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RESUMO

Dado um inteiro q g 2, um grafo G e um subgrafo gerador H de G, chamado de backbone de G,

definimos uma k-coloração q-backbone de (G,H) como sendo uma k-coloração própria c de G

tal que, para todo uv * E(H), a seguinte condição é satisfeita: |c(u)2 c(v)| g q. Neste trabalho,

apresentamos uma revisão bibliográfica que aborda resultados gerais sobre um parâmetro crucial

relacionado a essa coloração, conhecido como número cromático q-backbone, denotado por

BBCq(G,H). O número cromático q-backbone é o menor inteiro k tal que existe uma k-coloração

q-backbone de (G,H). Adicionalmente, apresentamos nossas contribuições para essa coloração e

introduzimos uma variação direcionada, denominada Coloração Backbone Direcionada. Também

discutimos os resultados obtidos referentes ao seu número cromático correspondente.

Palavras-chave: coloração de grafos; coloração backbone; número cromático; coloração back-

bone direcionada.



ABSTRACT

Given an integer q g 2, a graph G, and a spanning subgraph H of G, called the backbone

of G, we define a q-backbone k-coloring of (G,H) as a proper k-coloring c of G such that,

for every uv * E(H), the following condition is satisfied: |c(u)2 c(v)| g q. In this work, we

present a literature review that covers general results on a crucial parameter related to this

coloring, known as the q-backbone chromatic number, denoted by BBCq(G,H). The q-backbone

chromatic number is the smallest integer k such that there exists a q-backbone k-coloring of

(G,H). Additionally, we present our contributions to this coloring and introduce a directed

variation, called the Directed Backbone Coloring. We also discuss the results obtained regarding

its corresponding chromatic number.

Keywords: graph coloring; backbone coloring; chromatic number; directed backbone coloring.
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1 INTRODUÇÃO

O problema da Coloração de Vértices é um problema clássico na Teoria dos Grafos.

Uma k-coloração própria de um grafo G, ou simplesmente uma k-coloração de G, é uma função

f : V (G) 2³ {1,2, . . . ,k} que atribui cores aos vértices de modo que vértices adjacentes não

compartilhem a mesma cor. O problema consiste em determinar o menor número de cores

necessárias para colorir o grafo respeitando essa restrição, valor conhecido como o número

cromático do grafo, representado por χ(G). Uma coloração de vértices que utiliza exatamente

χ(G) cores é denominada coloração ótima do grafo G.

Uma maneira simples de obter uma coloração de vértices é usar cores diferentes para

cada um deles. Na Figura 1, os vértices do grafo de Petersen estão coloridos de forma distinta,

requerendo assim 10 cores, que coincidem com o número de vértices desse grafo.

Figura 1 – O grafo de Petersen colorido com cores distintas.
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g h

b c

Fonte: Autoria própria, 2024.

Ao estudarmos colorações de vértices em grafos, nosso objetivo é reduzir o número

de cores utilizadas, ou seja, descobrir o número cromático do grafo. Podemos construir uma

coloração ótima no grafo de Petersen da seguinte maneira: inicialmente, colorimos o vértice a

com uma cor, como o vermelho. Em seguida, para respeitar a condição da coloração de vértices,

precisamos colorir os vizinhos de a com cores diferentes. Como b, e e f não compartilham

arestas e nosso objetivo é minimizar o número de cores utilizadas, podemos atribuir a cor verde

a esses três vértices. Na Figura 2, é possível visualizar a coloração que estamos construindo para

o grafo de Petersen.

Para continuar a construção da coloração ótima no grafo de Petersen, seguindo as

restrições da coloração de vértices e buscando minimizar o número de cores utilizadas, podemos

observar que os vértices d, g e h não têm arestas entre si nem com o vértice vermelho a, mas

estão conectados a vértices verdes. Portanto, podemos colori-los de vermelho. Já os vértices c,
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Figura 2 – Construção de uma coloração ótima para o grafo de Petersen.
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Fonte: Autoria própria, 2024.

i e j, que não compartilham arestas entre si, mas compartilham arestas com vértices de cores

verde e vermelha, devem receber uma nova cor, como o azul. Assim, na Figura 3, é possível

visualizar essa coloração do grafo de Petersen usando apenas 3 cores.

Figura 3 – Uma coloração ótima do grafo de Petersen.
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Fonte: Autoria própria, 2024.

Um dos teoremas mais famosos da Teoria dos Grafos relacionado à Coloração

de Vértices é o Teorema das Quatro Cores. Esse teorema foi inicialmente conjecturado em

1852 pelo matemático sul-africano Francis Guthrie enquanto estudava a coloração do mapa

político do mundo, chegando a compartilhar sua conjectura com seu irmão Frederick (APPEL;

HAKEN, 1978). Sua conjectura afirmava que, para qualquer mapa político, são suficientes

apenas quatro cores para colorir os países de modo que países vizinhos não compartilhem a

mesma cor. Note que, em um mapa político, não ocorrem situações em que as fronteiras de

dois países se intersectam em apenas um número finito de pontos. Portanto, consideramos como

vizinhos os países cujas fronteiras se intersectam em um número infinito de pontos.

Por exemplo, considerando os estados de um país em vez de países, podemos colorir

os estados brasileiros no mapa do Brasil usando apenas quatro cores, garantindo que estados

vizinhos não tenham a mesma cor. Essa coloração pode ser vista na Figura 4, onde cada cor
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representa um grupo de estados não vizinhos.

Figura 4 – Uma coloração do mapa do Brasil utilizando 4 cores.

Fonte: Imagem criada em site www.mapchart.net, 2024.

No contexto da Teoria dos Grafos, o mapa político pode ser representado como um

grafo planar: cada país é associado a um vértice, e dois vértices são conectados por uma aresta

se os respectivos países forem vizinhos no mapa político. Assim, o Teorema das Quatro Cores

afirma que dado um grafo planar (um grafo que pode ser desenhado no plano sem cruzamento

de arestas), é possível colorir seus vértices com apenas quatro cores, de modo que vértices

adjacentes não compartilhem a mesma cor. A demonstração do Teorema das Quatro Cores

ocorreu apenas em 1976, quando os matemáticos Kenneth Appel e Wolfgang Haken publicaram

o artigo “Todo mapa plano é 4-colorível” (APPEL; HAKEN, 1976), utilizando a ajuda de um

computador para a prova.

No artigo de Hajo Broersma (BROERSMA, 2003), foram apresentadas algumas

variações da Coloração de Vértices. Considerando dois grafos G1 e G2, em que G1 é um subgrafo

gerador de G2. O problema envolve encontrar uma coloração para os vértices de G2 que atenda a

determinadas restrições em G1 e também a outras restrições em G2.

Dado um grafo simples G, a distância entre dois de seus vértices é definida como

o comprimento de um menor caminho que os conecta. Agora, podemos introduzir uma das

variações apresentadas por Broersma (BROERSMA, 2003). A coloração distância-2 (2-distance

coloring) de um grafo G consiste em atribuir cores aos vértices de G de forma que vértices

que estejam a uma distância de no máximo 2 tenham cores distintas. No contexto dos grafos

mencionados anteriormente, G2 é obtido a partir de G1 pela inclusão de arestas entre os vértices
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que estão a uma distância 2 em G1, ou seja, G2 = G1
2. A coloração distância-2 consiste em

encontrar uma coloração de vértices para G2 e, por conseguinte, para G1.

Similar à Coloração de Vértices, o número cromático distância-2, denotado por

χ2(G), é o menor inteiro k para o qual G admite uma coloração distância-2 que usa exatamente

k cores. Essa coloração de G, que atinge χ2(G), é chamada de ótima. No exemplo do grafo

de Petersen, como todo vértice do grafo é vizinho ou está a distância 2 dos demais vértices,

precisamos de cores distintas para todos os vértices do grafo. Na Figura 5, podemos ver uma

coloração distância-2 do grafo de Petersen, onde o número cromático distância-2 é 10, pois o

grafo de Petersen tem 10 vértices.

Figura 5 – Uma coloração distância-2 ótima do grafo de Petersen.

Fonte: Autoria própria, 2024.

Outra variação, descrita em (BROERSMA, 2003), é a L(2,1)-rotulação (L(2,1)-

labeling), também conhecida como λ -rotulação. Uma L(2,1)-rotulação de um grafo G = (V,E)

é uma função f : V 2³ N+ que satisfaz | f (u)2 f (v)| g 2 para vértices adjacentes u e v, e

| f (u)2 f (v)| g 1 para pares de vértices u e v a uma distância 2. A amplitude (span) de uma

L(2,1)-rotulação f é definida como maxv*V f (v), ou seja, é o maior inteiro atribuído aos vértices

de G. Dizemos que a L(2,1)-rotulação de um grafo G é ótima, quando alcançamos a menor

amplitude possível para G e a amplitude dessa rotulação é representada por λ (G).

Na Figura 6, podemos observar uma L(2,1)-rotulação ótima do grafo de Petersen,

onde cada vértice recebe um rótulo distinto devido à sua distância no máximo 2 em relação

aos demais vértices. A construção dessa rotulação foi realizada da seguinte maneira: nos

vértices do ciclo externo de tamanho 5 do grafo, atribuímos rótulos com números ímpares,

garantindo que vértices adjacentes nesse ciclo tenham rótulos distanciados em 2 unidades. Para

os vértices do ciclo interno de tamanho 5, utilizamos rótulos com números pares, assegurando

que vértices vizinhos nesse ciclo também tenham rótulos distanciados em 2 unidades. No entanto,

ao selecionar os rótulos para o ciclo interno, fizemos essa escolha de forma a evitar rótulos

consecutivos aos rótulos dos vértices vizinhos do ciclo externo no grafo de Petersen.
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Figura 6 – Uma L(2,1)-rotulação ótima do grafo de Petersen.
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Fonte: Autoria própria, 2024.

Colorações Backbone. A variação da Coloração de Vértices que será abordada neste

trabalho, introduzida em (BROERSMA et al., 2003), é conhecida como Coloração Backbone. A

atribuição de frequências é uma motivação fundamental na aplicação da Coloração Backbone,

onde os grafos são usados para modelar as redes de transmissores, como antenas. Nesse problema,

as antenas são representadas pelos vértices do grafo, e uma aresta entre dois vértices indica

que as antenas correspondentes estão suficientemente próximas para causar interferência caso

operem no mesmo canal de frequência. Na Figura 7, apresentamos uma distribuição de antenas

que atende às condições mencionadas.

Figura 7 – Uma distribuição de antenas.

Fonte: Autoria própria, 2024.

A Coloração de Vértices permite atribuir diferentes canais de frequência às antenas,

evitando interferências na comunicação. Cada vértice do grafo, representando uma antena,

recebe uma cor que representa um canal de frequência, assegurando que antenas adjacentes

não compartilhem a mesma cor. Na Figura 8, apresentamos uma coloração da distribuição de

antenas, onde cada canal de frequência é distinto para os vértices, garantindo que quaisquer

antenas vizinhas não tenham a mesma cor.

Ao tentar minimizar o número de cores utilizadas, apresentamos na Figura 9 uma

coloração ótima que utiliza apenas 3 cores. Observe que há três vértices que são mutuamente

adjacentes, o que torna impossível a coloração com um número menor de cores.
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Figura 8 – Uma coloração dos vértices da distribuição de antenas.
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Fonte: Autoria própria, 2024.

Figura 9 – Uma coloração ótima dos vértices da distribuição de antenas.
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Fonte: Autoria própria, 2024.

No entanto, no contexto da Coloração Backbone, temos uma estrutura especial

chamada de backbone do grafo. Nesse caso, as conexões entre alguns pares de antenas são tão

fortes que a simples atribuição de canais distintos não é suficiente para evitar interferências. É

necessário manter uma certa distância nos canais atribuídos às antenas no backbone, a fim de

garantir um nível aceitável de interferência.

Agora, podemos definir formalmente a Coloração Backbone. Considerando um grafo

G = (V,E) e um subgrafo gerador H de G, chamado de backbone de G, uma k-coloração q-

backbone de (G,H) é uma função f : V (G)2³ {1,2, . . . ,k} que atende às seguintes condições:

| f (u)2 f (v)| g 1 para toda uv * E(G) e | f (u)2 f (v)| g q para toda uv * E(H). Esta última

será chamada de condição do backbone.

O número cromático q-backbone de (G,H), denotado por BBCq(G,H), é o menor

inteiro k para o qual existe uma k-coloração q-backbone de (G,H). Quando temos uma coloração

q-backbone do par (G,H) que utiliza exatamente BBCq(G,H) cores, chamamos essa coloração

de ótima. Dizemos que duas cores c1 e c2 em uma coloração q-backbone são vizinhas se

|c1 2 c2|< q. Observe que duas cores vizinhas não podem ser usadas nas extremidades de uma

aresta no backbone, pois isso violaria a condição do backbone.
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Outra definição importante para a Coloração Backbone é a de coloração simétrica,

mencionada brevemente no artigo de Broersma et al. (BROERSMA et al., 2007), sem ser

formalmente definida. No entanto, no artigo de Bu et al., essa definição aparece explicitamente

em um lema, ao citar o resultado de Broersma et al. (BU; LI, 2011).

Sejam G um grafo, H um subgrafo gerador de G, e f e g duas k-colorações de G

que satisfaçam f (v)+g(v) = k+1 para todo vértice v de G. Note que, se f é uma k-coloração

q-backbone de (G,H), então a coloração g também é uma k-coloração q-backbone de (G,H).

Diz-se, então, que f é uma coloração simétrica (ou simplesmente simétrica) de g (BROERSMA

et al., 2007; BU; LI, 2011). Vale ressaltar que esses autores definiram colorações simétricas

apenas no contexto de árvores como backbone e para q = 2, embora a definição possa ser

estendida para um backbone qualquer e para um inteiro q g 2.

Voltando à distribuição de antenas vista anteriormente, se considerarmos que as

arestas em negrito pertencem ao backbone, conforme mostrado na Figura 10, podemos tentar

construir uma coloração 2-backbone ótima para esse grafo.

Figura 10 – Uma distribuição de antenas (com as arestas do backbone em negrito).
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Fonte: Autoria própria, 2024.

Sendo (G,H) o par da Figura 10, como mencionado ao tentar mostrar que χ(G) = 3,

os vértices c, d e e formam uma clique, ou seja, são mutuamente adjacentes. Assim, é impossível

utilizar menos de 3 cores na coloração. Ao tentar construir uma 3-coloração 2-backbone de

(G,H), não podemos colorir os vértices u ou v com a cor 2 para qualquer aresta uv no backbone,

pois 2 é uma cor vizinha de 1 e 3, as únicas cores disponíveis para serem usadas nesta coloração.

Como os vértices c, d e e formam uma clique, são extremidades de arestas no backbone e a cor

2 não pode ser usada, não conseguimos completar uma 3-coloração 2-backbone de (G,H). Na

Figura 11, vemos uma 4-coloração 2-backbone desse par, e como não conseguimos fazer com

menos cores, concluímos que BBC2(G,H) = 4.

Bu et al. comparam a L(2,1)-rotulação com a Coloração Backbone. Dado um grafo
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Figura 11 – Uma 4-coloração 2-backbone de (G,H) (com as arestas do backbone
em negrito) com BBC2(G,H) = 4.
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Fonte: Autoria própria, 2024.

G, uma L(2,1)-rotulação de G é equivalente a uma coloração 2-backbone de (G2,G), onde G2 é

o quadrado de G, isto é, o grafo G2 é obtido a partir de G ao adicionar arestas entre os vértices

de G que estão a uma distância 2 em G (BU et al., 2013).

Se o backbone for um grafo vazio, ou seja, sem arestas, Havet et al. afirmam que

BBCq(G,H) = χ(G), pois, nesse caso, a coloração realizada em (G,H) é simplesmente uma

coloração própria de G (HAVET et al., 2014).

Como toda coloração q-backbone é, em particular, uma coloração própria dos vértices

de um grafo G, temos o seguinte resultado de complexidade computacional: para k g 3, decidir

se o número cromático backbone do par (G,H) é menor ou igual a k é NP-completo. Isso se

deve ao fato de que o problema de decidir se um grafo pode ser propriamente colorido com k

cores é NP-completo para k g 3 (GAREY; JOHNSON, 1979).

Em (HAVET et al., 2014), também são discutidos limitantes gerais do número

cromático da Coloração Backbone. Considerando G como um grafo e H como um subgrafo

gerador de G, os limitantes apresentados são os seguintes:

BBCq(H,H)f BBCq(G,H)f BBCq(G,G) (1.1)

q ·χ(H)2q+1 f BBCq(G,H)f q ·χ(G)2q+1 (1.2)

Note que toda coloração q-backbone de um par (G,H) será também uma coloração q-

backbone para qualquer par (G2,H 2), onde G2 ¦ G e H 2 ¦ H. Isso explica os limitantes em (1.1).

Seja f uma χ(G)-coloração de G. Definimos uma nova função g como g(v) = q · f (v)2q+1,

onde a ideia é garantir que todas as cores estejam a uma distância de q, assegurando que a

condição do backbone seja satisfeita. Portanto, g é uma (q ·χ(G)2q+1)-coloração q-backbone

de (G,H). Como g é uma coloração ótima quando G = H, obtemos os limitantes descritos em

(1.2).
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Na Figura 12, podemos observar uma coloração ótima e uma coloração 2-backbone

ótima do grafo de Petersen, quando o backbone é o próprio grafo de Petersen. Para construir

a coloração 2-backbone ótima, utilizamos a função g conforme discutido para demonstrar o

limitante de (1.2), onde f é uma coloração ótima do grafo de Petersen ilustrada na Figura 12.

Figura 12 – Uma coloração ótima de G e uma coloração 2-backbone ótima de (G,G)
(com as arestas do backbone em negrito), onde G é o grafo de Petersen.
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Fonte: Autoria própria, 2024.

Nossas contribuições. Um dos nossos primeiros resultados está relacionado com um

teorema demonstrado em (HAVET et al., 2014). Para enunciar esse teorema, é necessário definir

algumas classes de grafos. Uma floresta é um grafo que não possui ciclos, ou seja, um grafo

acíclico. Por outro lado, uma árvore é um grafo conexo sem ciclos. Uma estrela é uma árvore

em que um vértice x, denominado centro da estrela, é adjacente a todos os outros vértices do

grafo. Finalmente, uma galáxia é uma floresta de estrelas. Na Figura 13, são ilustrados exemplos

de uma estrela com centro no vértice x e de uma galáxia como backbone no grafo de Petersen,

com centros das estrelas nos vértices a, d e j.

Teorema 1. (HAVET et al., 2014) Para todo inteiro q g 3, o seguinte problema é NP-completo.

Entrada: Um grafo planar G e uma galáxia F em G com grau máximo 3.

Pergunta: BBCq(G,F)f q+3?

No VII Encontro de Teoria da Computação (ETC), apresentamos um resumo esten-

dido (CASTRO et al., 2022), no qual corrigimos a demonstração do Teorema 1. Para demonstrar

o Teorema 1, Havet et al. provam o seguinte lema sobre um gadget utilizado na demonstração,

denominado pipa (representado na Figura 14):



26

Figura 13 – Uma estrela com centro em x e uma galáxia (com as arestas do
backbone em negrito) no grafo de Petersen.
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Fonte: Autoria própria, 2024.

Lema 2. (HAVET et al., 2014) Se φ é uma (q+ 3)-coloração q-backbone de uma pipa tal

que φ(t) * {1,2,3,q+ 1,q+ 2,q+ 3}, então ou φ(t) * {1,2,3} e φ(u) = q+ 3, ou φ(t) *

{q+1,q+2,q+3} e φ(u) = 1.

Figura 14 – A pipa (com as arestas do backbone em negrito).
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Fonte: Autoria própria, adaptado de (HAVET et al., 2014), 2024.

A partir da pipa representada na Figura 14, identificamos um erro no resultado

esperado do Lema 2. Para garantir a validade desse lema, construímos uma nova versão da pipa,

ilustrada na Figura 15, preservando suas propriedades de planaridade e de ter um backbone em

forma de galáxia com grau máximo 3, conforme exigido pelo Teorema 1.

Outro resultado, também apresentado no VII Encontro de Teoria da Computação

(ETC), envolve uma variação circular da Coloração Backbone, denominada Coloração Backbone

Circular. Esta coloração é bem definida e diversos resultados sobre ela podem ser encontrados
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Figura 15 – A pipa corrigida (com as arestas do backbone em negrito).
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Fonte: Autoria própria, 2024.

em (HAVET et al., 2014). Antes de enunciarmos nosso resultado, introduziremos algumas

noções básicas dessa coloração.

Dado um grafo G = (V,E) e um subgrafo gerador H de G, o backbone de G,

dizemos que uma k-coloração q-backbone circular de (G,H) é uma função f : V (G) 2³

{1,2, . . . ,k} que satifaz as seguintes condições: | f (u)2 f (v)| g 1, para toda aresta uv * E(G)

e q f | f (u)2 f (v)| f k2 q, para toda aresta uv * E(H). De forma semelhante a Coloração

Backbone, o número cromático q-backbone circular, denotado por CBCq(G,H), é o menor

inteiro k para o qual existe uma k-coloração q-backbone circular de (G,H).

Observe que toda coloração q-backbone circular é, em particular, uma coloração

q-backbone, mas nem toda coloração q-backbone é uma coloração q-backbone circular para

um par (G,H). Na Figura 16, temos uma coloração que é tanto 2-backbone circular quanto

2-backbone para o par (G,M). Já na Figura 17, observe que os vértices a e d, que são vizinhos

no backbone, estão coloridos com cores que não satisfazem a condição da versão circular da

coloração backbone. Dessa forma, esta é uma coloração 2-backbone que não é 2-backbone

circular.

Em (BROERSMA et al., 2009a), para um grafo planar G e um emparelhamento M

de G, é provado que CBC2(G,M)f 6 usando o Teorema das Quatro Cores (APPEL; HAKEN,

1976). Havet et al. observam que esse resultado pode ser generalizado para qualquer q g 2,

resultando em CBCq(G,M) f 2q+ 2 (HAVET et al., 2014). Provamos o seguinte resultado



28

Figura 16 – Uma coloração 2-backbone circular de (G,M) (com as arestas do
backbone em negrito) com CBC2(G,M) = 4.
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Fonte: Autoria própria, 2024.

Figura 17 – Uma coloração 2-backbone de (G,M) (com as arestas do backbone em
negrito) com BBC2(G,M) = 4, que não é 2-backbone circular.
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Fonte: Autoria própria, 2024.

sobre esse limitante sem utilizar o Teorema das Quatro Cores:

Teorema 3. (CASTRO et al., 2022) Se G é um grafo planar e M um emparelhamento de G, então

CBCq(G,M)f q+5 quando q * {2,3}.

Neste trabalho, também corrigimos um erro em uma demonstração de um teorema

de Broersma et al. e mostramos que o resultado do limitante superior do Teorema 4 continua

válido.

Teorema 4. (BROERSMA et al., 2003) Se G é um grafo split e T uma árvore geradora de G,

então, se χ(G)g 3, temos que BBC2(G,T )f χ(G)+2. Esse limitante é o melhor possível.

Neste trabalho, introduzimos e estudamos uma variação direcionada da Coloração

Backbone denominada Coloração Backbone Direcionada. Ao contrário da Coloração Backbone

original, nossa abordagem considera uma orientação acíclica do backbone. Em outras palavras,

isso significa que, dado um subgrafo gerador de G, cada aresta desse subgrafo é orientada de

modo a impedir a formação de ciclos direcionados.

Considerando um grafo G e uma orientação acíclica
2³
H do subgrafo gerador H

de G, uma k-coloração q-backbone direcionada é uma função f : V (G) 2³ {1,2, . . . ,k} que

satisfaz as seguintes condições: | f (u)2 f (v)| g 1 para toda uv * E(G) e f (v)2 f (u)g q para

todo (u,v) *
2³
H . Note que é necessário afirmar que a orientação é acíclica para garantir a boa

definição da coloração, já que para todo (u,v) *
2³
H , precisamos que f (v)> f (u).
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Similarmente à Coloração Backbone, definimos o número cromático q-backbone dire-

cionado, denotado por BBCq(G,
2³
H ), como o menor inteiro k para o qual existe uma k-coloração

q-backbone direcionada de (G,
2³
H ). Quando temos uma coloração q-backbone direcionada que

usa exatamente BBCq(G,
2³
H ) cores, dizemos que essa coloração é ótima.

Para compreender como a Coloração Backbone Direcionada difere da Coloração

Backbone, observamos a Figura 18, que mostra uma 4-coloração 2-backbone de um grafo G e seu

backbone H. De forma semelhante ao que discutimos sobre o par ilustrado na Figura 10, não é

possível obter uma 3-coloração 2-backbone para o par (G,H). Assim, temos que BBC2(G,H) =

4, e a coloração apresentada na Figura 18 é ótima.

Figura 18 – Uma coloração 2-backbone de (G,H) (com as arestas do backbone em
negrito) com BBC2(G,H) = 4.

2 4

1 3

2

b c

a d

e

Fonte: Autoria própria, 2024.

Observe que, ao orientar H conforme a Figura 19 para obter o par (G,
2³
H ), a coloração

2-backbone mostrada na Figura 18 não satisfaz as restrições da coloração 2-backbone direcionada.

Isso ocorre porque (c,b) *
2³
H , o que significa que a cor atribuída a c deve ser menor que a cor

atribuída a b, respeitando a direção do arco na coloração.

Figura 19 – Uma orientação do backbone (com os arcos do backbone em vermelho)
de um grafo G.

b c

a d

e

Fonte: Autoria própria, 2024.

Ao tentar construir uma coloração 2-backbone direcionada ótima f para o par (G,
2³
H )

da Figura 19, observe que, devido à existência de um caminho direcionado nos vértices e, c e
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b, as restrições da coloração exigem que cada vértice que recebe um arco seja colorido com

uma cor α g 3, de modo que as cores desses vértices estejam a uma distância de 2 da cauda do

arco. Assim, os vértices b, c e d devem receber cores maiores ou iguais a 3. Além disso, como

(c,b) *
2³
H , é necessário que f (b)2 f (c) g 2. Sabendo que f (c) g 3, obtemos que f (b) g 5.

Portanto, são necessárias pelo menos 5 cores para colorir o par (G,
2³
H ).

Consequentemente, ao tentar minimizar o número de cores usadas, a Figura 20

apresenta uma coloração 2-backbone direcionada do par (G,
2³
H ) que utiliza exatamente 5 cores.

Assim, essa coloração é ótima.

Figura 20 – Uma coloração 2-backbone direcionada de (G,
2³
H ) (com os arcos do

backbone em vermelho) com BBC2(G,
2³
H ) = 5.

5 3

1 4

1

b c

a d

e

Fonte: Autoria própria, 2024.

Apresentamos agora alguns resultados gerais para a versão direcionada da Coloração

Backbone. Antes de enunciar o primeiro resultado, é necessário definir dois parâmetros:

BBC2
q (G,H) = min{BBCq(G,

2³
H ) |

2³
H é uma orientação acíclica de H} (1.3)

BBC+
q (G,H) = max{BBCq(G,

2³
H ) |

2³
H é uma orientação acíclica de H} (1.4)

Considerando um grafo G e seu subgrafo gerador H, o nosso primeiro teorema

estabelece uma comparação entre os números cromáticos da coloração backbone e da coloração

backbone direcionada.

Teorema 5. Se G é um grafo e H um subgrafo gerador de G, então

BBC2
q (G,H) = BBCq(G,H)f BBC+

q (G,H).

O nosso segundo teorema estabelece um limitante superior para o número cromático

q-backbone direcionado em função do diâmetro de
2³
H , de χ(G) e de um inteiro q g 2, conside-

rando um grafo G arbitrário e uma orientação acíclica
2³
H de um subgrafo gerador H de G. Além

disso, demonstramos que esse limitante é ótimo.
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Teorema 6. Se G é um grafo e
2³
H uma orientação acíclica do subgrafo gerador H de G, então

BBCq(G,
2³
H )f diam(

2³
H ) · (χ(G)+q22)+χ(G). Esse limitante é o melhor possível.

Além dos resultados gerais, ao considerar um grafo G com uma orientação
2³
M de

um emparelhamento perfeito M em G, obtemos alguns resultados específicos para o par (G,
2³
M).

Demonstramos, por exemplo, que o limitante superior estabelecido no Teorema 6 é ótimo mesmo

sob essas condições.

Para um grafo G e uma galáxia H em G, se existe uma orientação acíclica
2³
H de

H tal que cada vértice v de G seja exclusivamente uma cabeça ou uma cauda dos arcos de
2³
H ,

chamamos
2³
H de uma galáxia direcionada de G. Nesse caso, vale que diam(

2³
H )f 1.

