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A B S T R A C T

The current study presents a comprehensive approach for optimizing the power distribution control and
design of a Fuel Cell Hybrid Electric Vehicle (FCHEV) equipped with a Battery-Ultracapacitor Hybrid Energy
Storage System (HESS) using a multi-objective evolutionary algorithm called interactive adaptive-weight
genetic algorithm (i-AWGA). The method aims to maximize the vehicle’s driving range and the lifetimes
of the fuel cell stack and battery while minimizing hydrogen fuel consumption and HESS size. The energy
management strategy involves fuzzy logic controllers to distribute the power demand between the fuel cell
and HESS and between the battery and ultracapacitor pack. Under the combined standardized cycle in which
the optimization was developed, the optimized FCHEV configuration achieved a driving range of 444 km,
hydrogen consumption of 0.9009 kg/100 km. Furthermore, the optimal configuration demonstrated robustness
in real-world driving conditions, exhibiting improved energy efficiency, driving autonomy, and power sources
lifespan. A cost–benefit analysis was also carried out, in which the optimized configuration was evaluated in
terms of cost of ownership, achieving 31.28 US$/km, which means the substantial reduction of up to 63.59%
in the invested cost-to-autonomy ratio as compared against other electrified vehicle powertrain topologies.
Overall, this study offers a promising approach for designing efficient, cost-effective, and environmentally
friendly FCHEVs with improved performance and durability.
1. Introduction

Audacious air quality management goals have recently been pur-
sued by international authorities due to the negative impacts atmo-
spheric pollution has caused to human health, environment and global
economics [1]. In the last few years, global agreements, which propose
a set of sustainable policy initiatives and target net-zero emissions
by mid-century, have been adopted by different countries worldwide
(e.g., Paris Agreement [2,3] and the European Green Deal [4]). At the
same time, long-term measures of energy security have been discussed
and implemented since the growing of global energy demand is a
current reality. In this sense, decarbonization of the road-based trans-
portation is of extreme importance in this context of environmental
concern as the sector corresponds to over 20% of the greenhouse
gas emissions in the globe [5], consuming around 81 trillion mega-
joules (MJ) [6]. Hence, eco-friendly vehicles have gained attention
from policy-makers. In fact, the shortage of fossil fuel-based energy
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sources and the immediate need for green propulsion technologies have
pushed several nations to consider the implementation of exacting reg-
ulations towards the banning sales of new internal combustion engine
vehicles (ICEVs) in the next decades [7–9].

In this scenario, vehicle electrification emerges as a very attractive
alternative to substitute petroleum-powered vehicles since fully elec-
tric vehicles (EVs) are characterized by free emissions, high energy
efficiency and quiet operation mode [10]. Given this fact, govern-
mental incentives towards electrically propelled road vehicle adoption
– which include free charging stations, tax exemptions and EV sales
mandates [11] – have been provided by different countries in recent
times [12–14]. In addition, much progress has been made by the
research community with regard to the development of component
sizing and power distribution control strategies for different electrified
powertrain topologies [15–17], showing their potential as a low-carbon
technology.
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Nomenclature

BOL Beginning of life
EHHV Electric hydraulic hybrid vehicle
EM Electric motor
EOL End of life
EV Electric vehicle
FC Fuel cell
FCHEV Fuel cell hybrid electric vehicle
FTP-75 Federal Test Procedure at urban driving
HESS Hybrid energy storage systems
HWFET Highway Fuel Economy Test
ICEV Internal combustion engine vehicle
i-AWGA Interactive adaptive-weight genetic algorithm
LOM Largest of maximum
MOM Middle of maximum
PEM Proton exchange membrane
SOM Smallest of maximum
US06 Supplemental Federal Test Procedure
𝐴 Tafel slope
𝐴𝑓 Vehicle frontal area [m2]
𝑏 Front axle to gravity center [m]
𝑐 Rear axle to gravity center [m]
𝐶𝑎𝑝 Ultracapacitor type
𝐶1 First selected chromosomes
𝐶2 Second selected chromosomes
𝐶𝐷 Drag coefficient
𝐶𝑒𝑞 Equivalent capacitance (ultracapacitor pack) [F]
𝐶(𝐗) Fuel cell hybrid electric vehicle powertrain design

variables constrains
𝐶𝑓𝑧 Fuzzy logic control constraints
𝐶𝑂𝑅 Performance coefficient
𝐶𝑡 The charging time [s]
𝐶𝑙 The maximum number of cycles
𝐷𝑅 Driving range [km]
𝐷𝑧 The defuzzification method (Centroid, Bisector,

MOM, LOM or SOM)
𝐷𝑜𝐷 The depth of discharge [%]
𝐸 Voltage source [V]
𝐸𝑛 Nernst voltage [V]
𝐸𝑜𝑐 Open circuit voltage [V]
𝑓1 The first optimization criterion, the maximization of

the drive range
𝑓2 The second optimization criterion, the minimization

of the hybrid energy storage system
𝑓3 The third optimization criterion, the minimization of

the hydrogen consumption
𝑓4 The fourth optimization criterion, the minimization

of the power sources degradation
𝐹 Faraday constant [As/mol]
𝐹 𝑡(X) The adaptive-weight fitness
𝑔 Gravitational acceleration [m/s2]
ℎ Gravity center height [m]
𝐻 The cycle number constant
𝐻𝑐𝑜𝑛𝑠 Hydrogen consumption [kg/100 km]
𝐼∗ Low-frequency battery current [A]
𝐼0 Exchange current [A]
𝐼𝑏𝑎𝑡 Battery current [A]
𝐼𝑐 The charging current of battery pack
𝐼𝑎𝑐 The mean current in charge [A]
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𝐼𝑑 Discharging current [A]
𝐼𝑎𝑑 The mean current in discharge [A]
𝐼𝑑 Differential rotating inertia [kgm2]
𝐼𝑓𝑐 Fuel cell current [A]
𝐼𝑤 The wheel inertia [kgm2]
𝐼∕𝑂𝑗 Generic coordinate of the input–output membership

functions
𝐽𝑐 The required energy in the battery recharge [Ws]
𝑘 Number of half cycles
𝐾𝑐 Voltage constant at nominal condition of operation
𝐿 Wheelbase [m]
𝐿𝑓𝑐 Fuel cell lifetime [h]
𝐿𝑃𝑆 Power source degradation factor
𝑀 Vehicle total mass [kg]
𝑀𝑏𝑎𝑡 Battery mass [kg]
𝑀𝑐𝑎𝑝 Ultracapacitor pack mass [kg]
𝑀𝐻𝐸𝑆𝑆 HESS mass [kg]
𝑀𝑟𝑒𝑓 Reference vehicle mass [kg]
𝑀𝑢𝑐 Mass of a single ultracapacitor module [kg]
𝑀𝑡 Mutation Operator
𝐌𝐅𝐏𝐒 Vector of the design variables of the input/output

membership functions (power split: front and rear drive
systems)

𝐌𝐅𝐅𝐇 Vector of the design variables of the input/output
membership functions (power split: fuel cell and HESS)

𝐌𝐅𝐇𝐒 Vector of the design variables of the input/output
membership functions (HESS power split control)
𝑛1 Number of start-stop cycles per hour
𝑛2 Power transition times per hour
𝑁 Number of cells
𝑁𝑑 Differential gear ratio
𝑃𝑎𝑖𝑟 Absolute supply pressure of air [atm]
𝑃𝑏𝑎𝑡𝑡 Requested power for the battery pack [W]
𝑃𝑐𝑎𝑝 Requested power for the ultracapacitor pack [W]
𝑃𝑓𝑢𝑒𝑙 Absolute supply pressure of fuel [atm]
𝑃𝐻2 Partial pressure (hydrogen) [atm]
𝑃𝐻𝐸𝑆𝑆 Requested power for the HESS [W]
𝑃𝑝(X) Penalty value
𝑃𝑂2 Partial pressure (oxygen) [atm]
𝑃𝑟𝑒𝑞 Required power [W]
𝑃𝑠𝑖𝑧𝑒 Population size
𝑄 Actual battery capacity [Ah]
𝑄𝐵𝑂𝐿 Battery capacity at the beginning of life [Ah]
𝑄𝐸𝑂𝐿 Battery capacity at the end of life [Ah]
𝑄𝑖𝑛𝑖 Initial electric charge [C]
𝑄𝑛𝑜𝑚 Nominal battery capacity [Ah]
𝑄𝑇 Actual electric charge [C]
𝑟 Tires radius [m]
𝑅 Ideal gas constant [J/molK]
𝑅𝐶𝑒𝑞 Equivalent resistance (ultracapacitor pack) [Ω]
𝑅𝑓𝑐 Fuel cell internal resistance [Ω]
𝑅𝑥 Rolling resistance [N]
𝐑𝐖𝐏𝐒 Vector of rule weights for the power split between front

and rear drive systems
𝐑𝐖𝐅𝐇 Vector of rule weights for the power split between fuel

cell and HESS
𝐑𝐖𝐇𝐒 Vector of rule weights for the HESS power split control
𝑆𝐸 The specific energy for lithium-ion batteries [Wh/kg]
𝑆𝑃 (X) The selection probability
𝑆𝑟𝑒𝑔 State variable for ultracapacitor
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𝑆𝑜𝐶𝐵 The battery state of charge [%]
𝑆𝑜𝐻 The battery state of health
𝑡 Simulation time [s]
𝑡1 Idling power condition time per hour
𝑡2 High power condition time per hour
𝑇𝑎𝑚𝑏 The ambient temperature [K]
𝑇𝑑 Response time [s]
𝑇𝐸𝑀 Electric motor torque [Nm]
𝑇𝑓𝑐 Fuel cell operating temperature [K]
𝑇𝐹 Effective traction torque at front wheels [Nm]
𝑇𝑃𝑐 The remaining point of torque at the constant power phase

[Nm]
𝑇𝑅 Effective traction torque at rear wheels [Nm]
𝑇𝑟𝑒𝑓 The nominal reference temperature [K]
𝑇𝑟𝑒𝑞 Required torque at the traction wheels [Nm]
𝑈𝐻2 Rate of conversion (hydrogen)
𝑈𝑂2 Rate of conversion (oxygen)
𝑉 Actual vehicle speed [m/s]
𝑉𝑎𝑖𝑟 Flow rate of air [l/min]
𝑉𝑏𝑎𝑡 Battery dynamic voltage [V]
𝑉𝑐 Target vehicle speed (driving cycle) [m/s]
𝑉𝑐ℎ The maximum voltage of battery pack [V]
𝑉𝐶𝑒𝑞 Equivalent voltage (ultracapacitor pack) [V]
𝑉𝑑𝑟𝑜𝑝 Fuel cell voltage drop [μV/h]
𝑉𝑓𝑢𝑒𝑙 Flow rate of fuel [l/min]
𝑉𝐻 Voltage for the drive systems [V]
𝑉𝑛𝑜𝑚 Nominal battery voltage [V]
𝑤 Percentage of water vapor [%]
𝑥 Percentage of hydrogen in the fuel [%]
X Chromosome with all design variables for each solution
𝐗𝟏 First selected chromosome
𝐗𝟐 Second selected chromosome
𝐗𝐜𝐫 New chromosome generated by crossover
𝐗𝐌 New mutated chromosomes
𝑦 Percentage of oxygen in the air [%]
𝑧 Number of moving electrons
𝛥𝑉 Allowable voltage loss for each fuel cell [V]
𝜆𝑐ℎ𝑔 Voltage degradation rate for the power transition

[μV/cycle]
𝜆𝑖𝑑𝑙 Voltage degradation rate for the idling power condition time

[μV/h]
𝜆ℎ𝑔ℎ Voltage degradation rate for the high power condition time

[μV/h]
𝜆𝑠𝑠 Voltage degradation rate for the number of start-stop cycles

[μV/cycle]
𝛾𝑐 The exponent coefficient for mean recharge current
𝛾𝑑 The exponent coefficient for mean discharge current
𝜖 Aging factor
𝜂𝑐 The AC–DC conversion efficiency
𝜂𝐸𝑀 Electric motor efficiency
𝜂𝑖𝑛𝑣𝐹 Inverter efficiency (front system)
𝜂𝑖𝑛𝑣𝑅 Inverter efficiency (rear system)
𝜂𝑑 The differential efficiency
𝜃 Road slope [rad]
𝜌 Air density [kg/m3]
𝜓 The Arrhenius rate constant [kJ/mol]
𝜔𝑚𝑎𝑥𝑒 Maximum electric motor speed [rad/s]
𝜔𝑃𝑒 Equivalent electric motor speed [rad/s]
𝜔𝑇𝑒 Electric motor speed at the constant torque phase [rad/s]
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However, it is also worth pointing out that electrically propelled
vehicles still present important limitations that have prevented this
type of powertrain architecture to be totally immersed in the global
market. These EV drawbacks are typically related to oversizing, long
charging time and limited driving autonomy [18]. Furthermore, EVs
cannot necessarily be considered zero-emission vehicles, once the car-
bon emissions, which come from the energy sources that provide the
required electricity demand for charging stations, should be taken into
account in a further well-to-wheel analysis [19].

