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RESUMO

A refatoração altera a estrutura interna do código sem modificar seu comportamento externo,

melhorando a qualidade, manutenibilidade e legibilidade, além de reduzir a dívida técnica.

Estudos indicam a necessidade de aprimorar a detecção e correção de refatorações, recomendando

o uso de aprendizado de máquina para investigar motivações, dificuldades e melhorias no

software. Esta dissertação tem como objetivo identificar a relação entre refatorações triviais e não

triviais, além de propor uma métrica que avalia a trivialidade da implementação de refatorações.

Inicialmente, utilizamos modelos classificadores de aprendizado supervisionado para examinar o

impacto das refatorações triviais na predição das não triviais. Analisamos três conjuntos de dados,

com 1.291 projetos de código aberto e aproximadamente 1,9M de operações de refatoração,

utilizando 45 métricas de código. Foram utilizados os 5 modelos de classificação, em diferentes

configurações do dataset. Em segundo lugar, propomos também uma métrica baseada em ML

para avaliar a trivialidade da refatoração, considerando complexidade, velocidade e risco. O

estudo examinou como a priorização de 58 featuers, apontadas por 15 desenvolvedores, afetou

a eficácia de sete modelos de regressão. Analisou a eficácia dos de 7 modelos de regressão e

ensemble. Além disso, verificou-se o alinhamento entre as percepções de 16 desenvolvedores

experientes e os resultados dos modelos. Nossos resultados são promissores: (i) Algoritmos

como Random Forest, Decision Tree e Neural Network tiveram melhor desempenho ao usar

métricas de código para identificar oportunidades de refatorações; (ii) Separar refatorações

triviais e não triviais melhora a eficiência dos modelos, mesmo em diferentes conjuntos de dados;

(iii) Usar todas as features disponíveis supera a priorização feita pelos desenvolvedores nos

modelos preditivos; (iv) Modelos ensemble, como Random Forest e Gradient Boosting, superam

os modelos lineares, independentemente da priorização de features; e (v) Há forte alinhamento

entre as percepções dos especialistas e os resultados dos modelos. Em resumo, esta dissertação

contribuiu com o processo de refatoração, um apoio importante para os desenvolvedores, pois

pode influenciar a decisão de aplicar ou não uma refatoração. Além de destacar insights, desafios

e oportunidades para trabalhos futuros.

Palavras-chave: refactoring; feature extraction; code metrics; software maintenance; software

quality; supervised learning; machine learning.



ABSTRACT

Refactoring changes the internal structure of the code without changing its external behavior,

improving quality, maintainability, and readability, in addition to reducing technical debt. Studies

indicate the need to improve the detection and correction of refactorings, recommending the use

of machine learning to investigate motivations, difficulties, and improvements in software. This

Master’s dissertation aims to identify the relationship between trivial and non-trivial refactorings,

in addition to proposing a metric that evaluates the triviality of implementing refactorings.

Initially, we use supervised learning classifier models to examine the impact of trivial refactorings

on the prediction of non-trivial ones. We analyzed three datasets, with 1,291 open source projects

and approximately 1.9M refactoring operations, using 45 code metrics. The 5 classification

models were used, in different dataset configurations. Second, we also propose an ML-based

metric to evaluate the triviality of refactoring, considering complexity, speed, and risk. The

study examined how the prioritization of 58 features, identified by 15 developers, affected the

effectiveness of seven regression models. The effectiveness of 7 regression and ensemble models

was analyzed. In addition, the alignment between the perceptions of 16 experienced developers

and the results of the models was verified. Our results are promising: (i) Algorithms such as

Random Forest, Decision Tree and Neural Network performed better when using code metrics

to identify opportunities for refactorings; (ii) Separating trivial and non-trivial refactorings

improves the efficiency of the models, even on different datasets; (iii) Using all available features

outperforms the prioritization made by developers in predictive models; (iv) Ensemble models,

such as Random Forest and Gradient Boosting, outperform linear models, regardless of feature

prioritization; and (v) There is strong alignment between the perceptions of experts and the

results of the models. In summary, this Master’s dissertation contributed to the refactoring

process, an important support for developers, as it can influence the decision of whether or not to

apply a refactoring. In addition, it highlights insights, challenges and opportunities for future

work.

Keywords: refactoring; feature extraction; code metrics; software maintenance; software quality;

supervised learning; machine learning.
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1 INTRODUCTION

In this chapter, we present the main motivations for carrying out this Master’s

dissertation, which aims to identify the relationship between trivial and non-trivial refactorings

and propose a metric that evaluates the triviality of implementing refactorings. This chapter

is organized as follows: (i) Section 1.1, we contextualize the topic of refactoring, address the

main related themes and the motivation for this Master’s dissertation; (ii) Section 1.2, we present

the objectives, as well as the research questions; (iii) Section 1.3 we detail the methodological

process used in this research; and (iv) Section 1.5 we present in detail the general organization

of the chapters of this Master’s dissertation.

1.1 Contextualization

Software maintenance is one of the most expensive activities in software engineering

effort (Zarnekow; Brenner, 2005). According to Bertrand (1994), maintenance represents a total

cost of 70% of a system. The main factor for this high cost is poor software quality (Dehaghani;

Hajrahimi, 2013). Good quality software will generate lower costs and effort in maintenance

activities (Kaur; Singh, 2019). Thus, the software industry considers that giving importance to

software quality generates benefits for maintainability and system reliability (Malhotra; Jain,

2019).

During software maintenance, it is possible that developers introduce codes with

poor structural quality in an unintentional or unintentional way (Ouni et al., 2015). Over time,

these poor-quality codes end up degrading the code quality, which can lead to failures in the

future (Yamashita; Moonen, 2012; Uchôa et al., 2020). One solution that can solve this problem

is applying transformations to the source code, a very common type of transformation that meets

this objective is software refactoring (Silva et al., 2016).

Opdyke (1992) introduced the term refactoring, but this term only became popular

with the book by Fowler (2018). Refactoring is defined as a transformation that changes the

internal structure of the source code without changing the external behavior (Fowler, 2018).

Maintaining the external behavior means that after applying the refactoring activity, the software

should produce the same output as before.

Some benefits of using refactoring techniques in software are: (i) increased overall

software quality; (ii) decreased maintenance costs; and (iii) increased developer productiv-
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ity (Fowler, 2018; Moser et al., 2007). In this way, the benefits extend to internal quality

attributes such as coupling and cohesion and external software quality attributes. They can

significantly improve the reusability and readability of systems (Mens; Tourwé, 2004; Bavota et

al., 2015; Malhotra; Chug, 2016).

Researchers have investigated different perspectives for the use of refactoring (Mens;

Tourwé, 2004; Azeem et al., 2019; Sobrinho et al., 2018; Bibiano et al., 2023), such as: (i)

solutions that recommend refactorings to developers (Bavota et al., 2015; Tsantalis et al., 2018;

Almogahed et al., 2023; Bibiano et al., 2024; Nikolaidis et al., 2024); (ii) machine learning-based

refactoring detection (Aniche et al., 2020; AlOmar et al., 2021; Nyamawe, 2022; Tan et al.,

2024); (iii) developer motivation to refactor code (Silva et al., 2016; Palomba et al., 2017), and

(iv) obstacles to refactoring (Kim et al., 2014; Sharma et al., 2015; Liu et al., 2024). However,

even though refactoring has been investigated as a provider of benefits for software quality,

whether by improving internal or external attributes, some studies indicate that in some cases,

refactorings can negatively affect software maintenance.

The application of ML predictive models to aid developers in identifying refactoring

opportunities for design improvement is a relatively recent field of research (Azeem et al., 2019).

Several studies have employed ML through unsupervised learning for identifying refactoring

possibilities (Alkhalid et al., 2010; Bryksin et al., 2018; Tan et al., 2024) while others have

explored the use of supervised learning techniques to detect such opportunities (Aniche et al.,

2020; AlOmar et al., 2021; Nyamawe, 2022; Alomar et al., 2022).

Although many studies have explored how ML can be utilized to enhance refactoring

techniques (Alkhalid et al., 2010; Bryksin et al., 2018; Aniche et al., 2020; AlOmar et al., 2021;

Nyamawe, 2022; Panigrahi et al., 2020; Tan et al., 2024), few have focused on strategies to

improve the accuracy of refactoring predictions made by these models. According to Kumar et

al. (2019), software metrics play a crucial role in estimating the likelihood of refactoring at the

class level, among other approaches.

Azeem et al. (2019) and Baqais and Alshayeb (2020) emphasize the need for further

studies on how ML can identify refactoring opportunities, as well as the development of auto-

mated solutions involving refactoring. Kaur and Singh (2019) highlights that many refactorings

commonly practiced in the industry are still unexplored. Moreover, the lack of a clear assessment

of the triviality of refactorings creates challenges in selecting the ideal technique and ensuring

that the system’s behavior is not affected (Akhtar et al., 2022). Additionally, developers tend to
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prefer manual, time-consuming, and risky refactorings, avoiding automated tools to minimize the

risk of introducing new bugs (Abid et al., 2022; Silva et al., 2016). Consequently, our motivation

is based on the identified needs, proposing a solution based on ML that can be automated and

provides developers with reliable information to decide whether to apply automated refactoring.

Additionally, during our literature review, we observed that the classification of

refactorings is a commonly adopted approach in existing studies. Some studies classify or group

refactorings according to their general purpose (Fernandes et al., 2020; Sellitto et al., 2021;

Smiari et al., 2022). Others simplify them into a binary classification: refactored and non-

refactored (Eposhi et al., 2019; Nyamawe, 2022). AlOmar et al. (2021) classifies its refactorings

into: internal, external, fix bug, and fix smell. In contrast, Sellitto et al. (2021), to achieve

the objective of the study, groups refactorings into: composing methods, moving resources,

organizing data, simplifying method calls, dealing with generalizations, and others. Thus, to

achieve the objective of this work, in our first study, we classify the types of refactoring into

trivial and non-trivial. This classification is based on the number of changes made to the source

code. A better contextualization is presented in Section 2.1.1. In the second section, we adopt

another line of thought, which is to identify the triviality of each refactoring operation 5.1. In

this context, despite several studies being carried out to investigate the benefits or challenges

involving refactorings, it is still necessary to carry out more empirical studies addressing the

topic to fill in the gaps discovered.

1.2 Objective and research questions

After highlighting the importance of refactoring for software quality and the efforts

of researchers to investigate solutions, motivations, difficulties, and improvements in this practice.

In addition, to the need to use machine learning to solve design problems, the main objective of

this Master’s dissertation is to identify the relationship between trivial and non-trivial refactorings

and propose a metric that evaluates the triviality of implementing a refactoring. To this end,

we first seek to identify and classify refactorings into trivial and non-trivial, using machine

learning algorithms to improve software quality and maintainability. We also propose a metric

that evaluates the triviality of implementing refactoring operations, considering simplicity, speed

and risk. The main research questions, along with sub-questions, are presented below:

RQ1: How effective are trivial refactorings in predicting non-trivial refactorings?

RQ1.1: What is the performance of ML algorithms to predict trivial and nontrivial
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refactorings?

RQ1.2: How effective is the inclusion of trivial refactorings to predict non-trivial

refactorings?

RQ1.3: How effective are data balancing techniques in the prediction of trivial and

non-trivial refactorings?

RQ1.4: Can the best models be carried over to different contexts?

RQ2: How can an effective refactoring triviality index be developed using a machine

learning approach from a developer’s perspective?

RQ2.1: Which code metrics are considered most relevant by developers to determine

the triviality of a refactoring operation?

RQ2.2: How do different Machine Learning (ML) techniques behave in predicting

the code refactorings triviality index?

RQ2.3: What is the impact of prioritizing features ranked by developers on the

effectiveness of triviality index prediction models?

RQ2.4: To what extent is the proposed triviality index aligned with the developers’

perception regarding the triviality of applying refactorings?

From this, we can list some specific objectives: (i) Identify the performance of

machine learning algorithms in predicting trivial and non-trivial refactorings; (ii) Analyze

the effectiveness of predictive models in different refactoring data domains, identifying the

influence that trivial refactorings have on non-trivial refactorings; (iii) Investigate the relationship

between feature prioritization by developers and the performance of machine learning models in

predicting the refactorings triviality index; and, (iv) Evaluate the accuracy of predictive models

regarding developers’ perception of the refactoring’s triviality, identifying areas of agreement

and divergence.

1.3 Research methodology

This section presents the proposed methodology to explore and develop the triviality

index and describe each step. Figure 1 presents the methodology used to execute the Master’s

dissertation.

1. Literature review: In this phase, we conducted an ad-hoc literature review to investigate

opportunities, tools used, deficiencies, and needs for refactoring, as well as using machine

learning to solve design problems focused on refactoring.
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Figure 1 – Overview of the research methodology

Source: Prepared by the author.

2. Study 1 - Predicting trivial and non-trivial refactorings: After identifying gaps in

the literature review and research opportunities, we conducted a study based on machine

learning techniques. The study is described in Chapter 4 and aims to investigate how trivial

refactorings affect the prediction of non-trivial refactorings. In this step, we combined

different types of refactorings in different contexts to investigate the influence caused

by supervised learning algorithms on the classification problem. With this, we obtained

efficient models based on Random Forest and Decision Tree to be used in a more practical

solution for developers.

3. Study 2 - Refactoring triviality index based on developer prioritization of features

perform: With the results found in the previous study, we present in Chapter 5 a new

study that addresses the use of software refactoring through the analysis and proposal of a

metric called “Triviality Index”, which evaluates the degree of difficulty of implementing

a refactoring operation from the point of view of software developers, considering its

complexity, speed and risk. The metric is generated from code metrics with and without

feature prioritization by developers and trained with supervised learning algorithms for the

regression problem.

4. Validating triviality index from experts: After defining the triviality index, we checked
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the agreement between the effectiveness of the models and the perceptions of developers

with experience in refactoring activities. To do this, we first selected a set of code

examples containing different types of refactoring operations. We then sent a survey to

capture developers’ perceptions of their experience in applying refactorings. The feedback

provided by the experts helped refine and validate the index, ensuring its effectiveness in

practical scenarios.

1.4 Study Replicability

An essential practice in any scientific research is ensuring that studies are replicable.

This means that every manuscript must provide detailed information on how to reproduce the

study. In this context, the open science movement aims to make all research artifacts publicly

available, thereby increasing transparency and reproducibility in the scientific process (Mendez

et al., 2020). To support open science, the replication package for each study in this Master’s

dissertation is available on Zenodo1 and Github2, an online repository hosted by CERN. Table 1

details the location of each package. For each replication package, we provide all collected data,

metric definitions, survey results, predictive models, and scripts.

Table 1 – Replication Package Available
Replication Package Host

On the Effectiveness of Trivial Refactorings in Pre-
dicting Non-trivial Refactorings

https://doi.org/10.5281/zenodo.6800385,
https://doi.org/10.5281/zenodo.7820168

Towards an effective refactoring triviality index: A
Machine Learning Approach from a Developer’s
Perspective

https://doi.org/10.5281/zenodo.13766290
https://github.com/d4rwln/TrivialityIndex

Source: Prepared by the author.

1.5 Organization

This chapter presented the context, motivation, objectives, research questions, and

methodology used in this Master’s dissertation. The rest of the work is organized as follows:

in Chapter 2, the main concepts about refactoring used in this work are presented, as well as

the concepts about machine learning and metrics used to measure models. In Chapter 3, we

discuss and compare the main related works focused on both the refactoring activity and the
1 https://zenodo.org/
2 https://github.com/

https://doi.org/10.5281/zenodo.6800385
https://doi.org/10.5281/zenodo.7820168
https://doi.org/10.5281/zenodo.13766290
https://github.com/d4rwln/TrivialityIndex
https://zenodo.org/
https://github.com/
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use of learning techniques to predict refactorings. In Chapter 4, we present a study that aims

to investigate the influence that trivial refactorings at the class level have on the prediction of

non-trivial refactorings using supervised machine learning. In Chapter 5 we present a study

that aims to develop an index that evaluates the triviality of refactoring operations based on the

following aspects: simplicity, speed and risk. Finally, in Chapter 6 we detail the considerations

and main results of this Master’s dissertation, some publications and future work aimed at

extending this work.
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2 BACKGROUND

This chapter presents the key concepts used in this Master’s dissertation. Section 2.1

overviews software refactorings. Section 2.2 presents software metrics and their use in soft-

ware engineering studies. Finally, Section 2.3 outlines the key concepts of machine learning

techniques.

2.1 Refactoring

Refactoring is a key software maintenance activity aimed at enhancing the internal

structure of a system without changing its external behavior. The concept was first introduced in

the PhD thesis of Opdyke (1992), which focused on restructuring at the code-level, but gained

popularity through the work of Fowler (2018). Fowler defines refactoring as “a change made to

the internal structure of software to make it easier to understand and cheaper to modify without

altering its observable behavior”. In his book, Fowler introduced a catalog of 72 refactoring

techniques. In the latest edition (Fowler, 2018), he updated this catalog to reflect current trends

and modern software development practices. The catalog is now available and continuously

maintained online1, providing an explanatory outline for each refactoring technique.

There are refactorings beyond the catalog proposed by Fowler (2018), including

those integrated into Integrated Development Environment (IDE) tools and others manually

employed by developers. Refactoring is frequently used to address code smells (Murphy-Hill

et al., 2012) and can enhance various quality attributes, such as readability and maintainability.

It also plays a crucial role in modernizing legacy systems (Lacerda et al., 2020). Additionally,

refactoring is widely considered the most effective strategy for reducing technical debt (Avgeriou

et al., 2016; Pérez et al., 2021).

In summary, applying refactorings provides benefits to the software development

process, including: (i) improving software design and preventing its deterioration; (ii) making

the code easier to understand, reducing the time other developers need to grasp it; (iii) acceler-

ating the development of new features; (iv) facilitating bug detection through improved code

comprehension; (v) aiding in the analysis and maintenance of legacy systems; and (vi) enhancing

overall software quality by reinforcing key quality attributes, among other advantages (Fowler,

2018).
1 https://refactoring.com/catalog/
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We illustrate an example of a refactoring operation and its benefits as follows. The

Listing 2 provides an example of the Extract Method refactoring operation applied to Listing 1.

1 public void printAll () {

2 printBanner ();

3

4 // Print details.

5 System.out.println("name: " + name);

6 System.out.println("amount: " + getOutstanding ());

7 }

Source Code 1 – Java code example before refactoring

1 public void printAll () {

2 printBanner ();

3 printDetails(getOutstanding ());

4 }

5

6 public void printDetails(double outstanding) {

7 System.out.println("name: " + name);

8 System.out.println("amount: " + outstanding);

9 }

Source Code 2 – Example of Java code refactored using the technique Extract Method

The Extract Method operation is used when multiple lines of code can be grouped

because they are the same concern. The solution involves extracting a code fragment into a

new method or function and replacing the extracted code in the original method with a call to

this new function. In the source code illustrated in Listing 1, the code that prints details to the

program’s console is located on lines 5 and 6, with a code smell comment on line 4 indicating

what is to be done. The Extract Method operation first extracts the code from lines 5 and 6

into a new method. Next, the comment on line 4 is used to name the newly created method

printDetails(double outstanding) , as shown in the Listing 2. This process is also strongly

recommended when the Long Method code smell is detected (Fowler, 2018).

Refactorings can vary in their levels and purposes. Fowler (2018) observed that
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for each refactoring operation, there is a logically inverse operation. For instance, the Extract

Method operation, which extracts a code fragment into a separate method, has the Inline Method

refactoring as its inverse. Inline Method simplifies code by replacing a method call with the body

of that method (Fowler, 2018).

2.1.1 Trivial and Non-Trivial Refactorings

Rura (2003) suggests that refactorings be grouped according to a sequence of steps.

Fowler (2018) suggests that refactorings can be categorized based on a combination of fac-

tors—some having a substantial impact on enhancing code design, while others consist of useful

techniques that offer more general improvements.

Currently, there is no classification or grouping of refactorings in the literature that

is considered a standard. Fowler (2018) describes cases where the same refactoring can be

either trivial or non-trivial, often depending on changes to the code’s scope. However, he neither

outlines nor defines rules for classifying a refactoring as trivial or not. Thus, we extend the focus

on this topic in our work, aiming to identify the triviality of refactorings. Initially, we define

trivial refactorings as those involving minor changes to the code, while non-trivial ones result in

more significant modifications. Subsequently, we conducted a study to assess the triviality of

refactorings based on various criteria.

2.1.1.1 Non-Trivial

Our choice was driven by the lack of studies focusing on the main refactorings used

in the industry (Murphy-Hill et al., 2012; Khanam, 2018; Liu et al., 2012). Thus, we considered

the following refactorings as non-trivial refactorings: Extract Class, Extract Superclass, Extract

Subclass, Inline Class, Move Class, Move and Rename Class, Move Method, Extract Method,

Inline Method, Extract Variable, and Inline Variable.

Figure 2 illustrates an example of refactoring that separates the responsibilities of a

class. The process involves creating a new class and moving the relevant attributes and methods

to it. This refactoring can be applied when: (i) a class lacks a clear responsibility, and (ii) a

subset of attributes and methods appear to form a distinct group (Fowler, 2018). This refactoring

is considered non-trivial because it makes significant changes to the code’s design. Additionally,

it can involve other refactorings cataloged by Fowler (2018), such as Move Method, Move Field,

and Change Reference to Value.
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Extract Class

Figure 2 – Refactoring example Extract Class

Source: Prepared by the author.

Figure 3 presents an example of a refactoring that isolates data used only in specific

cases. The procedure involves creating a subclass and moving the relevant attributes and methods

to it. This refactoring can be applied when a class contains fields that are not commonly used. It

is considered Non-Trivial because it introduces a significant change to the code design. This

refactoring may also incorporate other refactorings cataloged by Fowler (2018), such as: Push

Down Method, Push Down Field, Replace Constructor With Factory Method, and Replace

Conditional with Polymorphism.

Extract Subclass

Figure 4 illustrates an example of refactoring that merges similar tasks found in

different classes. The procedure involves using basic inheritance to extract common attributes

and methods from similar classes and place them into a superclass. This refactoring can

be applied when similar tasks are identified across two or more classes. An alternative to

inheritance for consolidating duplicate behavior is delegation, which can be combined with

Extract Class (Fowler, 2018). It is also considered Non-Trivial because it introduces significant

changes to the code design. This refactoring may incorporate other refactorings cataloged by

Fowler (2018), such as Pull Up Method, Pull Up Field, Pull Up Constructor Body, and Change

Signature.
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Figure 3 – Refactoring example Extract Subclass

Source: Prepared by the author.

Extract Superclass

Figure 4 – Refactoring example Extract Superclass

Source: Prepared by the author.

Inline Class

Figure 5 shows an example of Inline Class, also known as Merge Class, which is

used to combine data and behaviors into a single class. The procedure consists of moving the

attributes and methods of the original class to the final class, then deleting the original class. We

can perform this refactoring when: (i) we identify that it is no longer worth having a class; and

(ii) we want to refactor a pair of classes with different resource allocation. It is also considered

Non-Trivial because it makes a larger change to the code design. This refactoring can make use
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Figure 5 – Refactoring example Inline Class

Source: Prepared by the author

of other refactorings cataloged by Fowler (2018) such as: Move Method, Move Field and Inline

Method.

Move Class

Figure 6 – Refactoring Move Class

Source: Prepared by the author.

Figure 7 – Refactoring Move and Rename Class

Source: Prepared by the author.

Figure 6 shows the Move Class refactoring that is used to move a class to a more
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appropriate location. The procedure consists of moving a class to a package more related to

the code, removing files generated during compilation in the old location, and modifying the

necessary references. We can perform this refactoring when: (i) we identify that the class is next

to classes that are not significantly related to its form or function; (ii) the package of the class in

question is too large; and (iii) we want to refactor to avoid future dependency problems (Fowler,

2018). Even though it is a little simpler than the refactorings mentioned above, it is also consid-

ered Non-Trivial because it can make a larger change to the code design. This refactoring can

use other refactorings cataloged by Fowler (2018) such as: Extract Package. Figure 7 shows a

variation of this refactoring in which it is necessary to rename the original class.

2.1.1.2 Trivial

Trivial refactorings are easy to identify because they change little to the design of the

code. The following are trivial refactorings: Add Class Annotation, Add Class Modifier, Change

Access Modifier, Modify Class Annotation, Remove Class Annotation, Remove Class Modifier,

Rename Class, Rename Method, and Rename Variable. Table 2 describes each trivial refactoring.

Table 2 – Group of trivial refactorings used in the first study
Refactoring Description
Add Class Annotation Used when it is necessary to add an annotation to a class.
Add Class Modifier Adds a modifier (final, static or abstract) to the class.
Change Access Modifier Changes the access modifier to default, private, protected, or public.
Modify Class Annotation Change the class annotation.
Remove Class Annotation Removes a class annotation.
Remove Class Modifier Removes one of the modifiers: final, static or abstract.
Rename Class Changes the class name.
Rename Method Changes the method name.
Rename Variable Changes the variable name.

Source: Prepared by the author.

2.1.2 Refactoring detection tools

In recent years, different techniques and tools for automatic refactoring detection

have emerged in the literature. All of these solutions have their advantages and disadvantages.

They are generally based on rules or machine learning. Rule-based solutions have better results

but require a higher level of knowledge to define the rules, which is not a trivial task. Machine
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learning-based solutions, on the other hand, require a large amount of data as input to train

classification algorithms.

Several automatic tools currently perform the task of detecting and applying refac-

torings. Lacerda et al. (2020) presents in its study the tools most used by developers that support

refactorings. The most used tools are presented below:

– JDeodorant2: is an Eclipse plugin that suggests Java code refactorings for some code

smells: God Class, Large Class, Feature Envy, Swwitch Statement/Type Check and Long

Method.

– TrueRefactor3: is an automated refactoring tool that significantly improves the under-

standability of legacy systems.

– Eclipse Refactoring: A feature of the IDE itself, which has more than 20 refactorings.

– IntelliJ IDEA Refactoring: The IDE itself implements more than 40 refactorings, using a

lexical analyzer.

– Wrangler4: It is a tool that supports interactive refactoring of Erlang programs. It is

integrated with Emacs and also with Eclipse, through the ErlIDE plugin.

In addition to the previously mentioned tools, state-of-the-art tools detect refactorings

applied to commit history, such as Refactoring Miner (Tsantalis et al., 2020) and ReffDiff (Silva

et al., 2021). The first detects refactorings in projects developed in the Java language, while the

second, in addition to Java, supports the JavaScript and C programming languages. However,

the tool used in this work was Refactoring Miner5 because it presents more accurate results in

detecting refactorings, with an average precision of 99.6% and recall of 94% (Tsantalis et al.,

2020). In addition, the chosen tool detects low-level refactorings, can be easily implemented

in automation projects through its API, has support for the Java language, and can be used as

a dependency of Maven projects. Furthermore, Refactoring Miner is, on average, 2.6 times

faster than ReffDiff. Refactoring Miner has a Chrome browser extension that allows detecting

refactoring in the GitHub URL6; it is free and has already been used in several works (AlOmar

et al., 2021; Sellitto et al., 2021; Aniche et al., 2020; Alomar et al., 2022; Nyamawe, 2022).

The use of the Refactoring Miner tool is also important, as it helps detect refactorings

that have been applied even if they have not been documented. At the time of our study, this
2 https://github.com/tsantalis/JDeodorant
3 https://github.com/ramon1/TrueRefactor
4 http://refactoringtools.github.io/wrangler/overviesummary.html
5 https://github.com/tsantalis/RefactoringMiner
6 https://github.com/user/project/commit/id

https://github.com/tsantalis/JDeodorant
https://github.com/ramon1/TrueRefactor
http://refactoringtools.github.io/wrangler/overvie summary.html
https://github.com/tsantalis/RefactoringMiner
https://github.com/user/project/commit/id
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tool could detect 87 different types of refactorings: Extract Method, Inline Method, Rename

Method, Move Method, Move Attribute, Pull Up Method, Pull Up Attribute, Push Down Method,

Push Down Attribute, Extract Superclass, Extract Interface, Move Class, Rename Class, Extract

and Move Method, Rename Package Change Package (Move, Rename, Split, Merge), Move and

Rename Class, Extract Class, Extract Subclass, Extract Variable, Inline Variable, Parameterize

Variable, Rename Variable, Rename Parameter, Rename Attribute, Move and Rename Attribute,

Replace Variable with Attribute, Replace Attribute (with Attribute), Merge Variable, Merge

Parameter, Merge Attribute, Split Variable, Split Parameter, Split Attribute, Change Variable

Type, Change Parameter Type, Change Return Type, Change Attribute Type, Extract Attribute,

Move and Rename Method, Move and Inline Method, Add Method Annotation, Remove Method

Annotation, Modify Method Annotation, Add Attribute Annotation, Remove Attribute Annotation,

Modify Attribute Annotation, Add Class Annotation, Remove Class Annotation, Modify Class

Annotation, Add Parameter Annotation, Remove Parameter Annotation, Modify Parameter Anno-

tation, Add Variable Annotation, Remove Variable Annotation, Modify Variable Annotation, Add

Parameter, Remove Parameter, Reorder Parameter, Add Thrown Exception Type, Remove Thrown

Exception Type, Change Thrown Exception Type, Change Method Access Modifier, Change

Attribute Access Modifier, Encapsulate Attribute, Parameterize Attribute, Replace Attribute with

Variable, Add Method Modifier (final, static, abstract, synchronized), Remove Method Modifier

(final, static, abstract, synchronized), Add Attribute Modifier (final, static, transient, volatile),

Remove Attribute Modifier (final, static, transient, volatile), Add Variable Modifier (final), Add

Parameter Modifier (final), Remove Variable Modifier (final), Remove Parameter Modifier (final),

Change Class Access Modifier, Add Class Modifier (final, static, abstract), Remove Class Modi-

fier (final, static, abstract), Move Package, Split Package, Merge Package, Localize Parameter,

Change Type Declaration Kind (class, interface, enum), Collapse Hierarchy, Replace Loop with

Pipeline, Replace Anonymous with Lambda, Merge Class, Inline Attribute.

The tool receives two commits as input, analyzes the diff of the files, and returns a

list of refactorings applied between the commits. In Figure 8, we can see the diff of a commit

that is analyzed by the tool. In this figure, it is possible to see that the Reptile class previously

had no inheritance and then had AnimalMarilho as a superclass. Then, the AnimalMarilho class

is created and implemented. In the example, the tool can analyze and detect the ExtractClass

refactoring.

Finally, this work uses the Refactoring Miner tool to extract the refactorings from
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Figure 8 – Commit diff before and after refactoring

Source: Prepared by the author.

the commit history, serving as a basis for training the supervised learning models.

2.2 Code quality metrics

Measuring code quality may not be an easy task. ISO/IEC 25010 provides a model

that standardizes some external software characteristics by which we can evaluate quality

(INTERNATIONAL ELECTROTECHNICAL COMMISSION, 2011). These characteristics are

also known as quality attributes. Among these attributes, we have reliability, which measures the

probability of the system failing. Another characteristic is maintainability, which measures the

difficulty of changing the system over time. With this, it is clear that several abstract factors are

requirements for evaluating the quality of a system.

However, we can analyze software through software metrics that will measure some

internal attributes, such as coupling. This attribute indicates the degree of interdependence

between system classes, which can affect an external attribute (maintainability). There are other
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internal quality attributes such as cohesion, inheritance, size, and complexity. Measuring from

this internal perspective becomes easier by using values that can be measured using tools that

statistically analyze source code (INTERNATIONAL ELECTROTECHNICAL COMMISSION,

2011).

Software metrics are used to measure and understand the structure of software. Once

extracted, they provide meaningful information to evaluate internal quality attributes. Software

metrics have been used and studied for a long time. Lines of Code (LOC) was one of the first

metrics, first cited in the late 1960s, and is the most common for measuring software size to

estimate time and cost (Lorenz; Kidd, 1994). Chidamber and Kemerer (1994) proposed a suite

of code metrics for software that adopts the object-oriented paradigm. Chidamber and Kemerer

(1994) being one of the precursors, several works have been carried out using this suite (Li;

Henry, 1993; Padhy et al., 2015; Aggarwal et al., 2006; Malhotra1; Chug, 2012). McCabe (1976)

studied and provided metrics based on cyclomatic complexity.

For this Master’s dissertation, we selected a set of metrics from the suite proposed

by Chidamber and Kemerer (1994), and Lorenz and Kidd (1994) in addition to different attributes

of the code elements, such as: number of methods, number of returns and number of variables.

We extracted the metrics from the CK (Aniche, 2015) and PMD7 tools to use as features of the

prediction models. The metrics and attributes used in each Master’s dissertation study are found

in Tables 7 and 15, respectively.

2.3 Machine learning

Currently, companies and public entities use the internet to offer various services to

customers and users. These services generate a massive amount of data, making it important to

study them to obtain some information or knowledge. For example, streaming platforms that

capture user preferences through choices registered in the system. When the amount of data

is small, it is possible to perform analysis manually. However, when there is a large mass of

data, this becomes a difficult task for human capacity. Therefore, researchers seek computational

solutions with greater computational power to solve this problem by processing and extracting

information from this data.

An example of a computational solution used for this purpose is Machine Learning

(ML) (Mitchell; Mitchell, 1997; Mitchell et al., 2013). This solution consists of a field of artificial
7 https://pmd.github.io/

https://pmd.github.io/
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intelligence that focuses on developing algorithms and statistical models that allow computers to

learn from data and make predictions or decisions without being explicitly programmed (Samuel,

1959; Zhou, 2021). It can also be understood as the ability of computers to process data input

and predict outputs through computational algorithms (Mitchell; Mitchell, 1997). For example,

when entering user data from the streaming platform, the machine learning algorithm will learn

and then return a list of suggestions related to the user’s profile. Therefore, it is necessary to

provide a set of data for the algorithm to train so that it can then predict.

ML is a constantly evolving area and is considered a sub-area of Artificial Intelligence

(AI) (Mitchell et al., 2013). It provides several types of algorithms to solve problems; however,

there is no single algorithm to solve all types of problems. Thus, the type of algorithm will

depend on the type of problem added to other factors. There are mainly four main types of

learning algorithms: (i) supervised learning, (ii) unsupervised, (iii) semi-supervised, and (iv)

reinforcement learning (Mahesh, 2020; Kaelbling et al., 1996).