Portanto, se G é um grafo planar e
2³
H uma galáxia direcionada de G, então con-

cluímos, a partir do Teorema 6 e do Teorema das Quatro Cores (APPEL; HAKEN, 1976), que

BBCq(G,
2³
H )f q+6. Demonstramos também que esse limitante é ótimo nessas condições.

Considerando um grafo G com n vértices e um caminho hamiltoniano P em G.

Se
2³
P é uma orientação de P formando um caminho direcionado, chamamos

2³
P de caminho

hamiltoniano direcionado de G. Provamos que, neste caso, BBCq(G,
2³
P ) = (n21) ·q+1.

Para apresentar os resultados obtidos sobre a complexidade computacional na Colo-

ração Backbone Direcionada, definimos o problema de complexidade computacional da seguinte

forma:

EMP. 3-COLORAÇÃO q-BACKBONE DIRECIONADA

Entrada: Um grafo G e uma orientação
2³
M de um emparelhamento

perfeito M de G.

Pergunta: BBCq(G,
2³
M)f 3?

Demonstramos que o problema EMP. 3-COLORAÇÃO 2-BACKBONE DIRECIONADA

é resolvido em tempo polinomial para 3 f 4, mas torna-se NP-completo para 3 g 5. Além

disso, generalizamos esse resultado para o caso em que
2³
F é uma orientação de uma floresta de

k-caminhos, onde cada k-caminho é um caminho direcionado na orientação
2³
F .

A estrutura desta dissertação é organizada da seguinte forma. O Capítulo 2 apresenta

as definições e teoremas básicos utilizados ao longo do trabalho. No Capítulo 3, realizamos uma

revisão bibliográfica abrangente dos principais resultados conhecidos na Coloração Backbone,

com ênfase em algumas classes de grafos associadas ao backbone. O Capítulo 4 destaca

as contribuições obtidas, dividindo-se em duas seções distintas: a primeira concentra-se na
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Coloração Backbone, enquanto a segunda aborda a variação denominada Coloração Backbone

Direcionada, apresentando as definições básicas desta variação, bem como os resultados obtidos.

No Capítulo 5, apresentamos as considerações finais, juntamente com possíveis direções para

pesquisas futuras na Coloração Backbone e na sua versão direcionada.
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2 PRELIMINARES

Neste capítulo, introduzimos conceitos fundamentais de Teoria dos Grafos e Com-

plexidade Computacional que serão essenciais para o desenvolvimento desta dissertação. Esses

conceitos foram baseados em três livros que recomendamos para um aprofundamento na área:

“Introduction to Graph Theory” de Douglas B. West (WEST, 2001), “Graph Theory with Appli-

cations” de John A. Bondy e Uppaluri S. R. Murty (BONDY; MURTY, 1976) e “Introduction

to Algorithms” de Thomas R. Cormen, Charles E. Leiserson, Ronald L. Rivest e Clifford Stein

(CORMEN et al., 2022).

2.1 Teoria dos Grafos

Estruturamos esta seção em quatro subseções. A primeira cobre definições básicas,

incluindo a definição formal de grafo, cliques, conjuntos independentes, ciclos e caminhos, além

de resultados iniciais relevantes, como o Teorema de König, que caracteriza grafos bipartidos. A

segunda subseção foca em florestas, árvores e emparelhamentos, conceitos fundamentais para o

estudo das classes de backbone. Na terceira subseção, abordamos a k-coloração de um grafo G,

o algoritmo guloso para coloração, limitantes para o número cromático, além de planaridade,

encerrando com o Teorema das Quatro Cores. Por fim, a quarta subseção apresenta definições

básicas de grafos direcionados, essenciais para a versão direcionada da coloração backbone nesta

dissertação.

Antes de abordar as definições básicas da Teoria dos Grafos, podemos começar

apresentando o problema que deu origem a essa área, conforme destacado em (WEST, 2001).

Trata-se do Problema das Pontes de Königsberg. Nesse problema, a cidade de Königsberg (atual

Kaliningrado, na Rússia) tinha sete pontes que ligavam quatro áreas de terra separadas pelo rio

Prególia, conforme mostrado na Figura 21. O desafio consistia em descobrir se era possível fazer

um passeio pela cidade, cruzando cada uma das sete pontes apenas uma vez e retornando ao

ponto de partida.

Podemos representar as pontes de Königsberg como arestas e cada área de terra

como um vértice, conforme ilustrado na Figura 22, facilitando a visualização do problema. Note

que, ao entrar e sair de uma área de terra, usamos duas pontes conectadas a essa área, o que

requer que cada área de terra tenha um número par de pontes terminando nela se quisermos

cruzar todas as pontes uma única vez. No entanto, isso não ocorre nas pontes de Königsberg,
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Figura 21 – As pontes de Königsberg.

Fonte: (WEST, 2001).

como fica claro na Figura 22, já que, por exemplo, o vértice y tem três pontes terminando nele.

Figura 22 – A representação das pontes de Königsberg usando vértices e arestas.
x

w

z

y

e6

e7

e5

e2

e1

e4

e3

Fonte: Autoria própria, 2024.

2.1.1 Definições básicas

Um grafo G é uma tripla composta de um conjunto de vértices V (G), um conjunto

de arestas E(G) e uma função de incidência φG que associa cada aresta a dois vértices (não

necessariamente distintos), chamados de extremidades da aresta. Se as extremidades de uma

aresta e são u e v, dizemos que u e v são vizinhos ou adjacentes. Se u é extremidade da aresta e,

dizemos que u e e são incidentes.

Quando o grafo em questão está claro no contexto, utilizamos as notações V e E para

representar os conjuntos de vértices e arestas, respectivamente. Na Figura 23, temos um exemplo

de um grafo G com V (G) = {v1,v2,v3,v4,v5}, E(G) = {e1,e2,e3,e4,e5} e φG é definida da

seguinte forma: φG(e1) = v1v2,φG(e2) = v2v3,φG(e3) = v3v4,φG(e4) = v4v5 e φG(e5) = v5v1.

Como cada aresta está associada a um par de vértices pela função de incidência,

podemos visualizar as arestas como os pares de vértices que lhes correspondem. Se e é uma

aresta com extremidades em u e v, podemos representá-la como e = uv (ou e = vu). Observe

que, na Figura 23, não há arestas cujas extremidades estão no mesmo vértice, nem duas arestas
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Figura 23 – Um grafo G.
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Fonte: Autoria própria, 2024.

com as mesmas extremidades. No entanto, isso pode ocorrer em outros grafos, e existe uma

definição apropriada para esses casos.

Um laço é uma aresta cujas extremidades estão no mesmo vértice, isto é, se e é uma

aresta, então e = uu, onde u é um vértice do grafo. Quando temos arestas que compartilham as

mesmas extremidades, chamamos essas arestas de arestas múltiplas. Um grafo G que não possui

laços nem arestas múltiplas é chamado de grafo simples.

Na Figura 24, podemos ver um grafo com laços nos vértices a e d, além de arestas

múltiplas entre os vértices a e c. Portanto, esse grafo não é simples. Contudo, de acordo com

essa definição, o grafo da Figura 23 é um grafo simples.

Figura 24 – Um grafo G com laços e arestas múltiplas.

a

b c d

Fonte: Autoria própria, 2024.

Dados grafos simples G e H, um isomorfismo f : V (G) ³ V (H) é uma função

bijetora que satisfaz a condição: uv * E(G) se, e somente se, f (u) f (v) * E(H). Quando isso

ocorre, dizemos que G é isomorfo a H e denotamos por G >= H.

Na Figura 25, apresentamos dois grafos G e H para os quais vale G >= H, com o

isomorfismo f definido como segue: f (a) = u, f (b) = w, f (c) = x, f (d) = v, e f (e) = z.

Dado um grafo simples G, o grau de um vértice v, denotado por dG(v) (ou d(v)

quando o grafo estiver claro no contexto), é o número de arestas incidentes em v. Se o grafo não
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Figura 25 – Um grafo G e um grafo H isomorfos.
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Fonte: Autoria própria, 2024.

for simples, cada laço é contado duas vezes. A vizinhança de um vértice v, denotada por NG(v)

(ou N(v), quando o grafo for claro no contexto), é o conjunto de vértices adjacentes a v.

O grau máximo de G é representado por ∆(G), enquanto o grau mínimo de G é

representado por δ (G). Dizemos que G é regular se ∆(G) = δ (G), e, se ∆(G) = δ (G) = k, G é

chamado de k-regular.

Ao observar o grafo da Figura 24, podemos identificar as vizinhanças dos vértices:

NG(a) = {a,b,c}, NG(b) = {a,c}, NG(c) = {a,b,d} e NG(d) = {c,d}. Quanto aos graus dos

vértices, temos: dG(a) = 5, dG(b) = 2, dG(c) = 4 e dG(d) = 3.

Um grafo finito é um grafo cujos conjuntos de vértices e arestas são finitos. Se o

conjunto de vértices de um grafo é vazio, ele é chamado de grafo nulo. Um grafo cujo conjunto

de arestas é vazio é chamado de grafo vazio. Quando um grafo possui somente um vértice, ele é

chamado de grafo trivial.

Os grafos estudados nesse trabalho serão sempre simples, finitos, não-nulos e não-

rotulados.

Dado um grafo G, o número de vértices de G, chamado de ordem de G, é denotado

por n(G) (ou simplesmente n) e o número de arestas de G, chamado de tamanho de G, é denotado

por m(G) (ou simplesmente m).

A próxima proposição, conhecida como o “Lema do Aperto de Mão”, apresenta um

resultado relacionado aos graus dos vértices de um grafo.

Proposição 7. Se G é um grafo, então

∑
v*V (G)

d(v) = 2m(G).

O grau médio de um grafo G, denotado por Ad(G), é 2m(G)
n(G) . Para um grafo G

e um vértice v * V (G), dado que δ (G) f d(v) f ∆(G) e usando a Proposição 7, temos que

δ (G)f Ad(G)f ∆(G).
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O complementar de um grafo simples G, denotado por G, é o grafo tal que V (G) =

V (G) e que respeita a seguinte condição: uv * E(G) se, e somente se, uv /* E(G). Na Figura 26,

temos um grafo G e seu complementar G. Note que, em G, o vértice e não é vizinho dos vértices

b e c. Portanto, no complementar G, as arestas eb e ec estão presentes.

Figura 26 – Um grafo G e o seu complementar G.

a

b c

d

e

a c e b d

Fonte: Autoria própria, 2024.

Uma clique em um grafo G é um conjunto S ¦V (G) em que todos os vértices de S

são adjacentes entre si. Um conjunto independente em um grafo G é um conjunto I ¦V (G) em

que todos os vértices de I são dois a dois não adjacentes. O tamanho da maior clique e do maior

conjunto independente do grafo G são denotados por ω(G) e α(G), respectivamente.

Como exemplo, na Figura 26, os vértices a, d e e no grafo G formam uma clique, que

é a maior clique do grafo G, portanto ω(G) = 3. No grafo complementar G, os mesmos vértices

a, d e e formam um conjunto independente, que é o maior conjunto independente do grafo G,

portanto α(G) = 3. Note que as cliques de um grafo G tornam-se conjuntos independentes no

grafo complementar G, e vice-versa.

Um grafo split é um grafo G em que o conjunto de vértices V (G) é particionado

em uma clique e um conjunto independente (podendo existir arestas conectando esses dois

conjuntos). Na Figura 27, observe o grafo G cujo conjunto de vértices é particionado em uma

clique C = {a,b,c,d,e} e um conjunto independente S = { f ,g,h, i}. Note que existem arestas

conectando vértices de C a vértices de S, como as arestas d f e ci.

O grafo split é conhecido por sua estrutura simples, o que resulta em uma ampla

variedade de resultados para essa classe de grafos. Outro grafo de grande interesse de estudo é o

grafo bipartido, que também tem sido extensivamente estudado.

Um grafo bipartido é um grafo G em que o conjunto de vértices V (G) é particionado

em dois conjuntos independentes, podendo existir arestas conectando esses dois conjuntos. Um
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Figura 27 – Um grafo split G com uma clique C e um conjunto independente S que
particiona V (G).

a

e

d

b c

f

g

h

i

C S

Fonte: Autoria própria, 2024.

grafo G é k-partido, se o seu conjunto de vértices é particionado em k conjuntos independentes.

A Figura 28 apresenta um exemplo de grafo bipartido, no qual os vértices vermelhos

formam um conjunto independente, enquanto os vértices verdes constituem o segundo conjunto

independente. No entanto, é importante observar que nem todo grafo é bipartido. A Figura 29

ilustra um grafo que não é bipartido. Adiante, explicaremos por que esse grafo não pode ser

bipartido.

Figura 28 – Um grafo bipartido G.
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d e f

g

h

ba

Fonte: Autoria própria, 2024.

Figura 29 – Um grafo não bipartido G.

c

d e

f
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ba

Fonte: Autoria própria, 2024.
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Um grafo completo é um grafo em que todos os pares de vértices u e v são adjacentes.

Se o grafo possui n vértices, ele é denotado por Kn. Um grafo bipartido completo, também

chamado de biclique, é um grafo bipartido com partições A e B tal que, para cada par (u,v) *

A×B, temos uv * E(G). Quando |A|= r e |B|= s, a biclique é denotada por Kr,s.

Um grafo G é k-partido completo se for k-partido, com as partições V1, . . . ,Vk de

V (G), em que uv * E(G) para quaisquer u *Vi e v *Vj, sempre que i ;= j. A Figura 30 apresenta

exemplos de grafos completos e bipartidos completos.

Figura 30 – Exemplos de grafos completos e grafos bipartidos completos.

K2 K3 K4 K2,3

Fonte: Autoria própria, 2024.

Um passeio é uma sequência alternada de vértices e arestas, (v0,e1,v1, . . . ,ek,vk),

que começa e termina em vértices, com cada aresta ei = vi21vi. Esse passeio é denominado

(v0,vk)-passeio. Os vértices v0 e vk são chamados, respectivamente, de origem e término do

passeio, enquanto os demais vértices na sequência são os vértices internos. O comprimento de

um passeio corresponde ao número de arestas presentes nele. Um passeio fechado é um passeio

em que v0 = vk. Uma trilha é um passeio que não repete arestas, e uma trilha fechada é um

passeio fechado que também não repete arestas.

Um caminho é uma trilha que não repete vértices. Um ciclo é uma trilha fechada que

não repete vértices, exceto a origem e o término (v0 e vk). Quando um grafo G consiste apenas

de um caminho (ciclo) com n vértices, denotamos o grafo G por Pn (Cn). Um (u,v)-caminho é

um caminho que se inicia no vértice u e termina no vértice v. Um ciclo com comprimento k

é chamado de k-ciclo. Um k-ciclo é par ou ímpar, se k é par ou ímpar, respectivamente. Um

3-ciclo é também chamado de triângulo.

Dado um grafo G, um caminho hamiltoniano é um caminho que percorre todos os

vértices de G exatamente uma vez. Na Figura 31, (u,a,v,b,w, f ,u) representa um exemplo de

ciclo em G, enquanto (v,b,w, f ,u,e,z,g,z,d,w,c,v) é um exemplo de trilha fechada no grafo G.

Já (u,a,v,c,w,d,z) é um exemplo de um caminho hamiltoniano em G.

O teorema a seguir, provado por Dénes König em 1936 (KÖNIG, 1936), explica por

que o grafo da Figura 29 não é bipartido: os vértices c, d, e, f e g formam um ciclo ímpar no



40

Figura 31 – Um grafo G não simples.
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Fonte: Autoria própria, 2024.

grafo.

Teorema 8. (KÖNIG, 1936) Um grafo é bipartido se, e somente se, ele não contém nenhum

ciclo ímpar.

A cintura de um grafo G, denotado por g(G), é o comprimento do menor ciclo que

existe no grafo. Se o grafo não tem ciclos, então g(G) = ∞. O grafo de Petersen, ilustrado na

Figura 32, possui cintura 5. Como o grafo de Petersen é um grafo simples, não contém ciclos de

comprimento 1 ou 2. Devido à sua estrutura, ele também não apresenta ciclos de comprimento 3

ou 4. Além disso, como há um ciclo externo de comprimento 5 no grafo de Petersen, este é o

menor ciclo presente no grafo.

Figura 32 – O grafo de Petersen com cintura 5.

Fonte: Autoria própria, 2024.

Dados dois vértices u e v de um grafo G, se existe um (u,v)-caminho em G, a

distância entre u e v, denotada por dG(u,v) (ou simplesmente d(u,v) quando G estiver claro no

contexto), é o menor comprimento de um (u,v)-caminho em G. Caso contrário, se não existir

um (u,v)-caminho, definimos d(u,v) = ∞. O diâmetro de um grafo G, denotado por diam(G), é

a maior distância entre quaisquer dois vértices de G, isto é, diam(G) = maxu,v*V (G) d(u,v).

Observe que, devido à construção do grafo de Petersen (ilustrado na Figura 32),

quaisquer dois vértices que não sejam adjacentes têm um vizinho em comum. Dessa forma,
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podemos afirmar que o diâmetro do grafo de Petersen é igual a 2.

Um subgrafo do grafo G é um grafo H tal que V (H)¦V (G) e E(H)¦ E(G). Além

disso, para cada aresta e = uv em H deve existir uma aresta correspondente em G que conecta os

mesmos vértices. Denotamos por H ¦ G quando H é um subgrafo de G. Observe na Figura 33 o

grafo de Petersen, que contém o C5 como subgrafo.

Figura 33 – O grafo de Petersen e o C5.

Fonte: Autoria própria, 2024.

Um grafo G é conexo se existe um (u,v)-caminho em G, para quaisquer vértices

u*V (G) e v*V (G). Caso contrário, G é desconexo. Uma componente conexa (ou simplesmente

componente) de um grafo G é um subgrafo maximal conexo de G. Um vértice isolado é um

vértice de grau 0.

Considerando o grafo G da Figura 34, podemos observar que não há nenhum caminho

em G que conecte os vértices g e k, indicando que G é um grafo desconexo. Suas componentes

conexas são: C1, cujos vértices são {a,b,c,d,e, f ,g,h}; C2, cujo vértice é {i}; C3, cujo vértice é

{ j}; e C4, cujos vértices são {k, l}. As componentes C2 e C3 são formadas apenas por vértices

isolados.

Figura 34 – Um grafo G e suas componentes conexas.
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Fonte: Autoria própria, 2024.

O subgrafo de G obtido ao remover um vértice v (um conjunto de vértices S) é

denotado por G2 v (G2S). Da mesma forma, o subgrafo de G obtido ao remover uma aresta

e (um conjunto de arestas M) é denotado por G2 e (G2M). Uma articulação ou um vértice
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de corte v em um grafo G é um vértice tal que G2 v possui mais componentes que G. De

maneira análoga, uma ponte ou aresta de corte e em G é uma aresta tal que G2 e possui mais

componentes que G. Um subgrafo induzido por um conjunto S ¦ V (G) em G, denotado por

G[S], é o subgrafo obtido removendo-se todos os vértices em S, isto é, G2S. Dizemos que um

grafo G é H-livre se não contém H como subgrafo induzido.

No grafo G da Figura 35, o vértice c é uma articulação e a aresta cd é uma ponte.

Podemos observar que nem todo subgrafo de um grafo G é um subgrafo induzido desse grafo.

Por exemplo, C4 e P5 são subgrafos de G, mas não são subgrafos induzidos. As arestas ab, bc, ce

e ca formam um C4 como subgrafo, porém, devido à presença da aresta bc, o subgrafo induzido

pelos vértices a, b, c e d não é um C4. Portanto, em outras palavras, o grafo G da Figura 35 é

C4-livre.

Figura 35 – Um grafo G que não tem C4 e P5 como subgrafos induzidos.

a b c d

e

Fonte: Autoria própria, 2024.

2.1.2 Florestas, árvores e emparelhamentos

Um grafo G é acíclico se não possui ciclos. Uma floresta F é um grafo acíclico.

Uma árvore é uma floresta conexa. Uma folha é um vértice de grau 1. Um subgrafo gerador H

de G é um subgrafo que contém todos os vértices de G. Uma árvore geradora é um subgrafo

gerador que é uma árvore.

As árvores e florestas são classes de grafos amplamente estudadas na Teoria dos

Grafos. Um exemplo simples de árvore é o caminho com n vértices, denotado por Pn. Um

resultado básico, frequentemente utilizado em demonstrações envolvendo árvores, é o seguinte:

toda árvore T com n(T )g 2 vértices possui pelo menos duas folhas.

Um grafo k-degenerado é um grafo G no qual, para todo subgrafo H ¦ G, existe pelo

menos um vértice em H com grau no máximo k. É importante notar que todo grafo 1-degenerado

é uma floresta.

Uma estrela S é uma árvore composta por um vértice x, denominado o centro da

estrela, que é adjacente a todos os outros vértices. Uma estrela com n vértices é o grafo bipartido
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completo K1,n21. Uma galáxia é uma floresta de estrelas. Podemos observar um exemplo de

uma galáxia na Figura 36, na qual as estrelas têm centros em a, e e k.

Figura 36 – Uma galáxia.

a e k

b c d f g h i j l m

Fonte: Autoria própria, 2024.

Dado um grafo simples G, um emparelhamento M é um conjunto de arestas de G no

qual não há duas arestas que compartilham um vértice em comum como extremidade. Em outras

palavras, para qualquer par de arestas distintas e, f * M, as extremidades de e e f são vértices

distintos. Dizemos que um vértice é saturado por M, ou M-saturado, se ele é uma extremidade

de alguma aresta em M; caso contrário, o vértice é insaturado por M, ou M-insaturado. Um

emparelhamento perfeito é um emparelhamento que satura todos os vértices de G. Um exemplo

de emparelhamento perfeito no grafo de Petersen é apresentado na Figura 37.

Figura 37 – O grafo de Petersen com um emparelhamento perfeito em negrito.

Fonte: Autoria própria, 2024.

2.1.3 Coloração de vértices e planaridade

Dado um grafo G, uma k-coloração própria de G, ou simplesmente uma k-coloração

de G, é uma função f : V (G)2³{1,2, . . . ,k} que atribui cores aos vértices de modo que vértices

adjacentes não compartilhem a mesma cor. Quando G admite uma k-coloração, dizemos que

G é k-colorível. O número cromático de G, denotado por χ(G), é o menor inteiro k tal que G é

k-colorível. Se χ(G) = k, dizemos que G é um grafo k-cromático. Uma k-coloração de um grafo

k-cromático G é chamada de coloração ótima.

Considerando uma k-coloração f de um grafo G, uma classe de cor é o conjunto de
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vértices que são coloridos com a mesma cor. Por definição de coloração, cada classe de cor é um

conjunto independente. Portanto, saber que um grafo admite uma k-coloração é equivalente a

saber se ele é k-partido, como foi definido anteriormente.

Sendo G o grafo de Petersen (ilustrado na Figura 32), sabemos que G contém um

ciclo ímpar (o ciclo externo, de comprimento 5). Portanto, pelo Teorema 8, sabemos que o grafo

de Petersen não é bipartido e, consequentemente, não admite uma 2-coloração. Assim, χ(G)g 3.

Uma 3-coloração do grafo de Petersen é apresentada na Figura 38, o que prova que χ(G) = 3.

Figura 38 – Uma 3-coloração do grafo de Petersen.
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2

31

2 1

3 3
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Fonte: Autoria própria, 2024.

Outro fato que decorre da definição de k-coloração de um grafo G é que χ(G) g

ω(G), pois uma clique C em G exige pelo menos |C| cores distintas. O grafo de Petersen ilustra

um caso em que essa desigualdade é estrita, pois satisfaz 3 = χ(G) > ω(G) = 2, onde G é o

grafo de Petersen.

Um grafo G é dito perfeito se todo subgrafo induzido H satisfaz χ(H) = ω(H).

Como todo subgrafo induzido de um grafo completo é completo, e sabemos que χ(H) = ω(H)

para qualquer grafo completo H, concluímos que o grafo completo é perfeito. No entanto, existe

outro tipo de grafo importante que também possui essa propriedade.

Dado um ciclo C em um grafo G, dizemos que uma aresta e é uma corda de C se e

não pertence ao ciclo C, mas suas extremidades estão em C. Um grafo G é chamado de cordal se

todo ciclo de comprimento pelo menos 4 possui uma corda. Dizemos que um vértice v de G é

simplicial se NG(v) é uma clique. Uma propriedade importante dos grafos cordais é que eles

sempre possuem vértices simpliciais. A partir da existência desses vértices simpliciais, pode-se

provar que os grafos cordais são perfeitos.

Considerando um ordenamento dos vértices σ = (v1, . . . ,vn) de um grafo G, uma

coloração gulosa consiste em colorir os vértices seguindo a ordem σ , atribuindo a cada vértice
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v * V (G) a menor cor que não aparece nos seus vizinhos já coloridos. Com essa coloração,

obtemos um limitante superior para o número cromático de um grafo, isto é, χ(G)f ∆(G)+1,

uma vez que cada vértice possui no máximo ∆(G) vizinhos que podem já ter sido coloridos na

ordem dada.

Se o grafo G é completo ou um ciclo ímpar, temos a igualdade χ(G) = ∆(G)+1.

Nos demais casos, o seguinte teorema, demonstrado por L. Brooks em 1941, aprimora o limitante

superior:

Teorema 9. (BROOKS, 1941) Se G é um grafo conexo que não é completo nem um ciclo ímpar,

então χ(G)f ∆(G).

Um grafo G é planar se ele pode ser desenhado no plano de forma que suas arestas

não se cruzem. Esse desenho é chamado de imersão de G no plano. Um grafo plano é uma

imersão de um grafo planar. O grafo plano divide o plano em regiões conexas, sendo que cada

uma dessas regiões fechadas, limitadas pelas arestas de G, é chamada de face de G. O conjunto

das faces de um grafo plano G é denotado por F(G).

Nem todo grafo é planar. Os grafos apresentados na Figura 39 exemplificam grafos

que não possuem essa propriedade.

Figura 39 – K5 e K3,3 não são grafos planares.

Fonte: Autoria própria, 2024.

Dizemos que uma face f é incidente aos vértices e arestas que estão em sua fronteira.

Portanto, toda aresta que não é uma ponte é incidente a duas faces distintas. O grau da face f em

um grafo plano G, denotado por dG( f ) (ou apenas d( f ) quando G estiver claro no contexto), é o

número de arestas incidentes a f , sendo que as pontes são contadas duas vezes. Sobre a soma

total dos graus das faces, é verdade que:

Proposição 10. Se G é um grafo plano, então ∑ f*F(G) d( f ) = 2 · |E(G)|.
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Um teorema muito conhecido sobre os grafos planos é a “Fórmula de Euler”, que foi

provado em 1758 por Leonhard Euler.

Teorema 11. (EULER, 1758) Se G é um grafo plano conexo, então

|V (G)|2 |E(G)|+ |F(G)|= 2.

Se G é um grafo planar e livre de triângulos, Grötzsch provou em 1958 o seguinte

resultado sobre o número cromático desse grafo.

Teorema 12. (GRÖTZSCH, 1959) Se G é um grafo planar e livre de triângulos, então χ(G)f 3.

Em 1976, Appel e Haken demonstraram um resultado mais abrangente para a classe

de grafos planares, conhecido como o “Teorema das Quatro Cores”. Este é um dos resultados

mais famosos na teoria de coloração de vértices (APPEL; HAKEN, 1976).

Teorema 13. (APPEL; HAKEN, 1976) Todo grafo planar é 4-colorível.

2.1.4 Grafos direcionados

Um grafo direcionado ou digrafo D é definido pela tripla ordenada (V (D),A(D),φD),

onde V (D) é o conjunto de vértices de D, A(D) é o conjunto de arcos (ou arestas direcionadas),

e φD é uma função de incidência que associa cada arco a um par ordenado de vértices em D. Se

a * A(D) e φD(a) = (u,v) para u e v vértices de D, então a é um arco que vai de u para v. Nesse

caso, chamamos u de cauda e v de cabeça do arco.

Dado um grafo G, podemos obter um grafo direcionado D orientando as arestas

de G. Isso significa que, para cada aresta uv * E(G), substituímos uv por um arco (u,v) ou

(v,u). O grafo direcionado resultante é chamado de uma orientação de G. Quando G é um grafo

completo, a orientação de G é chamada de torneio.

Seja D um grafo direcionado, definimos o grafo subjacente de D como o grafo G

obtido ao substituir cada arco (u,v) * A(D) por uma aresta não orientada uv * E(G). Dizemos

que D é fracamente conectado se o seu grafo subjacente G é conexo.

Considerando um grafo direcionado D, o grau de entrada de um vértice v em D,

denotado por d2
D (v) (ou simplesmente d2(v) quando D estiver claro no contexto), é o número

de arcos com cabeça em v, já o grau de saída de um vértice v em D, denotado por d+
D (v) (ou

simplesmente d+(v) quando D estiver claro no contexto), é o número de arcos com cauda em
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v. Uma fonte em D é um vértice v tal que d2(v) = 0, ou seja, não há arcos que chegam em v.