Despite the gradual reduction of lithium-ion battery prices (from
1000 US$/kWh to 227 US$/kWh [20] in the last decade), the battery
pack still consists of a relevant parcel of EV cost. Additionally, earlier
replacement of batteries results in a higher environmental impact,
which is associated with the need for disposal and battery manu-
facturing [21,22]. Due to this fact, battery degradation is another
limitation that should be considered in the energy management control
of electrified vehicles [23]. To address this issue, battery-ultracapacitor
hybrid energy storage system (HESS) is considered an attractive option
since ultracapacitors (UCs) can be used as peak power buffer units in
order to reduce battery stress in aggressive driving profiles [16,24],
while performing more effective braking energy regeneration at low
ambient temperature conditions [25]. In this manner, scholars have
developed optimization-based power distribution control strategies for
HESS-based EVs with the concurrent focus on maximization of battery
lifespan and energy efficiency [26–28].

In this context, fuel cell hybrid electric vehicles (FCHEVs), which
combine fuel cell stack and battery, outperform EVs regarding refueling
time and driving range. Among the available types of fuel cell systems,
the proton exchange membrane fuel cell (PEMFC) is currently the
most used one in the automotive industry due to its lower operating
temperature, high power density and more advanced technical matu-
rity [29,30]. However, economic viability is currently one of the biggest
challenges of such systems [31].

Although hydrogen-powered FCHEVs are still in the early stages of
implementation, this propulsion technology has been considered one of
the most promising and sustainable solutions to accomplish stringent
road transport emission targets that have been planned for the next
decades. This is due to the fact that PEM-based FCHEVs emit zero
air pollutants and greenhouse gases from the exhaust system, with
only water and warm air as byproducts of the fuel cell’s chemical
reaction [32]. Fuel cells also provide higher energy efficiency than
conventional internal combustion engines, featuring no moving parts.
The hydrogen, on the other hand, presents higher energy density per
mass than petroleum-based fuels, but much lower volumetric energy,
which requires the gas to be pressurized to 35–70 MPa in storage
tanks [33]. Another important factor that should be highlighted is
that green hydrogen production (when the fuel is obtained by water
electrolysis using renewable energy sources) consists of one of the
cleanest energy-conversion technologies to date [34] and is expected
to be feasible for large-scale applications in the future, which may
effectively contribute to economic growth in a more sustainable so-
ciety [35,36]. In this sense, advances in fuel cell technology have
currently been pursued by different automotive manufacturers such as
Honda [37], Toyota [38,39], Hyundai [40], Nissan [41,42], BMW [43],
Mercedes-Benz [44,45] etc.

In the academic field, scholars have conducted in-depth research
on the optimality of fuel cell hybrid electric propulsion architectures
with respect to the minimization of hydrogen fuel consumption [46–
49], overall operating costs [46,50,51], and power sources degrada-
tion [52–54]. Published works have also investigated fuel cell-battery-
ultracapacitor hybrid systems for vehicle powertrain design. In the
study of Hu et al. [55], a battery aging-aware HESS optimization for
a fuel cell hybrid electric bus configuration was employed, compar-
ing the economical scenarios according to different battery sizes and
replacement strategies. In the study of Wang et al. [56], the energy

management control for a fuel cell-battery hybrid bus was optimized
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to concurrently minimize hydrogen consumption and maximize the
lifetime of electrochemical power sources, resulting in lower long-term
operating costs. In a different approach, Khan et al. [57] implemented
a backstepping sliding mode controller to obtain a reliable and sta-
ble fuel cell-ultracapacitor-based hybrid electric propulsion system.
Moreover, Rahman et al. [58] developed a fuzzy logic based power
management strategy for a FCHEV topology equipped with a battery-
supercapacitor HESS, designing a supertwisting sliding mode-based
controller to track the DC bus voltage reference value. In their work, the
hydrogen consumption was reduced by 29% when compared to other
FCHEVs available in the literature. Li et al. [52] employ an equivalent
hydrogen consumption minimization strategy for a FCHEV that consid-
ers state of health of fuel cell and battery, validating the developed
method through a built test bench. Fletcher et al. [53] develop an
optimal energy management control strategy using stochastic dynamic
programming, so that operating costs (hydrogen consumption and fuel
cell degradation) could be minimized.

Although the fuel cell as the main power source can provide ex-
tended driving autonomy and carbon neutrality, it lacks fast dynamic
response in driving profiles that require high power demand [59].
Ultracapacitors, on the other hand, have been widely used as an
auxiliary energy storage system to perform in these driving condi-
tions due to its high power density. At the same time, the battery
plays an important role when high energy density is needed. Hence,
a vehicle powertrain architecture that comprises both fuel cell sys-
tem and battery-ultracapacitor HESS can be a promising alternative
for the mobility sector, as it combines essential characteristics of a
clean and sustainable transportation. Therefore, this work provides the
optimization of the combined fuel cell, battery and UC power sources,
aiming to enhance the vehicle driving range, dynamical response and
overall energy efficiency. Nevertheless, it is worthy pointing out that
the energy management control, which is responsible for managing the
amount of hydrogen used by the fuel cell stack and the discharge rate
of the battery and UC, is fundamental to ensure that the FCHEV oper-
ates efficiently, while taking into account the life cycle of the power
sources. The powertrain design is likewise critical, since a suitable
component sizing can reduce equivalent fuel consumption and energy
consumption. The proposed FCHEV topology is illustrated by Fig. 1.

According to the extensive literature review performed for this
work, there is still a research gap regarding concurrent optimiza-
tion design and energy management control of PEM-based FCHEVs
equipped with battery/UC HESS in order to simultaneously address the
minimization of hydrogen consumption, system size, battery and fuel
cell degradation, and maximization of driving autonomy. Hence, the
main purpose of this work is to fulfill this specific gap by employing the
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Interactive-Weight Genetic Algorithm (i-AWGA) procedure, which op-
timizes several powertrain design variables and fuzzy logic controllers’
parameters.

The manuscript is organized as follows: Section 2 introduces the
vehicle model and its respective subsystems; Section 3 presents the
fuzzy logic controllers that were used for the energy management;
Section 4 describes the formulation of the optimization problem as
well as the way how it was solved (i-AWGA method); In Section 5, the
optimization results are discussed, and the optimal solutions analyzed;
Section 6 presents the main conclusions.

2. Simulation model

The simulation model is based on the equations presented by
Gillespie [60], with the required adaptations to fit the 4-wheel electric
drive FCHEV drivetrain as presented previously by Eckert et al. [61].
Therefore, the required traction torque 𝑇𝑟𝑒𝑞 [Nm] is calculated by
Eq. (1) as a function of the vehicle speed 𝑉 [m/s], mass 𝑀 [kg], air
density 𝜌 [kg/m3], vehicle frontal area 𝐴𝑓 [m2], drag coefficient 𝐶𝐷,
gravitational acceleration 𝑔 [m/s2] and tire radius 𝑟 [m].

𝑇𝑟𝑒𝑞 =
(

𝑀
(

𝑎𝑟𝑒𝑞 + 0.01𝑔
(

1 + 2.24 𝑉
100 [m/s]

))

+ 1
2
𝜌𝑉 2𝐶𝐷 𝐴𝑓

)

𝑟 (1)

The required vehicle acceleration 𝑎𝑟𝑒𝑞 [m2] is given by Eq. (2), based
on a target speed 𝑉𝑐 [m/s] provided by the standard driving cycles,
considering a time step 𝛥𝑡 [s] ahead of the current simulation time,
which is compared to the current vehicle speed 𝑉 .

𝑎𝑟𝑒𝑞(𝑡) =
𝑉𝑐 (𝑡 + 𝛥𝑡) − 𝑉 (𝑡)

𝛥𝑡
(2)

In order to obtain robust optimized FCHEV configurations under
different distinct driving conditions, this paper considers the combina-
tion of the FTP-75 (urban), HWFET (highway) and US06 (high power
demand) driving cycles, in which the speed profiles are presented in
Fig. 2.

Once the analyzed FCHEV presents two independent driving sys-
tems, (Fig. 1), the torque demand 𝑇𝑟𝑒𝑞 is divided between the frontal
and rear traction systems, by means of a power management control
(discussed in detail in Section 3) that defines 0 ≤ 𝑃𝑆 ≤ 1 the value
applied in Eqs. (3) and (4) to define the required torque for the frontal
𝑇𝑟𝑒𝑞𝐹 [Nm] and rear 𝑇𝑟𝑒𝑞𝑅 [Nm] EMs.

𝑇𝑟𝑒𝑞𝐹 =
𝑃𝑆𝑇𝑟𝑒𝑞 + 𝐼𝑤𝑓

𝑎𝑟𝑒𝑞
𝑟

2
(3)

𝑇𝑟𝑒𝑞𝑅 =
(1 − 𝑃𝑆 )𝑇𝑟𝑒𝑞 +

(

𝐼𝑑𝑁2
𝑑 + 𝐼𝑤𝑟

) 𝑎𝑟𝑒𝑞
𝑟 (4)
𝑁𝑑𝜂𝑑
Fig. 1. FCHEV configuration.
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.

Fig. 2. Simulated driving cycles.

where, 𝐼𝑤𝑓 and 𝐼𝑤𝑅 [kgm2] are the inertia of frontal and rear wheels,
considering the addition of the respective EMs in case of in wheel EMs.
The differential system transmission ratio 𝑁𝑑 , mechanical efficiency 𝜂𝑑
and equivalent inertia 𝐼𝑑 [kgm2].

However, the required torque cannot always be fulfilled by the
respective EMs due to its torque curve limitations, that will be discussed
in Section 2.2. Therefore, each EM has its maximum available torque
𝑇𝐴𝐹 and 𝑇𝐴𝑅 considering the frontal and rear systems.

Moreover, the traction torque applied in the tire ground contact at
the frontal 𝑇𝐹 (𝑚𝑎𝑥) [Nm] and rear 𝑇𝑅(𝑚𝑎𝑥) [Nm] also limited according
to Eqs. (5) and (6) which defined the transmissible torque as a function
of the tire ground friction coefficient 𝜇, the vehicle gravity center
height ℎ [m], wheelbase 𝐿 [m] and the distance between the gravity
center and the frontal 𝑏 [m] and rear 𝑐 [m] axes.

𝑇𝐹 (𝑚𝑎𝑥) = 𝜇
(

𝑀𝑔 𝑐
2𝐿

−
𝑀ℎ 𝑎𝑥
2𝐿

)

𝑟 (5)

𝑇𝑅(𝑚𝑎𝑥) = 𝜇
(

𝑀𝑔 𝑏
2𝐿

+
𝑀ℎ 𝑎𝑥
2𝐿

)

𝑟 (6)

Therefore, the effective traction torques at frontal 𝑇𝐹 [Nm] and rear
𝑇𝑅 [Nm] wheels are defined according to the rules presented in Eqs. (7)
and (8).