In the field of ML, supervised learning is a fundamental technique where a model is

trained using a labeled dataset, allowing it to learn to map inputs to outputs based on previous

examples (Mitchell; Mitchell, 1997; Bishop; Nasrabadi, 2006; Cord; Cunningham, 2008; Zhou,

2021; James et al., 2023). In this approach, the correct output value is already known, and the

dataset can be divided into two subsets: training and testing. The testing subset validates the

model that must have been trained on the other subset. This technique is widely used in various

applications such as pattern recognition, forecasting, and classification (Jordan; Mitchell, 2015;

James et al., 2023). Supervised learning can be further divided, depending on the problem, into

Classification and Regression (Cord; Cunningham, 2008).

Classification is used when the problem wants to provide a categorical or binary

variable as output. At the same time, Regression seeks to predict a continuous variable as

output (Mitchell et al., 2013), usually a numerical range (James et al., 2023). It aims to predict

continuous results by fitting a curve or line to the data points, allowing the estimation of the

dependent variable based on the independent variables(James et al., 2023). For example, we

can use ML to predict the price of homes. To do this, we can provide a dataset with data about

several homes, such as: price, location, size, number of floors, number of bedrooms, number

of bathrooms, etc. Since we want to predict the price and it is a continuous variable, we have a

problem that Regression algorithms will be more suitable to solve. Another example would be

trying to predict the type of car based on a set of data, such as: color, number of wheels, size, etc.
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In this case, the problem should be solved through classification algorithms.

In contrast, unsupervised learning does not use input-output pairs. However, the data

is related to each other to form clusters. The algorithm based on this approach will be able to

recognize similar characteristics between the data and separate them into groups, specifying what

these groups are (Berry et al., 2019). Semi-supervised learning is a combination of supervised

and unsupervised learning. This type of approach allows the analysis performed on the dataset to

accept labeled or unlabeled data.

Finally, reinforcement learning is an approach in which the algorithm is trained

based on reinforcement. Reinforcement consists of rewards when the model gets it right and

penalties when it gets it wrong. It is expected that after the results obtained in training, the

model will generate better results than when it started (Kaelbling et al., 1996). For this Master’s

dissertation, we chose to use supervised learning. In the first study, we focused our efforts on

solving a classification problem, while in the second study, we addressed a regression problem.

2.3.1 Supervised learning algorithms

2.3.1.1 Classification

There are several ML techniques for the classification problem. However, for our

first study, we used only five of them: (i) Decision Tree, (ii) Logistic Regression, (iii) Naive

Bayes, (iv) Neural Network, and (v) Random Forest.

– Decision Tree: A technique that builds the classification model as a tree structure. It

uses if-then rules that are equally exhaustive and mutually exclusive. These rules are

learned sequentially. Some advantages of this technique are: (i) simplicity in visualizing

the decision process; (ii) requires little data preparation; (iii) handles categorical and

numerical data simultaneously; (iv) speed in making predictions; (v) addresses most

problems; and (vi) after training, the cost of maintaining the model is low. However,

sometimes the algorithm can create complex, inefficient or unstable trees (Quinlan, 1993).

– Logistic Regression: A technique that uses one or more independent variables to determine

a result. To do so, statistical and probabilistic concepts are used to perform a binary classi-

fication. Some of its advantages include: (i) the ability to quantitatively explain the factors

that lead to a classification; and (ii) understanding how a set of independent variables can

affect a result. However, it is limited to binary variables, its biggest disadvantage. It can be
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divided into three models: binominal logistic regression, ordinal logistic regression, and

multinomial logistic regression.

– Naive Bayes: A technique based on Bayes’ theorem that assumes independence between

features. Therefore, regardless of whether one feature depends on another, all will con-

tribute to the probability of classification independently (Jordan; Mitchell, 2015). It stands

out in some aspects, such as: (i) it is simple to build; (ii) it is useful for large data sets;

(iii) it requires a small amount of training data; and (iv) it is quick to make predictions.

However, its accuracy is low compared to other classifiers.

– Neural Network: It is a computing system involving neurons organized in interconnected

layers. Each neuron receives input information, applies a function, usually non-linear,

and generates an output sent to another layer. It is worth mentioning that its advantages

include: (i) the ability to solve an infinite number of problems; (ii) tolerance to noisy

data; (iii) classifying untrained patterns; and (iv) being used for deep learning. However,

it requires high computational power, making it difficult to explain the learning process

performed (Jin et al., 2000).

– Random Forest: A technique that can create several independent decision trees in which

samples of observations and variables are assigned. It adds the predictions of each tree to

determine an overall prediction of the forest. Its advantages include: (i) it can be used for

both classification and regression; (ii) it tends to have high accuracy rates; and (iii) it can

perform overfitting to improve the result; however, if it becomes too dense it may take a

long time to predict a value (Cutler et al., 2012).

Figure 9 – Example of confusion matrix

Source: Adapted from (Stehman, 1997).

To evaluate the performance of ML algorithms, it is necessary to apply metrics to
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Table 3 – Metrics for evaluating supervised learning models for classification problems
ML Metrics Equation

Accuracy
T P+T N

T P+FP+T N+FN

Precision
T P

T P+FP

Recall
T P

T P+FN

F1-score 2×Precision×recall
Precision+recall

AUC
∫ 1

0 TPR(FPR)−1dFPR

Source: Prepared by the author

measure the quality of a model. The metrics use the values extracted from the confusion matrix

(Figure 9): True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN).

For this Master’s dissertation, we used the following metrics: (i) Accuracy, (ii) Precision, (iii)

Recall, (iv) F1-score and (v) AUC metric.

– Accuracy: This is the proportion of correctly classified observations among the total

number of observations. Accuracy indicates the overall performance of the model (Davis;

Goadrich, 2006). Table 3 presents its calculation equation.

– Precision: This is the proportion of correctly classified positive observations among the

predicted positive observations. Precision is measured when FPs are considered more

harmful than FNs. (Carvalho et al., 2019). Table 3 presents its calculation equation.

– Recall: This is the proportion of correctly classified positive observations among the true

positive observations. recall is measured when FNs are considered more harmful than FPs

(Carvalho et al., 2019). Table 3 presents its calculation equation.

– F1-Score: It is the harmonic mean between precision and recall (Chicco; Jurman, 2020).

Table 3 presents its calculation equation.

– AUC: Area Under the Curve is a commonly used metric to evaluate the quality of a

binary classification model. Represents the area under the ROC (Receiver Operating

Characteristic) curve, which is a graph that shows the relationship between the True

Positive Rate (TPR) and the False Positive Rate (FPR). Is an indicator of the model’s ability

to distinguish between positive and negative classes (Hanley; McNeil, 1982; MuschelliIII,

2020).
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2.3.1.2 Regression

Similarly, there are several ML techniques for the regression problem. However, for

our first study we used only seven of them: (i) Linear Regression, (ii) Ridge Regression, (iii)

Elastic Net, (iv) Decision Tree, (v) Random Forest, (vi) Gradient Boosting, and (vii) XGBoost.

– Linear Regression: Linear Regression is a statistical method used to model the relation-

ship between a continuous dependent variable and one or more independent variables,

assuming that a straight line can describe this relationship. The model is estimated by

minimizing the sum of the squared errors, which ensures that the fitted line is the best

possible representation of the observed data. The simplicity and interpretability of Linear

Regression make it a widely used tool in several areas (Rawlings et al., 1998; Su et al.,

2012).

– Ridge Regression: Ridge Regression is an extension of Linear Regression that includes

a penalty called L2, that is, it adds a regularization term proportional to the square of

the magnitude of the coefficients. This approach is particularly useful when there is

multicollinearity between the independent variables since the penalty reduces the variance

of the estimators, making the model more robust. Ridge regression is commonly used in

situations where the number of predictors is large relative to the number of observations,

which can cause overfitting (McDonald, 2009)

– Elastic Net: Elastic Net combines the L1 used in Lasso Regression (Ranstam; Cook,

2018) and L2 used in Ridge Regression(McDonald, 2009) penalties, offering a flexible

approach to variable selection and regularization. This method is particularly effective in

situations where there is a high correlation between predictors, as it can select groups of

correlated variables instead of choosing a single variable. Elastic Net is widely used in

high-dimensional applications, such as computational biology and genomic data, where

the ability to handle many predictors is crucial (Zou; Hastie, 2005).

– Decision Tree: Decision Tree is a supervised learning algorithm that can be used for both

regression and classification. It segments the input space into non-linear regions, creating a

decision tree based on simple split conditions at each node. The main advantage of decision

trees is their interpretability, as the decisions made at each node can be easily visualized

and understood. However, decision trees tend to suffer from overfitting, especially in

problems with many predictors (Breiman, 2017).

– Random Forest: Random Forest is an ensemble method that combines several decision
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trees to improve the accuracy and robustness of the model. It uses the bagging technique

(bootstrap aggregating) to train several trees on different subsets of the training data, and

the final predictions are made by averaging, in the case of regression, the predictions of all

trees. This approach reduces the variance of the model and improves its generalization,

making Random Forest a popular choice for many regression problems (Breiman, 2001).

– Gradient Boosting: Gradient Boosting is another ensemble method that builds the regres-

sion model sequentially by fitting new models to correct the residual errors of the previous

models. Each new model is trained to minimize the loss function using gradient descent,

which allows the algorithm to improve the model’s performance iteratively. Gradient

Boosting is known for its high accuracy but can also be susceptible to overfitting if not

regularized properly (Friedman, 2001).

– XGBoost: XGBoost (Extreme Gradient Boosting) is an optimized version of the Gra-

dient Boosting algorithm that incorporates several improvements, such as L1 and L2

regularization, the use of parallelism in tree construction, and pruning techniques to avoid

overfitting. It is widely used in machine learning competitions and is recognized for its

high performance on a wide range of regression problems. XGBoost’s efficiency and fine-

tuning capabilities make it a powerful tool for predictive analysis on large datasets (Chen;

Guestrin, 2016).

To evaluate the performance of ML algorithms, we can use metrics to measure the

quality of a model. A brief description of each metric is provided below, and Table 4 presents

the equations used for their calculation:

Table 4 – Metrics for evaluating supervised learning models for regression problems
ML Metrics Formula

MSE
1
n ∑

n
i=1(yi − ŷi)

2

RMSE

√
1
n ∑

n
i=1(yi − ŷi)2

MAE
1
n ∑

n
i=1 |yi − ŷi|

MAPE 100%
n ∑

n
i=1

∣∣∣ yi−ŷi
yi

∣∣∣
R² 1− ∑

n
i=1(yi−ŷi)

2

∑
n
i=1(yi−ȳ)2

R2
A 1− (1−R2)(n−1)

n−p−1

Source: Prepared by the author

– Mean Squared Error (MSE): is a metric that calculates the mean of the squares of
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the errors, where the error is the difference between the real value and the value pre-

dicted by the model. We should consider lower MSE values as more accurate models

to interpret this metric. Since the errors are squared, the metric gives greater weight to

outliers (Montgomery et al., 2021). The equation used to calculate MSE is:

1
n

n

∑
i=1

(yi − ŷi)
2

Breakdown:

• n: Total number of observations or data points.

• yi: Actual value of the i-th data point.

• ŷi: Predicted value of the i-th data point by the model.

• (yi − ŷi)
2: Squared difference between the actual and predicted values for each data

point.

– Root Mean Squared Error (RMSE): is the metric that calculates the square root of the

MSE. The interpretation of this metric is similar to the MSE, it offers a more direct interpre-

tation of the errors, since it is expressed in the same unit as the dependent variable (Chai;

Draxler, 2014). The equation used to calculate RMSE is:√
1
n

n

∑
i=1

(yi − ŷi)2

Breakdown:

• The only difference in interpreting the equation in relation to MSE is the application

of the square root.

– Mean Absolute Error (MAE): is the metric that calculates the average of the absolute

differences between the actual and predicted values without squaring the errors. It measures

the average magnitude of the prediction errors, being less influenced by outliers compared

to the MSE (Chai; Draxler, 2014). The equation used to calculate MAE is:

1
n

n

∑
i=1

|yi − ŷi|

Breakdown:

• |yi − ŷi|: Absolute difference between the actual value and the predicted value for

each data point.

– Mean Absolute Percentage Error (MAPE): is the MAE metric expressed as a percentage

of the actual value. It helps understand the error in percentage terms but can be misleading
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if there are actual values very close to zero (Kim; Kim, 2016). The equation used to

calculate MAPE is:

100%
n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣
Breakdown:

• 100%
n : Measures the average difference in percentage terms, expressed as a percent-

age.

•
∣∣∣yi−ŷi

yi

∣∣∣ : Absolute percentage difference between the actual value and the predicted

value for each data point.

– Coefficient of Determination (R²): is the metric that calculates the proportion of variabil-

ity in the data explained by the regression model. In interpreting this metric, 1 indicates

that the model explains 100% of the variation in the data, while 0 indicates that the model

explains no variation. Although rare and usually indicating a problem, negative values can

occur when the model fits worse than the mean of the values. This suggests a very poor

fit (Montgomery et al., 2021). The equation used to calculate R² is:

1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2

Breakdown:

• ȳ: Mean of the actual values

• ∑
n
i=1(yi − ŷi)

2: Sum of squared errors (Sum of Squared Residuals).

• ∑
n
i=1(yi− ȳ)2: Sum of squared differences between actual values and the mean (Total

Sum of Squares).

– Adjusted Coefficient of Determination (R² Adjusted): is a modified version of R² that

considers the number of predictors in the model and the sample size. The difference is

that it penalizes models that include unnecessary predictors. This metric is useful for

comparing models with different numbers of predictors (Srivastava et al., 1995). The

equation used to calculate R2
A is:

1− (1−R2)(n−1)
n− p−1

Breakdown:

• n: Total number of observations or data points.

• p: Number of independent variables in the model.

• R2: Coefficient of determination.
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2.4 Conclusion

This chapter presented the main concepts that will be used in this Master’s disser-

tation. The main objective of this work is to explore and improve the software refactoring

technique with a focus on the triviality of operations. We identify and classify refactorings as

trivial or non-trivial, using machine learning algorithms to increase software quality and facilitate

maintenance. In addition, we propose the creation of an index that measures the triviality of

refactorings, evaluating them based on simplicity, speed and risk. Thus, we present the concepts

related to the refactorings used to compose the refactoring triviality index Section 2.1 and their

categories in Section 2.1.1. We also present three tools used in the study for feature detection

and extraction (Section 2.1.2). Finally, we describe the machine learning algorithms used to train

the models that will serve as the basis for predicting this triviality in Section 2.3.
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3 RELATED WORK

This chapter describes the related work found in the literature during the development

of this Master’s dissertation. For better understanding, we grouped the related works into three

topics: (i) Literature review on refactoring (Section 3.1); (ii) Grouping refactorings into distinct

opportunities (Section 3.2); and, (iii) Use of ML techniques as an automated solution for

refactoring detection (Section 3.3). In Section 3.4, a comparison of the works related to the

proposal of this work is made. Finally, Section 3.5 presents the chapter’s conclusions.

3.1 Literature reviews on refactoring

In recent years, several researchers have made efforts to study aspects related to

code design refactoring. However, several studies address the subject in isolation and others in

conjunction with code smells. In this chapter, we present some studies focused on code design

refactoring, not limited to code smells refactoring (Singh; Kaur, 2018; Kaur; Singh, 2019; Azeem

et al., 2019; Baqais; Alshayeb, 2020; Lacerda et al., 2020; Agnihotri; Chug, 2020; Naik et al.,

2023).

Singh and Kaur (2018) conducted a systematic literature review covering 238 primary

studies. The authors sought to answer questions related to the current status of code smell

refactoring, the approaches used for code smell detection and removal, the tools used to remove

anti-patterns, the datasets used by the authors, and the main smells found by researchers. As a

result of this study, the authors point out that: (i) after introduced the term refactoring (Opdyke,

1992) and detailed by (Fowler, 2018), few studies were revealed during the following decade,

returning to being the object of study from 2001 onwards; (ii) semi-automatic and automatic

approaches using code metrics are the most used by the authors, appearing to be easier and more

suitable for measuring the internal quality of the system; (iii) the tools can be automatic, with

JDeodorant standing out, which is an Eclipe plug-in, has an interface and is easy to find, but

has limitations in the number of detectable smells; (iv) open source projects are the most used

in data sets, including: Xerces, JFreeChart, ArgoUML, GanttProject, Eclipse, Jedit, Azureus

and Log4j; and (v) the most frequently found smells are God Class and Feature Envy, while the

least frequently found smell in the studies was Parent Bequest. Based on the results, the authors

suggest that further studies be carried out to enable the development of automatic solutions,

expanding the refactoring operations involved and optimizing datasets to involve more industrial
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data.

Kaur and Singh (2019) systematically mapped 142 primary studies in 2 decades,

covering studies up to December 2017. The authors sought to investigate issues related to

refactoring operations’ effect on software quality. Among these issues, refactoring operations

and code smells, software quality measures used to measure the impact of refactoring operations,

tools used to predict or evaluate the impact of this activity, and datasets chosen to conduct the

empirical study were investigated. The results found indicate that: (i) 154 different refactoring

operations were identified, of which 70 are in the 72 activities proposed by (Fowler, 2018), with

Extract Class, Extract Method and Move Method being the most used; (ii) the quality attributes

found in the studies were product, process and resource, with cohesion, coupling and complexity

being the most used; (iii) the metrics found and most used were Lines of Code, Number of

Methods, Lack of Method Cohesion, Coupling between Objects; (iv) few studies reported tools to

predict or evaluate the effect of refactoring on software quality, which the authors still highlight

as an open area; and (v) approximately half of the studies considered only one data set, the other

half did not exceed 27. Another result found by the authors is that there will not always be an

improvement in all quality attributes with refactoring activities. Based on the results, the authors

suggest that more studies be carried out on refactoring activities unexplored by researchers,

including the most used in the industry, such as: Field Renaming, Class Renaming, Package

Renaming, among others. Another open problem identified is the development of automatic

solutions, such as tools aimed at refactoring operations.

Even with an exhaustive search, only one systematic literature review conducted to

analyze research using ML as an automated solution was found. Azeem et al. (2019) conducted

a systematic literature review with 15 studies on the use of machine learning for code smell

detection between 2000 and 2017. Several aspects were investigated by the authors, among

them: (i) the configuration used in the machine learning approach to code smell detection; (ii)

how these approaches were evaluated; (iii) the design of the evaluation strategies; and (iv) and

a meta-analysis of the performance of the models proposed in the studies. The results found

by the authors suitable for our study indicate that: (i) God Class and other code smells were

the most found smells; (ii) the CK metric set was the most used in the studies; (iii) Three types

of classification were most used: binary, probability-based, and severity-based; (iv) the vast

majority of studies used tree-based algorithms Decision Tree, with Random Forest being the

most effective; and (v) the choice of independent variables impacts the model’s performance at
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the time of prediction. Based on the results found in the literature review, the authors highlight

the lack of studies investigating how machine learning can be used to detect design problems.

Baqais and Alshayeb (2020) conducted a systematic literature review covering 41

studies to describe the state of the art regarding code refactoring between 1996 and 2015. The

authors investigated several aspects, including: the level of application of refactoring; methods

used to automate refactoring; performance and validation of each method used in refactoring

automation; and, the trend in the use of automatic refactoring. The results show that: (I) most

studies apply refactoring at the code level, but are not limited to this level. Refactorings are

also applied to other software artifacts such as UML diagrams and process models; (ii) manual

validation is less used because it takes more time, with software metrics or quality metrics being

preferable to measure software quality; and (iii) code levels are the most addressed, with a higher

occurrence for class and method levels. One of the problems identified by the authors is that

most correction works did not verify the preservation of behavior after refactoring, still having

the precondition as the only means of verification. However, the authors pointed out that few

works provide tools such as automated solutions in their results, generating a lack of support and

that more work needs to be done aiming to improve the detection and correction process.

Lacerda et al. (2020) conducted a tertiary systematic literature review covering 40

studies published between 1992 and 2018. The authors investigated the most studied code smells

and refactorings, the most used refactoring tools, and the main techniques. The results found

by the authors show that: (i) Duplicated Code and God Class were the most cited and most

referenced smells in the studies; (ii) the most cited refactoring operations were those involving

extraction (class, method, and variable); and (iii) CCFinder and JDeodorant were the most used

tools for detecting code smell and refactoring, respectively. Furthermore, the authors identified

that refactorings affect quality attributes more than code smells, indicating that it is not just a

code smell-refactoring relationship but rather that the relationship’s origin is quality.

Agnihotri and Chug (2020) conducted a literature review to investigate studies based

on applying refactoring operations to remove code smells and their effect on software quality.

The authors selected 68 studies that were published between 2001 and 2019. The results found

by the authors indicate that: (i) Extract Class is among the most used techniques in the selected

studies; (ii) refactoring is mainly performed automatically, with the help of tools; (iii) tools such

as SourceMeter, JDeodorant were the most used in the study; and (iv) complexity, cohesion and

size metrics were the most used. Thus, based on the results, the authors pointed out the need for
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researchers to conduct studies proposing automatic tools for detecting and applying refactorings

to improve software quality.

Naik et al. (2023) conducted a detailed review on the use of deep learning (DL) tech-

niques in code refactoring, analyzing 17 studies published between 2016 and 2022. The objective

was to discover which DL techniques are applied in refactoring, evaluate the performance of these

approaches, and identify the limitations and challenges faced in the area. The findings revealed

that the Java language predominated in the research and that variable-level refactoring presented

the best performance. At the same time, neural networks based on Multilayer Perceptrons

(MLP) led in effectiveness, unlike Convolutional Neural Networks (CNN), which had the worst

performance. In addition, method-level refactoring obtained inferior results, while class-level

refactoring was slightly more promising. Finally, the authors highlight that, despite significant

advances, important gaps persist, especially in the exploration of post-refactoring themes, in the

expansion to other programming languages, and in the availability of robust models and datasets

for new investigations.

Based on the results found in the literature review on refactoring, it is possible to

identify some deficiencies and needs for this area, such as: (i) conducting studies that develop

new automated solutions involving refactoring activities; (ii) conducting more studies with

refactoring activities commonly used in the industry; and (iii) conducting studies addressing

machine learning as a solution to code design problems. Therefore, and knowing the importance

of filling these gaps, this work proposes to explore a semi-automated solution to classify the

refactorings most used by developers, covering those involved in the industry and based on

models trained by supervised learning algorithms.

3.2 Grouping refactorings into different opportunities

Eposhi et al. (2019) conducted a study that investigated 1,468 classes from 2 systems

implemented in C# to investigate the impact of refactoring activity on design problems, density,

and symptom diversity. For the authors, the grouping work was based on refactorings performed

and not performed. However, the types of refactorings used were not specified. The results

indicate that the refactored classes have a higher density of code smell, coupling, and complexity

when compared to other classes in the system. Another result identified is that the refactorings

did not positively impact the density and diversity of any type of code smell.

Peruma et al. (2020) conducted a study on 800 Java projects to identify the influence
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that data type changes have on the structure and meaning of a renaming refactoring. Given this,

the authors did not perform any grouping of the refactorings. The results found by the authors

indicate that some developers with little experience in projects tend to perform only renaming

refactorings rather than other types of refactorings. Thus, the authors seek to offer improvements

to the support for renaming recommendations.

Fernandes et al. (2020) conducted a study on 23 projects with 29,303 refactoring

operations, of which half were re-refactoring operations, to investigate how refactoring and

re-refactoring operations affect internal quality attributes such as: cohesion, complexity, coupling,

inheritance, and size. The authors grouped the refactorings according to their granularity, which

can be: class, method, and variable. They combined descriptive analysis and statistical tests

to deeply understand the effect of refactoring and re-refactoring on each attribute. The results

show that 90% of the refactoring operations and 100% of the re-refactorings were applied to

code elements with at least one critical attribute. Another result identified is that 65% of the

operations improved the attributes associated with the type of refactoring applied, while 35%

remained unchanged.

Sellitto et al. (2021) conducted a study to investigate the impact of refactoring on

developers’ understanding of source code. The authors mined refactorings from 156 software

projects and related them to readability metrics to verify the positive and negative impacts.

The refactorings were grouped based on their general purpose, such as: Composing Methods,

Moving Resources, Organizing Data, Simplifying Method Calls, Dealing with Generalizations,

and Others. In addition, the authors provided initial information on the relationship between

refactoring and program understanding through statistical models that could generalize logistic

regression to multi-class problems. However, the authors point out that refactoring will not

always have positive impacts, and they also point out some cases of negative impact on code

understanding.

Smiari et al. (2022) conducted a study on a single case of a company that devel-

ops embedded applications in the medical field to investigate how refactorings are applied.

The refactorings were also separated according to their general purpose, such as: Composing

Methods, Simplifying Conditionals, Moving Methods, Simplifying Method Calls, Optimizing

Data, Dealing with Generalizations, and Large Refactorings. In addition, the results found by

the authors indicated that quality attributes such as Maintainability and Reusability motivate

the refactoring activity. Another result identified was the most frequent refactorings, such as:
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Extract Method; Replace Magic Number with Constant; and Remove Parameter with the first

one presenting 80% applicability.

Ferreira et al. (2023), proposed a definition to order dependencies between refactor-

ings and developed an algorithm to detect these relationships, using a vast dataset with 1,457,873

refactorings recommended in 9,595 open source projects. The authors classified refactorings

into trivial and non-trivial graphs, representing collections of operations with their respective

application dependencies. They investigated the accuracy of detecting these dependencies and

compared how these refactoring graphs impacted code quality attributes. The results showed

a 100% correct detection rate, revealing that refactorings are often involved in dependent rela-

tionships and can rarely be applied in isolation. Thus, the authors conclude that reasoning about

refactorings should be collective, considering the mutual impact between operations, and not

individually.

The studies present different approaches to grouping refactorings, examining their

impacts on code quality and software comprehension. For example, the study by Eposhi et al.

(2019) makes a simple grouping between classes that underwent refactorings and classes that

did not, without specifying the types of refactorings applied. On the other hand, the studies by

Sellitto et al. (2021) and Smiari et al. (2022) share an approach of grouping refactorings based

on their general objectives, such as "Method Composition" or "Call Simplification", and both

investigate the impact of these refactorings on attributes such as readability and code quality.

Peruma et al. (2020) and Fernandes et al. (2020) differ in their approaches: Peruma et al. (2020)

focuses on renaming refactorings without performing formal groupings, while Fernandes et al.

(2020) groups refactorings by granularity (class, method, variable), allowing a more detailed

analysis of their effects on internal attributes. In a broader perspective, Ferreira et al. (2023)

addresses the interdependence between refactorings, grouping them into trivial and non-trivial

graphs, suggesting that refactorings should be considered together, given their impact on code

quality. Thus, the present work presents two groupings and explores their relationship. Then, it

seeks to identify, through an index, to which group a given refactoring may belong.

3.3 Using machine learning techniques as an automated solution for refactoring detection

Aniche et al. (2020) conducted a large-scale empirical study on 11,149 projects to

verify the effectiveness of machine learning algorithms in predicting refactoring recommenda-

tions. The authors found that supervised algorithms are effective in predicting refactorings, and
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the results indicate that the resulting models achieved accuracy above 90

Alomar et al. (2022) conducted a study to analyze the relationship between docu-

mentation and refactoring operations by comparing two different approaches. In this way, the

authors performed text mining of commit messages, extracting keywords that best represent the

type of refactoring. Subsequently, models that approach a multi-class classification were trained

to predict the types of refactoring. The results indicate that each type of refactoring operation

has a different complexity for prediction. The Rename Method and Extract Method operations

were considered the best documented, while Pull-up Method and Push-down Method were the

most difficult to identify through textual descriptions. However, they involve a few of the main

refactorings in the industry and produce a model capable of predicting refactorings.

Nyamawe (2022) used machine learning with commit history to predict refactorings.

The authors implemented a binary classifier to predict the need for refactorings and a multi-label

classifier to recommend refactoring. The results suggest that leveraging commit messages

significantly improved the accuracy of refactoring recommendations. However, few of the

significant refactorings in the industry are considered in the study, and only a binary classifier is

produced as the output.

Panigrahi et al. (2020) conducted a study in which they proposed Naive Bayes

(Gaussian, Multinomial and Bernoulli) classifier-based models to predict software refactorings

at the method level. In addition, the authors used techniques such as SMOTE, UPSAMPLE and

RUSBOOTS for data balancing. The results indicate that, among the Naive Bayes classifiers,

Bernaulli is the one that provides the highest accuracy compared to the others used in the study.

However, it only involves refactorings at the industry method level.

AlOmar et al. (2021) conducted a study using 800 projects to understand what

motivates developers to apply refactoring. The study was based on the commit comments made

by developers. To this end, the authors used supervised machine learning with multi-class models

defining categories for types of refactorings. The authors identified that developers’ motivation to

refactor is to correct code smells and errors, change requirements, optimize the design structure,

and improve quality attributes. In addition, the authors identified the most commonly used textual

patterns in refactorings. However, they provide an automated solution to detect refactorings and

investigate in the study few of the main refactorings used in the industry.

Panigrahi et al. (2022) conducted a study using 125 software metrics calculated in the

design phase from the class diagrams of object-oriented systems, that is, before development. The
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objective was to create a predictive refactoring model, using machine learning-based frameworks,

focusing on ensemble techniques. The authors performed a multi-stage filtering to select the most

relevant features, prioritizing attributes that characterize inheritance, size, coupling, cohesion,

and complexity. The study used a diverse set of classifiers, such as Decision Tree, Logistic

Regression, and Extreme Learning Machine (ELM), among others. To evaluate the accuracy

of the models, metrics such as mean absolute error (MAE), mean magnitude of relative error

(MMRE), root mean square error (RMSE), and standard error of the mean (SEM) were used. The

results indicated that an approach based on a heterogeneous model of classifiers outperformed

the performance of individual classifiers. In addition, data balancing techniques, such as random

sampling, upsampling, and downsampling, were tested, with upsampling standing out as the

most effective strategy.

In the studies carried out by Aniche et al. (2020) and AlOmar et al. (2021), even

considering many refactorings, they still cover few of the main refactorings in the industry.

Although they trained several supervised learning models as an automated solution, the authors

did not introduce any new concept or solution to measure the refactoring technique to support

developers. The studies carried out by Nyamawe (2022), Alomar et al. (2022), Panigrahi et

al. (2022) and Panigrahi et al. (2020) use machine learning, but consider a small number of

refactorings. In addition, they also do not introduce a new solution to measure refactoring.

Thus, this study aims to fill the gaps left by previous works by exploring and improving the

measurement of refactoring triviality. The solution will be based on machine learning models

capable of detecting the triviality of refactoring (Section 2.1.1).

3.4 Comparison of related work

In the Table 5, we can view the main works related to the present work, considering

similar factors expressly columned. For this, some aspects were considered to better understand

the different works. Among these factors, we have: (i) Models types, the number of models

types used in the study based on machine learning; (ii) Dataset, presents the number of software

projects involved in the study; (iii) Industry Refactorings, a factor that corresponds to the number

of the main industry refactorings described in Section 2.1.1 that the work covers (integer number

if informed and "Not specified" if not informed by the author); (iv) Learning Techniques, presents

the techniques used in the study to achieve the objective of the work; (v) Grouping, presents the

categories created during the study to achieve the objective of the work (sequence of integers
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with the name of the category or grouping used in the study, or the expression "Not specified" if

no category is informed by the author during the study). An important point noted is that none of

the related works involving machine learning consider all the main refactorings in the industry.

Furthermore, although literature reviews (Baqais; Alshayeb, 2020; Kaur; Singh, 2019; Lacerda

et al., 2020; Agnihotri; Chug, 2020; Naik et al., 2023) have pointed out the need to produce

automated solutions capable of improving the refactoring technique, none of the works attempt

to measure the triviality of the refactoring technique. Thus, this work proposes to configure a

solution based on machine learning that calculates a triviality index that serves as a metric to

measure the application of each refactoring operation validated by experts.

Table 5 – Comparison of related work
Work Models

Types Datasets Industrial
Refactorings Techniques Clustering

Author’s proposal 12 1,291 10
Supervised
Learning 1-Trivial, 2-Non-Trivial, Index 0-1

(Eposhi et al., 2019) 0 2 (Unspecified) Statistical Testing 1-Refactored, 2-Other

(Fernandes et al., 2020) 0 23 4
Descriptive analysis,

Statistical tests 1-Class, 2-Method, 3-Field

(Peruma et al., 2020) 0 800 5
Detection
Automatic (Unspecified)

(Panigrahi et al., 2020) 3 5 1
Supervised
Learning 1-Refactored, 2-Unrefactored

(Sellitto et al., 2021) 0 156 10 Statistical Models
1-Composing Methods, 2-Moving Resources,
3-Organizing Data, 4-Simplifying Method Calls,
5-Dealing with Generalizations, and 6-Others

(AlOmar et al., 2021) 6 800 9
Supervised
Learning 1-Internal, 2-External, 3-Fix Bug, 4-Fix Smell

(Aniche et al., 2020) 6 11,149 9
Supervised
Learning 1-Refactored, 2-Unrefactored

(Alomar et al., 2022) 9 800 4
Supervised
Learning

1-Extract, 2-Inline, 3-Move, 4-Pull Up,
5-Push Down, 6-Rename

(Nyamawe, 2022) 6 65 6
Supervised
Learning 1-Refactored, 2-Unrefactored

(Smiari et al., 2022) 0 1 4
Search, Interview,
Artifact Analysis

1-Composing Methods, 2-Simplifying conditionals,
3-Moving methods, 4-Simplifying Calls,
5-Optimized, 6-Generalizations e 7-Major Refactorings

(Panigrahi et al., 2022) 11 4 (Not specified)
Supervised
Learning 1-Refactored, 2-Unrefactored

(Ferreira et al., 2023) 0 9,595 9 Statistical Tests 1-Trivial Refactoring graph, 2-Non-Trivial Refactoring graph

Source: Prepared by the author

3.5 Conclusion

The papers presented in this chapter report the importance of the code refactoring

technique, highlighting its positive and negative points and identifying gaps that have not yet

been addressed. Most of them focus on specific aspects, such as the effect of refactoring

on code smells or software quality metrics. At the same time, few explore more complex

scenarios, such as dependencies between refactoring operations. In addition, there is a notable

lack of tools capable of evaluating the triviality or importance of refactorings, which would
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help developers make more informed decisions during the refactoring process. Overall, the

papers make significant contributions to understanding the refactoring activity and its impact on

software quality, in addition to emphasizing the development of automated solutions to detect

and apply these operations. One of the approaches that has received considerable attention from

researchers is the use of machine learning to support refactoring. Although this technique has

shown great potential, especially for its accurate predictions and the ability to automate parts

of the refactoring process, it still requires deeper and more comprehensive studies. The use

of machine learning algorithms has been presented in several areas and for various problems.

