela com centro em x e uma galdxia (com as arestas do
backbone em negrito) no grafo de Petersen.

Fonte: Autoria prépria, 2024.

Lema 2. (HAVET et al., 2014) Se ¢ é uma (q+ 3)-coloragdo g-backbone de uma pipa tal
que (1) € {1,2,3,g+ 1,q+2,q+ 3}, entdo ou ¢(t) € {1,2,3} e ¢p(u) = qg+3, ou ¢(t) €
{g+1,q+2,q+3} e d(u) =1.

Figura 14 — A pipa (com as arestas do backbone em negrito).

Fonte: Autoria propria, adaptado de (HAVET ez al., 2014), 2024.

A partir da pipa representada na Figura 14, identificamos um erro no resultado
esperado do Lema 2. Para garantir a validade desse lema, construimos uma nova versao da pipa,
ilustrada na Figura 15, preservando suas propriedades de planaridade e de ter um backbone em
forma de galaxia com grau maximo 3, conforme exigido pelo Teorema 1.

Outro resultado, também apresentado no VII Encontro de Teoria da Computagdo
(ETC), envolve uma variagdo circular da Coloragao Backbone, denominada Coloragao Backbone

Circular. Esta coloracdo é bem definida e diversos resultados sobre ela podem ser encontrados
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Figura 15 — A pipa corrigida (com as arestas do backbone em negrito).

Fonte: Autoria prépria, 2024.

em (HAVET et al., 2014). Antes de enunciarmos nosso resultado, introduziremos algumas
nog¢des basicas dessa coloragao.

Dado um grafo G = (V,E) e um subgrafo gerador H de G, o backbone de G,
dizemos que uma k-colora¢do g-backbone circular de (G,H) é uma fungdo f: V(G) —
{1,2,...,k} que satifaz as seguintes condi¢des: |f(u) — f(v)| > 1, para toda aresta uv € E(G)
e q <|f(u)— f(v)] < k—gq, para toda aresta uv € E(H). De forma semelhante a Coloracdo
Backbone, o niimero cromdtico g-backbone circular, denotado por CBC,(G,H), é o menor
inteiro k para o qual existe uma k-colorac@o g-backbone circular de (G,H).

Observe que toda coloragao g-backbone circular €, em particular, uma coloragao
g-backbone, mas nem toda coloragdo g-backbone é uma coloracdo g-backbone circular para
um par (G,H). Na Figura 16, temos uma colorac¢do que € tanto 2-backbone circular quanto
2-backbone para o par (G,M). Ja na Figura 17, observe que os vértices a e d, que sdo vizinhos
no backbone, estiao coloridos com cores que ndo satisfazem a condicdo da versdo circular da
coloracdo backbone. Dessa forma, esta € uma coloracdo 2-backbone que nao € 2-backbone
circular.

Em (BROERSMA et al., 2009a), para um grafo planar G e um emparelhamento M
de G, é provado que CBC,(G,M) < 6 usando o Teorema das Quatro Cores (APPEL; HAKEN,
1976). Havet et al. observam que esse resultado pode ser generalizado para qualquer g > 2,

resultando em CBCq(G,M ) <2q+2 (HAVET et al., 2014). Provamos o seguinte resultado
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Figura 16 — Uma coloragdo 2-backbone circular de (G, M) (com as arestas do
backbone em negrito) com CBCy(G,M) = 4.

| k |
b (2 c
Fonte: Autoria prépria, 2024.

Figura 17 — Uma coloragio 2-backbone de (G,M) (com as arestas do backbone em
negrito) com BBC,(G,M) = 4, que ndo é 2-backbone circular.

| k |
b (4 ¢
Fonte: Autoria prépria, 2024.

sobre esse limitante sem utilizar o Teorema das Quatro Cores:

Teorema 3. (CASTRO et al., 2022) Se G é um grafo planar e M um emparelhamento de G, entdo
CBCy(G,M) < g+5 quando q € {2,3}.

Neste trabalho, também corrigimos um erro em uma demonstracao de um teorema
de Broersma et al. e mostramos que o resultado do limitante superior do Teorema 4 continua

valido.

Teorema 4. (BROERSMA et al., 2003) Se G é um grafo split e T uma drvore geradora de G,
entdo, se X(G) > 3, temos que BBC2(G,T) < x(G) + 2. Esse limitante é o melhor possivel.

Neste trabalho, introduzimos e estudamos uma variagdo direcionada da Coloracao
Backbone denominada Coloracdo Backbone Direcionada. Ao contrario da Coloracdo Backbone
original, nossa abordagem considera uma orientagdo aciclica do backbone. Em outras palavras,
isso significa que, dado um subgrafo gerador de G, cada aresta desse subgrafo € orientada de
modo a impedir a formacao de ciclos direcionados.

Considerando um grafo G e uma orientacao aciclica ﬁ do subgrafo gerador H
de G, uma k-colorag¢do q-backbone direcionada é uma fungdo f: V(G) — {1,2,...,k} que
satisfaz as seguintes condi¢oes: |f(u) — f(v)| > 1 paratoda uv € E(G) e f(v) — f(u) > q para
todo (u,v) € ﬁ Note que € necessdrio afirmar que a orientagdo € aciclica para garantir a boa

defini¢@o da colorag@o, ja que para todo (u,v) € ﬁ precisamos que f(v) > f(u).
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Similarmente a Coloragdo Backbone, definimos o niimero cromdtico g-backbone dire-
cionado, denotado por BBC, (G, ﬁ), como 0 menor inteiro k para o qual existe uma k-coloragdo
g-backbone direcionada de (G, ﬁ) Quando temos uma coloracao g-backbone direcionada que
usa exatamente BBC, (G, ﬁ) cores, dizemos que essa coloragdo é dtima.

Para compreender como a Coloracao Backbone Direcionada difere da Coloragao
Backbone, observamos a Figura 18, que mostra uma 4-coloracdo 2-backbone de um grafo G e seu
backbone H. De forma semelhante ao que discutimos sobre o par ilustrado na Figura 10, ndo é
possivel obter uma 3-colorag@o 2-backbone para o par (G, H ). Assim, temos que BBC,(G,H) =
4, e a coloragdo apresentada na Figura 18 € 6tima.

Figura 18 — Uma coloragio 2-backbone de (G,H) (com as arestas do backbone em
negrito) com BBC»(G,H) = 4.

a d
2 (4) 2
b c e

Fonte: Autoria prépria, 2024.

Observe que, ao orientar H conforme a Figura 19 para obter o par (G, ﬁ), a coloracao
2-backbone mostrada na Figura 18 ndo satisfaz as restri¢des da coloracao 2-backbone direcionada.
Isso ocorre porque (c,b) € ﬁ, o que significa que a cor atribuida a ¢ deve ser menor que a cor
atribuida a b, respeitando a direcao do arco na coloragao.

Figura 19 — Uma orientacdo do backbone (com os arcos do backbone em vermelho)
de um grafo G.

a d

V] V]
h) h)
b c e

Fonte: Autoria propria, 2024.

Ao tentar construir uma coloragdo 2-backbone direcionada 6tima f para o par (G, ﬁ)

da Figura 19, observe que, devido a existéncia de um caminho direcionado nos vértices e, ¢ €
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b, as restri¢cdes da coloragdo exigem que cada vértice que recebe um arco seja colorido com
uma cor & > 3, de modo que as cores desses vértices estejam a uma distancia de 2 da cauda do
arco. Assim, os vértices b, ¢ e d devem receber cores maiores ou iguais a 3. Além disso, como
(c,b) € ﬁ, ¢ necessario que f(b) — f(c) > 2. Sabendo que f(c) > 3, obtemos que f(b) > 5.
Portanto, sdo necessdrias pelo menos 5 cores para colorir o par (G, ﬁ)

Consequentemente, ao tentar minimizar o nimero de cores usadas, a Figura 20
apresenta uma colorag@o 2-backbone direcionada do par (G, ﬁ) que utiliza exatamente 5 cores.

Assim, essa coloragdo € 6tima.

Figura 20 — Uma coloragio 2-backbone direcionada de (G, ﬁ) (com os arcos do
backbone em vermelho) com BBC; (G, ﬁ) =5.
a d

5)4 B« I
b c e
Fonte: Autoria propria, 2024.

Apresentamos agora alguns resultados gerais para a versio direcionada da Coloragdo

Backbone. Antes de enunciar o primeiro resultado, € necessario definir dois parametros:

BBC, (G,H) = min{BBC,(G, ﬁ) | H éuma orientacdo aciclica de H} (1.3)

BBC, (G,H) = max{BBC,(G, ﬁ) | H éuma orientagdo aciclica de H} (1.4)

Considerando um grafo G e seu subgrafo gerador H, 0 nosso primeiro teorema
estabelece uma comparagdo entre os nimeros crométicos da colora¢do backbone e da coloragao

backbone direcionada.
Teorema 5. Se G é um grafo e H um subgrafo gerador de G, entdo
BBC, (G,H) = BBC,(G,H) <BBC/ (G,H).

O nosso segundo teorema estabelece um limitante superior para 0 nimero cromatico
g-backbone direcionado em fun¢do do diametro de ﬁ, de x(G) e de um inteiro g > 2, conside-
rando um grafo G arbitrario e uma orientacao aciclica ﬁ de um subgrafo gerador H de G. Além

disso, demonstramos que esse limitante € 6timo.
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Teorema 6. Se G é um grafo e ﬁ uma orientacdo aciclica do subgrafo gerador H de G, entdo

BBC,(G, ﬁ) < diam(ﬁ) -(%(G)+q—2)+ x(G). Esse limitante é o melhor possivel.

Além dos resultados gerais, ao considerar um grafo G com uma orientagao ﬁ de
um emparelhamento perfeito M em G, obtemos alguns resultados especificos para o par (G, ﬁ ).
Demonstramos, por exemplo, que o limitante superior estabelecido no Teorema 6 é 6timo mesmo
sob essas condigdes.

Para um grafo G e uma galaxia H em G, se existe uma orientacao aciclica ﬁ de
H tal que cada vértice v de G seja exclusivamente uma cabeca ou uma cauda dos arcos de ﬁ,
chamamos ﬁ de uma galdxia direcionada de G. Nesse caso, vale que diam(ﬁ) <1.

Portanto, se G € um grafo planar e ﬁ uma galdxia direcionada de G, entdo con-
cluimos, a partir do Teorema 6 e do Teorema das Quatro Cores (APPEL; HAKEN, 1976), que
BBC,(G, ﬁ) < g+ 6. Demonstramos também que esse limitante € 6timo nessas condicdes.

Considerando um grafo G com n vértices e um caminho hamiltoniano P em G.
Se ? ¢ uma orientacdo de P formando um caminho direcionado, chamamos ? de caminho
hamiltoniano direcionado de G. Provamos que, neste caso, BBC,(G, ?) =(n—-1)-qg+1.

Para apresentar os resultados obtidos sobre a complexidade computacional na Colo-
racao Backbone Direcionada, definimos o problema de complexidade computacional da seguinte

forma:

EMP. /-COLORACAO g-BACKBONE DIRECIONADA

. —
Entrada: Um grafo G e uma orientacdo M de um emparelhamento

perfeito M de G.

Pergunta: BBCq(G,ﬁ) <07

Demonstramos que o problema EMP. /-COLORACAO 2-BACKBONE DIRECIONADA
¢ resolvido em tempo polinomial para ¢ < 4, mas torna-se NP-completo para ¢ > 5. Além
disso, generalizamos esse resultado para o caso em que ? ¢ uma orientacdo de uma floresta de
k-caminhos, onde cada k-caminho € um caminho direcionado na orientagdo ?

A estrutura desta dissertagdo € organizada da seguinte forma. O Capitulo 2 apresenta
as defini¢des e teoremas bdsicos utilizados ao longo do trabalho. No Capitulo 3, realizamos uma
revisao bibliografica abrangente dos principais resultados conhecidos na Coloragcao Backbone,
com énfase em algumas classes de grafos associadas ao backbone. O Capitulo 4 destaca

as contribui¢des obtidas, dividindo-se em duas se¢Oes distintas: a primeira concentra-se na
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Coloragdo Backbone, enquanto a segunda aborda a variagcdo denominada Coloracido Backbone
Direcionada, apresentando as defini¢des basicas desta variagdo, bem como os resultados obtidos.
No Capitulo 5, apresentamos as consideragdes finais, juntamente com possiveis dire¢des para

pesquisas futuras na Coloracdo Backbone e na sua versdo direcionada.
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2 PRELIMINARES

Neste capitulo, introduzimos conceitos fundamentais de Teoria dos Grafos e Com-
plexidade Computacional que serdo essenciais para o desenvolvimento desta dissertagdo. Esses
conceitos foram baseados em trés livros que recomendamos para um aprofundamento na 4rea:
“Introduction to Graph Theory” de Douglas B. West (WEST, 2001), “Graph Theory with Appli-
cations” de John A. Bondy e Uppaluri S. R. Murty (BONDY; MURTY, 1976) e “Introduction
to Algorithms” de Thomas R. Cormen, Charles E. Leiserson, Ronald L. Rivest e Clifford Stein
(CORMEN et al., 2022).

2.1 Teoria dos Grafos

Estruturamos esta secdo em quatro subse¢des. A primeira cobre defini¢des bdsicas,
incluindo a defini¢do formal de grafo, cliques, conjuntos independentes, ciclos e caminhos, além
de resultados iniciais relevantes, como o Teorema de Konig, que caracteriza grafos bipartidos. A
segunda subsecdo foca em florestas, arvores e emparelhamentos, conceitos fundamentais para o
estudo das classes de backbone. Na terceira subse¢do, abordamos a k-coloragdo de um grafo G,
o algoritmo guloso para coloragdo, limitantes para o nimero cromatico, além de planaridade,
encerrando com o Teorema das Quatro Cores. Por fim, a quarta subsecao apresenta defini¢cdes
basicas de grafos direcionados, essenciais para a versdo direcionada da colora¢do backbone nesta
dissertacdo.

Antes de abordar as definicdes bdsicas da Teoria dos Grafos, podemos comecar
apresentando o problema que deu origem a essa drea, conforme destacado em (WEST, 2001).
Trata-se do Problema das Pontes de Konigsberg. Nesse problema, a cidade de Konigsberg (atual
Kaliningrado, na Russia) tinha sete pontes que ligavam quatro dreas de terra separadas pelo rio
Pregélia, conforme mostrado na Figura 21. O desafio consistia em descobrir se era possivel fazer
um passeio pela cidade, cruzando cada uma das sete pontes apenas uma vez e retornando ao
ponto de partida.

Podemos representar as pontes de Konigsberg como arestas e cada drea de terra
como um vértice, conforme ilustrado na Figura 22, facilitando a visualiza¢do do problema. Note
que, ao entrar e sair de uma drea de terra, usamos duas pontes conectadas a essa drea, o que
requer que cada drea de terra tenha um nimero par de pontes terminando nela se quisermos

cruzar todas as pontes uma Unica vez. No entanto, isso nao ocorre nas pontes de Konigsberg,
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Figura 21 — As pontes de Konigsberg.

Fonte: (WEST, 2001).

como fica claro na Figura 22, ja que, por exemplo, o vértice y tem trés pontes terminando nele.

Figura 22 — A representacdo das pontes de Konigsberg usando vértices e arestas.
x

€2

€7
€3
<

Fonte: Autoria propria, 2024.

2.1.1 Definicoes bdsicas

Um grafo G é uma tripla composta de um conjunto de vértices V(G), um conjunto
de arestas E(G) e uma fungdo de incidéncia ¢ que associa cada aresta a dois vértices (ndo
necessariamente distintos), chamados de extremidades da aresta. Se as extremidades de uma
aresta e sdo u e v, dizemos que u e v sdo vizinhos ou adjacentes. Se u € extremidade da aresta e,
dizemos que u e e sdo incidentes.

Quando o grafo em questdo esté claro no contexto, utilizamos as notacdes V e E para
representar os conjuntos de vértices e arestas, respectivamente. Na Figura 23, temos um exemplo
de um grafo G com V(G) = {v1,v2,v3,v4,V5}, E(G) = {e1,e2,e3,e4,e5} € ¢ é definida da
seguinte forma: (])G(el) = V1V2,¢G(€2) = V2V3,(PG(€3) = V3V4,¢G(€4) = V4V5 € (])G(es) = Vs5V].

Como cada aresta estd associada a um par de vértices pela funcdo de incidéncia,
podemos visualizar as arestas como os pares de vértices que lhes correspondem. Se e € uma
aresta com extremidades em u e v, podemos representd-la como e = uv (ou e = vu). Observe

que, na Figura 23, ndo h4 arestas cujas extremidades estdo no mesmo vértice, nem duas arestas
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Figura 23 — Um grafo G.
Vs
és €4

Vi V4

(1 €3

1% en V3

Fonte: Autoria propria, 2024.

com as mesmas extremidades. No entanto, isso pode ocorrer em outros grafos, e existe uma
definicao apropriada para esses casos.

Um lago é uma aresta cujas extremidades estdo no mesmo vértice, isto €, se e € uma
aresta, entdo e = uu, onde u € um vértice do grafo. Quando temos arestas que compartilham as
mesmas extremidades, chamamos essas arestas de arestas miiltiplas. Um grafo G que ndo possui
lagos nem arestas multiplas € chamado de grafo simples.

Na Figura 24, podemos ver um grafo com lacos nos vértices a e d, além de arestas
multiplas entre os vértices a e c. Portanto, esse grafo ndo € simples. Contudo, de acordo com

essa defini¢do, o grafo da Figura 23 é um grafo simples.

Figura 24 — Um grafo G com lagos e arestas multiplas.

0

Fonte: Autoria prépria, 2024.

Dados grafos simples G e H, um isomorfismo f: V(G) — V(H) é uma funcao
bijetora que satisfaz a condi¢do: uv € E(G) se, e somente se, f(u)f(v) € E(H). Quando isso
ocorre, dizemos que G € isomorfo a H e denotamos por G = H.

Na Figura 25, apresentamos dois grafos G e H para os quais vale G = H, com o
isomorfismo f definido como segue: f(a) =u, f(b) =w, f(c) =x, f(d) =v,e f(e) =z

Dado um grafo simples G, o grau de um vértice v, denotado por dg(v) (ou d(v)

quando o grafo estiver claro no contexto), ¢ o nimero de arestas incidentes em v. Se o grafo nao
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Figura 25 — Um grafo G e um grafo H isomorfos.

a d %

®
e u w

Fonte: Autoria prépria, 2024.

for simples, cada lago é contado duas vezes. A vizinhanca de um vértice v, denotada por Ng(v)
(ou N(v), quando o grafo for claro no contexto), é o conjunto de vértices adjacentes a v.

O grau mdximo de G é representado por A(G), enquanto o grau minimo de G é
representado por 8(G). Dizemos que G € regular se A(G) = 8(G), e, se A(G) =0(G) =k, G é
chamado de k-regular.

Ao observar o grafo da Figura 24, podemos identificar as vizinhancas dos vértices:
Ng(a) ={a,b,c}, Ng(b) ={a,c}, Ng(c) ={a,b,d} e Ng(d) = {c,d}. Quanto aos graus dos
vértices, temos: dg(a) =5, dg(b) =2, dg(c) =4 edg(d) =3.

Um grafo finito € um grafo cujos conjuntos de vértices e arestas sao finitos. Se o
conjunto de vértices de um grafo € vazio, ele é chamado de grafo nulo. Um grafo cujo conjunto
de arestas € vazio é chamado de grafo vazio. Quando um grafo possui somente um vértice, ele é
chamado de grafo trivial.

Os grafos estudados nesse trabalho serdo sempre simples, finitos, nao-nulos e nao-
rotulados.

Dado um grafo G, o nimero de vértices de G, chamado de ordem de G, é denotado
por n(G) (ou simplesmente n) e o nimero de arestas de G, chamado de ramanho de G, é denotado
por m(G) (ou simplesmente ).

A préxima proposi¢do, conhecida como o “Lema do Aperto de Mao”, apresenta um

resultado relacionado aos graus dos vértices de um grafo.

Proposicao 7. Se G é um grafo, entdo
Y, d(v)=2m(G).

O grau médio de um grafo G, denotado por Ad(G), é %I"Z—(GG)) Para um grafo G

e um vértice v € V(G), dado que §(G) < d(v) < A(G) e usando a Proposi¢do 7, temos que
6(G) < Ad(G) < A(G).
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O complementar de um grafo simples G, denotado por G, é o grafo tal que V(G) =
V(G) e que respeita a seguinte condigio: uv € E(G) se, e somente se, uv ¢ E(G). Na Figura 26,
temos um grafo G e seu complementar G. Note que, em G, o vértice e ndo é vizinho dos vértices
b e c. Portanto, no complementar G, as arestas eb e ec estdo presentes.

Figura 26 — Um grafo G e o seu complementar G.
e

b c
Fonte: Autoria propria, 2024.

Uma cligue em um grafo G é um conjunto S C V(G) em que todos os vértices de S
sdo adjacentes entre si. Um conjunto independente em um grafo G é um conjunto I C V(G) em
que todos os vértices de I sdo dois a dois ndo adjacentes. O tamanho da maior clique e do maior
conjunto independente do grafo G sdo denotados por ®(G) e o(G), respectivamente.

Como exemplo, na Figura 26, os vértices a, d € e no grafo G formam uma clique, que
é a maior clique do grafo G, portanto ®(G) = 3. No grafo complementar G, os mesmos vértices
a, d e e formam um conjunto independente, que é o maior conjunto independente do grafo G,
portanto «(G) = 3. Note que as cliques de um grafo G tornam-se conjuntos independentes no
grafo complementar G, e vice-versa.

Um grafo split € um grafo G em que o conjunto de vértices V(G) € particionado
em uma clique e um conjunto independente (podendo existir arestas conectando esses dois
conjuntos). Na Figura 27, observe o grafo G cujo conjunto de vértices € particionado em uma
clique C = {a,b,c,d,e} e um conjunto independente S = {f,g,h,i}. Note que existem arestas
conectando vértices de C a vértices de S, como as arestas df e ci.

O grafo split é conhecido por sua estrutura simples, o que resulta em uma ampla
variedade de resultados para essa classe de grafos. Outro grafo de grande interesse de estudo € o
grafo bipartido, que também tem sido extensivamente estudado.

Um grafo bipartido é um grafo G em que o conjunto de vértices V(G) é particionado

em dois conjuntos independentes, podendo existir arestas conectando esses dois conjuntos. Um



38

Figura 27 — Um grafo split G com uma clique C e um conjunto independente S que
particiona V(G).

Fonte: Autoria prépria, 2024.

grafo G € k-partido, se o seu conjunto de vértices € particionado em k conjuntos independentes.

A Figura 28 apresenta um exemplo de grafo bipartido, no qual os vértices vermelhos
formam um conjunto independente, enquanto os vértices verdes constituem o segundo conjunto
independente. No entanto, € importante observar que nem todo grafo € bipartido. A Figura 29

ilustra um grafo que nao € bipartido. Adiante, explicaremos por que esse grafo ndo pode ser

bipartido.

Figura 28 — Um grafo bipartido G.

Fonte: Autoria propria, 2024.

Figura 29 — Um grafo ndo bipartido G.

d e
Fonte: Autoria propria, 2024.
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Um grafo completo é um grafo em que todos os pares de vértices u e v sdo adjacentes.
Se o grafo possui n vértices, ele € denotado por K,,. Um grafo bipartido completo, também
chamado de biclique, é um grafo bipartido com parti¢cdes A e B tal que, para cada par (u,v) €
A x B, temos uv € E(G). Quando |A| =r e |B| = s, a biclique é denotada por K.

Um grafo G € k-partido completo se for k-partido, com as parti¢des Vi,...,V; de
V(G), em que uv € E(G) para quaisquer u € V; e v € V;, sempre que i # j. A Figura 30 apresenta

exemplos de grafos completos e bipartidos completos.

Figura 30 — Exemplos de grafos completos e grafos bipartidos completos.

K> K3 Ky K>3

)

Fonte: Autoria propria, 2024.

Um passeio é uma sequéncia alternada de vértices e arestas, (vo,eq,Vi,...,€k, V),
que comeca e termina em vértices, com cada aresta ¢; = v;_1v;. Esse passeio é denominado
(vo,vi)-passeio. Os vértices vy e v, sdo chamados, respectivamente, de origem e término do
passeio, enquanto os demais vértices na sequéncia sao os vértices internos. O comprimento de
um passeio corresponde ao numero de arestas presentes nele. Um passeio fechado é um passeio
em que vyp = vx. Uma trilha é um passeio que nao repete arestas, € uma trilha fechada é um
passeio fechado que também nao repete arestas.

Um caminho € uma trilha que ndo repete vértices. Um ciclo é uma trilha fechada que
ndo repete vértices, exceto a origem e o término (vo € v¢). Quando um grafo G consiste apenas
de um caminho (ciclo) com n vértices, denotamos o grafo G por P, (Cy,). Um (u,v)-caminho é
um caminho que se inicia no vértice u e termina no vértice v. Um ciclo com comprimento k
€ chamado de k-ciclo. Um k-ciclo € par ou impar, se k é par ou impar, respectivamente. Um
3-ciclo € também chamado de tridngulo.