𝑇𝐹 = min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝑇𝐸𝑀𝐹 − 𝐼𝑤𝑓
𝑎𝑥
𝑟

2𝑇𝐴𝐹 − 𝐼𝑤𝑓
𝑎𝑥
𝑟

𝑇𝐹 (𝑚𝑎𝑥)

(7)

𝑇𝑅 = min

⎧

⎪

⎪

⎨

⎪

⎪

𝑇𝐸𝑀𝑅𝑁𝑑𝜂𝑑 −
(

𝐼𝑑𝑁2
𝑑 + 𝐼𝑤𝑟

) 𝑎𝑥
𝑟

𝑇𝐴𝑅𝑁𝑑𝜂𝑑 −
(

𝐼𝑑𝑁2
𝑑 + 𝐼𝑤𝑟

) 𝑎𝑥
𝑟

(8)
5

⎩ 𝑇𝑅(𝑚𝑎𝑥)
Once, the effective torques are defined, it is possible to define the
real vehicle acceleration 𝑎𝑥 [m/s2] by Eq. (9). As can be noticed, 𝑎𝑥
changes the torque constrains (see Eqs. (5) to (8)), therefore, it is
required an iterative process to reach the 𝑎𝑥 convergence.

𝑎𝑥 =
𝑇𝐹 + 𝑇𝑅
𝑀𝑟

−
𝜌𝑉 2𝐶𝐷 𝐴𝑓 + 𝑅𝑥

2𝑀
− 0.01𝑔

(

1 + 2.24 𝑉
100 [m/s]

)

(9)

After 𝑎𝑥 convergence, the acceleration is integrated by ODE5 inte-
grator from Simulink™ database to define the vehicle speed 𝑉 and
displacement. Finally, the torques applied effectively in the frontal
𝑇𝐹𝑒𝑓 [Nm] and rear 𝑇𝑅𝑒𝑓 [Nm] EMs are calculated by Eqs. (10) and (11)

𝑇𝐹𝑒𝑓 =
𝑇𝐹 + 𝐼𝑤𝑓

𝑎𝑥
𝑟

2
(10)

𝑇𝑅𝑒𝑓 =
𝑇𝑅 +

(

𝐼𝑑𝑁2
𝑑 + 𝐼𝑤𝑟

) 𝑎𝑥
𝑟

𝑁𝑑𝜂𝑑
(11)

Table 1 shows the vehicle parameters applied in the current study.
In the next subsections, design parameters from the energy storage sys-
tems are presented and they are optimized according to their respective
constraints, as described by Section 4.2.

Table 1
Vehicle parameters [61,62].

Vehicle mass without HESS and fuel cell 800 kg
Tires 175/70 R13 radius (𝑟) 0.2876 m
Wheels + tires inertia (𝐼𝑤) 2 kgm2

Tire peak friction coefficient (𝜇) 0.9
Vehicle frontal area (𝐴) 1.8 m2

Drag coefficient (𝐶𝐷) 0.33
Differential efficiency (𝜂𝑡𝑑 ) 0.9
Wheelbase (𝐿) 2.443 m
Gravity center height (ℎ) 0.53 m
Front axle to gravity center (𝑏) 0.983 m
Rear axle to gravity center (𝑐) 1.460 m

2.1. Power source topology

In this work, DC-DC converters are used to connect the fuel cell
stack (FC), battery, and ultracapacitor to the drive system [63]. The
latter was introduced into the HESS (from now on, in this manuscript,
HESS stands for the combination of battery and ultracapacitor) as the
adoption of ultracapacitors can substantially reduce the life cycle cost
of the system [64]. The FC-HESS topology features a parallel configura-
tion, as depicted in Fig. 3. The advantage of this topology stems from

Fig. 3. Topology of the FC-HESS.
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the fact that it can provide high precision for the power distribution
between the sources, while offering high stability during operation with
smooth electric current flow [65]. In the proposed configuration, the
boost converters are employed to the battery and FC, and a buck-boost
one is used for the ultracapacitor. That is, the negative power flow only
occurs in the ultracapacitor, since it presents high power density. The
buck-boost converter acts as a boost during discharge and as a buck for
undercharging [66].

2.2. Electric motor model

In this study, a generic electric motor curve is used as a reference
for the optimization design of front in-wheel and rear EMs considered
in the FCHEV topology. As illustrated by Fig. 4a, four operating points
define the EM torque curve, where 𝑇𝑃𝑐 [Nm] (Eq. (12)), 𝜔𝑃𝑐 [rad/s]
(Eq. (13)) are the torque and speed at constant power phase, respec-
tively. The maximum EM speed at constant torque phase 𝜔𝑇 𝑐 [rad/s],
on the other hand, occurs at maximum torque 𝑇𝑚𝑎𝑥 [Nm]. Lastly, the
maximum EM speed 𝜔𝑚𝑎𝑥 [rad/s] is determined by linear progression
according to the torque curve points previously mentioned. The pre-
sented method has successfully been applied in previous works [62,67]
and is based on available database from the literature [68] along with
experimental tests carried out by Yamashita et al. [69].

𝑇𝑃𝑐 = 0.3𝑇𝑚𝑎𝑥 (12)

𝜔𝑃𝑐 =
𝑇𝑚𝑎𝑥𝜔𝑇 𝑐
𝑇𝑃𝑐

(13)

The electric motors’ (𝜂𝐸𝑀(𝐹∕𝑅)), inverter’ (𝜂𝑖𝑛𝑣) and DC bus (𝜂𝐷𝐶 )
efficiencies are also considered calculating the electric current required
by the front 𝐼𝐹 [A] (Eq. (14)) and rear drive 𝐼𝑅 [A] (Eq. (15)) systems,
where 𝑉𝐻 [V] corresponds to the actual voltage of the drive system.

𝐼𝐹 =
2𝑇𝐹𝑒𝑓𝑉

𝑟 𝑉𝐻 𝜂𝐸𝑀𝐹 𝜂𝑖𝑛𝑣𝐹 𝜂𝐷𝐶
(14)

𝐼𝑅 =
𝑇𝑅𝑒𝑓𝑉 𝑁𝑑

𝑟 𝑉𝐻 𝜂𝐸𝑀𝑅 𝜂𝑖𝑛𝑣𝑅 𝜂𝐷𝐶
(15)

Hence, the required electrical power 𝑃𝑟𝑒𝑞 [W] can be determined by
Eq. (16).

𝑃𝑟𝑒𝑞 = (𝐼𝐹 + 𝐼𝑅)𝑉𝐻 (16)

2.3. Battery model

In this study, the battery model is based on the Simulink™ battery
block. The battery state of charge 𝑆𝑜𝐶𝐵 is one of the fuzzy inputs in
the HESS battery-ultracapacitor power split (see Section 3.2) and can
be defined by Eq. (17), where 𝑄 [Ah] is the actual battery capacity
and 𝐼𝑏𝑎𝑡𝑡 [A] represents the battery current. To avoid deep discharges
that may negatively impact on the battery lifetime, the 𝑆𝑜𝐶𝐵 is limited
by the value of 40% [70,71], that is, 60% of depth of discharge 𝐷𝑜𝐷
(Eq. (18)). With respect to the system mass 𝑀𝑏𝑎𝑡𝑡 [kg], it is calculated
by Eq. (19), as a function of the lithium-ion battery energy density
(𝑆𝐸 = 150 [Wh/kg] [72,73]), the rated voltage 𝑉𝑛𝑜𝑚 [V] and nominal
capacity 𝑄𝑛𝑜𝑚 [Ah].

𝑆𝑜𝐶𝐵(𝑡) = 𝑆𝑜𝐶𝐵(𝑡0) −
(

1
𝑄(3600) ∫

𝑡

0
𝐼𝑏𝑎𝑡𝑡(𝜏)𝑑𝜏

)

× 100 (17)

𝐷𝑜𝐷(𝑡) = 100 − 𝑆𝑜𝐶𝐵(𝑡) (18)

𝑀𝑏𝑎𝑡𝑡 =
𝑉𝑛𝑜𝑚𝑄𝑛𝑜𝑚

𝑆𝐸
(19)

After the FCHEV model is subjected to the driving profile described
previously in this section, the battery recharging is subsequently simu-
lated, in which the final battery state of charge 𝑆𝑜𝐶 is considered
6

𝐵𝑓𝑖𝑛𝑎𝑙
Fig. 4. Electric motors, inverter and DC-DC converter efficiency maps.

as the initial condition of the charging process. In this study, the
charging current 𝐼𝑐 [A] is set as constant to minimize the computational
cost of the optimization procedure. For that, the constant value of 𝐼𝑐 is
defined based on the maximum battery voltage 𝑉𝑐ℎ [V]. In addition, an
efficiency 𝜂𝑐 that encompasses both heat and AC–DC conversion losses
is considered. Hence, the recharging energy 𝐽 [J] is given by Eq. (20)
𝑐
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as a function of the recharging time 𝐶𝑡 [s].

𝐽𝑐 = ∫

𝐶𝑡

0
𝜂𝑐𝐼𝑐𝑉𝑐ℎ𝑑𝑡 (20)

Moreover, the battery degradation is taken into account for the op-
timal design and power management control of the FCHEV powertrain,
so that overloading can be avoided. In this work, the capacity fade
model, proposed by Motapon et al. [74], presents a generic approach
that has accurately been used to emulate the life cycle behavior of
different types of lithium-ion batteries. For this current simulation, the
ambient temperature 𝑇𝑎𝑚𝑏 was set as 293.15 K, in which temperature
effects on the battery lifetime were neglected. The ultracapacitor degra-
dation was likewise disregarded, since its lifespan is estimated to be
greater than that of the vehicle itself [52,75].

The actual battery capacity 𝑄 [Ah] along the 𝑘th half cycle is
calculated by Eq. (21), where 𝑄𝐵𝑂𝐿 and 𝑄𝐸𝑂𝐿 represent the capacity
at the beginning of life (BOL) and end of life (EOL), respectively. In
this case, the battery BOL refers to the initial condition of the battery’s
operational lifetime, in which the system is at its rated capacity,
presents optimal performance and delivers full potential according to
the manufacturer specification data. The battery EOL, on the other
hand, corresponds to the final stage of the cycle life (generally 80%
of the initial rated capacity), where the system is no longer able to
provide the requested power, exhibiting lower energy capacity and
higher internal resistance. In addition, the degradation factor 𝜖, which
varies from zero (BOL) to one (EOL) along the cycling, is determined
by Eq. (22), as a function of the depth of discharge 𝐷𝑜𝐷. The maximum
umber of cycles 𝐶𝑙, on the other hand, is given by Eq. (23), in which

represents the cycle number constant, 𝑇𝑟𝑒𝑓 [K] denotes the nominal
ambient temperature, 𝜓 stands for the Arrhenius rate constant, 𝐼𝑐 [A]
corresponds to the average current for the half-cycle in charging mode,
𝐼𝑑 [A] the average current for the half-cycle in discharging mode, 𝜉 the
exponent factor for 𝐷𝑜𝐷, 𝛾𝑑 the exponent factor for discharge current
and 𝛾𝑐 the exponent factor for the charge current.

𝑄(𝑘) = 𝑄𝐵𝑂𝐿 − 𝜖(𝑘)(𝑄𝐵𝑂𝐿 −𝑄𝐸𝑂𝐿) (21)

𝜖(𝑘) = 𝜖(𝑘 − 1) + 1
2𝐶𝑙(𝑘 − 1)

(

2 −
𝐷𝑜𝐷(𝑘 − 2) +𝐷𝑜𝐷(𝑘)

𝐷𝑜𝐷(𝑘 − 1)

)

(22)

𝐶𝑙(𝑘) = 𝐻
(

𝐷𝑜𝐷(𝑘)
100

)−𝜉
×

𝑥𝑝
(

−𝜓
(

1
𝑇𝑟𝑒𝑓

− 1
𝑇𝑎𝑚𝑏(𝑘)

))

(𝐼𝑎𝑑 (𝑘))
−𝛾𝑑 (𝐼𝑎𝑐 (𝑘))

−𝛾𝑐

(23)

In this study, a battery state of health 𝑆𝑜𝐻 indicator is used to
present the actual working condition of the energy storage system. The
ISO standard 12405 [76], which states that the battery reaches the
end of its lifespan when the capacity is reduced to 80% of its original
value, is used as a reference to estimate the state of health, expressed
by Eq. (24), in which 𝑆𝑜𝐻(𝑘) ∈ [0.8, 1]. For the optimization procedure,
each battery configuration is subjected to a 3000-h cycling process, so
that the capacity fade can be properly evaluated.