Software refactoring appears to be a promising approach, but it still requires more research to

maximize its effectiveness and coverage.

The papers cover a wide range of topics, including literature reviews on code refac-

toring, clustering of refactoring opportunities, and the use of machine learning techniques for

refactoring detection. However, despite the existing contributions, many questions remain open,

especially regarding the use of refactoring operations, the impact on software quality attributes,

and the lack of reliable automated tools capable of performing refactoring more efficiently

and comprehensively. In view of this, this paper proposes a solution for refactoring activity

based on machine learning to identify the triviality of refactorings. This approach also includes

validation by experts and developers in the area of software engineering, allowing a combination

of automatic predictions and specialized human knowledge. Thus, the proposal of this work

aims to fill the gaps identified in previous research, offering a solution to improve the application

of refactorings and providing predictive models capable of identifying their triviality. Finally, it

contributes to a more accurate and effective evaluation of the operations performed, aligning with

the industry’s needs and trends in software engineering. In the next chapter, we present a study

investigating the influence of trivial refactorings on the prediction of non-trivial refactorings

using supervised machine learning.
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4 ON THE EFFECTIVENESS OF TRIVIAL REFACTORINGS IN PREDICTING

NON-TRIVIAL REFACTORINGS

An earlier version of the work in this chapter appears in

the Proceedings of the 16th Brazilian Symposium on Software Components, Architectures, and Reuse

(SBCARS) (Pinheiro et al., 2022) and Journal of Software Engineering Research and Development

(JSERD) (Pinheiro et al., 2024).

Refactoring is the process of restructuring source code without changing the external

behavior of the software. Refactoring can bring many benefits, such as removing code with

poor structural quality, avoiding or reducing technical debt, and improving maintainability,

reuse, or code readability. Although there is research on how to predict refactorings, there

is still a clear lack of studies that assess the impact of operations considered less complex

(trivial) to more complex (non-trivial). In addition, the literature suggests conducting studies

that invest in improving automated solutions through detecting and correcting refactoring. This

study aims to identify refactoring activity in non-trivial operations through trivial operations

accurately. For this, we use classifier models of supervised learning, considering the influence

of trivial refactorings and evaluating performance in other data domains. To achieve this goal,

we assembled 3 datasets totaling 1,291 open-source projects, extracted approximately 1.9M

refactoring operations, collected 45 attributes and code metrics from each file involved in the

refactoring and used the algorithms Decision Tree, Random Forest, Logistic Regression, Naive

Bayes and Neural Network of supervised learning to investigate the impact of trivial refactorings

on the prediction of non-trivial refactorings. For this study, we contextualize the data and call

context each experiment configuration in which it combines trivial and non-trivial refactorings.

Our results indicate that: (i) Tree-based models such as Random Forest, Decision Tree, and

Neural Networks performed very well when trained with code metrics to detect refactoring

opportunities. However, only the first two were able to demonstrate good generalization in

other data domain contexts of refactoring; (ii) Separating trivial and non-trivial refactorings

into different classes resulted in a more efficient model. This approach still resulted in a more

efficient model even when tested on different datasets; (iii) Using balancing techniques that

increase or decrease samples may not be the best strategy to improve models trained on datasets

composed of code metrics and configured according to our study.
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4.1 Introduction

During software maintenance, developers can introduce low-quality code intention-

ally or unintentionally (Ouni et al., 2015; Mello et al., 2022). Over time, this low-quality code

can deteriorate the overall code quality and lead to crashes in the future Yamashita and Moonen

(2012). Refactoring is a solution that can be used to address this problem by applying trans-

formations to the source code (Silva et al., 2016). Refactoring is a term introduced by Opdyke

(1992) but only became widely known after the publication of Martin Fowler’s book (Fowler,

2018). Refactoring refers to a transformation that changes the internal structure of the source

code without changing its external behavior (Fowler, 2018). In other words, the software should

produce the same output after the refactoring activity as it did before.

Researchers have investigated different perspectives for the use of refactoring (Mens;

Tourwé, 2004; Azeem et al., 2019; Sobrinho et al., 2018; Bois et al., 2004; Cassell et al., 2011;

Bavota et al., 2010; Alkhalid et al., 2011; Dallal, 2012; Bibiano et al., 2023). Among them: (i)

solutions that recommend refactorings for developers (Bavota et al., 2015; Tsantalis et al., 2018);

(ii) challenges in applying refactoring (Sharma et al., 2015; Kim et al., 2014); (iii) developers’

motivation to refactor the code (Silva et al., 2016; Palomba et al., 2017; Paixão et al., 2020); and

(iv) machine learning-based refactoring detection (Aniche et al., 2020; Nyamawe, 2022; AlOmar

et al., 2021). The utilization of machine learning predictive models (ML) to assist developers

in identifying refactoring opportunities to improve design is a relatively new area. (Azeem

et al., 2019). Some studies use ML to detect refactoring opportunities through supervised

learning (Aniche et al., 2020; AlOmar et al., 2021; Nyamawe, 2022; Alomar et al., 2022; Rish,

2001). Others investigate refactoring opportunities using unsupervised learning (Alkhalid et al.,

2010; Bryksin et al., 2018).

Despite many studies investigating how ML can be leveraged as a way to improve

refactoring techniques (Alkhalid et al., 2010; Bryksin et al., 2018; Aniche et al., 2020; Nyamawe,

2022; AlOmar et al., 2021; Panigrahi et al., 2020), few studies investigate strategies on how to

improve the prediction of refactorings by these models. Kumar et al. (2019) states that software

metrics are the most important factors in helping to estimate the propensity for refactoring at

the class level among the main possible approaches. Azeem et al. (2019) conducts a literature

review and points out that there is room for studies to investigate how ML can detect refactoring

opportunities. In our literature review, we observed that refactoring classification is a widely

used strategy. Thus, we decided to incorporate this approach into our research, adopting a
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classification based on refactoring triviality.

Therefore, our motivation arises from the scarcity of studies on strategies to improve

refactoring prediction, especially with the introduction of a methodology not yet explored in

the literature, which addresses refactoring triviality. Furthermore, we aim to provide predictive

models for automated tools in order to increase their efficiency in predicting refactorings.

Automated tools with better refactoring prediction increase developer productivity and help

maintain clean, efficient code. In addition, these improvements make the tools more attractive

to developers, increasing their market adoption, and allow project managers to more efficiently

allocate resources to the most critical areas of the code.

In our previous study (Pinheiro et al., 2022), we investigated the impact of trivial

refactorings on classification model prediction. Non-trivial refactorings are operations that

generate changes in the design of system, while trivial refactorings do not significantly change

the system design. The models were trained using the algorithm: Decision Tree, Random

Forest, Logistic Regression, Naive Bayes, and Neural Network in 884 open-source systems. We

identified contexts in which trivial refactorings can positively impact the prediction of non-trivial

refactorings. We analyzed: (i) the performance of ML algorithms to predict refactorings; (ii) the

effect of trivial operations on the prediction of non-trivial ones; and (iii) the use of balancing

techniques to improve the predictions.

This article is an extension of our previous study (Pinheiro et al., 2022), in which we

investigated the effectiveness of trivial refactorings in predicting non-trivial ones. Furthermore,

we used classifier models of supervised learning, taking into account the influence of trivial

refactorings. We also evaluated the performance of these models in other datasets. For this study,

we: (i) added a new research question (RQ4) to assess whether the ML models trained with the

code metrics and attributes of the dataset used in our previous study (Pinheiro et al., 2022) can

generalize to two other datasets selected in this new study; (ii) increased the number of projects

used to compose each dataset, totaling 407 new projects (207 from the Apache community and

200 from the Eclipse community) in comparison to the previous study (Pinheiro et al., 2022); (iii)

expanded the data extraction process to include refactorings, files, commits, and code metrics,

to save all the necessary data for training the machine learning models; (iv) implemented a

balancing technique called Synthetic Minority Oversampling Technique (SMOTE), which uses

an approach to deal with unbalanced datasets through oversampling of minority classes (Chawla

et al., 2002); and, (v) used the Area Under the ROC (AUC) metric in all models of this new
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study, a widely used metric to measure the classification of ML models (Hanley; McNeil, 1982).

As additional contributions to this article, we claim that ML with tree-based models

such as Random Forest and Decision Tree performed extremely well and demonstrated good

generalization in other data domains related to refactoring. Additionally, separating trivial and

non-trivial refactorings into distinct classes resulted in a more effective model, even when tested

on different datasets. However, altering the data balancing technique may lead to a comparable

or worse outcome compared to the unbalanced model. This extended version of our study makes

the following contributions:

– Our results show that tree-based machine learning models, such as Random Forest and

Decision Tree, have shown excellent performance when trained with code metrics to detect

refactoring opportunities.

– We identified that separating trivial and non-trivial refactorings into different classes

resulted in a more efficient model, suggesting that this approach may improve the accuracy

of automated solutions based on ML.

– We observed that sampling balancing techniques might not be the best strategy to improve

models trained on datasets composed of code metrics and configured according to the

study at hand.

– Finally, we observed that models trained with code attributes and metrics demonstrate

good generalization in other data domain contexts.

The remainder of this article is organized as follows. Section 4.2 presents our study settings.

Section 4.3 presents our main findings, followed by a discussion. Section 4.4 discusses the main

threats to validity. Finally, Section 4.5 concludes the article and suggests future work.

4.2 Study Settings

This section describes the settings of our study. Section 4.2.1 introduces the study

goal and research questions. Section 4.2.2 describes each study step and procedure, from data

collection to data analysis.

4.2.1 Goal and Research Questions

This study aims to investigate the influence of trivial refactorings at the class level

in predicting non-trivial refactorings. To this end, we used models based on ML algorithms
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trained with 45 code metrics. By understanding how trivial refactorings affect the prediction

of non-trivial refactorings, we will be able to discover strategies to improve the prediction of

refactorings through supervised learning. Furthermore, we investigated whether the trained

models are generalized to other contexts. We describe our research questions (RQs) as follows.

RQ1: What is the performance of ML algorithms to predict trivial and non-

trivial refactorings? – RQ1 aims to investigate the performance of 5 ML algorithms(Random

Forest, Decision Tree, Logistic Regression, Naive Bayes and Neural Network) to predict trivial

and non-trivial refactorings together. By answering RQ1, we can identify which algorithms

produce the best results for our different sets of contexts, considering each context as different

set that combines trivial and non-trivial refactorings.

RQ2: How effective is the inclusion of trivial refactorings to predict non-trivial

refactorings? – RQ2 aims to compare the performance of trained models to predict non-trivial

refactorings by considering different sets combining trivial and non-trivial refactorings. By

answering RQ2, we can compare and evaluate which combination of trivial and non-trivial

refactorings presents better results.

RQ3: How effective are data balancing techniques in the prediction of trivial

and non-trivial refactorings? – RQ3 aims to evaluate the effectiveness of the data balancing

technique applied to our different sets of contexts. By answering RQ3, we can identify whether

there is an imbalance in our data, as well as find the data balancing technique that performs best

in our models with our configuration.

RQ4: Can the best models be carried over to different contexts? – RQ4 aims

to understand whether the best models should be trained for a given context and whether it

generalizes enough to different contexts. By answering RQ4, we can reduce the cost that a new

training can bring. In addition, we identified the ability to handle large volumes of data and avoid

the cost of identifying complex patterns.

4.2.2 Study Steps and Procedures

Figure 10 overviews the sequence of five-step that we have followed to answer our

RQs: (1) Selection and analysis of open source systems; (2) Detect refactoring opportunities and

features mining; (3) Contexts Selection; (4) Training and testing the models; and (5) Evaluation

Results. We describe each step as follows.

Step 1: Selection and analysis of open-source software systems. The first step
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Figure 10 – Overview of the research methodology

Source: Prepared by the author.

consisted of selecting a set of open-source software systems. For our study, we needed to gather

a large number of open-source projects to allow the study replication. For this, we have built

three sets of data. We used the dataset used in the last article plus two similar datasets in order to

minimize any bias produced by just one dataset. The new ones have the same characteristics and

are compatible with the used tools. The first dataset (D1), namely in this study as the base dataset

used in the last study (Pinheiro et al., 2022). We selected 884 software projects from a dataset

of engineering software projects from different authors. The second dataset (D2) is composed

of 207 projects from the Apache ecosystem. Finally, the third dataset (D3) is composed of 200

projects from the Eclipse ecosystem. These projects were chosen because the authors observed

evidence of solid software engineering practices, including collaboration, continuous integration,

quality, maintainability, sustained evolution, project management, responsibility, and unit testing.

All projects were extracted from GitHub by our Python scripts developed. Table 6 summarizes

the data for the selected software systems. The first column contains the name of each ecosystem

in the dataset, followed by the number of projects, commits, and refactorings. The replication

package of the previous study1 and extension2 contains their detailed information.

Step 2: Detect refactoring opportunities and features mining. In this step, we
1 Available at https://doi.org/10.5281/zenodo.6800385.
2 Available at https://doi.org/10.5281/zenodo.7820168.

https://doi.org/10.5281/zenodo.6800385
https://doi.org/10.5281/zenodo.7820168
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Table 6 – Overview of the selected datasets

Ecosystem # Projects # Commits # Refactorings

D1 (Base) 884 35,838 84,262
D2 (Apache) 207 272,096 1,144,365
D3 (Eclipse) 200 153,610 767,111

Total 1,291 461.544 1,995,738
Source: Prepared by the author.

have extracted the data about refactorings and code metrics (used as features) for all selected

projects. To this end, we have performed three key activities: (1) extracting code refactorings;

(2) tracking the modified files before and after refactorings, and (3) extracting code metrics to be

used as features. We detailed each step as follows.

Activity 1: Code refactorings extraction. We detected refactorings for all selected

projects. For this end, we chose RMiner, (version 2.0) as the tool to detect code refactorings due

to its high accuracy (Tsantalis et al., 2018). This tool is applied between two versions (commits)

and returns the elements that changed from one version to another. It also returns the refactoring

type associated with the change. The tool detected a total of 1.995.738 refactoring types used

in our study (see Table 6). It is important to note that there may be some noise in the types

of refactorings collected, as it was not verified whether they were performed intentionally by

developers or unintentionally. After the code refactoring extraction, we divided the refactorings

into two groups, trivial and non-trivial refactorings, as described in Section 2.1.

Activity 2: Tracking the modified files before and after refactorings. To analyze

the prediction of trivial and non-trivial refactorings, we need to track the modified files before

and after the refactoring application. Thus, we tracked the version before and after each

file undergoing trivial and non-trivial refactoring. To track the modified files, we utilized

Pydriller (Spadini et al., 2018) and the Jupyter Notebook (Kluyver et al., 2016) to process the

data. Thus, we tracked the version before and after each file undergoing trivial and non-trivial

refactoring. A total of 39,423,447 files involved in refactoring operations were analyzed.

Activity 3: Extracting code metrics for tracked files. In this activity, we extracted the

code metrics and some attributes of code elements to be used as features in our study. To this

end, we have used the CK tool (Aniche, 2015) to extract each metric and attribute. Additionally,

we created a Python script to automatize summarizing the file outputs provided by the CK tool

in a single file. For all fields calculated by the tool, after previous data analysis, we decided to

use only 45 metrics and attributes as features for our datasets. They can be seen in Table 7.
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Table 7 – Metrics and attributes of code elements used in this work (Lorenz; Kidd, 1994;
Chidamber; Kemerer, 1994)

Field Description

Metrics
cbo Coupling between objects. Counts the number of dependencies a class has.
wmc Weight Method Class or McCabe’s complexity. It counts the number of branch instructions.
noc Number of Children. It counts the number of immediate subclasses that a particular class has.
rfc Response for a Class. Counts the number of unique method invocations in a class.
lcom Lack of Cohesion of Methods a normalized metric that computes the lack of cohesion of class
nosi Number of static invocations. Counts the number of invocations to static methods
loc Lines of code. It counts the lines of the count, ignoring empty lines and comments

Code elements attributes
totalMethodsQty Counts the number of all methods.
staticMethodsQty Counts the number of static methods.
publicMethodsQty Counts the number of public methods.
privateMethodsQty Counts the number of private methods.
protectedMethodsQty Counts the number of protected methods.
defaultMethodsQty Counts the number of default methods.
visibleMethodsQty Counts the number of visible methods.
abstractMethodsQty Counts the number of abstract methods.
finalMethodsQty Counts the number of final methods.
synchronizedMethodsQty Counts the number of synchronized methods.
totalFieldsQty Counts the number of all fields
staticFieldsQty Counts the number of static fields
publicFieldsQty Counts the number of public fields
privateFieldsQty Counts the number of private fields
protectedFieldsQty Counts the number of protected fields
defaultFieldsQty Counts the number of default fields
finalFieldsQty Counts the number of final fields
synchronizedFieldsQty Counts the number of synchronized fields
returnQty The number of return instructions
loopQty The number of loops like for, while, do while and enhanced for
comparisonsQty The number of comparisons == and !=
tryCatchQty The number of try/catches
parenthesizedExpsQty The number of expressions inside parenthesis
stringLiteralsQty The number of string literals
numbersQty The number of numbers literals int, long, double, float
assignmentsQty The number of same or different comparisons
mathOperationsQty The number of math operations (times, divide, remainder, plus, minus, left shit, right shift)
variablesQty The number of declared variables
maxNestedBlocksQty The highest number of blocks nested together
anonymousClassesQty The quantity of anonymous classes
innerClassesQty The quantity of inner classes
lambdasQty The quantity of lambda expressions
uniqueWordsQty The algorithm basically counts the number of words in a class, after removing Java keywords
typeAnonymous Boolean indicating whether is an anonymous class
typeClass Boolean indicating whether is a class
typeEnum Boolean indicating whether is an enum
typeInnerclass Boolean indicating whether is an inner class
typeInterface Boolean indicating whether is an interface
Total: 45

Source: Prepared by the author.

Step 3: Contexts Selection. In this step, with the datasets defined (D1, D2 and D3),

we separate and combine each dataset by type of refactoring (trivial and non-trivial) and state

of refactoring (before and after the activity occurred). Each separation and combination in this

study we call context. Furthermore, we subdivide each context into two classes depending on the

type and state of the refactoring. In this study, we call one class 0 and the other 1. The Table 8

presents all the divisions.
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The base context (C0) is defined by separating features from files that have undergone

non-trivial refactoring activity. Class 0 is for features before the activity is executed, while class

1 is for features after the activity is executed.

The next context (C1) is defined by file features that have undergone the trivial and

non-trivial refactoring activity. Class 0 is for features after the trivial refactoring activity is

performed, while class 1 is for features after the non-trivial refactoring activity is performed.

Context two (C2) is defined by file features that have undergone trivial and non-trivial

refactoring activity. Class 0 is for features before the trivial and non-trivial refactoring activity

is performed, while class 1 is for features after the trivial and non-trivial refactoring activity is

performed.

Context three (C3) is defined by file features that have undergone trivial and non-

trivial refactoring activity. Class 0 is for features before the trivial refactoring activity is per-

formed, while class 1 is for features after the non-trivial refactoring activity is performed.

It is important to highlight that most contexts included refactorings since we sought

to investigate how they can affect the prediction of non-trivial refactorings. The number of

instances of each context can be seen in Table 8.

Table 8 – Instance numbers of contexts
Context D1 D2 D3

class 0 1 0 1 0 1
C0 251,416 258,010 1,004,983 992,991 625,274 649,768
C1 232,468 258,010 1,265,956 992,991 446,880 649,768
C2 364,015 377,879 1,633,881 1,630,119 845,395 876,527
C3 112,599 258,010 628,828 992,991 220,121 649,768

Source: Prepared by the author.

Step 4: Training and testing the models. In this step, we used the datasets con-

structed by the combinations C1, C2 and C3 created in the previous step to predict refactorings.

All contexts have been tested, with some changes to the processing pipeline. Thus, the data

from each dataset was split into two datasets: 80% for the training set (used to train the model)

and 20% for the test set (used to validate and test the model). The trained models formed

binary classifiers based on supervised ML algorithms: Random Forest, Decision Tree, Logistic

Regression, Naive Bayes, and Neural Network. The first four algorithms were used through

the Scikit-learn library3, while the Neural Network was used through TensorflowKeras4. After
3 https://scikit-learn.org/stable/
4 https://www.tensorflow.org/api_docs/python/tf/keras

https://scikit-learn.org/stable/
https://www.tensorflow.org/api_docs/python/tf/keras
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training, each generated model was validated by predicting the refactorings of the features in the

test set. For ML training, a machine with Windows 10 (64-bits) operating system was used, with

16 GB of RAM, 4 CPU cores and 1000 GB of disk available for data collection.

Furthermore, we consider that the prediction of ML algorithms can be negatively af-

fected by an unbalanced dataset (number of different samples between classes). Therefore,

we applied two balancing techniques for each combination: Random Under Sampler and

SMOTE (Chawla et al., 2002). These balancing techniques were chosen because they are

commonly used in recent studies (Moreo et al., 2016; Hasanin; Khoshgoftaar, 2018; Tabassum

et al., 2023) and because they facilitate the comparison of efficiency when used together (Mo-

hammed et al., 2020). In addition to unbalanced contexts, the balancing techniques were applied

individually by context C0, C1, C2 and C3, creating eight more combinations: C0 Under, C1

Under, C2 Under, C3 Under, C1 over, C1 Over, C2 Over and C3 Over.

We optimized the hyperparameters for each model through a GridSearch to find

the best combination for the model, utilizing stratified cross-validation with two splits. For

each algorithm, we sought the best configuration among parameters. For the Random For-

est, we tuned parameters such as max_depth, max_features, criterion, n_estimators,

min_samples_split, and bootstrap. Logistic Regression was optimized by adjusting

max_iter, C, and solver. For the Naive Bayes classifier, we focused on var_smoothing. In the

case of Decision Trees, the hyperparameters max_depth, max_features, min_samples_split,

splitter, and criterion were fine-tuned.

Furthermore, for the Neural Network, a feedforward architecture with dense layers

and dropout with Keras was used. It includes dense layers with 128, 64, and 64 units using

ReLU activation, and two dropout layers with a 20% rate to prevent overfitting. The output

layer has one unit with sigmoid activation, ideal for binary classification. The model uses

binary_crossentropy as the loss function and the Adam optimizer. Training occurs over 10

epochs with batches of 128, and performance is evaluated on the test data.

After training, we tested the models to predict refactoring activity on the datasets.

Then, we tested the generated models from the base dataset of the context that obtained better

results in the other datasets.

Step 5: Evaluation Results. Finally, we calculated accuracy, precision, recall,

F1-score, and Area Under the Curve metrics to evaluate the trained models and compared the

results by context. We decided to use the mean as we needed a value to represent the data.
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Next, we observed: (i) whether the presence of trivial refactorings affects the prediction of other

refactorings; (ii) which algorithm obtained better results; (iii) whether data balancing techniques

had any effect; and, (iv) whether the models were able to generalize to other contexts. With this,

it was possible to answer our research questions. We present the results in the next section.

4.3 Results and Discussions

In this section, we describe our results. We present an overview of calculating metrics

for the contexts mentioned in Table 9 and Table 11. The choice of AUC and F1-score metrics is

supported by the need to comprehensively assess the performance of machine learning models

in classification tasks. AUC provides a robust measure of the model’s discriminative ability in

binary scenarios, while the F1-score balances precision and recall, proving particularly useful

in cases of class imbalance. When used together, these metrics offer a more comprehensive

analysis, enhancing the reliability and validity of the presented results.

We also present the generalization of the models. In the following subsections, we

answer each of the RQs.

4.3.1 Performance of ML algorithms to predict trivial and non-trivial refactorings (RQ1)

To answer RQ1, we combined several datasets and evaluated the performance of the

ML algorithm in predicting trivial refactorings (present in all contexts). Table 9 presents the

performance of each ML algorithm by ML metric and context specified in this study.

In summary, our results indicate that the Random Forest algorithm achieved the

best performance indices, considering the general average in all contexts, with an average of

0.71, 0.72, 0.74, 0.73 and 0.70 for the accuracy metrics, precision, recall, F1-score, and AUC,

respectively. This Random Forest algorithm stood out in the first context, with a remarkable

balance (see Table 9). For the context C1, the performance was 0.84, 0.86, 0.84, 0.85, and 0.84

for the metrics of accuracy, precision, recall, F1-score, and AUC, respectively. For C1 with

undersampling balancing, the performance was 0.84, 0.86, 0.82, 0.84, and 0.84 for the metrics of

accuracy, precision, recall, F1-score, and AUC, respectively.

While for C1 with oversampling balancing, 0.84, 0.86, 0.83, 0.84, and 0.84 were

obtained for the metrics of accuracy, precision, recall, F1-score, and AUC, respectively. Fur-

thermore, in the C3 context, the models showed even better results with 0.88, 0.89, 0.94, 0.91,
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and 0.84 for the metrics of accuracy, precision, recall, F1-score, and AUC without balancing

the data, respectively. With undersampling balancing, the performance was 0.85, 0.86, 0.84,

0.85, and 0.85. With the data oversampling, the values reached 0.88, 0.89, 0.86, 0.87, and 0.88,

respectively.

Finding 1: Models based on the Random Forest algorithm were the best in general contexts,

with highlighting for the contexts C1 and C3.

In Table 9, we also observed that the Decision tree in the C3, without balancing data,

achieved equivalent results of the Random Forest. The indices were (accuracy, precision, recall,

F1-score, and AUC) 0.88, 0.90, 0.93, 0.91, and 0.85, against 0.88, 0.89, 0.94, 0.91, and 0.84 of

the Random Forest. With both balancing techniques, the results remained equivalent.

Finding 2: Decision tree and Random Forest were the algorithms that achieved better results

in the C3 context, using or not the balancing technique.

As shown in Table 9, the model built by a Neural Network using a balancing

technique with data oversampling showed the best results, considering the area under the ROC

curve (AUC). This model achieved a significant AUC index of 0.91, followed by Random Forest

and Decision Tree.

Finding 3: The Neural Network was the algorithm that created the best classification model,

considering the model’s ability to distinguish between classes, regardless of the chosen cutoff

point.

Table 11 presents the values of the metrics obtained from the models trained with

data from datasets D2 and D3 in the C3 context, as well as from the base dataset models applied

to datasets D2 and D3 in the same context, represented in the Table 11 by D1_D2 and D1_D3.

The models based on Random Forest, Neural Network, and Decision Tree showed

great results both in dataset D2 and D3. In D2 the Decision Tree model obtained a F1-score

and AUC of 95% and 94%, respectively. In the case of Neural Network, a F1-score and AUC

of 86% and 90% were obtained, respectively. For the Random Forest model was obtained a

F1-score and AUC of 95% and 93%, respectively.
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Similarly, in D3, the performance was also optimistic, in which the Decision Tree

model obtained a F1-score and AUC of 95% and 90%, respectively. The Neural Network model

obtained a F1-score and AUC of 89% and 87%, respectively. Finally, the Random Forest model

obtained a F1-score and AUC of 95% and 89%, respectively. On the other hand, the models

based on Logistic Regression and Naive Bayes algorithms presented inferior results in both

datasets. In D2, the Logistic Regression model obtained a F1-score and AUC of 75% and

52%, respectively, while with Naive Bayes resulted in a F1-score and AUC of 74% and 51%,

respectively.

Finding 4: Tree-based and neural network models tend to be more efficient regardless of the

dataset.

Table 9 – Results of the different ML models after trained and tested
None Under Over

Alg M C0 C1 C2 C3 M C0 C1 C2 C3 M C0 C1 C2 C3

Decision

acc 0.52 0.52 0.58 0.88 acc 0.52 0.84 0.58 0.86 acc 0.53 0.85 0.58 0.88
pre 0.53 0.53 0.59 0.90 pre 0.53 0.86 0.60 0.87 pre 0.53 0.86 0.60 0.89
rec 0.51 0.48 0.58 0.93 rec 0.45 0.83 0.50 0.85 rec 0.44 0.83 0.50 0.87
f1 0.52 0.51 0.58 0.91 f1 0.48 0.84 0.54 0.86 f1 0.48 0.84 0.55 0.88

auc 0.52 0.52 0.58 0.85 auc 0.52 0.84 0.58 0.86 auc 0.53 0.85 0.58 0.88

Logistic

acc 0.50 0.52 0.51 0.81 acc 0.50 0.61 0.50 0.60 acc 0.50 0.61 0.50 0.61
pre 0.50 0.60 0.51 0.81 pre 0.50 0.59 0.50 0.58 pre 0.50 0.59 0.50 0.59
rec 0.93 0.82 0.92 0.97 rec 0.49 0.71 0.36 0.71 rec 0.48 0.67 0.44 0.74
f1 0.65 0.69 0.65 0.82 f1 0.49 0.65 0.42 0.64 f1 0.49 0.63 0.47 0.65

auc 0.50 0.61 0.50 0.54 auc 0.50 0.61 0.50 0.60 auc 0.50 0.61 0.50 0.61

Navie

acc 0.49 0.49 0.49 0.68 acc 0.50 0.52 0.50 0.52 acc 0.49 0.52 0.50 0.52
pre 0.50 0.50 0.52 0.70 pre 0.50 0.51 0.50 0.51 pre 0.49 0.51 0.50 0.51
rec 0.07 0.12 0.06 0.95 rec 0.06 0.93 0.08 0.92 rec 0.06 0.93 0.08 0.92
f1 0.12 0.20 0.11 0.80 f1 0.11 0.66 0.14 0.65 f1 0.11 0.66 0.14 0.66

auc 0.49 0.50 0.50 0.51 auc 0.50 0.52 0.50 0.52 auc 0.49 0.52 0.50 0.52

Neural

acc 0.50 0.76 0.50 0.82 acc 0.50 0.76 0.51 0.75 acc 0.49 0.76 0.52 0.82
pre 0.50 0.74 0.74 0.81 pre 0.50 0.74 0.52 0.73 pre 0.49 0.73 0.78 0.80
rec 0.97 0.82 0.50 0.95 rec 0.97 0.78 0.28 0.80 rec 0.95 0.82 0.06 0.81
f1 0.66 0.78 0.60 0.87 f1 0.66 0.76 0.36 0.76 f1 0.65 0.78 0.11 0.82

auc 0.50 0.85 0.51 0.86 auc 0.50 0.85 0.51 0.84 auc 0.51 0.86 0.51 0.91

Random

acc 0.53 0.84 0.58 0.88 acc 0.53 0.84 0.58 0.85 acc 0.53 0.84 0.58 0.88
pre 0.54 0.86 0.59 0.89 pre 0.54 0.86 0.60 0.86 pre 0.54 0.86 0.59 0.89
rec 0.55 0.84 0.61 0.94 rec 0.50 0.82 0.52 0.84 rec 0.49 0.83 0.55 0.86
f1 0.54 0.85 0.60 0.91 f1 0.52 0.84 0.56 0.85 f1 0.51 0.84 0.57 0.87

auc 0.53 0.84 0.58 0.84 auc 0.53 0.84 0.58 0.85 auc 0.53 0.84 0.58 0.88

Source: Prepared by the author.

Implications of RQ1. Our findings indicate that the Random Forest and Decision

Tree algorithms are the most effective. However, regarding the AUC metric, the Neural Network
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created the best classifier.

In the context of our research, it is crucial to acknowledge that each metric addresses

specific facets of the model’s performance, and the declaration of an algorithm as the best

according to a particular metric does not necessarily imply overall superiority.

For instance, when considering the performance of algorithms such as Neural Net-

works, which are identified as the best based on the AUC metric, it suggests an exceptional

capability for classification in terms of discriminating between classes, as measured by the

ROC curve. However, alternative metrics like the F1 score prioritize different aspects, such

as precision and recall, potentially yielding disparate conclusions regarding the overall model

performance. This discrepancy underscores the significance of selecting evaluation metrics

aligned with the specific objectives of the given task.

Furthermore, using a balancing technique, either through undersampling or oversam-

pling of the data, did not significantly improve the results. Therefore, the results obtained in RQ1

can help data scientists and developers of automated refactoring tools to make more informed

decisions about which algorithms to use when investigating refactorings based on metrics and

code attributes.

4.3.2 The effectiveness of including trivial refactorings to predict new refactorings (RQ2)

To answer RQ2, we performed several combinations of trivial and non-trivial refac-

torings, in which each combination corresponds to a context in our study. In total, four different

contexts were created. Additionally, two balancing techniques were applied to each of them. The

first context (C0) is the unique context in which trivial refactorings are not present in any of the

classes. We compared the results obtained in other contexts with C0 to evaluate the effectiveness

of including trivial refactorings.

By looking at Table 9, we can see that the values obtained in C0 are recurrently

smaller than C1, C2, and C3 even in the set of unbalanced data. To compare the performance

of the classification models, we used the values of the metrics F1-Score and AUC. Thus, the

Decision Tree model obtained an increase of 39% and 33% for F1-Score and AUC, respectively,

when including trivial refactorings in the configuration of C3. In the same line, the Logistic

Regression model obtained an increase of 17% (F1-Score) and 4% (AUC) in the configuration

of C3. The model based on Naive Bayes showed a significant increase in the F1-score of 68%

and 2% in AUC. Neural Network model obtained an increase of 21% and 36% for F1-score and
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AUC, respectively. Finally, models based on Random Forest achieved similar scores to those

based on Decision Tree, with increases of 37% (F1-Score) and 31% (F1-Score).

