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ABSTRACT

X-ray images are widely used in the medical field due to their low cost and non-invasive nature,

but they suffer from noise problems related to equipment or environmental factors. There are

multiple solutions in the literature to combat this problem, with the main one being the use of non-

learning image processing algorithms for X-ray image enhancement. In other areas of application,

such as low-light and underwater images, there is an extensive use of artificial intelligence models

for image enhancement tasks, but the training of artificial intelligence models for medical image

enhancement encounters significant challenges. In supervised learning, obtaining a dataset with

authentic noisy images and their manually enhanced counterparts as labels is imperative. When

dealing with medical images it can be difficult to have access to high-quality/low-quality pairs

because of the restrictive context where these images are taken. To deal with this problem,

this paper introduces an innovative approach to unsupervised learning for chest x-ray image

enhancement. The suggested approach begins with the pre-training of a model using multiple

image enhancement algorithms as reference to establish an initial set of solutions. Following

this, an evolutionary algorithm is employed to refine these initial solutions. It incorporates two

image enhancement metrics, Entropy and the Natural Image Quality Evaluator(NIQE), along

with Structural Similarity Index as fitness indicators. We tested our method in a Chest X-ray

dataset and our findings demonstrate that our method achieved a better NIQE, 4.05 compared to

4.24, and a faster processing time, 2.95 milliseconds compared to 0.195 seconds, in relation to

the state-of-the-art algorithm with the best NIQE and entropy. We showed that our algorithm

outperforms state-of-the-art algorithms in NIQE and processing time.

Keywords: Image enhancement. Convolutional Neural Network. Unsupervised learning.

Evolutionary algorithms. Medical image. X-ray.



RESUMO

As imagens de raio-X são amplamente utilizadas no campo médico devido ao seu baixo custo

e natureza não invasiva, mas sofrem de problemas de ruído relacionados ao equipamento ou a

fatores ambientais. Existem várias soluções na literatura para combater esse problema, sendo a

principal o uso de algoritmos de processamento de imagem sem aprendizado para o aprimora-

mento de imagens de raio-X. Em outras áreas de aplicação, como imagens com pouca luz e

subaquáticas, há um amplo uso de modelos de inteligência artificial para tarefas de aprimora-

mento de imagem, mas o treinamento de modelos de inteligência artificial para o aprimoramento

de imagens médicas enfrenta desafios significativos. No aprendizado supervisionado, a obtenção

de um conjunto de dados com imagens ruidosas e suas contrapartes aprimoradas é imperativa. Ao

lidar com imagens médicas, pode ser difícil ter acesso a pares de alta qualidade/baixa qualidade

devido ao contexto restritivo em que essas imagens são capturadas. Para lidar com esse problema,

este artigo apresenta um algoritmo inovador de aprendizado não supervisionado para o aprimora-

mento de imagens de raio-X de tórax. A abordagem sugerida começa com o pré-treinamento

de um modelo usando vários algoritmos de aprimoramento de imagem como referência para

estabelecer um conjunto inicial de soluções. Em seguida, um algoritmo evolutivo é empregado

para refinar essas soluções iniciais. Esse algoritmo incorpora duas métricas de aprimoramento

de imagem, Entropia e o Natural Image Quality Evaluator(NIQE), juntamente com o Índice de

Similaridade Estrutural como indicadores de aptidão. Nosso método foi testado em um conjunto

de dados de Raio-X de tórax e nossos resultados demonstram que nossa abordagem alcançou

uma pontuação NIQE melhor de 4.05 em comparação com 4.24, e um tempo de processamento

mais rápido de 2.95 milissegundos em comparação com 0.195 segundos, em relação ao algoritmo

estado-da-arte com as melhores pontuações de NIQE e entropia. Mostramos que nosso algoritmo

supera os algoritmos estado-da-arte em termos de pontuação NIQE e tempo de processamento.

Palavras-chave: Aprimoramento de imagens. Rede neural convolucional. Aprendizado não

supervisionado. Algoritmo genético. Imagem médica. Raio-X.
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1 INTRODUCTION

In this section we will present the motivations and objectives of our work. First,

we will comment on the importance of medical images for diagnostics, then explore the use of

image processing algorithms on these kinds of images and what problems they contend with. In

the motivation subsection we will first explore the state of the art algorithms for X-ray image

enhancement, then discuss the use of learning based algorithms for image enhancement outside

the X-ray domain. After this we will bring examples of learning based algorithms for X-ray

image enhancement and point out their limitations. To finish this subsection we explain the

proposed evolutionary solution, justifying the chosen approach and the metrics used. Finally on

the objectives subsection we present the overall and specific goals of the research.

Medical images are crucial for diagnosis, providing valuable information to health-

care professionals for accurate and timely diagnosis, treatment planning, and monitoring of

various medical conditions. Technologies such as X-rays, computed tomography (CT) scans,

Magnetic resonance imaging (MRI), and ultrasound allow healthcare professionals to visualize

internal body structures in detail, aiding in the identification of abnormalities, tumors, fractures,

and other conditions that may not be visible through physical examination alone. These imaging

technologies facilitate early detection of disease and identification of abnormalities, often before

symptoms manifest. Early diagnosis can significantly improve treatment outcomes and increase

the likelihood of successful interventions.

The use of image processing algorithms for classification and segmentation of

medical images is explored in the literature. In (GAZDA et al., 2021) the authors propose a

Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification. They

used accuracy, area under the receiver operating characteristic curve (AUC), sensitivity(SEN)

and specificity (SPE) to measure the success of the model. It achieved results comparable to

supervised state-of-the-art algorithms. In (SHAO et al., 2023) the authors present an unsupervised

method for the detection of intracranial aneurysms using unsupervised dual-branch learning.

They used healthy vessels detection accuracy, aneurysm vessels detection accuracy and F1 score

to evaluate the model. The proposed method outperformed state-of-the-art algorithms, especially

in the detection of aneurysms vessels. In (YADAV et al., 2023) the authors put forward an

unsupervised framework based on a Generative Adversarial Network (GAN) to classify lung

diseases from chest X-ray and CT images. They used Precision, Recall, F1 Score and Accuracy

to validate the model. The proposed method outperformed state-of-the-art unsupervised models
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in lung disease classification. In (AHN et al., 2020) the authors introduce an unsupervised CNN

classifier for medical images using zero-bias convolutional auto-encoders and context-based

feature augmentation. They used accuracy and area under curve (AUC) as metrics for evaluation.

The proposed approach achieved better accuracy when compared to state-of-the-art unsupervised

methods. In (DING et al., 2022) the authors propose an unsupervised fuzzy clustering algorithm

for Chest X-ray and CT images segmentation to assist COVID-19 detection. The authors used

four different cluster validity indices for evaluation purposes: Davies–Bouldin, Xie-Beni, Dunn

and β indexes. The proposed approach outperforms other state-of-the-art algorithms in most

indexes, only being slight worst in the β index.

Medical images, like any other digital images, can be susceptible to various quality

issues that impact their accuracy and utility in clinical settings. These issues can arise from

equipment defects, environmental conditions, and limitations in the imaging procedure related

to the patient’s health condition. Problems such as noise, artifacts, blur, and contrast issues

can compromise the diagnostic capabilities of both physicians and algorithms. Addressing

and mitigating these image quality issues is crucial to ensure accurate diagnosis, whether

conducted by physicians or algorithms. Hence, it is essential to develop new and improved image

enhancement algorithms for medical images.

1.1 Motivation

Image enhancement techniques are used in the literature to improve the results

of image processing algorithms. Various works have been performed to study the effect of

traditional image enhancement algorithms such as Unsharp Masking (UM), High-Frequency

Emphasis Filtering (HEF), and Contrast Limited Adaptive Histogram Equalization (CLAHE) on

new image processing algorithms and tasks. UM is a widely used image enhancement technique

to sharpen edges and increase local contrast in an image. It works by subtracting a blurred version

of the original image from the original image itself, thereby enhancing edges and fine details.

HEF is another image enhancement technique used to enhance the sharpness of edges in an image.

It works by boosting the high-frequency components of the image, which correspond to the edges

and fine details. CLAHE is an image processing technique utilized to enhance contrast in images.

It extends the traditional Histogram Equalization method by adapting the process locally, which

is beneficial for images with varying illumination conditions. Additionally, CLAHE incorporates

a contrast limiting mechanism to prevent excessive amplification of contrast, particularly in
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regions with low local contrast.

These algorithms are widely used and their utility as pre-processing tools for image

processing algorithms has been explored in the literature as shown by the following works. In

(WU et al., 2021), the authors propose a combination of CLAHE and a dual branch network for

lung nodule segmentation on computed tomography (CT) images. They used the Dice coefficients

of nodule segmentation to validate their model and found that it outperforms other state-of-the-art

solutions. In (RAHMAN et al., 2021a) the authors explored the effect of five image enhancement

algorithms on COVID-19 detection using chest X-Ray images: histogram equalization (HE),

CLAHE, image complement, gamma correction, and balance contrast enhancement technique

(BCET). They used accuracy, precision, sensitivity, F1-score, and specificity as metrics to

evaluate the effectiveness of the proposed method. They found that the image enhancement

techniques contributed to improving the COVID-19 diagnostic algorithms applied to chest X-Ray

images. In (LIN et al., 2020), the authors propose the use of image enhancement algorithms

to enhance the accuracy of machine learning-based classifiers for chest X-ray images. They

employed a two-dimensional fractional-order convolution for image enhancement and explored

commonly used algorithms such as UM, HEF, and CLAHE. They evaluated the proposed method

using recall, precision, accuracy and F1 score. All score indexes of the proposed classifier were

higher than those of state-of-the-art solutions.

Furthermore, recent research has also introduced new image-processing algorithms

for image enhancement of X-ray images. (KUMAR; BHANDARI, 2022) introduced the Auto-

matic Tissue Attenuation-based Contrast Enhancement (ATACE) algorithm, designed to enhance

X-ray images to aid in the identification of bones and organs. They used multiple image quality

assessment metrics: modified measure of enhancement (MEME), tenengrad value (TEN), en-

tropy, natural image quality evaluator (NIQE), contrast-changed image quality measure (CEIQ),

and quality-aware relative contrast measure (QRCM). The proposed method outperforms state-

of-the-art algorithms in MEME, TEN, QRCM, CEIQ, and entropy while being competitive in

NIQE. (KUMAR et al., 2021) presented the Triple Clipped Dynamic Histogram Equalization

(TCDHE) algorithm, which enhanced basic features, preserved brightness, and improved contrast

in medical images. This algorithm achieved good results through histogram manipulation and

simple computations, relying solely on image transformations. The authors utilized Entropy as a

no-reference image enhancement metric and Structure similarity index measurement (SSIM),

feature similarity index measurement (FSIM), peak signal to noise ratio (PSNR), gradient magni-
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tude similarity deviation (GMSD) and edge preservation index (EPI) as a full-reference image

enhancement metric. The proposed method outperformed state-of-the-art algorithms on X-ray

images in all metrics and on COVID-19 CT images in all metrics except entropy. These image

enhancement algorithms are based on conventional image processing techniques such as spacial

and frequency transformations, convolutions, and statistical functions, without making use of

artificial intelligence.

The use of learning-based algorithms for image enhancement outside of the X-ray

dominion is explored in the literature. A highly effective unsupervised generative adversarial

network is used in (JIANG et al., 2021) for low-light image enhancement. The authors used

an attention-guided U-Net as the generator, a dual-discriminator to direct the global and local

information, and a self-feature preserving loss to guide the training process and maintain the

textures and structures. The model is compared to other competing methods using the Natural

Image Quality Evaluator (NIQE) no-reference score. In (HUANG et al., 2022) the authors

propose a deep convolutional neural network for endoscopic image enhancement that fuses

three enhanced images created by using either gamma correction, CLAHE or illumination map

estimation. They created a loss function similar to Structural Similarity Index Measure (SSIM)

comparing the fused image with the three starting original images. The algorithm showed better

results in Entropy, Contrast Improvement Index and Average Gradient than other state-of-the-art

methods.

But while there are works in the literature exploring learning-based algorithms for

X-ray image enhancement they have limitations, being either limited by the use of synthetic noise

or the use of simpler models when compared to Convolutional Neural Networks (CNNs). In

(LUO et al., 2021), the authors propose a supervised dehazing CNN for Cardiac Catheter-Based

X-ray procedures to improve the quality of images obtained using low radiation dosage exams,

but make use of synthetic noise to generate their dataset, which puts into doubt whether the

results are representative of real-life situations. In (MALALI et al., 2021) the authors propose

the use of local s-Curve spacial transformations for X-Ray Mammograms contrast enhancement.

The image is divided in same size patches and the gray level of each pixel is modified using a

non-linear function. The function limits are determined by the maximum and minimum intensity

of the local pixels. The function parameters are adjusted using a multi-objective genetic algorithm

with the IQA metrics: Effective Measure of Enhancement (EME), Edge Content (EC), Feature

Similarity Index Measure (FSIM) and Absolute Mean Brightness Error (AMBE) for fitness
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calculation. This solution is limited by the model used, which relies on spatial transformations

established by local functions.