Por outro lado, um sumidouro em D é um vértice v tal que d+(v) = 0, ou seja, não há arcos

saindo de v. Os graus máximos e mínimos de entrada e saída de um grafo direcionado D serão

representados por ∆2(D), ∆+(D), δ2(D) e δ+(D), respectivamente.

Um caminho direcionado em um grafo direcionado é uma sequência de vértices na

qual os vértices podem ser ordenados de modo que exista um arco a = (u,v) se, e somente se, v

aparece imediatamente após u nessa ordem. Um ciclo direcionado é definido de maneira similar,

com a diferença de que ele admite também o arco (vn,v1), onde v1 e vn são, respectivamente,

o primeiro e o último vértice da sequência, completando assim o ciclo. O comprimento de um

caminho ou ciclo direcionado é a quantidade de arcos presentes nele.

Assim como ocorre no caso não direcionado, também podemos considerar grafos

direcionados que não contêm ciclos direcionados, os quais seriam análogos às florestas na versão

direcionada. Definimos formalmente que um grafo direcionado D é acíclico se ele não admite

nenhum ciclo direcionado. Todo grafo direcionado acíclico D possui pelo menos uma fonte e

um sumidouro.

Na Figura 40, temos um grafo G e uma orientação de G. O grafo direcionado obtido

de G contém um ciclo direcionado (d,c,b,a,d), e, portanto, não é acíclico.

Figura 40 – Uma orientação de um grafo G.
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Fonte: Autoria própria, 2024.

Dados dois vértices u e v de um grafo direcionado D, se existe um caminho dire-

cionado que liga u a v, a distância entre u e v, denotada por dD(u,v) (ou simplesmente d(u,v)

quando D estiver claro no contexto), é o menor comprimento de um caminho direcionado que

liga u a v. Se não existe esse caminho direcionado, definimos dD(u,v) = ∞. O diâmetro de um

grafo direcionado G, denotado por diam(D), é a maior distância entre quaisquer dois vértices de

D, isto é, diam(D) = maxu,v*V (D) d(u,v).
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2.2 Complexidade Computacional

Nesta seção, apresentamos as definições fundamentais de complexidade computaci-

onal utilizadas nesta dissertação, com o objetivo de compreender as classes de complexidade

polinomial P e a classe de problemas NP-completos.

Um algoritmo é um procedimento computacional que recebe um conjunto de valores

como entrada e, em um período finito de tempo, produz um conjunto de valores como saída.

Os algoritmos são usados para resolver problemas computacionais. Uma instância de um

problema consiste em um conjunto específico de valores de entrada que atendem às condições

estabelecidas pelo problema. Esses valores são processados pelo algoritmo para computar a

solução correspondente.

Por exemplo, considere o problema de ordenação (sorting problem), que pode ser

formulado da seguinte forma: dada uma sequência de n números como entrada, o objetivo

é reordená-los em ordem não decrescente. A saída esperada é uma sequência de n números

dispostos nessa ordem. Nesse caso, se a entrada for I = (28,7,10,80,5), um algoritmo que

resolve o problema de ordenação produzirá como saída S = (5,7,10,28,80). Nesse contexto, I é

uma instância do problema de ordenação.

Os passos de um algoritmo correspondem às operações elementares realizadas

durante sua execução, como, por exemplo, operações aritméticas, lógicas, atribuições e compara-

ções. O tempo de execução de um algoritmo para uma determinada entrada é o número de passos

executados. Dizemos que um algoritmo é correto para um problema computacional se, para toda

instância válida do problema, ele produz uma solução correta ao ser executado com essa entrada.

Podemos formalizar o conceito de um problema de forma mais precisa. Um problema

abstrato Q é definido como uma relação binária entre dois conjuntos: o conjunto de instâncias

do problema I e o conjunto de soluções do problema S.

Por exemplo, no problema do caminho mínimo, uma instância consiste em um

grafo G, dois vértices u e v em G. A solução para essa instância é uma sequência de vértices

que representa o (u,v)-caminho de menor comprimento em G, caso tal caminho exista. Caso

contrário, a solução é definida como uma sequência vazia.

Um problema de decisão é um tipo específico de problema abstrato cuja solução está

restrita a duas respostas possíveis: “sim” ou “não”. Por sua vez, um problema concreto é aquele

cujo conjunto de instâncias é formado por strings binárias. O tamanho de uma instância i em um

problema concreto é definido como o comprimento da string que a representa, ou seja, o número



49

total de bits necessários para representar i. Esse tamanho é denotado por |i|.

Uma noção importante sobre os algoritmos é determinar o tempo necessário para o

algoritmo computar a solução de um problema concreto. Para isso, precisamos da definição da

notação-O , que permite descrever limites assintóticos superiores para funções de complexidade.

Seja g(n) uma função, definimos:

O(g(n)) = { f (n) | existem constantes positivas c e n0 tais que 0 f f (n)f c ·g(n), "n g n0}.

De forma simples, dizer que f (n) * O(g(n)) significa que o crescimento de f (n) é

limitado superiormente pelo crescimento de g(n), para valores suficientemente grandes de n. Um

algoritmo de tempo polinomial é definido como um algoritmo que, dado uma entrada x, existe

uma constante k tal que ele produz a saída em tempo O(|x|k).

Dizemos que um algoritmo resolve um problema concreto em tempo O(T (n)) se,

para uma instância i do problema com |i| = n, o algoritmo computa uma solução em tempo

O(T (n)). Um problema concreto é resolvido em tempo polinomial se existe um algoritmo que

o resolve em tempo O(nk), para alguma constante k. Portanto, a classe de complexidade P é

definida como o conjunto de problemas concretos de decisão que podem ser resolvidos em tempo

polinomial.

Um alfabeto Σ é um conjunto finito de símbolos. Uma palavra (string) é definida

como uma sequência finita de símbolos pertencentes a Σ. Uma linguagem L é um conjunto de

palavras formadas a partir de Σ. Dado um alfabeto Σ, o conjunto de todas as palavras possíveis

em Σ é denotado por Σ7.

Em problemas de decisão, consideramos o alfabeto como Σ = {0,1}, onde 0 repre-

senta a resposta “não” e 1 representa “sim”. Dizemos que um algoritmo A aceita uma palavra

x * {0,1}7, se, ao receber x como entrada, A produz como saída 1. Denotando A(x) como a

saída do algoritmo A para a entrada x, a linguagem aceita L pelo algoritmo A é definida como

L = {x * {0,1}7 | A(x) = 1}. Contudo, quando A(x) = 0, dizemos que o algoritmo A rejeita a

palavra x.

Uma linguagem L é decidida por um algoritmo A se A aceita toda palavra x * L

e rejeita toda palavra x /* L. Além disso, dizemos que uma linguagem L é aceita em tempo

polinomial por um algoritmo A se A aceita L e existe uma constante k tal que, para toda palavra

x * L de comprimento n, A aceita x em tempo O(nk). Por fim, uma linguagem L é decidida em

tempo polinomial por um algoritmo A se existe uma constante k tal que, para qualquer palavra

x * {0,1}7 de comprimento n, o algoritmo decide corretamente se x * L em tempo O(nk).
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Considere, por exemplo, o problema do ciclo hamiltoniano. Dado um grafo G, a

pergunta é: "Existe um ciclo hamiltoniano em G?". Esse problema pode ser representado por

uma linguagem, em que as palavras correspondem às instâncias do problema com resposta

positiva. Formalmente, definimos a linguagem:

CICLO-HAM = {ïGð | G admite um ciclo hamiltoniano}.

Dada uma instância ïGð do problema, um algoritmo de decisão para essa linguagem

enumera todas as permutações possíveis dos vértices do grafo G e verifica se alguma delas cor-

responde a um ciclo hamiltoniano. Se encontrar uma permutação que seja um ciclo hamiltoniano,

o algoritmo interrompe a execução e retorna 1 como saída. Caso contrário, após garantir que

nenhuma permutação corresponde a um ciclo hamiltoniano, o algoritmo retorna 0.

Um algoritmo de verificação para uma linguagem é um algoritmo A de dois ar-

gumentos: uma palavra de entrada x e uma palavra binária y, essa última é chamada de cer-

tificado. Dizemos que o algoritmo A verifica a entrada x se existe um certificado y tal que

A(x,y) = 1. A linguagem verificada por um algoritmo A é definida por L = {x * {0,1}7 | #y *

{0,1}7 tal que A(x,y) = 1}. Em outras palavras, o algoritmo A verifica uma linguagem L se,

para cada x * L, existe um certificado y que o algoritmo utiliza para provar que x * L. Por outro

lado, se x /* L, não existe nenhum certificado y que faça o algoritmo concluir que x * L.

A classe de complexidade NP é a classe de linguagens que podem ser verificadas

por um algoritmo de tempo polinomial no tamanho da instância.

Uma função f : {0,1}7 2³ {0,1}7 é computável em tempo polinomial se existe um

algoritmo de tempo polinomial A tal que para toda entrada x * {0,1}7, A produz f (x) como

saída. Dizemos que uma linguagem L1 é redutível em tempo polinomial a uma linguagem L2

se existe uma função computável em tempo polinomial f : {0,1}7 2³ {0,1}7 tal que, para

todo x * {0,1}7, vale que x * L1 se, e somente se, f (x) * L2. Nesse caso, denotamos L1 fP L2,

e chamamos f de função de redução e o algoritmo de tempo polinomial F que calcula f de

algoritmo de redução.

Essas reduções permitem demonstrar que a dificuldade de um problema é, no mínimo,

comparável à de outro, diferindo apenas por um fator polinomial. Com isso, podemos finalmente

definir a classe dos problemas mais difíceis em NP, conhecidos como problemas NP-completos.

Uma linguagem L ¦ {0,1}7 é NP-completa se L * NP e L7 fP L, para todo L7 * NP. Se uma

linguagem L só satisfaz essa última condição, dizemos que L é NP-difícil.
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3 REVISÃO BIBLIOGRÁFICA

Neste capítulo, realizamos uma revisão bibliográfica abordando os principais resulta-

dos da Coloração Backbone. Omitimos os resultados da Coloração Backbone Circular, pois nosso

interesse é apresentar os resultados para a variação direcionada, definida nesta dissertação, que

não adota uma noção circular das cores. Para uma revisão bibliográfica em português sobre os

resultados da versão circular da Coloração Backbone, recomendamos a dissertação da Camila S.

Araújo (ARAÚJO, 2021). O capítulo está dividido da seguinte forma: a primeira seção aborda as

definições básicas dessa coloração, a segunda seção trata dos limitantes gerais para um backbone

qualquer, a terceira seção discute os limitantes em classes específicas de backbone e a quarta

seção traz resultados relacionados a problemas de complexidade.

3.1 Conceitos fundamentais na Coloração Backbone

A Coloração Backbone é uma variação do problema de Coloração de Vértices de

um grafo e esta coloração foi introduzida no artigo (BROERSMA et al., 2003). Considerando

um grafo G = (V,E) e um subgrafo gerador H de G, que será chamado de backbone de G,

uma k-coloração q-backbone de (G,H) é uma função f : V (G) 2³ {1,2, . . . ,k} que atende

às seguintes condições: | f (u)2 f (v)| g 1 para toda uv * E(G) e | f (u)2 f (v)| g q para toda

uv * E(H). Esta última condição é chamada de condição do backbone.

O número cromático q-backbone de (G,H), denotado por BBCq(G,H), é o menor

inteiro k para o qual existe uma k-coloração q-backbone de (G,H). Quando uma coloração

q-backbone do par (G,H) utiliza exatamente BBCq(G,H) cores, essa coloração é chamada

de ótima. Em uma coloração q-backbone, duas cores c1 e c2 são chamadas de vizinhas se

|c1 2 c2|< q. Portanto, observe que cores vizinhas não podem ser usadas nas extremidades de

uma aresta no backbone, pois isso violaria a condição do backbone.

Para comparar os parâmetros da Coloração de Vértices com a Coloração Backbone,

ilustramos uma 3-coloração de um grafo G na Figura 41. Note que esta é uma coloração ótima

do grafo, pois os vértices a, b e c formam uma clique, ou seja, esses vértices são mutuamente

adjacentes. Portanto, são necessárias pelo menos três cores para colorir o grafo propriamente.

Note que, para o mesmo grafo G com χ(G) = 3, ao considerarmos as arestas ad e

bc como parte do backbone, obtemos um emparelhamento, que denotamos por M. Por definição,

o backbone é um subgrafo de G e M é um conjunto de arestas, ao tratar M como backbone,
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Figura 41 – Uma coloração ótima do grafo G com χ(G) = 3.
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Fonte: Autoria própria, 2024.

estamos, na verdade, considerando o subgrafo H = (V (G),M), onde E(H) = M. Para simplificar,

passaremos a referir-nos a M diretamente como esse subgrafo. A Figura 42 ilustra o grafo G

junto com seu backbone M.

Figura 42 – Um grafo G com seu backbone M (com as arestas do backbone em
negrito).
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Fonte: Autoria própria, 2024.

Observe que, ao tentar construir uma 3-coloração 2-backbone para o par (G,M) da

Figura 42, a cor 2 não pode ser utilizada, pois impede o uso das cores 1 e 3 nas extremidades

opostas das arestas do backbone, já que a cor 2 é vizinha tanto da cor 1 quanto da cor 3. Dessa

forma, somos forçados a usar as cores 1 e 3 nas extremidades das arestas do backbone. No

entanto, os vértices a, b e c formam uma clique, ou seja, são mutuamente adjacentes, exigindo,

portanto, três cores distintas (excluindo a cor 2). Portanto, não é possível construir uma 3-

coloração 2-backbone para (G,M). Na Figura 43, apresentamos uma 4-coloração 2-backbone de

(G,M). Como não é possível colorir com apenas 3 cores, concluímos que BBC2(G,M) = 4.

Figura 43 – Uma 4-coloração 2-backbone ótima de (G,M) (com as arestas do
backbone em negrito).
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Fonte: Autoria própria, 2024.
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Uma definição amplamente utilizada em demonstrações de resultados sobre colo-

ração backbone é a de coloração simétrica. Broersma et al. e Bu e Li definem essa coloração

para um caso específico de backbone e para q = 2, mas essa definição pode ser estendida para

qualquer backbone e para qualquer inteiro q g 2 (BROERSMA et al., 2007; BU; LI, 2011).

Dados um grafo G e um subgrafo gerador H de G, considere f e g como duas

k-colorações de G que satisfazem f (v)+ g(v) = k+ 1 para todo vértice v de G. Se f é uma

k-coloração q-backbone de (G,H), então, pela relação dada, temos que |g(u)2g(v)|= | f (u)2

f (v)| g q para todo uv * E(H), uma vez que f satisfaz a condição do backbone. Logo, g também

será uma k-coloração q-backbone de (G,H).

Assim, dizemos que f é uma coloração simétrica, ou simplesmente simétrica, de g

se f e g são k-colorações de um grafo G que satisfazem f (v)+g(v) = k+1 para todo v *V (G),

e se f ser uma k-coloração q-backbone de (G,H) implica que g também é, onde H é um subgrafo

gerador de G.

Considerando os pares de grafos (G,H) e (G2,H 2), dizemos que (G2,H 2) é um

subpar de (G,H), denotado por (G2,H 2)¦ (G,H), se G2 ¦ G e H 2 ¦ H. Neste caso, temos que

BBCq(G2,H 2)f BBCq(G,H), pois toda coloração q-backbone de (G,H) é, em particular, uma

coloração q-backbone para (G2,H 2).

Se c é uma k-coloração q-backbone de um subpar de (G,H), então dizemos que c é

uma k-coloração q-backbone parcial de (G,H). Sendo c uma k-coloração q-backbone parcial de

um par (G,H), uma cor α é dita disponível para um vértice v *V (G) se nenhum vizinho de v

em G está colorido com essa cor em c e se nenhum vizinho de v no backbone está colorido com

uma cor vizinha a α em c. Caso contrário, a cor α é dita proibida para v.

3.2 Limitantes gerais da Coloração Backbone

Nesta seção, discutimos limitantes gerais conhecidos na Coloração Backbone, válidos

para qualquer backbone. Dados um grafo G e um subgrafo gerador H de G, sabemos que toda

k-coloração q-backbone de (G,H) é, necessariamente, uma k-coloração de G. Portanto, temos

o limitante básico BBCq(G,H) g χ(G). Havet et al. destacam que há igualdade quando o

backbone é um grafo vazio, ou seja, sem arestas, pois a condição do backbone é satisfeita por

vacuidade, resultando em uma coloração própria do grafo G (HAVET et al., 2014).

Proposição 14. (HAVET et al., 2014) Sejam G um grafo e H um subgrafo gerador de G. Dado
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q g 2, temos q ·χ(H)2q+1 f BBCq(G,H)f q ·χ(G)2q+1.

Demonstração. Dado que (H,H) ¦ (G,H) ¦ (G,G), temos BBCq(H,H) f BBCq(G,H) f

BBCq(G,G), conforme afirmamos anteriormente. Sejam Y * {G,H} e f uma χ(Y )-coloração

de Y . Vamos construir a coloração h da seguinte forma: h(v) = q · f (v)2 q+ 1, para todo

v *V (G). Note que h é uma coloração de Y , pois, para todo uv * E(Y ), temos

h(v)2h(u) = q · f (v)2q+12q · f (u)+q21 = q · ( f (v)2 f (u)) ;= 0,

visto que f é uma χ(Y )-coloração de Y e q g 2. A condição do backbone também é satisfeita,

pois, dado uv* E(Y ), temos |h(v)2h(u)|= q · | f (v)2 f (u)| g q, uma vez que f é uma coloração

de Y , garantindo que | f (v)2 f (u)| g 1. A coloração h é ótima, pois, em sua definição, ela apenas

distancia todas as cores de f em q unidades (exceto a primeira cor), assegurando que a condição

do backbone é satisfeita para todas as arestas do grafo Y , uma vez que todas elas estão no

backbone.

Na Figura 44, são apresentados um grafo G e dois pares de grafos, (G,H) e (G,G),

onde H é um subgrafo de G. No grafo G, observa-se uma 3-coloração ótima f , enquanto para o

par (G,H) é ilustrada uma 4-coloração 2-backbone ótima. Ao aplicarmos a função mencionada

na prova da Proposição 14 na coloração f , conseguimos construir uma 5-coloração 2-backbone

ótima também para (G,G).

Figura 44 – Coloração ótima do grafo G e coloração 2-backbone ótima dos pares
(G,H) e (G,G) (com as arestas do backbone em negrito).
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Fonte: Autoria própria, 2024.

Para q = 2, decorre da Proposição 14 o seguinte corolário.

Corolário 15. (BROERSMA et al., 2007) Se G é um grafo e H um subgrafo gerador de G, então

BBC2(G,H)f 2 ·χ(G)21.
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Wang et al. resumem alguns resultados que seguem diretamente do Corolário 15

(WANG et al., 2012). Dados um grafo G e um backbone H de G, se G for planar, pelo Teorema

das Quatro Cores (APPEL; HAKEN, 1976), temos que χ(G) f 4. Assim, pelo Corolário 15,

conclui-se que BBC2(G,H) f 7. Além disso, se G for bipartido, sabemos que χ(G) f 2, e,

aplicando o mesmo corolário, temos que BBC2(G,H)f 3. Agora, se G for um grafo planar livre

de triângulos, pelo Teorema de Grötzch (GRÖTZSCH, 1959), sabemos que χ(G)f 3 e com o

corolário, obtemos que BBC2(G,H)f 5. Se G for um grafo k-degenerado, então χ(G)f k+1,

e, portanto, BBC2(G,H)f 2k+1, conforme o Corolário 15.

Proposição 16. (HAVET et al., 2014) Sejam G um grafo e H um subgrafo gerador de G. Dado

q g 2, temos BBCq(G,H)f (χ(G)+q22) ·χ(H)2q+2.

Demonstração. Sejam g uma χ(G)-coloração de G e h uma χ(H)-coloração de H. Para v *

V (G), definimos a coloração f como segue:

f (v) =

ù

ü

ú

ü

û

(h(v)21) · (q22+χ(G))+g(v) , se h(v) é ímpar;

(h(v)21) · (q22+χ(G))+χ(G)+12g(v) , se h(v) é par.

Para mostrar que f é uma ((χ(G)+q22) ·χ(H)2q+2)-coloração 2-backbone de

(G,H), consideramos uv * E(G). Sem perda de generalidade, suponhamos que h(u)g h(v). Se

h(u) = h(v) e, como g é uma coloração de G, concluímos que

| f (u)2 f (v)|= |g(u)2g(v)| ;= 0.

Agora, suponha que h(u)> h(v). Se h(u) e h(v) têm a mesma paridade, e conside-

rando que |g(u)2g(v)| f χ(G)21 (pois g é uma coloração de G), temos

| f (u)2 f (v)| g 2 · (q22+χ(G))2|g(u)2g(v)| g q+(q22)+(χ(G)21)g q.

Se h(u) é par e h(v) é ímpar, e sabendo que g(u)+g(v)f 2 ·χ(G)21 (pois g é uma

coloração de G), então

| f (u)2 f (v)| g q+2 ·χ(G)212 (g(u)+g(v))g q.

Se h(u) é ímpar e h(v) é par, e sabendo que g(u)+g(v)g 3 (pois g é uma coloração

de G), então

| f (u)2 f (v)| g q23+g(u)+g(v)g q.

O que conclui a demonstração.
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Podemos comparar a otimalidade dos limitantes superiores das Proposições 14

e 16. Para o par (G,P) da Figura 45 e q = 2, o limitante da Proposição 14 é ótimo, com

BBC2(G,P) f 5. Em contraste, o outro limitante é BBC2(G,P) f 6, uma vez que χ(P) f 2

para um caminho P. Já para o par (G,T ) da Figura 46 e q = 4, o limitante da Proposição 16 é

ótimo, com BBC4(G,T )f 10, pois χ(T )f 2 para uma árvore T , enquanto o primeiro limitante

é pior, com BBC4(G,T ) f 13. Ambos os exemplos aparecem em artigos, acompanhados das

respectivas provas dos seus números cromáticos backbone, que serão apresentados posteriormente

(BROERSMA et al., 2007; HAVET et al., 2014).

Figura 45 – Um grafo G com χ(G) = 3 e um caminho hamiltoniano P em G tal que
BBC2(G,P) = 5 (com as arestas do backbone em negrito).

Fonte: Autoria própria, adaptado de (BROERSMA et al., 2007), 2024.

Figura 46 – Um grafo planar G com χ(G) = 4 e uma árvore geradora T de G tal que
BBC4(G,T ) = 10 (com as arestas do backbone em negrito).

Fonte: Autoria própria, adaptado de (HAVET et al., 2014), 2024.

Um outro limitante geral que aparece na literatura sobre coloração backbone depende

do número cromático do backbone e do número de vértices do grafo, conforme apresentado a

seguir e provado por Janczewski e Turowski (JANCZEWSKI; TUROWSKI, 2015a).

Proposição 17. (JANCZEWSKI; TUROWSKI, 2015a) Sejam G um grafo com n vértices e H um

subgrafo gerador de G. Dado q g 2, temos BBCq(G,H)f q · (χ(H)21)+n2χ(H)+1.
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No artigo de Bu et al., os autores apresentam um resultado geral sobre a determinação

do número cromático 2-backbone de um par ser igual a 3. Eles provam que, para um grafo

conexo G com n(G)g 2 e um subgrafo gerador H de G, vale que BBC2(G,H) = 3 se, e somente

se, G é bipartido. Esse resultado, enunciado na proposição a seguir, é amplamente utilizado em

provas de complexidade computacional e pode ser generalizado para qualquer inteiro q g 2 e

para δ (H)g 1 (BU; ZHANG, 2011).

Proposição 18. (BU; ZHANG, 2011) Se G é um grafo conexo e H um subgrafo gerador de G

com δ (H)g 1, então BBCq(G,H) = q+1 se, e somente se, G é um grafo bipartido.

Demonstração. Considerando G e H como no enunciado da proposição.

(ó) Suponha que BBCq(G,H) = q+1 e seja f uma (q+1)-coloração q-backbone de (G,H).

Afirmamos que não há vértice v em G colorido com a cor α , onde 2 f α f q, o que é equivalente

a dizer que f é uma coloração de G que utiliza apenas duas cores, as cores 1 e q+ 1. Isso

implica que G é bipartido. Para mostrar isso, suponha, por absurdo, que existe u * V (G) tal

que f (u) = α , com 2 f α f q. Como δ (H) g 1, existe v * V (G) tal que uv * E(H), como

α é cor vizinha das cores em {1,2, . . . ,q+ 1}, não há cor disponível para colorir o vértice v,

contradizendo que f é uma coloração q-backbone de (G,H).

(ñ) Suponha agora que G é um grafo bipartido e que g é uma 2-coloração de G. Definimos

uma nova coloração h da seguinte forma: h(v) = g(v) se g(v) = 1, e h(v) = q+1 se g(v) = 2,

para todo v *V (G). Note que h é uma (q+1)-coloração q-backbone de (G,H), pois, dados dois

vértices u e v de G tais que uv * E(H), como g é uma coloração de G, temos que g(u) ;= g(v).

Sem perda de generalidade, suponha que g(u) = 1 e g(v) = 2. Assim, pela definição de h, temos

que h(u) = 1 e h(v) = q+1, de modo que h(v)2h(u) = q+121 = q. Isso satisfaz a condição

do backbone e, claramente, a condição de ser uma coloração própria. Como δ (H)g 1, existe

uma aresta ab * E(H) para algum a,b * V (G). Assim, em qualquer coloração q-backbone f ,

deve-se ter | f (a)2 f (b)| g q, para garantir que a condição do backbone seja satisfeita. Suponha,

sem perda de generalidade, que f (a)2 f (b) g q. Como toda coloração q-backbone atribui

valores inteiros positivos para os vértices, segue que f (b)g 1 e, consequentemente, f (a)g q+1.

Portanto, concluímos que BBCq(G,H)g q+1.

Miškuf et al. apresentam um resultado relacionado ao Teorema de Brooks para

coloração 2-backbone, ao comparar o número cromático 2-backbone com o grau máximo, mas

restrito a grafos d-degenerados (MIŠKUF et al., 2010).
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Teorema 19. (MIŠKUF et al., 2010) Se G é um grafo de grau máximo ∆(G) e H um subgrafo

gerador d-degenerado de G, então BBC2(G,H)f ∆(G)+d +1.

Como os autores ressaltam, para d = 1, o limitante do Teorema 19 é o melhor

possível quando G é um ciclo ímpar ou um grafo completo (MIŠKUF et al., 2010). Além disso,

eles destacam que, embora ciclos ímpares e grafos completos sejam exemplos que tornam o

limitante apertado no caso d = 1, existem outros grafos que também não conseguimos encontrar

limitantes melhores. Isso mostra que o teorema apresentado não é exatamente equivalente ao

Teorema de Brooks na coloração 2-backbone.

Proposição 20. (MIŠKUF et al., 2010) Seja ∆(G) * N. Existe um grafo G, que não é completo

nem um ciclo, com grau máximo ∆(G) e uma árvore geradora T de G tal que BBC2(G,T ) =

∆(G)+2.

Os autores também comentam que, no caso acima, tínhamos ∆(T ) = ∆(G). Portanto,

eles apresentam outro resultado que demonstra a existência de pares de grafos com ∆(H)< ∆(G),

onde G é um grafo e H o backbone de G, que ainda tornam o limitante do Teorema 19 apertado

para d = 1.

Proposição 21. (MIŠKUF et al., 2010) Seja ∆(G) * N. Existe um grafo G, que não é completo

nem um ciclo, com grau máximo ∆(G) e uma floresta F em G com ∆(F) = ∆(G)2 1 tal que

BBC2(G,F) = ∆(G)+2.

3.3 Floresta como backbone

Nesta seção, apresentamos resultados conhecidos para o caso em que o backbone é

uma floresta, com foco especial em resultados específicos para árvores. Restritos ao caso em

que q = 2 e motivados por saber o quão distantes estão os parâmetros χ(G) e BBC2(G,H), os

autores estudaram alguns limitantes em (BROERSMA et al., 2003). Para enunciar o primeiro

resultado, para todo inteiro k g 1, vamos definir τ(k) como sendo:

τ(k) = max{BBC2(G,T ) | G grafo com árvore geradora T e χ(G) = k}.

Teorema 22. (BROERSMA et al., 2003) Para todo inteiro k g 1, temos τ(k) = 2k21.

Pode-se aplicar o resultado obtido no Teorema 22 ao caso em que o grafo G é planar.

