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RESUMO

A predição de séries temporais de vento de curto e longo prazo possui grande utilidade para a

indústria, sobretudo a de geração de energia eólica, tendo várias aplicações práticas no dia a dia

operacional dos parques. Os resultados da predição são ainda mais poderosos e confiáveis quando

associados a estimativas de incerteza, trazendo um maior apoio à tomada de decisão. Neste

trabalho, uma modelagem orientada a dados, baseada em redes neurais profundas, é apresentada.

A quantificação de incerteza associada à distribuição preditiva pode ser feita a partir de uma

abordagem de aprendizagem Bayesiana. No entanto, no contexto de redes neurais e aprendizagem

profunda, a abordagem Bayesiana convencional é intratável e computacionalmente custosa. Por

outro lado, tem havido vários avanços recentes em técnicas de inferência Bayesiana aproximada

em aprendizado profundo, em que destacam-se aquelas que não modificam os algoritmos

de treinamento tradicionais. O presente trabalho propõe o uso de redes neurais profundas

para a modelagem espaço-temporal do vento a partir de medições presentes nos sistemas de

aquisição de dados de turbinas eólicas. São incluídas ainda as predições de modelos de previsão

climática global, amplamente usados pela indústria energética. As predições realizadas são

acompanhadas da quantificação da incerteza, extraída a partir de técnicas de inferência Bayesiana

aproximada. A solução desenvolvida é avaliada em dados coletados de um parque eólico no

sul do Brasil. Diferentes combinações de modelos e aproximações são comparadas a partir

da acurácia alcançada e de métricas e gráficos de calibração da incerteza. Os experimentos

executados indicam que a utilização de redes neurais convolucionais recorrentes (ConvLSTM)

em comitês profundos (Deep Ensembles) proporciona os melhores resultados para a distribuição

preditiva, podendo auxiliar a operação de parques eólicos.

Palavras-chave: quantificação de incerteza bayesiana; aprendizado profundo; modelagem

espaço-temporal; predição de vento.



ABSTRACT

The prediction of short and long-term wind time series has great utility for the industry, especially

for wind energy generation, with various practical applications in the day-to-day operation of

parks. The results are even more powerful and reliable when associated with uncertainty

estimates, providing greater support for decision-making. In this work, a data-driven modeling

approach based on deep neural networks is presented. The quantification of uncertainty associated

with the predictive distribution can be done using a Bayesian learning approach. However, in the

context of neural networks and deep learning, the conventional Bayesian approach is intractable

and computationally expensive. On the other hand, there have been several recent advances

in approximate Bayesian inference techniques in deep learning, particularly those that do not

modify traditional training algorithms. This work proposes the use of deep neural networks for

the spatio-temporal modeling of wind based on measurements collected from wind turbine data

acquisition systems. It also includes predictions from widely used global climate forecasting

models in the energy industry. The predictions made are accompanied by the quantification

of uncertainty, extracted using approximate Bayesian inference techniques. The developed

solution is evaluated using data collected from a wind farm in South of Brazil. Different

combinations of models and approximations are compared based on the achieved metrics and

graphs of uncertainty calibration. The conducted experiments indicate that the use of recurrent

convolutional neural networks (ConvLSTM) with Deep Ensembles provides the best results for

the predictive distribution, potentially assisting the operation of wind farms.

Keywords: Bayesian uncertainty quantification; deep learning; spatio-temporal modeling; wind

speed forecast.
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1 INTRODUCTION

Weather forecasting is a well-known problem with applications in several areas

and a wide bibliography concerning various climate variables and different prediction time

ranges. Meteorology and forecasting have been considered important since the antiquity, when

people related climate phenomena to mythology and faith, but remained for many years with

no significant scientific improvements, until the first measurement systems were made in the

renaissance (GOLDSTEIN, 2002).

Although it has been a highly pursued task for decades, the efforts on weather

forecasting only started to show reasonable and practical results recently, when computer

processing came up with computational power to do fast mathematics. The complex relationship

among climate variables and their future is commonly described by complex mathematical

equations and a large amount of data, and only modern computers could do that work in an

acceptable time (Jain e Mallick (2016) and Ongoma (2022)).