Finding 5: Adding trivial refactorings to different classes along with non-trivial refactorings

resulted in a more effective model. This suggests that including trivial refactorings is

important for improving the prediction of new refactorings.

For C2, For C2, we added file features before passing through a trivial or non-trivial

refactoring in one class of the machine learning algorithm, while in the other class, we kept the

features of the corresponding files with the refactoring already performed. The dataset has grown

by 45%, adding 232,468 rows.

Considering the F1-score and AUC, we obtained similar results. The combination

C2 showed an increase of only 6% for both metrics, using the Decision Tree model. We also can

observe that no increase in the metrics was observed for the model based on Logistic Regression.

The same happened with the model based on Naive Bayes, but with a loss in the F1-score of 1%.

The Neural Network model lost 6% of F1-score and gained 1% of AUC. Finally, Random Forest

had a slight increase of 6% in both F1-score and 5% in AUC.

Finding 6: Combining trivial and non-trivial refactorings in the same class does not change

the results significantly. This indicates that the presence of trivial refactorings to be positive

for refactoring prediction will depend on how they are combined in the dataset.

Implications of RQ2. Trivial refactoring operations can impact the result of predict-

ing new refactorings, which can be positive or negative. In the first case, an increase in accuracy

was observed when partially combining the trivial refactorings in the C1 and C3 contexts,

compared to the context without trivial refactorings (C0). In the second case, when combining

all trivial and non-trivial refactorings and separating them into before and after refactoring,

some cases did not show significant values and even worsened the indices. Therefore, trivial

refactorings can improve the models’ prediction by choosing the appropriate configuration.
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4.3.3 Effectiveness of data balancing techniques in predicting trivial and non-trivial refac-

torings (RQ3)

To improve the performance between the models and reduce the outliers between

classes, we have evaluated the Effectiveness of two well-known data balancing techniques:

Random Under Sampler and Oversampling with SMOTE. In summary, we observed a significant

increase only in contexts that received trivial refactorings. The all outliers are presented with

gray highlight in Table 10.

By applying the Undersampling and Oversampling balancing techniques in the C0

context, which does not have trivial refactorings, we observed that the results obtained were

little significant or negative in all algorithms. In Table 10, we highlight that the technique of

Undersampling had a significant negative impact on the F1-score of the Logistic Regression

model, with a worsening of 16%. In the other models, the variation of worsening was from 0%

to 4% in the F1-score. In the same way with the Oversampling technique, we obtain the same

negative value for models based on Logistic Regression in F1-score, with a negative variation

between 1% and 5%.

In the other contexts - C1, C2, and C3 - we have observed a worsening in almost all

algorithms. The context C2 stood out negatively, using the Neural Network algorithm, with a

loss of 24% in the F1-score using Undersampling and 49% in the Oversampling of the data.

On the other hand, the model based on the Decision Tree algorithm stood out

positively in the C1 context, with F1-score increasing by 33% in both Undersampling and Over-

sampling. Similarly, AUC (Area Under the Curve) also increased by 32% with Undersampling

and 33% with Oversampling. Furthermore, Table 10 presents the model based on the Naive

Bayes algorithm increased its F1-score by 46% with the applied techniques.

Finding 7: For our problem, balancing the dataset up or down usually keeps the same result

or makes the model worse.

The algorithm Navie Bayes in the C1 context obtained a lower result, with a recall

of 12% and an F1-score of 20%. However, when applying the Undersampling and Oversampling

balancing techniques in this context, the model obtained a significant improvement of 81% and

46% in recall and F1-score, respectively.
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Furthermore, the models based on the Naive Bayes algorithm in the C3 context

showed good recall and F1-score indices, with 95% and 80%. respectively. However, we

observed a worsening with the use of balancing techniques, in which the use of Undersampling

and Oversampling resulted in a worsening of 15% and 14% in the F1-score, respectively.

Table 10 – Performance of algorithms in the contexts with balancing techniques
C0 C1 C2 C3

Alg under over under over under over under over
0.00 0.01 0.32 0.33 0.00 -0.02 -0.02 0.00
0.00 0.00 0.33 0.33 0.01 -0.03 -0.03 -0.01
-0.06 -0.07 0.35 0.35 -0.08 -0.08 -0.08 -0.06
-0.04 -0.04 0.33 0.33 -0.04 -0.03 -0.05 -0.03

decision

0.00 0.01 0.32 0.33 0.00 0.00 0.01 0.03
0.00 0.00 0.09 0.09 -0.01 -0.01 -0.21 -0.20
0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.23 -0.22
-0.44 -0.45 -0.11 -0.15 -0.56 -0.48 -0.26 -0.23
-0.16 -0.16 -0.04 -0.06 -0.23 -0.18 -0.18 -0.17

logistic

0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.07
0.01 0.00 0.03 0.03 0.01 0.01 -0.16 -0.16
0.00 -0.01 0.01 0.01 -0.02 -0.02 -0.19 -0.19
-0.01 -0.01 0.81 0.81 0.02 0.02 -0.03 -0.03
-0.01 -0.01 0.46 0.46 0.03 0.03 -0.15 -0.14

navie

0.01 0.00 0.02 0.02 0.00 0.00 0.01 0.01
0.00 -0.01 0.00 0.00 0.01 0.02 -0.07 0.00
0.00 -0.01 0.00 -0.01 -0.22 0.04 -0.08 -0.01
0.00 -0.02 -0.04 0.00 -0.22 -0.44 -0.15 -0.14
0.00 -0.01 -0.02 0.00 -0.24 -0.49 -0.11 -0.05

neural

0.00 0.01 0.00 0.01 0.00 0.00 -0.02 0.05
0.00 0.00 0.00 0.00 0.00 0.00 -0.03 0.00
0.00 0.00 0.00 0.00 0.01 0.00 -0.03 0.00
-0.05 -0.06 -0.02 -0.01 -0.09 -0.06 -0.10 -0.08
-0.02 -0.03 -0.01 -0.01 -0.04 -0.03 -0.06 -0.04

random

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04

Source: Prepared by the author.

Finding 8: The model with the worst results in the C1 context obtained the best use of the

balancing techniques.

We also observed that the model based on Logistic Regression obtained the worst

results when applying data balancing techniques. In the C0 context, using the undersampling

technique resulted in a 44% and 16% reduction in recall and F1-Score, respectively. Similarly,

using the oversampling technique resulted in a reduction of 45% and 16% in recall and F1-Score,

respectively.

In the C1 context, the reduction in recall and F1-Score were 11% and 4% with

undersampling and 15% and 6% with Oversampling. In the case of the C2 context, the reduction
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was even more significant, with a worsening of 56% and 23% in recall and F1-Score with the use

of Undersampling and 48% (recall) and 18% (F1-Score) of worsening in the use of Oversampling.

Finally, in the C3 context, the reduction was 26% and 18% with undersampling and 23% and

17% with oversampling in the values of recall and F1-Score, respectively.

Finding 9: The Logistic Regression algorithm was the one that deteriorated the most with

the use of balancing techniques.

Implications of RQ3. The data balancing techniques’ results varied in the different

models, both by context and algorithm. In some cases, a complete rejection of the technique was

observed since the use of the technique did not result in improvements or at least maintained the

original results.

4.3.4 Generalization of the best model in other data context domain (RQ4)

To answer RQ4, we evaluated the best models obtained in C3 context with the base

dataset with respect to datasets with different named data domains (D2 and D3). These other

datasets were configured in the same C3 context, trained, and evaluated. Next, we evaluate

the performance of the model in terms of predicting refactorings, we also compared it with the

models trained using the base dataset. Results can be seen in the Table 11 and Table 12.

Table 12, shows the values of the differences of the metrics obtained from the model

trained with data from the base dataset applied in dataset D2 and D3 with the values obtained

from the models trained in the same data domain of D2 and D3. All models showed low or

no variation, by presenting values between 0% and 5%, except for the Neural Network model

which showed significant variation. Additionally, the values obtained from the variation of the

Neural Network models trained in the base dataset and applied in D2 were 17% in the F1-score

and 41% in the AUC metric.

Similarly, a variation was observed in D3, in which was obtained at 8% in F1-score

and 37% in AUC for less. The values of the AUC metrics were the ones that most distanced

themselves from the values obtained by the models when trained in the domain itself.

Finding 10: Most of the models trained by the base dataset obtained satisfactory results

when generalized to other domain contexts.
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Table 11 – Result of generalization in the best context
None Under Over

Alg M D2 D1_D2 D3 D1_D3 M D2 D1_D2 D3 D1_D3 M D2 D1_D2 D3 D1_D3

Decision

acc 0.94 0.91 0.92 0.89 acc 0.94 0.90 0.91 0.85 acc 0.94 0.92 0.92 0.89
pre 0.95 0.92 0.94 0.92 pre 0.94 0.90 0.91 0.85 pre 0.94 0.92 0.93 0.90
rec 0.95 0.94 0.95 0.94 rec 0.94 0.91 0.90 0.84 rec 0.94 0.92 0.92 0.89
f1 0.95 0.93 0.95 0.93 f1 0.94 0.91 0.91 0.85 f1 0.94 0.92 0.92 0.89

auc 0.94 0.91 0.90 0.85 auc 0.94 0.90 0.91 0.85 auc 0.94 0.92 0.92 0.89

Logistic

acc 0.62 0.62 0.75 0.75 acc 0.58 0.58 0.59 0.58 acc 0.58 0.57 0.59 0.59
pre 0.62 0.62 0.75 0.75 pre 0.58 0.58 0.58 0.59 pre 0.58 0.56 0.58 0.57
rec 0.96 0.97 0.99 0.99 rec 0.58 0.57 0.62 0.57 rec 0.58 0.58 0.66 0.68
f1 0.75 0.76 0.85 0.85 f1 0.58 0.57 0.60 0.58 f1 0.58 0.61 0.62 0.62

auc 0.52 0.52 0.51 0.51 auc 0.58 0.58 0.59 0.58 auc 0.58 0.57 0.59 0.59

Navie

acc 0.60 0.61 0.74 0.74 acc 0.51 0.51 0.51 0.51 acc 0.51 0.51 0.51 0.51
pre 0.61 0.61 0.75 0.74 pre 0.50 0.50 0.50 0.50 pre 0.50 0.50 0.50 0.50
rec 0.94 0.94 0.98 0.98 rec 0.94 0.94 0.96 0.96 rec 0.94 0.93 0.97 0.96
f1 0.74 0.74 0.85 0.85 f1 0.65 0.65 0.66 0.66 f1 0.65 0.65 0.66 0.66

auc 0.51 0.51 0.50 0.50 auc 0.51 0.51 0.51 0.51 auc 0.51 0.51 0.51 0.51

Neural

acc 0.82 0.56 0.84 0.69 acc 0.91 0.49 0.77 0.49 acc 0.82 0.49 0.82 0.51
pre 0.83 0.61 0.85 0.75 pre 0.91 0.49 0.77 0.49 pre 0.80 0.49 0.82 0.51
rec 0.89 0.81 0.94 0.88 rec 0.80 0.60 0.79 0.61 rec 0.84 0.48 0.82 0.51
f1 0.86 0.69 0.89 0.81 f1 0.81 0.54 0.78 0.55 f1 0.82 0.49 0.82 0.51

auc 0.90 0.49 0.87 0.50 auc 0.89 0.49 0.85 0.49 auc 0.90 0.49 0.90 0.50

Random

acc 0.94 0.91 0.92 0.89 acc 0.84 0.91 0.90 0.85 acc 0.94 0.92 0.92 0.90
pre 0.95 0.92 0.94 0.91 pre 0.94 0.90 0.91 0.85 pre 0.94 0.92 0.93 0.90
rec 0.95 0.94 0.95 0.95 rec 0.93 0.91 0.90 0.86 rec 0.94 0.92 0.91 0.89
f1 0.95 0.93 0.95 0.93 f1 0.94 0.91 0.90 0.85 f1 0.94 0.92 0.92 0.89

auc 0.93 0.91 0.89 0.84 auc 0.94 0.91 0.90 0.85 auc 0.94 0.92 0.92 0.90

Source: Prepared by the author.

Table 11 presents the values obtained from the application of the data balancing tech-

niques in D2 and D3. We can observe that in D2, the models that underwent the Undersampling

technique obtained the worst results. Models based on Decision Tree had a negative decrease of

-1% in the F1-score metric and -1% in the AUC.

The Logistic Regression based models also had a negative decrease of -17% in the

F1-score metric, but a 6% increase in AUC. Additionally, those based on Naive Bayes also had

a negative decrease of -9% in the F1-score metric and maintained the same value in the AUC

metric. Furthermore, the models based on Neural Network obtained a negative decrease of -5%

in the F1-score metric and -1% in the AUC.

However, only the Random Forest based models showed even a small improvement

with the balancing technique, with an increase in the AUC metric by +1%. Furthermore, still in

D2, but with the Oversampling technique, the results were very similar, with a slight loss of the

F1-score metric of -4% in the models based on Neural Network.

In D3, with the same balancing technique, the models obtained slightly different

results when compared to D2. The Decision Tree based models obtained a negative decrease
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Table 12 – Performance of generalization in the best context
None Under Over

Alg D1_D2 D1_D3 D1_D2 D1_D3 D1_D2 D1_D3
-0.03 -0.03 -0.04 -0.06 -0.02 -0.03
-0.03 -0.02 -0.04 -0.06 -0.02 -0.03
-0.01 -0.01 -0.03 -0.06 -0.02 -0.03
-0.02 -0.02 -0.03 -0.06 -0.02 -0.03

decision

-0.03 -0.05 -0.04 -0.06 -0.02 -0.03
0.00 0.00 0.00 -0.01 -0.01 0.00
0.00 0.00 0.00 0.01 -0.02 -0.01
0.01 0.00 -0.01 -0.05 0.00 0.02
0.01 0.00 -0.01 -0.02 0.03 0.00

logistic

0.00 0.00 0.00 -0.01 -0.01 0.00
0.01 0.00 0.00 0.00 0.00 0.00
0.00 -0.01 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 -0.01 -0.01
0.00 0.00 0.00 0.00 0.00 0.00

navie

0.00 0.00 0.00 0.00 0.00 0.00
-0.26 -0.15 -0.42 -0.28 -0.33 -0.31
-0.22 -0.10 -0.42 -0.28 -0.31 -0.31
-0.08 -0.06 -0.20 -0.18 -0.36 -0.31
-0.17 -0.08 -0.27 -0.23 -0.33 -0.31

neural

-0.41 -0.37 -0.40 -0.36 -0.41 -0.40
-0.03 -0.03 0.07 -0.05 -0.02 -0.02
-0.03 -0.03 -0.04 -0.06 -0.02 -0.03
-0.01 0.00 -0.02 -0.04 -0.02 -0.02
-0.02 -0.02 -0.03 -0.05 -0.02 -0.03

random

-0.02 -0.05 -0.03 -0.05 -0.02 -0.02

Source: Prepared by the author.

of -4% in the F1-score metric and an increase of +1% in the AUC. Similarly, the Logistic

Regression based models also obtained a negative decrease of -25% in the F1-score metric and

an increase of +8% in the AUC. In the case of Naive Bayes based models, we also observed a

negative decrease of -19% in the F1-score metric and an increase of +1% in the AUC metric.

Furthermore, the Neural Network based models obtained a negative decrease of -11% in the

F1-score metric and -2% in the AUC. Finally, those Random Forest based models obtained a

-5% decrease in the F1-score metric and +1% increase in AUC.

We also observed that in the same dataset (D3), the Oversampling technique obtained

similar results, with emphasis on the Random forest based models, which presented an increase

in the AUC by +3% and a decrease of the F1-score to -3%. Additionally, in the case of Neural

Network based models, we observed an increase in AUC of +3% and a decrease of F1-score to

-7%.

Similarly, the balancing technique applied to the models trained with the base dataset

and applied to the D2 and D3 datasets obtained little variation, between -6% and 7%. Except in

the case of Neural Network based models.
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In D2, the generalized models based on the Neural Network algorithm obtained a

difference between the model of the domain itself of -17% for the F1-score (Table 12). This

difference increased to -27% with the use of the Undersampling technique and to -33% with

the Oversampling technique. Similarly, on D3, the values obtained for models based on Neural

Network were -8% in F1-score. In the case of the Undersampling technique, was obtained -23%

(F1-score), and Oversampling with -31% (F1-score).

Finding 11: The balancing techniques applied to models from other domains generated

negative or little positive results.

Implications of RQ4. In general, the generalization of the models trained with the

base dataset was positive. Although refactoring data was extracted from multiple projects, the

models were able to identify refactorings based on code attributes and metrics, regardless of the

data domain.

4.4 Threats to Validity

This section discusses threats to the validity of the study according to the classifica-

tion of (Wohlin et al., 2012).

Internal validity. In our study, we used RefactoringMiner (Tsantalis et al., 2018),

a high-precision tool to detect refactoring opportunities in commits, Pydriller (Spadini et al.,

2018) to extract source code from files and CKTool (Aniche, 2015) to obtain code metrics of

files involved in refactorings. Despite the high accuracy, these tools may still fail during the

process of mining. To mitigate this problem, we have repeated some steps of the process when

necessary. Additionally, to find out the impact that trivial refactorings have on the prediction of

other refactorings, we grouped the features of a set of refactoring operations in the same class

and this can cause a drop in the performance of the models.

External validity. Despite a large number of projects (1,291) and code refactorings

analyzed (1,995,738), different results can be obtained depending on the domain of systems in

terms of: (i) programming language, (ii) maintainability, (iii) used programming paradigm, or

(iv) software quality. Regarding data balancing, we emphasize that the unbalance of instances

and refactorings accounted in each dataset can negatively influence the result during the process

of predicting refactorings. To mitigate this threat, we applied balancing techniques in different
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contexts: Oversampling strategy with SMOTE and Random Undersampling. However, there

was an unbalance in the generalization, as the models trained on the base dataset had the lowest

proportion and were compared to the models trained on the datasets with the highest proportions.

Construct validity. One threat to validity may be the size of the dataset chosen

for the study. This size was chosen based on previous studies on refactorings (Aniche et al.,

2020; AlOmar et al., 2021; Peruma et al., 2020). However, we do not know if it is the right size

to find the best solution to our problem. This, finding the solution with different dataset sizes

may yield more efficient results. Another important threat refers to the metrics used to build

the dataset. However, we have used well-known metrics in the literature: accuracy, precision,

recall, F1-score, and Area Under the Curve metrics. In addition, it is necessary to investigate and

systematize the choice of metrics based on the object-oriented paradigm.

Conclusion validity. We investigated the effect of trivial refactorings on the predic-

tion of non-trivial ones. To identify how the former affects the latter, data from files involved in

both types of refactorings are used and tested on the same and different classes in the prediction

models. This relationship may cause some bias in the results at the prediction time. This may

affect our conclusion.

4.5 Concluding Remarks

Our study investigated how trivial (class-level) refactorings can affect the prediction

of non-trivial refactorings across attributes and code metrics. Our experiment was carried out on

1,291 open-source projects and used the following algorithms as a supervised learning technique

to create classifiers: Decision Tree, Logistic Regression, Navies Bayes, Random Forest and

Neural Network. Our study also used two data balancing techniques: Random Oversampling

and SMOTE Oversampling. We grouped refactorings according to their triviality and proposed

contexts based on combinations of refactoring types. In addition, we separated the datasets to

identify possible generalizations of the models.

This study is useful for software engineering tool developers who can use these

models to improve refactoring suggestions. It also allows researchers to optimize code refactoring

by increasing the efficiency of the technique through the methodology used. In addition, the study

serves as a basis for future research on new approaches in refactoring analysis and prediction.

Our main findings: (i) ML with tree-based models such as Random Forest, Deci-

sion Tree, and Neural network performed very well when trained with code metrics to detect
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refactoring opportunities. However, only the first two are able to reach a good generalization

in other data domain contexts of refactoring; (ii) separating trivial and non-trivial refactorings

into different classes still results in a more efficient model, even on different datasets; and (iii)

using balancing techniques that increase or decrease samples may not be the best strategy to

improve models trained by datasets composed of code metrics and configured according to our

study. (iv) We understand that a possible explanation for the performance improvements when

"trivial refactorings" are included is that the machine learning models have increased knowledge

of what is not non-trivial refactoring, thus improving their prediction.

In future work, we intend to: (i) Create a triviality index that best defines a trivial

refactoring operation and quantifies that triviality; (ii) identify other attributes and metrics

that can produce more efficient results for predicting refactorings; (iii) perform an in-depth

investigation of other algorithms that may perform better in predicting refactorings; and, (iv)

investigate how models that predict trivial refactorings impact the detection of refactorings

performed by automated solutions.
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5 TOWARDS AN EFFECTIVE REFACTORING TRIVIALITY INDEX: A MA-

CHINE LEARNING APPROACH FROM A DEVELOPER’S PERSPECTIVE

This chapter presents a study that addresses the use of software refactoring through

the analysis and proposal of a metric called “Refactoring Triviality Index”, which evaluates

the degree of difficulty of implementing a refactoring operation from the point of view of

software developers, considering its complexity, speed and risk. To this end, we identify the most

relevant code metrics according to developers, as well as analyze the effectiveness of different

ML algorithms, using seven predictive models to evaluate the performance of the triviality

index in three large open-source project ecosystems: Apache, Eclipse, and Random. The study

investigates how the prioritization of the features considered most important by developers affects

the effectiveness of ML models in predicting the triviality index of refactorings. In addition, it

analyzes the agreement of Triviality Index (TI) with the perception of developers with experience

in refactoring activities.

The study contributes to the advancement of automated refactoring solutions by

proposing a metric to evaluate the triviality of implementing one refactoring with its effectiveness

aligned with the developers’ perception, providing more precise detail on the use of the technique

to improve software quality.

5.1 Introduction

Software refactoring is a crucial activity for maintaining and improving code quality.

Mens and Tourwé (2004) emphasize that refactoring is an essential practice in agile software

development, as it allows developers to maintain clean and adaptable code, which is essential

for the continuous evolution of systems. According to Hutton (2009), refactoring can also be

seen as a continuous and iterative practice that is part of the software development life cycle,

contributing to reducing technical debt and improving the overall software quality.

Software maintenance and evolution are continuous processes that require regular

updates and improvements to ensure the quality and longevity of the system (Lehman, 1980).

In this context, knowing that refactoring plays a fundamental role in contributing to software

maintainability and extensibility (Fowler, 2018; Opdyke, 1992) the assessment of the complexity

and risk associated with each refactoring remains an underexplored challenge, highlighting the

need to develop more accurate and reliable methods to predict the impact of these changes (Mens;

Tourwé, 2004). Furthermore, despite the wide adoption of refactoring techniques, assessing the
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triviality of refactoring is still a challenge (Murphy-Hill; Black, 2008). Current tools offer only

basic, often imprecise, indications, which can lead to risky refactorings or missed opportunities

for code improvement (Kim et al., 2014; Silva et al., 2016).

In recent years, the scientific community has explored several approaches to improve

the use of software refactoring. One line of research focuses on developing solutions that

identify and recommend specific refactorings to developers, aiming to improve code quality

and maintainability (Bavota et al., 2015; Tsantalis et al., 2018). Developers’ motivation to

perform refactorings has also been examined, revealing that, although the practice is recognized

as beneficial, it is often avoided due to the perception of risk or lack of time (Silva et al., 2016;

Palomba et al., 2017; Paixão et al., 2020). Another area of study identifies the challenges faced

by developers in applying these practices, highlighting the complexity and risk associated with

refactorings, which often result in making undesirable decisions or underutilizing improvement

opportunities (Kim et al., 2014; Sharma et al., 2015). At the same time, detecting refactoring

opportunities through ML techniques has gained prominence. Recent studies demonstrate that

the use of ML can effectively identify areas of code that would benefit from refactorings, making

this approach promising for the development of software engineering (Azeem et al., 2019;

Aniche et al., 2020; Nucci et al., 2018; Khleel; Nehéz, 2023).

However, the application of ML to propose solutions that improve refactoring activity

remains an underexplored area. The lack of an accurate assessment of refactoring triviality

generates challenges in software maintenance, such as the difficulty in selecting the most

appropriate refactoring technique for different projects and ensuring that refactoring does not

change the external behavior of the system (Akhtar et al., 2022). Without a reliable approach,

developers prefer to spend a lot of energy on manual, time-consuming, and risky refactoring,

hesitating to perform necessary refactorings through automated tools, overestimating the risk

associated with them (Silva et al., 2016; Abid et al., 2022). This study addresses this gap by

proposing a ML based solution to identify the triviality of implementing refactoring.

The main objective of this study is to propose to software developers a metric that

can be implemented in an automated solution, which can generate more confidence in the

implementation of refactoring by evaluating the triviality of the refactoring. The “Refactoring

Triviality Index" is a composite metric reflecting the complexity, speed and risk of refactoring

implementation. This index is expressed as a continuous value between 0 and 1, where higher

values indicate greater triviality. Triviality does not depend on the specific context of the software,
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as it is constituted by code metrics. Furthermore, the proposal allows triviality to be weighted

according to the needs of the developer or project manager. This provides flexibility to define,

based on their assessment, to what extent a refactoring will be considered trivial or not. In this

way, developers can make safer decisions and perform refactorings with greater confidence,

improving the overall quality of software development.

The remainder of this article is organized as follows. Section 5.2 presents our study

settings. Section 5.3 presents our main findings, followed by a discussion. Section 5.4 discusses

the main threats to validity. Finally, Section 5.5 concludes the article and suggests future work.

5.2 Study Settings

5.2.1 Goal and Research Questions

To define the goal and research questions (RQs), we use the Goal-Question-Metric

(GQM) model (Wohlin et al., 2012). Our goal is to: analyze and propose an index that

evaluates the triviality of refactoring; with the purpose of identify the degree of difficulty of

its implementation; in relation to the aspects of complexity, speed, and risk; from the point

of view of software developers; in the context of refactoring operations. We detail each RQ as

follows:

RQ1: Which code metrics are considered most relevant by developers to deter-

mine the triviality of a refactoring operation? - RQ1 aims to identify the code metrics that

developers consider most relevant, considering three aspects related to the definition of triviality

used in this study: complexity, speed, and risk. This may include metrics such as cyclomatic

complexity, number of code lines, coupling, cohesion, among others. To this end, we sent a

questionnaire to capture the perceptions of internal developers (i.e., those who participated in the

development of the projects), as well as developers external to the investigated projects. Addi-

tionally, we investigated whether there is a discrepancy in the developers’ different perspectives

regarding the relevance of the metrics. By answering RQ1, we identified which metrics are most

relevant to make it possible to create the triviality index.

RQ2: How do different ML techniques behave in predicting the code refactor-

ings triviality index? - RQ2 investigates the effectiveness of different ML algorithms, both

those based on Regression such as Logistic Regression and those based on ensemble trees such

as Random Forest, in predicting the refactorings triviality index. The comparison is based on
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performance metrics such as mean squared error (MSE) and coefficient of determination (R²).

By answering RQ2, we can identify which algorithms produce the best results for our different

datasets.

RQ3: What is the impact of prioritizing features ranked by developers on the

effectiveness of triviality index prediction models? - RQ3 investigates how prioritizing

features considered most important by developers affects the effectiveness of ML models for

predicting the refactorings triviality index. To do so, we compare the effectiveness of models

trained with and without feature prioritization. By answering RQ3, we can identify whether

models with feature prioritization perform better than models without prioritization.

RQ4: To what extent is the proposed triviality index aligned with the developers’

perception regarding the triviality of applying refactorings? - RQ4 verifies the agreement

between the triviality index and the developers’ perception. To do this, we initially defined a

set of 12 code examples to be refactored with different types of refactoring operations, such as

the Extract Method and Pull Up Method. Next, we sent a form to capture the perceptions of 16

developers with experience in applying refactorings. In this form, each developer evaluates the

triviality of the aspects used in the construction of the triviality index: complexity, speed, and

risk. By answering RQ4, we can evaluate the agreement of the triviality index resulting from the

ML model with the developers’ perception regarding the triviality of the refactoring operation in

each code example.

5.2.2 Study Steps and Procedures

Figure 11 presents an overview of the steps we followed to answer our RQs: (1)

Selection and analysis of open source systems; (2) Detection of refactoring opportunities and fea-

tures mining; (3) Validation with developers; (4) Application of the machine learning technique;

and (5) Evaluation of the results. Next, we describe each of these steps.

Step 1: Selection and analysis of open-source systems. The first step of this study

consisted of the selection and analysis of open-source systems. We selected datasets that met the

following criteria: (i) systems implemented in Java and open source since they are supported by

the tool adopted for the extraction of refactorings; (ii) systems that Git must version, necessary

for the feature extraction tool; and, (iii) have a significant volume of refactoring operations to

facilitate the training of ML algorithms. In addition, the selected datasets were used in our

previous study, providing a solid basis for comparison. All projects were extracted from GitHub
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Figure 11 – Overview of the research methodology.

Source: Prepared by the author.

using automated scripts developed for this purpose with the GitHub API, they were extracted

and stored in JSON files containing information such as name, URL and size of the projects.

The datasets totaled 1,259 projects and were distributed across three ecosystems: the Apache

dataset with 214 projects, the Eclipse dataset with 194 projects, and the Random dataset with 851

projects from different authors, but they met the requested requirements. Table 13 summarizes

the data from the selected software systems. The first column contains the name of the dataset,

followed by the number of projects, commits, refactorings and high rerfactorings which are the

class and method level refactorings. The replication package of this study1 can also see it in

Table 1.

Table 13 – Summary of data for selected software systems
Ecosystem # Projects # Commits # Refactorings # High Refactoring

Apache 214 2,148 83,033 30,693
Eclipse 194 2,370 101,635 43,827
Random 851 307 6,962 2,624

Total 1,259 4,825 191,630 77,144

Source: Prepared by the author.

Step 2: Detecting refactoring opportunities and mining features. In this step, we

extracted data on refactorings and code metrics (used in this study as features) for all selected

projects. To do so, we performed three main activities: (1) extracting code refactorings; (2)

tracking modified files before and after refactoring; and (3) extracting code metrics to be used as

features. We detail each activity below.
1 Available at https://doi.org/10.5281/zenodo.13766290.

https://doi.org/10.5281/zenodo.13766290
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Activity 1: Extracting code refactorings. We detected refactorings in all selected

projects using the Refactoring Miner tool (version 2.0), chosen due to its high accuracy, with

an average precision of 99.6% and recall of 94% (Tsantalis et al., 2020). This tool is applied

between two versions (commits). It identifies the elements that changed from one version to

the other, in addition to providing the type of refactoring associated with each change. For

detection, we applied a filter to commits containing the term “refactor” in the commit text as an

initial way to select commits where the developer expressed the intention to refactor by using

this term, because our goal is root refactoring. This strategy has also been adopted in other

studies (Silva et al., 2016; AlOmar et al., 2021; Nyamawe, 2022). The tool detected a total

of 191,630 refactoring operations. Of these, we selected 77,144 as high refactorings, as those

applied at the class and method level. These refactorings generally have a more significant impact

on the structure and design of the code, compared to refactorings at the attribute or variable level.

They often involve changes in the system architecture, which can improve the code’s modularity,

cohesion and reusability. Furthermore, they are more likely to present significant variations in

the complexity, time and risk associated with their implementation, making these characteristics

ideal for modeling the concept of triviality (see Table 14).

Activity 2: Tracking modified files before and after refactoring. To perform the

analysis of the prediction of the triviality of refactorings, it was necessary to track the changes

made to the code files before and after the application of the refactorings. This process involves

identifying the files’ versions before and after the refactoring to allow a detailed analysis of

the modifications, including test files. We used Pydriller (Spadini et al., 2018), a powerful tool

for mining version control repositories, which allowed us to extract relevant information about

the modifications in the code. Pydriller offers functionalities to access the commit history in

Git repositories, allowing us to identify precisely which files were changed in each commit

associated with a refactoring operation. In the scripts developed in Python, we started by loading

data from a JSON file containing detailed information about the refactorings applied to different

projects. We iterated over the commits involved for each project and refactoring, focusing on

class and method level changes, which are critical for our analysis. We used the Pydriller tool

to navigate through the commits and identify modified files, specifically filtering for files with

the .java extension. For each Java file identified, we extracted the source code versions before

and after the modifications and stored them in an organized directory system. This storage

system was structured to separate the versions before and after the refactorings, allowing for
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Table 14 – High Refactorings by ecosystem
Type of Refactoring # Apache # Eclipse # Random

Add Class Annotation 710 1187 93
Add Class Modifier 342 260 51
Add Method Annotation 2153 7774 198
Add Method Modifier 743 751 39
Change Class Access Modifier 386 708 55
Change Method Access Modifier 2514 6422 228
Extract And Move Method 741 688 74
Extract Class 372 425 47
Extract Method 2113 2525 174
Extract Subclass 53 35 6
Extract Superclass 261 279 16
Inline Method 385 609 19
Merge Class 48 51 2
Merge Method 4 8 0
Modify Class Annotation 384 308 20
Modify Method Annotation 758 559 15
Move And Inline Method 141 163 7
Move And Rename Class 585 434 62
Move And Rename Method 614 629 58
Move Class 5930 4975 430
Move Method 2535 3244 239
Pull Up Method 1778 2384 98
Push Down Method 365 334 55
Remove Class Annotation 691 830 27
Remove Class Modifier 216 119 23
Remove Method Annotation 1150 1793 94
Remove Method Modifier 816 565 58
Rename Class 775 904 81
Rename Method 3077 4777 347
Replace Anonymous With Class 22 19 5
Split Class 17 13 3
Split Method 14 15 0

Total 30,693 11,267 2,624

Source: Prepared by the author.

more efficient access and analysis of the data. In addition, we used Jupyter Notebook (Kluyver

et al., 2016) to process and analyze the extracted data. It provided an interactive and flexible

environment to explore the data, perform statistical analysis, and visualize the results effectively.

This was important to validate the triviality predictions and understand the impact of refactorings

on the code files.

Throughout this activity, we analyzed a total of 61,842 files that were involved in

refactoring operations. This database allowed us to validate the proposed approach and provide

valuable insights into the refactoring process.

Activity 3: Extracting code metrics. In this activity, we extract code metrics and

some attributes of code elements to be used as features in our study. To this end, we used
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automated tools such as CK (Aniche, 2015) and PMD2 to extract important metrics and elements

from Java files (see Table 15).