De acordo com o Teorema das Quatro Cores, sabemos que χ(G) = 4 (APPEL; HAKEN, 1976).
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Agora, considerando uma árvore geradora T de G, estabelecemos o limitante BBC2(G,T )f 7.

No artigo expandido (BROERSMA et al., 2007), os autores apresentam um exemplo de um grafo

planar G com sua árvore geradora T , ilustrados na Figura 47, demonstrando que esse limitante

não pode ser melhorado para 5.

Figura 47 – Um grafo planar G com uma árvore geradora T (com as arestas do
backbone em negrito).
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Fonte: Autoria própria, adaptado de (BROERSMA et al., 2007), 2024.

Para demonstrar que o par (G,T ) não pode ser colorido com 5 cores em uma

coloração 2-backbone, consideramos as estrelas com centro em d, e e f no backbone. Essas

estrelas têm exatamente 3 folhas em T , formando uma clique no grafo G. Ao tentar usar apenas

as 5 cores, os centros das estrelas devem ser coloridos com 1 ou 5 para completar as colorações

em suas folhas, de forma a satisfazer a condição do backbone. No entanto, os vértices d, e e

f também formam uma clique, o que impossibilita a conclusão dessa coloração de maneira

consistente. Na Figura 48, podemos observar uma 6-coloração 2-backbone desse par.

Figura 48 – Um grafo planar G com uma árvore geradora T (com as arestas do
backbone em negrito) tais que BBC2(G,T ) = 6.
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Fonte: Autoria própria, 2024.

Com esse exemplo que demonstra que o limitante não pode ser melhorado para 5, ao

utilizar o Teorema das Quatro Cores, os autores destacam os seguintes problemas em aberto para
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grafos planares.

Problema em Aberto 1. (BROERSMA et al., 2007) Se G é um grafo planar e T uma árvore

geradora de G, é verdade que BBC2(G,T )f 6?

Problema em Aberto 2. (BROERSMA et al., 2007) Se G é um grafo planar e T uma árvore

geradora de G, conseguimos provar que BBC2(G,T ) f 7 sem usar o Teorema das Quatro

Cores?

Em 2013, foi provado como verdadeiro o Problema em Aberto 1 parcialmente para

árvores geradoras com diâmetro no máximo 4. Como Campos et al. ressaltam, esse resultado é o

melhor possível, pois a árvore geradora T do grafo G da Figura 47 tem diâmetro no máximo 4

(CAMPOS et al., 2013).

Teorema 23. (CAMPOS et al., 2013) Se G é um grafo planar e T uma árvore geradora de G

com diâmetro no máximo 4, então BBC2(G,T )f 6.

Campos et al. aprimoram o limitante superior para 5 quando T é uma árvore geradora

de G com diâmetro no máximo 3. Além disso, os autores apresentam um exemplo, ilustrado na

Figura 49, que prova que esse limitante superior é ótimo.

Proposição 24. (CAMPOS et al., 2013) Se G é um grafo planar e T uma árvore geradora de G

com diâmetro no máximo 3, então BBC2(G,T )f 5.

Figura 49 – Um grafo planar G com uma árvore geradora T (com as arestas do
backbone em negrito) tal que BBC2(G,T ) = 5.

Fonte: Autoria própria, 2024.

No artigo de Broersma et al., o segundo resultado comparando números cromáticos se

aplica à classe de grafos split. O teorema é introduzido na versão inicial do artigo (BROERSMA

et al., 2003), enquanto sua demonstração completa pode ser encontrada no artigo expandido

(BROERSMA et al., 2007). Identificamos um pequeno erro na demonstração do Teorema 4 e

apresentaremos a prova completa e a correção desse erro no Capítulo 4.
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Teorema 4. (BROERSMA et al., 2003) Se G é um grafo split e T uma árvore geradora de G,

então, se χ(G)g 3, temos que BBC2(G,T )f χ(G)+2. Esse limitante é o melhor possível.

Ainda interessados em entender a relação entre o número cromático 2-backbone e o

número cromático do grafo, Broersma et al. apresentam o seguinte problema em aberto para

grafos cordais (BROERSMA et al., 2007).

Problema em Aberto 3. (BROERSMA et al., 2007) Se G é um grafo cordal e T uma árvore

geradora de G, existe uma constante c tal que BBC2(G,T )f χ(G)+ c?

O problema análogo ao Problema em Aberto 3, considerando grafos livres de tri-

ângulos, foi conjecturado no artigo (BROERSMA et al., 2007) e, dois anos mais tarde, foi

demonstrado como falso em (MIŠKUF et al., 2009). A prova foi feita mostrando a existência de

pares (Rn,Tn), onde Rn é um grafo livre de triângulos com χ(Rn) = n e Tn é uma árvore geradora

de Rn, tal que BBC2(Rn,Tn) = 2χ(Rn)21 = 2n21, para todo n * N.

Teorema 25. (MIŠKUF et al., 2009) Se G é um grafo livre de triângulos e T uma árvore

geradora de G, não existe uma constante c tal que BBC2(G,T )f χ(G)+ c.

Após provar esse resultado, Miškuf et al. deixam o seguinte problema em aberto:

existe um grafo G com cintura alta tal que BBC2(G,T ) = 2χ(G)21 para alguma árvore geradora

T de G (MIŠKUF et al., 2009). Bu et al. provam esse resultado com o teorema a seguir (BU et

al., 2013).

Teorema 26. (BU et al., 2013) Para todos os naturais n e l, existem um grafo G com cintura

maior que l e χ(G) = n, e uma floresta geradora F de G tal que BBC2(G,F) = 2n21.

Em seu artigo de 2006, Salman aborda o problema para um q g 2 arbitrário e

generaliza esse resultado, como apresentado no teorema a seguir (SALMAN, 2006).

Teorema 27. (SALMAN, 2006) Sejam um inteiro q g 2 e um grafo split G com χ(G) = k g 2.

Para toda árvore geradora T de G, temos:

BBCq(G,T )f

ù

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

û

1 , se χ(G) = 1;

1+q , se χ(G) = 2;

χ(G)+q , se χ(G)g 3.

Esses limitantes são os melhores possíveis.
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Após Broersma et al. apresentarem o Teorema 22, que mostra a relação entre o

número cromático χ(G) e o número cromático 2-backbone BBC2(G,T ), para um par (G,T ),

onde G é um grafo e T uma árvore geradora de G, em outro artigo focado em resultados para

outras classes de backbone (BROERSMA et al., 2009a). Nesse mesmo trabalho, eles enunciam

o seguinte problema em aberto, com o objetivo de generalizar esse resultado. Antes de enunciar

o problema em aberto, vamos definir τq(k), para todo inteiro k g 1, como sendo:

τq(k) = max{BBCq(G,T ) | G grafo com árvore geradora T e χ(G) = k}.

Problema em Aberto 4. (BROERSMA et al., 2009a) Quais os valores para τq(k) quando q g 3?

Saputro e Salman, interessados nesse problema, provam limitantes para q g 3 com o

teorema a seguir (SAPUTRO; SALMAN, 2013).

Teorema 28. (SAPUTRO; SALMAN, 2013) Para todos os inteiros q g 3 e k g 1, temos:

(a) Para k * {2,3}, τq(k) = 1+(k21) ·q;

(b) Para 3 f k f q, τq(k) = q+2k22;

(c) Para q+1 f k f 2q22, τq(k) = 2q+ k21;

(d) Para k g 2q21, τq(k) = 2k.

Os autores, ao aplicarem os Teoremas 22 e 28, juntamente com o Teorema das

Quatro Cores (APPEL; HAKEN, 1976), conseguem estabelecer alguns limitantes para grafos

planares. Especificamente, para um grafo planar G e uma árvore geradora T de G, os seguintes

limitantes são provados (SAPUTRO; SALMAN, 2013).

Corolário 29. (SAPUTRO; SALMAN, 2013) Dados um inteiro q g 2 e um grafo planar G. Para

toda árvore geradora T de G, temos:

BBCq(G,T )f

ù

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

û

7 , se q = 2;

9 , se q = 3;

q+6 , se q g 4.

Sendo 3 o limitante estabelecido pelo Corolário 29 para uma coloração q-backbone de

(G,T ), onde G é um grafo com χ(G) = k e T uma árvore geradora de G, os autores questionam

se é possível melhorar o resultado do corolário para BBCq(G,T )f 321. No entanto, Saputro

e Salman demonstram que o par (G,T ) apresentado na Figura 47 serve como contraprova,

mostrando que esse limitante não pode ser melhorado para 322 (SAPUTRO; SALMAN, 2013).
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Problema em Aberto 5. (SAPUTRO; SALMAN, 2013) Se G é um grafo planar e T uma árvore

geradora de G, é verdade que

BBCq(G,T )f

ù

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

û

6 , se q = 2;

8 , se q = 3;

q+5 , se q g 4?

Havet et al. provam o mesmo limitante do Corolário 29, usando a Proposição 14

para um grafo planar G (uma vez que sabemos que χ(G)f 4 pelo Teorema das Quatro Cores) e

F uma floresta em G (sabendo que χ(F)f 2) (HAVET et al., 2014).

Teorema 30. (HAVET et al., 2014) Se G é um grafo planar e F uma floresta em G, então

BBCq(G,F)f q+6.

No mesmo artigo, Havet et al. apresentam um par (G,T ), onde G é um grafo planar

e T é uma árvore geradora de G, tal que BBCq(G,T ) = q+6 para todo q g 4, mostrando que

esse limitante é o melhor possível para q g 4 (HAVET et al., 2014). Isso demonstra que o último

limitante do Problema em Aberto 5 é falso.

Figura 50 – Um grafo planar G com χ(G) = 4 e uma árvore geradora T de G (com
as arestas do backbone em negrito) tal que BBCq(G,T ) = q+6.

y2

y1

y3 y4

z2

z1

Fonte: Autoria própria, adaptado de (HAVET et al., 2014), 2024.

Sendo (G,T ) conforme a Figura 50, onde G é um grafo planar e T uma árvore

geradora de G. Para demonstrar que BBCq(G,T ) = q+6, precisamos antes definir um grafo

que aparece como subgrafo em G chamado de paraquedas, dizemos que um paraquedas em v é

um grafo completo que têm quatro vértices, onde as três arestas incidentes ao vértice v estão no
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backbone, conforme ilustrado na Figura 51. Nesse exemplo, temos paraquedas nos vértices y1,

y2, y3, y4, z1 e z2, Havet et al. provam uma proposição que diz respeito a colorir esses paraquedas,

que será útil na demonstração que BBCq(G,T ) = q+6 (HAVET et al., 2014).

Figura 51 – Um paraquedas em v (com as arestas do backbone em negrito).

v

Fonte: Autoria própria, 2024.

Proposição 31. (HAVET et al., 2014) Para q g 4, se φ é uma (q+5)-coloração q-backbone de

um paraquedas em v, temos que φ(v) * {1,2,3,q+3,q+4,q+5}.

Demonstração. Por absurdo, suponha que 4 f φ(v) f q+2. Há, no máximo, duas cores que

não são vizinhas da cor φ(y). Como v é adjacente a três vértices que formam uma clique, seriam

necessárias três cores distintas que não são vizinhas de φ(v), o que gera uma contradição.

Proposição 32. (HAVET et al., 2014) Sejam G o grafo e T a árvore geradora de G conforme

ilustrado na Figura 50. Para q g 4, temos BBCq(G,T )g q+6.

Demonstração. Por absurdo, suponha que exista uma (q+5)-coloração q-backbone φ de (G,T ).

Pela Proposição 31, os vértices y1, y2, y3, y4, z1 e z2 são coloridos com cores em {1,2,3,q+

3,q+4,q+5}. Sem perda de generalidade, assuma que φ(y2) * {1,2,3}. Como y2z2 * E(T )

e y2z1 * E(T ), e dado que a condição do backbone também precisa ser satisfeita, temos que

{φ(z1),φ(z2)} ¦ {q+ 3,q+ 4,q+ 5}. Além disso, como há as arestas y1z2, y4z2 e y3z1 no

backbone, e novamente pela condição do backbone, temos que {φ(y1),φ(y3),φ(y4)} ¦ {1,2,3}.

No entanto, como {y1,y2,y3,y4} formam uma clique, esses vértices precisam ser coloridos com

cores distintas, o que contradiz o fato de que eles devem ser coloridos com apenas 3 cores.

Podemos construir uma (q+6)-coloração q-backbone φ para (G,T ), onde (G,T ) é

o par da Figura 50, da seguinte forma: atribuímos φ(y1) = 1, φ(y2) = 2, φ(y3) = 3, φ(y4) = 4,

φ(z1) = q+3 e φ(z2) = q+4. Para os vértices adjacentes a yi no paraquedas, utilizamos as cores

em {q+4,q+5,q+6}, para todo 1 f i f 4. Já para os vértices adjacentes a z j no paraquedas,

usamos as cores em {1,2,3}, para todo j * {1,2}. Assim, com a coloração φ e a Proposição 32,

provamos que BBCq(G,T ) = q+6, como desejado.
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Havet et al. generalizam o Problema em Aberto 5 para uma floresta como backbone,

considerando os casos q = 2 e q = 3 (HAVET et al., 2014).

Problema em Aberto 6. (HAVET et al., 2014) Se G é um grafo planar e F uma floresta geradora

de G, é verdade que BBC2(G,F)f 6?

Problema em Aberto 7. (HAVET et al., 2014) Se G é um grafo planar e F uma floresta geradora

de G, é verdade que BBC3(G,F)f 8?

Os autores demonstram que, além de serem limitantes ótimos, caso sejam provados

como verdadeiros, esses dois problemas em aberto apresentam uma relação de implicação: se

o Problema em Aberto 6 for verdadeiro, isso implica que o Problema em Aberto 7 também é

verdadeiro (HAVET et al., 2014).

Proposição 33. (HAVET et al., 2014) Sejam G um grafo planar e F uma floresta geradora de G.

Se BBC2(G,F)f 6, então BBC3(G,F)f 8.

Demonstração. Sejam G um grafo planar e F uma floresta geradora de G. Assuma que

BBC2(G,F) f 6, portanto, (G,F) admite uma 6-coloração 2-backbone φ . Vamos construir

uma 8-coloração 3-backbone φ 2 para (G,F) da seguinte forma: φ 2(v) = φ(v) se φ(v) * {1,2},

φ 2(v) = φ(v)+ 1 se φ(v) * {3,4} e φ 2(v) = φ(v)+ 2 se φ(v) * {5,6}. É fácil verificar que a

condição do backbone é satisfeita.

Seja β o menor inteiro k tal que, para todo grafo planar não bipartido G com cintura

de pelo menos k, existe uma árvore geradora T de G que satisfaça BBC2(G,T ) = 4. Bu et al.

estudam o problema de determinar o valor de β (BU; ZHANG, 2011).

Bu, Bao, Li, Zhang e Wang provam esse problema parcialmente para grafos livres de

ciclos especiais (BU; ZHANG, 2011; BU; LI, 2011; BU; BAO, 2015; WANG, 2012; ZHANG;

BU, 2010). Araújo et al. provam um resultado mais geral em seu artigo (ARAÚJO et al., 2017).

Teorema 34. (ARAÚJO et al., 2017) Se G é um grafo, então existe uma árvore geradora T de G

tal que BBCq(G,T ) = max
{

χ(G),
⌈

χ(G)
2 +q

⌉}

.

Para q = 2 e um grafo planar G, pelo Teorema das Quatro Cores, sabemos que

χ(G) f 4, logo, ao substituir os valores no Teorema 34, obtemos o que queríamos, isto é,

BBC2(G,T ) = 4, onde T é uma árvore geradora de G. Farzad et al. provam o mesmo resultado

do Teorema 34 para q = 2, com o seguinte teorema (FARZAD et al., 2016).
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Teorema 35. (FARZAD et al., 2016) Para todo grafo G, se χ(G)f 4, então existe uma árvore

geradora T de G tal que BBC2(G,T ) = χ(G). Se χ(G) = 3, então existe uma árvore geradora

T de G tal que BBC2(G,T ) = 4.

No mesmo artigo, Farzad et al. provam um resultado mais forte, do qual o Teorema 35

é decorrente.

Teorema 36. (FARZAD et al., 2016) Para todo grafo G com χ(G) = k, existem uma árvore

geradora T de G e uma k-coloração própria f de G tal que | f (u)2 f (v)| = 1, para todo

uv * E(T ).

3.3.1 Caminho hamiltoniano como backbone

Nesta seção, abordamos os principais resultados da literatura referentes ao caso em

que o backbone é um caminho hamiltoniano. Broersma et al., ao investigar a situação em que

q = 2 e buscando compreender a relação entre os números cromáticos χ(G) e BBC2(G,P) para

um grafo G e um caminho hamiltoniano P em G, apresentam alguns limitantes (BROERSMA et

al., 2003). Antes de enunciar o primeiro resultado, definimos P(k), para um inteiro k g 1, da

seguinte forma:

P(k) = max{BBC2(G,P) | G grafo com caminho hamiltoniano P e χ(G) = k}.

Teorema 37. (BROERSMA et al., 2003) Para todo inteiro k g 1, temos:

(a) Para 1 f k f 4, P(k) = 2k21;

(b) P(5) = 8 e P(6) = 10;

(c) Para k g 7 e k = 4t, P(4t) = 6t;

(d) Para k g 7 e k = 4t +1, P(4t +1) = 6t +1;

(e) Para k g 7 e k = 4t +2, P(4t +2) = 6t +3;

(f) Para k g 7 e k = 4t +3, P(4t +3) = 6t +5.

Ideia de Prova. A prova do limitante inferior é feita pela construção de um grafo k-partido com-

pleto G com um caminho hamiltoniano P (usando permutações), tal que χ(G) = k e BBC2(G,P)

atinge o valor desejado em cada caso. No entanto, devido à extensão da prova, omitiremos os

detalhes aqui. Agora, para demonstrar os limitantes superiores, seja f uma k-coloração de G,

vamos analisar cada caso individualmente:

(a) 1 f k f 4:
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O limitante superior é consequência direta do Teorema 22, já que todo caminho

hamiltoniano é uma árvore.

(b) 5 f k f 6:

Para k = 5, vamos construir uma 8-coloração 2-backbone h para (G,P). Utilizaremos

conjuntos de cores definidos da seguinte forma: D1 = {1}, D2 = {3}, D3 = {5}, D4 = {8} e

D5 = {2,6,7}. Para i * {1,2,3,4}, cada vértice v, colorido com a cor i em f , será colorido em

h com a cor correspondente do conjunto Di. Após colorir todos os vértices de cores 1, 2, 3 e

4, os vértices coloridos com a cor 5 em f serão coloridos de forma gulosa com uma das cores

do conjunto D5, respeitando a condição do backbone. Ou seja, dado v *V (G) tal que f (v) = 5,

sendo u e w o antecessor e o sucessor de v no caminho hamiltoniano P, colorimos v com a menor

cor de D5 tal que essa cor não seja vizinha de h(u) nem de h(w).

Note que as novas cores dos vértices coloridos em f com as cores 1, 2, 3 e 4 não

são vizinhas, garantindo a condição do backbone para as arestas entre esses vértices. Agora,

considere um vértice v colorido em f com a cor 5. Vamos mostrar que a cor escolhida para ele

respeitará a condição do backbone. Sejam u e w os únicos vértices vizinhos de v no caminho

hamiltoniano P, e assumimos que esses vértices são coloridos em h com as cores x e y (lembrando

que x,y /* D5), respectivamente.

Suponha, por absurdo, que não conseguimos completar a coloração para o vértice

v. Como x,y /* D5 e a condição do backbone deve ser satisfeita, para que não tenhamos cores

disponíveis para v, as cores de D5 devem ser vizinhas de x ou y (o que violaria a condição do

backbone), ou seja, D5 ¦ {x2 1,x+ 1,y2 1,y+ 1}, o último conjunto formado pelas cores

vizinhas a x ou y.

Nessa situação, como as cores 6 e 7 de D5 são vizinhas, podemos supor, sem perda de

generalidade, que 6*{x21,x+1} e 7*{y21,y+1}, já que x21 e x+1 não são cores vizinhas,

assim como y21 e y+1. Observe também que, nesse caso, 2 /* {x21,x+1,y21,y+1}, pois

a cor 2 está a pelo menos 4 unidades de distância das cores 6 e 7. Já as cores x21 e x+1 estão

a no máximo 2 unidades da cor 6, assim como y21 e y+1 em relação à cor 7. Isso contradiz a

suposição de que D5 ¦ {x21,x+1,y21,y+1}. Portanto, sempre conseguimos completar a

8-coloração 2-backbone de (G,P).

Para k = 6, a prova é feita de forma análoga, apenas adicionando o conjunto de cor

D6 = {10}.

(c) k g 7 e k = 4t:
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Para i * {1,2, . . . ,4t}, defina Vi como sendo o conjunto dos vértices coloridos com a

cor i em f . Para construir uma (6t)-coloração 2-backbone h de (G,P), definimos os seguintes

conjuntos de cores: C j = {2 j2 1}, para j * {1,2, . . . ,3t} e C j
7 = {2 j,2t + 2 j,4t + 2 j}, para

j * {1,2, . . . , t}. Seja v * Vj, o vértice será colorido em h com a cor do conjunto C j, para

j * {1,2, . . . ,3t}. Seja v * V3t+ j, o vértice será colorido em h de forma gulosa com uma das

cores do conjunto C j
7, para j * {1,2, . . . , t}, respeitando a condição do backbone.

(d)-(e) k g 7 e, k = 4t +1 ou k = 4t +2:

A prova é feita de forma análoga a (c), apenas adicionando os conjuntos de cores

C3t+1 = {6t +1} e C3t+2 = {6t +3}.

(f) k g 7 e k = 4t +3:

Para k > 7, a prova é feita de forma análoga a (c), apenas adicionando os conjuntos

de cores C3t+1 = {6t + 1}, C3t+2 = {6t + 3} e C3t+3 = {6t + 5}. Para k = 7, a prova é feita

de forma análoga a (b), utilizando os seguintes conjuntos de cores: D1
7 = {1}, D2

7 = {3},

D3
7 = {5}, D4

7 = {7}, D5
7 = {9}, D6

7 = {11} e D7
7 = {2,6,10}. ♦

Outro resultado encontrado na literatura, dentro da classe de grafos split, foi apresen-

tado por Broersma et al. no artigo (BROERSMA et al., 2003). A demonstração completa do

teorema pode ser consultada na versão expandida desse trabalho, disponível em (BROERSMA

et al., 2007).

Teorema 38. (BROERSMA et al., 2003) Se G é um grafo split e P um caminho hamiltoniano em

G, então, se ω(G) ;= 3, temos que BBC2(G,P)f χ(G)+1. Esse limitante é o melhor possível.

Figura 52 – Um par (G,P) (com as arestas do backbone em negrito) tal que
χ(G) = 3 e BBC2(G,P) = 5.

v

w

u

a

b

Fonte: Autoria própria, adaptado de (BROERSMA et al., 2003), 2024.

Os autores justificam a necessidade da hipótese ω(G) ;= 3 no Teorema 38. Considere

o grafo split G e seu caminho hamiltoniano P, conforme ilustrado na Figura 52. Uma vez que os

vértices u, v e w formam uma clique e não há uma clique maior no grafo G, temos ω(G) = 3.

Agora, suponha, por contradição, que (G,P) admita uma 4-coloração 2-backbone f . Observe
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que, dado que uv e uw são arestas do backbone, se f (u) = 2 ou f (u) = 3, isso implicaria que v e

w teriam que receber a mesma cor, o que não é possível, pois eles são vértices adjacentes em G.

Portanto, o vértice u é colorido em f com a cor 1 ou a cor 4. Sem perda de

generalidade, assumimos f (u) = 1. Consequentemente, a cor 2 é proibida para os vértices v e

w, já que ambos são vizinhos de u no backbone. Portanto, v e w devem ser coloridos com as

cores 3 e 4. Novamente, sem perda de generalidade, assumimos f (v) = 3. Observe que, como

av * E(P), o vértice a deve ser colorido com a cor 1. Além disso, dado que au * E(G) e ambos

estão coloridos com a mesma cor em f , isso contradiz nossa hipótese de que (G,P) admitia uma

4-coloração 2-backbone. Assim, concluímos que BBC2(G,P) > 4 = χ(G)+ 1. A Figura 53

apresenta uma 5-coloração 2-backbone de (G,P).

Figura 53 – Uma 5-coloração 2-backbone ótima de (G,P) (com as arestas do
backbone em negrito).

2

1

4

3

5

Fonte: Autoria própria, 2024.

Pode-se aplicar o resultado obtido no Teorema 37 ao caso em que o grafo G é

planar. De acordo com o Teorema das Quatro Cores, sabemos que χ(G)f 4 (APPEL; HAKEN,

1976). Agora, considerando um caminho hamiltoniano P em G, estabelecemos o limitante

BBC2(G,P)f 7. No artigo (BROERSMA et al., 2003), os autores apresentam um exemplo de

um grafo planar G2 com seu caminho hamiltoniano P, ilustrados na Figura 54, demonstrando

que esse limitante não pode ser melhorado para 5.

Para demonstrar que o par (G2,P) não admite uma 5-coloração 2-backbone, come-

çamos analisando o grafo G1. Argumentaremos que, em qualquer 5-coloração 2-backbone de

G1, há um vértice vi, para algum 1 f i f 5, que deve ser colorido com a cor 3. Caso contrário,

existiria uma coloração 2-backbone c de G1 com 5 cores que não utiliza a cor 3. Suponha que

c seja essa coloração e, sem perda de generalidade, que c(v1) * {1,2}. Isso implicaria que

c(v2) e c(v4) pertencem a {4,5}, enquanto c(v3) e c(v5) pertencem a {1,2}. No entanto, essa

configuração é contraditória, pois v1, v3 e v5 formam uma clique.

Portanto, em uma 5-coloração 2-backbone de G2, os vértices u1, u2, u3, u4 e u5 têm

algum vizinho que é colorido com a cor 3, de modo que não podem receber essa cor. Além



70

Figura 54 – Grafos planares G1 e G2 com caminho hamiltoniano como backbone
(com as arestas do backbone em negrito).

G2:

G1:

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Fonte: Autoria própria, adaptado de (BROERSMA et al., 2003), 2024.

disso, observe que G[{u1,u2,u3,u4,u5}]>= G1, o que contradiz a possibilidade dessa coloração,

já que não aparece a cor 3 nesse subgrafo. Na Figura 55, podemos observar uma 6-coloração

2-backbone desse par.

Figura 55 – Uma 6-coloração 2-backbone de (G2,P) (com as arestas do backbone
em negrito).

6

5 23 41

3

6 14 52

1

6 34 52

4

5 23 61

2

1 65 43

Fonte: Autoria própria, 2024.

Além disso, os autores destacam os seguintes problemas em aberto:

Problema em Aberto 8. (BROERSMA et al., 2003) Se G é um grafo planar e P um caminho

hamiltoniano em G, é verdade que BBC2(G,P)f 6?

Problema em Aberto 9. (BROERSMA et al., 2007) Se G é um grafo planar e P um caminho

hamiltoniano em G, conseguimos provar que BBC2(G,P)f 7 sem usar o Teorema das Quatro

Cores?
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Ao restringir o Problema em aberto 3 ao caso em que o backbone é um caminho

hamiltoniano, Broersma et al. demonstraram o seguinte resultado:

Proposição 39. (BROERSMA et al., 2007) Se G é um grafo cordal e P um caminho hamiltoniano

em G, então BBC2(G,P)f χ(G)+4.

Demonstração. Considerando G e P como descritos na proposição, provaremos por indução no

número de vértices n(G) que BBC2(G,P)f χ(G)+4. O caso base, quando n(G) = 1, é trivial.

Agora, para k g 2, suponha que, para todo grafo cordal G com k21 vértices e qualquer caminho

hamiltoniano P em G, vale a desigualdade BBC2(G,P)f χ(G)+4.

Sejam G um grafo cordal com k vértices e P um caminho hamiltoniano em G. Como

G é cordal, existe um vértice simplicial v, ou seja, seus vizinhos NG(v) formam uma clique em

G. Ao remover v, o grafo G2 v continua sendo cordal, pois remover um vértice preserva a

cordalidade de um grafo. Sejam u e w os únicos vizinhos de v em P. O caminho hamiltoniano

P2 é obtido de P ao substituir as arestas uv e vw pela aresta uw (como NG(v) forma uma clique,

temos a aresta uw em G, permitindo sua inclusão no backbone). Assim, P2 é um caminho

hamiltoniano em G2v. Pela hipótese indutiva, existe uma (χ(G2v)+4)-coloração 2-backbone

c para (G2 v,P2).