Dado um grafo G, um caminho hamiltoniano é um caminho que percorre todos os
vértices de G exatamente uma vez. Na Figura 31, (u,a,v,b,w, f,u) representa um exemplo de
ciclo em G, enquanto (v,b,w, f,u,e,z,g,z,d,w,c,v) é um exemplo de trilha fechada no grafo G.
Ja (u,a,v,c,w,d,z) é um exemplo de um caminho hamiltoniano em G.

O teorema a seguir, provado por Dénes Konig em 1936 (KONIG, 1936), explica por

que o grafo da Figura 29 néo € bipartido: os vértices c, d, e, f e g formam um ciclo impar no
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Figura 31 — Um grafo G ndo simples.
u a v

Q
S

8
Fonte: Autoria prépria, 2024.

grafo.

Teorema 8. (KONIG, 1936) Um grafo é bipartido se, e somente se, ele ndo contém nenhum

ciclo impar.

A cintura de um grafo G, denotado por g(G), é o comprimento do menor ciclo que
existe no grafo. Se o grafo ndo tem ciclos, entdo g(G) = . O grafo de Petersen, ilustrado na
Figura 32, possui cintura 5. Como o grafo de Petersen € um grafo simples, ndo contém ciclos de
comprimento 1 ou 2. Devido a sua estrutura, ele também ndo apresenta ciclos de comprimento 3
ou 4. Além disso, como ha um ciclo externo de comprimento 5 no grafo de Petersen, este é o

menor ciclo presente no grafo.

Figura 32 — O grafo de Petersen com cintura 5.

Fonte: Autoria prépria, 2024.

Dados dois vértices u e v de um grafo G, se existe um (u,v)-caminho em G, a
distancia entre u e v, denotada por dg(u,v) (ou simplesmente d(u,v) quando G estiver claro no
contexto), é o menor comprimento de um (u,v)-caminho em G. Caso contrario, se ndo existir
um (u,v)-caminho, definimos d(u,v) = oo. O didmetro de um grafo G, denotado por diam(G), é
a maior distancia entre quaisquer dois vértices de G, isto €, diam(G) = max,, ey (g) d (4, V).

Observe que, devido a constru¢do do grafo de Petersen (ilustrado na Figura 32),

quaisquer dois vértices que nao sejam adjacentes t€ém um vizinho em comum. Dessa forma,
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podemos afirmar que o diametro do grafo de Petersen € igual a 2.

Um subgrafo do grafo G é um grafo H talque V(H) CV(G) e E(H) C E(G). Além
disso, para cada aresta e = uv em H deve existir uma aresta correspondente em G que conecta 0s
mesmos vértices. Denotamos por H C G quando H é um subgrafo de G. Observe na Figura 33 o

grafo de Petersen, que contém o C5 como subgrafo.

Figura 33 — O grafo de Petersen e o Cs.

Fonte: Autoria prépria, 2024.

Um grafo G é conexo se existe um (u,v)-caminho em G, para quaisquer vértices
ueV(G)eveV(G). Caso contrério, G é desconexo. Uma componente conexa (ou simplesmente
componente) de um grafo G € um subgrafo maximal conexo de G. Um vértice isolado é um
vértice de grau 0.

Considerando o grafo G da Figura 34, podemos observar que nao ha nenhum caminho
em G que conecte os vértices g € k, indicando que G € um grafo desconexo. Suas componentes
conexas sdo: Cy, cujos vértices sdo {a,b,c,d,e, f,g,h}; Ca, cujo vértice é {i}; C3, cujo vértice é
{j}; e C4, cujos vértices sao {k,l}. As componentes C, e C3 sdo formadas apenas por vértices

isolados.

Figura 34 — Um grafo G e suas componentes conexas.
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Fonte: Autoria propria, 2024.

O subgrafo de G obtido ao remover um vértice v (um conjunto de vértices §) é
denotado por G —v (G — S). Da mesma forma, o subgrafo de G obtido ao remover uma aresta

e (um conjunto de arestas M) € denotado por G — e (G — M). Uma articulagcdo ou um vértice
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de corte v em um grafo G € um vértice tal que G — v possui mais componentes que G. De
maneira andloga, uma ponte ou aresta de corte e em G € uma aresta tal que G — e possui mais
componentes que G. Um subgrafo induzido por um conjunto S C V(G) em G, denotado por
G/[S], € o subgrafo obtido removendo-se todos os vértices em S, isto é, G — S. Dizemos que um
grafo G é H-livre se ndo contém H como subgrafo induzido.

No grafo G da Figura 35, o vértice ¢ € uma articulagdo e a aresta cd € uma ponte.
Podemos observar que nem todo subgrafo de um grafo G € um subgrafo induzido desse grafo.
Por exemplo, C4 e Ps sdo subgrafos de G, mas ndo sao subgrafos induzidos. As arestas ab, bc, ce
e ca formam um C4 como subgrafo, porém, devido a presenca da aresta bc, o subgrafo induzido
pelos vértices a, b, ¢ e d nao € um Cy4. Portanto, em outras palavras, o grafo G da Figura 35 é
Cy-livre.

Figura 35 — Um grafo G que ndo tem C4 € Ps como subgrafos induzidos.

a b c d
@

e

Fonte: Autoria prépria, 2024.

2.1.2 Florestas, drvores e emparelhamentos

Um grafo G € aciclico se nao possui ciclos. Uma floresta F € um grafo aciclico.
Uma drvore € uma floresta conexa. Uma folha é um vértice de grau 1. Um subgrafo gerador H
de G € um subgrafo que contém todos os vértices de G. Uma drvore geradora € um subgrafo
gerador que € uma arvore.

As arvores e florestas s@o classes de grafos amplamente estudadas na Teoria dos
Grafos. Um exemplo simples de drvore é o caminho com n vértices, denotado por P,. Um
resultado bdsico, frequentemente utilizado em demonstragdes envolvendo arvores, € o seguinte:
toda drvore T com n(T) > 2 vértices possui pelo menos duas folhas.

Um grafo k-degenerado € um grafo G no qual, para todo subgrafo H C G, existe pelo
menos um vértice em H com grau no méaximo k. E importante notar que todo grafo 1-degenerado
¢ uma floresta.

Uma estrela S € uma arvore composta por um vértice x, denominado o centro da

estrela, que € adjacente a todos os outros vértices. Uma estrela com n vértices € o grafo bipartido
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completo K ,—1. Uma galdxia € uma floresta de estrelas. Podemos observar um exemplo de

uma galdxia na Figura 36, na qual as estrelas t€ém centros em a, e e k.

Figura 36 — Uma galéxia.
a e k

b ¢ d f &8 h 1 j [ m
Fonte: Autoria prépria, 2024.

Dado um grafo simples G, um emparelhamento M é um conjunto de arestas de G no
qual ndo hé duas arestas que compartilham um vértice em comum como extremidade. Em outras
palavras, para qualquer par de arestas distintas e, f € M, as extremidades de e e f sdo vértices
distintos. Dizemos que um vértice € saturado por M, ou M-saturado, se ele ¢ uma extremidade
de alguma aresta em M; caso contrdrio, o vértice € insaturado por M, ou M-insaturado. Um
emparelhamento perfeito € um emparelhamento que satura todos os vértices de G. Um exemplo

de emparelhamento perfeito no grafo de Petersen € apresentado na Figura 37.

Figura 37 — O grafo de Petersen com um emparelhamento perfeito em negrito.

Fonte: Autoria prépria, 2024.

2.1.3 Coloracdo de vértices e planaridade

Dado um grafo G, uma k-coloragdo prépria de G, ou simplesmente uma k-coloragdo
de G, é uma fung¢do f: V(G) — {1,2,...,k} que atribui cores aos vértices de modo que vértices
adjacentes nao compartilhem a mesma cor. Quando G admite uma k-coloragdo, dizemos que
G é k-colorivel. O niimero cromdtico de G, denotado por ¥ (G), é o menor inteiro & tal que G é
k-colorivel. Se x(G) = k, dizemos que G é um grafo k-cromdtico. Uma k-colorag¢do de um grafo
k-cromético G € chamada de coloragdo otima.

Considerando uma k-coloragdo f de um grafo G, uma classe de cor € o conjunto de
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vértices que sao coloridos com a mesma cor. Por defini¢do de coloragdo, cada classe de cor é um
conjunto independente. Portanto, saber que um grafo admite uma k-coloracao € equivalente a
saber se ele é k-partido, como foi definido anteriormente.

Sendo G o grafo de Petersen (ilustrado na Figura 32), sabemos que G contém um
ciclo impar (o ciclo externo, de comprimento 5). Portanto, pelo Teorema 8, sabemos que o grafo
de Petersen ndo é bipartido e, consequentemente, ndo admite uma 2-coloragdo. Assim, (G) > 3.

Uma 3-coloracdo do grafo de Petersen é apresentada na Figura 38, o que prova que x(G) = 3.

Figura 38 — Uma 3-colorag@o do grafo de Petersen.

Fonte: Autoria prépria, 2024.

Outro fato que decorre da defini¢do de k-colorag@o de um grafo G é que x(G) >
®(G), pois uma clique C em G exige pelo menos |C| cores distintas. O grafo de Petersen ilustra
um caso em que essa desigualdade ¢ estrita, pois satisfaz 3 = ¥(G) > ®(G) =2, onde G é o
grafo de Petersen.

Um grafo G é dito perfeito se todo subgrafo induzido H satisfaz y(H) = @(H).
Como todo subgrafo induzido de um grafo completo é completo, e sabemos que x(H) = w(H)
para qualquer grafo completo H, concluimos que o grafo completo € perfeito. No entanto, existe
outro tipo de grafo importante que também possui essa propriedade.

Dado um ciclo C em um grafo G, dizemos que uma aresta e ¢ uma corda de C se e
ndo pertence ao ciclo C, mas suas extremidades estdo em C. Um grafo G € chamado de cordal se
todo ciclo de comprimento pelo menos 4 possui uma corda. Dizemos que um vértice v de G €
simplicial se Ng(v) é uma clique. Uma propriedade importante dos grafos cordais é que eles
sempre possuem vértices simpliciais. A partir da existéncia desses vértices simpliciais, pode-se
provar que os grafos cordais sao perfeitos.

Considerando um ordenamento dos vértices 6 = (vy,...,v,) de um grafo G, uma

coloragdo gulosa consiste em colorir os vértices seguindo a ordem o, atribuindo a cada vértice
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v € V(G) a menor cor que ndo aparece nos seus vizinhos ja coloridos. Com essa coloragao,
obtemos um limitante superior para o nimero cromético de um grafo, isto &, ¥ (G) < A(G) +1,
uma vez que cada vértice possui no maximo A(G) vizinhos que podem j4 ter sido coloridos na
ordem dada.

Se o grafo G é completo ou um ciclo impar, temos a igualdade x(G) = A(G) + 1.
Nos demais casos, o seguinte teorema, demonstrado por L. Brooks em 1941, aprimora o limitante

superior:

Teorema 9. (BROOKS, 1941) Se G é um grafo conexo que ndo é completo nem um ciclo impar,

entdo ¥ (G) < A(G).

Um grafo G é planar se ele pode ser desenhado no plano de forma que suas arestas
nao se cruzem. Esse desenho é chamado de imersdo de G no plano. Um grafo plano € uma
imersao de um grafo planar. O grafo plano divide o plano em regides conexas, sendo que cada
uma dessas regides fechadas, limitadas pelas arestas de G, é chamada de face de G. O conjunto
das faces de um grafo plano G é denotado por F(G).

Nem todo grafo € planar. Os grafos apresentados na Figura 39 exemplificam grafos

que nao possuem essa propriedade.

Figura 39 — K5 e K33 ndo sdo grafos planares.

Fonte: Autoria prépria, 2024.

Dizemos que uma face f € incidente aos vértices e arestas que estdo em sua fronteira.
Portanto, toda aresta que ndo € uma ponte € incidente a duas faces distintas. O grau da face f em
um grafo plano G, denotado por dg(f) (ou apenas d(f) quando G estiver claro no contexto), é o
numero de arestas incidentes a f, sendo que as pontes sdo contadas duas vezes. Sobre a soma

total dos graus das faces, € verdade que:

Proposi¢ao 10. Se G é um grafo plano, entdo Y. rcp () d(f) =2 |E(G).



46

Um teorema muito conhecido sobre os grafos planos € a “Férmula de Euler”, que foi

provado em 1758 por Leonhard Euler.

Teorema 11. (EULER, 1758) Se G é um grafo plano conexo, entdo
V(G)| - E(G)[+|F(G)| =2

Se G € um grafo planar e livre de tridngulos, Grotzsch provou em 1958 o seguinte

resultado sobre o niimero cromatico desse grafo.
Teorema 12. (GROTZSCH, 1959) Se G é um grafo planar e livre de triangulos, entdo x(G) < 3.

Em 1976, Appel e Haken demonstraram um resultado mais abrangente para a classe
de grafos planares, conhecido como o “Teorema das Quatro Cores”. Este € um dos resultados

mais famosos na teoria de coloracado de vértices (APPEL; HAKEN, 1976).

Teorema 13. (APPEL; HAKEN, 1976) Todo grafo planar é 4-colorivel.
2.1.4 Grafos direcionados

Um grafo direcionado ou digrafo D é definido pela tripla ordenada (V (D),A(D), ¢p),
onde V(D) é o conjunto de vértices de D, A(D) é o conjunto de arcos (ou arestas direcionadas),
e ¢p € uma funcdo de incidéncia que associa cada arco a um par ordenado de vértices em D. Se
a€A(D) e ¢p(a) = (u,v) para u e v vértices de D, entdo a € um arco que vai de u para v. Nesse
caso, chamamos u de cauda e v de cabega do arco.

Dado um grafo G, podemos obter um grafo direcionado D orientando as arestas
de G. Isso significa que, para cada aresta uv € E(G), substituimos uv por um arco (u,v) ou
(v,u). O grafo direcionado resultante é chamado de uma orientacdo de G. Quando G é um grafo
completo, a orientacdo de G €é chamada de forneio.

Seja D um grafo direcionado, definimos o grafo subjacente de D como o grafo G
obtido ao substituir cada arco (u,v) € A(D) por uma aresta nao orientada uv € E(G). Dizemos
que D é fracamente conectado se o seu grafo subjacente G é conexo.

Considerando um grafo direcionado D, o grau de entrada de um vértice v em D,
denotado por dj, (v) (ou simplesmente d~ (v) quando D estiver claro no contexto), é o niimero
de arcos com cabeca em v, ja 0 grau de saida de um vértice v em D, denotado por dg (v) (ou

simplesmente d (v) quando D estiver claro no contexto), é o niimero de arcos com cauda em
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v. Uma fonte em D é um vértice v tal que d~ (v) = 0, ou seja, ndo hd arcos que chegam em v.
Por outro lado, um sumidouro em D é um vértice v tal que d*(v) = 0, ou seja, ndo hd arcos
saindo de v. Os graus mdximos e minimos de entrada e saida de um grafo direcionado D serdo
representados por A~ (D), AT (D), 6~ (D) e 61 (D), respectivamente.

Um caminho direcionado em um grafo direcionado € uma sequéncia de vértices na
qual os vértices podem ser ordenados de modo que exista um arco a = (u,v) se, e somente se, v
aparece imediatamente ap6s u nessa ordem. Um ciclo direcionado € definido de maneira similar,
com a diferenca de que ele admite também o arco (v,,v;), onde v| e v, sdo, respectivamente,
o primeiro e o ultimo vértice da sequéncia, completando assim o ciclo. O comprimento de um
caminho ou ciclo direcionado € a quantidade de arcos presentes nele.

Assim como ocorre no caso nao direcionado, também podemos considerar grafos
direcionados que nao contém ciclos direcionados, os quais seriam andlogos as florestas na versao
direcionada. Definimos formalmente que um grafo direcionado D € aciclico se ele ndo admite
nenhum ciclo direcionado. Todo grafo direcionado aciclico D possui pelo menos uma fonte e
um sumidouro.

Na Figura 40, temos um grafo G e uma orientacdo de G. O grafo direcionado obtido
de G contém um ciclo direcionado (d,c,b,a,d), e, portanto, ndo é aciclico.

Figura 40 — Uma orientacdo de um grafo G.
c c

a a

Fonte: Autoria prépria, 2024.

Dados dois vértices u e v de um grafo direcionado D, se existe um caminho dire-
cionado que liga u a v, a distdncia entre u e v, denotada por dp(u,v) (ou simplesmente d(u,v)
quando D estiver claro no contexto), € o menor comprimento de um caminho direcionado que
liga u a v. Se ndo existe esse caminho direcionado, definimos dp(u,v) = . O didmetro de um
grafo direcionado G, denotado por diam(D), é a maior distancia entre quaisquer dois vértices de

D, isto €, diam(D) = max,, ey (p)d(u,V).
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2.2 Complexidade Computacional

Nesta secao, apresentamos as definicdoes fundamentais de complexidade computaci-
onal utilizadas nesta dissertacdo, com o objetivo de compreender as classes de complexidade
polinomial P e a classe de problemas NP-completos.

Um algoritmo é um procedimento computacional que recebe um conjunto de valores
como entrada e, em um periodo finito de tempo, produz um conjunto de valores como saida.
Os algoritmos sdo usados para resolver problemas computacionais. Uma instdncia de um
problema consiste em um conjunto especifico de valores de entrada que atendem as condicdes
estabelecidas pelo problema. Esses valores sdo processados pelo algoritmo para computar a
solugdo correspondente.

Por exemplo, considere o problema de ordenacao (sorting problem), que pode ser
formulado da seguinte forma: dada uma sequéncia de n nimeros como entrada, o objetivo
€ reordena-los em ordem nao decrescente. A saida esperada é uma sequéncia de n nimeros
dispostos nessa ordem. Nesse caso, se a entrada for = (28,7,10,80,5), um algoritmo que
resolve o problema de ordenagdo produzird como saida S = (5,7,10,28,80). Nesse contexto, / é
uma instancia do problema de ordenacao.

Os passos de um algoritmo correspondem as operacdes elementares realizadas
durante sua execucdo, como, por exemplo, operacdes aritméticas, l16gicas, atribuicdes e compara-
coes. O tempo de execugdo de um algoritmo para uma determinada entrada é o nimero de passos
executados. Dizemos que um algoritmo € correto para um problema computacional se, para toda
instancia vdlida do problema, ele produz uma solugdo correta ao ser executado com essa entrada.

Podemos formalizar o conceito de um problema de forma mais precisa. Um problema
abstrato Q € definido como uma relag@o bindria entre dois conjuntos: o conjunto de instincias
do problema / e o conjunto de solu¢des do problema S.

Por exemplo, no problema do caminho minimo, uma instincia consiste em um
grafo G, dois vértices u e v em G. A solugdo para essa instancia € uma sequéncia de vértices
que representa o (u,v)-caminho de menor comprimento em G, caso tal caminho exista. Caso
contrério, a solu¢do € definida como uma sequéncia vazia.

Um problema de decisdo é um tipo especifico de problema abstrato cuja solugao esta
restrita a duas respostas possiveis: “sim” ou “ndo”. Por sua vez, um problema concreto é aquele
cujo conjunto de instancias é formado por strings binarias. O tamanho de uma instancia i em um

problema concreto € definido como o comprimento da string que a representa, ou seja, 0 nimero
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total de bits necessdrios para representar i. Esse tamanho € denotado por |i|.

Uma nog¢ao importante sobre os algoritmos € determinar o tempo necessario para o
algoritmo computar a solu¢do de um problema concreto. Para isso, precisamos da defini¢do da
notacdo-, que permite descrever limites assintdticos superiores para fungdes de complexidade.

Seja g(n) uma fungdo, definimos:
O(g(n)) = {f(n) | existem constantes positivas ¢ e ng tais que 0 < f(n) < c-g(n), Vn > np}.

De forma simples, dizer que f(n) € 0/(g(n)) significa que o crescimento de f(n) é
limitado superiormente pelo crescimento de g(n), para valores suficientemente grandes de n. Um
algoritmo de tempo polinomial é definido como um algoritmo que, dado uma entrada x, existe
uma constante k tal que ele produz a saida em tempo &' (|x[).

Dizemos que um algoritmo resolve um problema concreto em tempo &'(T (n)) se,
para uma instincia i do problema com |i| = n, o algoritmo computa uma solu¢do em tempo
O(T (n)). Um problema concreto é resolvido em tempo polinomial se existe um algoritmo que
o resolve em tempo & (nk), para alguma constante k. Portanto, a classe de complexidade P €
definida como o conjunto de problemas concretos de decisdo que podem ser resolvidos em tempo
polinomial.

Um alfabeto ¥ € um conjunto finito de simbolos. Uma palavra (string) é definida
como uma sequéncia finita de simbolos pertencentes a X. Uma linguagem L € um conjunto de
palavras formadas a partir de X£. Dado um alfabeto ¥, o conjunto de todas as palavras possiveis
em X é denotado por X*.

Em problemas de decisdo, consideramos o alfabeto como X = {0, 1}, onde O repre-
senta a resposta “ndo” e 1 representa “sim”. Dizemos que um algoritmo A aceita uma palavra
x € {0,1}*, se, ao receber x como entrada, A produz como saida 1. Denotando A(x) como a
saida do algoritmo A para a entrada x, a linguagem aceita L pelo algoritmo A é definida como
L={xe{0,1}*|A(x) =1}. Contudo, quando A(x) = 0, dizemos que o algoritmo A rejeita a
palavra x.

Uma linguagem L € decidida por um algoritmo A se A aceita toda palavra x € L
e rejeita toda palavra x ¢ L. Além disso, dizemos que uma linguagem L é aceita em tempo
polinomial por um algoritmo A se A aceita L e existe uma constante k tal que, para toda palavra
x € L de comprimento 7, A aceita x em tempo ¢(n*). Por fim, uma linguagem L é decidida em
tempo polinomial por um algoritmo A se existe uma constante k tal que, para qualquer palavra

x € {0,1}* de comprimento 7, o algoritmo decide corretamente se x € L em tempo & (n).
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Considere, por exemplo, o problema do ciclo hamiltoniano. Dado um grafo G, a
pergunta é: "Existe um ciclo hamiltoniano em G?". Esse problema pode ser representado por
uma linguagem, em que as palavras correspondem as instancias do problema com resposta

positiva. Formalmente, definimos a linguagem:
CicLo-HAM = {(G) | G admite um ciclo hamiltoniano}.

Dada uma instincia (G) do problema, um algoritmo de decisdo para essa linguagem
enumera todas as permutacdes possiveis dos vértices do grafo G e verifica se alguma delas cor-
responde a um ciclo hamiltoniano. Se encontrar uma permutagdo que seja um ciclo hamiltoniano,
o algoritmo interrompe a execugao e retorna 1 como saida. Caso contrario, apds garantir que
nenhuma permutacdo corresponde a um ciclo hamiltoniano, o algoritmo retorna 0.

Um algoritmo de verificagcdo para uma linguagem é um algoritmo A de dois ar-
gumentos: uma palavra de entrada x e uma palavra bindria y, essa dltima é chamada de cer-
tificado. Dizemos que o algoritmo A verifica a entrada x se existe um certificado y tal que
A(x,y) = 1. A linguagem verificada por um algoritmo A é definida por L = {x € {0,1}* | Iy €
{0,1}* tal que A(x,y) = 1}. Em outras palavras, o algoritmo A verifica uma linguagem L se,
para cada x € L, existe um certificado y que o algoritmo utiliza para provar que x € L. Por outro
lado, se x ¢ L, ndo existe nenhum certificado y que faca o algoritmo concluir que x € L.

A classe de complexidade NP ¢ a classe de linguagens que podem ser verificadas
por um algoritmo de tempo polinomial no tamanho da instancia.

Uma fungdo f: {0,1}* — {0, 1}* é computdvel em tempo polinomial se existe um
algoritmo de tempo polinomial A tal que para toda entrada x € {0,1}*, A produz f(x) como
saida. Dizemos que uma linguagem L, € redutivel em tempo polinomial a uma linguagem L,
se existe uma funcdo computdvel em tempo polinomial f: {0,1}* — {0, 1}* tal que, para
todo x € {0, 1}*, vale que x € L; se, e somente se, f(x) € L,. Nesse caso, denotamos L; <p L,
e chamamos f de funcdo de reducdo e o algoritmo de tempo polinomial F que calcula f de
algoritmo de redugdo.

Essas reducdes permitem demonstrar que a dificuldade de um problema €, no minimo,
comparavel a de outro, diferindo apenas por um fator polinomial. Com isso, podemos finalmente
definir a classe dos problemas mais dificeis em NP, conhecidos como problemas NP-completos.
Uma linguagem L C {0,1}* € NP-completa se L € NP e L* <p L, para todo L* € NP. Se uma

linguagem L s6 satisfaz essa ultima condi¢do, dizemos que L é NP-dificil.
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3 REVISAO BIBLIOGRAFICA

Neste capitulo, realizamos uma revisao bibliografica abordando os principais resulta-
dos da Coloracdo Backbone. Omitimos os resultados da Colora¢do Backbone Circular, pois nosso
interesse € apresentar os resultados para a variacdo direcionada, definida nesta dissertagcdo, que
nao adota uma nogao circular das cores. Para uma revisao bibliografica em portugués sobre os
resultados da versao circular da Coloragdo Backbone, recomendamos a dissertacdo da Camila S.
Aratjo (ARAUJO, 2021). O capitulo est4 dividido da seguinte forma: a primeira se¢io aborda as
defini¢des basicas dessa coloragdo, a segunda secdo trata dos limitantes gerais para um backbone
qualquer, a terceira secdo discute os limitantes em classes especificas de backbone e a quarta

secdo traz resultados relacionados a problemas de complexidade.