𝑆𝑜𝐻(𝑘) =
𝑄(𝑘)
𝑄𝐵𝑂𝐿

(24)

It is also worth pointing out that, for this presented mathematical
model, the first half cycle (𝑘 = 1) at the BOL stage is defined as a battery
discharge. Once 𝑘 reaches a value greater than 3 (that is, from fourth
half-cycle onwards), the model can then determine the degradation
factor 𝜖, based on Eq. (22). Furthermore, such battery degradation
model only takes into account cycle aging, disregarding capacity fade
due to inactive time.
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2.4. Ultracapacitor model

In this work, a generic model for ultracapacitors (UCs) is imple-
mented, using the specification data of sixteen ultracapacitor configu-
rations 𝐶𝑎𝑝(𝑛) that are available in the market, as presented by Table 2.

he UCs can be arranged in series only, parallel only or the combination
f series and parallel, depending upon the optimal search that is carried
ut by evolutionary algorithm, described in Section 4. Moreover, the
ptimization method tunes the number of ultracapacitors used in series
𝑠 and in parallel 𝑁𝑝 per branch. Once such parameters are defined,

he overall mass of the ultracapacitor pack 𝑀𝑐𝑎𝑝 [kg] (Eq. (25)) can be
alculated, where 𝑀𝑢𝑐(𝑛) [kg] represents the mass of the ultracapacitor
elected among those in Table 2. As a result, the total mass of the HESS
𝐻𝐸𝑆𝑆 [kg] can be given by Eq. (26).

𝑐𝑎𝑝 = 𝑁𝑠𝑁𝑝𝑀𝑢𝑐(𝑛) (25)

𝑀𝐻𝐸𝑆𝑆 =𝑀𝑏𝑎𝑡 +𝑀𝑐𝑎𝑝 (26)

Since the ultracapacitors are associated, the equivalent voltage
𝑉𝐶𝑒𝑞 [V], equivalent capacitance 𝐶𝑒𝑞 [F] and equivalent resistance
𝑅𝐶𝑒𝑞 [Ω] are given by Eq. (27), Eq. (28), and Eq. (29), respectively.
Furthermore, the ultracapacitor state of charge 𝑆𝑜𝐶𝐶 is calculated by
Eq. (30), as a function of the current 𝐼𝑐𝑎𝑝 [A], initial electric charge
𝑄𝑖𝑛𝑖 [C], and actual electric charge 𝑄𝑇 [C].

𝑉𝐶𝑒𝑞 =
𝑁𝑠
∑

𝑖=1
𝑉𝐶𝑖 (27)

𝐶𝑒𝑞 =
𝑁𝑝
∑

𝑘=1

⎛

⎜

⎜

⎝

1
∑𝑁𝑠
𝑖=1

1
𝐶𝑖

⎞

⎟

⎟

⎠𝑘

(28)

𝑅𝐶𝑒𝑞 =
⎛

⎜

⎜

⎝

𝑁𝑝
∑

𝑘=1

⎛

⎜

⎜

⎝

1
∑𝑁𝑠
𝑖=1 𝑅𝑖

⎞

⎟

⎟

⎠𝑘

⎞

⎟

⎟

⎠

−1

(29)

𝑆𝑜𝐶𝐶 (𝑡) =

(

𝑄𝑖𝑛𝑖 − ∫ 𝑡0 𝐼𝑐𝑎𝑝(𝜏)𝑑𝜏
𝑄𝑇

)

× 100 (30)

2.5. Fuel cell model

With regard to the PEM fuel cell simulation, the model was based
on fuel cell stack governing equations, which emulate the nonlinear
behavior of the system according to an equivalent circuit, as proposed
by the literature [77,78]. For this model, the gases are assumed to be
ideal, and electrode temperature maintains stable and equal to that of
the stack. The voltage source 𝐸 [V] is given by Eq. (31), in which 𝑁 ,

Table 2
Ultracapacitor parameters [61].
𝐶𝑎𝑝(𝑛) 𝑉𝑢𝑐(𝑛) [V] 𝐶𝑢𝑐(𝑛) [F] 𝑅𝑢𝑐(𝑛) [Ω] 𝑀𝑢𝑐(𝑛) [kg]

𝐶𝑎𝑝(1)

6

108 3.6E−03 3.0
𝐶𝑎𝑝(2) 108 4.3E−03 3.7
𝐶𝑎𝑝(3) 200 3.5E−03 4.1
𝐶𝑎𝑝(4) 266 3.0E−03 4.6
𝐶𝑎𝑝(5) 333 2.4E−03 5.1
𝐶𝑎𝑝(6) 500 1.9E−03 6.0

𝐶𝑎𝑝(7)

48

36 13E−03 9.5
𝐶𝑎𝑝(8) 66 10.4E−03 11.5
𝐶𝑎𝑝(9) 88 8.9E−03 12.5
𝐶𝑎𝑝(10) 111 7.1E−03 13.5
𝐶𝑎𝑝(11) 166 5.6E−03 16.0

𝐶𝑎𝑝(12) 64 83 9.5E−03 17.0
𝐶𝑎𝑝(13) 125 7.5E−03 20.0

𝐶𝑎𝑝(14) 86 62 12.7E−03 21.0
𝐶𝑎𝑝(15) 93 10E−03 26.0

𝐶𝑎𝑝(16) 125 62 15E−03 67.0
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𝐴, 𝐼𝑓𝑐 [A], 𝐼0 [A] and 𝑇𝑑 [s] represent the number of cells, Tafel slope,
fuel cell current, exchange current and response time, respectively.
Additionally, the open circuit voltage 𝐸𝑜𝑐 [V] can be calculated as
a function of the Nernst voltage 𝐸𝑛 [V] and the voltage constant at
nominal condition of operation 𝐾𝑐 , as shown in Eq. (32). The fuel
cell voltage 𝑉𝑓𝑐 [V], on the other hand, is defined by Eq. (33), where
𝑅𝑓𝑐 [Ω] denotes the internal resistance.

𝐸 = 𝐸𝑜𝑐 −𝑁𝐴 ln
( 𝐼𝑓𝑐
𝐼0

)

1
𝑠𝑇𝑑∕3 + 1

(31)

𝑜𝑐 = 𝐾𝑐𝐸𝑛 (32)

𝑓𝑐 = 𝐸 − 𝑅𝑓𝑐𝐼𝑓𝑐 (33)

The use of hydrogen and oxygen from the PEMFC can be repre-
ented by the rates of conversion 𝑈𝐻2 (Eq. (34)) and 𝑈𝑂2 (Eq. (35)),
here 𝑅 [J/molK] is the ideal gas constant, 𝑇𝑓𝑐 [K] denotes the oper-
ting temperature, 𝑧 corresponds to the number of moving electrons,

[As/mol] represents the Faraday constant. Moreover, it is taken
nto account the absolute supply pressure of fuel 𝑃𝑓𝑢𝑒𝑙 [atm] and air
𝑎𝑖𝑟 [atm], the flow rate of fuel 𝑉𝑓𝑢𝑒𝑙 [l/min] and air 𝑉𝑎𝑖𝑟 [l/min] as
ell as the percentage of hydrogen in the fuel 𝑥 [%] and of oxygen in

he air 𝑦 [%].

𝐻2 =
60000𝑅𝑇𝑓𝑐𝐼𝑓𝑐
𝑧𝐹𝑃𝑓𝑢𝑒𝑙𝑉𝑓𝑢𝑒𝑙𝑥

(34)

𝑈𝑂2 =
60000𝑅𝑇𝐼𝑓𝑐
𝑧𝐹𝑃𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑦

(35)

Hence, the partial pressures 𝑃𝐻2 (Eq. (36)), 𝑃𝐻2𝑂 (Eq. (37)) and 𝑃𝑂2
(Eq. (38)) and the Nernst voltage 𝐸𝑛 (Eq. (39)) can be derived from the
aforementioned rates of conversion, where 𝑤 [%] corresponds to the
percentage of water vapor.

𝑃𝐻2 = (1 − 𝑈𝐻2)𝑥𝑃𝑓𝑢𝑒𝑙 (36)

𝑃𝐻2𝑂 = (𝑤 + 2𝑦𝑈𝑂2)𝑃𝑎𝑖𝑟 (37)

𝑃𝑂2 = (1 − 𝑈𝑂2)𝑦𝑃𝑎𝑖𝑟 (38)

𝐸𝑛 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1.229 + (𝑇 − 298)−44.43𝑧𝐹 + 𝑅𝑇
𝑧𝐹 ln

(

𝑃𝐻2𝑂
√

𝑃𝑂2
)

,

if 𝑇𝑓𝑐 ≤ 373.15 K

1.229 + (𝑇 − 298)−44.43𝑧𝐹 + 𝑅𝑇
𝑧𝐹 ln

(

𝑃𝐻2𝑂
√

𝑃𝑂2
𝑃𝐻2𝑂

)

,

if 𝑇𝑓𝑐 > 373.15 K

(39)

The specification parameters (Table 3) were estimated from typical
alues found on Ballard Power manufacturer datasheets [79].

Moreover, the PEM fuel cell stack degradation is calculated ac-
ording to the model proposed by Chen et al. [80]. In this case,
he system lifetime is quantified based on the voltage drop rate of
he cells 𝑉𝑑𝑟𝑜𝑝 [μV/h] along the operation. This variable is given by
q. (40), where 𝑛1, 𝑡1, 𝑛2, 𝑡2 stand for the number of start-stop cycles per
our, the idling power condition time per hour, power transition times
er hour and high power condition time per hour, respectively. The

Table 3
PEM fuel cell stack parameters.

Rated current 200 A
Rated voltage 202 V
Maximum power 90 kW
Number of cells 309
Operating temperature 338 K
Storage tank pressure 70 MPa
8

𝐷

voltage degradation rates for the constants 𝜆𝑠𝑠, 𝜆𝑖𝑑𝑙, 𝜆𝑐ℎ𝑔 and 𝜆ℎ𝑔ℎ are
13.79 μV/cycle, 8.66 μV/h, 0.418 μV/cycle, 10 μV/h, and 42.16 μV/h,
respectively.

𝑉𝑑𝑟𝑜𝑝 = 𝑛1𝜆𝑠𝑠 + 𝑡1𝜆𝑖𝑑𝑙 + 𝑛2𝜆𝑐ℎ𝑔 + 𝑡2𝜆ℎ𝑔ℎ (40)

Hence, the fuel cell lifetime 𝐿𝑓𝑐 [h] is determined by Eq. (41), in
which 𝛥𝑉 [V] corresponds to the allowable voltage loss for each cell
until the system reaches its end of life. According to the literature [81,
82], a criterion that indicates the end of life of a fuel cell system can
be estimated by 10% voltage loss. The variable 𝑘𝑓𝑐 , on the other hand,
is a constant that equals to approximately 1.72 [83].

𝐿𝑓𝑐 =
𝛥𝑉

𝑘𝑓𝑐𝑉𝑑𝑟𝑜𝑝
(41)

3. Fuzzy logic control

In the literature, the fuzzy logic approach has been widely em-
ployed in different areas of engineering such as renewable energy
systems [84–86], thermal systems [87,88], biomedical systems [89],
and energy storage systems [90–92]. Moreover, this control method has
successfully been used for energy management control of plug-in hybrid
electric [67,93,94], hybrid electric [95,96], fully electric [61,97], and
fuel cell electric vehicles [58], as well as vehicle handling [98–100] and
gear shifting control [101,102]. Thus, the fuzzy logic controllers, which
feature anti-disturbance and robustness, are adopted in this study for
the power distribution control between front and rear drive systems,
fuel cell stack and HESS, and battery and ultracapacitor.

It is also worth pointing out that this work tunes the fuzzy con-
trollers’ design parameters by means of an optimization procedure. This
is due to the fact that the formulation of the membership functions,
rules and weights are usually determined according to experience ac-
quired from experts, which makes the optimization of fuzzy controllers
a convoluted task to accomplish. In this sense, the use of i-AWGA
method for the formulation of the fuzzy control parameters ensures an
unbiased formulation and optimal results.

The Mamdani inference method was applied for the controllers, as
it has achieved promising results in previous studies [61,102,103]. In
the current work, the implementation of this method was based on the
Matlab™ fuzzy logic toolbox.