First, we used the CK tool to extract several metrics of code complexity, coupling,

cohesion, inheritance, and other relevant attributes from each code element. For each commit,

we ran CK on source code files organized into “before” and “after” steps, storing the generated

outputs in specific directories. The execution was automated through Python scripts, which

facilitates large-scale data manipulation.

Then, we used the PMD tool employed to analyze problems and potential improve-

ments in Java files. We use custom rules that promote good coding practices, ensure consistency

in code style and target design and architecture issues. We also use rules that identify code

patterns that can lead to runtime errors, detect concurrent code issues, highlight issues affecting

code performance, and identify potential security vulnerabilities. The PMD tool was run on both

the original and refactored code, counting the number of issues identified at each stage.

We implemented a Python script to calculate the Frequency of Commits (FoC), a

metric that reflects the speed of code changes over time. FoC was calculated over different time

intervals (7, 14, 21, and 28 days), representing the frequency with which refactoring commits

were made within these periods. The formula used to calculate FoC is:

FoC =
totalCommits(

total_days
sprintDays

)
Where totalCommits is the total number of refactoring commits, totalDays is the

number of days between the first and last commits, and sprintDays represents the range of days

(7, 14, 21, or 28) for which the frequency is being calculated.

Additionally, we created a Java program3 to calculate the similarity score (based

in Jaccard Similarity (Jaccard, 1901)) Java files across commits using the abstract syntax tree

(AST) as the basis for the analysis. The similarity between code files is an important metric

to evaluate the degree of changes made over time and serves for comparative analysis in terms

of refactoring. We used the org.eclipse.jdt.core to calculate the similarity.dom4 library to

generate the AST of the Java files. The AST is a hierarchical representation of the code structure,

allowing a detailed analysis of the structural changes between different file versions. Then,

for each Java file under analysis, we generated the AST using the ASTParser class of the
2 https://pmd.github.io/
3 See Appendix C
4 https://eclipse.dev/jdt/
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Table 15 – Metrics and attributes of code elements used in this work
Field Description Source

Complex Aspect
ss Similarity score based on Abstract Syntax Tree (AST). Our
cbo Coupling between objects. Counts a class’s input and output dependencies CKTool
fan-in Counts how many classes depend on a given class CKTool
fan-out Counts how many classes a given class uses CKTool
dit Counts the number of parents of a class in the inheritance tree. CKTool
noc Number of Children counts a class’s direct subclasses. CKTool
nosi Counts the number of invocations to static methods CKTool
rfc Counts the number of unique method invocations in a class. CKTool
wmc Weight Method Class. Counts the number of branch instructions in a class. CKTool
lcom Lack of Cohesion of Methods, computes the lack of cohesion of class CKTool
totalMethodsQty Counts the number of all methods. CKTool
staticMethodsQty Counts the number of static methods. CKTool
publicMethodsQty Counts the number of public methods. CKTool
privateMethodsQty Counts the number of private methods. CKTool
protectedMethodsQty Counts the number of protected methods. CKTool
defaultMethodsQty Counts the number of default methods. CKTool
visibleMethodsQty Counts the number of visible methods. CKTool
abstractMethodsQty Counts the number of abstract methods. CKTool
finalMethodsQty Counts the number of final methods. CKTool
synchronizedMethodsQty Counts the number of synchronized methods. CKTool
totalFieldsQty Counts the number of all fields CKTool
staticFieldsQty Counts the number of static fields CKTool
publicFieldsQty Counts the number of public fields CKTool
privateFieldsQty Counts the number of private fields CKTool
protectedFieldsQty Counts the number of protected fields CKTool
defaultFieldsQty Counts the number of default fields CKTool
finalFieldsQty Counts the number of final fields CKTool
loopQty The number of loops like for, while, do while and enhanced for CKTool
comparisonsQty The number of comparisons == and != CKTool
tryCatchQty The number of try/catches CKTool
parenthesizedExpsQty The number of expressions inside parenthesis CKTool
stringLiteralsQty The number of string literals CKTool
numbersQty The number of numbers literals int, long, double, float CKTool
assignmentsQty The number of same or different comparisons CKTool
mathOperationsQty Counts math operations. CKTool
variablesQty The number of declared variables CKTool
maxNestedBlocksQty The highest number of blocks nested together CKTool
anonymousClassesQty The quantity of anonymous classes CKTool
innerClassesQty The quantity of inner classes CKTool
lambdasQty The quantity of lambda expressions CKTool
uniqueWordsQty The algorithm counts words in a class, excluding Java keywords. CKTool
typeAnonymous Boolean indicating whether is an anonymous class CKTool
typeClass Boolean indicating whether is a class CKTool
typeEnum Boolean indicating whether is an enum CKTool
typeInnerclass Boolean indicating whether is an inner class CKTool
typeInterface Boolean indicating whether is an interface CKTool
returnQty The number of return instructions CKTool

Velocity Aspect
locc Counts lines of code changed, excluding empty lines and comments. CKTool
foc7 Frequency of commits to a refactoring repository over 7 days Our
foc14 Frequency of commits to a refactoring repository over 14 days. Our
foc21 Frequency of commits to a refactoring repository over 21 days. Our
foc28 Frequency of commits to a refactoring repository over 28 days. Our

Risk Aspect
cs Code Smell related to design, cohesion and modularity. PMD
dcc Cyclomatic complexity difference to evaluate new bug risk. CKTool
Issues of Error Prone Set of detected problems based on code patterns that are prone to errors PMD
Issues of Multithreading Set of detected problems based on parallel programming and multithreading PMD
Issues of Performance Set of problems detected with a focus on improving code performance PMD
Issues of Security Identifies and corrects security vulnerabilities in the code. PMD
Total: 58

Source: Prepared by the author.

library. The resulting AST captures the complete syntactic structure of the code, including class

declarations, methods, variables, and expressions. Next, we implement the MyVisitor class,

which inherits from ASTVisitor, to traverse the AST and collect information. Systematically

visiting nodes allows us to build a complete representation of the code structure. Finally, we use
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the Jaccard (1901) similarity algorithm to calculate the similarity between two ASTs generated

from different file commits. The Jaccard similarity index is defined as:

Jaccard Similarity Index =
|A∩B|
|A∪B|

Where A and B represent the sets of nodes collected from the ASTs of two distinct

code files. The numerator |A∩B| represents the number of common nodes between the two

ASTs, while the denominator |A∪B| represents the total number of unique nodes present in both

ASTs. The formula captures the essence of the similarity between two structures, returning a

value between 0 and 1, where 0 indicates no similarity and 1 indicates that the structures are

identical regarding the analyzed nodes.

The outputs of the CK and PMD tools, as well as the similarity scores and FoC

metrics, were centralized into CSV files, which serve as the datasets for our ML experiments.

After an initial data analysis, we selected 58 distinct features that proved most relevant for

building the predictive models. These data now form the basis for the next phase of the study,

where we explore the impact of code metrics on predicting the refactorings triviality.

Step 3: Developers’ perception of the most relevant metrics. In conducting

this study, we sought to understand which metrics developers consider most relevant in code

refactoring activities. To this end, we conducted a survey with developers who work both

internally and externally on the projects in question. The goal was to identify perceptions and

practices related to refactoring metrics, as well as to obtain suggestions for improvements to the

process.

First, we performed an automated collection of commit data using the GitHub API.

We collected all emails available in commits from developers. The result of this collection

was used to identify developers who frequently perform refactorings, who were later invited to

participate in a detailed survey. 2,143 emails were sent, of which only 15 were responded to,

approximately 1%. The typical rate was lower than that found in questionnaire-based software

engineering surveys (Shull et al., 2007). The developers were contacted to participate in an

online survey5. The developers’ profile can be seen on Table 16. The email explained the purpose

of the survey, highlighting the benefits of creating a refactoring triviality index, which could

assist in planning and executing refactorings in software projects.

Afterward, we structured the survey to cover three main aspects of the refactoring

process: complexity, speed, and risk. Each aspect was addressed through questions that assessed
5 See Appendix A
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Table 16 – Developers Profile
ID Experience

(years)
Devevoper Roles Formal

Education
Code

Refactoring
Project
Internal

D1 36 Backend Developer, Fullstack, De-
vops, Tech Leader, Quality Assurance
(QA), Project Manager, Stakeholder

High School Always YES

D2 7 Backend Developer Vocational School Often YES
D3 40 Infrastructure developer. Master’s Degree Often YES
D4 15 Backend Developer Master’s Degree Often YES
D5 29 Developer in a Scientific Team Master’s Degree Rarely YES
D6 2 Frontend Developer Graduation Sometimes NO
D7 10 Backend Developer, Tech Leader Doctorate Degree Often NO
D8 6 Tech Leader, Scrum Master, Project

Manager
Specialization Sometimes NO

D9 6 Frontend Developer, UX/UI Designer Graduation Often NO
D10 10 Backend Developer, Tech Leader,

Scrum Master
Master’s Degree Always NO

D11 1 Backend Developer, Fullstack Graduation Never NO
D12 6 Frontend Developer, Backend Devel-

oper, Fullstack
Master’s Degree Always NO

D13 10 Fullstack, Devops, Tech Leader,
Project Manager

Master’s Degree Sometimes NO

D14 10 Operational Support Analyst Graduation Never NO
D15 2 Fullstack Technical Course Sometimes NO

Source: Prepared by the author.

the relevance of different metrics related to that specific topic. For the Complexity aspect,

developers were asked about metrics such as FAN-IN, FAN-OUT, CBO (Coupling Between

Objects), DIT (Depth of Inheritance Tree), among others. The goal was to understand which

complexity metrics are considered most critical in the decision to refactor. For the Speed

aspect, we addressed the frequency of commits and the size of changes in terms of lines of

code. Metrics such as LOCC (Lines of Code Changed) and FOC (Frequency of Commit) were

analyzed to understand how the speed of refactoring operations is perceived. For the Risk

aspect, we addressed the likelihood of refactorings causing new problems or flaws in the code.

Developers rated the importance of issues related to design practices, error-proneness, security,

and performance.

Participation in the survey was voluntary and targeted at developers with experience

in code refactoring. Participants were asked to rate the importance of each metric on a Likert

(1932) scale, where 1 represented “not at all important” and 5 “very important”. In addition,

we asked for suggestions for other metrics or factors that could be considered relevant for

improving software quality. Finally, we analyzed the collected data to identify opportunities for

improvement in the refactoring practice, aiming not only to identify the most valued metrics but

also to obtain insights into how different aspects of the code influence the decision to refactor.
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Step 4: Applying supervised learning to predict refactoring triviality.Next, to

better explain the machine learning process, we present the activities of data preprocessing,

feature engineering, data normalization, data balancing, model training and evaluation. We must

highlight that we added the refactoring operations that each commit received in the dataset.

Activity 1: Data Import and Preprocessing. We performed the activities for the 3

datasets containing metrics of the project’s code classes: Apache, Eclipse and Random. First, we

imported the data into a Jupiter notebook and configured the panda’s display options to facilitate

exploratory analysis. Initially, we treated missing data by replacing the values with the mean

of the respective columns and corrected corrupted values, replacing invalid entries with more

appropriate values. To deal with categorical data, we applied the one-hot encoding technique.

Columns that represented operations or class types were converted to binary columns. This

allowed machine learning models to process this information efficiently. We removed columns

that did not contribute to refactoring prediction due to redundancy or irrelevance in the context

of the problem studied. This selection was made based on suggestions from developers (in a

second step to compare the results) and correlation analysis between variables.

Activity 2: Feature Engineering and Data Normalization. We calculated two addi-

tional metrics, LOCC (Lines of Code Changed) and DCC (Diff McCabe’s Complexity), which

represent the change in lines of code and cyclomatic complexity before and after a refactoring,

respectively. We included these metrics as features in the model. We performed data normaliza-

tion on a scale from 0 to 1. For metrics where smaller values are desirable, we applied inverse

normalization. This step is crucial to ensure that all features are on the same scale, preventing

variables with larger values from dominating the model training process.

In addition, our study introduces the concept of the Triviality Index. This index

aims to quantify how trivial (simple, fast, and low-risk) the refactoring implementation is in

software projects. To do this, we use the conceptualization of it as a composite metric that ranges

from 0 to 1, where values close to 0 indicate more complex and high-risk refactorings, while

values close to 1 indicate trivial refactorings. It is calculated considering three main aspects:

complexity, velocity, and risk. Complexity includes metrics such as cyclomatic complexity,

number of methods, number of classes, and depth of the inheritance tree. These metrics help

to understand how intricate the code is, influencing the ease or difficulty of modifying it. As

mentioned previously, velocity was measured, in part, by the frequency of commits during

periods equivalent to sprints. A greater number of commits in a time interval may indicate
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that the code is more easily adaptable and less complex, allowing for rapid changes. Risk

encompasses metrics related to the number of code smells detected and execution problems.

These metrics indicate the risk associated with the changes.

To calculate the Triviality Index, each aspect is evaluated based on the specified

metrics (Table 15). The algorithm that calculates the index takes the weighted arithmetic average

of the three aspects. In this study, we consider the weight to be equal. Still, depending on

the context, it may be helpful to consider different weights for each aspect, depending on its

relevance to triviality in the specific context. With the normalized and weighted metrics, we

calculate the index using the following formula:

Triviality Index =
w1 ·C+w2 ·V +w3 ·R

wtotal

In this formula, C represents the Complexity aspect of the refactoring, V indicates

the Speed aspect, and R the Risk aspect. The parameters w1, w2, and w3 are the weights assigned

to each of these aspects, reflecting the relative importance of each factor in the evaluation. The

sum of these weighted products follows the multiplication of each aspect by its respective weight.

To normalize the result and obtain a standardized metric, this sum is divided by the total of

the weights wtotal . The resulting Triviality Index provides a continuous scale indicating the

degree of triviality of the refactoring, with higher values indicating simpler, faster, and less risky

refactorings. This calculation provides a quantitative indication of the triviality of implementing

the code refactoring.

Activity 3: Data Balancing. In this study, we use the SMOGN (Synthetic Minority

Over-sampling Technique for Regression with Gaussian Noise) technique, as described by Branco

et al. (2017), to balance the distribution of the triviality index data. SMOGN is a variant of

SMOTER that adds Gaussian noise to the generated synthetic examples, which helps to simulate

the natural variability of the data better and improves the robustness of the model. Unlike

SMOTE, which was initially proposed by Chawla et al. (2002) to solve imbalance problems in

classification tasks, SMOTER is an extension adapted for regression tasks. SMOTER generates

synthetic examples for underrepresented areas of the continuous data, while SMOGN goes

further by introducing Gaussian noise to promote an even more uniform data distribution.

This balancing technique was chosen because it is highly regarded in recent studies,

showing effectiveness in dealing with unbalanced data distributions in regression problems

(Song et al., 2022; Torgo et al., 2015; Branco et al., 2017). This balancing was necessary to
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prevent the model from becoming biased towards refactorings with a more common triviality

index and poor distribution of feature values in the collected data. In this way, we sought to

make the evaluation of the model robust and generalizable in relation to the entire data set.

The data was divided into two subsets: 80% for the training set (used to train the model) and

20% for the test set (used to validate and test the model). The trained models were based on

logistic regression algorithms, including Linear Regression, Ridge and ElasticNet, and tree-based

algorithms: Decision Tree, Random Forest, Gradient Boosting and XGBoost. We used the

Scikit-learn library6 and XGBoost7 to implement these algorithms.

To optimize the performance of the models, we applied GridSearch and use number

of cross-fold validations as five, which allowed us to tune and configure the hyperparameters

of each algorithm efficiently. For Linear Regression, we adjusted the fit_intercept with

binary value. Ridge regressions involved tuning alpha with range of values [0.1, 1.0, 10.0,

100.0] and fit_intercept with binary value. In the case of ElasticNet, the parameters

included alpha with range of values [0.1, 1.0, 10.0], l1_ratio with range of values

[0.1, 0.5, 0.9, 1.0] and fit_intercept with binary value. The Decision Tree was fine-

tuned using max_depth with range of values [None, 10, 20, 30], min_samples_split

with range of values [2, 5, 10], and min_samples_leaf with range of values [1, 2, 4].

For the Random Forest, we explored n_estimators with range of values [100, 200, 300],

max_depth with range of values [None, 10, 20, 30], min_samples_split with range of

values [2, 5, 10] and min_samples_leaf with range of values [1, 2, 4]. The Gradient

Boosting hyperparameters included n_estimators with range of values [100, 200, 300],

learning_rate with range of values [0.01, 0.1, 0.2], max_depth with range of values

[3, 5, 10], min_samples_split with range of values [2, 5, 10] and min_samples_leaf

with range of values [1, 2, 4]. Finally, the XGBoost was optimized by tuning n_estimators

with range of values [100, 200, 300], max_depth with range of values [3, 5, 10], eta

with range of values [0.01, 0.1, 0.3], subsample with range of values [0.5, 0.7, 1.0],

colsample_bytree with range of values [0.5, 1.0], learning_rate with range of values

[0.01, 0.1, 0.2] and min_child_weight with range of values [1, 2, 4]. This technique

was essential to ensure that the models were well-tuned and that there was no overfitting on the

training data. Finally, we tested the models to predict the triviality index on the datasets.

Step 5: Evaluation of agreement between experts and predictive models. In this
6 https://scikit-learn.org/stable/
7 https://xgboost.readthedocs.io/en/stable/

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
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step, we calculated the MSE, RMSE, MAE, MAPE and adjusted R² metrics to evaluate the trained

models (Kuhn; Johnson, 2013; James et al., 2023), comparing the results between algorithms

and databases, both with and without prioritization of features by developers. In addition, we

sought to identify the agreement of the solution with developers in the code refactoring activity.

To this end, we conducted a survey with developers specialized in refactoring, to identify their

perceptions about the triviality of implementing the main refactoring operations applied (Silva et

al., 2016).

We contacted the experts by email and social networks, and they were introduced to

the research and invited to participate in an online survey8. The profile of experts developers can

be seen in the Table 17. We explained the study’s objective, highlighting the benefits of creating

a refactoring triviality index, which could assist in the planning and execution of refactorings in

software projects.

The survey was structured to cover, for each refactoring operation addressed, the

three aspects of the refactoring process: complexity, speed, and risk. Participation was voluntary

and targeted at code refactoring experts. Source codes with different code smells related to the

application of 12 of the most commonly used refactoring operations were presented. 16 partici-

pants rated the impact of each aspect on a Likert scale Likert (1932), where 1 represented “Very

difficult” and 5 “Very easy”. In addition, they were allowed to provide additional information

about the refactoring aspects presented. Finally, we analyzed the collected data statistically and

compared them with the results obtained by the best supervised learning models.

Finally, we observed: (i) which metrics are most relevant to enable the creation of

the triviality index; (ii) which algorithms produce the best results for our different data sets; (iii)

how effective models with feature prioritization compared to models without prioritization; and

(iv) agreement between the triviality index resulting from the ML model and the developers’

perception of the triviality of the refactoring operation in each code example. This allowed us to

answer our research questions. We present the results in the following section.

5.3 Results and Discussion

In the following subsections, we will address each of the Research Questions (RQs)

presented in Section 5.2.1, discussing the results obtained in detail.
8 See Appendix B
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Table 17 – Experts developers profile
ID Gender Age Devevoper Roles Formal

Education
Experience

(years)
Code

Refactoring
DX1 Man 25-34 Backend Developer, Product

Owner, Tech Leader, Scrum Master,
Project Manager

Master’s Degree 1-3 Weekly

DX2 Man 25-34 Fullstack, Devops Master’s Degree 7-14 Weekly
DX3 Man 18-24 Fullstack High School 1-3 Daily
DX4 Man 25-34 Backend Developer, Devops Doctorate Degree 7-14 Daily
DX5 Man 18-24 Frontend Developer, Backend De-

veloper, Fullstack
Graduation 1-3 Weekly

DX6 Woman 25-34 Backend Developer Doctorate Degree 7-14 Weekly
DX7 Man 25-34 Frontend Developer, Graduation 4-6 Weekly
DX8 Man 18-24 Fullstack Graduation 4-6 Weekly
DX9 Man 35-44 Frontend Developer, Backend Devel-

oper, Devops
Graduation 7-14 Daily

DX10 Man 35-44 Frontend Developer, Backend Devel-
oper

Graduation 7-14 Monthly

DX11 Man 18-24 Fullstack Technical Course 1-3 Annually
DX12 Man 25-34 Frontend Developer Graduation 1-3 Monthly
DX13 Man 25-34 Fullstack, Devops, Tech Leader,

Project Manager
Master’s Degree 7-14 Monthly

DX14 Man 18-24 Backend Developer, Fullstack Graduation 1-3 Monthly
DX15 Man 18-24 Backend Developer High School 1-3 Monthly
DX16 Man 25-34 Backend Developer, Devops Master’s Degree 7-14 Monthly

Source: Prepared by the author.

5.3.1 Which code metrics are considered most relevant by developers to determine the

triviality of a refactoring operation? (RQ1)

To answer RQ1, we considered the developers’ opinions on code metrics. We

also evaluated the key results by analyzing the average ratings for each metric, as well as the

significant differences between the two groups of developers. Table 18 presents an overview of

the evaluations of different code metrics conducted by both internal and external developers,

with scores ranging from 1 to 5 on the Likert scale (Likert, 1932) of perceived importance.

The developers’ experience levels range from 1 to 40 years, with the 46.7% having

between 6 and 10 years of experience. 80% of developers have at least a graduate educational

background. Familiarity with refactoring varies significantly: some developers are experts who

use it routinely, while others have limited knowledge and rarely or never apply it. The frequency

of code refactoring also shows variation, with 53.3% developers performing it often or always,

while 13.2% claims to have never refactored. 33.3% execute rarely or sometimes.

The developers hold various roles, including back-end with 21.2%, full-stack devel-

opers with 15.1%, tech leads with 15.1%, front-end with 9.1%, project managers with 9.1%,

DevOps engineers with 6%, and other roles only counted once. This diversity of roles suggests
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that the need for and application of refactoring can vary significantly across different teams

and software projects. Moreover, their formal education levels range from high school to PhDs,

which may further influence their exposure to and approach to software refactoring.

In summary, our findings indicate that external developers tend to place higher value

on code metrics related to structural complexity, best practices, performance, and security. They

generally provided more positive ratings across most metrics, which may reflect a heightened

level of caution or a more critical perspective on code quality. In contrast, internal developers

appeared more conservative in their evaluations, possibly due to their familiarity with the code

assessed in the study. These differences suggest that perceptions of the need for refactoring can

vary significantly based on a developer’s experience and context.

The developers’ responses offer valuable insights into their experiences and perspec-

tives on code refactoring. We list the key points raised by the developers as follows:

– (D1) Emphasize the importance of Test-Driven Development (TDD) and Agile methodolo-

gies, combined with continuous refactoring, as best practices;

– (D2) Highlight the importance of comprehensive integration tests to maintain the quality

and speed of refactoring while avoiding the introduction of new errors;

– (D3) The complexity of existing code as the primary risk factor in refactoring is often

more significant than the type of fix applied;

– (D7) Associates refactoring primarily with improving code execution time;

– (D9) Acknowledge the frequent challenge of managing legacy code, which often requires

rewriting or updating to meet modern standards;

– (D11) Suggest incorporating more specific time metrics, such as "hours dedicated to

refactoring activities," to better evaluate the efficiency of the refactoring process;

– (D13). Use refactoring to improve code quality and ensure adherence to standards set by

static analysis tools;

The key points raised by developers reveal their recognition of refactoring’s impor-

tance for software quality. They highlight its benefits in improving code performance, readability,

and maintainability. They also emphasize the importance of agile practices, and the need for

a flexible, continuous approach to refactoring. Additionally, they note the interdependence

between testing, code complexity, and risk management. In this context, refactoring is viewed

not merely as a technical task, but as a critical practice for maintaining software quality. This

insight improves our understanding of refactoring in practice and offers valuable perspectives for
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researchers and developers aiming to enhance software quality. It also provides a clearer picture

of how developers perceive the importance of refactoring.

Finding 1: Developers reveal their perceptions, highlighting an intersection between refac-

toring, testing, code complexity, and best practices.

By looking at Table 18, we can observe that metrics with the highest scores (above

4.0) are primarily associated with Risk and Complexity aspects. This suggests that developers

consider these factors to be the most critical when evaluating the necessity and impact of

refactoring. Both internal and external developers considered metrics related to security and class

coupling as the most important. In particular, Issues of Security and CBO (Coupling Between

Object Classes) stood out as the most valued metrics, with average scores of 4.40 and 4.30,

respectively. We also observed that Issues of Security was unanimously considered as essential,

with external developers assigning it an even higher importance rating (4.80). Additionally, the

CBO metric received high ratings from both groups, reflecting a common concern about coupling

complexity and its influence on the need for refactoring.

Conversely, the metric NOSI (Number of Static Invocations) was considered as the

least important, with the lowest overall average among all evaluated metrics. With an average

score of 2.30, and particularly a very low rating from internal developers (1.60), NOSI was

identified as the least relevant metric in the refactoring decision process. Additionally, other

metrics such as Quantity of Number (2.50), Number of Unique Words (2.55), Quantity of Math

Operations (2.65), and File Type (2.65) also received low ratings. These metrics, which focus on

basic and repetitive aspects of code, are viewed as less significant for justifying refactoring.

From these observations, it is evident that developers placed a high priority on

metrics such as Issues of Security and CBO, which suggests that developers prioritize factors

that can significantly impact system integrity and architecture. Conversely, metrics related to

static invocations and basic code elements are viewed as less impactful. This suggests that, in

practice, refactoring decisions are driven more by long-term considerations, such as preventing

vulnerabilities and reducing complexity, rather than by speed-related factors.

Regarding metrics related to Speed, although they are less emphasized compared to

Risk and Complexity, they still received considerable attention. Among them, FOC7 (Frequency

of Change in 7 Days) was the most valued speed metric, with an average score of 3.47. This

indicates that the frequency of code changes over a short period is a significant factor in assessing
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refactoring efficiency. Other speed metrics, including LOCC (Lines of Code Changed) with

an average of 3.20, FOC14 with 3.27, FOC21 with 3.20, and FOC28 with 3.07. These scores

suggest that while speed is considered, it is not the primary criterion for justifying refactoring

but rather a supplementary factor.

In summary, developers place significant importance on metrics that assess Risk

and Complexity, with a particular focus on security issues, cohesion, coupling, and structural

complexity. These metrics are regarded as crucial for maintaining software quality and mitigating

issues that may arise during development and maintenance. Developers’ perceptions highlight

the need to prioritize practices that minimize risk and complexity, ensuring that code remains

secure, efficient, and maintainable.

Finding 2: Metrics related to risk and complexity are considered the most important for

developers when evaluating code quality.

Several metrics received an average score below 3, suggesting that developers

consider them less relevant when deciding whether to refactor or not. The metrics that did not

reach a score of 3, which represents moderate importance, include: NOSI (Number of Static

Invocations) with an average of 2.30; Quantity of Number with 2.50; Number of Unique Words

with 2.55; Quantity of Math Operations with 2.65; File Type with 2.65; Quantity of Modifiers

with 2.65; String Literals with 2.70; Number of Log Statements with 2.75; Inner Classes with an

average of 2.80; Path of Class with 2.90; Quantity of Returns with 2.90;Quantity of Parenthesized

Expressions with 2.90; and RFC with an average of 2.85.

Metrics such as Quantity of Number, Number of Unique Words, and Quantity of

Math Operations, all related to counting basic elements, received averages below 2.70, indicating

that the presence of these elements alone is insufficient to justify refactoring. Similarly, File

Type and Quantity of Modifiers, both with an average of 2.65, suggest that developers view file

type and the number of modifiers as minor factors that do not significantly impact refactoring

decisions.

Overall, these metrics represent characteristics that, in the developers’ perception,

have a smaller impact on code quality and are therefore less prioritized when assessing the need

for refactoring. This highlights a greater focus on more critical and structural aspects of the code,

such as security and coupling, which are more frequently associated with maintainability and

system robustness.



96

Table 18 – Developer perspectives on the importance of code metrics
METRICS Internal Dev External Dev AVERAGE
Issues of Security 4.00 4.80 4.40
CBO 4.00 4.60 4.30
Issues of Error Proneness 4.00 4.00 4.00
Quantity of Fields 4.00 4.00 4.00
LCOM 3.60 4.30 3.95
Max Nested Blocks 3.80 4.10 3.95
Issues of Design 3.20 4.40 3.80
Quantity of Loops 3.00 4.60 3.80
Issues of Performance 3.20 4.30 3.75
Usage of Each Field 3.40 4.10 3.75
Usage of Each Variable 3.40 4.10 3.75
Issues of Best Pratices 3.20 4.20 3.70
Quantity of Comparisons 3.20 4.20 3.70
Issues of Multithreading 3.20 4.10 3.65
FAN-IN 3.00 4.20 3.60
TCC 3.40 3.80 3.60
NOC 3.20 3.90 3.55
Number of Visible Method 3.40 3.70 3.55
FAN-OUT 3.00 4.00 3.50
DIT 2.80 4.20 3.50
WMC 3.40 3.60 3.50
LCC 3.00 4.00 3.50
FOC7 3.60 3.40 3.50
Quantity of Try/Catches 3.00 4.00 3.50
Number of Method 3.00 3.80 3.40
FOC14 3.40 3.20 3.30
Quantity of Variables 3.00 3.60 3.30
Quantity Method Invocations 2.40 4.10 3.25
FOC21 3.20 3.20 3.20
Quantity of Anonymous Classes 2.60 3.70 3.15
LOCC 2.80 3.40 3.10
FOC28 3.00 3.10 3.05
Lambda Expressions 2.40 3.60 3.00
Quantity of Returns 2.20 3.60 2.90
Quantity of Parenthesized Expressions 2.20 3.60 2.90
Path of Class 2.40 3.40 2.90
RFC 2.40 3.30 2.85
Inner Classes 1.80 3.80 2.80
Number of Log Statements 2.00 3.50 2.75
String Literals 2.00 3.40 2.70
File Type 2.20 3.10 2.65
Quantity of Modifiers 2.20 3.10 2.65
Quantity of Math Operations 1.80 3.50 2.65
Number of Unique Words 2.00 3.10 2.55
Quantity of Number 1.80 3.20 2.50
NOSI 1.60 3.00 2.30

Source: Prepared by the author.

Finding 3: 28.2% of the code metrics assessed using the Likert scale are considered of low

importance by developers in refactoring decisions.
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The analysis of software metric evaluations provided by internal and external de-

velopers highlights significant differences in their perceptions. External developers tend to rate

metrics such as Issues of Security (4.80 vs 4.00), CBO (4.60 vs 4.00), and LCOM (4.30 vs 3.60)

more positively compared to internal developers. These discrepancies may suggest that external

developers place greater emphasis on, or adopt a more critical stance toward, aspects of code

security, complexity, and cohesion.

In contrast, metrics such as Issues of Best Practices and Quantity of Returns received

higher ratings from external developers, which may reflect a greater emphasis on coding practices

and return management in their development approach. The overall average rating from internal

developers is 2.90, compared to 3.78 from external developers, indicating that external developers

generally rate these metrics more positively.

Additionally, we observed the largest discrepancies in the ratings of metrics such as

DIT (4.20 vs. 2.80), Quantity of Loops (4.60 vs. 3.00), and Quantity of Method Invocations (4.10

vs. 2.40). These differences suggest that external developers perceive aspects related to class

hierarchy depth, loop count, and method invocation complexity more critically than internal

developers. These variations may stem from differences in development methodologies, regional

practices, and development cultures, potentially explaining the more detailed and rigorous

approach taken by external developers.

On the other hand, metrics such as FOC7 and FOC14, which measure commit fre-

quency over 7 and 14 days, respectively, received slightly higher ratings from internal developers

compared to external ones. For FOC7, internal developers rated it an average of 3.60, while

external developers rated it 3.40. Similarly, for FOC14, internal developers rated it 3.40, whereas

external developers rated it 3.20. This suggests that internal developers may consider commit

frequency over short periods as a more critical or relevant factor for code quality. These differ-

ences in ratings highlight how developers’ experience and focus can influence their perception

and prioritization of various aspects of the code.

Finding 4: Small divergences in metric perceptions between internal and external developers,

highlighting the greater scrutiny from external developers.

Implications for RQ1. Both internal and external developers show strong agreement

on prioritizing metrics related to risk and complexity aspects, such as security and class coupling

(CBO), as crucial factors for refactoring. The high emphasis placed on these metrics underscores
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the importance of system integrity and structural complexity in determining the need for refac-

toring. Additionally, developers emphasize the importance of agile practices, an adaptable and

continuous approach to refactoring, and the interdependence between testing, code complexity,

and risk management.

Metrics with lower scores, such as NOSI and other metrics related to basic code

elements like Quantity of Number and Number of Unique Words, are considered less relevant

by both groups of developers. This low prioritization indicates that more superficial aspects

of the code are not considered decisive factors for the need to refactor, reinforcing the focus

on structural and security issues. External developers tend to provide more critical evaluations

of metrics, particularly for metrics such as DIT, Quantity of Loops, and Quantity of Method

Invocations. This heightened scrutiny may be attributed to a broader perspective that is less

influenced by the specific project context.

5.3.2 How do different ML techniques behave in predicting the code refactorings triviality

index? (RQ2)

To address RQ2, we analyzed all datasets and assessed the performance of various

ML algorithms in predicting the triviality index. Table 19 provides important insights into the

average performance of different ML algorithms across different metrics and configurations

used in this study. The values in the table are highlighted on a grayscale, where the intensity of

the color increases as values approach the highest and lowest extremes. The average analysis

of performance metrics offers an overview of the strengths and limitations of each model,

highlighting those that are effective for predicting the triviality index of code refactorings in the

context of our study.

In summary, our results indicate that tree-based models (Random Forest, Gradient

Boosting, XGBoost) are the most effective for predicting the triviality index of code refactorings.

These models achieved the lowest mean squared error (MSE) values, averaging around 0.0016

for Random Forest, Gradient Boosting, and XGBoost, compared to 0.0019 for Decision Tree,

indicating high prediction accuracy. The root mean squared error (RMSE) was similarly low,

with average values of 0.0384 for Gradient Boosting and 0.0386 for Random Forest and XGBoost.