3.1 Conceitos fundamentais na Coloracao Backbone

A Coloracao Backbone é uma variacao do problema de Coloragdo de Vértices de
um grafo e esta coloragdo foi introduzida no artigo (BROERSMA et al., 2003). Considerando
um grafo G = (V,E) e um subgrafo gerador H de G, que serd chamado de backbone de G,
uma k-colorag¢do q-backbone de (G,H) é uma funcdo f: V(G) — {1,2,...,k} que atende
as seguintes condigdes: |f(u) — f(v)| > 1 para toda uv € E(G) e |f(u) — f(v)| > ¢ para toda
uv € E(H). Esta tltima condi¢ao é chamada de condi¢do do backbone.

O niimero cromdtico q-backbone de (G,H ), denotado por BBC,(G,H), é o menor
inteiro k para o qual existe uma k-coloragdo g-backbone de (G,H). Quando uma coloragio
g-backbone do par (G,H) utiliza exatamente BBC,(G, H) cores, essa coloragdo é chamada
de Jtima. Em uma coloragdo g-backbone, duas cores c| e cp sdo chamadas de vizinhas se
|c1 — ¢2] < g. Portanto, observe que cores vizinhas ndo podem ser usadas nas extremidades de
uma aresta no backbone, pois isso violaria a condi¢ao do backbone.

Para comparar os pardmetros da Coloragdo de Vértices com a Coloracdo Backbone,
ilustramos uma 3-coloragcdo de um grafo G na Figura 41. Note que esta € uma coloracdo Gtima
do grafo, pois os vértices a, b e ¢ formam uma clique, ou seja, esses vértices sao mutuamente
adjacentes. Portanto, sdo necessdrias pelo menos trés cores para colorir o grafo propriamente.

Note que, para o mesmo grafo G com x(G) = 3, ao considerarmos as arestas ad e
bc como parte do backbone, obtemos um emparelhamento, que denotamos por M. Por defini¢ao,

0 backbone ¢ um subgrafo de G e M € um conjunto de arestas, ao tratar M como backbone,
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Figura 41 — Uma coloragdo 6tima do grafo G com x(G) = 3.

a (1) D d

b Q) OX

Fonte: Autoria propria, 2024.

estamos, na verdade, considerando o subgrafo H = (V(G),M), onde E(H) = M. Para simplificar,
passaremos a referir-nos a M diretamente como esse subgrafo. A Figura 42 ilustra o grafo G

junto com seu backbone M.

Figura 42 — Um grafo G com seu backbone M (com as arestas do backbone em

negrito).
a d
b c

Fonte: Autoria prépria, 2024.

Observe que, ao tentar construir uma 3-coloracdo 2-backbone para o par (G,M) da
Figura 42, a cor 2 ndo pode ser utilizada, pois impede o uso das cores 1 e 3 nas extremidades
opostas das arestas do backbone, ja que a cor 2 € vizinha tanto da cor 1 quanto da cor 3. Dessa
forma, somos forcados a usar as cores 1 e 3 nas extremidades das arestas do backbone. No
entanto, os vértices a, b e ¢ formam uma clique, ou seja, sdo mutuamente adjacentes, exigindo,
portanto, trés cores distintas (excluindo a cor 2). Portanto, ndo € possivel construir uma 3-
coloragéo 2-backbone para (G,M). Na Figura 43, apresentamos uma 4-coloragéo 2-backbone de
(G,M). Como n@o é possivel colorir com apenas 3 cores, concluimos que BBC,(G,M) = 4.

Figura 43 — Uma 4-colorac@o 2-backbone 6tima de (G, M) (com as arestas do
backbone em negrito).

a () D d

b Q) O

Fonte: Autoria propria, 2024.
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Uma definicdo amplamente utilizada em demonstragdes de resultados sobre colo-
racdo backbone € a de coloracao simétrica. Broersma et al. e Bu e Li definem essa coloragao
para um caso especifico de backbone e para g = 2, mas essa defini¢do pode ser estendida para
qualquer backbone e para qualquer inteiro g > 2 (BROERSMA et al., 2007; BU; LI, 2011).

Dados um grafo G e um subgrafo gerador H de G, considere f e g como duas
k-coloragdes de G que satisfazem f(v) 4+ g(v) = k+ 1 para todo vértice v de G. Se f é uma
k-coloragdo g-backbone de (G,H), entdo, pela relagdo dada, temos que |g(u) —g(v)| = |f(u) —
f(v)| > g paratodo uv € E(H), uma vez que f satisfaz a condi¢ao do backbone. Logo, g também
serd uma k-coloragéo g-backbone de (G,H).

Assim, dizemos que f € uma coloragdo simétrica, ou simplesmente simétrica, de g
se f e g sdo k-coloragoes de um grafo G que satisfazem f(v) +g(v) = k+ 1 para todo v € V(G),
e se f ser uma k-coloragdo g-backbone de (G,H ) implica que g também é, onde H é um subgrafo
gerador de G.

Considerando os pares de grafos (G,H) e (G',H’), dizemos que (G',H’) é um
subpar de (G,H), denotado por (G',H') C (G,H), se G’ C G e H C H. Neste caso, temos que
BBC,(G',H") < BBC,(G,H), pois toda coloragdo g-backbone de (G,H) é, em particular, uma
coloragdo g-backbone para (G',H').

Se ¢ é uma k-coloragdo g-backbone de um subpar de (G, H), entdao dizemos que ¢ é
uma k-coloragdo q-backbone parcial de (G,H). Sendo ¢ uma k-coloragio g-backbone parcial de
um par (G, H), uma cor o é dita disponivel para um vértice v € V(G) se nenhum vizinho de v
em G esta colorido com essa cor em ¢ e se nenhum vizinho de v no backbone esta colorido com

uma cor vizinha a & em ¢. Caso contrdrio, a cor o € dita proibida para v.

3.2 Limitantes gerais da Coloracio Backbone

Nesta secdo, discutimos limitantes gerais conhecidos na Colorag¢do Backbone, vélidos
para qualquer backbone. Dados um grafo G e um subgrafo gerador H de G, sabemos que toda
k-coloragdo g-backbone de (G,H) é, necessariamente, uma k-colora¢do de G. Portanto, temos
o limitante basico BBC,(G,H) > x(G). Havet et al. destacam que hd igualdade quando o
backbone € um grafo vazio, ou seja, sem arestas, pois a condi¢do do backbone € satisfeita por

vacuidade, resultando em uma coloracao prépria do grafo G (HAVET et al., 2014).

Proposicao 14. (HAVET et al., 2014) Sejam G um grafo e H um subgrafo gerador de G. Dado
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qg>2, temosq-x(H)—q+1<BBCy(G,H)<q x(G)—q+1.

Demonstragdo. Dado que (H,H) C (G,H) C (G,G), temos BBC,(H,H) < BBC,(G,H) <
BBC,(G,G), conforme afirmamos anteriormente. Sejam Y € {G,H} e f uma x (Y )-coloragdo
de Y. Vamos construir a coloragdo h da seguinte forma: h(v) = ¢- f(v) — g+ 1, para todo

v € V(G). Note que i é uma coloragdo de Y, pois, para todo uv € E(Y'), temos

h(v)=h(u) =q-f(v)—q+1=q-f(u)+9—1=¢q-(f(v) = f(u)) #0,

visto que f é uma x(Y)-coloracdo de Y e ¢ > 2. A condigdo do backbone também ¢ satisfeita,
pois, dado uv € E(Y'), temos |h(v) —h(u)| =q-|f(v) — f(u)| > ¢, uma vez que f é uma coloragdo
de Y, garantindo que | f(v) — f(u)| > 1. A colorag@o h é 6tima, pois, em sua definigdo, ela apenas
distancia todas as cores de f em ¢ unidades (exceto a primeira cor), assegurando que a condi¢ao
do backbone € satisfeita para todas as arestas do grafo Y, uma vez que todas elas estdo no

backbone. O]

Na Figura 44, sdo apresentados um grafo G e dois pares de grafos, (G,H) ¢ (G,G),
onde H é um subgrafo de G. No grafo G, observa-se uma 3-coloracdo 6tima f, enquanto para o
par (G,H) ¢ ilustrada uma 4-coloracdo 2-backbone 6tima. Ao aplicarmos a fun¢do mencionada
na prova da Proposi¢do 14 na coloragdo f, conseguimos construir uma S-coloracdo 2-backbone
6tima também para (G, G).

Figura 44 — Coloragdo 6tima do grafo G e coloracdo 2-backbone 6tima dos pares
(G,H) e (G,G) (com as arestas do backbone em negrito).

b
Fonte: Autoria prépria, 2024.

Para ¢ = 2, decorre da Proposi¢ao 14 o seguinte coroldrio.

Corolario 15. (BROERSMA et al., 2007) Se G é um grafo e H um subgrafo gerador de G, entdo
BBC,(G,H) <2-x(G)—1.
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Wang et al. resumem alguns resultados que seguem diretamente do Corolério 15
(WANG et al., 2012). Dados um grafo G e um backbone H de G, se G for planar, pelo Teorema
das Quatro Cores (APPEL; HAKEN, 1976), temos que x(G) < 4. Assim, pelo Coroldrio 15,
conclui-se que BBCy(G,H) < 7. Além disso, se G for bipartido, sabemos que x(G) < 2, e,
aplicando o mesmo coroldrio, temos que BBC,(G,H) < 3. Agora, se G for um grafo planar livre
de triangulos, pelo Teorema de Grétzch (GROTZSCH, 1959), sabemos que x(G) <3 ecomo
coroldrio, obtemos que BBC,(G,H) < 5. Se G for um grafo k-degenerado, entdo x(G) < k+1,
e, portanto, BBC,(G,H) < 2k+ 1, conforme o Corolario 15.

Proposicao 16. (HAVET et al., 2014) Sejam G um grafo e H um subgrafo gerador de G. Dado
q > 2, temos BBCy(G,H) < (x(G)+q—2)-x(H) —q+2.

Demonstracdo. Sejam g uma ) (G)-coloragéo de G e h uma ) (H)-colora¢do de H. Para v €

V(G), definimos a colorag@o f como segue:

(h(v)=1)-(g—=2+x(G)) +g(v) , se h(v) é impar;
(h(v)—=1)-(¢—2+x(G)) +x(G)+1—g(v) ,seh(v)épar.

Para mostrar que f é uma ((%(G)+q—2)- x(H) — g+ 2)-coloragio 2-backbone de

fv) =

(G,H), consideramos uv € E(G). Sem perda de generalidade, suponhamos que i(u) > h(v). Se

h(u) = h(v) e, como g é uma coloragdo de G, concluimos que

[f () = f()] = [g(u) — g(v)| # 0.

Agora, suponha que h(u) > h(v). Se h(u) e h(v) ttm a mesma paridade, e conside-

rando que |g(u) —g(v)| < x(G) — 1 (pois g é uma coloracdo de G), temos

[f () =fW)| 2 2-(q=2+x(G)) = [g(u) —g(V)| 2 g+ (q-2) + (2(G) = 1) > ¢.

Se h(u) € par e h(v) é impar, e sabendo que g(u) +g(v) <2-x(G) — 1 (pois g é uma

coloragdo de G), entdo

[f () =f()] 2 q+2-2(G) =1 (g(u) +¢(v)) = ¢-

Se h(u) é impar e h(v) é par, e sabendo que g(u) + g(v) > 3 (pois g é uma coloragdo

de G), entao

[f(u) = f(V)] > q—3+g(u) +g(v) 2 q.

O que conclui a demonstracao. 0
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Podemos comparar a otimalidade dos limitantes superiores das Proposicoes 14
e 16. Para o par (G,P) da Figura 45 e ¢ = 2, o limitante da Proposi¢do 14 é 6timo, com
BBC,(G,P) < 5. Em contraste, o outro limitante é BBC»(G,P) < 6, uma vez que ¥ (P) <2
para um caminho P. J4 para o par (G, T) da Figura 46 e ¢ = 4, o limitante da Proposi¢do 16 é
6timo, com BBC4(G,T) < 10, pois x(T) < 2 para uma arvore 7, enquanto o primeiro limitante
é pior, com BBC4(G,T) < 13. Ambos os exemplos aparecem em artigos, acompanhados das
respectivas provas dos seus nimeros cromaticos backbone, que serdo apresentados posteriormente
(BROERSMA et al., 2007; HAVET et al., 2014).

Figura 45 — Um grafo G com ¥ (G) = 3 e um caminho hamiltoniano P em G tal que
BBC;(G,P) =5 (com as arestas do backbone em negrito).

Fonte: Autoria propria, adaptado de (BROERSMA et al., 2007), 2024.

Figura 46 — Um grafo planar G com Y (G) = 4 e uma drvore geradora T de G tal que
BBC4(G,T) = 10 (com as arestas do backbone em negrito).

Fonte: Autoria propria, adaptado de (HAVET et al., 2014), 2024.

Um outro limitante geral que aparece na literatura sobre coloragdo backbone depende
do nimero cromatico do backbone e do nimero de vértices do grafo, conforme apresentado a

seguir e provado por Janczewski e Turowski (JANCZEWSKI; TUROWSKI, 2015a).

Proposicao 17. (JANCZEWSKI; TUROWSKI, 2015a) Sejam G um grafo com n vértices e H um
subgrafo gerador de G. Dado q > 2, temos BBC,(G,H) <q-(x(H)—1)+n—x(H)+ 1.
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No artigo de Bu et al., os autores apresentam um resultado geral sobre a determinagdo
do niimero cromatico 2-backbone de um par ser igual a 3. Eles provam que, para um grafo
conexo G com n(G) > 2 e um subgrafo gerador H de G, vale que BBC,(G,H) = 3 se, e somente
se, G ¢€ bipartido. Esse resultado, enunciado na proposi¢do a seguir, € amplamente utilizado em
provas de complexidade computacional e pode ser generalizado para qualquer inteiro g > 2 e

para 6(H) > 1 (BU; ZHANG, 2011).

Proposicao 18. (BU; ZHANG, 2011) Se G é um grafo conexo e H um subgrafo gerador de G
com 6(H) > 1, entdo BBC,(G,H) = g+ 1 se, e somente se, G é um grafo bipartido.

Demonstragdo. Considerando G e H como no enunciado da proposi¢ao.

(=) Suponha que BBC,(G,H) =g+ 1 e seja f uma (g + 1)-coloragido g-backbone de (G,H).
Afirmamos que nao ha vértice v em G colorido com a cor o, onde 2 < ¢ < ¢, o que € equivalente
a dizer que f € uma coloracdo de G que utiliza apenas duas cores, as cores 1 e g+ 1. Isso
implica que G ¢é bipartido. Para mostrar isso, suponha, por absurdo, que existe u € V(G) tal
que f(u) =a,com2 < a <g. Como §(H) > 1, existe v € V(G) tal que uv € E(H), como
o é cor vizinha das cores em {1,2,...,¢+ 1}, ndo ha cor disponivel para colorir o vértice v,
contradizendo que f é uma colorag@o g-backbone de (G,H).

(<) Suponha agora que G é um grafo bipartido e que g € uma 2-coloracdo de G. Definimos
uma nova coloracdo i da seguinte forma: h(v) = g(v) se g(v) =1,e h(v) =g+ 1se g(v) =2,
para todo v € V(G). Note que 4 é uma (g + 1)-coloragdo g-backbone de (G, H ), pois, dados dois
vértices u e v de G tais que uv € E(H), como g é uma coloracdo de G, temos que g(u) # g(v).
Sem perda de generalidade, suponha que g(u) = 1 e g(v) = 2. Assim, pela defini¢do de 4, temos
que h(u) =1 e h(v) =g+ 1, de modo que h(v) —h(u) = g+ 1 —1 = q. Isso satisfaz a condigdo
do backbone e, claramente, a condi¢do de ser uma coloragdo prépria. Como §(H) > 1, existe
uma aresta ab € E(H) para algum a,b € V(G). Assim, em qualquer coloragio g-backbone f,
deve-se ter |f(a) — f(b)| > gq, para garantir que a condi¢do do backbone seja satisfeita. Suponha,
sem perda de generalidade, que f(a) — f(b) > ¢q. Como toda coloragdo g-backbone atribui
valores inteiros positivos para os vértices, segue que f(b) > 1 e, consequentemente, f(a) > g+ 1.

Portanto, concluimos que BBC,(G,H) > g+ 1. O

Miskuf et al. apresentam um resultado relacionado ao Teorema de Brooks para
coloragdo 2-backbone, ao comparar o numero cromético 2-backbone com o grau maximo, mas

restrito a grafos d-degenerados (MISKUF et al., 2010).
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Teorema 19. (MISKUF et al., 2010) Se G é um grafo de grau mdximo A(G) e H um subgrafo
gerador d-degenerado de G, entdo BBCy(G,H) < A(G)+d+1.

Como os autores ressaltam, para d = 1, o limitante do Teorema 19 é o melhor
possivel quando G é um ciclo fmpar ou um grafo completo (MISKUF et al., 2010). Além disso,
eles destacam que, embora ciclos impares e grafos completos sejam exemplos que tornam o
limitante apertado no caso d = 1, existem outros grafos que também ndo conseguimos encontrar
limitantes melhores. Isso mostra que o teorema apresentado nio é exatamente equivalente ao

Teorema de Brooks na coloracao 2-backbone.

Proposicio 20. (MISKUF et al., 2010) Seja A(G) € N. Existe um grafo G, que ndo é completo
nem um ciclo, com grau mdximo A(G) e uma drvore geradora T de G tal que BBC,(G,T) =

A(G) +2.

Os autores também comentam que, no caso acima, tinhamos A(7') = A(G). Portanto,
eles apresentam outro resultado que demonstra a existéncia de pares de grafos com A(H) < A(G),
onde G € um grafo e H o backbone de G, que ainda tornam o limitante do Teorema 19 apertado

parad = 1.

Proposicio 21. (MISKUF et al., 2010) Seja A(G) € N. Existe um grafo G, que ndo é completo
nem um ciclo, com grau mdximo A(G) e uma floresta F em G com A(F) = A(G) — 1 tal que

BBC,(G,F) =A(G) +2.
3.3 Floresta como backbone

Nesta secdo, apresentamos resultados conhecidos para o caso em que o backbone é
uma floresta, com foco especial em resultados especificos para arvores. Restritos ao caso em
que g = 2 e motivados por saber o qudo distantes estdo os pardmetros ) (G) e BBC2(G,H), os
autores estudaram alguns limitantes em (BROERSMA et al., 2003). Para enunciar o primeiro
resultado, para todo inteiro k > 1, vamos definir 7(k) como sendo:

7(k) = max{BBC,(G,T) | G grafo com arvore geradora T e x(G) = k}.
Teorema 22. (BROERSMA et al., 2003) Para todo inteiro k > 1, temos t(k) = 2k — 1.

Pode-se aplicar o resultado obtido no Teorema 22 ao caso em que o grafo G € planar.

De acordo com o Teorema das Quatro Cores, sabemos que ¥ (G) = 4 (APPEL; HAKEN, 1976).
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Agora, considerando uma arvore geradora T de G, estabelecemos o limitante BBC,(G,T) < 7.
No artigo expandido (BROERSMA et al., 2007), os autores apresentam um exemplo de um grafo
planar G com sua arvore geradora 7, ilustrados na Figura 47, demonstrando que esse limitante
ndo pode ser melhorado para 5.

Figura 47 — Um grafo planar G com uma arvore geradora 7' (com as arestas do
backbone em negrito).

a b

[ € f h
Fonte: Autoria propria, adaptado de (BROERSMA et al., 2007), 2024.

Para demonstrar que o par (G,T) ndo pode ser colorido com 5 cores em uma
coloracdo 2-backbone, consideramos as estrelas com centro em d, e € f no backbone. Essas
estrelas tém exatamente 3 folhas em 7', formando uma clique no grafo G. Ao tentar usar apenas
as 5 cores, os centros das estrelas devem ser coloridos com 1 ou 5 para completar as coloragdes
em suas folhas, de forma a satisfazer a condicdo do backbone. No entanto, os vértices d, e e
Jf também formam uma clique, o que impossibilita a conclusdo dessa coloragdo de maneira
consistente. Na Figura 48, podemos observar uma 6-coloragdo 2-backbone desse par.

Figura 48 — Um grafo planar G com uma arvore geradora 7' (com as arestas do
backbone em negrito) tais que BBC»(G,T) =6.

Fonte: Autoria propria, 2024.

Com esse exemplo que demonstra que o limitante nao pode ser melhorado para 5, ao

utilizar o Teorema das Quatro Cores, os autores destacam os seguintes problemas em aberto para
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grafos planares.

Problema em Aberto 1. (BROERSMA et al., 2007) Se G é um grafo planar e T uma drvore
geradora de G, é verdade que BBC,(G,T) < 6?

Problema em Aberto 2. (BROERSMA et al., 2007) Se G é um grafo planar e T uma drvore
geradora de G, conseguimos provar que BBCy(G,T) < 7 sem usar o Teorema das Quatro

Cores?

Em 2013, foi provado como verdadeiro o Problema em Aberto 1 parcialmente para
arvores geradoras com diametro no maximo 4. Como Campos et al. ressaltam, esse resultado é o
melhor possivel, pois a drvore geradora 7' do grafo G da Figura 47 tem diametro no maximo 4

(CAMPOS et al., 2013).

Teorema 23. (CAMPOS et al., 2013) Se G é um grafo planar e T uma drvore geradora de G

com didmetro no mdximo 4, entdo BBC(G,T) < 6.

Campos et al. aprimoram o limitante superior para 5 quando 7' é uma 4rvore geradora
de G com didmetro no maximo 3. Além disso, os autores apresentam um exemplo, ilustrado na

Figura 49, que prova que esse limitante superior € 6timo.

Proposicao 24. (CAMPOS et al., 2013) Se G é um grafo planar e T uma drvore geradora de G

com didmetro no mdximo 3, entdo BBC(G,T) < 5.

Figura 49 — Um grafo planar G com uma arvore geradora 7 (com as arestas do
backbone em negrito) tal que BBC»(G,T) =5.

Fonte: Autoria propria, 2024.

No artigo de Broersma et al., o segundo resultado comparando niimeros crométicos se
aplica a classe de grafos split. O teorema € introduzido na versao inicial do artigo (BROERSMA
et al., 2003), enquanto sua demonstracdo completa pode ser encontrada no artigo expandido
(BROERSMA et al., 2007). Identificamos um pequeno erro na demonstragdo do Teorema 4 e

apresentaremos a prova completa e a corre¢cdo desse erro no Capitulo 4.
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Teorema 4. (BROERSMA et al., 2003) Se G é um grafo split e T uma drvore geradora de G,
entdo, se X(G) > 3, temos que BBC(G,T) < x(G) 4 2. Esse limitante é o melhor possivel.
Ainda interessados em entender a relagdo entre o niimero cromético 2-backbone e o

nimero cromdtico do grafo, Broersma et al. apresentam o seguinte problema em aberto para

grafos cordais (BROERSMA et al., 2007).

Problema em Aberto 3. (BROERSMA et al., 2007) Se G é um grafo cordal e T uma drvore

geradora de G, existe uma constante c tal que BBCy(G,T) < x(G)+c?

O problema andlogo ao Problema em Aberto 3, considerando grafos livres de tri-
angulos, foi conjecturado no artigo (BROERSMA et al., 2007) e, dois anos mais tarde, foi
demonstrado como falso em (MISKUF et al., 2009). A prova foi feita mostrando a existéncia de
pares (R,,T,), onde R, é um grafo livre de tridngulos com X (R,) = n e T, é uma drvore geradora

de R,, tal que BBC(R,,,T,) =2x(R,) — 1 =2n—1, paratodo n € N.

Teorema 25. (MISKUF et al., 2009) Se G é um grafo livre de tridngulos e T uma drvore

geradora de G, ndo existe uma constante c tal que BBC(G,T) < x(G) +c.

Ap0s provar esse resultado, Miskuf et al. deixam o seguinte problema em aberto:
existe um grafo G com cintura alta tal que BBC>(G,T) =2x(G) — 1 para alguma arvore geradora
T de G (MISKUF et al., 2009). Bu et al. provam esse resultado com o teorema a seguir (BU et
al.,2013).

Teorema 26. (BU et al., 2013) Para todos os naturais n e l, existem um grafo G com cintura

maior que l e X (G) = n, e uma floresta geradora F de G tal que BBC,(G,F) =2n— 1.

Em seu artigo de 2006, Salman aborda o problema para um g > 2 arbitrério e

generaliza esse resultado, como apresentado no teorema a seguir (SALMAN, 2006).

Teorema 27. (SALMAN, 2006) Sejam um inteiro q > 2 e um grafo split G com x(G) =k > 2.