Vamos estender a coloração c para todo o grafo G. Para colorir o vértice v, observe

que |NG(v)| cores estão proibidas, já que a vizinhança de v forma uma clique em G. Além

disso, até 4 cores adicionais podem ser proibidas devido à condição do backbone, em respeito

aos dois vizinhos de v em P. Assim, no total, no máximo |NG(v)|+ 4 cores são proibidas

para v, sendo necessário adicionar apenas uma nova cor para colorir v, se necessário. Note

que χ(G2 v)f χ(G) e, como NG(v) junto a v formam uma clique, temos χ(G)g |NG(v)|+1.

Portanto, podemos estender a coloração c para todo o grafo G, utilizando no máximo χ(G)+4

cores, pois χ(G)+4 g |NG(v)|+5, como queríamos demonstrar.

Em um artigo focado em resultados para outras classes de backbone, Broersma et al.

citam o Teorema 37, que relaciona os números cromáticos da coloração própria e da coloração

2-backbone, ao enunciarem os principais limitantes já conhecidos (BROERSMA et al., 2009a).

Buscando uma generalização desse problema para um q qualquer, os autores apresentam o

seguinte problema em aberto. Antes de enunciar o problema em aberto, precisamos definir

Pq(k), para todo inteiro k g 1, da seguinte forma:

Pq(k) = max{BBCq(G,P) | G grafo com caminho hamiltoniano P e χ(G) = k}.
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Problema em Aberto 10. (BROERSMA et al., 2009a) Quais os valores para Pq(k) quando

q g 3?

3.3.2 Galáxia como backbone

Nesta seção, apresentamos resultados conhecidos para o caso em que o backbone é

uma galáxia. O primeiro resultado foi apresentado por Salman no seu artigo (SALMAN, 2006).

Para enunciá-lo, precisamos definir Hq(k) para todo inteiro k g 1, da seguinte forma:

Hq(k) = max{BBCq(G,H) | G grafo com galáxia H e χ(G) = k}.

Teorema 40. (SALMAN, 2006) Para todos os inteiros q g 2 e k g 1, temos:

(a) Hq(2) = q+1;

(b) Para 3 f k f 2q23, Hq(k) =
⌈

3k
2

⌉

+q22;

(c) Para 2q22 f k f 2q21 com q g 3, Hq(k) = k+2q22; H2(3) = 5;

(d) Para k = 2q com q g 3, Hq(k) = 2k21; H2(4) = 6;

(e) Para k g 2q+1, Hq(k) = 2k2
⌊

k
q

⌋

.

Ao aplicar o teorema anterior em um grafo planar G, pelo Teorema das Quatro Cores,

temos χ(G) f 4 (APPEL; HAKEN, 1976). Portanto, usando o limitante (b) do Teorema 40,

obtemos que BBCq(G,H) f q+4 para uma galáxia H em G. Havet et al. destacam que esse

limitante é o melhor possível, mesmo quando a galáxia H tem grau máximo 3, como o exemplo

ilustrado na Figura 56 (HAVET et al., 2014).

Figura 56 – Um grafo planar G com uma galáxia H, cujo grau máximo é 3, tal que
BBCq(G,H) = q+4 (com as arestas do backbone em negrito).

e f

d

c

a b

i

g

h

j

l

k

Fonte: Autoria própria, adaptado de (HAVET et al., 2014), 2024.

Para mostrar que o par (G,H) da Figura 56 não admite uma (q+ 3)-coloração q-

backbone, procederemos por absurdo. Suponha que φ seja uma (q+3)-coloração q-backbone de
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(G,H). Antes de avançar, provemos um resultado análogo à Proposição 31, também apresentada

no artigo de Havet et al. (HAVET et al., 2014).

Observe que existem paraquedas nos vértices d, e e f . Se algum desses vértices fosse

colorido com uma cor 2 f α f q+2, haveria no máximo duas cores que não são adjacentes à cor

α . Isso é um absurdo, pois d, e e f são vizinhos no backbone de três vértices que formam uma

clique em G. Assim, concluímos que φ(d), φ(e) e φ( f ) devem pertencer ao conjunto {1,q+3}.

No entanto, como d, e e f formam uma clique em G, isso gera a contradição que buscávamos.

Para construir uma (q+4)-coloração q-backbone φ para o par (G,H) da Figura 56,

basta definir φ(d) = 1, φ( f ) = 2 e φ(e) = q+4. Em seguida, colorimos os vértices a, b, c, g, i e

h com cores no conjunto {q+2,q+3,q+4}. Finalmente, colorimos os vértices j, k e l com

cores no conjunto {1,2,3}.

Havet et al. investigam o limitante de grafos planares com galáxias de grau máximo

2 como backbone. Os autores apresentam pares que alcançam o número cromático 2-backbone

igual a 6 quando q = 2 e propõem o seguinte problema em aberto para q g 3 (HAVET et al.,

2014).

Problema em Aberto 11. (HAVET et al., 2014) Para todo inteiro q g 3, se G é um grafo planar

e F uma galáxia de grau máximo 2, é verdade que BBCq(G,F)f q+3?

Salman também apresenta resultados para grafos split, conforme enunciado a seguir

(SALMAN, 2006). A prova do teorema abaixo pode ser encontrada no artigo de Broersma et al.

(BROERSMA et al., 2009b).

Teorema 41. (SALMAN, 2006) Dado um inteiro q g 2 e um grafo split G com χ(G) = k g 2.

Para toda galáxia H em G, temos:

BBCq(G,H)f

ù

ü

ú

ü

û

χ(G)+q , se k = 3 ou q = 2 e k g 4;

χ(G)+q21 , caso contrário.

Esses limitantes são os melhores possíveis.

3.3.3 Emparelhamento como backbone

Nesta seção, apresentamos os resultados da literatura sobre o caso em que o backbone

é um emparelhamento. Ao focar no caso específico em que q = 2, e buscando entender a relação

entre os parâmetros χ(G) e BBC2(G,H), Broersma et al. exploraram alguns limitantes em
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(BROERSMA et al., 2003). Para enunciar um dos seus resultados, os autores definem M (k)

para todo inteiro k g 1 da seguinte forma:

M (k) = max{BBC2(G,M) | G grafo com emparelhamento perfeito M e χ(G) = k}.

Teorema 42. (BROERSMA et al., 2003) Para todo inteiro k g 1, temos:

(a) M (4) = 6;

(b) Para k = 3t, M (3t) = 4t;

(c) Para k ;= 4 e k = 3t +1, M (3t +1) = 4t +1;

(d) Para k = 3t +2, M (3t +2) = 4t +3.

Demonstração. Vamos demonstrar os limitantes superiores, seja c uma k-coloração de G. Para

um vértice v * V (G), denotamos por n(v) o vizinho de v no emparelhamento M. Se k = 1, é

trivial. Se k = 2, ao recolorir os vértices v tal que c(v) = 2 para a cor 3, obtemos uma 3-coloração

2-backbone de (G,M).

Se k = 3, vamos construir uma 4-coloração 2-backbone f de (G,M) da seguinte

forma:

• Se c(v) = 1, então f (v) = 1;

• Se c(v) = 2, então f (v) = 4;

• Se c(v) = 3 e c(n(v)) = 1, então f (v) = 3;

• Se c(v) = 3 e c(n(v)) = 2, então f (v) = 2.

Se k = 4, vamos construir uma 6-coloração 2-backbone f de (G,M) da seguinte

forma:

• Se c(v) = 1, então f (v) = 1;

• Se c(v) = 2, então f (v) = 3;

• Se c(v) = 3, então f (v) = 6;

• Se c(v) = 4 e c(n(v)) = 1 ou 2, então f (v) = 5;

• Se c(v) = 4 e c(n(v)) = 3, então f (v) = 4.

Se k = 5, vamos construir uma 7-coloração 2-backbone f de (G,M) da seguinte

forma:

• Se c(v) = 1, então f (v) = 1;

• Se c(v) = 2, então f (v) = 3;

• Se c(v) = 3, então f (v) = 5;

• Se c(v) = 4, então f (v) = 7;

• Se c(v) = 5 e c(n(v)) = 1 ou 2, então f (v) = 6;



75

• Se c(v) = 5 e c(n(v)) = 3 ou 4, então f (v) = 2.

Se k g 6, vamos considerar os casos individualmente, para t g 2, de acordo com

suas congruências módulo 3.

(b) k = 3t:

Para i * {1,2, . . . ,4t}, defina Vi como sendo o conjunto dos vértices coloridos com a

cor i em c. Para construir uma (4t)-coloração 2-backbone f de (G,M), definimos os seguintes

conjuntos de cores: C j = {2 j 2 1}, para j * {1,2, . . . ,2t} e C j
7 = {2 j,2t + 2 j}, para j *

{1,2, . . . , t}. Para cada v * Vj, o vértice v será colorido em f com a cor do conjunto C j, para

j * {1,2, . . . ,2t}. Para cada v *V2t+ j, o vértice v será colorido em f de forma gulosa com uma

das cores do conjunto C j
7, para j * {1,2, . . . , t}, respeitando a condição do backbone.

(c)-(d) k = 3t +1 ou k = 3t +2:

A prova é feita de forma análoga a (b), apenas adicionando os conjuntos de cores

C2t+1 = {4t +1} e C2t+2 = {4t +3}.

Agora, para provar os limitantes superiores, construiremos um par (G,M), onde G é

um grafo com χ(G) = k e M é um emparelhamento perfeito em G, de forma que BBC2(G,M)

atinja o valor desejado. O caso em que k = 1 é trivial.

Para k g 2, considere G como um grafo k-partido completo, com V1,V2, . . . ,Vk sendo

os conjuntos independentes de G, cada um contendo k21 vértices. Claramente, temos χ(G) = k.

Renomearemos os vértices de Vi como {vi, j | 1 f j f k, j ;= i}. O emparelhamento perfeito M

será formado pelas arestas {vi, jv j,i | 1 f i, j f k, i ;= j}.

Seja c uma 3-coloração 2-backbone de (G,M). Definimos Ci como o conjunto de

cores atribuídas aos vértices de Vi, para todo i. Como G é um grafo k-partido completo, nenhuma

cor em Ci pode aparecer em C j para i ;= j. Se |Ci|= 1, chamamos Vi de monocromático, pois

ele está colorido por uma única cor. Se |Ci| g 2, chamamos Vi de policromático. Para um

conjunto monocromático Vi, denotamos sua única cor por ci. Definimos s1 e s2 como o número

de conjuntos monocromáticos e policromáticos, respectivamente. Claramente, temos s1 + s2 = k

e s1 +2s2 f 3, que juntos implicam que:

s1 g 2k2 3 (3.1)

Sendo Vi e Vj conjuntos monocromáticos com i ;= j, pela construção de M, existe

a aresta vi, jv j,i * E(M). Como a condição do backbone deve ser respeitada, devemos ter

|c(vi, j)2 c(v j,i)|= |ci 2 c j| g 2. Isso implica que 3g 2s1 21. Juntando essa desigualdade com
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a Desigualdade (3.1), temos que 33 g 4k21, satisfazendo todos os limitantes inferiores para

k g 2, exceto o caso k = 4.

Agora, vamos tratar o caso k = 4 separadamente. Com o mesmo par (G,M) cons-

truído anteriormente, seja c uma 3-coloração 2-backbone de (G,M). Suponha, por absurdo, que

3f 5. Pela Desigualdade (3.1), temos que s1 g 82 3g 3. Sem perda de generalidade, suponha

que V1, V2 e V3 são conjuntos monocromáticos. Assim, as arestas v1,2v2,1, v1,3v3,1 e v2,3v3,2 estão

em M, e pela condição do backbone, temos |c1 2 c2|, |c2 2 c3|, |c1 2 c3| g 2.

Como 3f 5, segue que {c1,c2,c3} ¦ {1,3,5}. Suponha, sem perda de generalidade,

que c1 = 3. Além disso, como nenhuma cor de Vi pode aparecer em Vj para i ;= j, temos que

C4 ¦ {2,4}. Note que v4,1 *V4 e existe a aresta v4,1v1,4 em M. Como as cores de V4 são vizinhas

da cor 3, que colore o vértice v1,4, não podemos satisfazer a condição do backbone nessa aresta,

levando a uma contradição.

Miškuf et al. apresentam dois resultados, um para ciclos e outro para grafos comple-

tos (MIŠKUF et al., 2010).

Teorema 43. (MIŠKUF et al., 2010) Se Cn é um ciclo com n vértices e M um emparelhamento

de Cn, então BBC2(Cn,M)f 3.

Teorema 44. (MIŠKUF et al., 2010) Se Kn é um grafo completo com n vértices e M um

emparelhamento de Kn, então BBC2(Kn,M)f n.

Ao tentar alcançar resultados mais gerais, olhando para grafos de grau máximo ∆(G),

os autores no artigo (MIŠKUF et al., 2010) apresentam o seguinte o teorema.

Teorema 45. (MIŠKUF et al., 2010) Se G é um grafo de grau máximo ∆(G) e M um emparelha-

mento de G, então BBC2(G,M)f ∆(G)+1.

Apesar de o enunciado ser válido, a prova original fornecida para o Teorema 45 foi

identificada como incorreta, sendo posteriormente corrigida por Araújo et al. em (ARAÚJO et

al., 2019).

Pode-se aplicar o resultado obtido no Teorema 42 ao caso em que o grafo G é planar.

De acordo com o Teorema das Quatro Cores, sabemos que χ(G) f 4. Agora, considerando

um emparelhamento perfeito M de G, estabelecemos o limitante BBC2(G,M)f 6. No artigo

(BROERSMA et al., 2003), os autores apresentam um exemplo de um grafo planar G com seu
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Figura 57 – Um par (G,M) (com as arestas do backbone em negrito) tal que
BBC2(G,M) = 5.

a7

d

a

d7

b7
c7

cb

Fonte: Autoria própria, adaptado de (BROERSMA et al., 2003), 2024.

emparelhamento perfeito M, ilustrados na Figura 57, demonstrando que esse limitante não pode

ser melhorado para 4.

Para provar que o par (G,M) da Figura 57 não pode ser colorido com 4 cores,

suponha, por contradição, que φ seja uma 4-coloração 2-backbone de (G,M). Seja x* {a,b,c,d}

um vértice qualquer. Chamamos o vértice x7 de oposto de x. Observe que os vértices a, b, c e d

formam uma clique, de modo que todos eles são coloridos com cores distintas. Além disso, o

vértice x deve ser colorido com a mesma cor que o seu vértice oposto x7, pois x7 é adjacente aos

vértices do conjunto {a,b,c,d}\{x}.

Sem perda de generalidade, suponha que os vértices a e a7 sejam coloridos com a cor

2. Devido à condição do backbone, os vértices b7 e d serão coloridos com a cor 4, implicando

que a cor do vértice b também seja 4, o que é um absurdo, pois b e d são adjacentes no grafo G.

Na Figura 58, apresentamos uma 5-coloração 2-backbone de (G,M).

Figura 58 – Uma 5-coloração 2-backbone de (G,M) (com as arestas do backbone
em negrito).
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Fonte: Autoria própria, 2024.
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Os autores destacam também os seguintes problemas em aberto:

Problema em Aberto 12. (BROERSMA et al., 2003) Se G é um grafo planar e M um empare-

lhamento perfeito de G, é verdade que BBC2(G,M)f 5?

Problema em Aberto 13. (BROERSMA et al., 2007) Se G é um grafo planar e M um empa-

relhamento perfeito de G, conseguimos provar que BBC2(G,M)f 6 sem usar o Teorema das

Quatro Cores?

Araújo et al. fornecem uma prova parcial para esses dois problemas em aberto,

considerando G como um grafo planar sem duas faces de grau 3 que compartilham uma aresta.

Os autores demonstram os limitantes, usando o método da descarga, para a versão circular da

Coloração Backbone, o que implica diretamente nos limitantes dos problemas em aberto, sem

utilizar o Teorema das Quatro Cores, já que BBC2(G,H) f CBC2(G,H) f BBC2(G,H)+ 1

para todo par (G,H) (ARAÚJO et al., 2018).

Teorema 46. (ARAÚJO et al., 2018) Se G é um grafo planar sem duas faces de grau 3 que

compartilham uma aresta e M um emparelhamento perfeito em G, então CBC2(G,M)f 6.

No artigo de Salman (SALMAN, 2006), o Teorema 42 é generalizado para o caso

em que q g 2. Para enunciar, para todo inteiro k g 1, definimos Mq(k) como sendo:

Mq(k) = max{BBCq(G,M) | G grafo com emparelhamento perfeito M e χ(G) = k}.

Teorema 47. (SALMAN, 2006) Para todos os inteiros q g 2 e k g 1, temos:

(a) Para 2 f k f q, Mq(k) = q+ k21;

(b) Para q+1 f k f 2q, Mq(k) = 2k22;

(c) Para k = 2q+1, Mq(k) = 2k23;

(d) Para k = t · (q+1) com t g 2, Mq(k) = (2t) ·q;

(e) Para k = t · (q+1)+ c com t g 2 e 1 f c < q+3
2 , Mq(k) = (2t) ·q+2c21;

(f) Para k = t · (q+1)+ c com t g 2 e q+3
2 f c f q, Mq(k) = (2t) ·q+2c22.

Sendo G um grafo planar, pelo Teorema das Quatro Cores (APPEL; HAKEN, 1976),

temos que χ(G)f 4. Considerando k = 4 no Teorema 47, obtemos o limitante BBCq(G,M)f

q+3 para q g 4 e um emparelhamento perfeito M em G.

No caso de um grafo split G, Salman apresenta um teorema com limitantes para

qualquer q g 2, semelhante ao Teorema 47, mas específico para a classe dos grafos split



79

(SALMAN, 2006). No artigo de Broersma et al., os limitantes aparecem de forma mais concisa,

conforme enunciado a seguir (BROERSMA et al., 2009b).

Teorema 48. (BROERSMA et al., 2009b) Dado um inteiro q g 2 e um grafo split G com

χ(G) = k g 2. Para todo emparelhamento perfeito M em G, temos:

BBCq(G,M)f

ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

û

q+1 , se k = 2;

k+1 , se k = 4 e q f min
{

k
2 ,

k+5
3

}

;

k+2 , se k = 9 ou k g 11 e k+6
3 f q f

⌈

k
2

⌉

;
⌈

k
2

⌉

+q , se k = 3,5,7 e q g
⌈

k
2

⌉

;
⌈

k
2

⌉

+q+1 , se k = 4,6 ou k g 8 e q g
⌈

k
2

⌉

+1.

Esses limitantes são os melhores possíveis.

3.3.4 Complexidade Computacional

Nesta seção, apresentamos alguns resultados conhecidos de complexidade computa-

cional na Coloração Backbone nas seguintes classes de grafos para o backbone: árvore, caminho

hamiltoniano, galáxia e emparelhamento, os quais temos interesse em estender para a variação

direcionada da Coloração Backbone.

Os autores em (BROERSMA et al., 2003) abordam a complexidade computacional

para q = 2 do seguinte problema:

3-COLORAÇÃO q-BACKBONE

Entrada: Um grafo G e um subgrafo gerador H de G.

Pergunta: BBCq(G,H)f 3?

O problema 3-COLORAÇÃO q-BACKBONE é NP-completo para 3g 3, uma vez que

toda 3-coloração q-backbone de (G,H), com H sendo um grafo vazio, é também uma 3-coloração

do grafo G. Além disso, sabemos que decidir se um grafo é 3-colorível é NP-completo para

3g 3 (GAREY; JOHNSON, 1979).

Havet et al. destacam que, para um grafo G e um subgrafo gerador H de G com

δ (H) g 1, decidir se BBCq(G,H) f q+1 pode ser resolvido em tempo polinomial, uma vez

que BBCq(G,H) = q+1 se, e somente se, G é bipartido (como foi provado na Proposição 18).

Isso se deve ao fato de que o problema de determinar se um grafo é bipartido pode ser resolvido

em tempo polinomial (GAREY; JOHNSON, 1979; HAVET et al., 2014).
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Os autores também provam um resultado mais geral ao considerarem o backbone

como conexo (HAVET et al., 2014), mostrando que o problema 3-COLORAÇÃO q-BACKBONE,

quando restrito a outras condições, pode ser resolvido em tempo polinomial (HAVET et al.,

2014).

Teorema 49. (HAVET et al., 2014) Se G é um grafo conexo e H um subgrafo gerador conexo de

G, então decidir se BBCq(G,H)f q+2 pode ser resolvido em tempo polinomial.

No entanto, ao remover a condição de que o backbone seja conexo e ao considerar

H como um emparelhamento perfeito, os autores provam que esse problema é NP-completo

(HAVET et al., 2014).

Teorema 50. (HAVET et al., 2014) Se G é um grafo planar e H um emparelhamento perfeito de

G, então decidir se BBCq(G,H)f q+2 é NP-completo.

Quando o backbone é uma árvore geradora T ou um caminho hamiltoniano P,

Broersma et al. apresentam resultados importantes sobre esses casos. A prova completa do

teorema é detalhada no artigo expandido (BROERSMA et al., 2007). Antes de enunciar o

teorema, vamos definir os problemas específicos para essas classes de backbone.

ÁRVORE 3-COLORAÇÃO q-BACKBONE

Entrada: Um grafo G e uma árvore geradora T de G.

Pergunta: BBCq(G,T )f 3?

CAMINHO 3-COLORAÇÃO q-BACKBONE

Entrada: Um grafo G e um caminho hamiltoniano P em G.

Pergunta: BBCq(G,P)f 3?

Teorema 51. (BROERSMA et al., 2003)

(a) O problema ÁRVORE 3-COLORAÇÃO 2-BACKBONE pode ser resolvido em tempo polino-

mial para 3f 4.

(b) O problema CAMINHO 3-COLORAÇÃO 2-BACKBONE é NP-completo para 3g 5.

Demonstração. Assuma que 3f 4. Primeiro, note que, para 3= 1, decidir se BBC2(G,T )f 1 é

verdade é equivalente a saber se E(G) =∅. Se houver pelo menos uma aresta em G, a resposta ao



81

problema é imediatamente não. Para 3= 2, a verificação está relacionada à existência de arestas

no backbone. Se houver qualquer aresta no backbone, a resposta ao problema é prontamente não.

Caso contrário, basta verificar se o grafo G é bipartido.

Observe que T é uma árvore geradora. Portanto, no cenário em que E(T ) = ∅,

temos que G é um grafo trivial, implicando que apenas uma cor é necessária para a coloração.

Logo, a resposta ao problema é imediatamente sim, quando E(T ) =∅ e 3g 1.

Pela Proposição 18, ao substituir q = 2, temos que BBC2(G,T ) = 3 se, e somente

se, G é um grafo bipartido, que sabemos que pode ser decidido em tempo polinomial, o que

resolve o problema para 3= 3.

Suponha agora que 3 g 4. Considere o grafo G = (V,E) e sua árvore geradora

T = (V,ET ). Como toda árvore é 2-colorível propriamente, seja c uma 2-coloração de T .

Agora, examinaremos a bipartição dos vértices de G induzida por essa coloração c, denotando-a

como V = V1 *V2, onde V1 e V2 são os conjuntos de vértices coloridos com as cores 1 e 2,

respectivamente, de acordo com a coloração c.

Agora, para 3= 4, considere uma 4-coloração 2-backbone f de (G,T ). Seja v7 um

vértice de V1 e suponha, sem perda de generalidade, que f (v7) * {1,2}. Consequentemente,

os vértices nos conjuntos V1 e V2 são coloridos com as cores pertencentes a {1,2} e {3,4},

respectivamente. Portanto, podemos afirmar que BBC2(G,T ) = 4 se, e somente se, ambos

os subgrafos de G induzidos pelos conjuntos V1 e V2 são bipartidos, e nenhuma aresta de ET

conecta um vértice de cor 2 em V1 a um vértice de cor 3 em V2. Isso ocorre porque a condição

de backbone deve ser satisfeita, e as cores 2 e 3 são cores vizinhas. Este problema pode ser

reduzido ao problema 2-SAT, que é conhecido por ser resolvido em tempo polinomial (GAREY;

JOHNSON, 1979).

Para realizar a redução, criamos duas variáveis booleanas, xv e yv, para cada vértice

v * V (G). Os literais xv e xv correspondem a colorir o vértice v com as cores 1 e 2, respec-

tivamente, enquanto os literais yv e yv correspondem a atribuir as cores 3 e 4 ao vértice v,

respectivamente. Dessa forma, observe que G[V1] é bipartido se, e somente se, existe uma atri-

buição satisfatível para a fórmula booleana (xu ( xv)' (xu ( xv) para toda aresta uv * E(G[V1]).

Esta fórmula assegura que, para cada aresta uv em G, um vértice u recebe uma cor e o vértice v

recebe uma cor diferente dentro do conjunto de cores {1,2}. Para o subgrafo G[V2], o processo é

análogo.

Além disso, para uma aresta uv * ET com u *V1 e v *V2, os vértices serão coloridos
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de maneira a satisfazer as condições de uma 4-coloração 2-backbone se, e somente se, houver

uma atribuição satisfatível para a fórmula booleana xu ( yv. Como as cores 2 e 3 são vizinhas,

não é permitido que uma aresta no backbone tenha suas extremidades coloridas com essas duas

cores. Assim, a fórmula proíbe que as cores 2 e 3 apareçam simultaneamente em uma aresta

do backbone, garantindo que ou a cor 1 (xu) ou a cor 4 (yv) sempre apareça em uma de suas

extremidades.

Assuma agora que 3 g 5. A redução é realizada a partir de um problema clássico

que é NP-completo: o problema da 3-coloração (mais informações sobre este problema podem

ser encontradas em (GAREY; JOHNSON, 1979)). O problema consiste em, dado um grafo R,

responder à seguinte pergunta: existe uma 3-coloração de R?

Vamos construir um grafo G e um caminho hamiltoniano P. Seja R = (VR,ER) uma

instância do problema de 3-coloração e v1,v2, . . . ,vn uma enumeração dos vértices de R. Para

cada 1 f i f n21, criamos os vértices ai, bi e ci, e adicionamos as arestas viai, aibi, bici e civi+1

no backbone P, conforme ilustrado na Figura 59. O grafo resultante será o grafo G. Dessa forma,

é claro que (v1,a1,b1,c1,v2, . . . ,vn21,an21,bn21,cn21,vn) é um caminho hamiltoniano P em G.

Afirmamos que BBC2(G,P)f 3 se, e somente se, χ(R)f 3.

Figura 59 – A construção do grafo G com o caminho hamiltoniano P (com as
arestas do backbone em negrito).

. . . . . .

v1

a1 b1 c1

v2 vi

ai bi ci

vi+1 vn21

an21 bn21 cn21

vn
R

Fonte: Autoria própria, 2024.

Suponha que BBC2(G,P) f 3 e seja f tal coloração 2-backbone de (G,P). A

restrição de f aos vértices de R é uma 3-coloração de R, logo χ(R) f 3. Agora, suponha que

χ(R)f 3 e seja φ tal 3-coloração de R. Para cada 1 f i f n21, vamos estender φ para (G,P)

da seguinte forma:

• Se f (vi)f 3, então φ(ai) = 3;

• Se f (vi)g 4, então φ(ai) = 1;

• Se f (vi+1)f 3, então φ(ci) = 3;

• Se f (vi+1)g 4, então φ(ci) = 1;

• φ(bi) = 3.
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Assim, concluímos que BBC2(G,P)f 3.

Os autores em (BROERSMA et al., 2003) analisam o mesmo problema de comple-

xidade computacional para uma classe distinta de grafos, em que o backbone consiste em um

emparelhamento perfeito, com q = 2. Sob essas condições, o problema, que inicialmente pode

ser resolvido em tempo polinomial, torna-se NP-completo quando 3g 4. Antes de enunciar o

teorema, vamos definir o problema no contexto de emparelhamentos perfeitos.

EMPARELHAMENTO 3-COLORAÇÃO q-BACKBONE

Entrada: Um grafo G e um emparelhamento perfeito M de G.

Pergunta: BBCq(G,M)f 3?

Teorema 52. (BROERSMA et al., 2003)

(a) O problema EMPARELHAMENTO 3-COLORAÇÃO 2-BACKBONE pode ser resolvido em

tempo polinomial para 3f 3.

(b) O problema EMPARELHAMENTO 3-COLORAÇÃO 2-BACKBONE é NP-completo para

3g 4.

Demonstração. Os casos em que 1 f 3f 3 seguem de maneira análoga à prova do Teorema 51.

Assuma que 3 g 4. Vamos reduzir novamente o problema EMPARELHAMENTO

3-COLORAÇÃO 2-BACKBONE ao problema da 3-coloração.

Vamos construir um grafo G e um emparelhamento perfeito M. Seja R = (VR,ER)

uma instância do problema de 3-coloração e v1,v2, . . . ,vn uma enumeração dos vértices de R.

Para cada 1 f i f n, criamos o vértice ui e adicionamos a aresta viui no backbone M, conforme

ilustrado na Figura 60. O grafo resultante será o grafo G e as arestas v1u1, . . . ,vnun formam o

emparelhamento perfeito M em G. Afirmamos que BBC2(G,M)f 3 se, e somente se, χ(R)f 3.