3.1. Power split control between front and rear drive systems

The power demand is initially distributed between the front and
rear drive systems according to the first fuzzy logic controller. In this
case, the fuzzy control consists of three different inputs (rear system
efficiency 𝜂𝑅, front system efficiency 𝜂𝐹 , and required torque 𝑇𝑟𝑒𝑞)
nd one output 𝑃𝑆 . The latter varies from 0 to 1 and determines the
mount of power delivered to each drive system (see Eqs. (3) and (4)).
n addition, the membership functions are composed of three levels
low, medium, and high), as depicted by Fig. 5a. In this work, linear
embership functions were chosen, as they have a simpler formulation,

ause less computational burden, and are vastly used in engineering
pplications [104]. The use of trapezoidal functions was due to the
act that the trapezoidal shapes provide a wider range of feasible
onfigurations as compared to triangular ones.

In this sense, the vector 𝐌𝐅𝐏𝐒 (Eq. (42)) denotes the membership
unctions parameters that are tuned by the optimization procedure,
n which 𝑇𝑟𝑖, 𝐸𝐹 𝑖, 𝐸𝑅𝑖, and 𝑃𝑆𝑖 represent the function variables for
equired torque, front system efficiency, rear system efficiency, and
ower split fraction, respectively. The fuzzy controller’s rules 𝑅𝑃 𝑖 and
eights 𝑊𝑃 𝑖, on the other hand, are combined into the vector 𝐑𝐖𝐏𝐒,
s expressed by Eq. (43). Table 4 shows the optimizable fuzzy output
ules for all the possible combinations of the inputs’ levels 𝐿𝑑 (low),
𝑑 (medium) and 𝐻𝑑 (high). Regarding the defuzzification method

𝑧1, it was defined as centroid in order to avoid abrupt changes in
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Fig. 5. Fuzzy controllers.
Table 4
Fuzzy control rules.

Input 1 Input 2 Input 3

𝐿𝑑 𝑀𝑑 𝐻𝑑

𝐿𝑑
𝐿𝑑 𝑅1 𝑊1 𝑅2 𝑊2 𝑅3 𝑊3
𝑀𝑑 𝑅4 𝑊4 𝑅5 𝑊5 𝑅6 𝑊6
𝐻𝑑 𝑅7 𝑊7 𝑅8 𝑊8 𝑅9 𝑊9

𝑀𝑑

𝐿𝑑 𝑅10 𝑊10 𝑅11 𝑊11 𝑅12 𝑊12
𝑀𝑑 𝑅13 𝑊13 𝑅14 𝑊14 𝑅15 𝑊15
𝐻𝑑 𝑅16 𝑊16 𝑅17 𝑊17 𝑅18 𝑊18

𝐻𝑑

𝐿𝑑 𝑅19 𝑊19 𝑅20 𝑊20 𝑅21 𝑊21
𝑀𝑑 𝑅22 𝑊22 𝑅23 𝑊23 𝑅24 𝑊24
𝐻𝑑 𝑅25 𝑊25 𝑅26 𝑊26 𝑅27 𝑊27

the power split percentage, which would be difficult to achieve in
real-world driving scenarios [105].

[

𝐌𝐅𝐏𝐒
]

1×32 =
[

𝑇𝑟2 𝑇𝑟3 … 𝑇𝑟8 𝑇𝑟9 𝐸𝐹2 𝐸𝐹3 …
]

(42)
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𝐸𝐹8 𝐸𝐹9 𝐸𝑅2 𝐸𝑅3 …𝐸𝑅8 𝐸𝑅9 𝑃𝑆2 𝑃𝑆3 …𝑃𝑆8 𝑃𝑆9
[

𝐑𝐖𝐏𝐒
]

1×54 =
[

𝑅𝑝1 𝑅𝑝2 … 𝑅𝑝27 𝑊𝑝1 𝑊𝑝2 …𝑊𝑝27
]

(43)

Furthermore, it is important to mention that, to achieve a feasible
fuzzy logic, the control parameters must satisfy the constraints 𝐶𝑓𝑧,
given by Eq. (44), where 𝐼∕𝑂𝑖 stands for the input or output member-
ship functions’ points, 𝑅𝑗𝑘 denotes the output rules and 𝑊𝑗𝑘 represent
the fuzzy weights.

𝐶𝑓𝑧 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝐼∕𝑂1 < 𝐼∕𝑂2 < 𝐼∕𝑂3
𝐼∕𝑂4 < 𝐼∕𝑂5 < 𝐼∕𝑂6 < 𝐼∕𝑂7
𝐼∕𝑂8 < 𝐼∕𝑂9 < 𝐼∕𝑂10
𝐼∕𝑂1 < 𝐼∕𝑂3 < 𝐼∕𝑂8 < 𝐼∕𝑂10
𝐼∕𝑂1 < 𝐼∕𝑂4 < 𝐼∕𝑂3
𝐼∕𝑂8 < 𝐼∕𝑂7 < 𝐼∕𝑂10
𝐼∕𝑂2 < 𝐼∕𝑂5 < 𝐼∕𝑂6 < 𝐼∕𝑂9
1 ≤ 𝑅𝑗𝑘 ≤ 3

(44)
⎩

0 ≤ 𝑊𝑗𝑘 ≤ 1
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3.2. Power split control between fuel cell and HESS

A fuzzy-logic controller to determine the power distribution be-
tween the PEM-based fuel cell and HESS is also needed to achieve
greater energy efficiency and the amount of power that should be
supplied by each energy source. Thus, the fuzzy inputs and output are
depicted in Fig. 5b, where 𝑃𝐸𝑇 [W], 𝜂𝐸𝐹 and 𝑃𝑓𝑢𝑒𝑙 [l/s] represent the
ower demand, the fuel cell system efficiency and the hydrogen fuel
ate, respectively. The vector 𝐌𝐅𝐅𝐇, expressed by Eq. (45), comprises
he trapezoidal input/output membership function parameters, while
𝐖𝐅𝐇 (Eq. (46)) represents the rules 𝑅ℎ𝑖, weights 𝑊ℎ𝑖 and defuzzi-

ication method 𝐷𝑧2 of the fuzzy controller. The value of 𝐷𝑧2 can
e 1 (centroid), 2 (bisector), 3 (middle of maximum), 4 (largest of
aximum) or 5 (smallest of maximum). Furthermore, the fuzzy rules in
able 4 and the constraints in Eq. (44) also apply to this control system.

𝐌𝐅𝐅𝐇
]

1×32 =
[

𝑃𝐸2 𝑃𝐸3 …𝑃𝐸8 𝑃𝐸9 𝐸𝐶2 𝐸𝐶3 …

𝐸𝐶8 𝐸𝐶9 𝑃𝐹2 𝑃𝐹3 …𝑃𝐹8 𝑃𝐹9 𝐹𝑆2 𝐹𝑆3 …𝐹𝑆8 𝐹𝑆9
]

(45)

𝐑𝐖𝐅𝐇
]

1×55 =
[

𝑅𝑓1 𝑅𝑓2 … 𝑅𝑓27 𝑊𝑓1 𝑊𝑓2 …𝑊𝑓27 𝐷𝑧2
]

(46)

Lastly, 𝑃𝑆 represents the output value for this fuzzy controller,
n which the variable has unitary range and defines the fraction of
he requested power provided by fuel cell and battery-ultracapacitor
ESS. Such power split can be expressed by Eqs. (47) and (48), where
𝑟𝑒𝑞 [W], 𝑃𝑓𝑐 [W] and 𝑃𝐻𝐸𝑆𝑆 [W] correspond to the required power,
he requested power for the fuel cell and requested power for the HESS,
espectively

𝑓𝑐 = 𝑃𝑟𝑒𝑞𝑃𝑆 (47)

𝐻𝐸𝑆𝑆 = 𝑃𝑟𝑒𝑞(1 − 𝑃𝑆 ) (48)

.3. HESS power split control

Analogously to the aforementioned power split controllers, the
attery-ultracapacitor HESS energy management is carried out by a
uzzy-logic controller, composed of three inputs and one output, as
epicted by Fig. 5c. The fuzzy inputs are characterized by the ac-
ual power 𝑃𝐻𝐸𝑆𝑆 [W] supplied by the HESS, the battery state of
harge 𝑆𝑜𝐶𝐵 and the ultracapacitor state of charge 𝑆𝑜𝐶𝐶 . Hence,
he vectors 𝐌𝐅𝐇𝐒 (Eq. (49)) and 𝐑𝐖𝐇𝐒 (Eq. (50)) correspond to the
nput/output membership functions’ parameters, and the fuzzy rules
ℎ𝑖, weights 𝑊ℎ𝑖 and defuzzification method 𝐷𝑧3, respectively. The
ariables [𝑃𝑟𝑖 𝑆𝐵𝑖 𝑆𝐶𝑖] represent the fuzzy inputs, while 𝐻𝑆𝑖 stands
or the output, which presents a unitary-range value, as the other fuzzy
ontrollers.
𝐌𝐅𝐇𝐒

]

1×32 =
[

𝑃𝑟2 𝑃𝑟3 …𝑃𝑟8 𝑃𝑟9 𝑆𝐵2 𝑆𝐵3 …𝑆𝐵8 𝑆𝐵9 …

𝑆𝐶2 𝑆𝐶3 …𝑆𝐶8 𝑆𝐶9 𝐻𝑆2 𝐻𝑆3 …𝐻𝑆8 𝐻𝑆9
]

(49)

𝐑𝐖𝐇𝐒
]

1×55 =
[

𝑅ℎ1 𝑅ℎ2 … 𝑅ℎ27 𝑊ℎ1 𝑊ℎ2 …𝑊ℎ26 𝑊ℎ27 𝐷𝑧3
]

(50)

The output variable 𝐻𝑆 defines the power split fraction performed
y the battery and ultracapacitor pack. Thus, the requested power for
he former 𝑃𝑏𝑎𝑡𝑡 [W] and the latter 𝑃𝑐𝑎𝑝 [W] are expressed by Eq. (51)
nd Eq. (52), respectively. In this case, the ultracapacitor is actuated in
ischarge mode according to the parameter 𝑆𝑟𝑒𝑔 (Eq. (53)), which pre-
ents such system to overdischarge, that is, any circumstance in which
he ultracapacitor state of charge 𝑆𝑜𝐶𝐶 has reached a value lower than
5%. Additionally, this state variable 𝑆𝑟𝑒𝑔 , once the ultracapacitor has
reviously reached a 𝑆𝑜𝐶𝐶 of 25%, avoids the discharge of the system
hile it has not regenerated sufficient energy to achieve the minimum

tate of charge 𝑆𝑜𝐶𝑟𝑒𝑔 that can vary from 35% to 95% based on the
ptimization procedure described in Section 4.

𝑏𝑎𝑡𝑡 =

⎧

⎪

⎨

⎪

𝑃𝐻𝐸𝑆𝑆𝐻𝑆 , if 𝑆𝑟𝑒𝑔 = 0 and 𝑃𝐻𝐸𝑆𝑆 > 0
𝑃𝐻𝐸𝑆𝑆 , if 𝑆𝑟𝑒𝑔 = 1 and 𝑃𝐻𝐸𝑆𝑆 > 0 (51)
10

⎩

0, if 𝑃𝐻𝐸𝑆𝑆 ≤ 0 t
𝑐𝑎𝑝 =

⎧

⎪

⎨

⎪

⎩

𝑃𝐻𝐸𝑆𝑆 (1 −𝐻𝑆(𝐹∕𝑅)), if 𝑆𝑟𝑒𝑔 = 0 and 𝑃𝐻𝐸𝑆𝑆 > 0
0, if 𝑆𝑟𝑒𝑔 = 1 and 𝑃𝐻𝐸𝑆𝑆 > 0
𝑃𝐻𝐸𝑆𝑆 , if 𝑃𝐻𝐸𝑆𝑆 ≤ 0

(52)

𝑟𝑒𝑔(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if
{

𝑆𝑜𝐶𝐶 (𝑡) < 25%, or:
𝑆𝑟𝑒𝑔(𝑡 − 𝛥𝑡) = 1 and 𝑆𝑜𝐶𝐶 (𝑡) < 𝑆𝑜𝐶𝑟𝑒𝑔

0, if
{

𝑆𝑜𝐶𝐶 (𝑡) ≥ 𝑆𝑜𝐶𝑟𝑒𝑔 , or:
𝑆𝑟𝑒𝑔(𝑡 − 𝛥𝑡) = 0 and 𝑆𝑜𝐶𝐶 (𝑡) ≥ 25%

(53)

. Optimization procedure

The formulation of the multi-objective optimization problem is
iscussed in this section, along with each of the optimization criteria
hat were taken into consideration in this work. In addition, the optimal
owertrain design variables and fuzzy logic controller parameters are
chieved using the evolutionary algorithm procedure that are both
escribed and implemented.