Para toda drvore geradora T de G, temos:

¢

1 ,se x(G) =1;

BBC,(G,T)<{ 1+¢q , se x(G)

2;

x(G)+q ,sex(G)>3.

\

Esses limitantes sdo os melhores possiveis.
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Ap6s Broersma et al. apresentarem o Teorema 22, que mostra a relacio entre o
nimero cromético ¥ (G) e o nimero cromdtico 2-backbone BBC,(G,T), para um par (G,T),
onde G € um grafo e 7 uma arvore geradora de G, em outro artigo focado em resultados para
outras classes de backbone (BROERSMA et al., 2009a). Nesse mesmo trabalho, eles enunciam
o seguinte problema em aberto, com o objetivo de generalizar esse resultado. Antes de enunciar
o problema em aberto, vamos definir Tq(k), para todo inteiro k > 1, como sendo:

7,(k) = max{BBC,(G,T) | G grafo com 4rvore geradora T e x(G) = k}.
Problema em Aberto 4. (BROERSMA et al., 2009a) Quais os valores para t,(k) quando g > 3?

Saputro e Salman, interessados nesse problema, provam limitantes para ¢ > 3 com o

teorema a seguir (SAPUTRO; SALMAN, 2013).

Teorema 28. (SAPUTRO; SALMAN, 2013) Para todos os inteiros g > 3 e k > 1, temos:
(a) Parak € {2,3}, ty(k) =14+ (k—1)-g;
(b) Para3 <k <q, t4(k) =q+2k—2;
(c) Paraq+1<k<2q—2, (k) =2q+k—1;
(d) Parak >2q—1, t,(k) = 2k.

Os autores, ao aplicarem os Teoremas 22 e 28, juntamente com o Teorema das
Quatro Cores (APPEL; HAKEN, 1976), conseguem estabelecer alguns limitantes para grafos
planares. Especificamente, para um grafo planar G e uma arvore geradora 7 de G, os seguintes

limitantes sao provados (SAPUTRO; SALMAN, 2013).

Corolario 29. (SAPUTRO; SALMAN, 2013) Dados um inteiro q > 2 e um grafo planar G. Para

toda drvore geradora T de G, temos:

(

7 , e q=72;
BBC,(G,T) << 9 ,se q=73;

q+6 ,seq>4.

\

Sendo ¢ o limitante estabelecido pelo Coroldrio 29 para uma coloracdo g-backbone de
(G,T), onde G é um grafo com x(G) = k e T uma arvore geradora de G, os autores questionam
se é possivel melhorar o resultado do coroldrio para BBC,(G,T) < ¢ — 1. No entanto, Saputro
e Salman demonstram que o par (G,T) apresentado na Figura 47 serve como contraprova,

mostrando que esse limitante ndo pode ser melhorado para £ — 2 (SAPUTRO; SALMAN, 2013).
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Problema em Aberto 5. (SAPUTRO; SALMAN, 2013) Se G é um grafo planar e T uma drvore

geradora de G, é verdade que

/

6 ,seq=72;
BBCy(G,T) < {8 ,se q=73;

qg+5 ,seq>4?

\
Havet et al. provam o mesmo limitante do Corolario 29, usando a Proposi¢do 14
para um grafo planar G (uma vez que sabemos que ¥ (G) < 4 pelo Teorema das Quatro Cores) e

F uma floresta em G (sabendo que y(F) < 2) (HAVET et al., 2014).

Teorema 30. (HAVET et al., 2014) Se G é um grafo planar e F uma floresta em G, entdo
BBC,(G,F) <g+6.

No mesmo artigo, Havet et al. apresentam um par (G, T), onde G é um grafo planar
e T é uma drvore geradora de G, tal que BBC,(G,T) = ¢+ 6 para todo ¢ > 4, mostrando que
esse limitante € o melhor possivel para g > 4 (HAVET et al., 2014). Isso demonstra que o dltimo

limitante do Problema em Aberto 5 € falso.

Figura 50 — Um grafo planar G com ) (G) = 4 e uma arvore geradora T de G (com
as arestas do backbone em negrito) tal que BBC,(G,T) = g +6.

Fonte: Autoria propria, adaptado de (HAVET ez al., 2014), 2024.

Sendo (G, T) conforme a Figura 50, onde G é um grafo planar e 7 uma &rvore
geradora de G. Para demonstrar que BBC,(G,T) = g+ 6, precisamos antes definir um grafo
que aparece como subgrafo em G chamado de paraquedas, dizemos que um paraquedas em v €

um grafo completo que tém quatro vértices, onde as trés arestas incidentes ao vértice v estao no
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backbone, conforme ilustrado na Figura 51. Nesse exemplo, temos paraquedas nos vértices y1,
Y2, V3, V4, Z1 € 22, Havet et al. provam uma proposicao que diz respeito a colorir esses paraquedas,

que serd ttil na demonstragdo que BBC,(G,T) = g+ 6 (HAVET et al., 2014).

Figura 51 — Um paraquedas em v (com as arestas do backbone em negrito).

1%

Fonte: Autoria propria, 2024.

Proposicio 31. (HAVET et al., 2014) Para q > 4, se ¢ é uma (q+ 5)-coloragdo g-backbone de

um paraquedas em v, temos que ¢ (v) € {1,2,3,q+3,9+4,9+5}.

Demonstragdo. Por absurdo, suponha que 4 < ¢(v) < g+ 2. H4, no médximo, duas cores que
ndo sdo vizinhas da cor ¢(y). Como v é adjacente a trés vértices que formam uma clique, seriam

necessdrias trés cores distintas que nao sao vizinhas de ¢(v), o que gera uma contradicdo. [

Proposicao 32. (HAVET et al., 2014) Sejam G o grafo e T a drvore geradora de G conforme
ilustrado na Figura 50. Para g > 4, temos BBC,(G,T) > g +6.

Demonstracdo. Por absurdo, suponha que exista uma (g + 5)-coloragdo g-backbone ¢ de (G, T).
Pela Proposi¢do 31, os vértices y1, y2, ¥3, Y4, 21 € 22 sdo coloridos com cores em {1,2,3,g+
3,q+4,q+5}. Sem perda de generalidade, assuma que ¢ (y») € {1,2,3}. Como y,z, € E(T)
e y2z1 € E(T), e dado que a condi¢ao do backbone também precisa ser satisfeita, temos que
{0(z1),0(z20)} C{q+3,9+4,g+5}. Além disso, como hd as arestas y;zo, Y422 € y3z1 no
backbone, e novamente pela condi¢do do backbone, temos que {@(y1), ¢ (v3),0(v4)} € {1,2,3}.
No entanto, como {y,y2,y3,y4} formam uma clique, esses vértices precisam ser coloridos com

cores distintas, o que contradiz o fato de que eles devem ser coloridos com apenas 3 cores. [

Podemos construir uma (g + 6)-coloragdo g-backbone ¢ para (G,T), onde (G,T) é
o par da Figura 50, da seguinte forma: atribuimos ¢(y;) =1, ¢(y2) =2, ¢(y3) =3, ¢ (y4) =4,
0(z1) =q+3ed(z2) = g+4. Para os vértices adjacentes a y; no paraquedas, utilizamos as cores
em {qg+4,9+5,q+6}, paratodo 1 <i <4. Ja para os vértices adjacentes a z; no paraquedas,
usamos as cores em {1,2,3}, para todo j € {1,2}. Assim, com a coloragdo ¢ e a Proposi¢go 32,

provamos que BBC,(G,T) = g+ 6, como desejado.
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Havet et al. generalizam o Problema em Aberto 5 para uma floresta como backbone,

considerando os casos g =2 e ¢ = 3 (HAVET et al., 2014).

Problema em Aberto 6. (HAVET et al., 2014) Se G é um grafo planar e F uma floresta geradora
de G, é verdade que BBC,(G,F) < 6?

Problema em Aberto 7. (HAVET et al., 2014) Se G é um grafo planar e F uma floresta geradora
de G, é verdade que BBC3(G,F) < 8?

Os autores demonstram que, além de serem limitantes 6timos, caso sejam provados
como verdadeiros, esses dois problemas em aberto apresentam uma relacdo de implicagao: se
o Problema em Aberto 6 for verdadeiro, isso implica que o Problema em Aberto 7 também ¢é

verdadeiro (HAVET et al., 2014).

Proposicao 33. (HAVET et al., 2014) Sejam G um grafo planar e F uma floresta geradora de G.
Se BBC,(G,F) < 6, entdo BBC3(G,F) <8.

Demonstracdo. Sejam G um grafo planar e F uma floresta geradora de G. Assuma que
BBC, (G, F) < 6, portanto, (G, F) admite uma 6-coloragdo 2-backbone ¢. Vamos construir
uma 8-coloragdo 3-backbone ¢’ para (G, F) da seguinte forma: ¢'(v) = ¢(v) se ¢(v) € {1,2},
o' (v) =0(v)+1sedp(v)€{3,4}ed'(v)=0(v)+2se ¢(v) € {56}. E facil verificar que a

condic¢ao do backbone € satisfeita. [

Seja B o menor inteiro k tal que, para todo grafo planar nao bipartido G com cintura
de pelo menos k, existe uma arvore geradora T de G que satisfaga BBC,(G,T) = 4. Bu et al.
estudam o problema de determinar o valor de f (BU; ZHANG, 2011).

Bu, Bao, Li, Zhang e Wang provam esse problema parcialmente para grafos livres de
ciclos especiais (BU; ZHANG, 2011; BU; LI, 2011; BU; BAO, 2015; WANG, 2012; ZHANG;
BU, 2010). Aratjo et al. provam um resultado mais geral em seu artigo (ARAUJO et al., 2017).

Teorema 34. (ARA UJO et al., 201 7) Se G é um grafo, entdo existe uma drvore geradora T de G
tal que BBCy(G,T) = max {X(G), {@ +q-‘ }

Para ¢ = 2 e um grafo planar G, pelo Teorema das Quatro Cores, sabemos que
x(G) < 4, logo, ao substituir os valores no Teorema 34, obtemos o que queriamos, isto &,
BBC,(G,T) =4, onde T é uma érvore geradora de G. Farzad et al. provam o mesmo resultado

do Teorema 34 para g = 2, com o seguinte teorema (FARZAD et al., 2016).
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Teorema 35. (FARZAD et al., 2016) Para todo grafo G, se x(G) < 4, entdo existe uma drvore
geradora T de G tal que BBC,(G,T) = x(G). Se x(G) = 3, entdo existe uma drvore geradora
T de G tal que BBCy(G,T) = 4.

No mesmo artigo, Farzad et al. provam um resultado mais forte, do qual o Teorema 35

€ decorrente.

Teorema 36. (FARZAD et al., 2016) Para todo grafo G com x(G) = k, existem uma drvore
geradora T de G e uma k-coloragdo propria f de G tal que |f(u) — f(v)| = 1, para todo
uv € E(T).

3.3.1 Caminho hamiltoniano como backbone

Nesta secdo, abordamos os principais resultados da literatura referentes ao caso em
que o backbone € um caminho hamiltoniano. Broersma et al., ao investigar a situacao em que
g = 2 e buscando compreender a relagdo entre os niimeros crométicos X (G) e BBC,(G, P) para
um grafo G e um caminho hamiltoniano P em G, apresentam alguns limitantes (BROERSMA et
al., 2003). Antes de enunciar o primeiro resultado, definimos & (k), para um inteiro k > 1, da
seguinte forma:

P (k) = max{BBC;(G,P) | G grafo com caminho hamiltoniano P e ¥ (G) = k}.

Teorema 37. (BROERSMA et al., 2003) Para todo inteiro k > 1, temos:
(a) Paral <k <4, P (k) =2k—1;
(b) P(5)=8e Z(6)=10;
(c) Parak>17ek=4t, P (4t) =6t;
(d) Parak>Tek=4t+1, Z(4t+1)=6t+1;
(e) Parak>Tek=4t+2, P (4t+2) =6t +3;
(f) Parak>T ek =4t+3, (4t +3)=6t+5.

Ideia de Prova. A prova do limitante inferior € feita pela construcao de um grafo k-partido com-
pleto G com um caminho hamiltoniano P (usando permutagdes), tal que ¥ (G) =k e BBC,(G, P)
atinge o valor desejado em cada caso. No entanto, devido a extensdo da prova, omitiremos os
detalhes aqui. Agora, para demonstrar os limitantes superiores, seja f uma k-coloracao de G,
vamos analisar cada caso individualmente:

@)1 <k<4:
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O limitante superior é consequéncia direta do Teorema 22, ja que todo caminho
hamiltoniano € uma arvore.
(b)5<k<é6:

Para k = 5, vamos construir uma 8-coloragao 2-backbone h para (G, P). Utilizaremos
conjuntos de cores definidos da seguinte forma: Dy = {1}, D, = {3}, D3 = {5}, D4 = {8} e
Ds ={2,6,7}. Parai € {1,2,3,4}, cada vértice v, colorido com a cor i em f, serd colorido em
h com a cor correspondente do conjunto D;. Apods colorir todos os vértices de cores 1, 2,3 e
4, os vértices coloridos com a cor 5 em f serdo coloridos de forma gulosa com uma das cores
do conjunto Ds, respeitando a condigdo do backbone. Ou seja, dado v € V(G) tal que f(v) =5,
sendo u e w 0 antecessor e o sucessor de v no caminho hamiltoniano P, colorimos v com a menor
cor de Ds tal que essa cor ndo seja vizinha de 4(u) nem de h(w).

Note que as novas cores dos vértices coloridos em f com as cores 1, 2, 3 e 4 ndo
sdo vizinhas, garantindo a condi¢do do backbone para as arestas entre esses vértices. Agora,
considere um vértice v colorido em f com a cor 5. Vamos mostrar que a cor escolhida para ele
respeitard a condicao do backbone. Sejam u e w 0s Unicos vértices vizinhos de v no caminho
hamiltoniano P, e assumimos que esses vértices sdo coloridos em & com as cores x e y (lembrando
que x,y ¢ Ds), respectivamente.

Suponha, por absurdo, que ndo conseguimos completar a colorag@o para o vértice
v. Como x,y ¢ Ds e a condi¢do do backbone deve ser satisfeita, para que ndo tenhamos cores
disponiveis para v, as cores de D5 devem ser vizinhas de x ou y (o que violaria a condi¢ao do
backbone), ou seja, Ds C {x—1,x+ 1,y —1,y+ 1}, o dltimo conjunto formado pelas cores
vizinhas a x ou y.

Nessa situacdo, como as cores 6 e 7 de D5 sdo vizinhas, podemos supor, sem perda de
generalidade, que 6 € {x—1,x+1}e7€{y—1,y+1},jdquex—1 e x+ 1 ndo sdo cores vizinhas,
assim como y — 1 e y+ 1. Observe também que, nesse caso, 2 ¢ {x—1,x+ 1,y —1,y+ 1}, pois
a cor 2 estd a pelo menos 4 unidades de distancia das cores 6 e 7. Jd as cores x — 1 e x4 1 estdo
a no maximo 2 unidades da cor 6, assim como y — 1 e y+ 1 em relacd@o a cor 7. Isso contradiz a
suposi¢do de que D5 C {x— 1,x+ 1,y —1,y+ 1}. Portanto, sempre conseguimos completar a
8-coloracdo 2-backbone de (G, P).

Para k = 6, a prova € feita de forma andloga, apenas adicionando o conjunto de cor
D¢ ={10}.

C)k>Tek=4r
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Parai € {1,2,...,4t}, defina V; como sendo o conjunto dos vértices coloridos com a
cor i em f. Para construir uma (6¢)-coloragio 2-backbone h de (G, P), definimos os seguintes
conjuntos de cores: C; = {2j— 1}, para j € {1,2,...,3t} e C;* = {2j,2t +2j,4t + 2}, para
j€{1,2,...,t}. Sejav eV}, o vértice serd colorido em 4 com a cor do conjunto C;, para
j€{1,2,...,3t}. Sejav € V3.4, o vértice serd colorido em & de forma gulosa com uma das
cores do conjunto C;*, para j € {1,2,...,t}, respeitando a condi¢do do backbone.
d-e)k>Te,k=4t+1ouk=4r+2:

A prova é feita de forma analoga a (c), apenas adicionando os conjuntos de cores
Cap1 = {61+ 1} e Cyyp = {61 +3}.

O k>Tek=4r+3:

Para k > 7, a prova é feita de forma andloga a (c), apenas adicionando os conjuntos
de cores C341 = {6t + 1}, C3p40 = {6t +3} e C3,43 = {6 +5}. Para k =7, a prova é feita
de forma andloga a (b), utilizando os seguintes conjuntos de cores: D;* = {1}, D,* = {3},
D3* = {5}, Dy = {7}, Ds* = {9}, D¢* = {11} e D7* = {2,6,10}. O

Outro resultado encontrado na literatura, dentro da classe de grafos split, foi apresen-
tado por Broersma et al. no artigo (BROERSMA et al., 2003). A demonstragao completa do
teorema pode ser consultada na versdo expandida desse trabalho, disponivel em (BROERSMA

etal.,2007).

Teorema 38. (BROERSMA et al., 2003) Se G é um grafo split e P um caminho hamiltoniano em
G, entdo, se ®(G) # 3, temos que BBC,(G, P) < x(G) + 1. Esse limitante é o melhor possivel.

Figura 52 — Um par (G, P) (com as arestas do backbone em negrito) tal que
x(G)=3eBBC,(G,P) =5.
w b

1% a

Fonte: Autoria propria, adaptado de (BROERSMA et al., 2003), 2024.

Os autores justificam a necessidade da hipétese @(G) # 3 no Teorema 38. Considere
o grafo split G e seu caminho hamiltoniano P, conforme ilustrado na Figura 52. Uma vez que os
vértices u, v e w formam uma clique e ndo hd uma clique maior no grafo G, temos ®(G) = 3.

Agora, suponha, por contradi¢do, que (G, P) admita uma 4-colorac¢do 2-backbone f. Observe
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que, dado que uv e uw sdo arestas do backbone, se f(u) =2 ou f(u) = 3, isso implicaria que v e
w teriam que receber a mesma cor, o que nao é possivel, pois eles sdo vértices adjacentes em G.

Portanto, o vértice u € colorido em f com a cor 1 ou a cor 4. Sem perda de
generalidade, assumimos f(u) = 1. Consequentemente, a cor 2 é proibida para os vértices v e
w, ja que ambos sdo vizinhos de u no backbone. Portanto, v e w devem ser coloridos com as
cores 3 e 4. Novamente, sem perda de generalidade, assumimos f(v) = 3. Observe que, como
av € E(P), o vértice a deve ser colorido com a cor 1. Além disso, dado que au € E(G) e ambos
estdo coloridos com a mesma cor em f, isso contradiz nossa hipétese de que (G, P) admitia uma
4-coloragdo 2-backbone. Assim, concluimos que BBCy(G,P) >4 = x(G) + 1. A Figura 53
apresenta uma 5-colorag@o 2-backbone de (G, P).

Figura 53 — Uma 5-colorac@o 2-backbone 6tima de (G, P) (com as arestas do
backbone em negrito).

Fonte: Autoria propria, 2024.

Pode-se aplicar o resultado obtido no Teorema 37 ao caso em que o grafo G é
planar. De acordo com o Teorema das Quatro Cores, sabemos que X (G) < 4 (APPEL; HAKEN,
1976). Agora, considerando um caminho hamiltoniano P em G, estabelecemos o limitante
BBC,(G,P) < 7. No artigo (BROERSMA et al., 2003), os autores apresentam um exemplo de
um grafo planar G, com seu caminho hamiltoniano P, ilustrados na Figura 54, demonstrando
que esse limitante ndo pode ser melhorado para 5.

Para demonstrar que o par (G, P) ndo admite uma 5-coloracdo 2-backbone, come-
camos analisando o grafo G|. Argumentaremos que, em qualquer 5-coloragdo 2-backbone de
G1, hd um vértice v;, para algum 1 <i < 5, que deve ser colorido com a cor 3. Caso contrério,
existiria uma coloragado 2-backbone ¢ de G; com 5 cores que ndo utiliza a cor 3. Suponha que
¢ seja essa coloracdo e, sem perda de generalidade, que c(v;) € {1,2}. Isso implicaria que
c(v2) e c¢(v4) pertencem a {4,5}, enquanto c(v3) e ¢(vs) pertencem a {1,2}. No entanto, essa
configuracdo € contraditdria, pois vi, v3 € vs formam uma clique.

Portanto, em uma 5-coloracao 2-backbone de G,, os vértices uy, us, u3, usq € us t€ém

algum vizinho que é colorido com a cor 3, de modo que ndao podem receber essa cor. Além
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Figura 54 — Grafos planares G| e G, com caminho hamiltoniano como backbone
(com as arestas do backbone em negrito).

(;15

Lo

Vi V2 V3 V4 V5

Fonte: Autoria prépria, adaptado de (BROERSMA et al., 2003), 2024.

disso, observe que G[{uy,us,u3,us,us}] = Gy, o que contradiz a possibilidade dessa coloragio,
J4 que nao aparece a cor 3 nesse subgrafo. Na Figura 55, podemos observar uma 6-coloragao
2-backbone desse par.

Figura 55 — Uma 6-coloracdo 2-backbone de (G, P) (com as arestas do backbone
em negrito).

Fonte: Autoria prépria, 2024.

Além disso, os autores destacam os seguintes problemas em aberto:

Problema em Aberto 8. (BROERSMA et al., 2003) Se G é um grafo planar e P um caminho
hamiltoniano em G, é verdade que BBC,(G,P) < 6?

Problema em Aberto 9. (BROERSMA et al., 2007) Se G é um grafo planar e P um caminho
hamiltoniano em G, conseguimos provar que BBC,(G,P) <7 sem usar o Teorema das Quatro

Cores?
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Ao restringir o Problema em aberto 3 ao caso em que o backbone ¢ um caminho

hamiltoniano, Broersma et al. demonstraram o seguinte resultado:

Proposicao 39. (BROERSMA et al., 2007) Se G é um grafo cordal e P um caminho hamiltoniano
em G, entdo BBC(G,P) < x(G) +4.

Demonstragdo. Considerando G e P como descritos na proposi¢ao, provaremos por indu¢ao no
nimero de vértices n(G) que BBC,(G,P) < x(G) +4. O caso base, quando n(G) = 1, € trivial.
Agora, para k > 2, suponha que, para todo grafo cordal G com k — 1 vértices e qualquer caminho
hamiltoniano P em G, vale a desigualdade BBC,(G,P) < x(G) + 4.

Sejam G um grafo cordal com k vértices e P um caminho hamiltoniano em G. Como
G ¢ cordal, existe um vértice simplicial v, ou seja, seus vizinhos Ng(v) formam uma clique em
G. Ao remover v, o grafo G — v continua sendo cordal, pois remover um vértice preserva a
cordalidade de um grafo. Sejam u e w os unicos vizinhos de v em P. O caminho hamiltoniano
P’ é obtido de P ao substituir as arestas uv e vw pela aresta uw (como Ng(v) forma uma clique,
temos a aresta uw em G, permitindo sua inclusdo no backbone). Assim, P’ é um caminho
hamiltoniano em G — v. Pela hipétese indutiva, existe uma () (G — v) +4)-coloragdo 2-backbone
¢ para (G—v,P).

Vamos estender a coloragdo ¢ para todo o grafo G. Para colorir o vértice v, observe
que |Ng(v)| cores estdo proibidas, ja que a vizinhanga de v forma uma clique em G. Além
disso, até 4 cores adicionais podem ser proibidas devido a condi¢do do backbone, em respeito
aos dois vizinhos de v em P. Assim, no total, no maximo |Ng(v)| +4 cores sdo proibidas
para v, sendo necessario adicionar apenas uma nova cor para colorir v, se necessdrio. Note
que x(G—v) < x(G) e, como Ng(v) junto a v formam uma clique, temos x(G) > |[Ng(v)|+ 1.
Portanto, podemos estender a colorag@o ¢ para todo o grafo G, utilizando no méaximo x(G) +4

cores, pois ¥ (G) +4 > |[Ng(v)| +5, como queriamos demonstrar. O

Em um artigo focado em resultados para outras classes de backbone, Broersma et al.
citam o Teorema 37, que relaciona os niimeros crométicos da coloragdo prépria e da coloragao
2-backbone, ao enunciarem os principais limitantes ja conhecidos (BROERSMA et al., 2009a).
Buscando uma generalizacdo desse problema para um g qualquer, os autores apresentam o
seguinte problema em aberto. Antes de enunciar o problema em aberto, precisamos definir
Z,(k), para todo inteiro k > 1, da seguinte forma:

P,4(k) = max{BBC,(G,P) | G grafo com caminho hamiltoniano P e ¥ (G) = k}.
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Problema em Aberto 10. (BROERSMA et al., 2009a) Quais os valores para &,(k) quando
q>3?

3.3.2 Galaxia como backbone

Nesta secdo, apresentamos resultados conhecidos para o caso em que o backbone é
uma galaxia. O primeiro resultado foi apresentado por Salman no seu artigo (SALMAN, 2006).
Para enuncié-lo, precisamos definir 7% (k) para todo inteiro k > 1, da seguinte forma:

(k) = max{BBC,(G,H) | G grafo com galdxia H e x(G) = k}.