To address this limitations, this study proposes a novel unsupervised evolutionary

algorithm for image enhancement: Image Quality Assessment-based Evolutionary Network

(IQAEvolNet), an evolutionary algorithm that trains a convolutional neural network for image

enhancement using image quality assessment (IQA) metrics as fitness parameters. This solution

would allow for the unsupervised training, without relying on synthetic noise, of convolutional

neural networks (CNN) for X-ray image enhancement. Unlike the more common approach of

using generative adversarial networks (GANs), an evolutionary approach is chosen. While GANs

can serve this purpose, they are constrained by the discriminator’s ability to accurately assess the

enhanced image. As highlighted in (LEPCHA et al., 2023), current state-of-the-art algorithms

often lack robustness and adaptive capabilities required for real-world applications. The simpler

evolutionary approach offers greater flexibility and adaptability to different applications. The

proposed algorithm uses a modified single-channel version of the convolutional neural network

(CNN) introduced in (ULLAH et al., 2021), known as LightDehazeNet, as a base model. The

top layers of the CNN have been adjusted to better suit the image enhancement task, resulting in

a variant named lightdehazeTestnet.

IQAEvolNet fine-tunes the model’s weights using an evolutionary strategy. The

fitness of the population is determined by two no-reference image quality assessment (IQA)

metrics: Entropy and Natural Image Quality Evaluator (NIQE), along with the Structural

Similarity Index Measure (SSIM) between the enhanced image and the original image, which

serves as a distortion metric. These IQA metrics were chosen for being commonly utilized in the

literature.

The proposed solution works as follows. The base model undergoes initial training

using state-of-the-art chest X-ray image enhancement algorithms as references (UM, HEF,

CLAHE, ATACE, TCDHE). The resulting weights from this training serve as starting individuals

for the evolutionary algorithm. An initial population is constructed by incorporating weights

created at various epochs during the CNN training process. In each training round, every weight

set is loaded into the model and applied to a sample from the unlabeled data set. Fitness is

determined by applying no-reference image quality assessment metrics to the outcomes of

each individual, along with distortion metrics assessing the changes from the original images.

Individuals who demonstrate superior performance contribute to the next generation of weights
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through permutation and mutation. After each epoch of training, the newly achieved solution is

compared with the best previous solution. If it shows greater fitness across the entire training

dataset, it supersedes the old best solution. The algorithm concludes either after reaching

the absolute epoch limit or after a specified number of epochs without improvement. At the

termination of the algorithm, it returns the best solution identified throughout the evolutionary

process. The code is available at <https://github.com/Carlos-Alfredo/IQAEvolNet>.

1.2 Objectives

The goal of this work is to propose an unsupervised evolutionary algorithm for

enhancing X-ray images. A CNN originally designed for lightweight image dehazing is employed

and trained using an evolutionary approach with an unlabeled dataset. IQA metrics are utilized

for fitness calculation during the evolutionary process.

The specific objectives of this work are:

• Development of an unsupervised Evolutionary Algorithm with a CNN model for Chest

X-ray image enhancement: IQAEvolNet;

• Evaluate the performance of the algorithm for image enhancement tasks using no-reference

IQA metrics;

• Compare the proposed algorithm with state-of-the-art algorithms.

In the next section we will discuss the theoretical background of our work, exploring

the chosen algorithms and the reason for their selection. Then, on the Methodology section we

detail the datasets used, explain the algorithm, and describe the experiments. Following this, on

the Results section we present the enhancement results using multiple fitness equations and the

classification results. Finally, on the Conclusion section we present our final considerations and

the contributions of the work.
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2 THEORETICAL BACKGROUND

Our work lies at the intersection of two lines of study: image enhancement and

evolutionary algorithms. First, we will discuss the different approaches for image enhancement

found in the literature, evaluating both learning-based and non-learning-based methods. Then,

we will explore the image quality assessment algorithms used in the literature and justify the

selection made for this work. Finally, we will discuss the current applications of evolutionary

algorithms for various purposes such as image classification, neural network hyper-parameter

optimization, and energy load forecasting.

2.1 Image enhancement without learning

For X-ray image enhancement, the most commonly used algorithms are Unsharp

Masking (UM), High-Frequency Emphasis Filtering (HEF), and Contrast Limited Adaptive

Histogram Equalization (CLAHE). The authors in (MUNADI et al., 2020) studied the impact

of image enhancement algorithms on tuberculosis detection in chest X-ray images using deep

learning. They tested UM, HEF, and CLAHE and found that these algorithms improved the

accuracy of classification algorithms by up to 3.37%. Similarly, in (HAYATI et al., 2023), the

authors studied the impact of using CLAHE as an image enhancement algorithm on diabetic

retinopathy classification through deep learning. They found that while CLAHE increases the

accuracy for the VGG16, InceptionV3, and EfficientNet models, it also decreases the accuracy

for the ResNet34 model.

There are also more recent works proposing new image-processing algorithms for

image enhancement. In (KUMAR; BHANDARI, 2022), the authors developed an Automatic

Tissue Attenuation-based Contrast Enhancement (ATACE) algorithm to improve X-ray images,

facilitating the identification of bones and organs. A novel Triple Clipped Dynamic Histogram

Equalization (TCDHE) was proposed in (KUMAR et al., 2021) to improve the basic features,

brightness preservation, and contrast of medical images. By manipulating histograms and

performing simple computations, the authors created an algorithm capable of enhancing X-ray

and CT images. This approach achieved good results relying only on image transformations,

using entropy for no-reference image enhancement quality assessment. In (BRUCE et al., 2020),

image enhancement techniques are used to improve ultrasound images of blood flow. In (LIU;

TIAN, 2020), the authors used an algorithm based on fractional differential to enhance bone
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X-ray images while preserving detailed information on the texture.

From the options of image-processing algorithms for image enhancement our work

will use UM, HEF, CLAHE, ATACE and TCDHE. We will use they as starting points for our

algorithm. Their algorithms are described in subsections 2.1.1, 2.1.2, 2.1.3, 2.1.4, and 2.1.5.

2.1.1 Unsharp Masking

UM is a widely used image enhancement technique to sharpen edges and increase

local contrast in an image. It works by subtracting a blurred version of the original image from

the original image itself, thereby enhancing edges and fine details.

The algorithm cam be divided in 4 steps. First, a Gaussian filter is applied to create a

blurred version of the original image. Equation 2.1 express this step, where G(x,y) is the blurred

image, I(x,y) is the original image, ∗ is a convolution operation, and H(x,y) is a Gaussian blur

kernel. Then, the blurred image is subtracted from the original image to obtain the high-pass

filtered image, which emphasizes edges and fine details. Equation 2.2 shows this step, where

E(x,y) is the high-pass image. Next, the high-frequency components are amplified by scaling the

high-pass image using a factor k, as shown in Equation 2.3. Then, the amplified high-frequency

component is added back to the original image, as shown in Equation 2.4, where S(x,y) is the

sharpened image.

G(x,y) = I(x,y)∗H(x,y) (2.1)

E(x,y) = I(x,y)−G(x,y) (2.2)

E ′(x,y) = k×E(x,y) (2.3)

S(x,y) = I(x,y)+E ′(x,y) (2.4)

2.1.2 High-Frequency Emphasis Filtering

HEF is another image enhancement technique used to enhance the sharpness of edges

in an image. It works by boosting the high-frequency components of the image, which correspond
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to the edges and fine details. The first step of HEF is to convert the image to the frequency

domain, as shown in Equation 2.5, where F(u,v) is the frequency domain representation of the

image, FFT is the Fourier transform, and (u,v) are the frequency domain coordinates. The

second step is to boost the high-frequency components of the image using a high-pass filter.

This is shown in Equation 2.6, where F ′(u,v) is the modified frequency domain representation

of the image with boosted high frequencies, and H(u,v) is the high-pass filter. The high pass

filter is calculated using Equations 2.7 and 2.8, where D0, K1 and K2 are manually adjustable

parameters. The last step is to convert the image back to the spatial domain using the inverse

Fourier transform. Equation 2.9 shows this process, where I′(x,y) is the enhanced image in the

spacial domain, and IFFT is the inverse Fourier transform.

F(u,v) = FFT I(x,y) (2.5)

F ′(u,v) = HHFE(u,v)×F(u,v) (2.6)

H(u,v) = 1− e
− ( u−M

2 )2+( v−N
2 )2

2×D2
0 (2.7)

HHFE(u,v) = K1 +K2H(u,v) (2.8)

I′(x,y) = IFFT F ′(u,v) (2.9)

2.1.3 Contrast Limited Adaptive Histogram Equalization

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an image processing

technique used to enhance the contrast in images. It is an extension of the traditional Histogram

Equalization method. While Histogram Equalization adjusts the intensity levels of an entire

image based on its overall histogram, CLAHE adapts the process locally, making it particularly

useful for images with varying illumination conditions. Additionally, it includes a contrast
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limiting mechanism to prevent over-amplification of contrast, especially in regions with low

local contrast.

The histogram equalization algorithm can be divided in 5 steps. First, the Histogram

on the image, h(rk), is computed as shown in Equation 2.10, where h(rk) is the histogram value

for the intensity level rk and nk is the number of pixels with intensity rk.

h(rk) = nk (2.10)

Then the cumulative distribution function (CDF), which represents the cumulative sum of

histogram values, is computed as shown in Equation 2.11, where cd f (rk) is the cumulative

distribution function at intensity level rk.

cd f (rk) =
k

∑
i=0

h(ri) (2.11)

After that, the CDF is normalized to the range [0,1] by diving each value by the total number

of pixels in the image as shown in Equation 2.12, where N is the total number of pixels in the

image.

cd f _normalized(rk) =
cd f (rk)

N
(2.12)

In the next step, the intensity transformation function, T (rk), is created by scaling

the normalized CDF to the maximum intensity value (L-1) as shown in Equation 2.13, where L

is the total number of intensity levels.

T (rk) = ⌊(L−1)× cd f _normalized(rk)⌋ (2.13)

Finally, the intensity transformation function is applied to each pixel in the original

image as shown in Equation 2.14, where r is the original intensity value, s is the transformed

intensity value and T (r) is the intensity transformation function.

T (rk) = ⌊(L−1)× cd f _normalized(rk)⌋ (2.14)

The CLAHE algorithm has 5 steps. First, the image is divided into non-overlapping

patches, with the patch size being one of the parameters set by the user. Then, on each path,
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histogram equalization is applied. After that it is introduced a contrast limiting mechanism

to avoid over-amplification. This is typically done by clipping the scaling factor based on a

specified limit L.

clip(x,a,b) =



























a if x < a

x if a ≤ x ≥ b

b if x > b

(2.15)

The scaling factor ki for the i-th tile is computed as:

ki = clip

(

L

max(cd f _normalizedi)−min(cd f _normalizedi)
,0,1

)

(2.16)

In the next step, the transformed intensity values are adjusted using the computed scaling factor

ki as shown in the Equation 2.17, where s′i is the final adjusted intensity value.

s′i = ⌊ki × si⌋ (2.17)

Finally, the adjusted tiles are combined to obtain the final enhanced image.

2.1.4 Automatic tissue attenuation-based contrast enhancement

The ATACE algorithm has been proposed on (KUMAR; BHANDARI, 2022) to

improve the contrast of X-ray images. The first step of the algorithm is to normalize the input

image. The goal of the algorithm is to find the detail and removable components. Equation 2.18

shows this step, where I(nor) is the normalized image, I(y) is the input image, Imax(y) is the

maximum value of the input image, D(y) is the detail component, and R(y) is the removable

component. After this, maps of local maximum and local minimum are created by using the local

region around the pixel y, as shown in Equations 2.19 and 2.20, where G(y) is the local maximum

component, T (y) is the local minimum component, and Loy is the local region around the pixel

y. To calculate the removable content we multiply the local minimum by a removal factor.

Equations 2.21 and 2.22 illustrate this, where β is the removal factor, exp is the exponential

function, and var() is the variance. Another parameter, ψ(y), is used to adjust the image for

brightness consistency. It is calculated using Equation 2.23. Finally, the enhanced version is

calculated using Equation 2.24.

Inor(y) =
I(y)

Imax

= D(y)+R(y) (2.18)
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G(y) = maxx∈Loy
Inor(y) (2.19)

T (y) = minx∈Loy
Inor(y) (2.20)

R(y) = β ×T (y) (2.21)

β (y) = exp⌊−G(y)× var(T (y))

T (y)
⌋ (2.22)

ψ(y) =
log

[

1−R(y)×
(

1
G(y) −1

)]

log[G(y)]
(2.23)

E(y) =
Inor(y)−R(y)

G(y)ψ(y)−R(y)
(2.24)

2.1.5 Triple clipped dynamic histogram equalization

TCDHE was proposed in (KUMAR et al., 2021) to improve the basic features,

brightness preservation and contrast of medical images. The first step of the algorithm is to

calculate the mean and standard deviation of the input image using Equations 2.25 and 2.26.