.1. Optimization criteria and design parameters

An evolutionary algorithm method serves in this study as the foun-
ation for the formulation of the optimization problem. In this way,
chromosome vector 𝐗 stores as genes the fuzzy logic-based energy
anagement control and FCHEV powertrain design parameters, as

xpressed by Eq. (54).

𝐗]1×271 =
[

𝑄𝑛𝑜𝑚 𝑉𝑛𝑜𝑚 𝑇𝑚𝑎𝑥𝐹 𝜔𝑇 𝑐𝐹 𝑇𝑚𝑎𝑥𝑅 𝜔𝑇 𝑐𝑅 𝐶𝑎𝑝 𝑁𝑠 𝑁𝑝…

𝑆𝑜𝐶𝑟𝑒𝑔𝑁𝑑 𝐌𝐅𝐏𝐒 𝐑𝐖𝐏𝐒 𝐌𝐅𝐅𝐇 𝐑𝐖𝐅𝐇 𝐌𝐅𝐇𝐒 𝐑𝐖𝐇𝐒
] (54)

In the first optimization criterion 𝑓1, it is considered the FCHEV
riving range 𝐷𝑅 [km], so that the autonomy of the vehicle can be
aximized, as expressed by Eq. (55). In this study, the range is quanti-

ied until the battery reaches its minimum allowable 𝑆𝑜𝐶 value of 40%.
t the same time, the maximum hydrogen cost was considered 4 kg,
hich is close to typical tank capacities that current FCHEVs available

n the market can hold. It is important to highlight that, in this work,
he driving range is defined by when the battery reaches its minimum
tate of charge (𝑆𝑜𝐶 = 40%). Hence, the configurations can either
onsume all the available hydrogen stored in the tanks (4 kg) through
he high use of the fuel cell or opt to use the battery-ultracapacitor
ESS as the main power source, consuming only part of the stored

uel and actuating the fuel cell only under specific driving profiles. This
ecision will be made by the power management control strategy that
ay target the minimization of fuel used, the maximization of driving

ange or the balance between these two factors.

1(𝐗) = max
(

𝐷𝑅(𝐗)
)

(55)

Additionally, the minimization of the hybrid energy storage system
ize is the second criterion 𝑓2 (Eq. (56)), which directly influences the
ehicle’s overall mass and the aforementioned driving autonomy.

2(𝐗) = min
(

𝑀𝐻𝐸𝑆𝑆 (𝐗)
)

(56)

The third criterion 𝑓3 (Eq. (57)) is to minimize the hydrogen con-
umption 𝐻𝑐𝑜𝑛𝑠 [kg/100 km] of the FCHEV configuration under the
ombined driving profile considered in this work (see Fig. 2). Since
he cost of hydrogen fuel remains a significant obstacle for the fuel
ell electric vehicle market, this factor receives high priority in the
ptimization process and is directly related to the operating cost of
ompleting the desired path.

3(𝐗) = min
(

𝐻𝑐𝑜𝑛𝑠(𝐗)
)

(57)

Finally, the last optimization criterion 𝑓4 is associated to the mini-
ization of the power source degradation. The factor 𝐿𝑃𝑆 (Eq. (58)) is
efined by an adaptive weight calculation that takes into consideration

he battery state of health 𝑆𝑜𝐻 and the voltage drop rate 𝑉𝑑𝑟𝑜𝑝 of the



Energy Conversion and Management 292 (2023) 117330S.F. da Silva et al.

4

m
w
o
e
h
d
s
m
b
b
o
s

e
c
m
a
p
b
f
t
t
a
f

𝐹

t
c
c
c
v

p
a
m
m
i
m
a
t
b

t
PEM fuel cell along the cycles. Hence, the criterion 𝑓4 is given by
Eq. (59).

𝐿𝑃𝑆 (𝐗) =
𝑆𝑜𝐻𝑚𝑎𝑥 − 𝑆𝑜𝐻(𝐗)
𝑆𝑜𝐻𝑚𝑎𝑥 − 𝑆𝑜𝐻𝑚𝑖𝑛 +

𝑉𝑑𝑟𝑜𝑝(𝐗) − 𝑉 𝑚𝑖𝑛
𝑑𝑟𝑜𝑝

𝑉 𝑚𝑎𝑥
𝑑𝑟𝑜𝑝 − 𝑉

𝑚𝑖𝑛
𝑑𝑟𝑜𝑝

(58)

𝑓4(𝐗) = min
(

𝐿𝑃𝑆 (𝐗)
)

(59)

.2. Interactive adaptive-weight genetic algorithm (i-AWGA)

In this study, the optimization problem is solved by the i-AWGA
ethod proposed by Gen et al. [106]. This genetic algorithm method
as used, since it has been used successfully in previous works to
ptimize multiple complex systems with different goals such as fully
lectric vehicle powertrain design [61,97], plug-in hybrid electric ve-
icle powertrain design [67,105], hydraulic hybrid vehicle powertrain
esign [19,107], multi-speed transmission design [108,109] and shift
chedule control [102,110]. This is due to the fact that this optimization
ethod presents a wide search for the most compromised solutions,

eing not limited to local optimum. Furthermore, the procedure has
een previously compared to results obtained by the particle swarm
ptimization method [98], which showed that both methods achieved
imilar outcomes.

The i-AWGA fitness function 𝐹𝑡 (Eq. (60)), which takes into consid-
ration the maximum and minimum outcomes for each optimization
riterion, is used to classify the members of the population. The mini-
um and maximum values for each optimization criterion are selected

mong all existing solutions presented in the current generation of the
opulation. With the population evolution, the new solutions tend to
e better than the previous ones, while the worst results are eliminated
rom the population according to the population size rules. Therefore,
hese minimum and maximum values applied change at each genera-
ion. The calculation also includes a penalty factor 𝑃𝑝, which assumes
value of one for the first ranked members and zero for the members

rom the second ranking onwards.

𝑡(𝐗) =
𝑓1(𝐗) − 𝑓𝑚𝑖𝑛1

𝑓𝑚𝑎𝑥1 − 𝑓𝑚𝑖𝑛1

+
𝑓𝑚𝑎𝑥2 − 𝑓2(𝐗)
𝑓𝑚𝑎𝑥2 − 𝑓𝑚𝑖𝑛2

+
𝑓𝑚𝑎𝑥3 − 𝑓3(𝐗)
𝑓𝑚𝑎𝑥3 − 𝑓𝑚𝑖𝑛4

+

𝑓𝑚𝑎𝑥4 − 𝑓4(𝐗)
𝑓𝑚𝑎𝑥4 − 𝑓𝑚𝑖𝑛4

+ 𝑃𝑝(𝐗)
(60)

Hence, this method weighs the importance of each optimization cri-
terion and makes it more likely that the best candidates will crossover
or mutate, which makes the evolution process shorter. The candidate
with the greatest fitness (that is, most compromised with the opti-
mization criteria) will also have the highest probability of selection
𝑆𝑃 , which is determined as a function of the population size 𝑃𝑠𝑖𝑧𝑒, as
expressed by Eq. (61).

𝑆𝑃 (𝐗) =
𝐹𝑡(𝐗)

∑𝑃𝑠𝑖𝑧𝑒
𝑋=1 𝐹 𝑡(𝐗)

(61)

Twenty chromosomal pairs (𝐗1 and 𝐗2) are chosen each generation
o be randomly merged via the crossover process, creating a new
hromosome called 𝐗𝑐𝑟. Once the optimization criteria are met by this
onfiguration, the merged member 𝐗𝑐𝑟 is simulated and added to the
urrent population. Additionally, the chance of choosing the design
ariables from 𝐗1 and 𝐗2 is equal.

Additionally, a mutation operator is implemented in order to ensure
opulation variety. The chromosomes 𝐗1, 𝐗2, and 𝐗𝑐𝑟’s design variables
re randomly modified (with a chance of 50%), resulting in the new
embers 𝐗𝑀1, 𝐗𝑀2, and 𝐗𝑀𝑐𝑟, respectively. Then, if the required
inimum performance criteria were met, those chromosomes were

ntroduced into the population after being assessed using the opti-
ization constraints 𝐶(𝐗) described in Eq. (62). In these constraints,
minimum speed correlation coefficient 𝐶𝑂𝑅𝑚𝑖𝑛(𝐗) is considered, so

hat the FCHEV configurations with poor acceleration performance can
11

e avoided. This variable is defined by Eq. (63), as a function of the
arget speed from the driving profile 𝑉𝑐 and the actual vehicle speed 𝑉 .

𝐶(𝐗) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

20 Ah ≤ 𝑄𝑛𝑜𝑚 ≤ 70 Ah
100 V ≤ 𝑉𝑛𝑜𝑚 ≤ 300 V
1 ≤ 𝑁𝑠 ≤ 25

1 ≤ 𝑁𝑝 ≤ 5

50 Nm ≤ 𝑇𝑚𝑎𝑥 ≤ 300 Nm
26 rad/s ≤ 𝜔𝑇 𝑐 ≤ 314 rad/s
3.5 ≤ 𝑁𝑑 ≤ 7

35% ≤ 𝑆𝑜𝐶𝑟𝑒𝑔 ≤ 95%

𝐶𝑂𝑅𝑚𝑖𝑛(𝐗) ≥ 0.99

𝐷𝑅 ≥ 94 km

(62)

𝐶𝑂𝑅 =

√

√

√

√

√

(
∑

(

𝑉𝑐 − 𝑉𝑐
) (

𝑉 − 𝑉
))2

∑
(

𝑉𝑐 − 𝑉𝑐
)2 ∑(

𝑉 − 𝑉
)2

(63)

Finally, the population size is constrained by a maximum member
count 𝑃𝑙𝑖𝑚𝑖𝑡 of 200. Once the population reaches this threshold, the
highest Pareto ranked solutions are eliminated. The population size
is reset by the requirement that 𝑃𝑙𝑖𝑚𝑖𝑡 = 𝑃𝑙𝑖𝑚𝑖𝑡 + 100, preventing the
removal of the whole population in the event that the Pareto frontier
(i.e., the first ranking solutions) exhibits a larger size than 𝑃𝑙𝑖𝑚𝑖𝑡 [111].
In case that the Pareto frontier has been stationary for more than 10
generations, it can be concluded that the evolutionary process reached
its convergence.

The flowchart depicted in Fig. 6 shows each step of the optimization
procedure that was employed in this study. As previously presented
by Eq. (54), the evolutionary algorithm deals with 271 design pa-
rameters, that characterize electric drive system, HESS (battery and
ultracapacitor), and power management controllers.

5. Optimization results and discussion

Once the convergence is achieved, the Pareto frontier of non-
dominated solutions obtained by the optimization procedure defines
the optimum FCHEV configurations, as depicted by Fig. 7. The solutions
that offer the minimum (or maximum) values of each objective function
are highlighted in such Pareto frontier. Those configurations represent
the maximum driving range (max 𝑓1), the minimum HESS mass (min 𝑓2),
the minimum hydrogen consumption (min 𝑓3), and the minimum power
sources degradation factor (min 𝑓4). In addition, the most compromised
configuration in terms of the trade-off (max𝐹𝑡) between the four taken
into account criteria is likewise examined. The optimization results
and design parameters of the powertrain for each one of the optimal
configurations is presented in Table 5.

It is possible to observe from the Pareto frontier that a reduction
in the hydrogen consumption leads to the decrease of the driving
autonomy, as shown in Fig. 7b. However, this changing pattern is
clearly modified when solutions such as max 𝑓1, min 𝑓2, min 𝑓4 and
max𝐹𝑡 consume all the hydrogen fuel stored in the tank (4 kg) during
the driving cycle. This is due to the fact that those solutions present
the same amount of 𝐻2 fuel used [kg] and, for those configurations,
the greater the driving range, the lower the hydrogen consumption
𝐻𝑐𝑜𝑛𝑠 [kg/100 km].