Teorema 40. (SALMAN, 2006) Para todos os inteiros g > 2 e k > 1, temos:
(a) #5(2)=q+1;
(b) Para3 <k <2q-3, (k)= [3%]+q—2
(c) Para2q—2 <k <2q—1comq>3, (k) =k+2q—2; 7(3)=5;
(d) Para k =2q com q >3, 7 (k) =2k—1; 7(4) =6,
(e) Parak >2q+1, 7#,(k) =2k — EJ

Ao aplicar o teorema anterior em um grafo planar G, pelo Teorema das Quatro Cores,
temos X (G) < 4 (APPEL; HAKEN, 1976). Portanto, usando o limitante (») do Teorema 40,
obtemos que BBC,(G,H) < g+ 4 para uma galdxia H em G. Havet et al. destacam que esse
limitante é o melhor possivel, mesmo quando a galdxia H tem grau maximo 3, como o exemplo
ilustrado na Figura 56 (HAVET et al., 2014).

Figura 56 — Um grafo planar G com uma galédxia H, cujo grau méaximo € 3, tal que
BBC,(G,H) = g+4 (com as arestas do backbone em negrito).

k € f h
Fonte: Autoria prépria, adaptado de (HAVET et al., 2014), 2024.

Para mostrar que o par (G,H) da Figura 56 ndo admite uma (g + 3)-coloragdo g-

backbone, procederemos por absurdo. Suponha que ¢ seja uma (g + 3)-coloragdo g-backbone de
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(G,H). Antes de avangar, provemos um resultado andlogo a Proposi¢do 31, também apresentada
no artigo de Havet et al. (HAVET et al., 2014).

Observe que existem paraquedas nos vértices d, e e f. Se algum desses vértices fosse
colorido com uma cor 2 < @ < g+ 2, haveria no maximo duas cores que ndo sao adjacentes a cor
o. Isso € um absurdo, pois d, e e f sdo vizinhos no backbone de trés vértices que formam uma
clique em G. Assim, concluimos que ¢(d), ¢(e) e ¢(f) devem pertencer ao conjunto {1,q+ 3}.
No entanto, como d, e e f formam uma clique em G, isso gera a contradicao que buscavamos.

Para construir uma (q + 4)-coloragio g-backbone ¢ para o par (G,H) da Figura 56,
basta definir ¢(d) =1, ¢(f) =2 e ¢(e) = g+ 4. Em seguida, colorimos os vértices a, b, ¢, g, i e
h com cores no conjunto {g+2,q+ 3,q+4}. Finalmente, colorimos os vértices j, k e [ com
cores no conjunto {1,2,3}.

Havet et al. investigam o limitante de grafos planares com galdxias de grau maximo
2 como backbone. Os autores apresentam pares que alcancam o ndmero cromdtico 2-backbone
igual a 6 quando g = 2 e propdem o seguinte problema em aberto para g > 3 (HAVET et al.,
2014).

Problema em Aberto 11. (HAVET et al., 2014) Para todo inteiro q > 3, se G é um grafo planar

e F uma galdxia de grau mdximo 2, é verdade que BBC,(G,F) < q+3?

Salman também apresenta resultados para grafos split, conforme enunciado a seguir
(SALMAN, 2006). A prova do teorema abaixo pode ser encontrada no artigo de Broersma et al.

(BROERSMA et al., 2009b).

Teorema 41. (SALMAN, 2006) Dado um inteiro q > 2 e um grafo split G com x(G) =k > 2.

Para toda galdxia H em G, temos:

x(G)+q ,sek=3ouqg=2ek>4,

x(G)+q—1 , caso contrdrio.

Esses limitantes sdo os melhores possiveis.
3.3.3 Emparelhamento como backbone

Nesta secdo, apresentamos os resultados da literatura sobre o caso em que o backbone
¢ um emparelhamento. Ao focar no caso especifico em que ¢ = 2, e buscando entender a relagao

entre os pardmetros X (G) e BBCy(G,H), Broersma et al. exploraram alguns limitantes em
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(BROERSMA et al., 2003). Para enunciar um dos seus resultados, os autores definem . (k)
para todo inteiro k > 1 da seguinte forma:

A (k) = max{BBC,(G,M) | G grafo com emparelhamento perfeito M e x(G) = k}.

Teorema 42. (BROERSMA et al., 2003) Para todo inteiro k > 1, temos:
(a) A (4) =
(b) Para k =3t, #(3t) =
(c) Parak#4ek=3t+1, #(3t+1)=4r+1;
(d) Parak=73t+2, #(3t+2)=4r+3.

Demonstracdo. Vamos demonstrar os limitantes superiores, seja ¢ uma k-coloracio de G. Para
um vértice v € V(G), denotamos por n(v) o vizinho de v no emparelhamento M. Se k =1, é
trivial. Se k = 2, ao recolorir os vértices v tal que ¢(v) = 2 para a cor 3, obtemos uma 3-colora¢do
2-backbone de (G,M).

Se k = 3, vamos construir uma 4-coloragio 2-backbone f de (G,M) da seguinte

forma
* Se c(v) =1, entdo f(v) =
* Se c(v) =2, entdo f(v) =
* Sec(v)=3ec(n(v)) =1,entdo f(v) =3;
* Sec(v)=3ec(n(v)) =2,entdo f(v) =2

Se k = 4, vamos construir uma 6-coloragio 2-backbone f de (G,M) da seguinte

forma
* Sec(v)=1,entdo f(v) =1;
* Se c(v) =2, entdo f(v) =3;
* Se ¢(v) =3, entdo f(v) = 6;
* Sec(v)=4ec(n(v))=1o0u2entdo f(v) =5
(v)

forma
* Sec(v)=1,entdo f(v) =1;
* Se c(v) =2, entdo f(v) =3;
* Sec(v) =3, entdo f(v) =5;
* Sec(v) =4, entdo f(v) =17,
(v) =5 )

ec(n(v)) =1o0u2,entio f(v) =6;

.
w2
(¢]
o
<
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* Sec(v)=5ec(n(v)) =3 ou4,entio f(v) =2.

Se k > 6, vamos considerar os casos individualmente, para t > 2, de acordo com
suas congruéncias modulo 3.

(b) k =3t:

Parai € {1,2,...,4t}, defina V; como sendo o conjunto dos vértices coloridos com a
cor i em c. Para construir uma (4t)-coloragdo 2-backbone f de (G,M), definimos os seguintes
conjuntos de cores: C; = {2j— 1}, para j € {1,2,...,2t} e C;* = {2j,2r 4+ 2j}, para j €
{1,2,...,t}. Para cada v € Vj, o vértice v serd colorido em f com a cor do conjunto C;, para
j€{1,2,...,2t}. Paracada v € Vo j, 0 vértice v serd colorido em f de forma gulosa com uma
das cores do conjunto C;*, para j € {1,2,...,t}, respeitando a condi¢do do backbone.

(c)-(d) k=3t+1ouk=3r+2:

A prova é feita de forma anéloga a (), apenas adicionando os conjuntos de cores
Cyi1 = {4l‘—|— 1} e Cyin = {4t—|—3}.

Agora, para provar os limitantes superiores, construiremos um par (G, M), onde G é
um grafo com x(G) = k e M é um emparelhamento perfeito em G, de forma que BBC,(G, M)
atinja o valor desejado. O caso em que k = 1 € trivial.

Para k > 2, considere G como um grafo k-partido completo, com Vi, V>, ..., V, sendo
os conjuntos independentes de G, cada um contendo k — 1 vértices. Claramente, temos X (G) = k.
Renomearemos os vértices de V; como {v; ; | 1 < j <k, j # i}. O emparelhamento perfeito M
serd formado pelas arestas {v; jv;; |1 <1i,j <k,i# j}.

Seja ¢ uma ¢-coloragdo 2-backbone de (G,M). Definimos C; como o conjunto de
cores atribuidas aos vértices de V;, para todo i. Como G é um grafo k-partido completo, nenhuma
cor em C; pode aparecer em C; para i # j. Se |G;| = 1, chamamos V; de monocromatico, pois
ele estd colorido por uma dnica cor. Se |C;| > 2, chamamos V; de policromatico. Para um
conjunto monocromadtico V;, denotamos sua tnica cor por ¢;. Definimos 51 € s como o nimero
de conjuntos monocrométicos e policromaticos, respectivamente. Claramente, temos s; + s, = k

e 51+ 2sp </, que juntos implicam que:
51> 2k—¢ 3.1)

Sendo V; e V; conjuntos monocromdticos com i # j, pela construgio de M, existe
a aresta v; jvj; € E(M). Como a condigdo do backbone deve ser respeitada, devemos ter

lc(vij) —c(vji)| = |ci —cj| > 2. Isso implica que ¢ > 2s1 — 1. Juntando essa desigualdade com
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a Desigualdade (3.1), temos que 3¢ > 4k — 1, satisfazendo todos os limitantes inferiores para
k > 2, exceto o caso k = 4.

Agora, vamos tratar o caso k = 4 separadamente. Com o mesmo par (G, M) cons-
truido anteriormente, seja ¢ uma ¢-coloracgdo 2-backbone de (G,M). Suponha, por absurdo, que
¢ < 5. Pela Desigualdade (3.1), temos que s; > 8 — ¢ > 3. Sem perda de generalidade, suponha
que Vi, V5 e V3 sdo conjuntos monocromaticos. Assim, as arestas vy 2v2 1, V13V3,1 € v2,3V3 2 €stdo
em M, e pela condigdo do backbone, temos |c| — c3|,|c2 — ¢3],|c1 — 3] > 2.

Como ¢ <5, segue que {c1,c2,¢3} € {1,3,5}. Suponha, sem perda de generalidade,
que ¢ = 3. Além disso, como nenhuma cor de V; pode aparecer em V; para i # j, temos que
C4 C{2,4}. Note que v4,1 € V4 e existe a aresta v4 1vy 4 em M. Como as cores de V4 sdo vizinhas
da cor 3, que colore o vértice vy 4, ndo podemos satisfazer a condi¢do do backbone nessa aresta,

levando a uma contradicao. [

Miskuf et al. apresentam dois resultados, um para ciclos e outro para grafos comple-

tos (MISKUF et al., 2010).

Teorema 43. (MISKUF et al., 2010) Se C,, é um ciclo com n vértices e M um emparelhamento

de C,, entdo BBC,(C,,M) < 3.

Teorema 44. (MISKUF et al., 2010) Se K, é um grafo completo com n vértices e M um

emparelhamento de K, entdo BBC,(K,,M) < n.

Ao tentar alcangar resultados mais gerais, olhando para grafos de grau maximo A(G),

os autores no artigo (MISKUF et al., 2010) apresentam o seguinte o teorema.

Teorema 45. (MISKUF et al., 2010) Se G é um grafo de grau mdximo A(G) e M um emparelha-
mento de G, entdo BBC,(G,M) < A(G) + 1.

Apesar de o enunciado ser vdlido, a prova original fornecida para o Teorema 45 foi
identificada como incorreta, sendo posteriormente corrigida por Aradjo et al. em (ARAUJO et
al., 2019).

Pode-se aplicar o resultado obtido no Teorema 42 ao caso em que o grafo G € planar.
De acordo com o Teorema das Quatro Cores, sabemos que x(G) < 4. Agora, considerando
um emparelhamento perfeito M de G, estabelecemos o limitante BBC,(G, M) < 6. No artigo

(BROERSMA et al., 2003), os autores apresentam um exemplo de um grafo planar G com seu
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Figura 57 — Um par (G, M) (com as arestas do backbone em negrito) tal que
BBC,(G,M) =5.

a*

d
b c
Fonte: Autoria prépria, adaptado de (BROERSMA et al., 2003), 2024.

emparelhamento perfeito M, ilustrados na Figura 57, demonstrando que esse limitante nao pode
ser melhorado para 4.

Para provar que o par (G,M) da Figura 57 ndo pode ser colorido com 4 cores,
suponha, por contradi¢do, que ¢ seja uma 4-coloragdo 2-backbone de (G,M). Sejax € {a,b,c,d}
um vértice qualquer. Chamamos o vértice x* de oposto de x. Observe que os vértices a, b, c e d
formam uma clique, de modo que todos eles sao coloridos com cores distintas. Além disso, o
vértice x deve ser colorido com a mesma cor que o seu vértice oposto x*, pois x* € adjacente aos
vértices do conjunto {a,b,c,d} \ {x}.

Sem perda de generalidade, suponha que os vértices a e a* sejam coloridos com a cor
2. Devido a condic¢do do backbone, os vértices b* e d serdo coloridos com a cor 4, implicando
que a cor do vértice b também seja 4, o que € um absurdo, pois b e d sdo adjacentes no grafo G.

Na Figura 58, apresentamos uma 5-coloracdo 2-backbone de (G,M).

Figura 58 — Uma 5-colorac@o 2-backbone de (G, M) (com as arestas do backbone
em negrito).

Fonte: Autoria prépria, 2024.
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Os autores destacam também os seguintes problemas em aberto:

Problema em Aberto 12. (BROERSMA et al., 2003) Se G é um grafo planar e M um empare-
lhamento perfeito de G, é verdade que BBCy(G,M) < 5?

Problema em Aberto 13. (BROERSMA et al., 2007) Se G é um grafo planar e M um empa-
relhamento perfeito de G, conseguimos provar que BBC,(G,M) < 6 sem usar o Teorema das

Quatro Cores?

Aragjo et al. fornecem uma prova parcial para esses dois problemas em aberto,
considerando G como um grafo planar sem duas faces de grau 3 que compartilham uma aresta.
Os autores demonstram os limitantes, usando o método da descarga, para a versao circular da
Coloragdo Backbone, o que implica diretamente nos limitantes dos problemas em aberto, sem
utilizar o Teorema das Quatro Cores, ja que BBC,(G,H) < CBCy(G,H) < BBC(G,H) + 1
para todo par (G,H) (ARAUJO et al., 2018).

Teorema 46. (ARAUJO et al., 2018) Se G é um grafo planar sem duas faces de grau 3 que

compartilham uma aresta e M um emparelhamento perfeito em G, entdo CBC,(G,M) < 6.

No artigo de Salman (SALMAN, 2006), o Teorema 42 € generalizado para o caso
em que ¢ > 2. Para enunciar, para todo inteiro k > 1, definimos .#, (k) como sendo:

My (k) =max{BBC,(G,M) | G grafo com emparelhamento perfeito M e y(G) = k}.

Teorema 47. (SALMAN, 2006) Para todos os inteiros g > 2 e k > 1, temos:
(a) Para2 <k <q, Hyk)=q+k—1;
(b) Para q+1 <k <2q, My(k) =2k—2;
(c) Parak =2q+1, #,(k) =2k —3;
(d) Parak=t-(q+1) comt > 2, #y(k) = (2t)-q;
(e) Parak=t-(q+1)+ccomt>2el<c< # My(k)=(2t)-q+2c—1;
(f) Parak:t-(q—f—l)—l—ccothZe%§c§q, My(k) = (2t)-q+2c—2.

Sendo G um grafo planar, pelo Teorema das Quatro Cores (APPEL; HAKEN, 1976),
temos que ¥ (G) < 4. Considerando k = 4 no Teorema 47, obtemos o limitante BBC,(G,M) <
g+ 3 para g > 4 e um emparelhamento perfeito M em G.

No caso de um grafo split G, Salman apresenta um teorema com limitantes para

qualquer g > 2, semelhante ao Teorema 47, mas especifico para a classe dos grafos split
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(SALMAN, 2006). No artigo de Broersma et al., os limitantes aparecem de forma mais concisa,

conforme enunciado a seguir (BROERSMA et al., 2009b).

Teorema 48. (BROERSMA et al., 2009b) Dado um inteiro g > 2 e um grafo split G com

X (G) =k > 2. Para todo emparelhamento perfeito M em G, temos:

(

g+1 , se k=2;

bl sek=deq<min{f 42
BBC,(G,M) < { k+2 ,sek=9ouk>11e 0 < ¢ <[k

Sl4q L sek=3,57eq>[5];

[14g+1 ,sek=4,60uk>8eq>[5]+1.

Esses limitantes sdo os melhores possiveis.
3.3.4 Complexidade Computacional

Nesta secdo, apresentamos alguns resultados conhecidos de complexidade computa-
cional na Colorag¢ao Backbone nas seguintes classes de grafos para o backbone: arvore, caminho
hamiltoniano, galdxia e emparelhamento, os quais temos interesse em estender para a variagao
direcionada da Coloracao Backbone.

Os autores em (BROERSMA et al., 2003) abordam a complexidade computacional

para g = 2 do seguinte problema:

/-COLORACAO ¢-BACKBONE

Entrada: Um grafo G e um subgrafo gerador H de G.

Pergunta: BBC,(G,H) < (?

O problema /-COLORACAO g-BACKBONE é NP-completo para ¢ > 3, uma vez que
toda ¢-coloragdo g-backbone de (G,H ), com H sendo um grafo vazio, é também uma ¢-colora¢do
do grafo G. Além disso, sabemos que decidir se um grafo é ¢-colorivel € NP-completo para
¢ >3 (GAREY; JOHNSON, 1979).

Havet et al. destacam que, para um grafo G e um subgrafo gerador H de G com
O0(H) > 1, decidir se BBC,(G,H) < g+ 1 pode ser resolvido em tempo polinomial, uma vez
que BBC,(G,H) = g+ 1 se, e somente se, G ¢ bipartido (como foi provado na Proposi¢ao 18).
Isso se deve ao fato de que o problema de determinar se um grafo € bipartido pode ser resolvido

em tempo polinomial (GAREY; JOHNSON, 1979; HAVET et al., 2014).
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Os autores também provam um resultado mais geral ao considerarem o backbone
como conexo (HAVET et al., 2014), mostrando que o problema /-COLORACAO g-BACKBONE,
quando restrito a outras condi¢des, pode ser resolvido em tempo polinomial (HAVET et al.,

2014).

Teorema 49. (HAVET et al., 2014) Se G é um grafo conexo e H um subgrafo gerador conexo de

G, entdo decidir se BBC,(G,H) < q+2 pode ser resolvido em tempo polinomial.

No entanto, ao remover a condi¢do de que o backbone seja conexo e ao considerar
H como um emparelhamento perfeito, os autores provam que esse problema ¢ NP-completo

(HAVET et al., 2014).

Teorema 50. (HAVET et al., 2014) Se G é um grafo planar e H um emparelhamento perfeito de
G, entdo decidir se BBC,(G,H) < q+2 é NP-completo.

Quando o backbone € uma éarvore geradora 7 ou um caminho hamiltoniano P,
Broersma et al. apresentam resultados importantes sobre esses casos. A prova completa do
teorema € detalhada no artigo expandido (BROERSMA et al., 2007). Antes de enunciar o

teorema, vamos definir os problemas especificos para essas classes de backbone.

ARVORE /-COLORACAO ¢-BACKBONE

Entrada: Um grafo G e uma arvore geradora T de G.

Pergunta: BBC,(G,T) < (?

CAMINHO /-COLORACAO g-BACKBONE

Entrada: Um grafo G e um caminho hamiltoniano P em G.

Pergunta: BBC,(G,P) < (?

Teorema 51. (BROERSMA et al., 2003)
(a) O problema ARVORE {-COLORACAO 2-BACKBONE pode ser resolvido em tempo polino-
mial para { < 4.

(b) O problema CAMINHO ¢-COLORACAO 2-BACKBONE ¢é NP-completo para { > 5.

Demonstragdo. Assuma que ¢ < 4. Primeiro, note que, para £ = 1, decidir se BBC,(G,T) < 1¢

verdade é equivalente a saber se E(G) = &. Se houver pelo menos uma aresta em G, a resposta ao
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problema é imediatamente ndo. Para ¢ = 2, a verificacdo estd relacionada a existéncia de arestas
no backbone. Se houver qualquer aresta no backbone, a resposta ao problema € prontamente ndo.
Caso contrario, basta verificar se o grafo G € bipartido.

Observe que T € uma arvore geradora. Portanto, no cendrio em que E(T) = &,
temos que G € um grafo trivial, implicando que apenas uma cor € necessdria para a coloracgao.
Logo, a resposta ao problema é imediatamente sim, quando E(T) =@ e { > 1.

Pela Proposicao 18, ao substituir g = 2, temos que BBC,(G,T) = 3 se, e somente
se, G € um grafo bipartido, que sabemos que pode ser decidido em tempo polinomial, o que
resolve o problema para ¢ = 3.

Suponha agora que ¢ > 4. Considere o grafo G = (V,E) e sua arvore geradora
T = (V,Er). Como toda arvore é 2-colorivel propriamente, seja ¢ uma 2-coloragdo de T'.
Agora, examinaremos a biparticdo dos vértices de G induzida por essa coloragdo ¢, denotando-a
como V =V UV,, onde V| e V, sdo os conjuntos de vértices coloridos com as cores 1 e 2,
respectivamente, de acordo com a coloracao c.

Agora, para ¢ = 4, considere uma 4-coloragio 2-backbone f de (G,T). Seja v* um
vértice de V; e suponha, sem perda de generalidade, que f(v*) € {1,2}. Consequentemente,
os vértices nos conjuntos V; e V, sdo coloridos com as cores pertencentes a {1,2} e {3,4},
respectivamente. Portanto, podemos afirmar que BBC,(G,T) = 4 se, e somente se, ambos
os subgrafos de G induzidos pelos conjuntos V; e V, sdo bipartidos, € nenhuma aresta de Er
conecta um vértice de cor 2 em V| a um vértice de cor 3 em V;. Isso ocorre porque a condi¢cdo
de backbone deve ser satisfeita, e as cores 2 e 3 sdo cores vizinhas. Este problema pode ser
reduzido ao problema 2-S AT, que € conhecido por ser resolvido em tempo polinomial (GAREY;
JOHNSON, 1979).

Para realizar a reducdo, criamos duas variaveis booleanas, x, e y,, para cada vértice
v € V(G). Os literais x, e X, correspondem a colorir o vértice v com as cores 1 e 2, respec-
tivamente, enquanto os literais y, e y, correspondem a atribuir as cores 3 e 4 ao vértice v,
respectivamente. Dessa forma, observe que G[V;] é bipartido se, e somente se, existe uma atri-
buicdo satisfativel para a férmula booleana (x, \V x,) A (¥; V X)) para toda aresta uv € E(G[V}]).
Esta formula assegura que, para cada aresta uv em G, um vértice u recebe uma cor e o vértice v
recebe uma cor diferente dentro do conjunto de cores {1,2}. Para o subgrafo G[V;], o processo é
andlogo.

Além disso, para uma aresta uv € Er com u € Vi e v € V>, os vértices serdo coloridos
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de maneira a satisfazer as condi¢des de uma 4-coloracdo 2-backbone se, e somente se, houver
uma atribuicao satisfativel para a férmula booleana x,, Vy,. Como as cores 2 e 3 sdo vizinhas,
ndo € permitido que uma aresta no backbone tenha suas extremidades coloridas com essas duas
cores. Assim, a férmula proibe que as cores 2 e 3 aparecam simultaneamente em uma aresta
do backbone, garantindo que ou a cor 1 (x,) ou a cor 4 (y,) sempre apareca em uma de suas
extremidades.

Assuma agora que ¢ > 5. A redugdo € realizada a partir de um problema cldssico
que é NP-completo: o problema da ¢-coloracdo (mais informagdes sobre este problema podem
ser encontradas em (GAREY; JOHNSON, 1979)). O problema consiste em, dado um grafo R,
responder a seguinte pergunta: existe uma ¢-coloracdo de R?

Vamos construir um grafo G e um caminho hamiltoniano P. Seja R = (Vg,Eg) uma
instancia do problema de /-coloragdo e vy, vs,...,v, uma enumeracdo dos vértices de R. Para
cada 1 <i <n—1, criamos os vértices a;, b; € c;, € adicionamos as arestas v;a;, a;b;, bic; e c;vi;
no backbone P, conforme ilustrado na Figura 59. O grafo resultante serd o grafo G. Dessa forma,
¢ claro que (vi,a1,by,¢1,v2, ... Vn—1,an—1,bn—1,cn—1,vn) € um caminho hamiltoniano P em G.
Afirmamos que BBC;(G, P) </ se, e somente se, X (R) < /.

Figura 59 — A construcdo do grafo G com o caminho hamiltoniano P (com as
arestas do backbone em negrito).

ar by ¢ ai bi ¢ an—1 bp—1 cp—1

Fonte: Autoria propria, 2024.

Suponha que BBC,(G,P) < / e seja f tal coloragdo 2-backbone de (G,P). A
restricdo de f aos vértices de R é uma /-coloracgdo de R, logo x(R) < ¢. Agora, suponha que
X(R) < /e seja ¢ tal {-coloragdo de R. Para cada 1 <i <n— 1, vamos estender ¢ para (G, P)

da seguinte forma:

* Se f(v;) <3, entdo @§(a;) =¢;

-

» Se f(v;) >4, entdo ¢(a;) = 1;
* Se f(vir1) <3, entdo ¢(c;) = ¢;
* Se f(vit1) >4, entdo ¢(c;) = 1;
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Assim, concluimos que BBC,(G,P) < /. O

Os autores em (BROERSMA et al., 2003) analisam o mesmo problema de comple-
xidade computacional para uma classe distinta de grafos, em que o backbone consiste em um
emparelhamento perfeito, com g = 2. Sob essas condi¢des, o problema, que inicialmente pode
ser resolvido em tempo polinomial, torna-se NP-completo quando ¢ > 4. Antes de enunciar o

teorema, vamos definir o problema no contexto de emparelhamentos perfeitos.