Using this information we will divide the histogram of the input image into three equal partitions.

The partitioning points s1 and s2 are calculated using Equations 2.27 and 2.28. Each of the

sub-histogram is clipped using a threshold value calculated from the mean of the total pixels of

each sub-histogram. This is expressed in Equation 2.29. The clipped histogram are calculated

using Equation 2.30, where h(k) is the histogram of the input image, and hc(k) is the clipped

histogram. The PDF and CDF of every sub-histogram are calculated using Equations 2.31 and

2.32, where Np is the whole number of pixels in every clipped sub-histogram. Then every

partition is mapped into a new dynamic range to balance the process of equalization using

Equations 2.33 to 2.36, where L−1 is the maximum intensity value of the n-bit image. After
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this, each transfer function is calculated using the dynamic ranges and the CDF using Equations

2.37 to 2.39. The enhanced image, I′(m,n), is calculated using the Equation 2.40.

µ =
1

MN

M−1

∑
u=0

N−1

∑
v=0

X(u,v) (2.25)

σ =
1

MN

M−1

∑
u=0

N−1

∑
v=0

[X(u,v)−µ]2 (2.26)

s1 = µ −0.43σ (2.27)

s2 = µ +0.43σ (2.28)

T =
1

Imax

×
Imax

∑
k=0

h(k) (2.29)

hc(k) =











h(k) h(k)< T

T h(k)≥ T

(2.30)

PDF(k) =

{

hc(k)
Np

0 ≥ k < Imax
(2.31)

CDF(k) =

{

∑
Imax

k=0 PDF(k) 0 ≥ k < Imax
(2.32)

p0 = 0 (2.33)

p1 =
s1 − s0

s3 − s0 +1
× (L−1) (2.34)
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p2 =
s2 − s1

s3 − s0 +1
× (L−1)+ p1 (2.35)

p3 =
s3 − s2

s3 − s0 +1
× (L−1)+ p2 = L−1 (2.36)

T Flower = (p1 −1)×CDFLower (2.37)

T FMiddle = p1 +(p2 −1− p1)×CDFMiddle (2.38)

T Fupper = p2 +(p3 − p2)×CDFU pper (2.39)

I′(m,n) =



























T Flower(I(m,n)) I(m,n)< s1

T Fmiddle(I(m,n)− s1) s1 ≥ I(m,n)< s2

T Fupper(I(m,n)− s2) s2 ≥ I(m,n)

(2.40)

The original and enhanced image are then decomposed using Discrete Wavelet Trans-

form (DWT). DWT is commonly used in image processing for tasks like compression, denoising,

and feature extraction. The DWT operates by decomposing the image into approximation and

detail coefficients across different scales and orientations. It involves a series of filtering and

downsampling operations. Equation 2.41 and 2.42 shows the decomposition, where LL and LL′

are the approximation coefficients of the original and enhanced image, and LH,HL,HH and

LH ′,HL′,HH ′ represent the detailed coefficients of the original and enhanced image.

LL,LH,HL,HH = DWT (I(m,n)) (2.41)

LL′
,LH ′

,HL′
,HH ′ = DWT (I′(m,n)) (2.42)
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After this decomposition, the lower frequency contents LL and LL′ are decomposed

using singular value decomposition (SVD), expressed in Equation 2.43, where B is the image

to be decomposed, UB and VB are orthogonal matrices, T is the transpose operator, and Σ is

identified as the matrix of a singular value, which has the intensity value of the input image. LL

and LL′ are decomposed to ULL,ΣLL,VLL and ULL′ ,ΣLL′ ,VLL′ , respectively. A improvement factor,

ξ , is calculated using Equation 2.44. The normalized matrix of a singular value is calculated

using Equation 2.45, where β is an empirically adjustable parameter between 0.05 and 0.95. The

normalized approximation coefficient LLN is calculated using Equation 2.46.

B =UBΣBV T
B (2.43)

ξ =
max(ULL′)+max(VLL′)

max(ULL)+max(VLL)
(2.44)

ΣN = (βξ ΣLL)+

(

(1−β )
1
ξ

ΣLL′

)

(2.45)

LLN =ULL′ΣNV T
LL′ (2.46)

The detailed coefficients are normalized using spatial frequency (SF). SF is the

amount of frequency components of the image and it is calculated using Equations 2.47 to 2.49,

where fr, fc, fs are row, column, and spatial frequencies for a M×N image respectively.

fr =

√

√

√

√

1
MN

u=0

∑
M−1

v=1

∑
N−1

[I f (u,v)− I f (u,v−1)]2 (2.47)

fr =

√

√

√

√

1
MN

v=0

∑
V−1

u=1

∑
M−1

[I f (u,v)− I f (u−1,v)]2 (2.48)

√

f 2
r + f 2

c (2.49)
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The normalized SF of LH and LH ′ is calculated using Equations 2.50 and 2.51,

where SN(LH) and SN′(LH ′) are the normalized detailed coefficient of the input and enhanced

image respectively. Both are them fused using Equation 2.52 to obtain a new LH sub-band image

LHN .

SN(LH) =
SLH

SLH +SLH ′
(2.50)

SN(LH ′) =
SLH ′

SLH +SLH ′
(2.51)

LHN = SN(LH)×LH +SN(LH ′)×LH ′ (2.52)

The other sub-band images are calculated by fusing their respective normalized

detailed coefficients. Finally, the inverse DWT is applied over the new sub-band images as shown

in Equation 2.53.

IENHANCED = IDWT (LLN ,LHN ,HLN ,HHN) (2.53)

2.2 Image enhancement with supervised learning

Convolutional neural networks (CNNs) are powerful tools for image processing,

enabling the leverage of large datasets and learning approaches to solve complex problems. In

this subsection, we will discuss the operation of CNNs and the state-of-the-art supervised image

enhancement algorithms.

2.2.1 Convolutional neural networks

CNNs are a class of deep learning models specifically designed for processing

structured grid data, such as images. They leverage convolutional layers to automatically and

adaptively learn hierarchical features from the input data. The core operation in a CNN is the

convolution operation, which involves sliding a filter (also known as a kernel) over the input

data to perform element-wise multiplication and summation. The mathematical representation of
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the 2D convolution operation is shown on Equation 2.54, where I is the input image, K is the

convolution kernel, (i, j) are the pixel coordinates in the output feature map and (m,n) are the

pixel coordinates in the filter.

(I ∗K)(i, j) = ∑
m

∑
n

I(i+m, j+n)×K(m,n) (2.54)

The basic building blocks of a CNN are convolutional layers, activation functions,

pooling operations, and fully connected layers. A convolutional layer typically involves multiple

filters applied to the input to generate multiple channels in the output feature map. The output of

a convolutional layer is obtained by applying the convolution operation and adding a bias term.

Equation 2.55 shows how this calculation is done, where O is the output feature map, σ is the

activation function, (i, j,k) are the pixel coordinates in the filter, (m,n) are the pixel coordinates

in the filter, l represents the input channels and K(m,n, l,k) is the weight of the filter.

O(i, j,k) = σ(∑
m

∑
n

∑
l

I(i+m, j+n, l)×K(m,n, l,k)+bk) (2.55)

Activation functions play a crucial role in Convolutional Neural Networks (CNNs) by introducing

non-linearity into the network. This non-linearity is essential for the network to learn and

approximate complex relationships within the data. Common activation functions used in CNNs

include Rectified Linear Unit (ReLU), sigmoid, and hyperbolic tangent (tanh). The ReLU

activation function is expressed on Equation 2.56.

ReLU(x) = max(0,x) (2.56)

Pooling layers are often used to down-sample the spatial dimensions of the feature map. They

contribute to the efficiency, robustness, and generalization capability of CNNs by reducing spatial

dimensions, introducing translation invariance, and enhancing the network’s ability to capture

hierarchical features. The max pooling operation is expressed on Equation 2.57, where P is the

output of the pooling layer, and (i, j,k) are the pixel coordinates and channel index in the output.

P(i, j,k) = maxm,nO(2i+m,2 j+n,k) (2.57)

After several convolutional and pooling layers, a CNN often ends with one or more fully

connected layers. The output of a fully connected layer is obtained by applying a linear transfor-

mation followed by an activation function. Equation 2.58 shows how it is calculated, where x is
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the input vector, W is the weight matrix, b is the bias vector, and σ is the activation function.

FC(x) = σ(Wx+b) (2.58)

The network learns the parameters (weights and biases) during training using optimization

algorithms such as stochastic gradient descent (SGD) to minimize a specified loss function.

The learned features enable the network to perform tasks such as image classification, object

detection, and segmentation.

2.2.2 State of the art supervised image enhancement

The popularization of convolutional neural networks (CNNs) for image processing

tasks has led to an explosion of new approaches to addressing image enhancement challenges.

New models have been developed to handle different contexts and requirements by leveraging

paired datasets. In the survey (JAMIL et al., 2023), various examples of image denoising, a

subset of image enhancement, using vision transformers are discussed. Each of these examples

was designed for different types of images, such as computed tomography (CT) scans, natural

images, and hyperspectral images. In another work (YANG et al., 2022a), authors propose

a supervised image enhancement model for computational tomography of asphalt to enable a

better understanding of its internal structure.

Low-light image enhancement is one of the main areas explored in the literature.

Authors in (FAN et al., 2022) create an end-to-end low-light image enhancement model capable

of mining the deep multi-scale features in the image. The authors use the SE-Res2block, based

on Res2net, to give the model powerful feature representation capabilities; the U-Net as the

backbone of the model; and a combination of Structural Similarity Index Measure (SSIM)

and perceptual loss as the loss function. A progressive dual network low exposure image

enhancement model is developed in (ZHOU et al., 2022) based on Retinex theory. The network

takes the low-exposure image as the input, uses convolution kernels of different scales for feature

extraction, and finally learns the illumination map in the Retinex model. Then, the illumination

map is substituted into the Retinex model to calculate the brightness-enhanced image. Then,

aiming at the noise amplification problem in the enhancement process, the enhanced image is

passed through an image-denoising network to obtain the final enhancement result.

In the literature, low-light image enhancement is a prominent area of exploration. In

the study (FAN et al., 2022), researchers developed an end-to-end low-light image enhancement
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model capable of extracting deep multi-scale features from images. The model incorporates

the SE-Res2block, based on Res2net, to provide powerful feature representation capabilities.

Additionally, it utilizes the U-Net as the backbone and employs a combination of Structural

Similarity Index Measure (SSIM) and perceptual loss as the loss function. Another study (ZHOU

et al., 2022) presents a progressive dual-network approach for low-exposure image enhancement,

based on the Retinex theory. The network takes the low-exposure image as input, extracts features

using convolution kernels of different scales, and learns the illumination map in the Retinex

model. Subsequently, the illumination map is used to calculate the brightness-enhanced image.

To address the noise amplification issue during enhancement, the enhanced image undergoes

denoising through an image-denoising network, resulting in the final enhancement outcome.

Another area extensively explored in the literature is underwater image enhancement.

A CNN-based underwater image enhancement model (WANG et al., 2021) uses both the RGB

and HSV color spaces. The RGB block implements fundamental operations. The HSV block im-

plements global adjustments. The attention map block combines the RGB and HSV block output

images. An underwater image enhancement framework based on transfer learning (ZHANG et

al., 2023b), uses a domain transformation module and an image enhancement module to perform

color correction and image enhancement, respectively.

Beyond that, the literature already explores image enhancement models for some

types of medical images. The survey (SHAMSHAD et al., 2023) points out the impressive suc-

cess achieved by using vision transformers in enhancing Low-Dose Computed Tomography. In

(YE et al., 2021) the authors combine both supervised and unsupervised learning for a low-dose

CT Image Reconstruction framework. In (QI et al., 2021) the authors propose a a deep neural

network to enhance Plane Wave Imaging, an ultra-fast medical ultrasound imaging mode whose

image quality is severely degraded in comparison to standard ultrasound, while maintaining a

high frame rate. The authors in (WU et al., 2024) proposed a supervised model for transforming

low resolution medical images in high resolution ones is to improve disease diagnostic.The

authors propose a super-resolution algorithm which is adaptable to the type of medical image.

They do this by using a improved version of the Adam optimizer where each parameter has

the ability to measure it’s importance for the task at hand. In (CHOKCHAITHANAKUL et

al., 2022) the authors propose a augmentation method for Tuberculosis Chest X-ray datasets

by using a contrast enhancement technique that automatically identifies the lung region and

normalizes the image accordingly. They use this enhancement technique to generate images of
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different levels of quality and, together with other augmentation techniques such as rotation and

brightness, improve the robustness of the data. Authors create a chest X-ray contrast enhance-

ment model capable of adjusting the desired local level of contrast. The authors mix CLAHE

with a CNN-based residual learning network to adjust the level of contrast locally. They validate

the results through both image enhancement metrics and classification algorithms performance

enhancement.