Figura 60 – A construção do grafo G com o emparelhamento perfeito M (com as
arestas do backbone em negrito).

. . . . . .

v1

u1

v2

u2

vi

ui

vn

un

R

Fonte: Autoria própria, 2024.
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Suponha que BBC2(G,M) f 3 e seja f tal coloração 2-backbone de (G,M). A

restrição de f aos vértices de R é uma 3-coloração própria de R, logo χ(R)f 3. Agora, suponha

que χ(R)f 3 e seja φ tal 3-coloração de R. Para cada 1 f i f n, vamos estender φ para (G,M)

da seguinte forma:

• Se f (vi)f 2, então φ(ui) = 3;

• Se f (vi)g 3, então φ(ui) = 1.

Assim, concluimos que BBC2(G,M)f 3.

Turowski apresenta um algoritmo polinomial para encontrar o número cromático

2-backbone de (G,M), onde G é um grafo split e M é um emparelhamento em G. O algoritmo e

a demonstração desse resultado podem ser encontrados em (TUROWSKI, 2015).

No artigo de Broersma et al., é apresentado o problema computacional para ga-

láxias como backbone (BROERSMA et al., 2009a). Os autores apresentam resultados para

qualquer q g 2, analisando a complexidade computacional do problema nesse contexto. A seguir,

enunciaremos o problema para galáxias.

GALÁXIA 3-COLORAÇÃO q-BACKBONE

Entrada: Um grafo G e uma galáxia H de G.

Pergunta: BBCq(G,H)f 3?

Teorema 53. (BROERSMA et al., 2009a)

(a) O problema GALÁXIA 3-COLORAÇÃO q-BACKBONE pode ser resolvido em tempo polino-

mial para 3f q+1.

(b) O problema GALÁXIA 3-COLORAÇÃO q-BACKBONE é NP-completo para 3g q+2.

Os autores ressaltam que o Teorema 53 continua válido mesmo quando o backbone

é um emparelhamento perfeito, conforme enunciado a seguir.

Teorema 54. (BROERSMA et al., 2009a)

(a) O problema EMPARELHAMENTO 3-COLORAÇÃO q-BACKBONE pode ser resolvido em

tempo polinomial para 3f q+1.

(b) O problema EMPARELHAMENTO 3-COLORAÇÃO q-BACKBONE é NP-completo para

3g q+2.

Havet et al. observam que ao comparar os resultados do Teorema 54 com o Teo-

rema 50, o problema continua sendo NP-completo, mesmo quando consideramos G como um
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grafo planar. Em contraste, o Teorema 49 implica que, ao tomarmos o backbone como uma

árvore geradora de G, o problema pode ser resolvido em tempo polinomial (HAVET et al., 2014).

Havet et al., ao estudar problemas para grafos planares, provam limitantes, como o

Teorema 30, que demonstra que, para um grafo planar G e uma floresta geradora F de G, temos

BBCq(G,F)f q+6, além de mostrar um par de grafos que atinge esse limitante para cada q g 4.

Além disso, os autores também apresentam resultados de complexidade, provando que decidir se

BBCq(G,T )f q+5 é NP-completo para q g 4, onde T é uma árvore geradora de G (HAVET et

al., 2014).

Teorema 55. (HAVET et al., 2014) Para todo inteiro q g 4, o seguinte problema é NP-completo.

Entrada: Um grafo planar G e uma árvore geradora T de G.

Pergunta: BBCq(G,T )f q+5?

Como consequência do Teorema 40, Havet et al. provam que, para um grafo planar

G e uma galáxia H em G, vale que BBCq(G,H)f q+4. Eles também apresentam um par (G,H)

que atinge esse limitante superior, onde H é uma galáxia com grau máximo 3. A partir desse

resultado, os autores examinam o seguinte problema de complexidade computacional, provando

separadamente os casos em que q = 2 e q g 3 (HAVET et al., 2014).

Teorema 56. (HAVET et al., 2014) Para todo inteiro q g 2, o seguinte problema é NP-completo.

Entrada: Um grafo planar G e uma galáxia F em G com grau máximo 3.

Pergunta: BBCq(G,F)f q+3?

Corrigimos um dos gadgets utilizados em um lema para provar o Teorema 56 para

q g 3. No Capítulo 4, apresentamos o erro, o gagdet corrigido e a prova completa desse lema.

Havet et al. demonstram que esse problema permanece NP-completo, mesmo ao considerarmos

F como uma galáxia com grau máximo 2 (HAVET et al., 2014).

Como discutido anteriormente, Broersma et al. provaram que BBC2(G,P)f 7 para

um grafo planar G com um caminho hamiltoniano P. No entanto, os autores deixam em aberto o

problema de melhorar esse limitante superior para 6 (Problema em Aberto 8). Em contrapartida,

Havet et al. demonstram que o resultado do Teorema 51-(b) permanece NP-completo mesmo

quando G é um grafo planar (HAVET et al., 2014).

Teorema 57. (HAVET et al., 2014) O seguinte problema é NP-completo.

Entrada: Um grafo planar G e um caminho hamiltoniano P em G.

Pergunta: BBC2(G,P)f 5?
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De maneira análoga ao caso em que o backbone é uma árvore geradora, Broersma

et al. demonstram que BBC2(G,T )f 7. O Problema em Aberto 6 questiona se esse limitante

superior pode ser reduzido para 6. Havet et al., por sua vez, provam que decidir se BBC2(G,T )f

5 é um problema NP-completo, considerando um grafo planar G e uma árvore geradora T de G.

Esse resultado é uma consequência do Teorema 56 para q = 2 (HAVET et al., 2014).

Janczewski e Turowski investigam, em (JANCZEWSKI; TUROWSKI, 2015a), a

complexidade de encontrar colorações q-backbone ótimas para pares (G,H), onde G é um grafo

completo e H é bipartido. Em outro trabalho, os autores analisam a complexidade da coloração

q-backbone quando G é um grafo planar e o backbone H é conexo (JANCZEWSKI; TUROWSKI,

2015b).
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4 RESULTADOS

Neste capítulo, apresentamos nossas contribuições para a Coloração Backbone na

primeira seção. Na segunda seção, introduzimos uma variação direcionada para esta coloração, a

Coloração Backbone Direcionada, e apresentamos nossos resultados para esta coloração.

4.1 Coloração Backbone

Nesta seção, focamos em nossos resultados na Coloração Backbone. Vale destacar

que os resultados desta seção foram desenvolvidos em colaboração com Alexandre A. Cezar e

Júlio Araújo. O primeiro deles é uma correção de um dos gadgets usados para provar o seguinte

resultado de complexidade computacional.

Teorema 1. (HAVET et al., 2014) Para todo inteiro q g 3, o seguinte problema é NP-completo.

Entrada: Um grafo planar G e uma galáxia F em G com grau máximo 3.

Pergunta: BBCq(G,F)f q+3?

Para demonstrar o Teorema 1, são utilizados dois lemas, apresentados e provados em

(HAVET et al., 2014). Antes de enunciar esses lemas, é necessário definir dois tipos de grafos

que são usados na demonstração: paraquedas e pipa. Um paraquedas em v é um grafo completo

com 4 vértices, onde as arestas incidentes ao vértice v estão no backbone, conforme ilustrado na

Figura 61. Por sua vez, chamamos de pipa um grafo com a estrutura apresentada na Figura 62,

onde os vértices t e u são denominados, respectivamente, de ponta e borda da pipa.

Figura 61 – Um paraquedas em v (com as arestas do backbone em negrito).

v

Fonte: Autoria própria, 2024.

Lema 58. (HAVET et al., 2014) Para q g 2, se φ é uma (q+3)-coloração q-backbone de um

paraquedas em v, temos que φ(v) * {1,q+3}.

Lema 2. (HAVET et al., 2014) Se φ é uma (q+ 3)-coloração q-backbone de uma pipa tal

que φ(t) * {1,2,3,q+ 1,q+ 2,q+ 3}, então ou φ(t) * {1,2,3} e φ(u) = q+ 3, ou φ(t) *

{q+1,q+2,q+3} e φ(u) = 1.
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Figura 62 – A pipa (com as arestas do backbone em negrito).

t

z3

v

s2

s1 u

z2z1

Fonte: Autoria própria, adaptado de (HAVET et al., 2014), 2024.

A demonstração feita para o Lema 58 está correta e é uma rápida análise de casos,

supondo, por contradição, que a cor de v difere destas duas. Já no Lema 2, há uma imprecisão, a

prova seguiu-se a partir da análise de dois casos. Voltando para a Figura 62, observe que temos

paraquedas nos vértices v, z1, z2 e z3, logo, pelo Lema 58, esses vértices têm cor em {1,q+3} em

toda (q+3)-coloração q-backbone. Ao analisar o primeiro caso, em que f (v) = 1, temos f (z1) =

f (z2) = f (z3) = q+3, pois v é adjacente a todos esses vértices em G. Analisando as adjacências

dos vértices, tanto em G como no backbone, é deduzido que { f (s1), f (s2)} = {q+ 1,q+ 2}

e f (u) = q+3. Em (HAVET et al., 2014), na finalização do argumento, temos que com essa

atribuição de cores, poderíamos concluir que f (t)= {1,2,3}. O segundo caso é análogo, supondo

que f (v) = q+3, de forma simétrica, seria deduzido que f (u) = 1 e f (t) = {q+1,q+2,q+3}.

Porém, ao estudar detalhadamente a demonstração, como o vértice t, pela hipótese

do lema, só pode ser colorido com as cores do conjunto {1,2,3,q+ 1,q+ 2,q+ 3}, logo, no

primeiro caso (onde f (v) = 1), temos a restrição da cor q+3 para t, pois u é adjacente a t em

G. A outra cor que é proibida para t é a cor atribuída ao vértice s1, que nesse caso é q+ 1

ou q+2. Portanto, o vértice t pode ser colorido em {1,2,3,q+1,q+2}\{ f (s1)}. É feito de

forma análoga para o segundo caso. Para corrigir o problema e prosseguir na demonstração do

Teorema 1, podemos adicionar dois paraquedas que serão chamados de p1 e p2. A nova estrutura

da pipa é apresentada na Figura 63 e a demonstração corrigida do Lema 2 é apresentada a seguir.

Lema 59. (CASTRO et al., 2022) Se φ é uma (q+ 3)-coloração q-backbone de uma pipa
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Figura 63 – A pipa corrigida (com as arestas do backbone em negrito).

t

z3

v
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z2z1

a

p1

p2

Fonte: Autoria própria, 2024.

ilustrada na Figura 63 tal que φ(t) * {1,2,3,q+ 1,q+ 2,q+ 3}, então ou φ(t) * {1,2,3} e

φ(u) = q+3, ou φ(t) * {q+1,q+2,q+3} e φ(u) = 1.

Demonstração. Seja f uma (q+3)-coloração q-backbone de uma pipa, conforme a Figura 63,

com f (t) * {1,2,3,q+1,q+2,q+3}. Como temos paraquedas em v, z1, z2 e z3, pelo Lema 58,

sabemos que eles são coloridos com {1,q+3}. Sem perda de generalidade, assuma que f (v) = 1.

Para i * {1,2,3}, observe que vzi * E(G), logo f (zi) = q+3. Como s1, s2 e u são

adjacentes a v no backbone, então esses três vértices são coloridos em {q+ 1,q+ 2,q+ 3},

ademais, eles formam uma clique em G, não podendo ter cores iguais. Com essa análise e o

fato de que sizi * E(G), para i * {1,2}, então si não poderá ser colorido com q+ 3. Assim,

concluímos que f (u) = q+3.

Uma vez que temos um paraquedas em p2 e p2 é adjacente a v em G, pelo Lema 58,

concluímos que f (p2) = q+3. De forma análoga, ao considerar o paraquedas em p1, e sabendo

que ele é vizinho de p2 em G, o vértice p1 é colorido com a cor 1. Sendo a o vértice do paraquedas

em p1, conforme a Figura 63, como p1 é colorido com 1 e pela estrutura do paraquedas, a é

colorido em {q+1,q+2,q+3}. Porém, como as1 e ap2 são arestas em G, a é colorido com a

cor {q+1,q+2}\{ f (s1)}. Dado que t é adjacente aos vértices s1, u e a, então t é colorido em

{1,2,3}.

O segundo resultado na Coloração Backbone consiste em corrigir uma imprecisão

em um argumento no meio da demonstração de um teorema provado por Broersma et al. (BRO-
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ERSMA et al., 2003). Para isso, apresentaremos a prova, identificaremos o erro ao longo da

argumentação e mostraremos como corrigi-lo, mantendo o resultado do seguinte teorema.

Teorema 4. (BROERSMA et al., 2003) Se G é um grafo split e T uma árvore geradora de G,

então, se χ(G)g 3, temos que BBC2(G,T )f χ(G)+2. Esse limitante é o melhor possível.

Demonstração. Dados um grafo split G e uma árvore geradora T desse grafo, definem-se as

partições C e I de V (G), onde C é uma clique máxima e I é um conjunto independente. Se |C|= k,

como os grafos split são grafos perfeitos, ou seja, χ(G) = ω(G), concluímos que χ(G) = k. Ao

considerar a restrição de T a C, temos dois casos.

O primeiro caso ocorre quando a restrição de T a C forma uma estrela K1,k21. Nesse

cenário, os vértices da clique são nomeados como v1,v2, . . . ,vk21, representando as folhas da

estrela, enquanto vk é o centro da estrela. A construção de uma (k+2)-coloração 2-backbone

para (G,T ) é realizada da seguinte maneira: para cada i * {1,2, . . . ,k21}, atribui-se a cor i ao

vértice vi, e ao centro da estrela vk é dada a cor k+1.

Para completar a coloração dos vértices pertencentes ao conjunto I, considere os

seguintes subcasos: se u * I e uvk /* E(T ), podemos atribuir a cor k+2 ao vértice u. Se w * I e

wvk * E(T ), não podemos colorir esse vértice com k+2 devido à condição do backbone. No

entanto, existe um vértice v j, para algum 1 f j f k21, tal que wv j /* E(G), pois, caso contrário,

C*{w} seria uma clique de tamanho maior que C, o que é impossível, uma vez que C é uma

clique máxima. Assim, basta colorir o vértice w com a cor j. A Figura 64 ilustra como essa

coloração é realizada.

Figura 64 – A ideia da construção da coloração para o grafo split (com as arestas do
backbone em negrito).

. . .. . .

k+1

j1 k21

vk

v jv1 vk21

j

k+2

w

u

C I

Fonte: Autoria própria, 2024.
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Para o segundo caso, em que a restrição de T a C não forma uma estrela, os autores

consideram uma 2-coloração de T tal que |C1| g 2 e |C2| g 2, onde C1 e C2 são os conjuntos de

vértices da clique coloridos com as cores 1 e 2, respectivamente. No entanto, considerando o par

(G,T ) da Figura 65, observe que os vértices a, b e c formam uma clique máxima C em G, e a

restrição de T a C não forma uma estrela. Contudo, não conseguimos encontrar uma 2-coloração

de T como os autores propuseram, pois |C|= 3.

Figura 65 – Um par (G,T ) (com as arestas do backbone em negrito) tal que G é um
grafo split e T uma árvore geradora de G.

a

c

b

d

e

f

Fonte: Autoria própria, 2024.

Portanto, para corrigir esse argumento, tomaremos uma 2-coloração de T , denotada

por f . O primeiro subcaso ocorre quando f é constante em C, ou seja, |C1|= 0 ou |C2|= 0. No

segundo subcaso, f satisfaz |C1| g 1 e |C2| g 1, e, além disso, existe (x,y) /* E(T ) para algum

x *C1 e y *C2. Aqui novamente, C1 e C2 são os conjuntos de vértices da clique coloridos com

as cores 1 e 2 em f , respectivamente. A existência de uma coloração f que satisfaça as condições

do segundo subcaso decorre do fato de que, pela hipótese do teorema, temos χ(G) = ω(G)g 3,

o que garante |C| g 3. Além disso, como T é uma árvore, ela não contém ciclos e, pela hipótese

do segundo caso, sua restrição a C não forma uma estrela.

Vamos renomear os vértices da clique C da seguinte forma: v1, . . . ,v|C1| para os

vértices de C1 e v|C1|+1, . . . ,v|C1|+|C2| para os vértices de C2, onde v|C1| = x e v|C1|+1 = y. Para

construir uma (k+2)-coloração 2-backbone para (G,T ), sabendo que |C1|+ |C2| = k, vamos

colorir os vértices vi da clique C com a cor i, para todo 1 f i f k. Já os vértices do conjunto

independente I serão coloridos com a cor k+2, satisfazendo assim a condição do backbone.

Limitante ótimo. Vamos construir um grafo split G e uma árvore geradora T de G, onde

V (G) =C* I. O conjunto C é uma clique com k vértices, nomeados v1, . . . ,vk, e I é um conjunto

independente com (k22)(k21)
2 vértices, nomeados u( j)

i , para cada 1 f i ;= j f k21. As arestas

vsu
( j)
i pertencem a E(G) para todo s ;= i. No backbone T , adicionamos as arestas vsvk para todo

1 f s f k21, formando uma estrela com centro em vk. Além disso, inserimos a aresta v ju
( j)
i em
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T para todo 1 f i ;= j f k21, onde os vértices u( j)
i são folhas de T .

Claramente, temos que χ(G) = k. Agora, suponha, por absurdo, que BBC2(G,T )f

k+ 1, e considere c uma (k+ 1)-coloração 2-backbone de (G,T ). Como C é uma clique, os

vértices v1, . . . ,vk devem ser coloridos com k cores distintas. Além disso, como os vértices

da clique formam uma estrela em T , o vértice vk deve ser colorido com 1 ou k+ 1. Como a

coloração 2-backbone é simétrica, sem perda de generalidade, suponha que c(vk) = 1. Portanto,

a cor 2 não é usada na clique. Agora, sejam vi e v j os vértices da clique C que são coloridos com

as cores 4 e 3 em c, respectivamente.

Por construção, o vértice u( j)
i é adjacente a v3 em G para todo 1 f 3 ;= i f k. As

cores disponíveis para u( j)
i são 2 (já que a cor 2 não aparece em C) e 4. No entanto, como

v ju
( j)
i * E(T ) e v j foi colorido com a cor 3, pela condição do backbone, as cores 2 e 4 são

proibidas para u( j)
i . Portanto, não há cor possível para u( j)

i , o que contradiz a suposição de que c

é uma (k+1)-coloração 2-backbone de (G,T ).

Outros resultados foram obtidos na versão circular da Coloração Backbone, conhe-

cida como Coloração Circular Backbone, definida em (HAVET et al., 2014). Esses resultados

podem ser encontrados no nosso resumo estendido em (CASTRO et al., 2022), apresentado no

VII Encontro de Teoria da Computação (ETC).

4.2 Coloração em Backbones Direcionados

Nesta seção, introduzimos uma variação da Coloração Backbone, além de apresentar

alguns resultados iniciais desta coloração, que foram estudados em colaboração com Alexandre

Talon, Atílio G. Luiz e Júlio Araújo. A seção é estruturada em três partes distintas: a primeira

abordando o caso em que o backbone é um emparelhamento, a segunda tratando do cenário

em que o backbone é uma galáxia ou um caminho hamiltoniano e a terceira apresentando os

resultados de complexidade computacional.

Considerando um grafo G e uma orientação acíclica
2³
H do subgrafo gerador H de

G, uma k-coloração q-backbone direcionada é uma função f : V 2³ {1,2, . . . ,k} que satisfaz

as seguintes condições: | f (u)2 f (v)| g 1 para toda uv * E(G) e f (v)2 f (u) g q para todo

(u,v) *
2³
H . Esta última será chamada de condição do backbone direcionado. Note que é

necessário afirmar que a orientação é acíclica para garantir a boa definição da coloração.

De forma semelhante à Coloração Backbone, definimos o número cromático q-
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backbone direcionado, denotado por BBCq(G,
2³
H ), como o menor inteiro k para o qual existe

uma k-coloração q-backbone direcionada de (G,
2³
H ). Quando temos uma coloração q-backbone

direcionada que usa exatamente BBCq(G,
2³
H ) cores, dizemos que essa coloração é ótima. Em

uma coloração q-backbone direcionada, duas cores c1 e c2 são chamadas de vizinhas se |c12c2|<

q. Portanto, observe que cores vizinhas não podem ser usadas nas extremidades de um arco em
2³
H , pois isso violaria a condição do backbone direcionado.

Para enunciar o primeiro resultado que compara o número cromático q-backbone

direcionado com o número cromático q-backbone, é necessário primeiro definir os seguintes

parâmetros:

BBC2
q (G,H) = min{BBCq(G,

2³
H ) |

2³
H é uma orientação acíclica de H} (4.1)

BBC+
q (G,H) = max{BBCq(G,

2³
H ) |

2³
H é uma orientação acíclica de H} (4.2)

Além disso, dados um grafo G e um subgrafo gerador H de G, seja
2³
H uma orientação

acíclica que satisfaz BBCq(G,
2³
H )=BBC2

q (G,H). Nesse caso, dizemos que
2³
H é uma orientação

mínima de H. De forma análoga, para BBC+
q (G,H), definimos uma orientação máxima de H.

Teorema 5. Se G é um grafo e H um subgrafo gerador de G, então

BBC2
q (G,H) = BBCq(G,H)f BBC+

q (G,H).

Demonstração. Para demonstrar que BBC2
q (G,H) f BBCq(G,H), seja f uma coloração q-

backbone ótima de (G,H). Construímos uma orientação para H da seguinte forma: seja uv *

E(H), se f (u) < f (v), então orientamos de u para v; caso contrário, orientamos de v para u.

Dessa maneira, todos os arcos (u,v) *
2³
H satisfazem a condição do backbone direcionado, pois

f (u)< f (v) e f (v)2 f (u)g q.

Para mostrar que BBC2
q (G,H)g BBCq(G,H), considere

2³
H uma orientação mínima

de H e f uma coloração q-backbone direcionada ótima de (G,
2³
H ). Note que f também é uma

coloração q-backbone de (G,H) ao remover a orientação dos arcos.

A prova de que BBC+
q (G,H)g BBCq(G,H) é feita de forma análoga, considerando

2³
H uma orientação máxima de H e f uma coloração q-backbone direcionada ótima de (G,

2³
H ).

O segundo resultado apresenta um limitante ótimo para um grafo G e uma orientação

acíclica
2³
H de um subgrafo gerador H de G, em função do diâmetro de H e do número cromático

de G.
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Teorema 6. Se G é um grafo e
2³
H uma orientação acíclica do subgrafo gerador H de G, então

BBCq(G,
2³
H )f diam(

2³
H ) · (χ(G)+q22)+χ(G). Esse limitante é o melhor possível.

Demonstração. Sejam G e
2³
H como no enunciado do Teorema, com diam(

2³
H ) = k e φ =

diam(
2³
H ) · (χ(G) + q2 2) + χ(G), vamos construir uma partição para os vértices de G. O

conjunto V0 será formado pelos vértices que são fontes em
2³
H (incluindo possíveis vértices

isolados em
2³
H ). Para cada i * {1, . . . ,k}, seja Vi o conjunto de vértices que são fontes em

2³
H 2 (V0 * . . .*Vi21). Dessa forma, conforme a construção de cada Vi, {V0, . . . ,Vk} é uma

partição de V (G), já que H é um subgrafo gerador e
2³
H é acíclico.

Seja c uma χ(G)-coloração de G. Vamos construir uma φ -coloração q-backbone

direcionada f para o par (G,
2³
H ), colorindo cada conjunto Vi sucessivamente. Começaremos

colorindo V0 da seguinte forma: para cada vértice v *V0, definimos f (v) = c(v). Em seguida,

mostraremos como definir a coloração f para os vértices em V1 e, posteriormente, generalizare-

mos o processo para qualquer Vi, com i g 1.

Dado um vértice v *V1, atribuímos f (v) = χ(G)+q21+(χ(G)2 c(v)). Observe

que, se existe u * V1 tal que c(u) = χ(G), então u recebe a cor χ(G) + q2 1 na coloração

f , o que garante uma distância de q unidades em relação a todas as cores atribuídas em V0,

exceto aos vértices de V0 que foram coloridos com χ(G) em f . No entanto, isso não é um

problema, pois sendo w um vértice de V0 tal que f (w) = χ(G), pela definição de f em V0, temos

que c(w) = χ(G). Portanto, como c é uma coloração de G, é impossível que uw * E(G), e,

consequentemente, o arco (w,u) /*
2³
H . Assim, a condição do backbone direcionado é satisfeita

nessa situação, por vacuidade.

Sendo 1 f i f k um inteiro, vamos definir f da seguinte forma para v *Vi:

f (v) =

ù

ü

ú

ü

û

(i21) · (χ(G)+q22)+χ(G)+q21+(χ(G)2 c(v)) , se i é ímpar;

(i21) · (χ(G)+q22)+χ(G)+q21+(c(v)21) , se i é par.

Vamos provar que f é de fato uma φ -coloração q-backbone direcionada de (G,
2³
H ).

Considere uv * E(G). Sem perda de generalidade, suponha que u *Vα e v *Vβ , com 1 f α f

β f k. Se α = β , então | f (v)2 f (u)|= |c(v)2 c(u)| g 1, pois c é uma χ(G)-coloração de G.

Agora, suponha que α < β . Se α e β possuem a mesma paridade, então:

| f (v)2 f (u)| g 2 · (χ(G)+q22)2|c(v)2 c(u)|.
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Como c é uma χ(G)-coloração de G e sabemos que uv * E(G), temos que |c(v)2

c(u)| f χ(G)21. Portanto, a desigualdade se torna:

| f (u)2 f (v)| g 2 · (χ(G)+q22)2χ(G)+1 g (χ(G)21)+(q22)+q g q.

Se α é par e β é ímpar, e sabendo que c(u)+ c(v) f 2 · χ(G)2 1 (pois c é uma

χ(G)-coloração de G), temos

| f (v)2 f (u)| g 2 ·χ(G)+q212 (c(v)+ c(u))g q.

Se α é ímpar e β é par, e sabendo que c(u)+c(v)g 3 (pois c é uma χ(G)-coloração

de G), então

| f (v)2 f (u)| g q23+ c(u)+ c(v)g q.

O que conclui a demonstração.

Limitante ótimo. Seja diam(
2³
H ) = k. Vamos construir um grafo χ(G)-partido completo G.

Os vértices de G são definidos da seguinte forma: para cada i * {1, . . . ,χ(G)}, o conjunto

Vi = {u( j)
i | 0 f j f k} é independente, e temos que V (G) =

χ(G)
⋃

i=1
Vi. As arestas de G são dadas

por:

E(G) = {(u( j1)
i1

,u( j2)
i2

) | 1 f i1 ;= i2 f χ(G) e 0 f j1 ;= j2 f k}

Logo, para u(α)
i *Vi e u(β )j *Vj, com i ;= j, temos que u(α)

i u(β )j * E(G), sempre que

α ;= β . Agora, definimos os arcos de
2³
H da seguinte forma:

A(
2³
H ) = {(u( j)

i1
,u( j+1)

i2
) | 1 f i1 ;= i2 f χ(G) e 0 f j f k21}

Dado um vértice u( j)
i , o índice i indica a qual conjunto independente Vi o vértice

pertence, enquanto o índice j indica sua posição no caminho direcionado maximal em
2³
H .

Observe que
2³
H é acíclico, uma vez que não há arco do tipo (u( j)

i1
,u(3)i2

) em
2³
H com j > 3. Por

construção, os caminhos direcionados maximais em
2³
H são da forma (u(0)i0

,u(1)i1
, . . . ,u(k)ik

), para

todo 1f i3 f χ(G), com i3 ;= i3+1, e para todo 0f 3f k. A Figura 66 ilustra a ideia da construção

desse par, mostrando os arcos de
2³
H no caso em que χ(G) = 3 e diam(

2³
H ) = 2.

Seja c uma BBCq(G,
2³
H )-coloração q-backbone direcionada de (G,

2³
H ). Vamos

provar por indução que, para todo 0 f j f k, vale a seguinte propriedade: max{c(u( j)
i ) | 1 f i f

χ(G)} g j · (χ(G)+q22)+χ(G). Com essa propriedade, ao substituir j = k, conseguimos o

limitante que queríamos.
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Figura 66 – Ideia da construção do par (G,
2³
H ) quando χ(G) = 3 e diam(

2³
H ) = 2

(com os arcos do backbone em vermelho).

u(0)1

u(0)2

u(0)3

u(1)1

u(1)2

u(1)3

u(2)1

u(2)2

u(2)3

V1

V2

V3

Fonte: Autoria própria, 2024.