EMPARELHAMENTO /-COLORACAO g-BACKBONE

Entrada: Um grafo G e um emparelhamento perfeito M de G.

Pergunta: BBC,(G,M) < (?

Teorema 52. (BROERSMA et al., 2003)
(a) O problema EMPARELHAMENTO /-COLORACAO 2-BACKBONE pode ser resolvido em
tempo polinomial para ¢ < 3.
(b) O problema EMPARELHAMENTO /-COLORACAO 2-BACKBONE ¢é NP-completo para

(>4

Demonstragdo. Os casos em que 1 < ¢ < 3 seguem de maneira andloga a prova do Teorema 51.

Assuma que ¢ > 4. Vamos reduzir novamente o problema EMPARELHAMENTO
¢-COLORACAO 2-BACKBONE ao problema da /-coloracio.

Vamos construir um grafo G e um emparelhamento perfeito M. Seja R = (Vg,ER)
uma instancia do problema de ¢-coloragdo e vy, vs,...,v, uma enumeracio dos vértices de R.
Para cada 1 < i <n, criamos o vértice u; € adicionamos a aresta v;u; no backbone M, conforme
ilustrado na Figura 60. O grafo resultante sera o grafo G e as arestas viuy,...,v,u, formam o
emparelhamento perfeito M em G. Afirmamos que BBC,(G,M) < ¢ se, e somente se, x(R) < /.

Figura 60 — A construcio do grafo G com o emparelhamento perfeito M (com as

arestas do backbone em negrito).
uj us Ui Up

<
<
W)
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<
S

Fonte: Autoria propria, 2024.
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Suponha que BBC,(G,M) < { e seja f tal coloragdo 2-backbone de (G,M). A
restricdo de f aos vértices de R é uma ¢-coloragdo prépria de R, logo x(R) < ¢. Agora, suponha
que x(R) < (e seja ¢ tal ¢-coloracdo de R. Para cada 1 <i < n, vamos estender ¢ para (G,M)
da seguinte forma:

» Se f(vi) <2, entdo ¢ (u;) = ¢;
* Se f(v;) >3, entdo ¢ (u;) = 1.
Assim, concluimos que BBC,(G,M) < /. O

Turowski apresenta um algoritmo polinomial para encontrar o0 nimero cromético
2-backbone de (G,M), onde G é um grafo split e M é um emparelhamento em G. O algoritmo e
a demonstracao desse resultado podem ser encontrados em (TUROWSKI, 2015).

No artigo de Broersma et al., € apresentado o problema computacional para ga-
laxias como backbone (BROERSMA et al., 2009a). Os autores apresentam resultados para
qualquer g > 2, analisando a complexidade computacional do problema nesse contexto. A seguir,

enunciaremos o problema para galéxias.

GALAXIA ¢{-COLORACAO g-BACKBONE

Entrada: Um grafo G e uma galdxia H de G.

Pergunta: BBC,(G,H) < (?

Teorema 53. (BROERSMA et al., 2009a)
(a) O problema GALAXIA {-COLORACAO g-BACKBONE pode ser resolvido em tempo polino-
mial para { < g+ 1.

(b) O problema GALAXIA {-COLORACAO g-BACKBONE é NP-completo para { > g+ 2.

Os autores ressaltam que o Teorema 53 continua valido mesmo quando o backbone

¢ um emparelhamento perfeito, conforme enunciado a seguir.

Teorema 54. (BROERSMA et al., 2009a)
(a) O problema EMPARELHAMENTO ¢-COLORACAO g-BACKBONE pode ser resolvido em
tempo polinomial para ¢ < g+ 1.
(b) O problema EMPARELHAMENTO /-COLORACAO ¢-BACKBONE ¢é NP-completo para

{>qg+2.

Havet et al. observam que ao comparar os resultados do Teorema 54 com o Teo-

rema 50, o problema continua sendo NP-completo, mesmo quando consideramos G como um
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grafo planar. Em contraste, o Teorema 49 implica que, ao tomarmos o backbone como uma
arvore geradora de G, o problema pode ser resolvido em tempo polinomial (HAVET et al., 2014).

Havet et al., ao estudar problemas para grafos planares, provam limitantes, como o
Teorema 30, que demonstra que, para um grafo planar G e uma floresta geradora F de G, temos
BBC,(G,F) < g+ 6, além de mostrar um par de grafos que atinge esse limitante para cada g > 4.
Além disso, os autores também apresentam resultados de complexidade, provando que decidir se
BBC,(G,T) < g+5 é NP-completo para ¢ > 4, onde T é uma drvore geradora de G (HAVET et
al., 2014).

Teorema 55. (HAVET et al., 2014) Para todo inteiro q > 4, o seguinte problema é NP-completo.
Entrada: Um grafo planar G e uma drvore geradora T de G.

Pergunta: BBC,(G,T) <q+5?

Como consequéncia do Teorema 40, Havet et al. provam que, para um grafo planar
G e uma galaxia H em G, vale que BBC,(G,H) < g+4. Eles também apresentam um par (G, H)
que atinge esse limitante superior, onde H é uma galdxia com grau maximo 3. A partir desse
resultado, os autores examinam o seguinte problema de complexidade computacional, provando

separadamente os casos em que ¢ =2 e g > 3 (HAVET et al., 2014).

Teorema 56. (HAVET et al., 2014) Para todo inteiro q > 2, o seguinte problema é NP-completo.
Entrada: Um grafo planar G e uma galdxia F em G com grau mdximo 3.

Pergunta: BBC,(G,F) < q+3?

Corrigimos um dos gadgets utilizados em um lema para provar o Teorema 56 para
q > 3. No Capitulo 4, apresentamos o erro, o gagdet corrigido e a prova completa desse lema.
Havet et al. demonstram que esse problema permanece NP-completo, mesmo ao considerarmos
F como uma galdxia com grau méaximo 2 (HAVET et al., 2014).

Como discutido anteriormente, Broersma et al. provaram que BBC, (G, P) < 7 para
um grafo planar G com um caminho hamiltoniano P. No entanto, os autores deixam em aberto o
problema de melhorar esse limitante superior para 6 (Problema em Aberto 8). Em contrapartida,
Havet et al. demonstram que o resultado do Teorema 51-(b) permanece NP-completo mesmo

quando G € um grafo planar (HAVET et al., 2014).

Teorema 57. (HAVET et al., 2014) O seguinte problema é NP-completo.
Entrada: Um grafo planar G e um caminho hamiltoniano P em G.

Pergunta: BBC,(G,P) <5?
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De maneira andloga ao caso em que o backbone é uma arvore geradora, Broersma
et al. demonstram que BBC,(G,T) < 7. O Problema em Aberto 6 questiona se esse limitante
superior pode ser reduzido para 6. Havet et al., por sua vez, provam que decidir se BBC,(G,T) <
5 € um problema NP-completo, considerando um grafo planar G e uma arvore geradora 7' de G.
Esse resultado é uma consequéncia do Teorema 56 para g = 2 (HAVET et al., 2014).

Janczewski e Turowski investigam, em (JANCZEWSKI; TUROWSKI, 2015a), a
complexidade de encontrar colora¢des g-backbone Gtimas para pares (G, H ), onde G é um grafo
completo e H € bipartido. Em outro trabalho, os autores analisam a complexidade da coloracdo
g-backbone quando G é um grafo planar e o backbone H € conexo (JANCZEWSKI; TUROWSKI,
2015b).
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4 RESULTADOS

Neste capitulo, apresentamos nossas contribuicdes para a Coloracao Backbone na
primeira se¢do. Na segunda secdo, introduzimos uma variacdo direcionada para esta coloragdo, a

Coloracao Backbone Direcionada, e apresentamos nossos resultados para esta coloragao.

4.1 Coloracao Backbone

Nesta se¢do, focamos em nossos resultados na Colora¢do Backbone. Vale destacar
que os resultados desta se¢do foram desenvolvidos em colaboragdao com Alexandre A. Cezar e
Jilio Aratjo. O primeiro deles é uma correcdo de um dos gadgets usados para provar o seguinte
resultado de complexidade computacional.
Teorema 1. (HAVET et al., 2014) Para todo inteiro q > 3, o seguinte problema é NP-completo.

Entrada: Um grafo planar G e uma galdxia F em G com grau mdximo 3.

Pergunta: BBC,(G,F) < q+3?

Para demonstrar o Teorema 1, sdo utilizados dois lemas, apresentados e provados em
(HAVET et al., 2014). Antes de enunciar esses lemas, é necessario definir dois tipos de grafos
que sdo usados na demonstracdo: paraquedas e pipa. Um paraquedas em v é um grafo completo
com 4 vértices, onde as arestas incidentes ao vértice v estdo no backbone, conforme ilustrado na
Figura 61. Por sua vez, chamamos de pipa um grafo com a estrutura apresentada na Figura 62,

onde os vértices t e u sdo denominados, respectivamente, de ponta e borda da pipa.

Figura 61 — Um paraquedas em v (com as arestas do backbone em negrito).

1%

Fonte: Autoria prépria, 2024.

Lema 58. (HAVET et al., 2014) Para q > 2, se ¢ é uma (q+ 3)-coloragcdo g-backbone de um

paraquedas em v, temos que ¢(v) € {1,q+3}.

Lema 2. (HAVET et al., 2014) Se ¢ é uma (q+ 3)-coloragdo g-backbone de uma pipa tal
que (1) € {1,2,3,g+ 1,9+ 2,9+ 3}, entdo ou ¢(t) € {1,2,3} e ¢(u) =q+3, ou ¢(t) €
{g+1,4+2,q+3} ed(u) = 1.
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Figura 62 — A pipa (com as arestas do backbone em negrito).

Fonte: Autoria propria, adaptado de (HAVET ez al., 2014), 2024.

A demonstracdo feita para o Lema 58 esta correta e € uma rdpida andlise de casos,
supondo, por contradi¢do, que a cor de v difere destas duas. J4 no Lema 2, hd uma imprecisdo, a
prova seguiu-se a partir da andlise de dois casos. Voltando para a Figura 62, observe que temos
paraquedas nos vértices v, z1, 22 € 23, logo, pelo Lema 58, esses vértices t¢ém corem {1,g+3} em
toda (g + 3)-coloragdo g-backbone. Ao analisar o primeiro caso, em que f(v) =1, temos f(z;) =
f(z2) = f(z3) = g+ 3, pois v é adjacente a todos esses vértices em G. Analisando as adjacéncias
dos vértices, tanto em G como no backbone, é deduzido que {f(s1),f(s2)} = {¢+ 1,9 +2}
e f(u) = ¢+ 3. Em (HAVET et al., 2014), na finaliza¢do do argumento, temos que com essa
atribuigdo de cores, poderiamos concluir que f(z) = {1,2,3}. O segundo caso é andlogo, supondo
que f(v) = g+ 3, de forma simétrica, seria deduzido que f(u) =1le f(t) ={q+1,9+2,9+3}.

Porém, ao estudar detalhadamente a demonstragdo, como o vértice ¢, pela hipotese
do lema, s6 pode ser colorido com as cores do conjunto {1,2,3,g+ 1,q+ 2,9+ 3}, logo, no
primeiro caso (onde f(v) = 1), temos a restricdo da cor g+ 3 para ¢, pois u é adjacente a r em
G. A outra cor que € proibida para ¢ é a cor atribuida ao vértice s;, que nesse caso é g+ 1
ou ¢+ 2. Portanto, o vértice 7 pode ser colorido em {1,2,3,g+1,¢g+2}\ {f(s1)}. E feito de
forma andloga para o segundo caso. Para corrigir o problema e prosseguir na demonstracdo do
Teorema 1, podemos adicionar dois paraquedas que serdo chamados de p; e p>. A nova estrutura

da pipa é apresentada na Figura 63 e a demonstracao corrigida do Lema 2 € apresentada a seguir.

Lema 59. (CASTRO et al., 2022) Se ¢ é uma (q+ 3)-coloracdo g-backbone de uma pipa
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Figura 63 — A pipa corrigida (com as arestas do backbone em negrito).

Fonte: Autoria propria, 2024.

ilustrada na Figura 63 tal que ¢(t) € {1,2,3,q+ 1,q+2,q+ 3}, entdo ou ¢(t) € {1,2,3} e
o) =q+3, 0ud(t)e{g+1,9+2,9+3} e p(u) = 1.

Demonstracdo. Seja f uma (g + 3)-coloragio g-backbone de uma pipa, conforme a Figura 63,
com f(t) € {1,2,3,q+1,qg+2,q+3}. Como temos paraquedas em v, 71, 2 € z3, pelo Lema 58,
sabemos que eles sao coloridos com {1,4+3}. Sem perda de generalidade, assuma que f(v) = 1.

Parai € {1,2,3}, observe que vz; € E(G), logo f(z;) = g+ 3. Como s, 53 € u sdo
adjacentes a v no backbone, entdo esses trés vértices sdo coloridos em {g+ 1,9+ 2,9+ 3},
ademais, eles formam uma clique em G, ndo podendo ter cores iguais. Com essa andlise € 0
fato de que s;z; € E(G), para i € {1,2}, entdo s; ndo poderd ser colorido com g + 3. Assim,
concluimos que f(u) = g+ 3.

Uma vez que temos um paraquedas em p, € p; € adjacente a v em G, pelo Lema 58,
concluimos que f(p2) = g+ 3. De forma andloga, ao considerar o paraquedas em p;, e sabendo
que ele é vizinho de p; em G, o vértice p; é colorido com a cor 1. Sendo a o vértice do paraquedas
em pp, conforme a Figura 63, como p; € colorido com 1 e pela estrutura do paraquedas, a é
colorido em {¢+ 1,g+2,¢+ 3}. Porém, como as; e ap; sdo arestas em G, a é colorido com a
cor {g+1,g+2}\{f(s1)}. Dado que 7 é adjacente aos vértices si, u € a, entdo ¢ é colorido em

{1,2,3}. O

O segundo resultado na Colorag¢do Backbone consiste em corrigir uma imprecisao

em um argumento no meio da demonstracdo de um teorema provado por Broersma et al. (BRO-
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ERSMA et al., 2003). Para isso, apresentaremos a prova, identificaremos o erro ao longo da
argumentagdo e mostraremos como cotrigi-lo, mantendo o resultado do seguinte teorema.
Teorema 4. (BROERSMA et al., 2003) Se G é um grafo split e T uma drvore geradora de G,
entdo, se X(G) > 3, temos que BBC2(G,T) < x(G) + 2. Esse limitante é o melhor possivel.

Demonstracdo. Dados um grafo split G e uma arvore geradora T desse grafo, definem-se as
particdes C e I de V(G), onde C é uma clique méxima e / € um conjunto independente. Se |C| =k,
como os grafos split sdo grafos perfeitos, ou seja, ¥ (G) = ®(G), concluimos que x(G) = k. Ao
considerar a restricdo de 7 a C, temos dois casos.

O primeiro caso ocorre quando a restri¢do de T a C forma uma estrela K ;_. Nesse
cenério, os vértices da clique sdo nomeados como vi,vy,...,Vv,_1, representando as folhas da
estrela, enquanto v é o centro da estrela. A constru¢do de uma (k + 2)-coloracdo 2-backbone
para (G, T) é realizada da seguinte maneira: para cada i € {1,2,...,k— 1}, atribui-se a cor i ao
vértice v;, e ao centro da estrela v, é dadaa cor k+ 1.

Para completar a coloragdo dos vértices pertencentes ao conjunto /, considere os
seguintes subcasos: se u € I e uvy ¢ E(T), podemos atribuir a cor k+ 2 ao vértice u. Sew € I e
wvi € E(T), ndo podemos colorir esse vértice com k + 2 devido a condigio do backbone. No
entanto, existe um vértice v;, para algum 1 < j <k —1, tal que wv; ¢ E(G), pois, caso contrario,
C U {w} seria uma clique de tamanho maior que C, o que é impossivel, uma vez que C é uma
clique maxima. Assim, basta colorir o vértice w com a cor j. A Figura 64 ilustra como essa

coloracdo € realizada.

Figura 64 — A ideia da construgdo da coloracdo para o grafo split (com as arestas do
backbone em negrito).

Fonte: Autoria propria, 2024.
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Para o segundo caso, em que a restricdo de 7" a C ndo forma uma estrela, os autores
consideram uma 2-coloragdo de 7 tal que |Cy| > 2 e |C>| > 2, onde C; e C; sdo os conjuntos de
vértices da clique coloridos com as cores 1 e 2, respectivamente. No entanto, considerando o par
(G, T) da Figura 65, observe que os vértices a, b e ¢ formam uma clique maxima C em G, e a
restricdo de 7' a C nao forma uma estrela. Contudo, ndo conseguimos encontrar uma 2-coloracao
de T como os autores propuseram, pois |C| = 3.

Figura 65 — Um par (G, T) (com as arestas do backbone em negrito) tal que G é um
grafo split e T uma arvore geradora de G.

a
d
e
b
f

Fonte: Autoria prépria, 2024.

Portanto, para corrigir esse argumento, tomaremos uma 2-coloracdo de 7', denotada
por f. O primeiro subcaso ocorre quando f é constante em C, ou seja, |C;| = 0 ou |C2| = 0. No
segundo subcaso, f satisfaz |Cj| > 1 e |C2] > 1, e, além disso, existe (x,y) ¢ E(T) para algum
x € Cy ey € (. Aqui novamente, C| e C; sdo os conjuntos de vértices da clique coloridos com
as cores 1 e 2 em f, respectivamente. A existéncia de uma coloracdo f que satisfaca as condicdes
do segundo subcaso decorre do fato de que, pela hipdtese do teorema, temos ¥ (G) = o(G) > 3,
o0 que garante |C| > 3. Além disso, como T é uma érvore, ela ndo contém ciclos e, pela hipétese
do segundo caso, sua restri¢dao a C ndao forma uma estrela.

Vamos renomear os vértices da clique C da seguinte forma: vy,...,v|c,| para os
vértices de C1 € Vi, |41---,V|c,|+|c,| Para os vértices de Gy, onde vic,| = x e v, |41 = y. Para
construir uma (k + 2)-colorac@o 2-backbone para (G, T ), sabendo que |C| + |C2| = k, vamos
colorir os vértices v; da clique C com a cor i, para todo 1 <i < k. J4 os vértices do conjunto
independente / serdo coloridos com a cor k 4 2, satisfazendo assim a condic¢io do backbone.
Limitante 6timo. Vamos construir um grafo split G e uma arvore geradora 7 de G, onde
V(G) = CUI. O conjunto C é uma clique com k vértices, nomeados vy,..., v, e I ¢ um conjunto

(k=2)(k—1) ()
2

independente com vértices, nomeados u

()

i

,paracada 1 <i# j<k—1. As arestas

i
pertencem a E(G) para todo s # i. No backbone T, adicionamos as arestas vyv; para todo
()

i

Vsl

1 <5 <k—1, formando uma estrela com centro em v;. Além disso, inserimos a aresta v;u,;”’ em
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T paratodo 1 <i# j<k—1, onde os vértices u(j) sdo folhas de T'.

i

Claramente, temos que X (G) = k. Agora, suponha, por absurdo, que BBC,(G,T) <
k+ 1, e considere ¢ uma (k + 1)-coloragdo 2-backbone de (G,T). Como C é uma clique, os
vértices vy, ...,V devem ser coloridos com k cores distintas. Além disso, como os vértices
da clique formam uma estrela em 7', o vértice v; deve ser colorido com 1 ou k+ 1. Como a
coloragdo 2-backbone é simétrica, sem perda de generalidade, suponha que ¢(v;) = 1. Portanto,
a cor 2 ndo € usada na clique. Agora, sejam v; e v; os vértices da clique C que sdo coloridos com
as cores 4 e 3 em ¢, respectivamente.

Por construgdo, o vértice ul(j )
()

i

¢ adjacente a vy em G paratodo 1 </ #i<k. As
cores disponiveis para u;”’ sdo 2 (ja que a cor 2 ndo aparece em C) e 4. No entanto, como
% jul(j ) EE(T)ev ; fol colorido com a cor 3, pela condi¢do do backbone, as cores 2 e 4 sdo
() ()

proibidas para u;”’. Portanto, ndo ha cor possivel para u;”’, o que contradiz a suposi¢ao de que ¢

é uma (k + 1)-coloragdo 2-backbone de (G,T). O

Outros resultados foram obtidos na versao circular da Colora¢do Backbone, conhe-
cida como Coloragdo Circular Backbone, definida em (HAVET et al., 2014). Esses resultados
podem ser encontrados no nosso resumo estendido em (CASTRO et al., 2022), apresentado no

VII Encontro de Teoria da Computagdo (ETC).

4.2 Coloracao em Backbones Direcionados

Nesta secdo, introduzimos uma variacao da Coloragdo Backbone, além de apresentar
alguns resultados iniciais desta coloragdo, que foram estudados em colaboracdo com Alexandre
Talon, Atilio G. Luiz e Julio Aratjo. A secdo € estruturada em trés partes distintas: a primeira
abordando o caso em que o backbone ¢ um emparelhamento, a segunda tratando do cenario
em que o backbone € uma galdxia ou um caminho hamiltoniano e a terceira apresentando os
resultados de complexidade computacional.

Considerando um grafo G e uma orientacao aciclica ﬁ do subgrafo gerador H de
G, uma k-coloracdo q-backbone direcionada é uma fungéo f: V — {1,2, ... ,k} que satisfaz
as seguintes condigdes: |f(u) — f(v)| > 1 para toda uv € E(G) e f(v) — f(u) > g para todo
(u,v) € H. Esta dltima serd chamada de condi¢do do backbone direcionado. Note que é
necessdrio afirmar que a orientacdo € aciclica para garantir a boa definicao da coloracao.

De forma semelhante a Coloracdo Backbone, definimos o niimero cromdtico q-
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backbone direcionado, denotado por BBC, (G, ﬁ), como 0 menor inteiro k para o qual existe
uma k-colorac@o g-backbone direcionada de (G, ﬁ) Quando temos uma coloracao g-backbone
direcionada que usa exatamente BBC,(G, ﬁ) cores, dizemos que essa coloragao € dtima. Em
uma coloragio g-backbone direcionada, duas cores c; e ¢; sdo chamadas de vizinhas se |c] —c3| <
q. Portanto, observe que cores vizinhas ndo podem ser usadas nas extremidades de um arco em
ﬁ, pois isso violaria a condi¢@o do backbone direcionado.

Para enunciar o primeiro resultado que compara o nimero cromatico g-backbone
direcionado com o nimero cromético g-backbone, é necessario primeiro definir os seguintes

parametros:

BBC, (G,H) = min{BBC,(G, ﬁ) | H 6 uma orientagdo aciclica de H } 4.1)

BBC;;(G,H) = max{BBC,(G, ﬁ) | H éuma orientagdo aciclica de H} 4.2)

Além disso, dados um grafo G e um subgrafo gerador H de G, seja ﬁ uma orientacao
aciclica que satisfaz BBC,(G, ﬁ) =BBC, (G,H). Nesse caso, dizemos que H ¢uma orienta¢do
minima de H. De forma andloga, para BBC;(G,H ), definimos uma orientagdo mdxima de H.

Teorema 5. Se G é um grafo e H um subgrafo gerador de G, entdo
BBC, (G,H) =BBC,(G,H) <BBC, (G,H).

Demonstragdo. Para demonstrar que BBC, (G,H) < BBC,(G,H), seja f uma colorag@o g-
backbone 6tima de (G, H). Construimos uma orientagao para H da seguinte forma: seja uv €
E(H), se f(u) < f(v), entdo orientamos de u para v; caso contrdrio, orientamos de v para u.
Dessa maneira, todos os arcos (u,v) € ﬁ satisfazem a condicao do backbone direcionado, pois
flu) <f)e f(v)—flu) >q.

Para mostrar que BBC, (G,H) > BBC,(G, H), considere H uma orienta¢do minima
de H e f uma coloragdo g-backbone direcionada 6tima de (G, ﬁ) Note que f também € uma
coloragdo g-backbone de (G,H) ao remover a orientagéo dos arcos.

A prova de que BBC; (G,H) > BBC,(G, H) ¢ feita de forma andloga, considerando
ﬁ uma orienta¢do maxima de H e f uma colorac@o g-backbone direcionada 6tima de (G, ﬁ)

]

O segundo resultado apresenta um limitante 6timo para um grafo G e uma orientacao
aciclica ﬁ de um subgrafo gerador H de G, em funcdo do didmetro de H e do nimero cromatico

de G.
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Teorema 6. Se G é um grafo e ﬁ uma orientacdo aciclica do subgrafo gerador H de G, entdo

BBC,(G, ﬁ) < diam(ﬁ) -(%(G)+q—2)+ x(G). Esse limitante é o melhor possivel.