2.3 Image enhancement with unsupervised learning

The main problem with supervised approaches is the construction of the labeled

datasets. For image enhancement tasks there is the problem with its subjective nature. Different

individuals may have different opinions on what constitutes a well-enhanced image. Beyond

that, obtaining large-scale datasets with paired images can be resource-intensive, particularly

in cases where manual enhancement is involved. There is the option of acquiring high-quality

images that represent the same ground truth of low-quality images but, for medical images, that

would require a pair of low-quality/high-quality images from the same patient acquired in a small

time interval. In the survey (LEPCHA et al., 2023) the authors points out that numerous image

enhancement algorithms rely on the generation of synthetic data for their training. They explain

that this tactic can produce good results in synthetic data but doesn’t translate in good results in

real data and, therefore, it is of vital importance the development of unsupervised solutions for

image enhancement applications. For these reasons there has been extensive research done in the

literature on unsupervised learning models.

There is an extensive literature in low-light and underwater image enhancement using

unsupervised learning algorithms. In (HU et al., 2021) the authors propose an unsupervised

learning-based low-light image enhancement for indoors images. They divide the problem in two

stages. In the first stage they use tone mapping for illumination enhancement. While this stage

is simple and can improve the illumination of the image, it also amplifies noise. The second

stage is used to minimize this effect. In this stage the model trains an encoder-decoder network

using a comprehensive loss function with a combination of loss of image content, perceptual

quality, total variation, and adversarial loss. In (KANDULA et al., 2023) the authors propose

an unsupervised low-light enhancement network using context-guided illumination-adaptive

norm. First the network multiplies each pixel of the input image by an individual amplification

factor. Then the networks uses a decoder-encoder structure to create an improved enhanced
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image with a data distribution more similar to well-lit images. In (LI et al., 2023) the authors

propose a unsupervised method for mixed-exposure low-light enhancement called LEES-Net.

They combined a spacial transformation curve for pixel intensity with an attention mechanism to

enhance the image.

In (LUO et al., 2024) the authors propose a pseudo-supervised low-light image

enhancement with mutual learning. They first use a quadratic curve to create a reference enhanced

image from a low-light image. Both images are then fed to identical networks. Each branch

learns from the other which allows them to produce the final result. In (JIANG et al., 2022) the

authors propose an Unsupervised Decomposition and Correction Network for low-light image

enhancement. They train their model using the input image and it’s histogram equalization (HE)

counterpart. The model is then optimized using hybrid no-reference quality-aware losses and

inter-consistency constraints between the original image and the HE enhanced pair. In (LIN et

al., 2024) the authors propose an unsupervised low-light image enhancement algorithm using

paired CNNs with distinct activation functions. They make use of 5 loss functions, each with

a different goal. For quality loss they introduce a novel Bezier loss function that measures the

mean difference between the intensity of the predicted image and their intensity if the image was

transformed using a Bezier curve.

In (GUO et al., 2022) the authors propose an unsupervised learning-based low-light

image enhancement method for catenary, the electrical cable that is used to transmit electrical

energy to electric trains, images. This would improve the performance of non-contact catenary

detection systems, making them less susceptible to errors caused by environment factors and

equipment defects. The unsupervised method is a Zero-Reference Learning with Exposure

Control, Spatial Consistency and Illumination Smoothness losses. In (DING et al., 2024) the

authors propose a Unsupervised Unified Image Dehazing and Denoising Network for outdoor

images. In (YAN et al., 2023) the authors point out that the lack of paired underwater and

in-air image datasets difficulties the use of supervised methods and propose an unsupervised

architecture for underwater image restoration.

As far as medical images, there are works proposing unsupervised algorithms for

low-dose computed tomography (CT) enhancement. In (LI et al., 2022) the authors propose a

low-dose CT reconstruction algorithm with an unsupervised training process based on a Gaussian

mixture model to characterize the noise distribution in CT images. Still in medical applications,

in (XIE et al., 2023) the authors propose an unsupervised multi-modal medical image fusion
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algorithm. Multi-modal medical image fusion is a tool for combining the information of multiple

images into a more clearer and meaningful image. This helps in the diagnostic process. The

authors use transformers to capture global dependencies and CNN to capture local dependencies.

One of the main tools used in unsupervised image enhancement tasks are genera-

tive adversarial networks (GANs). GANS consist of two neural networks, a generator and a

discriminator, which are trained simultaneously through adversarial training. The generator

creates realistic data, and the discriminator evaluates the authenticity of that data. The GAN

framework involves training the generator and discriminator to optimize their respective ob-

jectives. The training process involves a min-max game, where the generator tries to generate

realistic samples to fool the discriminator, while the discriminator aims to correctly distinguish

between real and generated samples. The training process advances iteratively, with the generator

and discriminator updating their parameters in an adversarial manner. The generator learns to

produce realistic samples, while the discriminator becomes better at distinguishing between real

and generated samples. The equilibrium point is reached when the generator produces samples

that are indistinguishable from real samples, and the discriminator cannot reliably differentiate

between the two.

In (SUN et al., 2020) the authors created a generative adversarial network to to

generate a normal-looking medical image from an abnormal-looking one with the goal of assisting

lesion segmentation or classification without having to rely on labeled datasets. The authors focus

on magnetic resonance imaging and computational tomography. An enhancement method based

on GAN developed in (XU et al., 2022), to effectively enhance low-quality underwater images.

The authors use both a global and a local discriminator to decide if the generated image is true

or false. The discriminator uses the Patch GAN method. The loss function is the WGAN-GP

and the DE-GAN is used as the counter loss. The authors create a GAN that accomplishes

unpaired Low-light image enhancement through Self-Similarity Contrastive Learning (SSCL).

The SSCL allows for the differentiation between the low-light domain and the normal-light

domain. The dual illumination perception module captures spatial and global information and

helps the network achieve a more realistic result. This method uses unsupervised learning but

was only tested in a very specific context of aerial images and requires confirmation if it can be

used in other contexts. In (WANG et al., 2023) the authors propose a multi-modal medical image

fusion algorithm based on CycleGAN with weakly supervised training. The algorithm generates

CT images from magnetic resonance (MR) images. It also creates enhanced MR images that are
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fused with the synthetic CT images and the positron emission tomography images to accomplish

the tri-model fusion.

2.4 Image quality assessment

Image quality assessment (IQA) metrics are an important part of the validation of

image enhancement algorithms. They are algorithms that quantify the quality of enhanced

images. These algorithms can be divided into two groups: reference and no-reference IQA

metrics. Reference IQA metrics are used when you have access to low-quality/high-quality

paired dataset. In those cases, the algorithms basically measure the error between the enhanced

image and the high-quality reference image. The most commonly used of this algorithms

are the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM).

No-reference IQA metrics are used when you don’t have access to reference images. In those

cases, the algorithms try to use the information contained in the enhanced image to quantify

their quality. These methods can be sub divided in image processing approaches and statistical

approaches. In the image processing approaches the algorithm quantification relies solely on the

image. Examples of this approach are Entropy, Average Gradient, and Contrast Improvement

Index. In the statistical approaches the algorithms uses the statistical information of a big sample

of images to calculate the "distance" between the enhanced image and the typical image. They

assume that images with statistical information more different to the average are of worse quality.

Examples of this approach are Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE),

Perceptual Image Quality Evaluator (PIQE), and Natural Image Quality Evaluator (NIQE).

These IQA metrics are widely used in the literature. In (AURANGZEB et al., 2021)

the authors propose a modified particle swarm optimization for CLAHE parameter tuning. Their

goal is to improve the sensitivity, specificity and accuracy of supervised semantic segmentation

algorithms for retinal images. They used an objective function for parameter evaluation based on

the number of edges obtained by the Sobel operator, the entropy of the enhanced image and the

sum of the pixels of the edge image created by the Sobel operator. They used Entropy and SSIM

for quantitative evaluation. In (KUMAR; BHANDARI, 2023) the authors propose a method

for unsupervised classification of images based on their under/well/over-exposed illumination

regions. They first classify the super-pixels, patches, on their contrast and intensity using pure

image processing techniques. For measuring the contrast they use entropy. In (ZHU et al.,

2021) the authors propose a dehazing algorithm based on artificial multi-exposure image fusion
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for outdoor images affected by poor weather conditions. They first produce multiple gamma-

corrected images using different coefficients. These images are then decomposed into global

and local components. These components are used to calculate pixel-wise weight maps. These

weight maps are used to generate a dehazed fused image from the gamma-corrected images. The

dehazed image is then balanced for image luminance and color saturation. They used Entropy

for no-reference image enhancement quantified analysis.

In (YU et al., 2023) the authors propose a fuzzy self-guided GAN for medical image

enhancement. They use structure preservation and illumination distribution to calculate the loss

function. They point out that both metrics act in opposition to each other, with the illumination

distribution favoring illumination uniformity and the structure preservation favoring information

preservation, and that opposition improves the final result by not producing a model that leans

too much on neither tendency. They used entropy, BRISQUE, NIQE and average gradient for

quantitative analysis. The experiment was done in a con-focal microscopic image dataset. In

(HUANG et al., 2022) the authors propose a deep unsupervised endoscopic image enhancement

algorithm based on multi-image fusion. They propose a deep convolutional neural network that

fuses three enhanced images created by using either gamma correction, CLAHE or illumination

map estimation. They created a loss function similar to SSIM comparing the fused image with

the three starting original images. The algorithm showed better results in Entropy, Contrast

Improvement Index and Average Gradient than other state-of-the-art methods. In (SHI et al.,

2022) the authors propose an unsupervised algorithm for low-light image enhancement. The

loss is calculated using a combination of structural similarity, color consistency and naturalness

discriminator modules. They used NIQE for no-reference quantitative effectiveness analysis.

A highly effective unsupervised generative adversarial network (JIANG et al., 2021)

is used for low-light image enhancement. The authors used an attention-guided U-Net as the

generator, a dual-discriminator to direct the global and local information, and a self-feature

preserving loss to guide the training process and maintain the textures and structures. The

model is compared to other competing methods using the NIQE no-reference score. A novel

and versatile bi-directional GAN (StillGAN) proposed on (MA et al., 2021) for medical image

quality enhancement is capable of imposing constraints on structure and illumination. StillGAN

treats low- and high-quality images as two distinct domains and introduces local structure

and illumination constraints for learning both overall characteristics and local details. The

method has an unsupervised training process and has achieved good results but was only tested
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in very specific test scenarios (Corneal Microscopy, Color Fundus, Endoscopy) and was not

stressed in more noisy environments such as ultrasound and X-ray. It uses NIQE, BRISQUE and

PIQE for no-reference quality assessment. In (PRAJAPATI et al., 2021) the authors propose a

unsupervised super-resolution algorithm using generative adversarial network. The supervised

methods usually make use of pairs of high resolution images with low resolution images created

using known algorithm such as bi-cubic down-sampling. This approach does not take into

account the multiple degradation factors presented in real-world data. They bench-marked the

performance of their method using both reference-based scores (Perceptual Index, Root Mean

square Error, and Learned Patch Image Perceptual Score) and no-reference-based scores (NIQE,

BRISQUE and PIQE).

As the goal of our work is to propose an unsupervised image enhancement algorithm

for Chest X-ray images we will not have ground truth images available. Therefore, the image

enhancement results will be validated using no-reference IQA metrics. We chose to use Entropy

and NIQE in our experiments because they are the most present in the literature for each of the

no-reference IQA metrics subgroups. Beyond that, we will also make use of PSNR and SSIM as

measures of distortion between the original image and the enhanced image.

2.5 Evolutionary algorithms

Evolutionary algorithms are a family of optimization algorithms inspired by the

process of natural selection. These algorithms are used for solving optimization and search

problems, where the goal is to find the optimal solution from a set of possible solutions. The

basic idea is to mimic the process of biological evolution, where individuals in a population

undergo selection, crossover (recombination), and mutation over multiple generations.

In evolutionary algorithms, potential solutions to the optimization problem are

represented as individuals or candidate solutions. A fitness function is used to evaluate how

well an individual performs the task or solves the optimization problem. The goal is usually to

maximize or minimize the fitness function. A population consists of a collection of individuals.

Each iteration of the algorithm, also referred as generation, the population undergoes a selection

process. Selection involves choosing individuals from the current population to serve as parents

for the next generation. The probability of selecting an individual can be based on its fitness

value. In most cases, the individuals are sorted by their fitness and the ones with the higher in the

list are selected. After selection, the selected individuals undergo a crossover or recombination
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process. The crossover process combines genetic material from two parents to create one or

more offspring. The individuals created by this process are included in the population. Next, the

new population is subjected to mutation. Mutation introduces random changes to individuals to

explore new regions of the solution space. The algorithm terminates after a certain number of

generations or when a termination condition is met.