Moreover, the mean absolute errors (MAE) were lower for these models, approximately 0.0125

for Random Forest and 0.0132 for Gradient Boosting. Regarding the mean absolute percentage

error (MAPE), these models recorded average values of 2.0474% for the Random Forest and
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2.0841% for the Decision Tree, underscoring their superior performance with minimal percentage

deviation.

The average R2 coefficients were high, with Gradient Boosting reaching an average

of 0.9273 and XGBoost approximately 0.9270, indicating that these models explain over 92%

of the variability in the data. The average adjusted R2 was similarly high, with XGBoost at

0.9285, Random Forest at 0.9246, and Gradient Boosting at 0.9245, reinforcing the suitability

of these models for the context of the study. In contrast, the Elastic Net model demonstrated

lower performance, with average MSE values around 0.0040, RMSE of 0.0628, MAE of 0.0354,

MAPE of 6.5349%, R2 of 0.8188, and adjusted R2 of 0.7979. These metrics suggest that Elastic

Net may not be the optimal choice for predicting the triviality index.

These results highlight the effectiveness of tree-based models, such as Gradient

Boosting, particularly when used with a comprehensive set of metrics, to enhance the accuracy

and robustness of predictions in code refactoring environments.

Ridge regularization is a technique used to reduce model complexity and prevent

overfitting by penalizing regression coefficients with large magnitudes (McDonald, 2009).

However, the analysis of the average results across datasets suggests that Ridge regularization

did not have a significant impact on improving predictions for these datasets.

Considering the average metrics for Linear Regression and the Ridge model, we

observed that both models exhibited an average MSE of approximately 0.0027, suggesting that

Ridge regularization did not significantly improve prediction accuracy. The average RMSE

differed by only 0.0001 between the two models, indicating no difference between the two

models. This reinforces the conclusion that Ridge regularization did not provide a meaningful

enhancement to prediction accuracy.

The average MAE was approximately 0.023 for both models, suggesting that Ridge

regularization did not impact the model’s ability to predict average values. The average MAPE

was around 4.1 for both models, indicating that the relative proportion of error to the true values

remained consistent. Both models had an average R2 of about 0.879, suggesting they explained

a similar amount of variance in the data. The average adjusted R2 was approximately 0.866,

which confirms that Ridge regularization did not improve the model’s ability to fit the data when

adjusted for the number of predictors. It is important to note that while Ridge regularization is

an effective tool for mitigating multicollinearity and overfitting in high-dimensional datasets, its

impact can vary based on the specific characteristics of the data and the fit of the model to the
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problem.

Table 19 – Table of machine learning model results
APACHE ECLIPSE RANDOM

Model Metric DEV ALL DEV ALL DEV ALL AVG

LinearRegression

mse 0.0033 0.0023 0.0032 0.0020 0.0032 0.0019 0.0027
rmse 0.0577 0.0475 0.0566 0.0451 0.0564 0.0436 0.0512
mae 0.0297 0.0187 0.0255 0.0182 0.0273 0.0209 0.0234
mape 5.4001 3.3257 4.4645 3.4268 4.3312 3.7205 4.1115

r2 0.8369 0.8861 0.8528 0.8999 0.8792 0.9202 0.8792
r2a 0.8359 0.8810 0.8547 0.8918 0.8596 0.8745 0.8663

Ridge

mse 0.0033 0.0023 0.0032 0.0020 0.0032 0.0019 0.0027
rmse 0.0577 0.0475 0.0566 0.0451 0.0565 0.0434 0.0511
mae 0.0296 0.0187 0.0254 0.0181 0.0265 0.0203 0.0231
mape 5.3791 3.3214 4.4495 3.4193 4.1952 3.5737 4.0564

r2 0.8373 0.8861 0.8529 0.8999 0.8785 0.9207 0.8792
r2a 0.8360 0.8810 0.8547 0.8917 0.8592 0.8741 0.8661

ElasticNet

mse 0.0047 0.0037 0.0044 0.0033 0.0047 0.0030 0.0040
rmse 0.0685 0.0611 0.0666 0.0571 0.0688 0.0545 0.0628
mae 0.0409 0.0377 0.0381 0.0365 0.0318 0.0271 0.0354
mape 7.7201 6.9908 7.0111 6.9241 5.3722 5.1912 6.5349

r2 0.7704 0.8111 0.7964 0.8397 0.8199 0.8753 0.8188
r2a 0.7673 0.8041 0.8003 0.8323 0.7860 0.7974 0.7979

DecisionTree

mse 0.0025 0.0019 0.0029 0.0019 0.0012 0.0007 0.0019
rmse 0.0502 0.0434 0.0537 0.0432 0.0350 0.0270 0.0421
mae 0.0167 0.0140 0.0179 0.0129 0.0084 0.0061 0.0127
mape 2.7332 2.4028 2.8854 2.1549 1.2251 1.1033 2.0841

r2 0.8768 0.9050 0.8670 0.9082 0.9535 0.9694 0.9133
r2a 0.8825 0.9057 0.8716 0.9098 0.9526 0.9481 0.9117

RandomForest

mse 0.0022 0.0015 0.0024 0.0017 0.0008 0.0007 0.0016
rmse 0.0467 0.0393 0.0494 0.0411 0.0285 0.0268 0.0386
mae 0.0170 0.0124 0.0183 0.0135 0.0075 0.0064 0.0125
mape 2.7654 2.0721 3.0298 2.2836 1.0637 1.0695 2.0474

r2 0.8934 0.9219 0.8873 0.9168 0.9691 0.9698 0.9264
r2a 0.8983 0.9222 0.8896 0.9190 0.9610 0.9577 0.9246

GradientBoosting

mse 0.0021 0.0016 0.0024 0.0017 0.0008 0.0007 0.0016
rmse 0.0462 0.0394 0.0490 0.0409 0.0275 0.0273 0.0384
mae 0.0180 0.0130 0.0191 0.0144 0.0085 0.0064 0.0132
mape 3.0005 2.2104 3.1916 2.4536 1.3346 0.9938 2.1974

r2 0.8955 0.9216 0.8893 0.9177 0.9713 0.9686 0.9273
r2a 0.8988 0.9221 0.8902 0.9183 0.9590 0.9584 0.9245

XGBoost

mse 0.0022 0.0015 0.0024 0.0017 0.0008 0.0008 0.0016
rmse 0.0464 0.0390 0.0490 0.0411 0.0281 0.0279 0.0386
mae 0.0188 0.0135 0.0199 0.0145 0.0087 0.0076 0.0138
mape 3.1591 2.3081 3.1945 2.4680 1.2676 1.1461 2.2572

r2 0.8946 0.9231 0.8901 0.9169 0.9700 0.9672 0.9270
r2a 0.8984 0.9236 0.8950 0.9172 0.9599 0.9605 0.9258

Source: Prepared by the author.

Finding 5: Ridge regularization did not have a significant impact on improving predictions

for the datasets used in our study: Apache, Eclipse, and Random.
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The Linear Regression and Ridge models demonstrated moderate performance

compared to the other algorithms. Both models achieved an MSE of approximately 0.0027,

indicating a reasonable level of accuracy, but lower than tree-based models such as Random

Forest and Gradient Boosting. The RMSE and MAE for these models averaged 0.0512 and

0.0234 for Linear Regression, and 0.0511 and 0.0231 for Ridge, indicating that these algorithms

are less effective at capturing variability in the data.

The average R² for both models was 0.8792, with an adjusted R² of 0.8663 for

Linear Regression and 0.8661 for Ridge, reflecting reasonable explanatory power. However,

this is still below that of more advanced models, which achieved R² values of 0.9133 or higher,

demonstrating superior performance. The MAPE metric, which indicates the mean absolute per-

centage error, was 4.1115% for Linear Regression and 4.0564% for Ridge, indicating reasonable

accuracy, though not as robust as the tree-based models.

Finding 6: While Linear Regression and Ridge Regression models demonstrated moderate

performance, they were outperformed by tree-based models advanced algorithms such as

Decision Tree, Random Forest, Gradient Boosting, and XGBoost.

The Elastic Net model exhibited the worst average performance among all the

algorithms analyzed. The average MSE was 0.0040, the highest among the models, indicating

greater inaccuracy in the predictions. Additionally, the average RMSE and MAE were also

higher, with values of 0.0628 and 0.0354, respectively, suggesting that the model is less effective

at capturing data variability compared to the other algorithms. The average R² for Elastic Net was

0.8188, and the adjusted R² was 0.7979, both the lowest among the models studied, indicating

that this algorithm explains less of the variability in the data. Additionally, the average MAPE

was 6.5349%, the highest among the models, reflecting a higher percentage error in predictions.

These results suggest that Elastic Net may not be the most suitable choice for predicting the

triviality index of code refactorings in this specific context.

Finding 7: In our study, the Elastic Net model demonstrated the poorest performance.

Tree-based and ensemble models, such as Random Forest, Gradient Boosting, and

XGBoost, emerged as the most effective across all aspects. They achieved the lowest average

MSE of 0.0016, demonstrating excellent prediction accuracy even in the presence of outliers. The
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RMSE and MAE metrics were consistently low, with average values of 0.0386 and 0.0125 for

Random Forest, 0.0384 and 0.0132 for Gradient Boosting, and 0.0386 and 0.0138 for XGBoost.

These results indicate that these models are highly proficient in capturing data variability and

providing accurate and consistent predictions.

The average R² values were 0.9264 for Random Forest, 0.9273 for Gradient Boosting,

and 0.9270 for XGBoost, demonstrating that these models account for over 92% of the data

variability. The average adjusted R² values were 0.9246 for Random Forest, 0.9245 for Gradient

Boosting, and 0.9258 for XGBoost, highlighting their robustness and appropriateness for the

problem. The average MAPE was 2.0474% for Random Forest, 2.1974% for Gradient Boosting,

and 2.2572% for XGBoost. These values are significantly lower compared to the regression

models and Elastic Net, indicating minimal percentage errors and high prediction accuracy.

Finding 8: Tree-based and ensemble models –specifically Random Forest, Gradient Boost-

ing, and XGBoost – demonstrated the best performance.

XGBoost, another tree-based model, demonstrated performance very close to that of

the Random Forest and Gradient Boosting models. With an average MSE of 0.0016, it matched

the accuracy of the other tree-based models. The average RMSE was 0.0386, and the average

MAE was 0.0138, both reflecting effective capture of data variability. The average R² was

0.9270, and the average adjusted R² was 0.9258, demonstrating the highest explanatory power

among the models, with the incorporation of new features enhancing this capability. The average

MAPE was 2.2572%, slightly higher than that of the other tree-based models but still indicating

high prediction accuracy. This places XGBoost among the top models, although it falls behind

Random Forest and Gradient Boosting in certain metrics.

Finding 9: The XGBoost model presented the best average explanatory power among the

models, with improved performance due to the addition of new features.

In the Random ecosystem, tree-based models, particularly Random Forest, Gradient

Boosting, and XGBoost, exhibited efficient and consistent performance across error metrics

(MSE, RMSE, MAE, MAPE) and determination coefficients (R² and adjusted R²). Random

Forest achieved the lowest MAPE in both datasets (DEV and ALL), with 1.0637% and 1.0695%,

respectively, indicating the smallest percentage variation in errors relative to the true values.
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Gradient Boosting obtained the lowest RMSE in the DEV dataset (0.0275), indicating a slight

edge in root mean squared error precision, though all three models showed very close perfor-

mance. XGBoost exhibited an excellent balance between accuracy and explanatory power, with

an adjusted R² of 0.9605 in the ALL dataset, the highest among the three models, suggesting that

it is somewhat more effective at incorporating new features.

These results highlight that, within the Random ecosystem, tree-based and ensemble

models like Random Forest, Gradient Boosting, and XGBoost are exceptionally effective. They

not only minimize prediction errors but also exhibit strong explanatory power, demonstrating

robustness in both development (DEV) and complete (ALL) datasets. This consistency indicates

that these models are suitable for applications where accuracy is critical.

Finding 10: Tree-based and ensemble models demonstrated superior performance within

the Random ecosystem.

Implication for RQ2. The results indicate that tree-based and ensemble models,

particularly Random Forest, Gradient Boosting, and XGBoost, are the most effective for pre-

dicting the triviality index of code refactorings in the context of our study. These models not

only achieved the lowest error metrics but also exhibited strong explanatory power, effectively

capturing data variability. In contrast, Elastic Net was less effective, suggesting that it may not

be the optimal choice for the data types and issues addressed in this study.

These findings have important implications for selecting models in contexts where

prediction accuracy and robustness are critical. Employing tree-based and ensemble models

can substantially enhance prediction quality in code refactoring environments, especially when

managing large datasets and capturing complex nuances in predictor variables. Additionally, the

analysis highlights the necessity of choosing the right model for the specific problem, taking into

account not just error metrics but also the model’s explanatory power and robustness.

5.3.3 What is the impact of prioritizing features ranked by developers on the effectiveness of

triviality index prediction models? (RQ3)

To answer RQ3, we compared the performance of ML models configured with

features prioritized by developers (DEV) against those using all collected features (ALL). We

assessed how these approaches influence the prediction of the triviality index for code refactorings.
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Table 20 presents the results obtained for the applied models. The analysis of the data reveals

that the difference between using all features (ALL) and only the prioritized features (DEV)

provides insights into the effectiveness of feature prioritization. Overall, the results show that

using all features (ALL) often resulted in better model performance, as evidenced by reduced

error metrics such as MSE, RMSE, MAE, and MAPE, as well as an increase in the R² and

adjusted R² coefficients.

This trend suggests that while the features prioritized by developers are valuable,

they may not fully capture the complexity of the data as effectively as including all available

variables. Incorporating a comprehensive set of features can offer a more detailed understanding

of the data, contributing to more accurate and robust models for predicting the triviality index.

Therefore, the results indicate that the approach using all collected features tends to

enhance the effectiveness of prediction models, offering superior performance in predicting the

triviality index of code refactorings. This finding highlights the importance of a comprehensive

analysis of features to optimize machine learning model performance and suggests that feature

prioritization should be done carefully to ensure that critical information is not omitted.

The reduction in MSE was consistent across all three ecosystems when using all

features instead of only those prioritized by developers. The most significant reduction was

observed in the Random ecosystem for the Elastic Net model, with a decrease of -0.0017.

This suggests that incorporating all features may enhance accuracy by including additional

information that could have been overlooked during developer selection. Furthermore, RMSE

values were also lower when all features were used compared to the DEV features. In the

Random ecosystem for the Elastic Net model, the difference was -0.0143. The analysis indicates

that using all available features can reduce the mean squared error of the models, potentially

increasing prediction accuracy by capturing more relevant variables.

Finding 11: Incorporating all available features can reduce the mean squared error of the

models, leading to improved prediction accuracy.

The MAE was lower when all features were used, with the most decrease in the

Linear Regression model: -0.0110, -0.0073, and -0.0064 for the Apache, Eclipse, and Random

ecosystems, respectively. This indicates that predictions are generally closer to the actual values

when all features are included. Additionally, the MAPE showed a more substantial decrease,

especially in the Linear Regression and Ridge models within the Apache ecosystem, with
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Table 20 – Results of impact of selected metrics by developer
APACHE ECLIPSE RANDOM

Model Metric DEV ALL DIFF DEV ALL DIFF DEV ALL DIFF

LinearRegression

mse 0.0033 0.0023 -0.0010 0.0032 0.0020 -0.0012 0.0032 0.0019 -0.0013
rmse 0.0577 0.0475 -0.0102 0.0566 0.0451 -0.0115 0.0564 0.0436 -0.0128
mae 0.0297 0.0187 -0.0110 0.0255 0.0182 -0.0073 0.0273 0.0209 -0.0064

mape 5.4001 3.3257 -2.0744 4.4645 3.4268 -1.0377 4.3312 3.7205 -0.6107
r2 0.8369 0.8861 0.0492 0.8528 0.8999 0.0471 0.8792 0.9202 0.0410
r2a 0.8359 0.8810 0.0451 0.8547 0.8918 0.0371 0.8596 0.8745 0.0149

Ridge

mse 0.0033 0.0023 -0.0010 0.0032 0.0020 -0.0012 0.0032 0.0019 -0.0013
rmse 0.0577 0.0475 -0.0102 0.0566 0.0451 -0.0115 0.0565 0.0434 -0.0131
mae 0.0296 0.0187 -0.0109 0.0254 0.0181 -0.0073 0.0265 0.0203 -0.0062

mape 5.3791 3.3214 -2.0577 4.4495 3.4193 -1.0302 4.1952 3.5737 -0.6215
r2 0.8373 0.8861 0.0488 0.8529 0.8999 0.0470 0.8785 0.9207 0.0422
r2a 0.8360 0.8810 0.0450 0.8547 0.8917 0.0370 0.8592 0.8741 0.0149

ElasticNet

mse 0.0047 0.0037 -0.0010 0.0044 0.0033 -0.0011 0.0047 0.0030 -0.0017
rmse 0.0685 0.0611 -0.0074 0.0666 0.0571 -0.0095 0.0688 0.0545 -0.0143
mae 0.0409 0.0377 -0.0032 0.0381 0.0365 -0.0016 0.0318 0.0271 -0.0047

mape 7.7201 6.9908 -0.7293 7.0111 6.9241 -0.0870 5.3722 5.1912 -0.1810
r2 0.7704 0.8111 0.0407 0.7964 0.8397 0.0433 0.8199 0.8753 0.0554
r2a 0.7673 0.8041 0.0368 0.8003 0.8323 0.0320 0.7860 0.7974 0.0114

DecisionTree

mse 0.0025 0.0019 -0.0006 0.0029 0.0019 -0.0010 0.0012 0.0007 -0.0005
rmse 0.0502 0.0434 -0.0068 0.0537 0.0432 -0.0105 0.0350 0.0270 -0.0080
mae 0.0167 0.0140 -0.0027 0.0179 0.0129 -0.0050 0.0084 0.0061 -0.0023

mape 2.7332 2.4028 -0.3304 2.8854 2.1549 -0.7305 1.2251 1.1033 -0.1218
r2 0.8768 0.9050 0.0282 0.8670 0.9082 0.0412 0.9535 0.9694 0.0159
r2a 0.8825 0.9057 0.0232 0.8716 0.9098 0.0382 0.9526 0.9481 -0.0045

RandomForest

mse 0.0022 0.0015 -0.0007 0.0024 0.0017 -0.0007 0.0008 0.0007 -0.0001
rmse 0.0467 0.0393 -0.0074 0.0494 0.0411 -0.0083 0.0285 0.0268 -0.0017
mae 0.0170 0.0124 -0.0046 0.0183 0.0135 -0.0048 0.0075 0.0064 -0.0011

mape 2.7654 2.0721 -0.6933 3.0298 2.2836 -0.7462 1.0637 1.0695 0.0058
r2 0.8934 0.9219 0.0285 0.8873 0.9168 0.0295 0.9691 0.9698 0.0007
r2a 0.8983 0.9222 0.0239 0.8896 0.9190 0.0294 0.9610 0.9577 -0.0033

GradientBoosting

mse 0.0021 0.0016 -0.0005 0.0024 0.0017 -0.0007 0.0008 0.0007 -0.0001
rmse 0.0462 0.0394 -0.0068 0.0490 0.0409 -0.0081 0.0275 0.0273 -0.0002
mae 0.0180 0.0130 -0.0050 0.0191 0.0144 -0.0047 0.0085 0.0064 -0.0021

mape 3.0005 2.2104 -0.7901 3.1916 2.4536 -0.7380 1.3346 0.9938 -0.3408
r2 0.8955 0.9216 0.0261 0.8893 0.9177 0.0284 0.9713 0.9686 -0.0027
r2a 0.8988 0.9221 0.0233 0.8902 0.9183 0.0281 0.9590 0.9584 -0.0006

XGBoost

mse 0.0022 0.0015 -0.0007 0.0024 0.0017 -0.0007 0.0008 0.0008 0.0000
rmse 0.0464 0.0390 -0.0074 0.0490 0.0411 -0.0079 0.0281 0.0279 -0.0002
mae 0.0188 0.0135 -0.0053 0.0199 0.0145 -0.0054 0.0087 0.0076 -0.0011

mape 3.1591 2.3081 -0.8510 3.1945 2.4680 -0.7265 1.2676 1.1461 -0.1215
r2 0.8946 0.9231 0.0285 0.8901 0.9169 0.0268 0.9700 0.9672 -0.0028
r2a 0.8984 0.9236 0.0252 0.8950 0.9172 0.0222 0.9599 0.9605 0.0006

Source: Prepared by the author.
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reductions of -2.0744 and -2.0577, respectively. This indicates that percentage errors were

reduced with the use of all features, suggesting that feature limitations can be particularly

detrimental in contexts where percentage accuracy is critical. The improvement in MAE and

MAPE further indicates that using all features can result in more accurate predictions in absolute

terms, aligning them more closely with the actual values.

Finding 12: Incorporating all features can improve model efficiency by producing predictions

that are closer to the actual values and by reducing percentage errors.

Linear models, such as Linear Regression, Ridge, and Elastic Net, are more sensitive

to feature selection. When all features (ALL) are used, these models often exhibit higher R² and

adjusted R² values, indicating that they are better at capturing data variability. This is because

linear models rely heavily on including all relevant variables to explain the relationships between

independent and dependent variables.

Additionally, the R² metric increased with the use of all features, with an average

of 4.2%, 4.4%, and 2.5% in the Apache, Eclipse, and Random ecosystems, respectively. In

the Random ecosystem, the Elastic Net model showed the largest increase, with a 6.8% in R².

Moreover, there was a similar and positive percentage increase in the adjusted R² metric. Of

the 21 trained models, 18 showed an improvement in adjusted R² with the use of all features,

suggesting that the increase in the number of features was beneficial, even when accounting for

the penalty of greater model complexity. This means that 85.7% of the models performed better

with the inclusion of all features (ALL).

These results indicate that, in most cases, using all features led to a better explanation

of data variability, both in terms of R² and adjusted R², demonstrating that including more

features was beneficial for model performance.

Finding 13: Models with more features provided a better explanation of data variability,

effectively mitigating the penalties associated with increased feature count and complexity.

We can observe in Table 18 that the effectiveness of using all features compared

to prioritizing features selected by developers varies significantly depending on the model.

Linear models (Linear Regression, Ridge, and Elastic Net) were the most sensitive to feature

prioritization, demonstrating that predictive performance improves significantly with the use
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of all features. Linear Regression, in particular, was notably affected, showing larger absolute

values of DIFF. Tree-based models (Decision Tree, Random Forest, Gradient Boosting, and

XGBoost) were less impacted by feature prioritization, with smaller differences (DIFF) between

ALL and DEV feature sets.

These models demonstrate greater robustness and stability, regardless of the feature

set used. The variation in behavior across models suggests that when choosing an ML model

for a given problem, the feature selection strategy should be aligned with the model type. For

linear models, an approach that includes as many features as possible may be more beneficial.

Conversely, for tree-based models, feature prioritization or reduction may be less crucial, as

these models have internal mechanisms to handle variable selection.

Therefore, feature prioritization by developers has a significantly greater impact

on linear models, where the absence of relevant variables can lead to a substantial decrease in

performance. In contrast, tree-based models tend to be more performant and less sensitive to this

prioritization, maintaining stable performance regardless of the feature set used.

Finding 14: Feature prioritization by developers has a greater impact on linear models, while

tree-based models are less affected and maintain more consistent performance.

Implications for RQ3. The analysis of the results reveals that using all features

generally leads to better model prediction performance compared to the selection of developer-

prioritized features. This is evidenced by a significant reduction in error metrics such as MSE,

RMSE, MAE, and MAPE, as well as an increase in the R² and adjusted R² coefficients. These

findings indicate that including all relevant variables enhances model accuracy and predictive

capability, providing a more comprehensive and detailed view of the data.

Although feature prioritization may reflect developers’ perceived importance of cer-

tain variables, a comprehensive data analysis can uncover additional variables that significantly

contribute to model performance. Therefore, the most robust approach involves combining devel-

opers’ expert knowledge with a thorough feature analysis, ensuring that essential information is

not overlooked and that ML models are developed more effectively and with greater explanatory

power.
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5.3.4 To what extent is the proposed triviality index aligned with the developers’ perception

regarding the triviality of applying refactorings? (RQ4)

To address RQ4, we collected feedback from developers with experience in refactor-

ing by asking questions that covered various areas: developers’ profiles (such as age, gender,

country, and education level), their experiences with software refactoring, and their evaluations

of complexity, speed, and risk in various refactoring scenarios. We rely on the Likert scale to

measure the perceived difficulty of performing operations based on these aspects, ranging from

very difficult (1) to very easy (5).

The results indicate that 43.7% of developers who participated in the survey have over

7 years of experience in software development, indicating a high level of seniority. Many hold

positions as backend or full-stack developers, equivalent to 56.2%. Additionally, a significant

portion of the participants(93.7%) have experience in the software development process related

to refactoring and have worked directly with it. This is supported by responses indicating that

many developers regularly engage in refactoring as a common practice in their work. Regarding

age distribution, more than 62% of the developers are between 25 and 34 years old, followed by

a smaller group of younger developers aged 18 to 24. This indicates that the sample primarily

consists of professionals in an intermediate stage of their careers.

Table 21 presents experts’ evaluations on refactoring operations, considering com-

plexity, speed, and risk aspects. Each developer is identified by the letter "D" followed by a

number, and they are categorized into two groups based on their refactoring frequency: D -

Daily, W - Weekly, M - Monthly, and A - Annually. Group G1 includes developers who perform

refactoring daily or weekly, while Group G2 comprises those who perform refactoring monthly

or annually. Group G3 represents the total number of developers. Each row in the table details

the complexity, speed, and risk aspects, and the average of these three factors to calculate the

final index. Refactoring operations are listed from 1 to 12, with evaluations on a Likert scale

ranging from 1 (Very Difficult) to 5 (Very Easy).

In summary, our results indicate that the frequency of refactoring does not signifi-

cantly impact the perception of complexity and speed among developer groups who performing

refactor at different frequencies, with a minimal variation of 2%. However, the group that

refactors less frequently (G2) perceives a 6% higher risk than those who refactors daily or

weekly. Finally, comparisons between the groups and the predictive model showed high p-values,

indicating no statistically significant differences between developers’ perceptions and the model’s
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Table 21 – Expert assessment
Freq. W W D D W W W W D M M M M A M M Models

Ref. D1 D2 D3 D4 D5 D6 D7 D8 D9 Med D10 D11 D12 D13 D14 D15 D16 MED RF GB XGB

r1 4 4 4 5 4 4 4 3 4 4 5 4 5 3 4 3 4 4
r1 3 4 4 5 4 4 5 4 4 4 5 4 5 2 5 4 4 4
r1 1 3 4 5 4 2 5 3 4 4 4 4 4 1 4 3 4 4 0.78 0.76 0.76
i1 3 4 4 5 4 3 5 3 4 4 5 4 5 2 4 3 4 4 4 4 4
r2 4 5 5 5 4 5 5 4 3 5 5 4 5 2 4 4 4 4
r2 4 5 5 5 4 5 5 3 3 5 5 4 5 2 2 5 4 4
r2 4 5 5 5 2 5 5 4 3 5 5 3 5 2 4 4 3 4 0.84 0.80 0.75
i2 4 5 5 5 3 5 5 4 3 5 5 4 5 2 3 4 4 4 5 5 4
r3 4 4 5 3 4 2 5 2 2 4 5 3 5 4 4 4 3 4
r3 4 3 5 3 4 2 5 2 3 3 5 3 5 3 2 4 3 3
r3 4 4 5 3 5 2 5 2 2 4 5 3 3 3 3 2 3 3 0.79 0.75 0.75
i3 4 4 5 3 4 2 5 2 2 4 5 3 4 3 3 3 3 3 4 4 4
r4 4 4 4 3 4 2 5 4 2 4 5 3 3 3 5 3 4 3
r4 4 3 4 3 5 2 5 4 3 4 5 3 4 4 5 3 3 4
r4 4 3 4 3 4 2 5 2 3 3 4 2 3 2 4 2 3 3 0.77 0.75 0.73
i4 4 3 4 3 4 2 5 3 3 3 5 3 3 3 5 3 3 3 4 4 4
r5 3 4 5 5 4 2 5 3 3 4 5 4 5 3 5 4 3 4
r5 3 4 5 5 4 2 5 3 3 4 5 4 5 3 5 4 3 4
r5 3 3 5 5 5 2 5 3 3 3 5 4 5 1 3 4 4 4 0.74 0.73 0.72
i5 3 4 5 5 4 2 5 3 3 4 5 4 5 2 4 4 3 4 4 4 4
r6 4 5 5 5 5 4 4 2 3 4 5 5 5 4 5 4 5 5
r6 4 5 5 5 5 4 3 2 3 4 5 5 4 3 5 4 4 4
r6 4 4 5 5 4 4 3 2 3 4 5 4 5 4 1 4 3 4 0.74 0.73 0.72
i6 4 5 5 5 5 4 3 2 3 4 5 5 5 4 4 4 4 4 4 4 4
r7 2 3 2 3 2 2 3 3 3 3 4 3 2 2 2 4 2 2
r7 2 3 2 4 3 2 3 4 3 3 4 2 2 2 2 4 2 2
r7 4 4 5 3 4 2 2 2 3 3 4 3 2 1 2 4 2 2 0.74 0.74 0.72
i7 3 3 3 3 3 2 3 3 3 3 4 3 2 2 2 4 2 2 4 4 4
r8 4 3 5 3 3 2 4 2 3 3 5 4 3 3 1 4 3 3
r8 4 3 5 4 2 2 4 2 2 3 5 3 4 2 3 4 2 3
r8 4 3 5 2 4 2 4 2 3 3 5 3 2 2 2 4 2 2 0.77 0.75 0.71
i8 4 3 5 3 3 2 4 2 3 3 5 3 3 2 2 4 2 3 4 4 4
r9 3 3 5 3 4 2 3 2 3 3 5 4 4 3 2 4 3 4
r9 3 3 5 4 4 2 3 2 3 3 5 3 5 2 3 4 4 4
r9 3 3 5 2 4 2 2 1 3 3 5 3 3 1 2 4 3 3 0.79 0.76 0.73
i9 3 3 5 3 4 2 3 2 3 3 5 3 4 2 2 4 3 3 4 4 4

r10 1 2 5 5 2 2 4 3 3 3 5 3 5 5 2 3 3 3
r10 1 3 5 5 2 2 4 2 3 3 5 2 5 5 2 3 2 3
r10 1 2 5 5 4 2 4 3 3 3 5 2 5 1 3 3 3 3 0.79 0.76 0.73
i10 1 2 5 5 3 2 4 3 3 3 5 2 5 4 2 3 3 3 4 4 4
r11 4 2 5 2 4 3 3 2 3 3 5 3 3 4 1 3 3 3
r11 4 3 5 2 5 3 3 2 3 3 5 2 5 4 1 4 3 4 0.75 0.74 0.72
r11 4 3 5 2 2 3 2 2 3 3 5 2 2 1 1 3 2 2
i11 4 3 5 2 4 3 3 2 3 3 5 2 3 3 1 3 3 3 4 4 4
r12 4 2 5 2 4 2 3 2 3 3 5 3 4 3 1 3 3 3
r12 4 3 5 2 5 2 3 2 4 3 5 2 5 4 1 4 3 4
r12 4 3 5 2 2 2 2 2 3 2 5 2 3 3 1 3 2 3 0.75 0.74 0.72
i12 4 3 5 2 4 2 3 2 3 3 5 2 4 3 1 3 3 3 4 4 4

3.4 3.4 4.7 3.7 3.8 2.6 3.9 2.6 3.0 3.5 4.9 3.2 4.0 2.7 2.8 3.6 3.1 3.4
Source: Prepared by the author
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predictions.

Despite the initial expectation that frequent practice would significantly reduce the

perception of complexity, our results indicate that the difference between groups G1 (daily and

weekly) and G2 (monthly and annually) is minimal. The variation in perceived difficulty related

to complexity and risk is approximately 2% between these groups. This limited variation can

be attributed to the fact that refactoring, irrespective of its frequency, requires a consistent level

of technical expertise to implement the necessary steps effectively. As a result, the perceived

differences in complexity and risk between the groups are minimal.

Finding 15: The frequency of refactoring has a minimal impact, with only a 2% difference

in the perception of complexity and speed among the expert groups.

Regarding the perception of risk in refactoring operations, we observed that there is

a noticeable difference between the expert groups. The developers in Group G2, who perform

refactoring monthly or annually, tend to assess the risk of each operation as higher compared to

developers in Group G1, who refactor daily or weekly. This increase in perceived risk may be

related to a lack of familiarity and confidence in performing these tasks, as infrequent practice

may not provide the same level of mastery over the operations, nor the ability to anticipate and

manage potential issues. In contrast, developers in Group G1, who refactor more frequently,

exhibit greater confidence and less concern about risks, which may be linked to their accumulated

experience in this activity. This finding highlights the importance of continuous refactoring

practice as a means of reducing perceived risk and enhancing security in operations.

Finding 16: Developers in Group G2 rate the risk of refactoring 6% higher than those in

Group G1.

Table 22 presents the results of applying the Mann-Whitney U test to the triviality

index values derived from the experts’ evaluations and the mapped results from ensemble models

with similar outcomes and greater effectiveness. This non-parametric test is employed to compare

differences between two independent groups and is particularly useful when the data do not

follow a normal distribution.

Comparisons between Groups G1 and G2, as well as between G1, G2, and the

predictive model, yield similar results. The U values indicate variations between the groups, but
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the p-values are consistently high, often exceeding 0.05, suggesting the absence of statistically

significant differences. Neither Group G1 nor Group G2 showed significant deviations when

compared to the predictive model. Group G3, which combines G1 and G2, also exhibited similar

results in relation to the predictive model, with variations in U values but without achieving

statistical significance.