Demonstracdo. Sejam G e ﬁ como no enunciado do Teorema, com diam(ﬁ) =ke¢=
diam(ﬁ) (x(G)+¢q—2)+ x(G), vamos construir uma particdo para os vértices de G. O
conjunto Vp serd formado pelos vértices que sdo fontes em ﬁ (incluindo possiveis vértices
isolados em ﬁ). Para cada i € {l1,...,k}, seja V; o conjunto de vértices que sdo fontes em
H- (VU...UV,_y). Dessa forma, conforme a constru¢do de cada Vi, {Vp,...,V;} é uma
parti¢do de V(G), ja que H é um subgrafo gerador e ﬁ ¢ aciclico.

Seja ¢ uma y(G)-coloragdo de G. Vamos construir uma ¢-coloragdo g-backbone
direcionada f para o par (G, ﬁ), colorindo cada conjunto V; sucessivamente. Comegaremos
colorindo V; da seguinte forma: para cada vértice v € Vp, definimos f(v) = c¢(v). Em seguida,
mostraremos como definir a coloracdo f para os vértices em V; e, posteriormente, generalizare-
mos o processo para qualquer V;, comi > 1.

Dado um vértice v € V, atribuimos f(v) = x(G)+¢g— 1+ (x(G) —c(v)). Observe
que, se existe u € V; tal que c(u) = x(G), entdo u recebe a cor x(G)+ ¢ — 1 na coloragdo
f, 0 que garante uma distancia de g unidades em relagc@o a todas as cores atribuidas em V),
exceto aos vértices de Vjy que foram coloridos com ¥(G) em f. No entanto, isso ndo é um
problema, pois sendo w um vértice de Vp tal que f(w) = x(G), pela defini¢éo de f em Vj, temos
que c(w) = x(G). Portanto, como ¢ é uma colorag@o de G, é impossivel que uw € E(G), e,
consequentemente, o arco (w,u) ¢ ﬁ Assim, a condi¢@o do backbone direcionado € satisfeita
nessa situacao, por vacuidade.

Sendo 1 <i < k um inteiro, vamos definir f da seguinte forma para v € V;:

(i—1)-x(G)+q—2)+x(G)+qg—1+(x(G)—c(v)) ,seiéimpar;

flv)=
(i—1)-(x(G)+q—-2)+x(G)+qg—1+(c(v)—1) , se [ é par.

Vamos provar que f ¢ de fato uma ¢-coloragio g-backbone direcionada de (G, ﬁ)
Considere uv € E(G). Sem perda de generalidade, suponha que u € Vg e v € Vg, com 1<a<
B <k.Se a=f,entdo |f(v) — f(u)| = |c(v) — c(u)| > 1, pois ¢ é uma x(G)-coloragdo de G.

Agora, suponha que @ < 3. Se a e B possuem a mesma paridade, entdo:

f(v) = f)] =2 ((G) +9—2) —|c(v) —c(u)].
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Como ¢ é uma X (G)-coloragdo de G e sabemos que uv € E(G), temos que |c(v) —

c(u)| < x(G) — 1. Portanto, a desigualdade se torna:

[f () =fO)22-(x(G)+4q—2)—x(G)+1 = (2(G) = 1) +(¢—-2) +9 >4

Se o é par e B é impar, e sabendo que c¢(u) +c(v) <2-x(G)—1 (pois ¢ é uma

% (G)-coloragdo de G), temos

f V) =f@)]=2-%(G) +q—1—(c(v)+cu)) = q.

Se o é impar e 3 € par, e sabendo que ¢(u) +c(v) > 3 (pois ¢ é uma ) (G)-colora¢do
de G), entdo

[f(v)=f)] = q—=3+c(u)+c(v) 2 q.

O que conclui a demonstracao.
Limitante 6timo. Seja diam(ﬁ) = k. Vamos construir um grafo x(G)-partido completo G.
Os vértices de G sdo definidos da seguinte forma: para cada i € {1,...,x(G)}, o conjunto
Vi= {ul(j) | 0 < j <k} éindependente, e temos que V(G) = %EJGl) Vi. As arestas de G sdo dadas
i=

por:

E(G) = {(u ul™) |1 <iy £ <x(G) e 0< ji # jo <k}

i1 %

(a)

i

cVie ugﬁ) € Vj, com i # j, temos que uga)ugﬁ)

o # . Agora, definimos os arcos de ﬁ da seguinte forma:

Logo, para u € E(G), sempre que

AH) = (@ a1 <ii #i2 < 4(G) e 0< j<k—1)

i1 "%

()

Dado um vértice u;”", o indice i indica a qual conjunto independente V; o vértice

pertence, enquanto o indice j indica sua posi¢do no caminho direcionado maximal em ﬁ

) 0

Observe que ﬁ € aciclico, uma vez que nao ha arco do tipo (”il 7 ) em ﬁ com j > (. Por
construcdo, os caminhos direcionados maximais em ﬁ sdo da forma (ul%)),ugll), .- ,ul(f)), para
todo 1 <iy < x(G),comi; #isy1,eparatodo 0 < /¢ <k. A Figura 66 ilustra a ideia da constru¢do
desse par, mostrando os arcos de H 1o caso em que x(G)=3e diam(ﬁ) =2.

Seja ¢ uma BBC,(G, ﬁ)—coloragéo g-backbone direcionada de (G,ﬁ). Vamos
provar por indugio que, para todo 0 < j < k, vale a seguinte propriedade: max{c(ul(j )) |1<i<
x(G)} > j-(x(G)+g—2)+ x(G). Com essa propriedade, ao substituir j = k, conseguimos o

limitante que queriamos.
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Figura 66 — Ideia da construgdo do par (G, ﬁ) quando x(G) =3¢ diam(ﬁ) =2
(com os arcos do backbone em vermelho).

Fonte: Autoria prépria, 2024.

Se j =0, o conjunto {ugo) | 1 <i<x(G)} forma uma clique, pois G é um grafo
X (G)-partido completo. Portanto, todos os vértices nesse conjunto devem receber cores distintas,
assim, temos max{c(ugo)) |1 <i<x(G)} > x(G), como queriamos demonstrar.

Agora, seja j > 1. Assuma que a propriedade é satisfeita paratodo 1 < /¢ < j—1.
Entdo, existe 0 < o < x(G) tal que c(ug_l)) >(j—1)-(x(G)+q—2)+ x(G). Pela construgio,

hd x(G) — 1 arcos cuja a cauda é ué{ Vea cabeca estd em V;. Como a condi¢do do backbone

(j))

i

(1—1))

direcionado deve ser atendida, para todo i # a, temos c(u;”’) — c(ug > ¢, 0 que implica:
j i—1 .
()= el V) +a= (j=1)- ((G) +a-2)+x(G) +4. (43)

Como {ul(] ) |1 <i# a<x(G)}éuma clique, devido a construgio de G, precisamos

de x(G) — 1 cores distintas que satisfacam a Desigualdade (4.3). Isso implica que:
max{e(u)) |1 <i#a<2(G)} = (j—1)-(1(G) +q—2)+2(G)+g+2(G) —2.
O que equivale a:
max{c(ul)) |1 <i#a <x(G)} > j (1(G)+q—2)+x(G).
Isso conclui a prova. [

4.2.1 Emparelhamentos como backbone

Nesta se¢do, estudamos o caso em que o backbone é um emparelhamento no grafo.

. ~ 7 . oy
Para uma orientacio M de um emparelhamento perfeito M em um grafo G, todo vértice do
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grafo é ou cabeca ou cauda. Vamos definir dois conjuntos, V_(ﬁ )e V+(ﬁ ) como sendo,
respectivamente, o conjunto dos vértices que s@o cabecas e o conjunto dos vértices que sao
caudas.

A demonstragdo do limitante superior no teorema a seguir € uma consequéncia
direta do Teorema 6, obtido ao considerar diam(ﬁ) = 1. Apresentamos um par (G,ﬁ ) que
atinge esse limitante, demonstrando que ele € apertado. Vale notar que o exemplo apertado no
Teorema 6 ndo tem um emparelhamento como backbone. Em outras palavras, o resultado abaixo
demonstra que o limitante do Teorema 6 € apertado quando diam(ﬁ) = 1, mesmo que ﬁ seja
uma orienta¢do de um emparelhamento perfeito em G. Além disso, este teorema generaliza um

resultado previamente obtido, que foi provado para g = 2 antes da formulag¢ao do Teorema 6.

. Py - . ~ .
Teorema 60. Se G é um grafo k-cromdtico, M uma orienta¢do de um emparelhamento perfeito

M de G e g > 2 um inteiro, entdo BBC,(G,M) < 2k + g — 2. Esse limitante é o melhor possivel.

Demonstragdo. Provar que BBC,(G, ﬁ) < 2k+ g — 2 segue diretamente do Teorema 6. Mos-
traremos que esse limitante superior é o melhor possivel ao exibir um par que atinge exatamente
esse nimero.

Vamos construir um grafo k-partido completo G. Os vértices de G serdo particionados
nos conjuntos Vi, ..., Vi, onde cada V; = ViJr UV;~ € um conjunto independente. Para cada inteiro
1 < i<k, definimos que Vit = (v [ 1< j<k j#iyeVi =) | 1<j<kj#i}

As arestas de G e os arcos de ﬁ sdo definidos da seguinte maneira: para inteiros i # j,
se u € V;ev e V;, adicionamos a aresta uv em G. Além disso, incluimos o arco (vl(i’j ),vgi’j ))
em ﬁ Assim, o conjunto V;~ contém todos os vértices em que 0s arcos tém cabeca em i,
enquanto o conjunto Vﬁ contém todos os vértices onde os arcos t€ém cauda em i. Na Figura 67,
ilustramos a ideia da construg@o do par (G, ﬁ), omitindo os vértices dos conjuntos V; que ndo
estdo representados na figura.

Seja ¢ uma ¢-colorac@o g-backbone direcionada de (G, ﬁ) e suponha, por absurdo,
que ¢ < 2k+ g — 3. Para cada i, definimos C; como o conjunto de cores atribuidas aos vértices de
V;. Como G € um grafo k-partido completo, nenhuma cor em C; pode aparecer em C; para i 7# j.

Defina também ;" e Oc;r como a menor € a maior cor em C;, respectivamente, para

todo inteiro i € {1,...,k}.

Afirmacio 61. Para todo 1 <i <k, temos que o, <{—k—q+2ea; >k+q—1.
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Figura 67 — Ideia da construgdo do par (G, ﬁ) (com os arcos do backbone em
vermelho).

Fonte: Autoria prépria, 2024.

Prova da Afirmagdo. Seja 1 < i < k. Definimos M; = max{c(v&j’i)) | j # i}, e seja juy, o indice
j tal que c(vﬁj’i)) = M;. De maneira andloga, definimos m; = min{c(vy’j)) | j# i}, eseja jp, 0
indice j tal que c(vyJ )) = m;. Como nenhuma cor de C; pode aparecer em Cj» para j' # j",

temosque M; > k—lem; </l—k+2.
Pela construgdo do par (G, M), existe 0 arco e = (v%lM’l),vl(JM’l)) em M. Como a

condic¢do do backbone direcionado deve ser respeitada, temos que:

g< C(V(jMJ)) . C(VELMJ)) < 0‘1* —M; < ai-l- —k+1.

1

Assim, obtemos o > k+q— 1.
. . ; . — (\ism)  (isjm) Y
De maneira andloga para jy,, existe o arco f = (v; ", v i ) em M. Como a

condic¢do do backbone direcionado deve ser respeitada, temos que:

q< c(vy’jm)) —c(v(i’j’")) <mij—o; <l—k+2—o; .

m 1

Assim, obtemos o, </ —k—q+2. |

Sendo 1 <i <k, como temos que ¢ < 2k+ g — 3, ao aplicar a Afirmacdo 61, obtemos
quea; <k—1le Oci+ >k+qg—1, onde o, € amenor cor de C; e O‘i+ a maior cor de C;.

Novamente, como nenhuma cor de C» pode aparecer em C;» para j #j", temos
que o, 7# o, e precisamos de k cores distintas em [1,2,....k—1] (pois |[{a ,...,04 }| =k),
o que € impossivel, pois s temos k — 1 cores neste intervalo. Isso contradiz nossa hipétese de

que ¢ < 2k+q — 3, portanto £ = 2k +q — 2. [
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Seja G um grafo planar. Pelo Teorema das Quatro Cores (APPEL; HAKEN, 1976),
temos x(G) < 4. Substituindo k = 4 e ¢ = 2 no Teorema 60, obtemos BBC, (G, ﬁ) < 8. Observe
que o par (G, ﬁ) com o limitante 6timo do Teorema 60 € planar apenas quando k < 2. Isso
levanta a questdo se esse limitante pode ser melhorado no caso planar. Para o par (G,ﬁ)
representado na Figura 68, temos BBC; (G, A_/I> ) = 6, 0 que mostra que esse limitante ndo pode
ser reduzido para 5.

Figura 68 — Um par (G, ﬁ) onde G é um grafo planar, tal que BBC;(G, ﬁ) =6

(com os arcos do backbone em vermelho).
a

b c
Fonte: Autoria prépria, 2024.

Considerando (G,ﬁ) conforme ilustrado na Figura 68, provamos a igualdade
BBC2(G,ﬁ) = 6. Em uma /-coloragio 2-backbone direcionada f de (G,ﬁ), como 08 vér-
tices a, b, ¢ e d sdo cabegas de arcos em ﬁ, temos f(x) > 3 para cadax € {a,b,c,d}, de modo a
satisfazer a condicao do backbone direcionado. Além disso, como esses vértices formam uma
clique em G, concluimos que ¢ > 6. Para construir uma 6-coloragdo 2-backbone direcionada f
para (G, ﬁ), definimos f(a) =3, f(b) =4, f(c) =5 e f(d) = 6, enquanto os demais vértices
recebem a cor 1.

Quando G € um grafo planar livre de triangulos, o Teorema de Grotzsch assegura que
2(G) <3 (GROTZSCH, 1959). Como consequéncia do Teorema 60, temos BBC»(G, ﬁ) <6.
Considerando o grafo G da Figura 69, podemos construir um par (G’, ﬁ) a partir de G de forma
similar a Figura 68. Para cada vértice v € V(G), adicionamos um vértice correspondente V' € o
arco (V,v) € M.O par resultante satisfaz BBC, (G, A_/I>) =5, sendo possivel obter uma imersao
plana para esse par.

E interessante explorar o limitante superior para grafos planares sem ciclos de
comprimento 4 e 5. Da literatura sobre coloracao de grafos, Cohen-Addad et al. provam que
existe um contraexemplo para a Conjectura de Steinberg, que afirma que todo grafo sem ciclos de

comprimento 4 ou 5 é 3-colorivel (COHEN-ADDAD et al., 2017). Novamente, pelo Teorema 60,
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Figura 69 — Um grafo planar G livre de tridngulos tal que x(G) = 3.

@
Fonte: Autoria prépria, 2024.

temos que BBC;(G, ﬁ) < 8 (pois x(G) < 4). Para esse caso, deixamos o seguinte problema em

aberto:

_>
Problema em Aberto 14. Se G é um grafo planar sem ciclos de comprimento 4 e 5 e M uma

%
orientagdo de um emparelhamento M em G, é verdade que BBCy(G,M) <77

Seja ﬁ uma orientacao de um emparelhamento M em um grafo G. Definimos os
conjuntos V@(ﬁ), V_ (ﬁ) e V+(ﬁ) como segue: V@(ﬁ) é o conjunto de vértices que ndo
sdo extremidades de arcos em ﬁ, enquanto V_(ﬁ) e V+(ﬁ) correspondem aos vértices que
aparecem como cabecas e caudas dos arcos em 1\_/1> , respectivamente. A partir dessas definicoes,
provamos alguns resultados mais basicos, os dois teoremas seguintes consideram os casos em
que G =C, e G = K,,. No caso nao direcionado, Miskuf et al. provam que BBC,(C,,M) < 3
(Teorema 43) e BBC, (K, M) < n (Teorema 44).

p . P Y4 . ~
Teorema 62. Se C, é um ciclo com n vértices e M uma orientacdo de um emparelhamento M

em C,, entdo BBC»(C,, ﬁ) <4.

Demonstracdo. Seja C, = (v1,va,...,v,) o ciclo com n vértices. Se n é par, entdo C, admite

uma 2-colorag@o. Seja ¢ uma tal coloragdo. Para 1 < i < n, vamos construir uma 4-coloracao
2-backbone direcionada f de (Cn,ﬁ ) da seguinte forma:

* Sec(vi)=1ev; €V, (M), entdo f(v;) = 1;

. Sec(v,)—lev,GV (

* Sec(vi)=2ev; € Vi(

ec(vi)=2ev;eV_(

Sev; € V@(ﬁ), entdo f(v;) recebe a menor cor em {1,2,3,4}\ {f(vi—1), f(vi+1)}-

M)
M)
M)
M)

C\Vi
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Por defini¢éo de f, sempre temos que uv € E(G) implica f(u) # f(v). Se (u,v) € ﬁ,
como ¢ é uma coloragio de G, sabemos que c¢(u) # ¢(v). Suponha que c¢(u) = 1 e ¢(v) = 2, entdo
f(v)— f(u) =3 —1 =2, satisfazendo a condic¢@o do backbone direcionado. Da mesma forma,
se c(u) =2ec(v)=1,entdo f(v) — f(u) =4—-2=2.

Se n é impar, entdo existe vy € V(C,) tal que v, € V@(ﬁ ). Seja ¢ uma 3-colorag@o
de C, tal que ¢(vy) =3 e c¢(v;) € {1,2} para os outros vértices de C,. Para 1 <i < n, vamos
construir uma 4-colorac@o 2-backbone direcionada f de (C,, ﬁ) da seguinte forma:

(
* Sec(vi)=1lev; € V,(I\_/I)), entdo f(v;) = 4;
* Sec(vi)=2ev; € V+(ﬁ), entdo f(v;) =2;
* Sec(vi)=2ev; € V_(ﬁ), entdo f(v;) = 3.

* Sev; € V@(ﬁ), entdo f(v;) recebe a menor cor em {1,2,3,4}\ {f(vi—1),f(vix1)}.
[

p . - . -
Teorema 63. Se K, é um grafo completo com n vértices e M uma orientacdo de um emparelha-

_>
mento M em K, entdo BBC,(K,,,M) < n.

Demonstragdo. Seja K,, o grafo completo com n vértices. Definimos y como sendo o nimero de
arcos de ﬁ . Vamos construir uma n-coloragio 2-backbone direcionada f de (K, ﬁ)

Suponha que v = 1. Seja (u,v) € ﬁ 0 unico arco desse par, definimos f(u) = 1,
f(v) =3, e colorimos o restante do grafo com as cores {2,4,5,...,n}. Assuma agora que y > 2.
Paraic {1,...,7y}, sejam (u;,v;) € M os arcos desse par. Definimos f(u;) =i, f(vi) =y+ie
colorimos o restante do grafo com as cores {2y+1,2y+2,...,n}. Como y > 2, para (u;,v;) €
M , temos que f(v;) — f(u;) = y+i—i= 7y > 2, satisfazendo assim a condi¢do do backbone

direcionado. O]

Seja G um grafo com grau maximo A(G). Provamos que BBC;(G, ﬁ) <2-A(G)+1,
aplicando uma coloracdo gulosa que respeita a condi¢ao do backbone direcionado. Esse limitante
superior ndo pode ser reduzido para 2-A(G) — 1, pois, no caso em que A(G) = 2, exibimos na

Figura 70 um exemplo de par que atinge exatamente 2 - A(G) = 4.

. . - . ~
Teorema 64. Se G é um grafo com grau mdximo A e M uma orienta¢do de um emparelhamento

%
M em G, entdo BBCy(G,M) <2A+ 1.



102

Figura 70 — Um par (G, ﬁ) (com os arcos do backbg;@e em vermelho) tal que
A(G) =2eBBC,(G,M) =4.

Fonte: Autoria propria, 2024.

— — —
Demonstragdo. Seja (G, M) conforme enunciado no Teorema. Sendo |V (M)| = o, |[V_(M)| =
— .
BelVa(M)|=7v.Sejac = (vi,..-,Va,Vatl,--sVarBsVatB+1s---»Va) UM ordenamento para a
coloragao tal que:

%
cv,ieVi(M),sel <i<a;

* v GV_(ﬁ), sea+1<i<a+p;
cviEVo(M)sea+B+1<i<a+tP+y=n(G).

Vamos construir uma (2A + 1)-colorag@o 2-backbone direcionada f para (G, ﬁ) de
forma gulosa. Seguindo a ordem o, para todo inteiro i, vamos colorir o vértice v; com a menor
cor u € [1,...,2A+ 1] tal que nenhum vizinho em G jé colorido recebeu essa cor e nenhum
vizinho em ﬁ ja colorido recebeu a cor u — 1.

Seu e V@(ﬁ), sabemos que hd no maximo A cores proibidas para u, logo f(u) <
A+ 1, ja que u ndo tem vizinho em M. Agora, seja (u,v) € M comue V+(ﬁ) eve V_(ﬁ).
Em respeito a ordem o, u tem no maximo A — 1 cores proibidas (ja que v € colorido depois de
u), entdo f(u) < A. No pior do casos, temos que f(v) > A+ 2, pois a condi¢do do backbone
direcionado deve ser satisfeita.

Note que, parav € V_ (ﬁ), temos no maximo A — 1 cores proibidas, sem considerar
o vizinho u em ﬁ No pior do casos, temos que f(v) > A+2+A—1=2A~+1, ao considerar o

vizinho u em ﬁ L]
4.2.2 Galaxia e caminho como backbone

Nesta secdo, provamos resultados para os casos em que o backbone € uma galdxia
ou um caminho. Considerando ﬁ como uma orientacdo de uma galdxia H em um grafo G,
denominamos ﬁ como uma galdxia direcionada de G quando os centros das estrelas da galdxia
sdo exclusivamente cabecas ou caudas dos arcos em ﬁ

Pelo Teorema 6 e aplicando o Teorema das Quatro Cores (APPEL; HAKEN, 1976),

temos que BBC, (G, ﬁ) < g+ 6, para um grafo planar G com uma galdxia direcionada ﬁ Além
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disso, mostramos que esse limitante é 6timo, mesmo quando ﬁ ¢ uma galédxia direcionada de G.

Teorema 65. Se G ¢ um grafo planar e ﬁ uma galdxia direcionada de G, entido BBC,(G, ﬁ) <

q + 6. Esse limitante é o melhor possivel.

Demonstragdo. Provar que BBCy(G, ﬁ) < g+ 6 segue diretamente do Teorema 6. Mostraremos

que esse limitante superior é o melhor possivel ao exibir um par que atinge exatamente g + 6.

Figura 71 — Um par (G, ﬁ) (com os arcos do backbone em vermelho), onde G € um
grafo planar e BBC,(G, ﬁ) =q+6.

1<
>r—<3)

Fonte: Autoria prépria, 2024.

Considere o par (G, ﬁ) ilustrado na Figura 71, para o qual provaremos a igualdade
BBC,(G, ﬁ) =g+ 6. Seja f uma ¢-coloracdo g-backbone direcionada desse par. Suponha, por
contradi¢do, que ¢ < g+ 5. Como os vértices a, b, ¢ e d formam uma clique em G, é necessario
usar pelo menos quatro cores distintas para esses vértices. Denotemos por w € {a,b,c,d} um
vértice com f(w) > 4. Como w possui trés vizinhos em Z\_/I>, seja w' um desses vizinhos. Para
satisfazer a condi¢do do backbone direcionado, temos que f(w') > f(w)+q > g+4. Observe
que esses trés vizinhos de w em ﬁ também formam uma clique, portanto, precisamos de trés
cores distintas que satisfagam f(w') > g+ 4. Isso implica que £ > g + 6, o que contradiz nossa

hipétese inicial e confirma que o limitante g + 6 €, de fato, o melhor possivel. [

Agora, considerando ? uma orientacdo de um caminho hamiltoniano P de um
grafo G. Definimos ? como um caminho hamiltoniano direcionado de G se ? € um caminho
direcionado em G. Dados G um grafo e ? um caminho hamiltoniano direcionado, provamos o

seguinte teorema que estabele BBC, (G, ?) em funcdo de n(G).

Teorema 66. Se G ¢ um grafo com n vértices e ? um caminho hamiltoniano direcionado de G,

entdo BBCq(G,?) =mn-1)-g+1.
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Demonstragdo. Sejam G um grafo com n vértices e ? = (v1,v2,...,V,) um caminho hamilto-
niano direcionado de G. Vamos primeiro mostrar que BBC, (G, ?) <(n—1)-g+ 1. Para isso,

vamos construir uma coloragio g-backbone direcionada f para (G, ?) da seguinte forma:
fvi)=(i—1)-q+1,paratodoi€ {1,2,...,n}.

Observe que f € uma coloracdo de G, pois cada vértice recebe uma cor distinta.
Além disso, a condi¢cdo do backbone direcionado € satisfeita, ja que para todo 2 < i < n, temos

que:

o) =fi) =(-1)-q+1-(i=2)-g-1=q

Isso prova que f é uma ((n—1)-g—+ 1)-colora¢do g-backbone direcionada de (G, ?)
Para mostrar que BBC,(G, ?) > (n—1)-g+1, seja c uma BBCy(G, ?)—coloragﬁo g-backbone
de (G, ?) Note que, para todo 2 < i <n, como (v;_1,v;) € ?, para satisfazer a condi¢do do

backbone direcionado, devemos ter f(v;) > f(vi—1) + . Juntando essas desigualdades, obtemos
fOn) 2 fn1)+q=fvn2)+2-g= ... 2 f(v)+(n—1)-q.