In the literature, evolutionary algorithms are used to deal with a wide range of prob-

lems. One of the main applications is for CNN hyper-parameter optimization. In (ZHANG et

al., 2021) the authors proposed an Evolutionary Algorithm for Hyper-parameter optimization of

multilevel convolutional neural network for lung nodule classification. They used a evolutionary

strategy to efficiently search for hyper-parameter configurations that improve the classification

results. The results achieved were better than other approaches such as random search and grid

search. In (LU et al., 2021) the authors propose an evolutionary algorithm for automated design

of classification convolutional neural networks (CNNs). They point out that most automated

design solutions focus only on optimizing classification performance or only for one deployment

scenario. Most solutions also require elevated amounts of computational resources. Their pro-

posed evolutionary algorithm addresses this issues by progressively recombining and modifying

the hyper-parameters of the CNN based on the fitness analysis of multiple target objectives. In

(WEN et al., 2021) the authors propose a two-stage evolutionary neural architecture search for

transfer learning (EvoNAS-TL). First, they search for a appropriate architecture. Then, they

fine-tune the structure with network pruning. In (LIN et al., 2022) the authors propose an

evolutionary architectural search method for GAN architecture design which simultaneously

train the weights from the model. In (ZHOU et al., 2021) the authors propose an evolutionary

algorithm for deep neural networks compression. They model filter pruning as a multi-objective

optimization problem, with the number of filters and error rate as conflicting results. They use

an evolutionary approach to find the optimal trade-off point between both objectives.

Another application is as an alternative to standard gradient training of supervised

models. In (YANG et al., 2022b) the authors propose a gradient-guided evolutionary training

method for deep neural networks. They point out that gradient-based approaches have problems

with local optima and saddle points as they lack exploration ability. In this context, evolutionary

solutions represent an alternative with higher exploration capacity and insensitivity to local

optima. In (JALALI et al., 2021) the authors created an evolutionary-based deep convolutional

neural network model for energy load forecasting. In (TIAN et al., 2021) the authors propose
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an multi-populational evolutionary algorithm for finding multiple optimal solutions of large-

scale multi-modal multi-objective problems. They use their method to train, in a supervised

manner, a CNN for image classification. They found that the ensemble model of the multiple

solutions performs better than other state of the art methods. In (ZHOU et al., 2023) the authors

propose a supervised evolutionary algorithm to train a Dynamic Multi-objective Recommendation

framework for Sequential Recommendation. They point out the previous methods focus only on

recommendation accuracy which can cause homogenization and redundancy. To improve this

they propose a Multi-objective optimization approach where not only the accuracy is taken into

account in the model training. To solve this multi-objective optimization they first train a model

using only short-term recommendation accuracy and then introduce a evolutionary algorithm

with supervised learning to enhance the model.

Evolutionary algorithms are also used for unsupervised multi-objective optimization

tasks. In (HADIKHANI et al., 2024) the authors propose an algorithm for unsupervised human

activity discovery. They point out that most works in Human Activity Discovery are done

with supervised methods but producing labeled data is expensive. To solve this, they created a

multi-objective particle swarm optimization clustering algorithm with Gaussian mutation and

game theory.

To the best of our knowledge this work is the first to explore the use of Evolutionary

algorithms for unsupervised CNN training for image enhancement tasks.
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3 METHODOLOGY

In this section we will present the IQAEvolNet algorithm, the datasets and the

experimental procedures. First we provide an overview of our algorithm. Then on the Statistical

metrics evaluation subsection we present the algorithm used for the metrics employed on the

algorithm. Following this, on the LightdehazeTestnet subsection we explain the Convolutional

neural network used on our algorithm. In sequence, on the IQAEvolNet subsection we describe

the algorithm itself. Then, on the Datasets subsection we described all datasets used on our

experiments. Finally, on the Classification test subsection we describe how the classification

experiment was done.

The goal of IQAEvolNet is to optimize the weights of LightdehazeTestnet to im-

prove the Natural Image Quality Evaluator (NIQE), Entropy, and Structural Similarity Index

Measure (SSIM) scores. The method used in this work can be seen on Figure 1 and consists of

the following steps. The first step involves creating a starting population for the evolutionary

algorithm. This is achieved by training the CNN using image enhancement algorithms, Un-

sharp Masking (UM), High-Frequency Emphasis Filtering (HEF), Contrast Limited Adaptive

Histogram Equalization (CLAHE), Automatic Tissue Attenuation-based Contrast Enhancement

(ATACE), and Triple Clipped Dynamic Histogram Equalization (TCDHE), as references and us-

ing weights at different epochs for the starting population. Subsequently, the starting population

undergoes optimization through selection, permutation, and mutation. Selection is based on a

fitness function that ranks different weights using NIQE, entropy, and SSIM scores, with the best

weights selected as parents for the next generation. Permutation and mutation are then applied

to these selected weights to produce the next generation. At the conclusion of the evolutionary

algorithm, the best performing weight is chosen as the optimal solution. All experiments were

done using the Google Colab Python 3 environment with a T4 GPU and a high RAM option.

3.1 Statistical metrics evaluation

To assess the image quality of the chest X-ray images, three metrics were employed:

Natural Image Quality Evaluator (NIQE), entropy, and Structural Similarity Index Measure

(SSIM). NIQE and entropy were utilized for no-reference image quality assessment (IQA), while

SSIM was employed to measure the distortion between the original and enhanced image.
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Figure 1 – IQAEvolNet methodology diagram.

3.1.1 Entropy

Entropy is a mathematical function based on the distribution of different pixel values

in the image histogram. The formula is expressed in Equation 3.1, where pi is the value of

the normalized histogram for the pixel intensity i. As the Entropy is a measure of how evenly

distributed the histogram is, the best-case scenario consists of a flat histogram where all pixel

levels have the same value. This means that, for an image with the typical 0 to 255 pixel value,

pi would be equal to 256−1 = 2−8. By applying this value to Equation 3.1 we have that the

maximum value for the Entropy is 8.

Entropy =−
n−1

∑
0

pi log2 pi (3.1)

The worst-case scenario would be where all pixels have the same value. In this case,

pi would be equal to either 1 or 0 and, therefore, either pi = 0 or log2 pi = 0. This means that all

the sum terms of Equation 3.1 would be 0 and the Entropy value would also be 0. In conclusion,

Entropy is a no-reference IQA metric that measures the distribution of the histogram of an image.

The higher the metric, the more evenly distributed the histogram. All values fall within the range

of 0 to 8.

3.1.2 NIQE

NIQE is a no-reference IQA algorithm, proposed by (MITTAL et al., 2013), based

on the statistical properties of images. Unlike other methods, NIQE does not rely on datasets with

human-graded images for training. The model comprises a collection of quality-aware features

that are fitted into a multivariate Gaussian model. The quality of an image is then determined
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by the distance of its Gaussian model from the average Gaussian model of all natural images.

The higher the value, the more distant the image is from the average and therefore the lower its

assumed quality. In contrast to entropy, where higher values indicate better quality, with NIQE,

higher values suggest worse image quality. The range of values has no fixed upper limit, but due

to its distance logic, there is a lower limit at 0. Therefore, all NIQE values fall within the [0,+∞[

range.

3.1.3 SSIM

The no-reference IQA metrics, in their own right, do not provide a complete picture.

Since they operate without relying on the original image, they do not consider the preservation

of information. Therefore, while an enhanced image may have higher quality than the original

according to these metrics, it must also conserve information. Relying solely on no-reference

IQA metrics could lead to a scenario where an algorithm generates random high-quality images,

despite the output having no relation to the input.

To address this issue, similarity metrics were incorporated into the fitness function.

This ensures that the generated solutions not only improve the no-reference IQA metrics but

also minimize the changes made to the original image to achieve this improvement. The chosen

similarity metric is SSIM, proposed by (WANG et al., 2004) as a means to measure the distortion

between a distorted image and a reference image. SSIM depends on three different character-

istics: luminance, contrast, and structure. Luminance comparison is done using Equation 3.2.

Luminance comparison is performed using Equation 3.2. The constant C1 is introduced to

prevent steep increases when µ2
x +µ2

y is close to zero. The value of C1 is defined in 3.3 where

K1 is a small constant and L represents the range of pixel values, which is 255 in this case.

l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
(3.2)

C1 = (K1L)2 (3.3)

The contrast comparison is conducted using a similar formula, with the mean values

replaced by the standard deviations. Equation 3.4 presents the formula. The constant C2 serves

a similar purpose to C1.
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c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2
(3.4)

C2 = (K2L)2 (3.5)

The structure comparison is performed using a similar formula, but instead of using

mean and standard deviation, it involves the correlation coefficient between the normalized

images. Equation 3.6 shows the formula. The constant C3 serves a similar purpose to C1 and C2.

s(x,y) =
2σxy +C3

σxσy +C3
(3.6)

C3 =
C2

2
(3.7)

Finally, SSIM is calculated by multiplying all three comparisons. Equation 3.8

shows the final formula.

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(3.8)

Since all three comparison metrics have values in the interval [0,1], the product of

these metrics, SSIM, also has values in the interval [0,1].

3.2 LightdehazeTestnet

The CNN model employed in this study, LightdehazeTestnet, is derived from the

Lightdehazenet architecture proposed in (ULLAH et al., 2021). While the general structure of

the model was retained, modifications were made to the output image equation, and an additional

convolutional layer was introduced. In the version used for this work, the model calculates

two correction maps: a correction coefficient C(x) and a correction bias B(x). The correction

coefficient C(x) is applied to the input image through multiplication, while the correction bias

B(x) is added for fine adjustment.

Figure 2 illustrates the architecture of the model. ReLu and Sigmoid represent the

Rectilinear Uniform and Sigmoid activation layers, respectively. Batch Norm stands for batch
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Figure 2 – LightdehazeTestnet model architecture.

Table 1 – Parameters for the Convolutional layers of the LightdehazeTestnet model.

Layer Kernel size Stride Input channels Output channels

Conv 1 1 1 1 8
Conv 2 3 1 8 8
Conv 3 5 1 8 8
Conv 4 7 1 16 16
Conv 5 3 1 16 16
Conv 6 3 1 16 16
Conv 7 3 1 32 32
Conv 8 3 1 56 1
Conv 9 3 1 56 1

normalization layers, Concat denotes concatenation layers, and Conv refers to convolutional

layers. The model employs convolutional operations to generate feature maps with dimensions

identical to those of the input image. In order to amplify the influence of the deepest layers on

the output, previous feature maps are reintroduced into the model through concatenation.

The parameters utilized in the convolutional operations are detailed in Table 1. To

ensure that all feature maps match the dimensions of the input image, the stride is consistently

maintained at 1. The size of the kernels varies to capture different ranges of information.

Concatenation is achieved by simply appending the channels of the feature maps.

3.3 IQAEvolNet

The solution proposed by this work relies on the random mixing and mutation of

existing solutions. Therefore, before discussing the evolutionary algorithm itself, it’s important
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to explain the generation process of the starting solutions used in the experiments.

3.3.1 Creation of the starting population

The first step of IQAEvolNet involves creating the initial population of weights. This

process was carried out by training the LightdehazeTestnet model using the reference image

enhancement algorithms. Initially, an enhanced reference dataset was generated using each

image enhancement algorithm. Subsequently, back-propagation was employed to train the model

by comparing its results with the reference dataset. At the conclusion of each training epoch, the

weights of the model were saved. These weights served as the starting population.

For the creation of the dataset for the initial training of the model, the following

image enhancement algorithms were utilized:

• UM with a radius of size 5 and a scaling factor of 2;

• HEF with D0 of 20, K1 of 0.5 and K2 of 0.75;

• CLAHE with parameters (8,8) for the tile grid size and a clipping limit of 2.0;

• ATACE with a local region of size (7,7);

• TCDHE with a β of 0.5.

For the back-propagation training, the parameters were set as follows:

• Number of epochs: 100;

• Optimizer: Adam;

• Learning rate: 0.0001;

• Learning rate decay: 0.0001;

• Loss function: Mean Square Error.

Weights from epochs 60, 70, 80, 90, and 100 were selected from each of the five

algorithms for the starting population, resulting in a total of 25 (5×5) individuals. The next step

of the algorithm involves defining the fitness function to be used.

3.3.2 Fitness Function

The fitness function utilized by the algorithm incorporates two IQA metrics and

one similarity metric: Entropy, NIQE, and SSIM. These metrics are employed to evaluate the

effectiveness of the enhancement models.

Equation 3.9 shows the formula for the fitness function. The weights w1, w2, and w3

are used to calibrate the priority between the metrics. The minus sign on w2 was done because
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NIQE, contrary to the other metrics, improves the lower its value.

Fitness = Entropyw1 ×NIQE−w2 ×SSIMw3 (3.9)

3.3.3 Evolutionary algorithm

The evolutionary algorithm operates by evaluating the fitness of a set of solutions,

selecting the best-performing ones, and generating a new set of solutions from them. This

process iterates using the newly generated set of solutions as the starting population for the next

iteration.