Table 22 – Test of Mann-Whitney U with groups and models
G1 x G2 G1 x Models G2 x Models G3 x Models

Refactoring U p U p U p U p

REFACTORING_1 30.5 0.955 12 0.835 10.5 1 22 0.903
REFACTORING_2 23 0.367 11 0.677 5.5 0.274 16.5 0.399
REFACTORING_3 31 1 10.5 0.618 4.5 0.166 15 0.320
REFACTORING_4 31 1 7.5 0.268 6 0.322 13.5 0.228
REFACTORING_5 30 0.912 12 846 10.5 1 22.5 0.906
REFACTORING_6 26 0.569 12 845 6 0.253 18 0.503
REFACTORING_7 25 0.476 0 0.004 3 0.078 3 0.013
REFACTORING_8 26.5 0.618 6 0.170 4.5 0.189 10.5 0.130
REFACTORING_9 28.5 0.78 4.5 0.096 6 0.327 10.5 0.128
REFACTORING_10 27.5 0.702 7.5 0.295 7.5 0.553 15 0.329
REFACTORING_11 25.5 0.532 6 0.170 3 0.095 9 0.088
REFACTORING_12 30.5 0.956 6 0.173 4.5 0.190 10.5 0.132
Note. HaµG1 ̸= µG2 HaµG1 ̸= µModel HaµG2 ̸= µModel HaµG3 ̸= µModel

Source: Prepared by the author

Finding 17: Despite variations in the U values, comparisons between Groups G1, G2, and

G3 indicate that the observed differences between developer groups and models are not

statistically significant, reinforcing the similarity between the distributions.

Implications RQ4: These findings suggest that continuous refactoring practice may

not be critically important for perceptions of complexity and speed, but it does have a subtle

impact on the perception of risk. Additionally, there is alignment between the perceptions of the

expert developer groups and the predictive models presented in this study. This indicates that the

triviality index is effectively aligned with developers’ perceptions, positioning it as a reliable

proposal for implementation in automated refactoring solutions for developers.

5.4 Threats to validity

This section discusses threats to the validity of the study according to the classifica-

tion of Wohlin et al. (2012).
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Internal Validity. In our study, we utilized various tools for commit analysis:

RefactoringMiner (Tsantalis et al., 2020), known for its high accuracy in detecting software

refactorings; Pydriller (Tsantalis et al., 2018), for extracting source code from files; PMD9, to

identify code smells and security issues; and CKTool (Aniche, 2015), for collecting code metrics

from files involved in refactorings. Although these tools offer high precision, failures can still

occur during the mining process. To minimize this risk, we repeated some steps of the process

whenever necessary.

Similarly, some metrics may have been used as independent variables in the ML

models but may not be sufficiently related to the triviality index, which could inflate the results

and accuracy of the models in some cases. To address this issue, we conducted a survey with

developers to identify the most relevant metrics and ensure that the model uses only metrics

pertinent to our objective. Additionally, open-source projects may vary in their refactoring

practices, potentially introducing biases into the results. To mitigate this threat, we employed

the SMOGN data balancing technique, which helps reduce bias in the models. Furthermore,

cross-validation and hyperparameter tuning were applied to enhance the robustness of the models.

External Validity. Although we analyzed a large number of projects (1,259), only

77,630 refactorings met the criteria established by our filters, and the tools used were limited to

JAVA projects. This may restrict the generalizability of the model, especially when considering

factors such as programming language, maintainability, programming paradigm, or software

quality. Additionally, depending on the domain of the systems, the results may vary significantly,

potentially affecting the model’s applicability to systems outside the context of the analyzed data.

To mitigate this limitation, we selected projects from different domains and involved various

developers to enhance the robustness and applicability of the model

Construct Validity. Defining the Triviality Index as a composite metric may present

challenges in practical interpretation, especially if the weights assigned to different aspects

(complexity, speed, and risk) do not accurately reflect the reality of the analyzed projects. To

mitigate this threat, the validation process with developers aims to ensure that the metrics used

are relevant and suitable for refactoring practice. Additionally, the flexibility of the index formula

allows for adjustments to the weights assigned to each aspect of the triviality index, helping to

tailor the model to different development contexts and enhancing its applicability.

Another threat to construct validity was the imbalance in the dataset. The features
9 https://pmd.github.io/
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extracted for the dataset were disproportionate, which could introduce bias into the results, with

aspects having a higher number of features potentially exerting a stronger influence on predictions.

To mitigate this threat, we applied the SMOGN oversampling technique, specifically developed

for regression problems (Branco et al., 2017). However, even with this approach, algorithms

may vary in their sensitivity to this technique, and the challenge of ensuring proportional

representation of all features may persist.

Conclusion Validity. Since the models were applied to a specific set of projects

and refactorings, there is a risk that the conclusions may not be robust or that the results could

be influenced by specific variables or potential overfitting. To address this issue, we utilized

multiple projects and a range of ML models, conducting comparative analyses to ensure that the

findings were not limited to a single approach. Additionally, to enhance the reliability of our

conclusions and reduce this risk, we implemented cross-validation and hyperparameter tuning.

5.5 Concluding remarks

In this study, we analyzed and proposed an index based on code metrics to evaluate

the triviality of refactoring. We investigated whether the prioritization of features by developers

influenced the effectiveness of prediction models for the triviality index in code refactorings

and validated how well these models aligned with expert developers in refactoring. Our results

indicated that, although the features prioritized by developers are valuable, including all available

features often leads to better performance of the predictive models. Additionally, we observed a

strong alignment between the perceptions of expert developer groups and the predictive models

presented in this study. The practical implications of our study are significant for software

engineering. Using predictive models that are both highly effective and aligned with developers’

perceptions makes refactoring decisions more reliable and accurate.

Our main findings were: (i) The most important aspects, based on our analysis of

developers’ opinions and the distribution of metrics, were risk and complexity, followed by

speed. This suggests that simpler and faster refactorings with lower risk are more likely to be

implemented; (ii) Our machine learning models configured with all available features performed

significantly better than those using only the features prioritized by developers; (iii) Unlike linear

models, ensemble models such as Random Forest and Gradient Boosting demonstrated higher

performance and efficiency, regardless of whether they used all features or just those prioritized

by developers. These models were less impacted by feature selection, maintaining stable and



114

effective performance even with a reduced set of variables; and (iv) The proposed triviality index

metric proved to be effective and aligns well with developers’ perceptions, making it a reliable

solution for implementation in automated refactoring tools.

For future research, we recommend exploring the assignment of differentiated

weights to each aspect of the triviality index, such as complexity, speed, and risk, in order

to refine prediction accuracy. Additionally, it would be valuable to investigate in detail which

metrics have the greatest impact on predicting the triviality index, identifying those that truly

influence the results. We also suggest expanding the study to include a wider variety of metrics,

aiming for a more robust balance in predictive modeling. Finally, studies analyzing the impact

of these approaches across different types of software projects and programming languages

could provide valuable insights into the applicability and generalization of the results in diverse

contexts.
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6 CONCLUSION AND FUTURE WORK

In this Master’s dissertation, we identify the relationship between trivial and non-

trivial refactorings and propose a metric that evaluates the triviality of refactoring implementation.

The triviality index is an important metric for developers, as it can influence the decision of

whether or not to implement one refactoring. In particular, we conduct empirical studies to

explore the triviality of refactoring implementation. Indeed, there is a growing need for reliable

automated tools that can help developers evaluate refactoring implementation.

Even considering that refactoring brings benefits to software, such as: (i) increased

overall software quality; (ii) decreased maintenance costs; and, (iii) increased developer produc-

tivity (Moser et al., 2007; Fowler, 2018). Refactorings may sometimes negatively affect software

maintainability (Bavota et al., 2012; Kim et al., 2014; Penta et al., 2020; Almogahed et al., 2023;

Nikolaidis et al., 2024). Furthermore, even developers using automated tools may hesitate to

perform necessary refactorings, overestimating the risk associated with them (Silva et al., 2016;

Abid et al., 2022; Tan et al., 2024). Additionally, the literature review identified the importance

of developing empirical studies that promote solutions to improve and automate the refactoring

technique (Sharma et al., 2015; Singh; Kaur, 2018; Kaur; Singh, 2019; Baqais; Alshayeb, 2020;

Liu et al., 2024).

To address these limitations, this Master’s dissertation presented two empirical

studies. The first investigated how trivial refactorings can affect the prediction of non-trivial

refactorings, considering code attributes and metrics. The experiment was performed on 1,291

open-source projects and 55 metrics of code, using the following algorithms: Decision Tree,

Random Forest, Logistic Regression, Naive Bayes, and Neural Network as a supervised learning

technique with a classification problem. In addition, two data balancing techniques were

applied, and the refactorings were grouped according to their triviality, proposing contexts based

on combinations of refactoring types. The datasets were also separated to identify possible

generalizations of the models.

The second study proposed a metric based on ML through the regression problem to

evaluate the triviality of implementing a refactoring based on the aspects of complexity, speed

and risk. The experiment was performed on 1,259 open-source projects and 58 metrics of

code, using the following algorithms: Linear Regression, Elastic Net, Ridge, Decision Tree,

Random Forest, Gradient Boosting, and XGBoost as a supervised learning technique with a

regression problem. The study investigated how the prioritization of the features considered
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most important by developers affects the effectiveness of ML models in predicting the triviality

index. In addition, we verified the alignment of perceptions between groups of developers with

experience in refactoring and predictive models.

This chapter presents a summary of the main contributions of this master’s thesis, as

well as the publications derived during the period of its development. Additionally, suggestions

for future work based on the contributions of this research are offered, concluding with the final

considerations.

6.1 Main contributions

The main objective of this Master’s dissertation was to identify the relationship

between trivial and non-trivial refactorings, in addition to proposing a metric that evaluates the

triviality of refactoring implementation. To this end, a study was initially conducted to investigate

the impact of trivial refactorings on the prediction of non-trivial refactorings. This study is

presented in Chapter 4. Next, a study was conducted that proposes an index that evaluates

refactoring triviality to identify the degree of difficulty of its implementation concerning the

aspects of complexity, speed and risk from the point of view of software developers. This study

is presented in Chapter 5. The main contributions of this Master’s dissertation are presented

below.

Contribution 1: Tree-based models and Neural Networks better detect refactoring

opportunities. One of the main contributions of this Master’s dissertation is the detailed analysis

of the performance of different machine learning algorithms in detecting refactoring opportunities,

with a particular focus on tree-based models and neural networks. The study revealed that

algorithms such as Random Forest, Decision Tree, and Neural Network performed better when

trained with code metrics to identify refactoring opportunities. However, we observed that only

Random Forest and Decision Tree models could achieve good generalization across different

refactoring data contexts. This finding is relevant because it highlights the importance of selecting

algorithms that perform well on a specific dataset and generalize their performance to other

data domains. Finally, this contribution provides a solid basis for choosing machine learning

algorithms in future research and practical applications in detecting refactoring opportunities,

considering the context of this study.

Contribution 2: Impact of separating trivial and non-trivial refactorings on model

efficiency. Separating trivial and non-trivial refactorings into different classes results in more
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efficient models, even when applied to different datasets. This classification approach allows ML

models to acquire greater efficiency, thus improving prediction accuracy. Furthermore, the study

demonstrated that using balancing techniques that increase or decrease samples may not be the

best strategy to improve models trained by datasets composed of code metrics. This contribution

is particularly relevant to software development practice, as it suggests that proper classification

and separation of refactorings can significantly improve the efficiency of predictive models.

Contribution 3: Proposal of a Triviality Index based on code metrics with devel-

opers’ perception. One of the main contributions of this Master’s dissertation is the proposal

of a metric called the Triviality Index. We designed this index to evaluate the triviality of

implementing refactorings, which can assess the degree of difficulty of implementation based

on complexity, speed, and risk. To achieve the objective of this proposal, ML models based on

the Regression problem were used with features composed of static code metrics. Additionally,

we consulted internal and external developers for the projects to prioritize the most relevant

features for refactoring activity. However, the research demonstrated that, when including all

available features, predictive models achieve superior performance compared to the prioritization

of features by developers. This finding is significant because it suggests that considering a

wide range of code metrics, a comprehensive approach can provide a more accurate and robust

assessment of the triviality of refactorings. In addition, we conducted a survey to verify the

index’s agreement with the perceptions of expert developers regarding refactoring. The survey

showed significant alignment between expert perceptions and the results of the predictive models.

This indicates that the index’s effectiveness is consistent with that of developers, making it useful

for decision-making about refactoring in software development.

Contribution 4: Implementations of additional metrics. An important contribution

of this Master’s dissertation is the implementation of additional metrics, such as Score of

Similarity (SS) and Frequency of Commit (FOC), which represent important information for

analyzing refactoring and the effectiveness of predictive models. The Similarity Score was used

to measure the similarity between code versions. We provide a Java program to calculate the

metric in the code using Abstract Static Tree (AST) as the basis for the analysis. The similarity

between code files is an important metric to evaluate the degree of changes made over time

and serves for comparative analysis in terms of refactoring. On the other hand, the FOC metric

was implemented with Python scripts. It was used to evaluate the frequency with which certain

parts of the code are modified. It was calculated in different time intervals, representing the



118

frequency with which refactoring commits were made within these periods. The inclusion

of these additional metrics allowed us to obtain significant information for the analysis of

refactoring triviality, contributing to the creation of more accurate and robust predictive models.

This contribution enriches refactoring analysis by providing complementary information on code

changes and practical implementation to be reused and improved in future research.

Contribution 5: Developers’ perceptions regarding the refactoring triviality. An-

other significant contribution of this Master’s dissertation was the developers’ perceptions

resulting from the surveys on the relevance of code metrics and the degree of difficulty of imple-

menting refactorings. The first survey, which involved developers internal and external to the

projects, collected qualitative and quantitative data on the most relevant metrics for refactoring.

Our results indicate that developers external to the projects used in the study tend to value the

code metrics that involve complexity, best practices, performance, and security. On the other

hand, internal developers seem to be more conservative in their assessments. These findings

provide an empirical basis for the selection of metrics in predictive models, aligning them with

the needs of developers. The second survey evaluated the difficulty of implementing refactorings

based on the aspects of complexity, speed and risk. For data analysis, developers were divided

into two groups according to the frequency of applying refactoring. The results suggest that

the ongoing practice of refactoring may not be as critical to the perception of the degree of

refactoring implementation in terms of complexity and speed. Still, it does have a modest impact

on the perception of risk. This assessment is essential to understand developers’ barriers and

develop mitigation strategies. Thus, developers’ responses provide valuable insights into their

experiences and perceptions regarding code refactoring.

6.2 Publications

Until the completion of this Master’s dissertation, two articles on the topic were

published, references to Chapter 4. The most recent article, detailed in Chapter 5, is in the

submission phase. Table 23 contains information about these publications.

6.3 Future work

During the development of this Master’s dissertation, several insights, challenges

and opportunities emerged. Below, some directions for future work are proposed.
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Table 23 – Research publication
Publication Description

Pinheiro, D., Bezerra, C., Uchôa, A. (2022).
How do Trivial Refactorings Affect Classifica-
tion Prediction Models?. In Proceedings of the
16th Brazilian Symposium on Software Compo-
nents, Architectures, and Reuse (pp. 81-90).
https://doi.org/10.1145/3559712.3559720

Direct result of this Master’s dissertation. This paper
investigates how less complex (trivial) refactorings
affect the prediction of more complex (non-trivial)
refactorings. To do this, we classify refactorings
based on their triviality, extract metrics from the code,
contextualize the data and train machine learning al-
gorithms to investigate the effect caused. Best paper
awards at SBCARS’22

Pinheiro, D., Bezerra, C., Uchôa, A. (2024). On
the Effectiveness of Trivial Refactorings in Predicting
Non-trivial Refactorings. Journal of Software Engi-
neering Research and Development, 12(1), 5:1 – 5:16.
https://doi.org/10.5753/jserd.2024.3324

Direct result of this Master’s dissertation and is an
extension of the previous publication. This study
aims to identify refactoring activity in non-trivial op-
erations through trivial operations accurately. For
this, we use classifier models of supervised learning,
considering the influence of trivial refactorings and
evaluating performance in other data domains. It is
presented in Chapter 4

Source: Prepared by the author

Future Work 1: Development of an automated tool to calculate the triviality

index: This Master’s dissertation proposes an index that evaluates the triviality of implementing

refactorings. A possible extension is to develop an automated tool that calculates this metric

during software development. The tool can be integrated into IDEs, version control systems, or a

standalone module to help developers evaluate the triviality of refactorings in real development

environments.

Future Work 2: Conducting studies in different contexts. We address the use in

several open source software projects extracted from GitHub with few domains. The behavior in

other software project domains may generate other results. Thus, we recommend expanding the

study to other domains, companies, and industrial software to validate the effectiveness of the

proposed triviality index.

Future Work 3: Exploring differentiated weights in the triviality index. The metric

was proposed to adopt different weights in aspects to calculate the triviality index. However, this

study used the weight 1 for all aspects, which may not reflect in other contexts. We recommend

investigating the assignment of differentiated weights to each aspect, such as complexity, speed,

and risk, to refine the prediction accuracy.

Future Work 4: Analysis of the metrics used to configure the prediction models.

Our study prioritized the importance of the metrics through the developers’ perception. However,

performing a detailed analysis of the metrics using a statistical approach and investigating their

correlations can generate new results and improve the effectiveness of the predictive models. In
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addition, it can generate insights to identify the metrics that most influence the results.

Future Work 5: Extending the set of metrics. Another approach to investigate

the effectiveness of the proposed index is to adopt a greater variety of metrics for each aspect,

seeking a more robust balance in predictive modeling. In addition, the inclusion of specific and

detailed metric types can provide new results and insights.

Future Work 6: Extending the study proposal to other ecosystems. The studies

presented in this Master’s dissertation used only systems on Java. New studies can be carried

out to investigate how the triviality prediction approach behaves in different software projects in

other programming languages, evaluating the consistency of the results.

Future Work 7: Investigation of the application of new ML algorithms. This Mas-

ter’s dissertation used common algorithms to train predictive models. Thus, future work that

investigates the application of new ML algorithms, such as deep neural networks and reinforce-

ment learning algorithms, can improve the prediction of the triviality of refactorings, as well as

suggest a new implementation approach. In addition, this study can compare the performance of

these new algorithms with the traditional methods used in this Master’s dissertation, evaluating

their effectiveness in different contexts and types of software projects.

Future Work 8: Investigation of how trivial refactorings influence the prediction

of non-trivial refactorings. The first study of this Master’s dissertation investigated how trivial

refactorings influence the prediction of non-trivial refactorings. However, the definition of

triviality in the first study is based on the set of operations and changes that occur in each

refactoring operation. A new research can be conducted using the triviality metric proposed in

the second study to identify whether refactoring is trivial or not. In this way, it would be possible

to compare the results obtained based on two different definitions of triviality and evaluate their

influences.

Future Work 9: Investigation of triviality aspects in other contexts: The concept of

refactoring triviality was only explored in depth in this Master’s dissertation. However, it is based

on the aspects of complexity, speed, and risk. This way, different software companies can conduct

a case study to observe how aspects related to refactoring triviality are identified, prioritized, and

implemented in the real development environment. This study can provide valuable insights into

the applicability and effectiveness of the proposed index in different development contexts.

Future Work 10: Application of the Triviality Index in production environments

The maintenance of systems in production requires greater caution to mitigate risks. A relevant
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suggestion for future work is the application of the triviality index in systems in the production

environment. In this context, the evaluation of the triviality of refactorings, with a focus on risk

prioritization, can provide valuable data for decision-making to avoid introducing new failures

and bugs into the system.

Future Work 11: Integrating Large Language Models for Enhanced Refactoring

Prediction This Master’s dissertation used several machine learning algorithms to train the

models, but did not use Large Language Models (LLMs). As future work, the implementation of

LLMs can improve the accuracy and interpretability of refactoring triviality indices. In addition,

LLMs can extract insights into code quality and enrich features beyond traditional metrics.

This approach would develop more robust predictive models aligned with developer intentions,

making predictive models more efficient.
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APPENDIX A – SURVEY FOR DEVELOPERS

Survey for collect detailed information from developers about their practices and

perceptions regarding code metrics and the refactoring process.



1. E-mail *

Research: Refactoring and Software
Quality
Dear Developer,

You are being invited to participate and contribute to research on Refactoring and 
Software Quality, carried out as part of an academic study for a dissertation.

Research Objective
Our goal is to collect detailed information from developers about their practices and 
perceptions regarding code metrics and the refactoring process. The research seeks to 
better understand which metrics are most relevant for each aspect in the refactoring 
process. The data collected will be used to identify trends, challenges and opportunities 
for improvement in development practices, promoting the production of more efficient, 
sustainable and high-quality programs. In this context, we aim at creating a index, based 
on these practices and perceptions, for predicting, indicating and assessing code 
refactorings.

Research Participation
To participate in this research, you must be over 18 years old and have already worked in 
the area of   software development. Your participation will consist of answering a 
questionnaire about aspects of the source code that can contribute to refactoring 
prediction. The questionnaire will be completed online and will take approximately 7 
minutes to complete.

Secrecy and Confidentiality
We guarantee the secrecy and confidentiality of all information you provide during your 
participation in the research. The data will be treated anonymously and used exclusively 
for academic purposes, contributing to the advancement of knowledge in the area of   
software quality and refactoring.

Researchers 
The researchers responsible are: Darwin Pinheiro (darwinfederal@alu.ufc.br), Carla 
Bezerra (carlailane@ufc.br), Anderson Uchôa (andersonuchoa@ufc.br) and Alessandro 
Garcia (afgarcia@inf.puc-rio.br)

We thank you in advance for your collaboration and participation in this important 
research.

* Indica uma pergunta obrigatória
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2.

Marcar apenas uma oval.

Yes Pular para a pergunta 3

No

Pular para a pergunta 3

CHARACTERIZATION PROFILE

In this section, we will collect basic information and personal data to better understand 
your profile.

3.

4.

The Free and Informed Consent Form (TCLE) aims to ensure your rights as a
participant and is available at this link.  Please read carefully and calmly, trying
to fully understand the research proposal.  There will be no penalty or loss if you
do not wish to participate or withdraw your authorization at any time.*

After receiving clarifications about the nature of the research, its objectives and
methods, I declare that I am over 18 years old and agree to participate through
the participation form, in accordance with the provisions of the General Data
Protection Law (Law No. 13,709/2018) .

In case of a negative response, the form will be closed, thus ensuring respect for
the autonomy and privacy of participants, as established by current legislation.

*

How many years of experience do you have in software development? Please
provide your best estimate.

*

Do you want to share some additional information about your experience?
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5.

Outro:

Marque todas que se aplicam.

Frontend Developer

Backend Developer

Fullstack

Devops

UX/UI Designer

Product Owner

Tech Leader

Quality Assurance (QA)

Scrum Master

Project Manager

Stakeholder

6.

Marcar apenas uma oval.

Outro:

High School

Technical Course

Graduation

Specialization

Master's Degree

Doctorate Degree

CHARACTERIZATION OF THE EXPERIENCE WITH SOFTWARE REFACTORING

In this section, we will collect information about the characteristics relevant to software 
quality.

Which best roles describes your current activities in software development
projects?

*

What level of formal education have you completed? *
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7.

Marcar apenas uma oval.

Outro:

Never heard of it.

I heard about it, but never used it.

I know it, but I hardly use it.

I have knowledge and sometimes I use it.

I have in-depth knowledge and use it frequently.

I'm an expert on the subject and I always use it.

8.

Marcar apenas uma oval.

Outro:

Never

Rarely

Sometimes

Often

Always

9.

How familiar are you with refactoring software? *

In the past semester, how often have you performed any code refactoring? *

Do you want to share some additional information about your experience with
code refactoring?
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10.

Marque todas que se aplicam.

Regarding the COMPLEXITY ASPECT of the code being refactored, which
refers to the technical difficulty and level of knowledge required to modify the
code (More complex refactorings typically require a deeper understanding of
the system and may involve substantial changes to several parts of the code).

What level of importance do you believe each code metric below has for
identifying refactoring and/or improving software quality (with refactoring),
on a scale from 1 to 5, where 1 is not at all important and 5 is very important?

*

If you prefer, access this link containing definitions and examples to help you
remember.  

1 2 3 4 5

FAN-IN
(Number of
input
dependencies)

FAN-OUT
(Number of
output
dependencies)

CBO (Coupling
Between
Objects)

DIT (Depth
Inheritance
Tree)

NOC (Number
of Children)

NOSI (Number
of Static
Invocations)

RFC
(Response for
a Class)

WMC
(Weighted
Methods per

FAN-IN
(Number of
input
dependencies)

FAN-OUT
(Number of
output
dependencies)

CBO (Coupling
Between
Objects)

DIT (Depth
Inheritance
Tree)

NOC (Number
of Children)

NOSI (Number
of Static
Invocations)

RFC
(Response for
a Class)

WMC
(Weighted
Methods per
Class or
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11.

Class or
McCabe's
Complexity)

LCOM
(Normalized
Lack of
Cohesion of
Methods)

TCC (Tight
Class
Cohesion)

LCC (Loose
Class
Cohesion)

McCabe's
Complexity)

LCOM
(Normalized
Lack of
Cohesion of
Methods)

TCC (Tight
Class
Cohesion)

LCC (Loose
Class
Cohesion)

COMPLEXITY ASPECT
Do you know of any other items in this aspect that could be relevant to improving
the quality of the software and/or have any relationship with the aspect?
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12.

Marque todas que se aplicam.

Regarding the SPEED ASPECT of the code being refactored, which refers to the
frequency of implementing operations and changing the code size in lines
(Fast refactorings are characterized by the number of operations performed in
the interval of 2 to 4 weeks).

What level of importance do you believe each code metric below has
for identify refactoring implementation speed and/or improving software
quality (with refactoring), on a scale from 1 to 5, where 1 is not at all
important and 5 is very important?

*

If you prefer, access this link containing definitions and examples to help you
remember.  

1 2 3 4 5

LOCC
(Lines of
Code
Changed)

FOC7
(Frequency
of Commit
in 7days)

FOC14
(Frequency
of Commit
in 14days)

FOC21
(Frequency
of Commit
in 21days)

FOC28
(Frequency
of Commit
in 28days)

LOCC
(Lines of
Code
Changed)

FOC7
(Frequency
of Commit
in 7days)

FOC14
(Frequency
of Commit
in 14days)

FOC21
(Frequency
of Commit
in 21days)

FOC28
(Frequency
of Commit
in 28days)
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13.

14.

Marque todas que se aplicam.

SPEED ASPECT
Do you know of any other items in this aspect that could be relevant to improving
the quality of the software and/or have any relationship with the aspect?

Regarding the RISK ASPECT of the code being refactored, which refers to the
likelihood that a refactoring will cause new problems or failures in the code
(High-risk refactorings can result in more bugs or performance issues after the
modification).

What level of importance do you believe each occurrences of issues below
has for identifying implementation risk and/or improving software quality
(with refactoring), on a scale from 1 to 5, where 1 is not at all important and 5
is very important?

*

If you prefer, access this link containing definitions and examples to help you
remember.  

1 2 3 4 5

Issues of Best
Pratices

Issues of
Design

Issues of
Error
Proneness

Issues of
Multithreading

Issues of
Performance

Issues of
Security

Issues of Best
Pratices

Issues of
Design

Issues of
Error
Proneness

Issues of
Multithreading

Issues of
Performance

Issues of
Security
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15. RISK ASPECT
Do you know of any other items in this aspect that could be relevant to improving
the quality of the software and/or have any relationship with the aspect?
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16.

Marque todas que se aplicam.

Regarding the Other Structural Metrics of the code being refactored, which
refers to quantitative measures of the internal structure of the code. 

What level of importance do you believe each code metric below has for
identifying refactoring and/or improving software quality, on a scale from 1 to
5, where 1 is not at all important and 5 is very important?

*

If you prefer, access this link containing definitions and examples to help you
remember.  

1 2 3 4 5

Path of Class

File Type

Number of
Method

Number of
Visible
Method

Quantity of
Returns

Quantity of
Loops

Quantity of
Comparisons

Quantity of
Try/Catches

Quantity of
Parenthesized
Expressions

String Literals

Quantity of
Number

Quantity of
Math
Operations

Path of Class

File Type

Number of
Method

Number of
Visible
Method

Quantity of
Returns

Quantity of
Loops

Quantity of
Comparisons

Quantity of
Try/Catches

Quantity of
Parenthesized
Expressions

String Literals

Quantity of
Number

Quantity of
Math
Operations
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Quantity
Method
Invocations

Quantity of
Fields

Usage of
Each Field

Quantity of
Variables

Usage of
Each Variable

Max Nested
Blocks

Quantity of
Anonymous
Classes

Inner Classes

Lambda
Expressions

Number of
Unique Words

Number of
Log
Statements

Has Javadoc

Quantity of
Modifiers

Quantity
Method
Invocations

Quantity of
Fields

Usage of
Each Field

Quantity of
Variables

Usage of
Each Variable

Max Nested
Blocks

Quantity of
Anonymous
Classes

Inner Classes

Lambda
Expressions

Number of
Unique Words

Number of
Log
Statements

Has Javadoc

Quantity of
Modifiers
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17. Other Structural Metrics
Do you know of any other items that could be relevant to improving the quality of
the software and/or have any relationship with the structural metrics?
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 DOCUMENT OF DEFINITIONS 

 Coupling and Dependencies: 

 FAN-IN: 

 ●  Definition: It counts the number of input dependencies of a class, i.e. how many other 
 classes use that class. 

 ●  Example: If three classes (X, Y, Z) call methods from class A, the FAN-IN of A is 3. 

 FAN-OUT: 

 ●  Definition: Counts the number of output dependencies of a class, that is, how many 
 other classes are used by this class. 

 ●  Example:If class A uses methods from three classes (B, C, D), A's FAN-OUT is 3. 

 CBO (Coupling Between Objects): 

 ●  Definition: Measures the coupling between objects, that is, how many classes are 
 used by a given class, measuring both input and output. 

 ●  Example: If class A uses methods from five other classes (B, C, D, E, F) and class B 
 uses a method from class A, A's CBO is 6. 

 Inheritance  : 

 DIT (Depth Inheritance Tree): 

 ●  Definition: Counts the number of "parents" of a class, that is, the depth of the class in 
 the inheritance tree. 

 ●  Example: If A inherits from B, which inherits from C, which inherits from D, the DIT of 
 A is 3. 

 NOC (Number of Children): 

 ●  Definition: Counts the number of immediate subclasses a class has. 
 ●  Example: If class A has three direct subclasses (B, C, D), the NOC of A is 3. 

 Invocations 

 NOSI (Number of Static Invocations): 

 ●  Definition: Counts the number of invocations to static methods within a class. 
 ●  Example: If class A calls static methods B's staticMethod1 and C's staticMethod2 

 four times in total, A's NOSI is 4. 

 RFC (Response for a Class): 
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 ●  Definition: Counts the number of unique methods invoked within a class. 
 ●  Example: If class A calls methods method1, method2 of B and method3 of C, the 

 RFC of A is 3. 
 Complexity and Cohesion 

 WMC (Weight Method Class): 

 ●  Definition: Counts the number of branching statements in a class, such as if, for, 
 while. 

 ●  Example: If class A has five methods with a total of 10 branching statements (3 if, 2 
 for, 2 while, 3 switch), A's WMC is 10. 

 LCOM: 

 ●  Definition: It is a metric that measures cohesion within a class, that is, how well the 
 methods of a class work together.  Cohesive classes have methods that operate on 
 the same instance attributes(attributes), while classes with low cohesion have 
 methods that operate on different attributes. 

 ●  Example: If class A has three methods where none share variables, the LCOM is 
 high, indicating low cohesion, which is a bad indicator. 

 TCC (Tight Class Cohesion): 

 ●  Definition: It is a cohesion metric that measures the proportion of visible (or public) 
 method pairs of a class that are directly connected through instance variables.  In 
 other words, TCC evaluates the degree to which the methods of a class work 
 together, using the same instance variables.  A value from 0 to 1, where 1 means 
 high cohesion. 

 ●  Example: If 80% of a class's visible methods are directly connected, the TCC is 0.8. 

 LCC (Loose Class Cohesion)  : 

 ●  Definition: Similar to TCC, but includes indirect connections between visible methods. 
 ●  Example: If a method A makes a call to other methods B and C that are directly 

 connected to instance variables, this method A will also be counted. 

 Lines of Code Changed 

 LOCC (Line of Code Changed): 

 ●  Definition: Counts the number of lines of code changed, excluding empty lines and 
 comments. 

 ●  Example: If class A has 15 lines of code after refactoring, excluding empty lines and 
 comments, its LOCC is 15. 

 . 
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 Frequency of Refactoring 
 FOC7 (Frequency of Commit in 7 days) 

 ●  Definition: Definition refers to the frequency with which commits are made to a 
 refactoring-focused version control repository, within a 7-day interval. 

 ●  Example: this metric can be analyzed at different granularities, such as sprints of 1 to 
 4 weeks. 

 FOC14 (Frequency of Commit in 14 days) 
 ●  Definition: Definition refers to the frequency with which commits are made to a 

 refactoring-focused version control repository, within a 14-day interval. 
 ●  Example: this metric can be analyzed at different granularities, such as sprints of 1 to 

 4 weeks. 
 FOC21 (Frequency of Commit in 21 days) 

 ●  Definition: Definition refers to the frequency with which commits are made to a 
 refactoring-focused version control repository, within a 21-day interval. 

 ●  Example: this metric can be analyzed at different granularities, such as sprints of 1 to 
 4 weeks. 

 FOC28 (Frequency of Commit in 28 days) 
 ●  Definition: Definition refers to the frequency with which commits are made to a 

 refactoring-focused version control repository, within a 28-day interval. 
 ●  Example: this metric can be analyzed at different granularities, such as sprints of 1 to 

 4 weeks. 

 Other Structural Metrics 
 Path of class 

 ●  Definition: The "Path of Class" generally refers to the file path on the file system 
 where the class definition is located.ExampleDefinition: The "Path of Class" generally 
 refers to the file path on the file system where the class definition is located. 

 ●  Example: /src/main/java/com/example/ExampleClass.java 

 File Type 

 ●  Definition: It is the type of file, class or interface, from which the metrics were 
 extracted. 

 ●  Example: class, interface, innerclass, enum e anonymous. 