Pelas desigualdade acima e sabendo que f(v;) > 1, concluimos que f(v,) > 1+

(n—1)-q. Logo, BBC,(G, P) > 1+ (n—1) -¢. O
4.2.3 Complexidade Computacional

Nesta secao, apresentamos os resultados obtidos sobre a complexidade computacio-
nal na Coloracdo Backbone Direcionada. Para introduzir nosso estudo, definimos o problema

geral:

Z—COLORACAO gq-BACKBONE DIRECIONADA
Entrada: Um grafo G e uma orientacdo aciclica ﬁ de um subgrafo

gerador H de G.

Pergunta: BBCq(G,ﬁ) <0

Assim como demonstrado para a Coloracdo Backbone, o problema ¢-COLORACAO
q-BACKBONE DIRECIONADA é NP-completo para ¢ > 3. Isso ocorre porque decidir se um grafo
€ (-colorivel é NP-completo para ¢ > 3 (GAREY; JOHNSON, 1979), e, por defini¢do, toda

¢-coloragdo g-backbone direcionada também € uma ¢-coloragdo do grafo.
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O primeiro resultado de complexidade computacional que apresentamos trata do
caso em que ﬁ € uma orientacao de um emparelhamento perfeito M de um grafo G. Para isso,
tentamos estender o Teorema 52 para a Coloracdo Backbone Direcionada. Antes de enunciar
o teorema, introduzimos uma definicdo e um lema correspondentes a situacdo apresentada na

Proposicao 18, mas adaptados para a versdo direcionada.

Definicao 67. Dados um grafo G e uma orientag¢do aciclica ﬁ do subgrafo gerador H de G,
dizemos que (G, ﬁ) é bipartido de saida se V(G) puder ser particionado em dois conjuntos A
e B, que sdo independentes em G, onde A é formado pelas fontes de ﬁ e B ¢ formado pelos

sumidouros de H. Dizemos que A e B sdo biparti¢des de saida de (G, ﬁ)

%
Lema 68. Se G é um grafo e M uma orientacdo de um emparelhamento perfeito M de G, entdo

— —
BBC,(G, M) = 3 se, e somente se, (G, M) é bipartido de saida.

Demonstragdo. Considerando G e ﬁ como no enunciado do lema.
(=) Suponha que BBC;(G, ﬁ ) =3 e que f seja uma 3-coloragdo 2-backbone direcionada de
(G, ﬁ) Afirmamos que nenhum vértice v em G estd colorido com a cor 2, o que equivale a
dizer que f € uma coloracdo de G utilizando apenas duas cores: 1 e 3. Para demonstrar isso,
suponha, por absurdo, que existe u € V(G) tal que f(u) =2. Como M é um emparelhamento
perfeito, existe v € V(G) tal que (u,v) € M ou (v,u) € M. Sem perda de generalidade, suponha
que (u,v) € M. Nesse caso, como a cor 2 € vizinha a ambas as cores 1 e 3, ndo hd cor disponivel
para colorir v, o que contradiz a suposicdo de que f € uma coloragdo g-backbone direcionada de
(G, M).

Assim, V; e V, formam uma biparti¢do de saida de (G, ﬁ), onde V; e V, representam
os conjuntos de vértices coloridos com as cores 1 e 3, respectivamente, conforme a coloragado f.
Observe que os vértices de V| sdo fontes em ﬁ , pois, caso existissem vérticesu € Vi ev eV,
tal que (v,u) € ﬁ, a condigdo do backbone direcionado implicaria f(u) > f(v)+2 >3, 0que é
uma contradi¢do. De forma andloga, provamos que V, € formado apenas por sumidouros de ﬁ
Logo, concluimos que (G, ﬁ) ¢ bipartido de saida.
(<) Seja (G, ﬁ ) um grafo bipartido de saida, com biparti¢cdes de saida A e B. Como (G, ﬁ) é
bipartido de saida, assumimos, sem perda de generalidade, que A € a biparticio composta pelas
fontes de ﬁ e B pela dos sumidouros. Definimos entdo uma nova coloragdo / de forma que todos
os vértices de A sejam coloridos com a cor 1, enquanto os vértices de B recebem a cor 3. Com

%
essa definicdo, é claro que 4 constitui uma 3-coloracgéo 2-backbone direcionada de (G, M). [
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Vamos definir o seguinte problema de complexidade computacional:

EMP. /-COLORACAO ¢g-BACKBONE DIRECIONADA
. .
Entrada: Um grafo G e uma orientagdo M de um emparelhamento

perfeito M de G.

Pergunta: BBC, (G, M) < (?

Além da Defini¢ao 67 e do Lema 68, precisamos da seguinte defini¢ao:

Definicao 69. Dados um grafo G e uma orientacdo aciclica ﬁ do subgrafo gerador H de
G, dizemos que (G, ﬁ) é quase-bipartido de saida se V(G) puder ser particionado em dois
conjuntos A e B, onde A é formado pelas fontes de ﬁ e B é formado pelos sumidouros de ﬁ

Dizemos que A e B sdo quase-biparticdes de saida de (G, ﬁ)

Note que a diferenca entre as Defini¢des 67 e 69 € no fato de que, para um par (G, ﬁ)
ser quase-bipartido, ndo exigimos que as quase-biparticdes sejam conjuntos independentes em
G, ao contrario do que ocorre no caso de ser bipartido de saida.

Finalmente, apresentamos o teorema sobre a complexidade computacional do pro-
blema EMP. /-COLORACAO 2-BACKBONE DIRECIONADA (quando ¢ = 2). Note que, ao
contrario do resultado para a Coloragdo Backbone no Teorema 52, o salto de polinomial para

NP-completo ocorre quando ¢ = 5.

Teorema 70. E verdade que:
(a) O problema EMP. {-COLORACAO 2-BACKBONE DIRECIONADA pode ser resolvido em
tempo polinomial para ¢ < 4.
(b) O problema EMP. (-COLORACAO 2-BACKBONE DIRECIONADA é NP-completo para
¢>5.

Demonstracdo. Assuma que ¢ < 4. Primeiro, note que, para ¢ = 1, decidir se BBC;(G, ﬁ) <1¢é
verdade é equivalente a saber se E(G) = &. Para £ = 2, a verifica¢@o estd relacionada a existéncia
de arcos em ﬁ Se existe arco em 1\_/1> , aresposta ao problema € prontamente ndo. Se ndo existe
arco em ﬁ, a resposta ao problema € equivalente a saber se G € um grafo bipartido.

Como ﬁ ¢ uma orientacdo de um emparelhamento perfeito M em G, no cendrio em
que A(A_/}) = @, temos G um grafo trivial, implicando que apenas uma cor € necessdria para a

coloragdo. Logo, a resposta ao problema é imediatamente sim, quando A(T) = e > 1.
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Pelo Lema 68, temos que BBC, (G, ﬁ) = 3 se, e somente se, (G, ﬁ) ¢ bipartido de
saida, que pode ser decidido em tempo polinomial, o que resolve o problema para ¢ = 3.

Suponha agora que ¢ > 4. Considere o grafo G = (V,E) e a orientagdo ﬁ do
emparelhamento perfeito M em G.

Assuma que ¢ = 4. Seja ¢ uma 4-coloracdo 2-backbone direcionada de (G, ﬁ)
Como (G, 1\_/}) € quase-bipartido, pois ﬁ ¢ uma orientacdo de um emparelhamento perfeito e todo
vértice € uma fonte ou um sumidouro em 1\_4> . Considere as quase-biparti¢des Vi e V,, onde V; é
o conjunto das fontes de ﬁ e V> o conjunto dos sumidouros de ﬁ . Para satisfazer a condicao
do backbone direcionado, sabemos que os vértices nos conjuntos V| e V, sdo coloridos com as
cores pertencentes a {1,2} e {3,4}, respectivamente. Portanto, note que BBC;(G, ﬁ) =4se, e
somente se, ambos os subgrafos de G induzidos pelos conjuntos V; e V, sdo bipartidos, e nenhum
arco de ﬁ conecta um vértice de cor 2 em V| a um vértice de cor 3 em V5. Isso ocorre porque a
condi¢do de backbone direcionado deve ser satisfeita, e as cores 2 e 3 sdo cores vizinhas. Este
problema pode ser reduzido ao problema 2-SAT, que € conhecido por ser resolvido em tempo
polinomial (GAREY; JOHNSON, 1979).

Para realizar a reducdo, criamos duas varidveis booleanas, x, e y,, para cada vértice
v € V. Os literais x,, e X,, correspondem a colorir o vértice v com as cores 1 e 2, respectivamente,
enquanto os literais y, e ¥, correspondem a atribuir as cores 3 e 4 ao vértice v, respectivamente.
Dessa forma, observe que G[V;] € bipartido se, e somente se, existe uma atribui¢do satisfativel
para a férmula booleana (x, V x,) A (¥, V X)) para toda aresta uv € E(G[V;]). Esta férmula
assegura que, para cada aresta uv em G, um vértice u recebe uma cor e o vértice v recebe uma
cor diferente dentro do conjunto de cores {1,2}. Para o subgrafo G[V»], o processo é anélogo.

Além disso, para um arco (u,v) € ﬁ comu € Vi ev € Vy, os vértices serdo coloridos
de maneira a satisfazer a condicdo do backbone direcionado se, e somente se, houver uma
atribuicdo satisfativel para a féormula booleana x,, VVy,. Como as cores 2 € 3 sdo vizinhas, nio é
permitido que um arco em ﬁ tenha suas extremidades coloridas com essas duas cores. Assim, a
férmula proibe que as cores 2 e 3 aparecam simultaneamente em um arco de 1\_/[>, garantindo que
ouacor 1 (x,) ouacor4 (y,) sempre apareca em uma de suas extremidades.

Assuma agora que ¢ > 5. A redugdo € realizada a partir de um problema cldssico
que € NP-completo: o problema da /-coloragcdo (ver mais informagdes sobre este problema
em (GAREY; JOHNSON, 1979)). Este problema consiste em, dado um grafo R, responder a

seguinte pergunta: existe uma ¢-coloragcdo de R?
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Vamos construir um grafo G e uma orientagao ﬁ de um emparelhamento perfeito
M em G. Seja R = (Vg,Er) uma instincia do problema de ¢-coloragdo e v, vs,...,v, uma
enumeracao dos vértices de R. Para cada 1 <i < n, criamos o vértice u; e adicionamos o arco
(vi,u;) em ﬁ , conforme ilustrado na Figura 72. O par resultante serd (G,ﬁ ). Dessa forma,
é claro que os arcos ((vy,uy),...,(vy,u,)) formam uma orientacéo M de um emparelhamento

perfeito M em G. Afirmamos que BBC, (G, ﬁ) < {+2 se, e somente se, X (R) < /.

Figura 72 — A construgédo do par (G, ﬁ) (com os arcos do backbone em vermelho).
ui uj Uu; Un

<
=

<
[\S)
=

=
N

Fonte: Autoria prépria, 2024.

Suponha que BBCZ(G,ﬁ ) < {£+2 e seja ¢ uma (¢ + 2)-coloragdo 2-backbone
direcionada de (G,ﬁ). Para satisfazer a condicdo do backbone direcionado, sabemos que
a existéncia do arco (v;,u;) € M implica ¢(v;) < ¢(u;) —2 < ({+2)—2 =/, para todo i €
{1,...,n}. Portanto, a restricdo de ¢ aos vértices de R € uma ¢-coloragdo de R, o que implica
que x (R) < £. Agora, suponha que ¥ (R) < ¢ e seja f uma ¢-coloragdo de R. Paracada 1 <i <n,
podemos estender f para (G, ﬁ) colorindo os vértices u; com a cor £+ 2. Assim, concluimos

que BBC;(G, ﬁ) </l+2. O

Antes de enunciar o segundo resultado de complexidade computacional, € necessério
introduzir algumas defini¢des. Uma floresta de caminhos F € uma floresta em que cada compo-
nente ¢ um caminho. Se cada componente C for um caminho com k vértices, ou seja, C = Py,
entdo dizemos que F' € uma floresta de k-caminhos.

Dados G um grafo e F uma floresta geradora de k-caminhos em G. Sendo ? uma
orientacao de uma floresta de k-caminhos F. Dizemos que ? € uma floresta de k-caminhos
direcionada de G se, para cada componente C de F, o caminho correspondente for direcionado.

A seguir, apresentamos o problema de complexidade computacional para uma floresta

de k-caminhos direcionada.
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k-CAMINHO /-COLORACAO ¢-BACKBONE DIRECIONADA

Entrada: Um grafo G e uma floresta de k-caminhos direcionada

F de G.

Pergunta: BBCq(G,?) <

O teorema a seguir é uma generalizagao do Teorema 70.

Teorema 71. Para k > 2, é verdade que:
(a) O problema k-CAMINHO /-COLORACAO 2-BACKBONE DIRECIONADA pode ser resolvido
em tempo polinomial para ¢ < 2k.
(b) O problema k-CAMINHO /-COLORACAO 2-BACKBONE DIRECIONADA é NP-completo

para { > 2k + 1.

Demonstragdo. Os casosemque 1 </ <2e/l>3com A(?) = & seguem de maneira andloga
a prova do Teorema 70.

Suponha agora que ¢ > 3. Considere o grafo G e uma floresta de k-caminhos
direcionada ? de G tal que A(?) # @, uma vez que F' é uma floresta geradora de k-caminhos
de G.

Assuma que 3 < ¢ < 2k. Seja C uma componente de F'. Como ? € uma floresta
de k-caminhos direcionada e F € uma floresta geradora, temos que G[V (C)] = Py. Assim, pelo
Teorema 66, sdo necessdrias pelo menos 2k — 1 cores para uma coloragdo 2-backbone direcionada
de (G, 7) Portanto, quando 3 < ¢ < 2k — 2, a resposta € prontamente ndo.

Suponha que ¢ = 2k — 1. Portanto, temos que BBC;(G, ?) > 2k — 1, pelo argumento
anterior. Defina os seguintes conjuntos: para todo inteiro 1 < i < k, o conjunto V; é formado
pelos vértices v tal que d (x,v) =i—1, onde x é a fonte do k-caminho direcionado ao qual v
pertence. Note que BBC;(G, ?) = 2k — 1 se, e somente se, cada V; € um conjunto independente.
Logo, esse problema € decidido em tempo polinomial.

Assumindo que ¢ = 2k. Seja ¢ uma (2k)-coloracdo 2-backbone direcionada de
(G,?). Os vértices do conjunto V; sdo coloridos com as cores pertencentes a {2i — 1,2},
para todo inteiro i € {1,...,k}, pois a condi¢do do backbone direcionado precisa ser satisfeita.
Portanto, note que BBC, (G, ?) = 2k se, e somente se, cada V; € bipartido e nenhum arco de ?
conecta um vértice de cor 2i em V; a um vértice de cor 2i+ 1 em V;, para todo inteiro 1 <i < k.

Isso ocorre porque a condicao de backbone direcionado deve ser satisfeita, e as cores 2i e 2i + 1
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sdo cores vizinhas. Também podemos reduzir este problema para o problema 2-SAT, que é
resolvido em tempo polinomial (GAREY; JOHNSON, 1979), como fizemos no Teorema 70.
Para realizar a redugdo, criamos k varidveis booleanas, x1(v), ..., x;(v) para cada
vértice v € V(G). Os literais x;(v) e W correspondem a colorir o vértice v com as cores 2i — 1
e 2i, respectivamente, para todo i € {1,...,k}. Dessa forma, observe que G[V;| é bipartido

se, € somente se, existe uma atribuigdo satisfativel para a férmula booleana (x;(u) V x;(v)) A

(xi(u) V x;(v)) para toda aresta uv € E(G[V;]). Esta férmula assegura que, para cada aresta uv em
E(G|Vj]), um vértice u recebe uma cor e o vértice v recebe uma cor diferente dentro do conjunto
de cores {2i — 1,2i}.

Além disso, para um arco (u,v) € 1\_4> com u € V; e ve Vg, os vértices serdo
coloridos de maneira a satisfazer a condi¢ao do backbone direcionado se, e somente se, houver
uma atribuicdo satisfativel para a férmula booleana x;(u) vm . Como as cores 2i e 2i+ 1
sdo vizinhas, ndo € permitido que um arco em ﬁ tenha suas extremidades coloridas com essas
duas cores. Assim, a férmula proibe que as cores 2i e 2i + 1 aparecam simultaneamente em um
arco de ﬁ, garantindo que ou a cor 2i — 1 (x;(«)) ou a cor 2i +2 (m ) sempre apareca em
uma de suas extremidades.

Assuma agora que ¢ > 2k + 1. Assim como na prova do Teorema 70, faremos uma
reducdo para o problema de /-coloracio, que é NP-completo para ¢ > 3 (GAREY; JOHNSON,
1979). Dado um grafo R, o problema de ¢-coloracdo pergunta se existe uma ¢-colorac¢do de R.

Vamos construir um grafo G e uma floresta de k-caminhos direcionada ? de G.

Seja R = (Vg,Egr) uma instancia do problema de ¢-coloracdo, e suponha que os vértices de
2

R estdo enumerados como vy,va,...,v,. Para cada vértice v; € Vg, criamos os vértices u;,

3 k

w2, ..., ub 2 e (ul,ul™

; u;,u; ) para todo inteiro 2 < j < k—1, con-

e adicionamos os arcos (v;,u s

forme ilustrado na Figura 73. O par resultante sera (G,?). Dessa forma, € claro que os
arcos ((vi,u?),..., (uf-‘*l,uf)) formam um k-caminho direcionado, para todo inteiro 1 <i < n.
Afirmamos que BBC;(G, ?) < {+2k—2 se, e somente se, x(R) <.

Suponha que BBCZ(G,ﬁ) < {+2k—2 e seja ¢ uma (¢ + 2k — 2)-coloragdo 2-

backbone direcionada de (G, ﬁ) Para satisfazer a condi¢do do backbone direcionado, para todo

i€{l,...,n}, aexisténcia do k-caminho direcionado implica que:

o) <P(uf) —2<...<9(u) —2-(k—1) < ((+2k—2)—2-(k—1) = L.

1 l

Portanto, a restri¢do de ¢ aos vértices de R é uma ¢-coloracdo de R, o que implica que y(R) < /.

Agora, suponha que X (R) </ e seja f uma ¢-coloragdo de R. Para cada 1 < i < n, podemos
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Figura 73 — A construgdo do par (G, ?) (com os arcos do backbone em vermelho).

k k k k
up Q u ® u; 8 n &
uk—l ® uk—l ® uk—l ® ukfl ®
1 'S 2 IN 1 'S n IN
uw e uw @ we uw e
14\ 24; I AN n A
2 2 2
ulz uZx u; a unx
| K (e il A M 1
R ' [ [ [ [ '
| Vi %) Vi Vi |
1 1
1 1

Fonte: Autoria propria, 2024.

estender f para (G,?) colorindo os vértices u] com a cor £+2-(j—1) para j € {2,...,k}.

i

Assim, concluimos que BBC, (G, ?) < l+2k—2. O
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5 CONCLUSAO E TRABALHOS FUTUROS

A Coloracado Backbone, introduzida por Broersma et al. em 2003 (BROERSMA et
al., 2003), ja conta com mais de 30 artigos publicados, abrangendo variagdes como as versoes
circular e por listas. Nesta dissertacdo, realizamos uma revisao bibliogrifica no Capitulo 3, com
foco na versao original da Coloracao Backbone, sem ser circular ou por listas. Apresentamos
resultados relevantes da literatura relacionados a limitantes gerais para o nimero cromatico
g-backbone de (G,H), considerando H como um grafo arbitrario, e discutimos casos especificos
em que o backbone € uma arvore, um emparelhamento, um caminho hamiltoniano ou uma
galdxia. Além de reunir esses limitantes, apresentamos também resultados de complexidade
computacional de problemas na Coloragao Backbone.

As primeiras contribui¢cdes desta dissertacio, apresentadas no Capitulo 4, consistem
em corre¢des de dois resultados publicados em artigos importantes para o estudo da Colora-
¢do Backbone (BROERSMA et al., 2003; HAVET et al., 2014). Contudo, o principal foco
desta dissertacdo € a introdu¢ao de uma nova variacdo da Coloragdao Backbone, denominada
Coloragdo Backbone Direcionada. Nesse contexto, provamos o Teorema 6, que estabelece
que BBC,(G, ﬁ) < diam(ﬁ) -(x(G)+q—2)+ x(G), para qualquer inteiro ¢ > 2, grafo G e
orientagdo aciclica ﬁ de um subgrafo gerador H de G. Este resultado oferece um limitante
superior apertado em um caso mais geral dessa nova coloracgao.

Também apresentamos resultados especificos quando ﬁ € uma orientacdo de um
emparelhamento perfeito, além de andlises para os casos em que ﬁ € uma orientacdo de uma
galdxia ou de um caminho hamiltoniano. Além disso, provamos dois novos resultados sobre a
complexidade computacional relacionados a Coloracdo Backbone Direcionada.

Como direcoes futuras de pesquisa, propomos a extensdo de limitantes ja conhecidos
para a Coloragdao Backbone ao contexto da Coloragdo Backbone Direcionada, bem como a
investigacdo de novos resultados relacionados a complexidade computacional dessa variagao.
Na Tabela 1, apresentamos um resumo dos resultados obtidos para a Coloracdo Backbone
Direcionada, comparando-os com os resultados correspondentes para a Coloracdo Backbone na
literatura.

Em particular, sugerimos o estudo dos limitantes para o nimero cromdtico g-
backbone direcionado quando o grafo G € um grafo split, além disso, deixamos o seguinte
problema em aberto quando o backbone é um emparelhamento, que apresentamos no Capitulo 4:

_)
Problema em Aberto 14. Se G é um grafo planar sem ciclos de comprimento 4 e 5 e M uma
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%
orientagdo de um emparelhamento M em G, é verdade que BBCy(G,M) <77

Tabela 1 — Comparacio dos resultados obtidos na Coloragdo Backbone Direcionada
com a Coloragdo Backbone.

Classe de G Classe de H | BBC,(G,H) </ | BBC,(G,H) <
Geral Geral x(G)+q—2)-x(H)—q+2 diam(ﬁ)'(){(G)—i—q—Z)—i-x(G)
Geral Emp. Perf. Teorema 47 2-2(G)+q—2
C, Emp. 3,seq=2 4,seq=2
K, Emp. n,seq=>2 n,seq=>2
Geral Emp. AG)+1,seq=2 2-AG)+1,seq=2
Planar Galaxia q+4 q+6
Geral Cam. Ham. Teorema 37, se g =2 (n(G)—1)-q+1
?2,seq>3
Geral Emp. Perf. P,sel<3eq=2 P,sel<4d4eq=2
NP-completo, se { > 4eqg=2 NP-completo,se { > 5eqg=2
Geral Fl. de k-cam. P,se{ <2keg=2

NP,se {>2k+1eg=2

?: problema em aberto.
Fonte: Autoria propria, 2024.

No contexto da Colora¢ao Backbone, no Capitulo 3, deixamos alguns problemas
em abertos da literatura, o qual enfatizamos o seguinte problema em aberto, na classe de grafos
cordais.

Problema em Aberto 3. (BROERSMA et al., 2007) Se G é um grafo cordal e T uma drvore
geradora de G, existe uma constante c tal que BBCy(G,T) < x(G) +c?

Outra direcao futura de pesquisa € investigar problemas ainda nao estudados na
literatura em classes especificas de grafos, como grafos split e cactos. Ha artigos que estudam
problemas em grafos split (BROERSMA et al., 2003; SALMAN, 2006; BROERSMA et al.,
2009b), quando o backbone € um emparelhamento, uma arvore ou um caminho hamiltoniano.
Contudo, por exemplo, nao hd, até 0 momento, um teorema que estabeleca limitantes superiores
para o nimero cromatico g-backbone de (G,P), onde G é um grafo split, P ¢ um caminho
hamiltoniano em G e g > 3.

Na literatura, o artigo de Janczewski et al. estuda grafos cactos, provando resultados
quando o backbone é um grafo conexo (JANCZEWSKI; TUROWSKI, 2015b). Isso abre espaco
para explorar novos resultados ao variar a estrutura do backbone.

Por fim, outro trabalho futuro consiste em investigar problemas relacionados a
classes de grafos ainda ndo abordadas na literatura, como o produto de grafos. Um exemplo seria
estender a defini¢do do produto cartesiano de dois grafos G| e G, para pares de grafos (Gy,H;)

e (Ga,H;), em que H| e H representam os backbones de G| e Gy, respectivamente, e estudar o
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nimero cromdtico g-backbone do produto cartesiano desses pares.
Além disso, nao ha resultados ou problemas em aberto sobre a classe de grafos
cordais (exceto o Problema em Aberto 3), o que possibilita novos estudos nessa drea, incluindo a

exploracdo de subclasses especificas, como os grafos de intervalo.
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correto, 48
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de incidéncia, 34

de redugdo, 50

galdxia, 25, 43
direcionada, 31, 102
grafo, 34
aciclico, 25, 42, 47
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