Figure 3 depicts the operation of the algorithm. The population and individuals

refer to the weights for the LightdehazeTestnet. The algorithm operates in batches. At the

beginning of each batch, each weight set that composes the starting population is loaded into the

LightdehazeTestnet model and applied to the batch of images. The resulting enhanced batches

undergo a fitness test, where each receives a score quantifying its image quality. This fitness test

ranks the individuals of the starting population, preserving the highest-scoring individuals as

the surviving population and discarding the rest. The best-performing individual is designated

as the optimal individual. The surviving population then undergoes permutation and mutation

processes to create a new population with the same size as the starting population. This new

population serves as the starting population for the next batch. The algorithm continues to run,

selecting new images as samples, until the dataset is exhausted. At this juncture, it is deemed

that one epoch or generation of training has been completed.

If it is the first epoch of training, the best performing individual in the last batch is

designated as the solution for that epoch. Otherwise, the fitness of this individual is compared

with that of the previously best performing individual across the entire dataset. If it exhibits higher

fitness, it is deemed the new best performing individual; otherwise, the algorithm determines

that this epoch did not produce improvement. To make this assessment, a threshold is employed

when comparing the fitness of both individuals. The new individual must surpass the previous

one by at least a specified proportion to be considered an improvement.

The fitness test is conducted using the fitness function presented previously. The

metric values utilized in the equation are the averages of the dataset sample. The algorithm

arranges the population by fitness in descending order and selects the square root of n best

performing individuals, where n is the size of the starting population.
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Figure 3 – IQAEvolNet algorithm diagram. Yellow square represent LightdehazeTestnet model,
blue squares represent LightdehazeTestnet weights and purple squares represent
evolutionary processes.

The permutation operation involves creating a new set of solutions by combining

the surviving population. This new set of solutions comprises the square root of n surviving

individuals and their
√

n(
√

n− 1) paired combinations, which collectively return us to the

population size of n. In the implementation of this work, the paired combination was achieved by

calculating the weighted average between the two solutions, with the first weight being a random

number following a Gaussian distribution with mean = 0.5 and standard deviation = 0.5
3 . These

solutions are then subjected to mutation.

The mutation operation, as depicted in Equation 3.10, entails multiplying the

starting parameter by a random variable following a normal distribution with a mean of 1 and an

adjustable standard deviation called the noise intensity.

M(x,y) = I(x,y) ·N(1,σ) (3.10)

In this case, the solution has two types of parameters: convolutional filters and bias

vectors. In this implementation, if a mutation occurs, it will affect all elements of a specific

convolutional filter or bias vector. For example, consider a CNN with only one convolutional

layer featuring a 3x3 kernel with 8 output channels and a bias. This implies that each of the 8

kernels and the CNN bias vector will have the potential to trigger a mutation. When activated, the

mutation will involve multiplying the elements of the kernel or bias vector by a matrix or vector

of the same dimensions, where the terms of this matrix or vector follow a normal distribution.
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Table 2 – Main Dataset class composition and IQA metrics mean and standard deviation. NIQE
is better at lower values and entropy is better at higher values.

Class Number of images NIQE ↓ Entropy ↑
Viral pneumonia 1345 5.76(0.79) 7.210(0.244)
Normal 10192 5.76(0.89) 7.482(0.319)
Lung Opacity 6012 6.00(1.25) 7.377(0.362)
COVID 3616 6.20(1.51) 7.272(0.385)
Whole dataset 21165 5.92(1.16) 7.388(0.354)

Once the mutation process is completed, the new population replaces the old one,

and the algorithm determines whether to continue the process or not. If the algorithm is still in

the middle of an epoch or the stopping criteria haven’t been reached, it iterates again; otherwise,

it stops and returns the current best-performing solution.

Finally, the noise intensity is reduced each epoch the algorithm fails to find a better

solution. Each time this happens, the noise intensity is multiplied by an adjustable factor called

noise decay.

For the implementation used in this work, the population size was set to n = 25, the

improvement threshold was 1.00001, the batch size was 32, the mutation probability was 0.1, the

initial noise intensity was 1, and the noise decay factor was 0.5.

3.4 Datasets

The main dataset utilized in this study,(CHOWDHURY et al., 2020) (RAHMAN

et al., 2021b), comprises an aggregation of multiple chest X-rays. It consists of 1345 viral

pneumonia, 10192 normal, 6012 lung opacity, and 3616 Covid chest X-ray images. Figure

4 displays an example of each class. For the experiments, all images were resized to 224 ×
224 pixels using bi-cubic interpolation. The dataset has an average NIQE value of 5.92 with a

standard deviation of 1.16, and an average entropy value of 7.388 with a standard deviation of

0.354. Table 2 provides the number of images and the mean and standard deviation of image

quality assessment metrics for each class and the entire dataset.

Two extra datasets were also used for the image classification experiments: Shenzen

dataset, (JAEGER et al., 2014), and NIH Chest X-ray dataset, (WANG et al., 2017). The Shenzen

dataset consists of 336 Tuberculosis and 326 Normal images. The NIH Chest X-ray dataset

consists of more than 100000 images with multiple possible diagnostics. For simplicity the

dataset used in the experiment was a filtered version with 2 possible diagnostics: Filtered and
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Figure 4 – Image example for each class of the main dataset.: (a) Viral Pneumonia. (b) Normal.
(c) Lung Opacity. (d) COVID.

Normal. The filter was done prioritizing low quality images to test whether the enhancement

algorithms impact on classification are more notable in low quality datasets. First, a quality

score was calculated for each image by dividing the entropy score by the NIQE score. Then, the

20000 images with the lowest score were selected. Finally, the two most common diagnostic

were preserved while the rest was excluded. Finally, the number of images per diagnosis was

limited to the lowest scoring 4000 to better balance the classes. The result was a filtered dataset

with 4000 Normal and 2307 Infiltration diagnosis. For the experiments, all images were resized

to 224 × 224 pixels using bi-cubic interpolation.

3.5 Classification test

To further validate the proposed method an experiment was performed to compare

the impact of the algorithms on a classification task. The classification was done using transfer

learning with the Mobilenet, (HOWARD et al., 2017), model as a base. The chosen top layer
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consisted of a flatten layer, followed by a dense layer with 128 units and a rectified linear unit

activation function, then a dropout layer with a 0.3 rate, and finally a dense layer, with 4 units for

the main dataset and 2 units for the Shenzen and NIH datasets, and a softmax activation function.

The training was done in two stages, an initial stage and a fine-tuning stage. In both stages, the

optimizer utilized was stochastic gradient descent with a 0.9 momentum. In the first stage the

model was trained with a learning rate of 10−4, the maximum number of epochs was set to 20

and an early-stopping of 5 epochs without improvement. In the fine tuning stage the learning

rate was set to 10−6, the maximum number of epochs was set to 10 and an early-stopping of 5

epochs without improvement. The dataset was split into training and validation subsets with an

80%/20% ratio respectively. The loss function chosen was Categorical Cross-entropy.
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4 RESULTS AND DISCUSSION

In this section it is discussed the experimental results of the work. First, in section

4.1, it is analyzed the effectiveness of the non-learning image enhancement algorithms using

Structural Similarity Index Measure (SSIM), Natural Image Quality Evaluator (NIQE), entropy,

and processing time. Then, in section 4.2, it is presented the results for the LightdehazeTestnet

trained using each of the non-learning image enhancement algorithms as reference. Following

this, in section 4.3, it is examined the results for optimizing the weights of LightdehazeTestnet

using only NIQE and entropy, without relying on SSIM. In sequence, in section 4.4, it is

discussed the results for optimizing the weights of LightdehazeTestnet using all three metrics.

Furthermore, in section 4.5 the impact of the enhancement algorithm in the classification task

is analyzed. Finally, in section 4.6 it is studied the metric changes across epochs during the

evolutionary algorithm process and the impact of changing the weights of the fitness function in

the final result.

4.1 Non-learning image enhancement

First, the image quality assessment (IQA) metrics for the non-learning image en-

hancement methods were calculated to be used as a reference. Table 3 shows the results. The

numbers shown are the mean and standard deviation for the SSIM, NIQE, entropy, and processing

time of the methods across the entire dataset.

The method with the best SSIM and processing time is UM, while also exhibiting

the worst NIQE and entropy. This suggests that UM makes the least modifications to the original

images but also produces the lowest-quality enhancements. HEF, on the other hand, achieves

the best NIQE and entropy scores but has the slowest processing time and the second-worst

SSIM. Despite being the most effective in terms of image quality, HEF introduces considerable

distortion and requires more processing time. CLAHE demonstrates the second-best NIQE result

and processing time, along with a moderate SSIM and the second-worst entropy. It stands out

for its processing efficiency and preservation of image content. ATACE exhibits the poorest

SSIM and moderate scores in NIQE, CLAHE, and processing time. It appears to induce the

most significant alterations from the original image. TCDHE achieves the second-best SSIM

and entropy scores, with the second-worst NIQE and processing time. It manages to attain high

entropy while making minimal changes to the original image. In conclusion, HEF emerges as the
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Table 3 – Reference image enhancement algorithms IQA metrics results for the entire dataset. ↑
means that higher values are better, ↓ means the opposite. Bold numbers highlight the
best results.

Enhancement Method SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
UM 0.970(0.008) 10.09(3.24) 7.409(0.351) 4.64E-04(3.07E-04)
HEF 0.729(0.102) 4.24(0.70) 7.994(8.05E-08) 1.95E-01(5.68E-03)
CLAHE 0.849(0.032) 4.99(0.74) 7.536(0.295) 5.69E-04(4.42E-04)
ATACE 0.570(0.103) 5.53(1.35) 7.589(0.304) 1.89E-03(2.78E-04)
TCDHE 0.958(0.039) 5.89(1.08) 7.665(0.262) 1.18E-01(1.72E-02)

Table 4 – IQA metrics results for Figure 5. ↑ means that higher values are better, ↓ means the
opposite. Bold numbers highlight the best results.

Enhancement Method SSIM ↑ NIQE ↓ Entropy ↑
Original image - 5.47 7.399
UM 0.955 7.88 7.438
HEF 0.747 4.18 7.994
CLAHE 0.835 4.64 7.573
ATACE 0.597 5.48 7.437
TCDHE 0.945 4.76 7.746

best enhancement method in terms of image quality, although it comes with higher processing

time.

Figure 5 shows the results for each image enhancement method and Table 4 shows

the IQA metrics for each image. It is evident that HEF achieves the highest level of quality

among all enhancement methods, as expected from the entropy and NIQE values. Conversely,

ATACE produces the most distinct enhanced images from the originals, as indicated by the

SSIM values. In contrast to this, the UM method generates images very similar to the originals,

with only a slight increase in edge prominence, consistent with its high SSIM. Its elevated

NIQE value might suggest a significant drop in quality, which isn’t observed in practice. This

example shows that NIQE is not a perfect representation of chest X-ray image quality. CLAHE,

as expected from its SSIM and NIQE results, presents a more modest contrast enhancement

compared to HEF but yields enhanced images more akin to the originals. TCDHE exhibits

images very close to the originals, consistent with its high SSIM value. While a slight increase

in contrast is discernible, it’s less pronounced than in other methods except UM. This deviation

from expectations, especially given UM’s higher NIQE value but lower entropy, indicates that

entropy isn’t a perfect gauge of chest radiography image quality either.
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Figure 5 – Image enhancement example with the literature methods: (a) Original image. (b)
Unsharp Masking. (c) High-Frequency Emphasis Filtering. (d) Contrast Limited
Adaptive Histogram Equalization. (e) Automatic Tissue Attenuation-based Contrast
Enhancement. (f) Triple Clipped Dynamic Histogram Equalization.

4.2 Pre-trained lightdehazeTestnet

In this section, the results from pre-training the LightdehazeTestnet using each of

the algorithms as reference are explored. Table 5 presents the IQA metrics and processing time

for these experiments. The average processing time remained consistent across the experiments,

with most achieving an average processing time of 2.90 milliseconds. Comparing these results

with Table 3, it is evident that the CNN pre-trained using UM exhibited improved NIQE, from

10.09 to 5.09, and better Entropy, from 7.409 to 7.447, compared to UM itself. Although the

SSIM decreased slightly, from 0.970 to 0.937, it still remained relatively high compared to other

methods. For the CNN pre-trained using HEF, the average NIQE changed minimally, from 4.24

to 4.26, while the SSIM and Entropy worsened, from 0.729 to 0.686, and from 7.994 to 7.798,

respectively. However, there was a significant reduction in processing time, from 0.195 seconds

to 2.90 milliseconds, nearly a hundredfold decrease. The CNN pre-trained using CLAHE showed

an improvement in average NIQE, from 4.99 to 4.53, a slight reduction in Entropy, from 7.536

to 7.522, and a notable decrease in SSIM, from 0.849 to 0.798. For the CNN pre-trained using

ATACE, the NIQE and SSIM remained similar, from 0.570 to 0.573, and from 5.53 to 5.56,

respectively, while there was a minor improvement in entropy, from 7.589 to 7.610. The CNN

pre-trained using TCDHE exhibited a slight worsening of SSIM, NIQE, and Entropy, from 0.958
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Table 5 – IQA metrics and processing time for pre-trained lightdehazeNet using different algo-
rithms as reference. ↑ means that higher values are better, ↓ means the opposite. Bold
numbers highlight the best results.