Se j = 0, o conjunto {u(0)i | 1 f i f χ(G)} forma uma clique, pois G é um grafo

χ(G)-partido completo. Portanto, todos os vértices nesse conjunto devem receber cores distintas,

assim, temos max{c(u(0)i ) | 1 f i f χ(G)} g χ(G), como queríamos demonstrar.

Agora, seja j g 1. Assuma que a propriedade é satisfeita para todo 1 f 3 f j21.

Então, existe 0 f α f χ(G) tal que c(u( j21)
α )g ( j21) ·(χ(G)+q22)+χ(G). Pela construção,

há χ(G)21 arcos cuja a cauda é u( j21)
α e a cabeça está em Vj. Como a condição do backbone

direcionado deve ser atendida, para todo i ;= α , temos c(u( j)
i )2 c(u( j21)

α )g q, o que implica:

c(u( j)
i )g c(u( j21)

α )+q g ( j21) · (χ(G)+q22)+χ(G)+q. (4.3)

Como {u( j)
i | 1 f i ;= α f χ(G)} é uma clique, devido à construção de G, precisamos

de χ(G)21 cores distintas que satisfaçam a Desigualdade (4.3). Isso implica que:

max{c(u( j)
i ) | 1 f i ;= α f χ(G)} g ( j21) · (χ(G)+q22)+χ(G)+q+χ(G)22.

O que equivale a:

max{c(u( j)
i ) | 1 f i ;= α f χ(G)} g j · (χ(G)+q22)+χ(G).

Isso conclui a prova.

4.2.1 Emparelhamentos como backbone

Nesta seção, estudamos o caso em que o backbone é um emparelhamento no grafo.

Para uma orientação
2³
M de um emparelhamento perfeito M em um grafo G, todo vértice do
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grafo é ou cabeça ou cauda. Vamos definir dois conjuntos, V2(
2³
M) e V+(

2³
M) como sendo,

respectivamente, o conjunto dos vértices que são cabeças e o conjunto dos vértices que são

caudas.

A demonstração do limitante superior no teorema a seguir é uma consequência

direta do Teorema 6, obtido ao considerar diam(
2³
H ) = 1. Apresentamos um par (G,

2³
M) que

atinge esse limitante, demonstrando que ele é apertado. Vale notar que o exemplo apertado no

Teorema 6 não tem um emparelhamento como backbone. Em outras palavras, o resultado abaixo

demonstra que o limitante do Teorema 6 é apertado quando diam(
2³
H ) = 1, mesmo que

2³
H seja

uma orientação de um emparelhamento perfeito em G. Além disso, este teorema generaliza um

resultado previamente obtido, que foi provado para q = 2 antes da formulação do Teorema 6.

Teorema 60. Se G é um grafo k-cromático,
2³
M uma orientação de um emparelhamento perfeito

M de G e q g 2 um inteiro, então BBCq(G,M)f 2k+q22. Esse limitante é o melhor possível.

Demonstração. Provar que BBCq(G,
2³
M)f 2k+q22 segue diretamente do Teorema 6. Mos-

traremos que esse limitante superior é o melhor possível ao exibir um par que atinge exatamente

esse número.

Vamos construir um grafo k-partido completo G. Os vértices de G serão particionados

nos conjuntos V1, . . . ,Vk, onde cada Vi =V+
i *V2

i é um conjunto independente. Para cada inteiro

1 f i f k, definimos que V+
i = {v(i, j)i | 1 f j f k, j ;= i} e V2

i = {v( j,i)
i | 1 f j f k, j ;= i}.

As arestas de G e os arcos de
2³
M são definidos da seguinte maneira: para inteiros i ;= j,

se u * Vi e v * Vj, adicionamos a aresta uv em G. Além disso, incluímos o arco (v(i, j)i ,v(i, j)j )

em
2³
M . Assim, o conjunto V2

i contém todos os vértices em que os arcos têm cabeça em i,

enquanto o conjunto V+
i contém todos os vértices onde os arcos têm cauda em i. Na Figura 67,

ilustramos a ideia da construção do par (G,
2³
M), omitindo os vértices dos conjuntos Vj que não

estão representados na figura.

Seja c uma 3-coloração q-backbone direcionada de (G,
2³
M) e suponha, por absurdo,

que 3f 2k+q23. Para cada i, definimos Ci como o conjunto de cores atribuídas aos vértices de

Vi. Como G é um grafo k-partido completo, nenhuma cor em Ci pode aparecer em C j para i ;= j.

Defina também α2
i e α+

i como a menor e a maior cor em Ci, respectivamente, para

todo inteiro i * {1, . . . ,k}.

Afirmação 61. Para todo 1 f i f k, temos que α2
i f 32 k2q+2 e α+

i g k+q21.
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Figura 67 – Ideia da construção do par (G,
2³
M) (com os arcos do backbone em

vermelho).

v(1,k)k

v(k,1)k

v(k,i)k

v(i,k)k

Vk

v(1,i)i

v(i,1)i

v(k,i)i

v(i,k)i

Vi

. . .

. . .

v(1,k)1 v(k,1)1 v(i,1)1 v(1,i)1V1

Fonte: Autoria própria, 2024.

Prova da Afirmação. Seja 1 f i f k. Definimos Mi = max{c(v( j,i)
j ) | j ;= i}, e seja jMi o índice

j tal que c(v( j,i)
j ) = Mi. De maneira análoga, definimos mi = min{c(v(i, j)j ) | j ;= i}, e seja jmi o

índice j tal que c(v(i, j)j ) = mi. Como nenhuma cor de C j2 pode aparecer em C j22 para j2 ;= j22,

temos que Mi g k21 e mi f 32 k+2.

Pela construção do par (G,
2³
M), existe o arco e = (v( jM ,i)

jM
,v( jM ,i)

i ) em
2³
M . Como a

condição do backbone direcionado deve ser respeitada, temos que:

q f c(v( jM ,i)
i )2 c(v( jM ,i)

jM
)f α+

i 2Mi f α+
i 2 k+1.

Assim, obtemos α+
i g k+q21.

De maneira análoga para jm, existe o arco f = (v(i, jm)i ,v(i, jm)jm
) em

2³
M . Como a

condição do backbone direcionado deve ser respeitada, temos que:

q f c(v(i, jm)jm
)2 c(v(i, jm)i )f mi 2α2

i f 32 k+22α2
i .

Assim, obtemos α2
i f 32 k2q+2. ¥

Sendo 1 f i f k, como temos que 3f 2k+q23, ao aplicar a Afirmação 61, obtemos

que α2
i f k21 e α+

i g k+q21, onde α2
i é a menor cor de Ci e α+

i a maior cor de Ci.

Novamente, como nenhuma cor de C j2 pode aparecer em C j22 para j2 ;= j22, temos

que α2
j2 ;= α2

j22 e precisamos de k cores distintas em J1,2, . . . ,k21K (pois |{α2
1 , . . . ,α2

k }|= k),

o que é impossível, pois só temos k21 cores neste intervalo. Isso contradiz nossa hipótese de

que 3f 2k+q23, portanto 3= 2k+q22.
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Seja G um grafo planar. Pelo Teorema das Quatro Cores (APPEL; HAKEN, 1976),

temos χ(G)f 4. Substituindo k = 4 e q= 2 no Teorema 60, obtemos BBC2(G,
2³
M)f 8. Observe

que o par (G,
2³
M) com o limitante ótimo do Teorema 60 é planar apenas quando k f 2. Isso

levanta a questão se esse limitante pode ser melhorado no caso planar. Para o par (G,
2³
M)

representado na Figura 68, temos BBC2(G,
2³
M) = 6, o que mostra que esse limitante não pode

ser reduzido para 5.

Figura 68 – Um par (G,
2³
M), onde G é um grafo planar, tal que BBC2(G,

2³
M) = 6

(com os arcos do backbone em vermelho).

c

a

d

b

Fonte: Autoria própria, 2024.

Considerando (G,
2³
M) conforme ilustrado na Figura 68, provamos a igualdade

BBC2(G,
2³
M) = 6. Em uma 3-coloração 2-backbone direcionada f de (G,

2³
M), como os vér-

tices a, b, c e d são cabeças de arcos em
2³
M , temos f (x)g 3 para cada x * {a,b,c,d}, de modo a

satisfazer a condição do backbone direcionado. Além disso, como esses vértices formam uma

clique em G, concluímos que 3g 6. Para construir uma 6-coloração 2-backbone direcionada f

para (G,
2³
M), definimos f (a) = 3, f (b) = 4, f (c) = 5 e f (d) = 6, enquanto os demais vértices

recebem a cor 1.

Quando G é um grafo planar livre de triângulos, o Teorema de Grötzsch assegura que

χ(G)f 3 (GRÖTZSCH, 1959). Como consequência do Teorema 60, temos BBC2(G,
2³
M)f 6.

Considerando o grafo G da Figura 69, podemos construir um par (G2,
2³
M) a partir de G de forma

similar à Figura 68. Para cada vértice v *V (G), adicionamos um vértice correspondente v2 e o

arco (v2,v) *
2³
M . O par resultante satisfaz BBC2(G2,

2³
M) = 5, sendo possível obter uma imersão

plana para esse par.

É interessante explorar o limitante superior para grafos planares sem ciclos de

comprimento 4 e 5. Da literatura sobre coloração de grafos, Cohen-Addad et al. provam que

existe um contraexemplo para a Conjectura de Steinberg, que afirma que todo grafo sem ciclos de

comprimento 4 ou 5 é 3-colorível (COHEN-ADDAD et al., 2017). Novamente, pelo Teorema 60,
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Figura 69 – Um grafo planar G livre de triângulos tal que χ(G) = 3.

Fonte: Autoria própria, 2024.

temos que BBC2(G,
2³
M)f 8 (pois χ(G)f 4). Para esse caso, deixamos o seguinte problema em

aberto:

Problema em Aberto 14. Se G é um grafo planar sem ciclos de comprimento 4 e 5 e
2³
M uma

orientação de um emparelhamento M em G, é verdade que BBC2(G,
2³
M)f 7?

Seja
2³
M uma orientação de um emparelhamento M em um grafo G. Definimos os

conjuntos V∅(
2³
M), V2(

2³
M) e V+(

2³
M) como segue: V∅(

2³
M) é o conjunto de vértices que não

são extremidades de arcos em
2³
M , enquanto V2(

2³
M) e V+(

2³
M) correspondem aos vértices que

aparecem como cabeças e caudas dos arcos em
2³
M , respectivamente. A partir dessas definições,

provamos alguns resultados mais básicos, os dois teoremas seguintes consideram os casos em

que G =Cn e G = Kn. No caso não direcionado, Miskuf et al. provam que BBC2(Cn,M) f 3

(Teorema 43) e BBC2(Kn,M)f n (Teorema 44).

Teorema 62. Se Cn é um ciclo com n vértices e
2³
M uma orientação de um emparelhamento M

em Cn, então BBC2(Cn,
2³
M)f 4.

Demonstração. Seja Cn = (v1,v2, . . . ,vn) o ciclo com n vértices. Se n é par, então Cn admite

uma 2-coloração. Seja c uma tal coloração. Para 1 f i f n, vamos construir uma 4-coloração

2-backbone direcionada f de (Cn,
2³
M) da seguinte forma:

• Se c(vi) = 1 e vi *V+(
2³
M), então f (vi) = 1;

• Se c(vi) = 1 e vi *V2(
2³
M), então f (vi) = 4;

• Se c(vi) = 2 e vi *V+(
2³
M), então f (vi) = 2;

• Se c(vi) = 2 e vi *V2(
2³
M), então f (vi) = 3.

• Se vi *V∅(
2³
M), então f (vi) recebe a menor cor em {1,2,3,4}\{ f (vi21), f (vi+1)}.
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Por definição de f , sempre temos que uv * E(G) implica f (u) ;= f (v). Se (u,v)*
2³
M ,

como c é uma coloração de G, sabemos que c(u) ;= c(v). Suponha que c(u) = 1 e c(v) = 2, então

f (v)2 f (u) = 321 = 2, satisfazendo a condição do backbone direcionado. Da mesma forma,

se c(u) = 2 e c(v) = 1, então f (v)2 f (u) = 422 = 2.

Se n é ímpar, então existe v3 *V (Cn) tal que v3 *V∅(
2³
M). Seja c uma 3-coloração

de Cn tal que c(v3) = 3 e c(vi) * {1,2} para os outros vértices de Cn. Para 1 f i f n, vamos

construir uma 4-coloração 2-backbone direcionada f de (Cn,
2³
M) da seguinte forma:

• Se c(vi) = 1 e vi *V+(
2³
M), então f (vi) = 1;

• Se c(vi) = 1 e vi *V2(
2³
M), então f (vi) = 4;

• Se c(vi) = 2 e vi *V+(
2³
M), então f (vi) = 2;

• Se c(vi) = 2 e vi *V2(
2³
M), então f (vi) = 3.

• Se vi *V∅(
2³
M), então f (vi) recebe a menor cor em {1,2,3,4}\{ f (vi21), f (vi+1)}.

Teorema 63. Se Kn é um grafo completo com n vértices e
2³
M uma orientação de um emparelha-

mento M em Kn, então BBC2(Kn,
2³
M)f n.

Demonstração. Seja Kn o grafo completo com n vértices. Definimos γ como sendo o número de

arcos de
2³
M . Vamos construir uma n-coloração 2-backbone direcionada f de (Kn,

2³
M).

Suponha que γ = 1. Seja (u,v) *
2³
M o único arco desse par, definimos f (u) = 1,

f (v) = 3, e colorimos o restante do grafo com as cores {2,4,5, . . . ,n}. Assuma agora que γ g 2.

Para i * {1, . . . ,γ}, sejam (ui,vi) *
2³
M os arcos desse par. Definimos f (ui) = i, f (vi) = γ + i e

colorimos o restante do grafo com as cores {2γ +1,2γ +2, . . . ,n}. Como γ g 2, para (ui,vi) *
2³
M , temos que f (vi)2 f (ui) = γ + i2 i = γ g 2, satisfazendo assim a condição do backbone

direcionado.

Seja G um grafo com grau máximo ∆(G). Provamos que BBC2(G,
2³
M)f 2 ·∆(G)+1,

aplicando uma coloração gulosa que respeita a condição do backbone direcionado. Esse limitante

superior não pode ser reduzido para 2 ·∆(G)21, pois, no caso em que ∆(G) = 2, exibimos na

Figura 70 um exemplo de par que atinge exatamente 2 ·∆(G) = 4.

Teorema 64. Se G é um grafo com grau máximo ∆ e
2³
M uma orientação de um emparelhamento

M em G, então BBC2(G,
2³
M)f 2∆+1.
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Figura 70 – Um par (G,
2³
M) (com os arcos do backbone em vermelho) tal que

∆(G) = 2 e BBC2(G,
2³
M) = 4.

Fonte: Autoria própria, 2024.

Demonstração. Seja (G,
2³
M) conforme enunciado no Teorema. Sendo |V+(

2³
M)|= α , |V2(

2³
M)|=

β e |V∅(
2³
M)|= γ . Seja σ = (v1, . . . ,vα ,vα+1, . . . ,vα+β ,vα+β+1, . . . ,vn) um ordenamento para a

coloração tal que:

• vi *V+(
2³
M), se 1 f i f α;

• vi *V2(
2³
M), se α +1 f i f α +β ;

• vi *V∅(
2³
M), se α +β +1 f i f α +β + γ = n(G).

Vamos construir uma (2∆+1)-coloração 2-backbone direcionada f para (G,
2³
M) de

forma gulosa. Seguindo a ordem σ , para todo inteiro i, vamos colorir o vértice vi com a menor

cor µ * J1, . . . ,2∆+ 1K tal que nenhum vizinho em G já colorido recebeu essa cor e nenhum

vizinho em
2³
M já colorido recebeu a cor µ 21.

Se u *V∅(
2³
M), sabemos que há no máximo ∆ cores proibidas para u, logo f (u)f

∆+1, já que u não tem vizinho em
2³
M . Agora, seja (u,v) *

2³
M com u * V+(

2³
M) e v * V2(

2³
M).

Em respeito a ordem σ , u tem no máximo ∆21 cores proibidas (já que v é colorido depois de

u), então f (u) f ∆. No pior do casos, temos que f (v) g ∆+ 2, pois a condição do backbone

direcionado deve ser satisfeita.

Note que, para v *V2(
2³
M), temos no máximo ∆21 cores proibidas, sem considerar

o vizinho u em
2³
M . No pior do casos, temos que f (v)g ∆+2+∆21 = 2∆+1, ao considerar o

vizinho u em
2³
M .

4.2.2 Galáxia e caminho como backbone

Nesta seção, provamos resultados para os casos em que o backbone é uma galáxia

ou um caminho. Considerando
2³
H como uma orientação de uma galáxia H em um grafo G,

denominamos
2³
H como uma galáxia direcionada de G quando os centros das estrelas da galáxia

são exclusivamente cabeças ou caudas dos arcos em
2³
H .

Pelo Teorema 6 e aplicando o Teorema das Quatro Cores (APPEL; HAKEN, 1976),

temos que BBCq(G,
2³
H )f q+6, para um grafo planar G com uma galáxia direcionada

2³
H . Além
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disso, mostramos que esse limitante é ótimo, mesmo quando
2³
H é uma galáxia direcionada de G.

Teorema 65. Se G é um grafo planar e
2³
H uma galáxia direcionada de G, então BBCq(G,

2³
H )f

q+6. Esse limitante é o melhor possível.

Demonstração. Provar que BBCq(G,
2³
H )f q+6 segue diretamente do Teorema 6. Mostraremos

que esse limitante superior é o melhor possível ao exibir um par que atinge exatamente q+6.

Figura 71 – Um par (G,
2³
H ) (com os arcos do backbone em vermelho), onde G é um

grafo planar e BBCq(G,
2³
H ) = q+6.

b c

a d

Fonte: Autoria própria, 2024.

Considere o par (G,
2³
H ) ilustrado na Figura 71, para o qual provaremos a igualdade

BBCq(G,
2³
H ) = q+6. Seja f uma 3-coloração q-backbone direcionada desse par. Suponha, por

contradição, que 3f q+5. Como os vértices a, b, c e d formam uma clique em G, é necessário

usar pelo menos quatro cores distintas para esses vértices. Denotemos por w * {a,b,c,d} um

vértice com f (w) g 4. Como w possui três vizinhos em
2³
M , seja w2 um desses vizinhos. Para

satisfazer a condição do backbone direcionado, temos que f (w2)g f (w)+q g q+4. Observe

que esses três vizinhos de w em
2³
M também formam uma clique, portanto, precisamos de três

cores distintas que satisfaçam f (w2)g q+4. Isso implica que 3g q+6, o que contradiz nossa

hipótese inicial e confirma que o limitante q+6 é, de fato, o melhor possível.

Agora, considerando
2³
P uma orientação de um caminho hamiltoniano P de um

grafo G. Definimos
2³
P como um caminho hamiltoniano direcionado de G se

2³
P é um caminho

direcionado em G. Dados G um grafo e
2³
P um caminho hamiltoniano direcionado, provamos o

seguinte teorema que estabele BBCq(G,
2³
P ) em função de n(G).

Teorema 66. Se G é um grafo com n vértices e
2³
P um caminho hamiltoniano direcionado de G,

então BBCq(G,
2³
P ) = (n21) ·q+1.
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Demonstração. Sejam G um grafo com n vértices e
2³
P = (v1,v2, . . . ,vn) um caminho hamilto-

niano direcionado de G. Vamos primeiro mostrar que BBCq(G,
2³
P )f (n21) ·q+1. Para isso,

vamos construir uma coloração q-backbone direcionada f para (G,
2³
P ) da seguinte forma:

f (vi) = (i21) ·q+1, para todo i * {1,2, . . . ,n}.

Observe que f é uma coloração de G, pois cada vértice recebe uma cor distinta.

Além disso, a condição do backbone direcionado é satisfeita, já que para todo 2 f i f n, temos

que:

f (vi)2 f (vi21) = (i21) ·q+12 (i22) ·q21 = q.

Isso prova que f é uma ((n21) ·q+1)-coloração q-backbone direcionada de (G,
2³
P ).

Para mostrar que BBCq(G,
2³
P )g (n21) ·q+1, seja c uma BBCq(G,

2³
P )-coloração q-backbone

de (G,
2³
P ). Note que, para todo 2 f i f n, como (vi21,vi) *

2³
P , para satisfazer a condição do

backbone direcionado, devemos ter f (vi)g f (vi21)+q. Juntando essas desigualdades, obtemos

f (vn)g f (vn21)+q g f (vn22)+2 ·q g . . .g f (v1)+(n21) ·q.

Pelas desigualdade acima e sabendo que f (v1) g 1, concluimos que f (vn) g 1+

(n21) ·q. Logo, BBCq(G,
2³
P )g 1+(n21) ·q.

4.2.3 Complexidade Computacional

Nesta seção, apresentamos os resultados obtidos sobre a complexidade computacio-

nal na Coloração Backbone Direcionada. Para introduzir nosso estudo, definimos o problema

geral:

3-COLORAÇÃO q-BACKBONE DIRECIONADA

Entrada: Um grafo G e uma orientação acíclica
2³
H de um subgrafo

gerador H de G.

Pergunta: BBCq(G,
2³
H )f 3?

Assim como demonstrado para a Coloração Backbone, o problema 3-COLORAÇÃO

q-BACKBONE DIRECIONADA é NP-completo para 3g 3. Isso ocorre porque decidir se um grafo

é 3-colorível é NP-completo para 3 g 3 (GAREY; JOHNSON, 1979), e, por definição, toda

3-coloração q-backbone direcionada também é uma 3-coloração do grafo.



105

O primeiro resultado de complexidade computacional que apresentamos trata do

caso em que
2³
M é uma orientação de um emparelhamento perfeito M de um grafo G. Para isso,

tentamos estender o Teorema 52 para a Coloração Backbone Direcionada. Antes de enunciar

o teorema, introduzimos uma definição e um lema correspondentes à situação apresentada na

Proposição 18, mas adaptados para a versão direcionada.

Definição 67. Dados um grafo G e uma orientação acíclica
2³
H do subgrafo gerador H de G,

dizemos que (G,
2³
H ) é bipartido de saída se V (G) puder ser particionado em dois conjuntos A

e B, que são independentes em G, onde A é formado pelas fontes de
2³
H e B é formado pelos

sumidouros de
2³
H . Dizemos que A e B são bipartições de saída de (G,

2³
H ).

Lema 68. Se G é um grafo e
2³
M uma orientação de um emparelhamento perfeito M de G, então

BBC2(G,
2³
M) = 3 se, e somente se, (G,

2³
M) é bipartido de saída.

Demonstração. Considerando G e
2³
M como no enunciado do lema.

(ó) Suponha que BBC2(G,
2³
M) = 3 e que f seja uma 3-coloração 2-backbone direcionada de

(G,
2³
M). Afirmamos que nenhum vértice v em G está colorido com a cor 2, o que equivale a

dizer que f é uma coloração de G utilizando apenas duas cores: 1 e 3. Para demonstrar isso,

suponha, por absurdo, que existe u *V (G) tal que f (u) = 2. Como M é um emparelhamento

perfeito, existe v *V (G) tal que (u,v) *
2³
M ou (v,u) *

2³
M . Sem perda de generalidade, suponha

que (u,v) *
2³
M . Nesse caso, como a cor 2 é vizinha a ambas as cores 1 e 3, não há cor disponível

para colorir v, o que contradiz a suposição de que f é uma coloração q-backbone direcionada de

(G,
2³
M).

Assim, V1 e V2 formam uma bipartição de saída de (G,
2³
M), onde V1 e V2 representam

os conjuntos de vértices coloridos com as cores 1 e 3, respectivamente, conforme a coloração f .

Observe que os vértices de V1 são fontes em
2³
M , pois, caso existissem vértices u *V1 e v *V2

tal que (v,u) *
2³
M , a condição do backbone direcionado implicaria f (u)g f (v)+2 g 3, o que é

uma contradição. De forma análoga, provamos que V2 é formado apenas por sumidouros de
2³
M .

Logo, concluímos que (G,
2³
M) é bipartido de saída.

(ñ) Seja (G,
2³
M) um grafo bipartido de saída, com bipartições de saída A e B. Como (G,

2³
M) é

bipartido de saída, assumimos, sem perda de generalidade, que A é a bipartição composta pelas

fontes de
2³
M e B pela dos sumidouros. Definimos então uma nova coloração h de forma que todos

os vértices de A sejam coloridos com a cor 1, enquanto os vértices de B recebem a cor 3. Com

essa definição, é claro que h constitui uma 3-coloração 2-backbone direcionada de (G,
2³
M).
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Vamos definir o seguinte problema de complexidade computacional:

EMP. 3-COLORAÇÃO q-BACKBONE DIRECIONADA

Entrada: Um grafo G e uma orientação
2³
M de um emparelhamento

perfeito M de G.

Pergunta: BBCq(G,
2³
M)f 3?

Além da Definição 67 e do Lema 68, precisamos da seguinte definição:

Definição 69. Dados um grafo G e uma orientação acíclica
2³
H do subgrafo gerador H de

G, dizemos que (G,
2³
H ) é quase-bipartido de saída se V (G) puder ser particionado em dois

conjuntos A e B, onde A é formado pelas fontes de
2³
H e B é formado pelos sumidouros de

2³
H .

Dizemos que A e B são quase-bipartições de saída de (G,
2³
H ).

Note que a diferença entre as Definições 67 e 69 é no fato de que, para um par (G,
2³
H )

ser quase-bipartido, não exigimos que as quase-bipartições sejam conjuntos independentes em

G, ao contrário do que ocorre no caso de ser bipartido de saída.

Finalmente, apresentamos o teorema sobre a complexidade computacional do pro-

blema EMP. 3-COLORAÇÃO 2-BACKBONE DIRECIONADA (quando q = 2). Note que, ao

contrário do resultado para a Coloração Backbone no Teorema 52, o salto de polinomial para

NP-completo ocorre quando 3= 5.

Teorema 70. É verdade que:

(a) O problema EMP. 3-COLORAÇÃO 2-BACKBONE DIRECIONADA pode ser resolvido em

tempo polinomial para 3f 4.

(b) O problema EMP. 3-COLORAÇÃO 2-BACKBONE DIRECIONADA é NP-completo para

3g 5.

Demonstração. Assuma que 3f 4. Primeiro, note que, para 3= 1, decidir se BBC2(G,
2³
M)f 1 é

verdade é equivalente a saber se E(G) =∅. Para 3= 2, a verificação está relacionada à existência

de arcos em
2³
M . Se existe arco em

2³
M , a resposta ao problema é prontamente não. Se não existe

arco em
2³
M , a resposta ao problema é equivalente a saber se G é um grafo bipartido.

Como
2³
M é uma orientação de um emparelhamento perfeito M em G, no cenário em

que A(
2³
M) =∅, temos G um grafo trivial, implicando que apenas uma cor é necessária para a

coloração. Logo, a resposta ao problema é imediatamente sim, quando A(T ) =∅ e 3g 1.
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Pelo Lema 68, temos que BBC2(G,
2³
M) = 3 se, e somente se, (G,

2³
M) é bipartido de

saída, que pode ser decidido em tempo polinomial, o que resolve o problema para 3= 3.

Suponha agora que 3 g 4. Considere o grafo G = (V,E) e a orientação
2³
M do

emparelhamento perfeito M em G.

Assuma que 3 = 4. Seja φ uma 4-coloração 2-backbone direcionada de (G,
2³
M).

Como (G,
2³
M) é quase-bipartido, pois

2³
M é uma orientação de um emparelhamento perfeito e todo

vértice é uma fonte ou um sumidouro em
2³
M . Considere as quase-bipartições V1 e V2, onde V1 é

o conjunto das fontes de
2³
M e V2 o conjunto dos sumidouros de

2³
M . Para satisfazer a condição

do backbone direcionado, sabemos que os vértices nos conjuntos V1 e V2 são coloridos com as

cores pertencentes a {1,2} e {3,4}, respectivamente. Portanto, note que BBC2(G,
2³
M) = 4 se, e

somente se, ambos os subgrafos de G induzidos pelos conjuntos V1 e V2 são bipartidos, e nenhum

arco de
2³
M conecta um vértice de cor 2 em V1 a um vértice de cor 3 em V2. Isso ocorre porque a

condição de backbone direcionado deve ser satisfeita, e as cores 2 e 3 são cores vizinhas. Este

problema pode ser reduzido ao problema 2-SAT, que é conhecido por ser resolvido em tempo

polinomial (GAREY; JOHNSON, 1979).

Para realizar a redução, criamos duas variáveis booleanas, xv e yv, para cada vértice

v *V . Os literais xv e xv correspondem a colorir o vértice v com as cores 1 e 2, respectivamente,

enquanto os literais yv e yv correspondem a atribuir as cores 3 e 4 ao vértice v, respectivamente.