Regarding the HESS size, Fig. 7a illustrates that a heavy HESS
does not necessarily represent the increase of the autonomy. In fact,
FCHEV powertrain architectures, which already carry large hydrogen
tanks, require moderate size of the auxiliary power unit, as significant
weight may eventually reduce their driving range. At the same time,
the HESS size can influence the hydrogen consumption of the vehicle
(Fig. 7f), since larger HESS can effectively meet higher power demands,
alleviating the fuel cell stack operation and, consequently, maximizing
the fuel efficiency.
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Fig. 6. Optimization flowchart.
Table 5
Optimization results.

Results
Optimal FCHEV configurations

Max. autonomy Min. HESS mass Min. 𝐻2 used Min. degradation Best trade-off
max (𝑓1) min (𝑓2) min (𝑓3) min (𝑓4) max (𝐹 𝑡)

𝐻2 consumption [kg/100 km] 0.8659 0.9991 0.5521 0.9474 0.9009
Driving range [km] 461.96 400.41 95.15 422.23 444.08

Performance 𝐶𝑂𝑅(𝑋) 0.9978 0.9916 0.9907 0.9910 0.9914
Battery mass 𝑀𝑏𝑎𝑡 [kg] 64.38 25.71 63.37 53.65 45.05

UC mass 𝑀𝑐𝑎𝑝 [kg] 37.50 21 37.50 45 24
Battery 𝑆𝑜𝐻 0.9960 0.9975 0.9860 0.9989 0.9979

Battery life [h] 9305 9024 8062 9343 9276
FC voltage drop 𝑉𝑑𝑟𝑜𝑝 [μV/h] 4.946 4.371 9.848 4.451 4.140

FC lifespan 𝐿𝑓𝑐 [h] 7688 8699 3861 8541 9184
Recharging time 𝐶𝑡 [h] 2.59 2.62 2.42 2.39 2.58
Driving Range

Energy storage mass [km/kg] 1.91 2.14 0.40 1.77 2.12

Chromosomes

𝑄𝑛𝑜𝑚 [Ah] 38.87 26.21 44.34 40 30.15
𝑉𝑛𝑜𝑚 [V] 248.43 147.14 214.37 201.17 224.11

𝑇𝑚𝑎𝑥𝐹 [Nm] 221.56 162.93 159.46 167.13 177.85
𝜔𝑇 𝑐𝐹 [rpm] 378.36 342.15 397.37 356.42 342.15
𝑇𝑚𝑎𝑥𝑅 [Nm] 27.99 50.13 27.14 30.77 27.99
𝜔𝑇 𝑐𝑅 [rpm] 777.51 761.14 650.79 761.14 650.79

𝐶𝑎𝑝 10 1 10 11 1
𝑁𝑠 3 7 3 3 8
𝑁𝑝 1 1 1 1 1
𝑁𝑑 6.11 6.16 6.68 5.27 6.16

𝑆𝑜𝐶𝑟𝑒𝑔 [%] 55.92 74.86 56.57 46.08 55.45
12
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Fig. 7. Optimized solutions.
Furthermore, Fig. 7c shows that the reduction of the degradation of
the power sources (fuel cell and battery) is followed by the increase
of driving range. The hydrogen consumption, on the other hand, is
increased to maintain a longer system lifespan, as shown by Fig. 7e.
This can be explained by the fact that configurations that aim the
minimization of the hydrogen fuel cost used more the HESS in high
power demand profiles, thereby significantly reducing the battery life-
time. Since the driving range is limited to the minimum value of the
battery 𝑆𝑜𝐶 (40%), those solutions prioritize the HESS operation to
13
save hydrogen fuel. In this sense, aging-aware power management con-
trol strategies are of great importance to simultaneously achieve high
autonomy, hydrogen fuel efficiency, and fuel cell and battery longevity.
Fig. 8 depicts a comparison between the optimal configurations with
regard to energy efficiency, system size, charging time, and power
source degradation.

As can be seen in Table 5, max 𝑓1 solution reached a driving auton-
omy of approximately 462 km, in which the vehicle is equipped with
a 102 kg HESS. Despite the large auxiliary energy storage system to
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Fig. 8. Spider plot: optimal FCHEV configurations.

maximize the driving range, this configuration, which has the sixth-
highest fitness 𝐹𝑡 value in the Pareto frontier, presented hydrogen
consumption of 0.8659 kg/100 km, which represents a reduction of
15.4%, 9.41%, and 3.88% when compared to the min 𝑓2, min 𝑓4 and
max𝐹𝑡 solutions, respectively. At the same time, the increase of fuel
efficiency obtained by max 𝑓1 solution is followed by the shorter fuel
cell lifespan (𝐿𝑓𝑐). In comparison to min 𝑓4 and max𝐹𝑡 configurations,
max 𝑓1 showed a reduction of 13.15%, 11.09%, and 19.46% in 𝐿𝑓𝑐 .

The min 𝑓2 solution, on the other hand, presents a compact HESS of
46.71 kg. Although the small HESS led to the reduction of the driving
autonomy (decrease of 15.37%, 5.17%, and 10.91% compared against
max 𝑓1, min 𝑓4, and max𝐹𝑡, respectively), the ratio between range and
energy storage mass was the highest among the optimal configurations,
as described in Table 5, and the fitness value is the fourth highest in
the Pareto frontier.

Regarding min 𝑓3, the hydrogen fuel consumption was substantially
decreased, which can be explained by the short driving autonomy
(95.15 km). Additionally, this FCHEV configuration is equipped with
a HESS of significant size (100.9 kg) that can be an effective al-
ternative to increase fuel efficiency. Fig. 8 illustrates the results of
this configuration when compared to the other optimal configurations.
Although the solution consumes less hydrogen per each 100 km driven,
the energy management strategy does not favor the fuel cell lifetime,
presenting higher number of start-stop cycles per hour and significant
idling time (almost 30% of the driving cycle). Since this solution does
not present a reasonable balance between all the optimization criteria
considered in this study, it only has the 132nd best fitness among the
219 non-dominated configurations.

The simulation results for the optimized solution min 𝑓4 with min-
imized power source degradation factor 𝐿𝑃𝑆 is likewise presented in
Table 5. In this case, the configuration prioritizes the fuel cell and
battery cycle life, presenting a HESS size (97.65 kg) higher than the
average of the optimized solutions. The choice for a robust HESS
avoids overloading of the main and secondary power sources and,
consequently, the shortening of their lifespans. For such HESS, the
configuration features a larger ultracapacitor pack (45 kg), so that it
can be used as a power buffer unit in high demand driving conditions.
Another important drawback of this solution is that the ratio between
driving autonomy and energy storage mass is 7.91%, 20.91% and
19.77% lower than those of max 𝑓1, min 𝑓2 and max𝐹𝑡, respectively. In
this sense, min 𝑓4 is ranked as the 23rd in the Pareto frontier.

Finally, the best trade-off solution max𝐹𝑡 features a 69.05 kg HESS,
hile keeping an extended driving range and long energy source lifes-
14

an. As depicted in Fig. 8, this configuration managed to balance the a
optimization criteria, achieving the optimality for the FCHEV power-
train architecture proposed in this study. In addition, other important
factors such as correlation performance coefficient 𝐶𝑂𝑅, recharging
time 𝐶𝑡 and autonomy-to-mass ratio were not compromised in this case.

Fig. 9 depicts the simulation results for the best trade-off FCHEV
configuration, in which it is possible to observe the hydrogen con-
sumption, battery state of charge 𝑆𝑜𝐶𝐵 and ultracapacitor state of
charge 𝑆𝑜𝐶𝐶 profiles along the repeated driving cycles. In this case,
the power management control strategy consists of a distributed use of
the battery pack and fuel cell stack, demanding deep discharges in the
ultracapacitor pack for the high power routes. Such strategy allows the
extension of the power sources (fuel cell and battery) lifetime, while
ensuring high driving range. As illustrated by Fig. 9, once the vehicle
runs out of hydrogen, the battery replaces the fuel cell stack as the main
power source. As it could be expected, at this moment, the battery starts
to meet a higher power demand, thereby increasing the discharging
rate. As previously mentioned, the driving range is defined by when
the battery 𝑆𝑜𝐶𝐵 achieves its minimum allowable value of 40%.

Finally, Fig. 10 shows the fuzzy controller surface’s optimal config-
urations for the best trade-off solution.

5.1. Cost–benefit analysis

This section compares the selected FCHEV solutions of the current
study with different optimal electrified vehicle powertrain configura-
tions obtained in earlier published works through the evaluation of
their ownership and operating costs. This comparative analysis consid-
ers a single HESS-equipped EV [97], a dual HESS-equipped EV [97],
a EV equipped only with a battery as the energy storage system [98],
and an electric-hydraulic hybrid vehicle (EHHV) [107].

Table 6 presents the cost results for each type of propulsion archi-
tecture. The single HESS-based and dual HESS-based EV configurations
were optimized with focus on the maximization of the driving range,
front and rear battery state of health, and minimization of the battery-
ultracapacitor HESS size. The optimization of the single battery-based
EV, on the other hand, aimed to minimize the electric propulsion
system size, the driver action, improving the vehicle handling, quan-
tified by means of the root-mean-square deviation of the steering angle
𝛿𝑟𝑚𝑠, as well as maximize the final battery state of charge. Lastly, the
optimization criteria considered in the design and control of the EHHV
powertrain were the autonomy, battery and hydraulic system weight,
and battery state of health. Notice that those studies consider three
criteria for the optimization, while the current work takes into account
four different objective functions.

In the analysis, the cost of the powertrain components were esti-
mated, so that the cost of ownership and cost-to-range ratio could be
determined for each vehicle configuration. For instance, the lithium-
ion battery cost was defined according to the ratio of US$ 165/kWh, as
reported by [114,115]. Regarding the electric motors, their costs were
calculated based on a database from the market described in [67]. The
cost of the fuel cell stack was likewise estimated by technical reports
available in the literature [116]. Finally, the price of the ultracapacitor
pack was given by the ratio of US$ 66640 per 1 kWh of stored energy,
as reported by [117].

As described in Table 6, the best trade-off FCHEV configuration
achieved an overall cost-to-autonomy ratio of 31.28, which stands for a
reduction of 26.57%, 23.11%, 63.59%, 63.26% when compared against
the optimal dual HESS-based EV, single HESS-based, single battery-
based EV, and EHHV, respectively. Hence, it is possible to assume that
the max (𝐹𝑡) FCHEV solution presented the highest benefit–cost ratio
mong the investigated configurations. The max (𝑓1) and min (𝑓2) also
resented promising results, with decrease of up to 69.62% with respect
o other electrified vehicle powertrain topologies.

However, it is noteworthy to mention that the min (𝑓3) solution
howed an important disadvantage among the analyzed configurations,

s it featured a substantially higher cost-to-range ratio. This can be
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Fig. 9. Simulation results for the best trade-off FCHEV configuration.

Fig. 10. Best trade off fuzzy logic optimum controller surfaces.
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Table 6
Cost comparison between optimal electrified vehicle powertrain configurations.