Enhancement method SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
Pre-trained CNN with UM 0.937(0.093) 5.09(1.22) 7.447(0.266) 2.94E-03(6.30E-03)
Pre-trained CNN with HEF 0.686(0.086) 4.26(0.67) 7.798(0.173) 2.90E-03(1.21E-04)
Pre-trained CNN with CLAHE 0.798(0.071) 4.53(0.62) 7.522(0.209) 2.90E-03(1.29E-04)
Pre-trained CNN with ATACE 0.573(0.071) 5.56(1.22) 7.610(0.234) 2.90E-03(1.89E-04)
Pre-trained CNN with TCDHE 0.929(0.078) 5.81(1.08) 7.517(0.235) 2.90E-03(1.17E-04)

to 0.929, from 5.89 to 5.81, and from 7.665 to 7.517, respectively. However, there was a notable

improvement in processing time, from 0.118 seconds to 2.90 milliseconds. This experiment

demonstrates that pre-trained CNNs can achieve comparable results to the reference algorithms,

and for HEF and TCDHE, it also significantly improves processing time.

Figure 6 depicts the results of applying the pre-trained CNNs. Similar to Figure 5,

the results display enhanced images. However, two of the displayed images exhibit noticeable

issues. In the pre-trained CNN with HEF example, black dots are clustered around the bottom of

the image, particularly in regions with a high concentration of pixels with elevated values. In

the pre-trained CNN with CLAHE example, a deformed halo artifact is visible in the same area.

These artifacts highlight that the LightdehazeTestnet CNN used is not a perfect fit and can be

further optimized for chest X-ray image enhancement. However, the primary focus of this work

is not on the adequacy of LightdehazeTestnet for this application but rather on demonstrating

that an evolutionary approach can effectively train a CNN to optimize NIQE and Entropy scores.

These issues may also be present in other results, but the primary goal of this work is not to

provide an ideal CNN for chest X-ray image enhancement, but to illustrate that the evolutionary

method can successfully train a CNN for optimizing NIQE and Entropy scores.

4.3 IQAEvolNet with only IQA metrics

The initial evolutionary test was conducted using only IQA metrics as fitness indica-

tors, excluding SSIM. The results of this experiment are presented in Table 6. Weight set 1 was

trained using only NIQE as a fitness measure. As anticipated, this weight set achieved the lowest

NIQE score. It also attained the highest SSIM score. However, it is noteworthy that the achieved

entropy value of 6.924 is lower than the entropy of the original dataset, which was 7.389. Weight

set 2 was trained using only Entropy as a fitness measure. Although this weight set achieved

the highest entropy score, it exhibited a significantly low SSIM, indicating substantial image
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Figure 6 – Experimental results for the lightdehazeNet pre-trained using each of the enhanced
algorithms: (a) Original image. (b) Pre-trained with UM. (c) Pre-trained with HEF. (d)
Pre-trained with CLAHE. (e) Pre-trained with ATACE. (f) Pre-trained with TCDHE.

Table 6 – Results for evolutionary training without SSIM. ↑ means that higher values are better,
↓ means the opposite. Bold numbers highlight the best results.

Weight set SSIM weight NIQE weight Entropy weight SSIM ↑ NIQE ↓ Entropy ↑
Weight set 1 0 1 0 0.525(0.097) 3.20(0.74) 6.924(0.252)
Weight set 2 0 0 1 0.042(0.014) 19.30(3.75) 7.950(0.136)
Weight set 3 0 1 1 0.495(0.085) 3.71(0.71) 7.763(0.171)

distortion. Additionally, it obtained a very high NIQE score of 19.30 compared to the original

dataset’s NIQE of 5.62, suggesting a resulting image of very low quality. Weight set 3 was

trained using both NIQE and Entropy as fitness measures, with equal weights. It demonstrated

improvements in both NIQE and entropy compared to the original dataset, with NIQE decreasing

from 5.92 to 3.71 and entropy increasing from 7.389 to 7.763.

Figure 7 illustrates an image enhancement example for the models. Weight sets 1

and 2, which utilize only one IQA metric for fitness calculation, generate highly distorted images.

In weight set 3, where both IQA metrics are used, the resulting image exhibits higher quality.

However, a notable issue observed in this image is the presence of a large cluster of black dots in

the region with a high concentration of high-value pixels.

This result underscores the limitation of solely relying on IQA metrics for fitness

calculation, as it leads to models that distort the original image. Without a reference point, these

metrics cannot fully capture the information lost during the enhancement process. To address
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Figure 7 – Image enhancement example for the models trained without SSIM: (a) Original image.
(b) Weight set 1. (c) Weight set 2. (d) Weight set 3.

this issue, SSIM is incorporated into the fitness calculation. This ensures that the generated

models must strike a balance between increasing the IQA metric and minimizing the distortions

they introduce.

4.4 IQAEvolNet with IQA metrics and SSIM

In this subsection, the results obtained using different weight sets for fitness calcula-

tion were presented. The average SSIM, NIQE, and entropy for each weight set are presented

in Table 7. The two best-performing weight sets from an SSIM standpoint were weight set 5

and 9, with SSIM values of 0.848 and 0.851, respectively. This outcome was expected since

they have the highest SSIM weight. Both weight sets exhibit good NIQE values, 3.88 and 4.05

respectively, compared to the best-performing algorithm, HEF, with a NIQE of 4.18. However,

weight set 5 has a low entropy value of 7.251, even lower than the original dataset, which has a

value of 7.389. In contrast, weight set 9 has a competitive entropy value of 7.576, higher than

the scores for UM (7.409) and CLAHE (7.536), and only slightly lower than ATACE (7.589).
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Therefore, it is concluded that weight set 9 yields good results with minimal distortion.

The best-performing weight set from a NIQE perspective was weight set 7, which

had the highest NIQE weight. Among all the state-of-the-art algorithms analyzed in this work, the

best-performing one from a NIQE perspective was HEF, which achieved an average NIQE score

of 4.18. The evolved model managed to achieve an average NIQE score of 3.48, representing

a significant improvement. However, this model only managed to achieve an entropy score of

7.503, which is very similar to the original dataset score of 7.399 and worse than HEF (7.994),

CLAHE (7.573), and TCDHE (7.746). Due to this under-performance in entropy, this weight set

is not considered a good enough solution.

The best-performing weight set from an entropy point of view was weight set 11. It

achieved a mean entropy of 7.799, a significant improvement from the original dataset score

of 7.399 and bigger than all state-of-the-art algorithms studied in this work. It simultaneously

achieve an average NIQE of 3.620, bigger than the NIQE score of all reference algorithms, and

close to the best performing weight set NIQE-wise of 3.48. From a combined analysis of NIQE

and entropy, this weight set was the best-performing from all the tested weight sets. But it’s low

SSIM value of 0.645, lower than all reference algorithms except ATACE, suggests that it’s a

model prone to creating distorted images.

The best-performing weight set from an entropy perspective was weight set 11.

It achieved a mean entropy of 7.799, a significant improvement from the original dataset

score of 7.399 and higher than all state-of-the-art algorithms studied in this work, except HEF.

Simultaneously, it achieved an average NIQE of 3.620, higher than the NIQE score of all

reference algorithms and close to the best-performing weight set NIQE-wise of 3.48. From a

combined analysis of NIQE and entropy, this weight set was the best-performing among all the

tested weight sets. However, its low SSIM value of 0.645, lower than all reference algorithms

except ATACE, suggests that it’s a model prone to creating distorted images.

In Figure 8, an example of image enhancement using the models trained for each

weight set is shown. Table 8 displays the IQA metric scores for these images. Among the

weight sets, 9 and 11 were considered good solutions based on their IQA score average value.

Weight set 11 generates a notable amount of black dot clusters, which was expected given its

low SSIM score. Although it has the best entropy score (7.821), it also has the worst NIQE and

SSIM, indicating significant distortion. Therefore, weight set 11 did not generate a satisfactory

solution in this example. Weight set 9 also generates small clusters of black dots but in a
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Table 7 – IQA metric results for each weight set. ↑ means that higher values are better, ↓ means
the opposite. Bold numbers highlight the best results.

Weight set SSIM weight NIQE weight Entropy weight SSIM ↑ NIQE ↓ Entropy ↑
Weight set 4 1 1 1 0.795(0.066) 3.55(0.78) 7.473(0.250)
Weight set 5 2 1 1 0.848(0.058) 3.88(0.89) 7.251(0.303)
Weight set 6 1 1 2 0.800(0.071) 3.95(0.94) 7.550(0.291)
Weight set 7 1 2 1 0.708(0.100) 3.48(0.87) 7.503(0.248)
Weight set 8 1 1 4 0.838(0.077) 4.11(1.05) 7.544(0.264)
Weight set 9 2 1 4 0.851(0.086) 4.05(1.02) 7.576(0.244)
Weight set 10 1 1 8 0.650(0.091) 4.01(0.67) 7.763(0.194)
Weight set 11 1 1 16 0.645(0.071) 3.62(0.60) 7.799(0.187)

Table 8 – IQA metric score for Figure 8. ↑ means that higher values are better, ↓ means the
opposite. Bold numbers highlight the best results.

Weight set SSIM ↑ NIQE ↓ Entropy ↑
Original image - 5.02 7.402
Weight set 4 0.788 2.39 7.443
Weight set 5 0.887 2.88 7.164
Weight set 6 0.831 3.78 7.533
Weight set 7 0.750 3.35 7.533
Weight set 8 0.813 2.91 7.500
Weight set 9 0.869 3.09 7.547
Weight set 10 0.683 3.36 7.713
Weight set 11 0.628 4.06 7.821

significantly smaller amount compared to weight set 11. It achieved the second-highest SSIM,

the fourth-lowest NIQE, and the fifth-highest entropy. Despite other images struggling with low

contrast or excessive black dot distortion, weight set 9 maintained a balance between both IQA

metrics while keeping SSIM high. Therefore, weight set 9 was identified as the optimal solution

for this image example. The fact that weight set 11 was not chosen as the optimal solution

despite outperforming both IQA metrics suggests that these metrics do not accurately quantify

the image quality of chest X-ray images.

4.5 Classification results

The reference algorithms and the proposed methods were used as pre-processing

for the classification of the main dataset. The results are shown in Table 9. It is observed

that all enhancement algorithms had little effect on the classification accuracy. HEF and UM,

with accuracy of 90.56% and 90.87% respectively, had a smaller accuracy than with no pre-

processing algorithms (91.19%). The other algorithms showed an slight increase in accuracy,

with the biggest increase being TCDHE which achieved 91.43% of accuracy. Similar results
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Figure 8 – Image enhancement example for the models trained SSIM: (a) Original image. (b)
Weight set 4. (c) Weight set 5. (d) Weight set 6. (e) Weight set 7. (f) Weight set 8. (g)
Weight set 9. (h) Weight set 10. (i) Weight set 11.

Table 9 – Classification results for each of the image enhancement algorithms. Bold numbers
highlight the best results.

Algorithm Accuracy

None 91.19%
UM 90.87%
HEF 90.56%
CLAHE 91.38%
ATACE 91.24%
TCDHE 91.43%
IQAEvelNet 91.35%

were achieved on the Shenzen and NIH datasets as shown in Tables 10 and 11. In all cases, the

changes in accuracy were minimal. This goes against the results presented in (RAHMAN et

al., 2021a), where CLAHE increased the accuracy of classification algorithms for COVID-19

diagnosis, and (MUNADI et al., 2020), where UM, HEF and CLAHE increased the accuracy of

classification algorithms for tuberculosis detection up to 3.37%.

The results show that image enhancement algorithms by themselves have very little
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Table 10 – Classification results for each of the image enhancement algorithms on the Shenzen
dataset. Bold numbers highlight the best results.

Algorithm Accuracy

None 87.31%
UM 83.58%
HEF 87.31%
CLAHE 89.55%
ATACE 85.82%
TCDHE 85.07%
IQAEvelNet 80.60%

Table 11 – Classification results for each of the image enhancement algorithms on the NIH Chest
X-ray dataset. Bold numbers highlight the best results.