Dessa forma, observe que G[V1] é bipartido se, e somente se, existe uma atribuição satisfatível

para a fórmula booleana (xu ( xv)' (xu ( xv) para toda aresta uv * E(G[V1]). Esta fórmula

assegura que, para cada aresta uv em G, um vértice u recebe uma cor e o vértice v recebe uma

cor diferente dentro do conjunto de cores {1,2}. Para o subgrafo G[V2], o processo é análogo.

Além disso, para um arco (u,v) *
2³
M com u *V1 e v *V2, os vértices serão coloridos

de maneira a satisfazer a condição do backbone direcionado se, e somente se, houver uma

atribuição satisfatível para a fórmula booleana xu ( yv. Como as cores 2 e 3 são vizinhas, não é

permitido que um arco em
2³
M tenha suas extremidades coloridas com essas duas cores. Assim, a

fórmula proíbe que as cores 2 e 3 apareçam simultaneamente em um arco de
2³
M , garantindo que

ou a cor 1 (xu) ou a cor 4 (yv) sempre apareça em uma de suas extremidades.

Assuma agora que 3 g 5. A redução é realizada a partir de um problema clássico

que é NP-completo: o problema da 3-coloração (ver mais informações sobre este problema

em (GAREY; JOHNSON, 1979)). Este problema consiste em, dado um grafo R, responder à

seguinte pergunta: existe uma 3-coloração de R?
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Vamos construir um grafo G e uma orientação
2³
M de um emparelhamento perfeito

M em G. Seja R = (VR,ER) uma instância do problema de 3-coloração e v1,v2, . . . ,vn uma

enumeração dos vértices de R. Para cada 1 f i f n, criamos o vértice ui e adicionamos o arco

(vi,ui) em
2³
M , conforme ilustrado na Figura 72. O par resultante será (G,

2³
M). Dessa forma,

é claro que os arcos ((v1,u1), . . . ,(vn,un)) formam uma orientação
2³
M de um emparelhamento

perfeito M em G. Afirmamos que BBC2(G,
2³
M)f 3+2 se, e somente se, χ(R)f 3.

Figura 72 – A construção do par (G,
2³
M) (com os arcos do backbone em vermelho).

. . . . . .

v1

u1

v2

u2

vi

ui

vn

un

R

Fonte: Autoria própria, 2024.

Suponha que BBC2(G,
2³
M) f 3+ 2 e seja φ uma (3+ 2)-coloração 2-backbone

direcionada de (G,
2³
M). Para satisfazer a condição do backbone direcionado, sabemos que

a existência do arco (vi,ui) *
2³
M implica φ(vi) f φ(ui)2 2 f (3+ 2)2 2 = 3, para todo i *

{1, . . . ,n}. Portanto, a restrição de φ aos vértices de R é uma 3-coloração de R, o que implica

que χ(R)f 3. Agora, suponha que χ(R)f 3 e seja f uma 3-coloração de R. Para cada 1 f i f n,

podemos estender f para (G,
2³
M) colorindo os vértices ui com a cor 3+2. Assim, concluímos

que BBC2(G,
2³
M)f 3+2.

Antes de enunciar o segundo resultado de complexidade computacional, é necessário

introduzir algumas definições. Uma floresta de caminhos F é uma floresta em que cada compo-

nente é um caminho. Se cada componente C for um caminho com k vértices, ou seja, C >= Pk,

então dizemos que F é uma floresta de k-caminhos.

Dados G um grafo e F uma floresta geradora de k-caminhos em G. Sendo
2³
F uma

orientação de uma floresta de k-caminhos F . Dizemos que
2³
F é uma floresta de k-caminhos

direcionada de G se, para cada componente C de F , o caminho correspondente for direcionado.

A seguir, apresentamos o problema de complexidade computacional para uma floresta

de k-caminhos direcionada.
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k-CAMINHO 3-COLORAÇÃO q-BACKBONE DIRECIONADA

Entrada: Um grafo G e uma floresta de k-caminhos direcionada
2³
F de G.

Pergunta: BBCq(G,
2³
F )f 3?

O teorema a seguir é uma generalização do Teorema 70.

Teorema 71. Para k g 2, é verdade que:

(a) O problema k-CAMINHO 3-COLORAÇÃO 2-BACKBONE DIRECIONADA pode ser resolvido

em tempo polinomial para 3f 2k.

(b) O problema k-CAMINHO 3-COLORAÇÃO 2-BACKBONE DIRECIONADA é NP-completo

para 3g 2k+1.

Demonstração. Os casos em que 1 f 3f 2 e 3g 3 com A(
2³
F ) =∅ seguem de maneira análoga

à prova do Teorema 70.

Suponha agora que 3 g 3. Considere o grafo G e uma floresta de k-caminhos

direcionada
2³
F de G tal que A(

2³
F ) ;=∅, uma vez que F é uma floresta geradora de k-caminhos

de G.

Assuma que 3 f 3 f 2k. Seja C uma componente de F . Como
2³
F é uma floresta

de k-caminhos direcionada e F é uma floresta geradora, temos que G[V (C)]>= Pk. Assim, pelo

Teorema 66, são necessárias pelo menos 2k21 cores para uma coloração 2-backbone direcionada

de (G,
2³
F ). Portanto, quando 3 f 3f 2k22, a resposta é prontamente não.

Suponha que 3= 2k21. Portanto, temos que BBC2(G,
2³
F )g 2k21, pelo argumento

anterior. Defina os seguintes conjuntos: para todo inteiro 1 f i f k, o conjunto Vi é formado

pelos vértices v tal que d2³
F
(x,v) = i21, onde x é a fonte do k-caminho direcionado ao qual v

pertence. Note que BBC2(G,
2³
F ) = 2k21 se, e somente se, cada Vi é um conjunto independente.

Logo, esse problema é decidido em tempo polinomial.

Assumindo que 3 = 2k. Seja φ uma (2k)-coloração 2-backbone direcionada de

(G,
2³
F ). Os vértices do conjunto Vi são coloridos com as cores pertencentes a {2i2 1,2i},

para todo inteiro i * {1, . . . ,k}, pois a condição do backbone direcionado precisa ser satisfeita.

Portanto, note que BBC2(G,
2³
F ) = 2k se, e somente se, cada Vi é bipartido e nenhum arco de

2³
F

conecta um vértice de cor 2i em Vi a um vértice de cor 2i+1 em Vi+1, para todo inteiro 1 f i f k.

Isso ocorre porque a condição de backbone direcionado deve ser satisfeita, e as cores 2i e 2i+1
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são cores vizinhas. Também podemos reduzir este problema para o problema 2-SAT, que é

resolvido em tempo polinomial (GAREY; JOHNSON, 1979), como fizemos no Teorema 70.

Para realizar a redução, criamos k variáveis booleanas, x1(v), . . . , xk(v) para cada

vértice v *V (G). Os literais xi(v) e xi(v) correspondem a colorir o vértice v com as cores 2i21

e 2i, respectivamente, para todo i * {1, . . . ,k}. Dessa forma, observe que G[Vi] é bipartido

se, e somente se, existe uma atribuição satisfatível para a fórmula booleana (xi(u)( xi(v))'

(xi(u)(xi(v)) para toda aresta uv * E(G[Vi]). Esta fórmula assegura que, para cada aresta uv em

E(G[Vi]), um vértice u recebe uma cor e o vértice v recebe uma cor diferente dentro do conjunto

de cores {2i21,2i}.

Além disso, para um arco (u,v) *
2³
M com u * Vi e v * Vi+1, os vértices serão

coloridos de maneira a satisfazer a condição do backbone direcionado se, e somente se, houver

uma atribuição satisfatível para a fórmula booleana xi(u)( xi+1(v). Como as cores 2i e 2i+1

são vizinhas, não é permitido que um arco em
2³
M tenha suas extremidades coloridas com essas

duas cores. Assim, a fórmula proíbe que as cores 2i e 2i+1 apareçam simultaneamente em um

arco de
2³
M , garantindo que ou a cor 2i21 (xi(u)) ou a cor 2i+2 (xi+1(v)) sempre apareça em

uma de suas extremidades.

Assuma agora que 3g 2k+1. Assim como na prova do Teorema 70, faremos uma

redução para o problema de 3-coloração, que é NP-completo para 3g 3 (GAREY; JOHNSON,

1979). Dado um grafo R, o problema de 3-coloração pergunta se existe uma 3-coloração de R.

Vamos construir um grafo G e uma floresta de k-caminhos direcionada
2³
F de G.

Seja R = (VR,ER) uma instância do problema de 3-coloração, e suponha que os vértices de

R estão enumerados como v1,v2, . . . ,vn. Para cada vértice vi * VR, criamos os vértices u2
i ,

u3
i , . . ., uk

i e adicionamos os arcos (vi,u2
i ) e (u j

i ,u
j+1
i ) para todo inteiro 2 f j f k 2 1, con-

forme ilustrado na Figura 73. O par resultante será (G,
2³
F ). Dessa forma, é claro que os

arcos ((vi,u2
i ), . . . ,(u

k21
i ,uk

i )) formam um k-caminho direcionado, para todo inteiro 1 f i f n.

Afirmamos que BBC2(G,
2³
F )f 3+2k22 se, e somente se, χ(R)f 3.

Suponha que BBC2(G,
2³
M) f 3+ 2k 2 2 e seja φ uma (3+ 2k 2 2)-coloração 2-

backbone direcionada de (G,
2³
M). Para satisfazer a condição do backbone direcionado, para todo

i * {1, . . . ,n}, a existência do k-caminho direcionado implica que:

φ(vi)f φ(u2
i )22 f . . .f φ(uk

i )22 · (k21)f (3+2k22)22 · (k21) = 3.

Portanto, a restrição de φ aos vértices de R é uma 3-coloração de R, o que implica que χ(R)f 3.

Agora, suponha que χ(R) f 3 e seja f uma 3-coloração de R. Para cada 1 f i f n, podemos
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Figura 73 – A construção do par (G,
2³
F ) (com os arcos do backbone em vermelho).
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Fonte: Autoria própria, 2024.

estender f para (G,
2³
F ) colorindo os vértices u j

i com a cor 3+ 2 · ( j 2 1) para j * {2, . . . ,k}.

Assim, concluímos que BBC2(G,
2³
F )f 3+2k22.
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5 CONCLUSÃO E TRABALHOS FUTUROS

A Coloração Backbone, introduzida por Broersma et al. em 2003 (BROERSMA et

al., 2003), já conta com mais de 30 artigos publicados, abrangendo variações como as versões

circular e por listas. Nesta dissertação, realizamos uma revisão bibliográfica no Capítulo 3, com

foco na versão original da Coloração Backbone, sem ser circular ou por listas. Apresentamos

resultados relevantes da literatura relacionados a limitantes gerais para o número cromático

q-backbone de (G,H), considerando H como um grafo arbitrário, e discutimos casos específicos

em que o backbone é uma árvore, um emparelhamento, um caminho hamiltoniano ou uma

galáxia. Além de reunir esses limitantes, apresentamos também resultados de complexidade

computacional de problemas na Coloração Backbone.

As primeiras contribuições desta dissertação, apresentadas no Capítulo 4, consistem

em correções de dois resultados publicados em artigos importantes para o estudo da Colora-

ção Backbone (BROERSMA et al., 2003; HAVET et al., 2014). Contudo, o principal foco

desta dissertação é a introdução de uma nova variação da Coloração Backbone, denominada

Coloração Backbone Direcionada. Nesse contexto, provamos o Teorema 6, que estabelece

que BBCq(G,
2³
H ) f diam(

2³
H ) · (χ(G)+q22)+ χ(G), para qualquer inteiro q g 2, grafo G e

orientação acíclica
2³
H de um subgrafo gerador H de G. Este resultado oferece um limitante

superior apertado em um caso mais geral dessa nova coloração.

Também apresentamos resultados específicos quando
2³
H é uma orientação de um

emparelhamento perfeito, além de análises para os casos em que
2³
H é uma orientação de uma

galáxia ou de um caminho hamiltoniano. Além disso, provamos dois novos resultados sobre a

complexidade computacional relacionados à Coloração Backbone Direcionada.

Como direções futuras de pesquisa, propomos a extensão de limitantes já conhecidos

para a Coloração Backbone ao contexto da Coloração Backbone Direcionada, bem como a

investigação de novos resultados relacionados à complexidade computacional dessa variação.

Na Tabela 1, apresentamos um resumo dos resultados obtidos para a Coloração Backbone

Direcionada, comparando-os com os resultados correspondentes para a Coloração Backbone na

literatura.

Em particular, sugerimos o estudo dos limitantes para o número cromático q-

backbone direcionado quando o grafo G é um grafo split, além disso, deixamos o seguinte

problema em aberto quando o backbone é um emparelhamento, que apresentamos no Capítulo 4:

Problema em Aberto 14. Se G é um grafo planar sem ciclos de comprimento 4 e 5 e
2³
M uma
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orientação de um emparelhamento M em G, é verdade que BBC2(G,
2³
M)f 7?

Tabela 1 – Comparação dos resultados obtidos na Coloração Backbone Direcionada
com a Coloração Backbone.

Classe de G Classe de H BBCq(G,H)f 3 BBCq(G,
2³
H )f 3

Geral Geral (χ(G)+q22) ·χ(H)2q+2 diam(
2³
H ) · (χ(G)+q22)+χ(G)

Geral Emp. Perf. Teorema 47 2 ·χ(G)+q22
Cn Emp. 3, se q = 2 4, se q = 2
Kn Emp. n, se q = 2 n, se q = 2

Geral Emp. ∆(G)+1, se q = 2 2 ·∆(G)+1, se q = 2
Planar Galáxia q+4 q+6
Geral Cam. Ham. Teorema 37, se q = 2 (n(G)21) ·q+1

?, se q g 3
Geral Emp. Perf. P, se 3f 3 e q = 2 P, se 3f 4 e q = 2

NP-completo, se 3g 4 e q = 2 NP-completo, se 3g 5 e q = 2
Geral Fl. de k-cam. P, se 3f 2k e q = 2

NP, se 3g 2k+1 e q = 2

?: problema em aberto.

Fonte: Autoria própria, 2024.

No contexto da Coloração Backbone, no Capítulo 3, deixamos alguns problemas

em abertos da literatura, o qual enfatizamos o seguinte problema em aberto, na classe de grafos

cordais.

Problema em Aberto 3. (BROERSMA et al., 2007) Se G é um grafo cordal e T uma árvore

geradora de G, existe uma constante c tal que BBC2(G,T )f χ(G)+ c?

Outra direção futura de pesquisa é investigar problemas ainda não estudados na

literatura em classes específicas de grafos, como grafos split e cactos. Há artigos que estudam

problemas em grafos split (BROERSMA et al., 2003; SALMAN, 2006; BROERSMA et al.,

2009b), quando o backbone é um emparelhamento, uma árvore ou um caminho hamiltoniano.

Contudo, por exemplo, não há, até o momento, um teorema que estabeleça limitantes superiores

para o número cromático q-backbone de (G,P), onde G é um grafo split, P é um caminho

hamiltoniano em G e q g 3.

Na literatura, o artigo de Janczewski et al. estuda grafos cactos, provando resultados

quando o backbone é um grafo conexo (JANCZEWSKI; TUROWSKI, 2015b). Isso abre espaço

para explorar novos resultados ao variar a estrutura do backbone.

Por fim, outro trabalho futuro consiste em investigar problemas relacionados a

classes de grafos ainda não abordadas na literatura, como o produto de grafos. Um exemplo seria

estender a definição do produto cartesiano de dois grafos G1 e G2 para pares de grafos (G1,H1)

e (G2,H2), em que H1 e H2 representam os backbones de G1 e G2, respectivamente, e estudar o
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número cromático q-backbone do produto cartesiano desses pares.

Além disso, não há resultados ou problemas em aberto sobre a classe de grafos

cordais (exceto o Problema em Aberto 3), o que possibilita novos estudos nessa área, incluindo a

exploração de subclasses específicas, como os grafos de intervalo.



115

REFERÊNCIAS

APPEL, K.; HAKEN, W. Every planar map is four colorable. [S.l.]: American Mathematical
Soc., 1976. v. 82. 711-712 p.

APPEL, K.; HAKEN, W. The four-color problem. In: Mathematics Today Twelve Informal
Essays. [S.l.]: Springer, 1978. p. 153–180.

ARAÚJO, C.; ARAÚJO, J.; SILVA, A.; CEZAR, A. Backbone coloring of graphs with galaxy
backbones. Electronic Notes in Theoretical Computer Science, Elsevier, v. 346, p. 53–64,
2019.

ARAÚJO, C. S. Colorações backbone em grafos com galáxias backbone. Dissertação
(Mestrado) — Universidade Federal do Ceará, Fortaleza, Ceará, 2021. Acessado em: 12 de
novembro de 2024. Disponível em: <https://repositorio.ufc.br/handle/riufc/69637>.

ARAÚJO, J.; BENEVIDES, F.; CEZAR, A.; SILVA, A. Circular backbone colorings: On
matching and tree backbones of planar graphs. Discrete Applied Mathematics, Elsevier, v. 251,
p. 69–82, 2018.

ARAÚJO, J.; CEZAR, A. A.; SILVA, A. On the existence of tree backbones that realize the
chromatic number on a backbone coloring. Journal of Graph Theory, Wiley Online Library,
v. 85, n. 4, p. 808–813, 2017.

BONDY, J.; MURTY, U. Graph Theory with Applications. New York: North Holland, 1976.

BROERSMA, H. A general framework for coloring problems: old results, new results, and open
problems. In: SPRINGER. Indonesia-Japan Joint Conference on Combinatorial Geometry
and Graph Theory. [S.l.], 2003. p. 65–79.

BROERSMA, H.; FOMIN, F. V.; GOLOVACH, P. A.; WOEGINGER, G. J. Backbone colorings
for networks. International Workshop on Graph-Theoretic Concepts in Computer Science,
Springer, p. 131–142, 2003.

BROERSMA, H.; FOMIN, F. V.; GOLOVACH, P. A.; WOEGINGER, G. J. Backbone colorings
for graphs: tree and path backbones. Journal of Graph Theory, Wiley Online Library, v. 55,
n. 2, p. 137–152, 2007.

BROERSMA, H.; FUJISAWA, J.; YOSHIMOTO, K. Backbone colorings along perfect
matchings. Preprint, v. 8308, p. 101–108, 2003.

BROERSMA, H. J.; FUJISAWA, J.; MARCHAL, L.; PAULUSMA, D.; SALMAN, A.;
YOSHIMOTO, K. λ -backbone colorings along pairwise disjoint stars and matchings. Discrete
Mathematics, Elsevier, v. 309, n. 18, p. 5596–5609, 2009.

BROERSMA, H. J.; MARCHAL, L.; PAULUSMA, D.; SALMAN, A. Backbone colorings
along stars and matchings in split graphs: their span is close to the chromatic number.
Discussiones mathematicae. Graph theory., De Gruyter Open, v. 29, n. 1, 2009.

BROOKS, R. L. On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, v. 37, p. 194 – 197, 1941.

BU, Y.; BAO, X. Backbone coloring of planar graphs for c8-free or c9-free. Theoretical
Computer Science, Elsevier, v. 580, p. 50–58, 2015.



116

BU, Y.; LI, Y. Backbone coloring of planar graphs without special circles. Theoretical
Computer Science, Elsevier, v. 412, n. 46, p. 6464–6468, 2011.

BU, Y.; LIU, D. D.-F.; ZHU, X. Backbone coloring for graphs with large girths. Discrete
Mathematics, Elsevier, v. 313, n. 18, p. 1799–1804, 2013.

BU, Y.; ZHANG, S. Backbone coloring for c4-free planar graphs. Science China
Mathematicals, v. 41, n. 2, p. 197–206, 2011.

CAMPOS, V.; HAVET, F.; SAMPAIO, R.; SILVA, A. Backbone colouring: Tree backbones with
small diameter in planar graphs. Theoretical Computer Science, Elsevier, v. 487, p. 50–64,
2013.

CASTRO, R.; ARAÚJO, J.; CEZAR, A. Galáxias como backbone em colorações backbone. In:
Anais do VII Encontro de Teoria da Computação. SBC, 2022. p. 89–92. ISSN 2595-6116.
Disponível em: <https://sol.sbc.org.br/index.php/etc/article/view/20666>.

COHEN-ADDAD, V.; HEBDIGE, M.; LI, Z.; SALGADO, E. et al. Steinberg’s conjecture is
false. Journal of Combinatorial Theory, Series B, Elsevier, v. 122, p. 452–456, 2017.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to algorithms.
[S.l.]: MIT press, 2022.

EULER, L. Demonstratio nonnullarum insignium proprieatatum, quibus solida hedris planis
inclusa sunt praedita. Novi commentarii academiae scientiarum Petropolitanae, p. 140–160,
1758.

FARZAD, B.; GOLESTANIAN, A.; MOLLOY, M. Backbone colourings of graphs. Discrete
Mathematics, Elsevier, v. 339, n. 11, p. 2721–2722, 2016.

GAREY, M. R.; JOHNSON, D. S. Computers and intractability. A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, 1979.

GRÖTZSCH, H. Ein dreifarbensatz fur dreikreisfreie netze auf der kugel. Wiss. Z. Martin
Luther Univ. Halle-Wittenberg, Math. Nat. Reihe, v. 8, p. 109–120, 1959.

HAVET, F.; KING, A. D.; LIEDLOFF, M.; TODINCA, I. (circular) backbone colouring: Forest
backbones in planar graphs. Discrete Applied Mathematics, Elsevier, v. 169, p. 119–134, 2014.

JANCZEWSKI, R.; TUROWSKI, K. The backbone coloring problem for bipartite backbones.
Graphs and Combinatorics, Springer, v. 31, n. 5, p. 1487–1496, 2015.

JANCZEWSKI, R.; TUROWSKI, K. The computational complexity of the backbone coloring
problem for planar graphs with connected backbones. Discrete Applied Mathematics, Elsevier,
v. 184, p. 237–242, 2015.

KÖNIG, D. Theorie der endlichen und unendlichen Graphen. Leipzig: Akademische
Verlagsgesellschaft, 1936.

MIŠKUF, J.; ŠKREKOVSKI, R.; TANCER, M. Backbone colorings and generalized mycielski
graphs. SIAM Journal on Discrete Mathematics, SIAM, v. 23, n. 2, p. 1063–1070, 2009.

MIŠKUF, J.; ŠKREKOVSKI, R.; TANCER, M. Backbone colorings of graphs with bounded
degree. Discrete Applied Mathematics, Elsevier, v. 158, n. 5, p. 534–542, 2010.



117

SALMAN, A. N. M. λ -backbone coloring numbers of split graphs with tree backbones. In:
Proceeding of The Second IMT-GT 2006 Regional Conference on Mathematics, Statistics
and Applications. [S.l.: s.n.], 2006. p. 43–47.

SAPUTRO, S.; SALMAN, A. The λ -backbone colorings of graphs with tree backbones.
AKCE International Journal of Graphs and Combinatorics, Taylor & Francis, v. 10, n. 2, p.
229–236, 2013.

TUROWSKI, K. Optimal backbone coloring of split graphs with matching backbones.
Discussiones Mathematicae Graph Theory, Uniwersytet Zielonogórski. Wydział Matematyki,
Informatyki i Ekonometrii, v. 35, n. 1, p. 157–169, 2015.

WANG, W.; BU, Y.; MONTASSIER, M.; RASPAUD, A. On backbone coloring of graphs.
Journal of combinatorial optimization, Springer, v. 23, n. 1, p. 79–93, 2012.

WANG, X. Backbone colouring of connected planar graphs without c8 and adjacent triangles.
In: Algebra Colloq. [S.l.: s.n.], 2012. v. 22, n. 1.

WEST, D. B. Introduction to graph theory. [S.l.]: Prentice hall Upper Saddle River, 2001. v. 2.

ZHANG, S.; BU, Y. Backbone colouring for c5-free planar graphs. Journal of Mathematical
Study, p. 43–4, 2010.



118

ÍNDICE

(u,v)-caminho, 39

λ -rotulação, 20

adjacente, 34

alfabeto, 49

algoritmo, 48

correto, 48

de redução, 50

de tempo polinomial, 49

de verificação, 50

amplitude, 20

aresta de corte, 42

arestas múltiplas, 35

articulação, 41

backbone, 22, 51

biclique, 39

bipartido de saída, 105

bipartição de saída, 105

borda da pipa, 87

cabeça, 46

caminho, 39

direcionado, 47

hamiltoniano, 39

direcionado, 31, 103

cauda, 46

centro da estrela, 25, 42

certificado, 50

ciclo, 39

direcionado, 47

par, 39

ímpar, 39

cintura, 40

classe de cor, 43

clique, 37

coloração

distância-2, 19

ótima, 20

gulosa, 44

própria, 17, 43

q-backbone, 22, 51

circular, 27

direcionada, 28, 92

ótima, 22, 51

simétrica, 23, 53

ótima, 17, 43

componente, 41

conexa, 41

comprimento, 39, 47

condição

do backbone, 22, 51

direcionado, 92

conjunto

de arestas, 34

de vértices, 34

independente, 37

cor

disponível, 53

proibida, 53

vizinha, 22, 51, 93

corda, 44



119

digrafo, 46

distância, 19, 40, 47

diâmetro, 40, 47

emparelhamento, 43

perfeito, 43

entrada, 48

estrela, 25, 42

extremidade, 34

face, 45

floresta, 25, 42

de caminhos, 108

de k-caminhos, 108

direcionada, 108

folha, 42

fonte, 47

fracamente conectado, 46

função

computável em tempo polinomial, 50

de incidência, 34

de redução, 50

galáxia, 25, 43

direcionada, 31, 102

grafo, 34

acíclico, 25, 42, 47

bipartido, 37

completo, 39

complementar, 37

completo, 39

conexo, 41

cordal, 44

desconexo, 41

direcionado, 46

finito, 36

k-degenerado, 42

nulo, 36

perfeito, 44

planar, 19, 45

plano, 45

quadrado, 24

regular, 36

simples, 35

split, 37

subjacente, 46

trivial, 36

vazio, 36

grau, 35, 45

de entrada, 46

de saída, 46

máximo, 36

de entrada, 47

de saída, 47

médio, 36

mínimo, 36

de entrada, 47

de saída, 47

H-livre, 42

imersão, 45

incidente, 34, 45

instância, 48

isomorfismo, 35

isomorfo, 35

k-ciclo, 39



120

k-coloração, 17, 43

q-backbone, 22, 51

circular, 27

direcionada, 28, 92

parcial, 53

k-colorível, 43

k-cromático, 43

k-partido, 38

completo, 39

k-regular, 36

L(2,1)-rotulação, 20

ótima, 20

laço, 35

linguagem, 49

NP-completa, 50

NP-difícil, 50

aceita, 49

em tempo polinomial, 49

decidida, 49

em tempo polinomial, 49

redutível em tempo polinomial, 50

verificada, 50

número cromático, 17, 43

distância-2, 20

q-backbone, 22, 51

circular, 27

direcionado, 29, 93

ordem, 36

orientação, 46

máxima, 93

mínima, 93

origem, 39

palavra, 49

aceita, 49

rejeita, 49

paraquedas, 63, 87

passeio, 39

fechado, 39

passos, 48

pipa, 87

ponta da pipa, 87

ponte, 42

problema

abstrato, 48

concreto, 48

resolvido em tempo polinomial, 49

de decisão, 48

quase-bipartido de saída, 106

quase-bipartição de saída, 106

saída, 48

subgrafo, 41

gerador, 42

induzido, 42

subpar, 53

sumidouro, 47

tamanho, 36

tempo de execução, 48

Teorema das Quatro Cores, 18

torneio, 46

trilha, 39

fechada, 39

triângulo, 39



121

término, 39

verifica, 50

vizinhança, 36

vizinho, 34

vértice

de corte, 42

insaturado, 43

interno, 39

isolado, 41

saturado, 43

simplicial, 44

árvore, 25, 42

geradora, 42


	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Símbolos
	Sumário
	Introdução
	Preliminares
	Teoria dos Grafos
	Definições básicas
	Florestas, árvores e emparelhamentos
	Coloração de vértices e planaridade
	Grafos direcionados

	Complexidade Computacional

	Revisão Bibliográfica
	Conceitos fundamentais na Coloração Backbone
	Limitantes gerais da Coloração Backbone
	Floresta como backbone
	Caminho hamiltoniano como backbone
	Galáxia como backbone
	Emparelhamento como backbone
	Complexidade Computacional


	Resultados
	Coloração Backbone
	Coloração em Backbones Direcionados
	Emparelhamentos como backbone
	Galáxia e caminho como backbone
	Complexidade Computacional


	Conclusão e Trabalhos Futuros
	REFERÊNCIAS
	ÍNDICE