 Number of Method: 
 ●  Definition: Counts the total number of methods in a class. 
 ●  Example: If class A has 10 methods, its Number of Method is 10. 

 Number of Visible Method: 

 ●  Definition: Counts the number of non-private methods in a class. 
 ●  Example: If class A has 10 methods, of which 7 are public or protected, the Number 

 of Visible Method is 7. 
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 Quantity of Returns: 

 ●  Definition: Counts the number of return statements in a class. 
 ●  Example: If class A has 5 return instructions, the Quantity of Returns is 5. 

 Quantity of Loops: 

 ●  Definition: Counts the number of loops (for, while, do while, enhanced for) in a class. 
 ●  Example: If class A has 3 for and 2 while loops, the Quantity of Loops is 5. 

 Quantity of Comparisons: 

 ●  Definition: Counts the number of comparisons (== and !=) in a class. 
 ●  Example: If class A has 4 comparisons == and 2 !=, the Quantity of Comparisons is 

 6. 

 Quantity of Try/Catches: 

 ●  Definition: Counts the number of try/catch blocks in a class. 
 ●  Example: If class A has 3 try/catch blocks, the Quantity of Try/Catches is 3. 

 Quantity of Parenthesized Expressions: 

 ●  Definition: Counts the number of parenthesized expressions in a class. 
 ●  Example: If class A has 10 parenthesized expressions, the Quantity of Parenthesized 

 Expressions is 10. 

 String Literals: 

 ●  Definition: Counts the number of string literals in a class. Example: If class A has 8 
 string literals, the String Literals is 8. 

 Quantity of Number: 

 ●  Definition: Counts the number of numeric literals (int, long, double, float) in a class. 
 ●  Example: If class A has 12 numeric literals, the Quantity of Number is 12. 

 Quantity of Math Operations: 

 ●  Definition: Counts the number of mathematical operations (multiplication, division, 
 remainder, addition, subtraction, shift left, shift right) in a class. 

 ●  Example: If class A has 7 mathematical operations, the Quantity of Math Operations 
 is 7. 

 Method Invocations: 
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 ●  Definition: Counts all direct method invocations in a class, with variations for local 
 and indirect invocations. 

 ●  Example: If class A calls 15 methods directly, the Method Invocations is 15. Quantity 
 of Fields: 

 Quantity of Variables  : 

 ●  Definition: Counts the number of variables declared in a class. 
 ●  Example: If class A has 15 variables, the Quantity of Variables is 15. 

 Usage of Each Variable  : 

 ●  Definition: Measures the frequency of use of each variable within each method. 
 ●  Example: If a variable y is used 3 times in different methods, its usage is 3. 

 Max Nested Blocks  : 

 ●  Definition: Counts the largest number of nested blocks in a class. 
 ●  Example: If class A has a maximum of 4 nested blocks, the Max Nested Blocks is 4. 

 Quantity of Anonymous Classes, Inner Classes, and Lambda Expressions: 

 ●  Definition: Counts the number of anonymous classes, inner classes, and lambda 
 expressions in a class. 

 ●  Example: If class A has 2 anonymous classes, 1 inner class and 3 lambda 
 expressions, the total returned is 6. 

 Number of Unique Words: 

 ●  Definition: Counts the number of unique words in the source code, separating names 
 by camel case and underscore. 

 ●  Example: If class A has 50 unique words, the Number of Unique Words is 50. 

 Number of Log Statements: 

 ●  Definition: Counts the number of log statements (log.info, log.debug, etc.) in the 
 source code. 

 ●  Example: If class A has 8 log statements, the Number of Log Statements is 8 

 Has Javadoc  : 

 ●  Definition: Indicates with a boolean whether a method has javadoc. 
 ●  Example: If a method m has javadoc, Has Javadoc will be true. 

 Quantity of Modifiers: 

 ●  Definition: Counts modifiers (public, abstract, private, protected, native) of 
 classes/methods. 
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 ●  Example: If class A has 3 public, 2 private and 1 protected methods, the Quantity of 
 Modifiers is 6. 

 Code Smell 

 Issues of Best Practices 
 ●  Definition: Set of problems related to best programming practices. 
 ●  Example: It covers a variety of issues, such as detecting unused variables, using 

 static methods, and best practices for synchronization. 

 Issues of Design 

 ●  Description: Set of detected problems that aim to improve code design, promoting 
 cohesion and modularity. 

 ●  Example: CouplingBetweenObjects, god class, and other code smells. 

 Potential points of failure 
 Issues of Error Prone 

 ●  Description:  Set of detected problems based on code patterns that are prone to 
 errors. 

 ●  Example: Detects empty catch blocks.  Detects bodyless if statements. 

 Issues of Multithreading 

 ●  Description: Set of detected problems based on parallel programming and 
 multithreading 

 ●  Example: Detects unsynchronized uses of SimpleDateFormat 

 Issues of Performance 

 ●  Description: Set of problems detected with a focus on improving code performance. 
 ●  Example: Detects objects that are instantiated repeatedly in loops. 

 Issues of Security 

 ●  Description: Set of problems detected with a focus on identifying and correcting 
 security vulnerabilities in the code. 

 ●  Example: Detects hard coded passwords in the code.  Detects insufficient string 
 validation. 
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 Free and Informed Consent Form (TCLE) 

 This  document,  called  Free  and  Informed  Consent  Form  (TCLE),  aims  to  ensure  your  rights 
 as a participant and will be made available electronically. 

 Please  read  carefully  and  calmly,  trying  to  fully  understand  the  research  proposal.  There  will 
 be  no  penalty  or  loss  if  you  do  not  wish  to  participate  or  withdraw  your  authorization  at  any 
 time. 

 To  participate  in  this  research  you  must  be  over  18  years  old  and  work  in  the  area  of 
 software  development.  Your  participation  will  consist  of  answering  a  questionnaire  about 
 code  metrics  that  are  important  in  refactoring.  The  questionnaire  will  be  answered  online  and 
 will  take  approximately  7  minutes  to  complete.  We  guarantee  the  secrecy  and  confidentiality 
 of all information you provide during your participation in the research. 

 INFORMATION ABOUT THIS RESEARCH: 

 Objectives  :  The  objective  of  this  research  is  to  complement  a  study  carried  out  to  compose 
 the  master's  thesis,  collecting  detailed  information  from  developers  about  their  practices  and 
 perceptions in relation to code metrics and the refactoring process. 

 Importance  of  the  study  :  The  project  seeks  to  better  understand  how  developers  measure 
 code  quality,  identify  areas  that  need  improvement  and  implement  refactorings.  The  data 
 collected  will  be  used  to  identify  trends,  challenges  and  opportunities  for  improvement  in 
 development  practices,  with  the  aim  of  promoting  the  production  of  more  efficient, 
 sustainable and high-quality code. 

 Procedures  and  methodologies  :  This  study  is  aimed  at  any  developer  profile  that  has 
 some  knowledge  about  code  metrics,  refactoring  or  even  cares  about  software  quality  and/or 
 studies  that  aim  to  improve  this  area.  Your  participation  in  the  study  will  consist  of  answering 
 an  online  questionnaire.  The  confidentiality  and  anonymity  of  participants  will  be  strictly 
 maintained,  encouraging  frank  and  honest  responses  to  provide  valuable  insights  into  the 
 topic in question. 

 Data  processing:  Throughout  the  process,  respect  for  privacy  and  ethics  standards  will  be 
 ensured,  as  recommended  by  the  General  Data  Protection  Law  (Law  nº  13,709/2018), 
 ensuring  that  participants'  information  is  treated  confidentially.  Initially,  the  data  collected 
 through  the  de-identified  online  questionnaire  will  be  anonymized,  removing  any  information 
 that  could  directly  identify  the  participants,  in  accordance  with  the  guidelines  of  the 
 aforementioned  legislation.  The  data  will  then  be  organized  and  coded  to  facilitate  analysis. 
 The  results  will  be  presented  in  an  aggregated  and  non-individually  identifiable  form,  thus 
 preserving the privacy of participants in accordance with applicable legal provisions. 
 How  to  contact  the  researchers:  Whenever  you  wish,  you  can  contact  us  to  obtain 
 information  about  this  research  project,  your  participation  or  other  matters  related  to  the 
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 research.  The  researchers  responsible  are:  Darwin  Pinheiro  (darwinfederal@alu.ufc.br), 
 Carla Bezerra (  carlailane@ufc.br  ) and Anderson Uchôa (andersonuchoa@ufc.br). 

 GUARANTEES TO PARTICIPANTS: 

 Right  to  refuse  to  participate:  At  any  time,  you  can  refuse  to  participate  and  withdraw  from 
 the  research,  without  embarrassment,  penalties  or  any  loss.  The  information  and  materials 
 obtained  in  this  research  will  not  be  used  for  purposes  other  than  within  the  context  of  this 
 research. 

 Confidentiality  and  privacy:  We  guarantee  the  complete  confidentiality  and  anonymity  of 
 your  responses.  All  sensitive  information,  such  as  company  or  other  people's  names,  will  be 
 completely anonymized. 
 Responsibility  of  the  Researcher:  We  ensure  to  provide  this  document  to  the  research 
 participant  and  use  the  data  obtained  exclusively  for  the  purposes  described  in  this 
 document or in accordance with the consent given by the participant. 
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APPENDIX B – SURVEY FOR EXPERTS

Survey to collect detailed information from experts about their perceptions regarding

the triviality of refactorings.



Survey: Refactoring's Triviality
Dear Developer,

You are being invited to participate and contribute to a survey on Refactoring and Software 
Quality, conducted as part of an academic study for a dissertation.

Survey Objective
Our goal is to collect information about your perceptions of some aspects when 
performing a refactoring operation. The survey seeks to better understand which aspects 
are most relevant to the refactoring process. The data collected will be used to identify 
trends, challenges and opportunities for improvement in development practices, promoting 
the production of more efficient, sustainable and high-quality programs.

Survey Participation
To participate in this survey, you must be over 18 years old and have already worked in the 
area of   software development. Your participation will consist of answering a questionnaire 
about the difficulty of performing a certain refactoring operation. The questionnaire will be 
filled out online and will take approximately 7 minutes to complete.

Secrecy and Confidentiality
We guarantee the secrecy and confidentiality of all information you provide during your 
participation in the survey. The data will be treated anonymously and used exclusively for 
academic purposes, contributing to the advancement of knowledge in the area of   software 
quality and refactoring.

Researchers
The researchers responsible are: Darwin Pinheiro (darwinfederal@alu.ufc.br), Carla Bezerra 
(carlailane@ufc.br), Anderson Uchôa (andersonuchoa@ufc.br) and Alessandro Garcia 
(afgarcia@inf.puc-rio.br)

We would like to thank you in advance for your collaboration and participation in this 
important research.

* Indica uma pergunta obrigatória
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1.

Marcar apenas uma oval.

Yes Pular para a pergunta 2

No

Pular para a pergunta 2

CHARACTERIZATION PROFILE

In this section, we will collect basic information and personal data to better understand your 
profile.

2.

3.

Marcar apenas uma oval.

Man

Woman

Non-binary, gender queer or gender non-conforming

I prefer not to respond

The Free and Informed Consent Form (TCLE) aims to ensure your rights as a
participant and is available at this link.  Please read carefully and calmly, trying to
fully understand the research proposal.  There will be no penalty or loss if you do
not wish to participate or withdraw your authorization at any time.*

After receiving clarifications about the nature of the research, its objectives and
methods, I declare that I am over 18 years old and agree to participate through the
participation form, in accordance with the provisions of the General Data
Protection Law (Law No. 13,709/2018) .

In case of a negative response, the form will be closed, thus ensuring respect for
the autonomy and privacy of participants, as established by current legislation.

*

What is your e-mail? *

What is your gender? *
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4.

Marcar apenas uma oval.

Under 18 years old

18-24 years old

25-34 years old

35-44 years old

45-54 years old

55-64 years old

65 years or older

Opção 8

5.

6.

Marcar apenas uma oval.

Outro:

High School

Technical Course

Graduation

Specialization

Master's Degree

Doctorate Degree

What is your age? *

What is your country? *

What level of formal education have you completed? *
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7.

Marcar apenas uma oval.

Less than 1 years

1-3 years

4-6 years

7-14 years

More than 15 years

8.

Outro:

Marque todas que se aplicam.

Frontend Developer

Backend Developer

Fullstack

Devops

UX/UI Designer

Product Owner

Tech Leader

Quality Assurance (QA)

Scrum Master

Project Manager

Stakeholder

9.

How many years of experience do you have in software development? Please
provide your best estimate.

*

Which best roles describes your current activities in software development
projects?

*

Do you want to share some additional information about your experience?
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CHARACTERIZATION OF THE EXPERIENCE WITH SOFTWARE REFACTORING

In this section, we will collect information about the characteristics relevant to software 
quality.

10.

Marcar apenas uma oval.

I have worked (or work) with refactoring.

My group or development team works with refactoring, but I am indirectly
involved.

I have never had direct or indirect experience with refactoring.

11.

Marcar apenas uma oval.

Outro:

Never heard of it.

I heard about it, but never used it.

I know it, but I hardly use it.

I have knowledge and sometimes I use it.

I have in-depth knowledge and use it frequently.

I'm an expert on the subject and I always use it.

Do you have (or have you had) any experience in the software development
process related to refactoring?

*

How familiar are you with refactoring software? *
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12.

Marcar apenas uma oval.

Daily

Weekly

Monthly

Annually

Quartlety

Not applicable

13.

Evaluation of the refactoring operations triviality

Consider the following definitions to answer the next questions:

Regarding the COMPLEXITY ASPECT of the code being refactored, which refers to the
technical difficulty and level of knowledge required to modify the code (More complex
refactorings typically require a deeper understanding of the system and may involve
substantial changes to several parts of the code).

Regarding the SPEED ASPECT of the code being refactored, which refers to the
frequency of implementing operations and changing the code size in lines (Fast
refactorings are characterized by the number of operations performed in the interval of
2 to 4 weeks).

Regarding the RISK ASPECT of the code being refactored, which refers to the likelihood
that a refactoring will cause new problems or failures in the code (High-risk refactorings
can result in more bugs or performance issues after the modification).

How often do you perform any code refactoring? *

Do you want to share some additional information about your experience with
code refactoring?
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14.

Marcar apenas uma oval por linha.

1/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the
EXTRACT METHOD refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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15. Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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16.

Marcar apenas uma oval por linha.

2/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the
MOVE CLASS refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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17.

RISK ASPECT
RISK ASPECT

Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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18.

Marcar apenas uma oval por linha.

3/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the
MOVE ATTRIBUTE refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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19. Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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20.

Marcar apenas uma oval por linha.

4/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the
MOVE METHOD refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
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21.

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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22.

Marcar apenas uma oval por linha.

5/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the
INLINE METHOD refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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23.

24.

Marcar apenas uma oval por linha.

Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?

6/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and
RISK aspects, how would you rate the level of difficulty for each aspect when
applying the RENAME PACKAGE refactoring operation to the following source
code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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25. Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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26.

Marcar apenas uma oval por linha.

7/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the
EXTRACT SUPERCLASS refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT
COMPLEXITY
ASPECT

SPEED
ASPECT
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27.

SPEED
ASPECT

RISK ASPECT

ASPECT

RISK ASPECT

Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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28.

Marcar apenas uma oval por linha.

8/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying the 
PULL UP METHOD refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

173



29. Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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30.

Marcar apenas uma oval por linha.

9/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and RISK
aspects, how would you rate the level of difficulty for each aspect when applying
the  PULL UP ATTRIBUTE refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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31. Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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32.

Marcar apenas uma oval por linha.

10/12 - Based on your experience and the definitions of COMPLEXITY, SPEED,
and RISK aspects, how would you rate the level of difficulty for each aspect when
applying the EXTRACT INTERFACE refactoring operation to the following source
code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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33. Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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34.

Marcar apenas uma oval por linha.

11/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and
RISK aspects, how would you rate the level of difficulty for each aspect when applying
the  PUSH DOWN ATTRIBUTE refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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35.

RISK ASPECT
RISK ASPECT

Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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36.

Marcar apenas uma oval por linha.

12/12 - Based on your experience and the definitions of COMPLEXITY, SPEED, and
RISK aspects, how would you rate the level of difficulty for each aspect when applying
the  PUSH DOWN METHOD refactoring operation to the following source code?

*

If you prefer, you can see the code and explanation at this link.

Very
Difficult

Difficult Neutral Easy
Very
Easy

COMPLEXITY
ASPECT

SPEED
ASPECT

COMPLEXITY
ASPECT

SPEED
ASPECT

RISK ASPECT
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37.

RISK ASPECT
RISK ASPECT

Other Informations
Would you like to report any additional information in terms of COMPLEXITY
and/or SPEED and/or RISK about the above refactoring operation?
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 Survey: Refactoring's Triviality 
 Applied Refactorings 

 1/12 Extract Method 

 Explanation: 
 Before  refactoring,  the  processData  method  does  everything:  opens  the  file,  reads  the  lines, 
 processes each line, and calculates the average length of the lines. 

 After refactoring, we extract two helper methods: 
 -processLine(String  line):  To  process  each  line  (splitting  it  into  words  and  printing  each 
 word). 
 -calculateAverageLength(int  totalLength,  int  lineCount):  To  calculate  the  average  length  of 
 the lines. 
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 2/12 Move Class 

 Explanation: 
 Before  Refactoring:  The  Invoice  class  was  located  in  the  orders  package,  which  was  not  a 
 relevant location for the functionality it represented. 

 After  Refactoring:  The  Invoice  class  was  moved  to  a  new  package  called  billing,  which  is 
 better suited to its purpose of handling functionality related to invoices and finance. 
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 3/12 Move Attribute 

 Explanation: 
 Before  Refactoring:  The  shippingAddress  attribute  was  inside  the  Order  class,  which  was  not 
 suitable because the shipping address is a characteristic of the customer. 

 After  Refactoring:  The  shippingAddress  attribute  was  moved  to  the  Customer  class,  where  it 
 makes  more  sense.  The  Order  class  now  holds  a  reference  to  the  Customer  object  and  can 
 access the shipping address through that reference. 
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 4/12 Move Method 

 Explanation: 
 Before  Refactoring:  The  applyDiscount  method  was  in  the  Order  class,  but  it  depended  on 
 the  attributes  of  the  Customer  class,  which  meant  that  it  was  not  in  the  most  appropriate 
 class.  After  Refactoring:  The  applyDiscount  method  was  moved  to  the  Customer  class, 
 which  is  the  most  appropriate  class,  as  the  discount  depends  on  the  customer's 
 characteristics.  Now, the Order class calls the applyDiscount method of the Customer class. 
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 5/12 Inline Method 

 Explanation: 
 Before  Refactoring:  The  Invoice  class  had  two  separate  methods,  calculateTax  and 
 applyDiscount,  to  calculate  tax  and  apply  discount,  respectively.  These  methods  were 
 invoked within calculateTotal. 

 After  Refactoring:  The  calculateTax  and  applyDiscount  methods  were  inlined,  that  is,  their 
 contents  were  moved  directly  to  the  calculateTotal  method.  Now,  calculateTotal  performs  the 
 tax and discount calculation directly, without having to call additional methods. 
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 6/12 Rename Package 

 Explanation  : 
 Before  Refactoring:  The  OrderProcessor  class  was  located  in  the  com.example.utilities 
 package,  which  is  very  generic  and  does  not  adequately  reflect  the  responsibility  of  this 
 class, which is to process orders. 

 After  Refactoring:  OrderProcessor  was  moved  to  com.example.  order,  which  more  clearly 
 reflects its order processing function. 
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 7/12 Extract Superclass 

 Explanation: 
 Before  Refactoring:  The  OnlineOrder  and  InStoreOrder  classes  had  duplicate  methods  and 
 attributes,  such  as  orderId,  orderAmount,  calculateTotal(),  and  printReceipt().  This  resulted 
 in redundant code and made maintenance difficult. 

 After  Refactoring:  We  created  an  abstract  superclass  called  Order,  which  contains  the 
 common  receipt  printing  logic  (printReceipt())  and  the  orderId  and  orderAmount  attributes. 
 The  calculateTotal()  methods  were  defined  as  abstract  in  the  superclass  and  implemented  in 
 the OnlineOrder and InStoreOrder subclasses, which now inherit from Order. 
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 8/12 Pull Up Method 

 Explanation: 
 Before Refactoring: The OnlineOrder and InStoreOrder classes had the sendConfirmation() 
 method, which was identical in both, resulting in duplicate code. 

 After Refactoring: The sendConfirmation() method was moved to the Order superclass. The 
 abstract method getContactInfo() was created in the Order superclass, and implemented in 
 subclasses to provide specific contact information (customerEmail or customerPhone). 
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 9/12 Pull Up Attribute 

 Explanation: 
 Before  Refactoring:  The  OnlineOrder  and  InStoreOrder  classes  had  the  orderId  attribute 
 duplicated.  Both classes had the logic to store and access the order ID independently. 

 After  Refactoring:  The  orderId  attribute  was  moved  to  the  Order  superclass,  eliminating 
 duplication.  Now,  both  OnlineOrder  and  InStoreOrder  inherit  this  attribute  and  the 
 getOrderId() method from the superclass. 
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 10/12 Extract Interface 

 Explanation: 
 Before  Refactoring:  The  CreditCardPayment  and  PayPalPayment  classes  had 
 processPayment  and  refundPayment  methods,  which  were  similar  but  not  formally  related. 
 This  meant  that  the  classes  had  common  functionality,  but  there  was  no  standardized  way  to 
 treat them as interchangeable types. 
 After  Refactoring:  The  common  methods  processPayment  and  refundPayment  were 
 extracted  into  the  PaymentMethod  interface.Now  both  CreditCardPayment  and 
 PayPalPayment implement this interface, allowing both classes to be treated uniformly. 
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 11/12 Push Down Attribute 

 Explanation: 
 The  teamSize  attribute  has  been  moved  from  the  Employee  superclass  to  the  Manager 
 subclass,  where  it  is  more  relevant.  The  programmingLanguage  attribute  has  been  moved 
 from the Employee superclass to the Developer subclass, where it is more relevant. 
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 12/12 Push Down Method 

 Explanation: 
 The manageTeam() method has been moved from the Employee superclass to the Manager 
 subclass, because it is specific to managers. The writeCode() method has been moved from 
 the Employee superclass to the Developer subclass, because it is specific to developers. 
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 Free and Informed Consent Form (TCLE) 

 This  document,  called  Free  and  Informed  Consent  Form  (TCLE),  aims  to  ensure  your  rights 
 as a participant and will be made available electronically. 

 Please  read  carefully  and  calmly,  trying  to  fully  understand  the  research  proposal.  There  will 
 be  no  penalty  or  loss  if  you  do  not  wish  to  participate  or  withdraw  your  authorization  at  any 
 time. 

 To  participate  in  this  research  you  must  be  over  18  years  old  and  work  in  the  area  of 
 software  development.  Your  participation  will  consist  of  answering  a  questionnaire  about 
 code  metrics  that  are  important  in  refactoring.  The  questionnaire  will  be  answered  online  and 
 will  take  approximately  7  minutes  to  complete.  We  guarantee  the  secrecy  and  confidentiality 
 of all information you provide during your participation in the research. 

 INFORMATION ABOUT THIS RESEARCH: 

 Objectives  :  The  objective  of  this  research  is  to  complement  a  study  carried  out  to  compose 
 the  master's  thesis,  collecting  detailed  information  from  developers  about  their  practices  and 
 perceptions in relation to code metrics and the refactoring process. 

 Importance  of  the  study  :  The  project  seeks  to  better  understand  how  developers  measure 
 code  quality,  identify  areas  that  need  improvement  and  implement  refactorings.  The  data 
 collected  will  be  used  to  identify  trends,  challenges  and  opportunities  for  improvement  in 
 development  practices,  with  the  aim  of  promoting  the  production  of  more  efficient, 
 sustainable and high-quality code. 

 Procedures  and  methodologies  :  This  study  is  aimed  at  any  developer  profile  that  has 
 some  knowledge  about  code  metrics,  refactoring  or  even  cares  about  software  quality  and/or 
 studies  that  aim  to  improve  this  area.  Your  participation  in  the  study  will  consist  of  answering 
 an  online  questionnaire.  The  confidentiality  and  anonymity  of  participants  will  be  strictly 
 maintained,  encouraging  frank  and  honest  responses  to  provide  valuable  insights  into  the 
 topic in question. 

 Data  processing:  Throughout  the  process,  respect  for  privacy  and  ethics  standards  will  be 
 ensured,  as  recommended  by  the  General  Data  Protection  Law  (Law  nº  13,709/2018), 
 ensuring  that  participants'  information  is  treated  confidentially.  Initially,  the  data  collected 
 through  the  de-identified  online  questionnaire  will  be  anonymized,  removing  any  information 
 that  could  directly  identify  the  participants,  in  accordance  with  the  guidelines  of  the 
 aforementioned  legislation.  The  data  will  then  be  organized  and  coded  to  facilitate  analysis. 
 The  results  will  be  presented  in  an  aggregated  and  non-individually  identifiable  form,  thus 
 preserving the privacy of participants in accordance with applicable legal provisions. 
 How  to  contact  the  researchers:  Whenever  you  wish,  you  can  contact  us  to  obtain 
 information  about  this  research  project,  your  participation  or  other  matters  related  to  the 
 research.  The  researchers  responsible  are:  Darwin  Pinheiro  (darwinfederal@alu.ufc.br), 
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 Carla  Bezerra  (carlailane@ufc.br),  Anderson  Uchôa  (andersonuchoa@ufc.br)  and 
 Alessandro Garcia (afgarcia@inf.puc-rio. br). 

 GUARANTEES TO PARTICIPANTS: 

 Right  to  refuse  to  participate:  At  any  time,  you  can  refuse  to  participate  and  withdraw  from 
 the  research,  without  embarrassment,  penalties  or  any  loss.  The  information  and  materials 
 obtained  in  this  research  will  not  be  used  for  purposes  other  than  within  the  context  of  this 
 research. 

 Confidentiality  and  privacy:  We  guarantee  the  complete  confidentiality  and  anonymity  of 
 your  responses.  All  sensitive  information,  such  as  company  or  other  people's  names,  will  be 
 completely anonymized. 
 Responsibility  of  the  Researcher:  We  ensure  to  provide  this  document  to  the  research 
 participant  and  use  the  data  obtained  exclusively  for  the  purposes  described  in  this 
 document or in accordance with the consent given by the participant. 
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APPENDIX C – SIMILARITY SCORE PROGRAM

Program written in Java language to obtain the Similarity Score metric based on the

AST of the code using the Eclipse JDT library.



~\eclipse-workspace\Alpha\src\main\java\dw\project\Program.java

1 package dw.project;
2
3 import com.github.javaparser.ast.expr.SimpleName;
4
5 import java.io.FileWriter;
6 import java.io.IOException;
7 import java.io.PrintWriter;
8 import java.nio.file.Files;
9 import java.nio.file.Path;
10 import java.util.ArrayList;
11 import java.util.HashSet;
12 import java.util.List;
13 import java.util.Set;
14
15 import org.eclipse.jdt.core.dom.*;
16
17 public class Program {
18
19 public static double calculateSimilarity(List<ASTNode> allNodes, List<ASTNode> 

allNodes2) {
20 int commonNodes = getCommonNodes(allNodes, allNodes2);
21 int totalNodes = getTotalNodes(allNodes, allNodes2);
22
23 return (double) commonNodes / totalNodes;
24 }
25
26 private static int getTotalNodes(List<ASTNode> allNodes, List<ASTNode> allNodes2) {
27 Set<ASTNode> uniqueNodes = new HashSet<>();
28
29 uniqueNodes.addAll(allNodes);
30
31 for (ASTNode node2 : allNodes2) {
32 boolean nodeFound = false;
33
34 for (ASTNode node1 : uniqueNodes) {
35 if (node1.getNodeType() == node2.getNodeType() && node1.subtreeMatch(new 

ASTMatcher(), node2)) {
36 nodeFound = true;
37 break;
38 }
39 }
40
41 if (!nodeFound) {
42 uniqueNodes.add(node2);
43 }
44 }
45
46 return uniqueNodes.size();
47 }
48
49 public static int getCommonNodes(List<ASTNode> allNodes, List<ASTNode> allNodes2) {
50 List<ASTNode> commonNodes = new ArrayList<>();
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51
52 List<ASTNode> smallerArray = allNodes.size() <= allNodes2.size() ? allNodes : 

allNodes2;
53 List<ASTNode> largerArray = allNodes.size() > allNodes2.size() ? allNodes : 

allNodes2;
54
55 for (ASTNode node1 : largerArray) {
56 for (ASTNode node2 : smallerArray) {
57 if (node1 == null && node2 == null) {
58 commonNodes.add(node1);
59 break;
60 } else if (node1 != null && node2 != null) {
61 if (node1.getNodeType() == node2.getNodeType() && node1.subtreeMatch(new 

ASTMatcher(), node2)) {
62 commonNodes.add(node1);
63 break;
64 }
65 }
66 }
67 }
68
69 return commonNodes.size();
70 }
71
72 public static void main(String[] args) throws IOException {
73 if (args.length == 0) {
74 System.out.println("Path of java file:");
75 return;
76 }
77
78 String caminhoExplorerBefor e = args[0];
79 String caminhoExplorerAfter  = caminhoExplorerBefor e.replace("before", "after");
80
81 Path filePath = Path.of(caminhoExplorerBefor e);
82 Path filePath2 = Path.of(caminhoExplorerAfter );
83 String codeString = Files.readString(filePath);
84 String codeString2 = Files.readString(filePath2);
85
86 ASTParser parserCode1 = ASTParser.newParser(AST.JLS15);
87 parserCode1.setSource(codeString.toCharArray());
88 parserCode1.setKind(ASTParser.K_COMPILATION_UNIT);
89
90 ASTParser parserCode2 = ASTParser.newParser(AST.JLS15);
91 parserCode2.setSource(codeString2.toCharArray());
92 parserCode2.setKind(ASTParser.K_COMPILATION_UNIT);
93
94 CompilationUnit cu = (CompilationUnit) parserCode1.createAST(null);
95 CompilationUnit cu2 = (CompilationUnit) parserCode2.createAST(null);
96
97 MyVisitor visitor = new MyVisitor();
98 cu.accept(visitor);
99
100 MyVisitor visitor2 = new MyVisitor();
101 cu2.accept(visitor2);
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102
103 List<ASTNode> allNodes = visitor.getAllNodes();
104 List<ASTNode> allNodes2 = visitor2.getAllNodes();
105
106 double score = calculateSimilarity(allNodes, allNodes2);
107 System.out.println(score);
108
109 }
110
111 }
112  
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~\eclipse-workspace\Alpha\src\main\java\dw\project\MyVisitor.java

1 package dw.project;
2
3 import org.eclipse.jdt.core.dom.*;
4 import java.util.ArrayList;
5 import java.util.List;
6
7 public class MyVisitor extends ASTVisitor {
8 private int count=0;
9
10 private List<ImportDeclaration> importDeclarations;
11 private List<TypeDeclaration> typeDeclarations;
12     private List<FieldDeclaration> fieldDeclarations;
13     private List<MethodDeclaration> methodDeclarations;
14     private List<VariableDeclarationS tatement> variableDeclarations ;
15     private List<SingleVariableDeclar ation> singleVariableDeclar ation;
16     private List<ExpressionStatement> expressionStatement;
17     
18     private List<ASTNode> allNodes;
19     
20     public MyVisitor() {
21         methodDeclarations = new ArrayList<>();
22         variableDeclarations  = new ArrayList<>();
23         typeDeclarations = new ArrayList<>();
24         importDeclarations = new ArrayList<>();
25         fieldDeclarations = new ArrayList<>();
26         singleVariableDeclar ation = new ArrayList<>();
27         expressionStatement = new ArrayList<>();
28
29         allNodes = new ArrayList<>();
30         
31     }
32
33     public List<MethodDeclaration> getMethodDeclaration s() {
34         return methodDeclarations;
35     }
36
37     public List<VariableDeclarationS tatement> getVariableDeclarati ons() {
38         return variableDeclarations ;
39     }
40
41     public List<TypeDeclaration> getTypeDeclarations() {
42         return typeDeclarations;
43     }
44
45     public List<ImportDeclaration> getImportDeclaration s() {
46         return importDeclarations;
47     }
48
49     public List<FieldDeclaration> getFieldDeclarations () {
50         return fieldDeclarations;
51     }
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52     
53     public List<SingleVariableDeclar ation> getSingleVariableDec laration() {
54         return singleVariableDeclar ation;
55     }
56     
57     public List<ExpressionStatement> getExpressionStateme nt() {
58         return expressionStatement;
59     }
60     
61     @Override
62     public boolean visit(MethodDeclaration node) {
63         methodDeclarations.add(node);
64         count++;
65         allNodes.add(node);
66         return super.visit(node);
67     }
68
69     @Override
70     public boolean visit(VariableDeclarationS tatement node) {
71         variableDeclarations .add(node);
72         count++;
73         allNodes.add(node);
74         return super.visit(node);
75     }
76
77     @Override
78     public boolean visit(TypeDeclaration node) {
79         typeDeclarations.add(node);
80         count++;
81         allNodes.add(node);
82         return super.visit(node);
83     }
84
85     @Override
86     public boolean visit(ImportDeclaration node) {
87         importDeclarations.add(node);
88         count++;
89         allNodes.add(node);
90         return super.visit(node);
91     }
92
93     @Override
94     public boolean visit(FieldDeclaration node) {
95         fieldDeclarations.add(node);
96         count++;
97         allNodes.add(node);
98         return super.visit(node);
99     }
100     
101     @Override
102     public boolean visit(SingleVariableDeclar ation node) {
103     singleVariableDeclar ation.add(node);
104         count++;
105         allNodes.add(node);
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106         return super.visit(node);
107     }
108     
109     @Override
110     public boolean visit(ExpressionStatement node) {
111     expressionStatement.add(node);
112         count++;
113         allNodes.add(node);
114         return super.visit(node);
115     }
116     
117     public int getTotalCount() {
118     return count;
119     }
120     
121     public List<ASTNode> getAllNodes() {
122         return allNodes;
123     }
124     
125 }
126  
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