Algorithm Accuracy

None 73.52%
UM 71.42%
HEF 72.55%
CLAHE 72.47%
ATACE 70.85%
TCDHE 72.55%
IQAEvelNet 70.36%

impact on image classification tasks. This is likely because the labels used for training were cre-

ated based on the perception of medical professionals analyzing non-enhanced images. Therefore,

the experiment does not account for potential changes in visual inspection diagnostic accuracy

that could result from improved image quality. To more effectively demonstrate the impact of

enhancement algorithms, it would be better to compare visual inspection diagnostic accuracy

between unimproved and improved image datasets. This approach would directly measure how

these algorithms influence the interpretation of medical professionals. The diagnostic accuracy

using each dataset could then be compared to more accurate diagnostic tools, such as biopsies or

blood tests, to assess the true effectiveness of the enhanced images in improving visual inspection

diagnostic outcomes.

Thus, the proposed method emerges as a superior alternative to state-of-the-art

algorithms in terms of NIQE score, while maintaining reasonable entropy and computational

cost. It can be used as a effective pre-processing tool for chest X-ray image enhancement to

support visual inspection diagnostics.
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Table 12 – Evolutionary results for weight set 1. ↑ means that higher values are better, ↓ means
the opposite.

Epoch NIQE ↓ Time (seconds) ↓
1 3.18 1329.21
2 3.18 1329.11
3 3.18 1329.59
4 3.18 1326.22

Table 13 – Evolutionary results for weight set 2. ↑ means that higher values are better, ↓ means
the opposite.

Epoch Entropy ↑ Time (seconds) ↓
1 7.937 239.25
2 7.937 239.29
3 7.949 239.45
4 7.948 240.13
5 7.948 239.82
6 7.948 239.64
7 7.948 239.79

4.6 Evolutionary process

In this section we will discuss the changes of the parameters during the evolutionary

process and the computational cost. The IQA metrics and NIQE values presented here are

referent to the validation dataset and the processing time is for the entire epoch training time.

Table 12 shows the NIQE and processing time for weight set 1, where NIQE weight = 1 and the

others are 0. For this weight set, the optimal solution was found on the first epoch and after 3

epoch without improvement the algorithm stopped.

Table 13 shows the entropy and processing time for weight set 2, where entropy

weight = 1 and the others are 0. For this weight set, the optimal solution was found on the fourth

epoch. We can see that from the third to the fourth epoch there was a drop in entropy from 7.949

to 7.948 and the algorithm considered it a improvement. Because the algorithm judges using

the training dataset an apparent improvement can, when dealing with small margins, generate a

deterioration in the validation results. Comparing the processing time results with the previous

weight set we can see a considerable difference. The quickest epoch of weight set 1 was 1326.22

seconds while the quickest epoch of weight set 2 was 239.25. As the only difference between

both processes is the fitness calculation process, we can infer that most on the computational

cost is spent there.

Table 14 shows the NIQE, entropy and processing time for weight set 3, where NIQE
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Table 14 – Evolutionary results for weight set 3. ↑ means that higher values are better, ↓ means
the opposite.

Epoch NIQE ↓ Entropy ↑ Time (seconds) ↓
1 3.75 7.761 1420.75
2 3.75 7.761 1410.50
3 3.75 7.761 1408.58
4 3.75 7.761 1410.24

weight = 1, entropy weight = 1 and SSIM weight = 0. For this weight set, the optimal solution

was found on the first epoch. Comparing the processing time results with weight set 1 we can

see a small increase. The quickest epoch of weight set 3 was 1408.58 seconds while the quickest

epoch of weight set 1 was 1326.22. This increase can be attributed to the fact that weight set 3

uses both NIQE and entropy for fitness calculation while weight set 1 uses only NIQE.

Table 15 shows the NIQE, entropy, SSIM and processing time for weight set 4, where

NIQE weight = 1, entropy weight = 1 and SSIM weight = 1. For this weight set, the optimal

solution was found on the tenth epoch. Comparing the processing time results with weight set

3 we can see a small increase. The quickest epoch of weight set 4 was 1621.16 seconds while

the quickest epoch of weight set 3 was 1408.58. This increase can be attributed to the fact that

weight set 4 includes SSIM in it’s fitness calculation. The solution on the first epoch had SSIM

of 0.680, NIQE of 3.85 and entropy of 7.530. In the next epoch improved the SSIM score, from

0.680 to 0.855, and deteriorated the NIQE and entropy score, from 3.86 to 4.02 and from 7.530

to 7.370 respectively. The next evolution happened on epoch 5. In this epoch the SSIM score was

reduced but the NIQE and entropy score improved, from 4.02 to 3.75 and from 7.370 to 7.423

respectively. The last evolution occured in epoch 7. In this case, all scores improved. SSIM went

from 0.787 to 0.800, NIQE from 3.75 to 3.58, and entropy from 7.423 to 7.457.

Table 16 shows the NIQE, entropy, SSIM and processing time for weight set 5, where

NIQE weight = 1, entropy weight = 1 and SSIM weight = 2. For this weight set, the optimal

solution was found on the tenth epoch. Comparing the processing time results with weight set

4 we can see they are similar. Because both weight set use the three scores, their execution

process is similar. The weights only influence the final multiplication. The final result has a

worst NIQE, from 3.58 to 3.90, and entropy, from 7.457 to 7.241, when compared to weight set

4. To compensate this it has a better SSIM, from 0.800 to 0.850. We can observe that the higher

weight for SSIM incentives the algorithm to choose higher SSIM solutions. This preference

comes at the cost of NIQE and entropy scores.
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Table 15 – Evolutionary results for weight set 4. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.680 3.86 7.530 1627.50
2 0.855 4.02 7.370 1641.45
3 0.855 4.02 7.370 1621.16
4 0.855 4.02 7.370 1639.59
5 0.787 3.75 7.423 1636.11
6 0.787 3.75 7.423 1625.63
7 0.800 3.58 7.457 1631.91
8 0.800 3.58 7.457 1646.29
9 0.800 3.58 7.457 1641.46
10 0.800 3.58 7.457 1646.90

Table 16 – Evolutionary results for weight set 5. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.850 4.43 7.462 1635.01
2 0.884 4.41 7.396 1623.34
3 0.884 4.41 7.396 1642.70
4 0.855 4.06 7.458 1627.24
5 0.855 4.06 7.458 1644.91
6 0.855 4.06 7.458 1570.55
7 0.850 3.90 7.241 1563.70
8 0.850 3.90 7.241 1546.45
9 0.850 3.90 7.241 1544.84
10 0.850 3.90 7.241 1582.59

Table 17 – Evolutionary results for weight set 6. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.738 3.86 7.492 1564.37
2 0.804 3.96 7.535 1552.46
3 0.804 3.96 7.535 1547.15
4 0.804 3.96 7.535 1540.50
5 0.804 3.96 7.535 1555.99

Table 17 shows the NIQE, entropy, SSIM and processing time for weight set 6, where

NIQE weight = 1, entropy weight = 2 and SSIM weight = 1. For this weight set, the optimal

solution was found on the tenth epoch. The final result has a worst NIQE, from 3.58 to 3.96, a

similar SSIM, from 0.800 to 0.804, and a better entropy, from 7.457 to 7.535 when compared

to weight set 4. We can observe that the higher weight for entropy incentives the algorithm to

choose higher entropy solutions. This preference comes at the cost of the NIQE score.



68

Table 18 – Evolutionary results for weight set 7. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.713 3.47 7.489 1549.28
2 0.713 3.47 7.489 1530.34
3 0.713 3.47 7.489 1532.00
4 0.713 3.47 7.489 1537.80

Table 19 – Evolutionary results for weight set 8. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.669 4.35 7.634 1542.23
2 0.843 4.10 7.530 1578.74
3 0.843 4.10 7.530 1558.14
4 0.843 4.10 7.530 1543.05
5 0.843 4.10 7.530 1545.44

Table 18 shows the NIQE, entropy, SSIM and processing time for weight set 7, where

NIQE weight = 2, entropy weight = 1 and SSIM weight = 1. For this weight set, the optimal

solution was found on the first epoch. The final result has a better NIQE, from 3.58 to 3.47, a

better entropy, from 7.457 to 7.489, and a worst SSIM, from 0.800 to 0.713, when compared to

weight set 4. We can observe that the higher weight for NIQE incentives the algorithm to choose

higher NIQE solutions. This preference comes at the cost of the SSIM score.

Table 19 shows the NIQE, entropy, SSIM and processing time for weight set 8, where

NIQE weight = 1, entropy weight = 4 and SSIM weight = 1. It was expected that by increasing

the entropy weight from 2 to 4, in relation to weight set 6, the result should have a better entropy

score and lose in another score to compensate. For this weight set, the optimal solution was

found on the second epoch. The final result has a worst NIQE, from 3.96 to 4.10, a slightly worst

entropy, from 7.535 to 7.530, and a better SSIM, from 0.804 to 0.843, when compared to weight

set 6. The experimental result showed an increase in SSIM and a slight decrease in entropy. This

shows that while the weights influence the final result it is not deterministic. In this case, the

algorithm found a solution with a slightly smaller entropy score but with a significantly bigger

SSIM score.

Table 20 shows the NIQE, entropy, SSIM and processing time for weight set 9,

where NIQE weight = 2, entropy weight = 4 and SSIM weight = 1. It was expected that by

increasing the SSIM weight from 1 to 2, in relation to weight set 8, the result should have a

better SSIM score and lose in another score to compensate. For this weight set, the optimal
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Table 20 – Evolutionary results for weight set 9. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.854 3.97 7.608 1535.93
2 0.854 3.97 7.608 1525.14
3 0.854 3.97 7.608 1530.34
4 0.854 3.97 7.608 1522.06

Table 21 – Evolutionary results for weight set 10. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.685 4.20 7.720 1545.23
2 0.648 4.01 7.761 1531.37
3 0.648 4.01 7.761 1531.60
4 0.648 4.01 7.761 1527.19
5 0.648 4.01 7.761 1541.21

solution was found on the first epoch. The final result has a better NIQE, from 4.10 to 3.97, a

better entropy, from 7.530 to 7.608, and a better SSIM, from 0.843 to 0.854, when compared

to weight set 8. The experimental result showed an improvement in all scores. This reinforces

the non-deterministic impact of weights in the final result. In this case, the algorithm found a

solution in all parameters.

Table 21 shows the NIQE, entropy, SSIM and processing time for weight set 10,

where NIQE weight = 1, entropy weight = 8 and SSIM weight = 1. It was expected that by

reducing the SSIM weight from 2 to 1, in relation to weight set 9, and increasing the entropy

weight from 4 to 8 the result should have a better entropy score and a worst SSIM score. For

this weight set, the optimal solution was found on the second epoch. The final result has a worst

NIQE, from 3.97 to 4.01, a better entropy, from 7.608 to 7.761, and a worst SSIM, from 0.854 to

0.648, when compared to weight set 9. The experimental result showed the expected outcome.

Table 22 shows the NIQE, entropy, SSIM and processing time for weight set 11,

where NIQE weight = 1, entropy weight = 16 and SSIM weight = 1. It was expected that by

increasing the entropy weight from 8 to 16, in relation to weight set 10, the result should have a

better entropy score and a worst NIQE and/or entropy score. For this weight set, the optimal

solution was found on the third epoch. The final result has a better NIQE, from 4.01 to 3.61, a

better entropy, from 7.761 to 7.798, and a worst SSIM, from 0.648 to 0.643, when compared to

weight set 10. The experimental result showed the expected outcome.
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Table 22 – Evolutionary results for weight set 11. ↑ means that higher values are better, ↓ means
the opposite.

Epoch SSIM ↑ NIQE ↓ Entropy ↑ Time (seconds) ↓
1 0.688 4.22 7.773 1513.38
2 0.688 4.22 7.773 1515.87
3 0.643 3.61 7.798 1518.99
4 0.643 3.61 7.798 1519.00
5 0.643 3.61 7.798 1515.45
6 0.643 3.61 7.798 1523.60
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5 CONCLUSION

X-ray imaging is commonly used in medicine due to its cost-effectiveness and

non-invasive nature, but it frequently encounters noise problems stemming from equipment

or environmental influences. While there are state-of-the-art algorithms that aim to enhance

the quality of X-ray images, most of them use non-learning approaches. To address this issue

this work proposes an unsupervised evolutionary algorithm for X-ray image enhancement:

IQAEvolNet. This evolutionary algorithm trains a base convolutional neural network model,

LightdehazeTestnet, through selection, permutation and mutation. The proposed method uses the

no-reference Image Quality Assessment algorithms Natural Image Quality Evaluator (NIQE) and

Entropy, together with Structural Similarity Index Measure, for fitness calculation. IQAEvolNet

achieved a better NIQE score of 4.05 compared to 4.24 and a faster processing time of 2.95

milliseconds compared to 0.195 seconds, in comparison to the state-of-the-art algorithm with the

best NIQE and entropy, HEF. The proposed method outperformed state-of-the-art algorithms in

NIQE score and showed competitiveness in entropy score and processing time.

At last, for future works, it is suggest the research of image quality assessment

metrics specialized in X-ray images. In our experiments it is demonstrated that better NIQE and

entropy results do not imply a higher quality image. Furthermore, a more in-depth research can

be done to develop a CNN more suited to chest X-ray image enhancement.
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