Parameters FCHEV (current work)

max (𝑓1) min (𝑓2) min (𝑓3) min (𝑓4) max (𝐹 𝑡)
Driving range [km] 461.96 400.41 95.15 422.23 444.08

Fuel cell cost US$ 9000 US$ 9000 US$ 9000 US$ 9000 US$ 9000
Battery cost US$ 2192 US$ 876 US$ 2158 US$ 1827 US$ 1534

Ultracapacitor cost US$ 7277 US$ 1819 US$ 7277 US$ 10896 US$ 2079
Frontal EMs cost US$ 1404 US$ 1005 US$ 1114 US$ 1060 US$ 1078
Rear EMs cost US$ 232 US$ 367 US$ 197 US$ 245 US$ 202

Powertrain overall cost US$ 20105 US$ 13067 US$ 19746 US$ 23028 US$ 13893
Overall cost

Driving range [US$/km] 43.52 32.63 207.52 54.54 31.28

Dual HESS-based EV [97]

max (𝐷𝑅) min (𝑀𝑏𝑎𝑡(𝐹∕𝑅) +𝑀𝑐𝑎𝑝(𝐹∕𝑅)) max (𝑆𝑜𝐻(𝐹∕𝑅)) min (𝑓4) max (𝐹 𝑡)
Driving range [km] 369.16 98.34 223.98 − − − 285.56
Frontal battery cost US$ 6673 US$ 1540 US$ 6294 − − − US$ 5315

Frontal ultracapacitors cost US$ 2339 US$ 1819 US$ 1819 − − − US$ 1819
Frontal EMs cost US$ 958 US$ 965 US$ 1124 − − − US$ 1037
Rear battery cost US$ 5964 US$ 706 US$ 2074 − − − US$ 1871

Rear ultracapacitors cost US$ 3358 US$ 1819 US$ 16933 − − − US$ 1819
Rear EMs cost US$ 728 US$ 320 US$ 399 − − − US$ 303

Powertrain overall cost US$ 20020 US$ 7169 US$ 28643 − − − US$ 12164
Overall cost

Driving range [US$/km] 54.23 72.90 127.88 − − − 42.60

Single HESS-based EV [97]

max (𝐷𝑅) min (𝑀𝑏𝑎𝑡 +𝑀𝑐𝑎𝑝) max (𝑆𝑜𝐻) min (𝑓4) max (𝐹 𝑡)
Driving range [km] 270.34 98.25 256.46 − − − 238.82

Battery cost US$ 9019 US$ 2361 US$ 9140 − − − US$ 6566
Ultracapacitor cost US$ 1819 US$ 1819 US$ 1819 − − − US$ 1819
Frontal EMs cost US$ 1230 US$ 1120 US$ 1191 − − − US$ 1136
Rear EMs cost US$ 391 US$ 201 US$ 187 − − − US$ 194

Powertrain overall cost US$ 12459 US$ 5501 US$ 12337 − − − US$ 9715
Overall cost

Driving range [US$/km] 46.09 55.99 48.10 − − − 40.68

Single battery EV [98]

min (𝛿𝑟𝑚𝑠) max (𝑆𝑜𝐶𝐵 ) min (𝑀𝑏𝑎𝑡 +𝑀𝐸𝑀𝑠) min (𝑓4) max (𝐹 𝑡)
Driving range [km] 88.5 152.40 80.70 − − − 124.20

Battery cost US$ 5807 US$ 13620 US$ 4901 − − − US$ 8030
Frontal EMs cost US$ 1620 US$ 1898 US$ 1576 − − − US$ 1364
Rear EMs cost US$ 1187 US$ 1223 US$ 967 − − − US$ 1279

Powertrain overall cost US$ 8614 US$ 16741 US$ 7444 − − − US$ 10673
Overall cost

Driving range [US$/km] 97.33 109.85 92.24 − − − 85.93

Electric-hydraulic hybrid vehicle EHHV [107]

max (𝐷𝑅) min (𝑀𝑏𝑎𝑡 +𝑀ℎ𝑦𝑑 ) max (𝑆𝑜𝐻) min (𝑓4) max (𝐹 𝑡)
Driving range [km] 199.73 104.04 148.51 − − − 167.95

Battery cost US$ 9508 US$ 4828 US$ 7012 − − − US$ 7925
EM cost US$ 4279 US$ 4273 US$ 4287 − − − US$ 4300

Hydraulic drivetrain cost US$ 2076 US$ 2076 US$ 2076 − − − US$ 2076
Powertrain overall cost US$ 15863 US$ 11177 US$ 13375 − − − US$ 14301
Overall cost

Driving range [US$/km] 79.42 107.43 90.06 − − − 85.15
explained by the fact that this configuration primarily focused on the
reduction of hydrogen consumption by the increase of the HESS size,
which increases the cost of ownership without reflecting in a proper
increase of driving range. In fact, min (𝑓3) solution used only 0.58 kg of
hydrogen fuel, which is a considerably lower value when compared to
those of other optimal configurations that used the total amount of fuel
stored in the tank (4 kg). As a result, min (𝑓3) configuration achieved
an approximate 95 km range, which corresponds to only 23% of the
driving range accomplished by the best trade-off configuration. Thus, it
is possible to infer that the min (𝑓3) solution presents a relevant increase
in the total cost of ownership per driving range, as an expensive
investment on a fuel cell system is made, but it is only used in short
routes during the cycle, while the HESS is prioritized and utilized as
the main power source. At the same time, min (𝑓3) can be seen as a
beneficial configuration in terms of operating costs, as the hydrogen
fuel efficiency is increased by up to 38.71% as compared to the most
compromised configuration (max (𝐹 )).
16
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5.2. Alternative driving cycles

Another important factor that should be evaluated is the robustness
of the optimal FCHEV configurations with regard to other driving
profiles. Hence, this subsection presents the results of the optimized
solutions under real-world driving cycles at urban scenarios from the
Brazilian cities of Ouro Branco (Minas Gerais) [110], Campinas (São
Paulo state) [67], and Santa Maria (Rio Grande do Sul) [112,113].
Additionally, those configurations were also subjected to the highway
route from Campinas to São Paulo city [98].

Table 7 shows that most of the optimal configurations achieved
driving autonomy greater than the minimum range established by
the optimization constraint (𝐷𝑅 ≥ 94 km). The only exception was
the min (𝑓3) solution under the Campinas-to-São Paulo driving cycle,
presenting 81.01 km of autonomy. This can be explained by the fact
that this real-world cycle consists of a highway profile that demands
more power when compared against the urban cycles described in this
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Table 7
Optimized results under alternative driving cycles.

Results

FCHEV solutions

Maximum Minimum Minimum 𝐻2 Longest Best
driving range HESS mass consumption life cycle trade-off

max (𝑓1) min (𝑓2) min (𝑓3) min (𝑓4) max (𝐹 𝑡)

Ouro Branco driving cycle [110]

𝐻2 consumption [kg/100 km] 0.6319 0.8003 0.6074 0.7882 0.7072
Driving range [km] 633.16 499.81 194.49 499.14 565.62
Performance 𝐶𝑂𝑅 0.9999 0.9999 0.9997 0.9999 0.9999

𝑆𝑜𝐻 0.9978 0.9973 0.9896 0.9973 0.9984
FC voltage drop 𝑉𝑑𝑟𝑜𝑝 [μV/h] 3.50 3.52 5.12 3.34 3.34

FC lifespan 𝐿𝑓𝑐 [h] 10861 10811 7423 11381 11386

Santa Maria driving cycle [112,113]

𝐻2 consumption [kg/100 km] 0.5601 0.7992 0.7104 0.7946 0.7068
Driving range [km] 714.24 500.51 333.67 481.85 565.98
Performance 𝐶𝑂𝑅 1.0000 1.0000 1.0000 1.0000 1.0000

𝑆𝑜𝐻 0.9991 0.9980 0.9962 0.9990 0.9984
FC voltage drop 𝑉𝑑𝑟𝑜𝑝 [μV/h] 3.48 3.35 3.55 3.23 3.31

FC lifespan 𝐿𝑓𝑐 [h] 10915 11342 10718 11759 11505

Campinas to São Paulo driving cycle [98]

𝐻2 consumption [kg/100 km] 0.9297 1.1741 0.5434 1.0616 1.0329
Driving range [km] 430.32 279.27 81.01 376.82 363.19
Performance 𝐶𝑂𝑅 0.9999 0.9954 0.9971 0.9961 0.9964

𝑆𝑜𝐻 0.9972 0.9997 0.9977 0.9977 0.9960
FC voltage drop 𝑉𝑑𝑟𝑜𝑝 [μV/h] 6.09 5.01 13.42 4.77 4.27

FC lifespan 𝐿𝑓𝑐 [h] 6234 7589 2834 7968 8901

Campinas driving cycle [67]

𝐻2 consumption [kg/100 km] 0.6697 0.8899 0.7196 0.8815 0.8012
Driving range [km] 597.45 449.53 190.77 447.73 499.31
Performance 𝐶𝑂𝑅 0.9999 0.9999 0.9997 0.9998 0.9998

𝑆𝑜𝐻 0.9988 0.9989 0.9956 0.9990 0.9988
FC voltage drop 𝑉𝑑𝑟𝑜𝑝 [μV/h] 4.91 4.87 5.53 4.71 4.78

FC lifespan 𝐿𝑓𝑐 [h] 7757 7798 6876 8060 7963
6

f
t
u
b
a
m
p
w

b
e
t
c
d
d
s
t
w
p

w
t
T
a
t
E

section. In addition, it is important to emphasize that Campinas-to-São
Paulo cycle presents fewer significant deceleration routes, which affects
the energy braking regeneration of the ultracapacitor. As a result, this
cycle also requires, in most cases, more hydrogen fuel than those of the
Ouro Branco, Santa Maria, and Campinas driving cycles.

Santa Maria cycle provides the highest driving range for the op-
timized solutions. As an urban driving scenario that presents driving
profiles of heavy traffic and free road with relatively low speed and
power demand, the FCHEV configurations were able to achieve a higher
energy regeneration and efficiency.

The simulation results for the Campinas and Ouro Branco driving cy-
cles also presented high driving autonomy. The best trade-off solution,
for instance, achieved a lower hydrogen fuel consumption (−11.06%
or the Campinas and −21.51% for the Ouro Branco cycle) as compared
o that of the combined standardized cycle in which the optimization
ethod was employed. Analogously to the Santa Maria cycle, those

ycles are characterized by urban driving routes combined by low-
peed traffic conditions, in which regenerative braking can easily occur.
egarding the degradation of the power sources, there is a clear ten-
ency of shorter fuel cell life cycles for the configurations under the
ampinas-to-São Paulo cycle when compared to the aforementioned
eal-world urban driving profiles.

As can be observed by the provided results, it is possible to infer
hat the optimal FCHEV configurations presented robustness under real-
orld driving profiles, distinct from the ones used in the formulation
f the i-AWGA method, not only with respect to energy efficiency
nd autonomy, but also regarding performance and power sources
ife cycle. In this sense, the most compromised solution (max (𝐹 𝑡))
anaged to best balance all the optimization targets under different
riving conditions and can be considered, therefore, the most robust
onfigurations achieved in this work.
17

s

. Conclusion

In this study, a multi-objective optimization procedure is employed
or the power management control and design of a fuel cell hybrid elec-
ric vehicle (FCHEV) powertrain architecture equipped with a battery-
ltracapacitor HESS. The formulation of the optimization problem is
ased on the i-AWGA method and targets the maximization of driving
utonomy and power sources lifetime expectancy, while also mini-
izing hydrogen fuel consumption and HESS size. Fuzzy controllers’
arameters and design variables are considered in such formulation,
hich is subjected to the necessary optimization constraints.

The optimization results of this work justify the choice for a HESS-
ased FCHEV powertrain topology along with an efficient aging-aware
nergy management strategy. Among the non-dominated solutions in
he Pareto frontier, the best trade-off configuration (that is, the most
ompromised solution regarding the optimization criteria) achieved a
riving autonomy of 444 km and up to 714 km for the combined stan-
ard cycle and real-world driving profiles, respectively. This optimized
olution also presented hydrogen consumption in the range of 0.7072
o 0.9009 kg/100 km, for all driving conditions analyzed in this study,
hile keeping good vehicle performance and suitable lifetime of the
ower sources (fuel cell and battery).

Moreover, cost–benefit analysis was carried out in this work, in
hich the optimal FCHEV configuration was compared to other elec-

rified powertrain topologies with respect to their costs of ownership.
he max (𝐹 𝑡) solution obtained a significant reduction in the cost-to-
utonomy ratio of 63.59%, 23.11%, 26.57%, and 63.26% as compared
o the optimized EV, single HESS-based EV, dual HESS-based EV, and
HHV, respectively.

Nevertheless, it is noteworthy to highlight that important drawbacks
uch as expensive maintenance, high hydrogen fuel price, and lack of
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infrastructure and logistics to supply hydrogen gas stations at large
scale should be investigated and addressed in order to accelerate the
adoption of fuel cell propulsion systems in the automotive industry.

As future works, machine learning models will be used as a po-
tential alternative for the energy management of electrically propelled
vehicles. Additionally, other powertrain architectures that combine
multiple power sources will be evaluated in terms of energy efficiency,
autonomy and lifespan of the energy storage systems.
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