There are several important applications for weather forecasting. Perhaps the most

important one is protecting people’s lives by forecasting natural disasters (COUNCIL, 1991).

One example is forecasting and preventing impacts from wildfires in forests (COEN, 2014). But

there are many other applications, such as rain forecasting and frost probability for agricultural

planning and helping air traffic management in airports (ISEH.A.; WOMA.T., 2013).

1.1 Wind Resource as a Source of Energy

Wind power has been used as a source of energy for centuries. They have evolved

over time into highly efficient machines that can produce electricity on a large scale. The first

recorded wind turbine was built in Scotland in 1887. However, the commercialization of wind

power did not occur until the 70s when oil prices rose drastically, making wind power more

attractive (MANWELL et al., 2010).

One major limitation of wind power is that it is an intermittent resource. Storage

options, such as batteries, are not common, so this kind of energy can hardly be stored (QUAS-

CHNING; HANKE, 2019). Sites with strong winds are also necessary, otherwise efficiency

decreases (PAVEZ et al., 2021).

Wind power has seen tremendous growth in recent years, with 93.6 GW new istalled

capacity. By the end of 2021, there was a total of 837 GW of installed wind power capacity
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Figura 1 – Wind speed forecasts with its distribution percentiles. Interventions in turbines must
not be scheduled on windy days. Forecasts support decisions in provisioning personnel and
machinery, such as cranes for the interventions.

Fonte: Elaborated by the author.

globally, with China leading with almost half of that capacity. Next, there are United States

generating 13.6%, and Brazil with 4%. By the year 2030, wind power could supply up to 30% of

global electricity needs. Despite that, all this growth, wind energy’s 5% generation share still

remains very low, compared to other energy sources (COUNCIL, 2021).

1.2 Wind Speed Forecasts for the Energy Industry

This study will focus on wind speed forecasting, which holds significant importance

for the energy industry, particularly for wind farms. Energy players deal every day with the

stochastic nature of the wind. When looking at long-term wind speed prediction, one can have

the advantage of assuring a generation predictability, which reduces the uncertainty of any

investment decision (RODRIGO et al., 2017). With short-term wind speed predictions, the

owner is able to schedule turbine preventive and corrective maintenance in an intelligent way

(see Fig. 1). It is interesting to focus the interventions in periods of low wind speed, arguing

about non-business hour request for repairs, and staying out of the way of strong wind gusts,

when it is impossible to do any work at the turbine. There is also a need of short and long term

weather prediction for energy traders in financial market, as the energy demand and supply are

determinant factors for the price composition (CHEN et al., 2018). Prices usually rise with

higher demand and higher cost of dispatch, which is mainly affected by low renewable resources.

Hong et al. (2020) present a recent review of the most influential studies in the energy forecasting

area, summarizing research trends, focused in power, demand and price forecasting, for both

solar and wind plants.

When dealing with wind farm’s specific operational concerns, there is an additional
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Figura 2 – Photos of wake effect captured in an offshore wind farm.
Generation is higher in turbines with little intervention coming from its
neighborhood

Fonte: Hasager et al. (2017)

effect that can also become very important for decision making: the wake effect (see Jenkins

(2021) for a detailed explanation). It is common in wind energy projects to have turbines affecting

each other’s generation depending on wind direction, due to the kinetic energy conversion of

the wind. This turns out to have great impact in the energy production, forcing the operators

to use strategies to reduce these effects in order to maximize the whole park’s production. Yet,

such issues still exist and cannot be ignored. These effects are also important when dealing with

interventions in a specific wind turbine. Thus, the wind direction and the position of the turbine

relative to the others are important features when using forecasts for operational purposes. A

turbine may generate at full power while another one at the same moment will not. Hasager et al.

(2017) present photos of this effect in a real world wind farm, such as the one depicted in Fig. 2.

Still, statistical uncertainty quantification is also highly important in wind forecasting.

Gathering statistical values such as P-50 and P-90 (which are equivalent to 50% and 10%

distribution percentiles) of the forecast distribution can leverage the power plant’s owner decision

making to a much more reliable place. It is common in energy industry to deal with percentile

metrics, due to the stochastic nature of renewable energy sources. Thus, probabilistic aspects

come up even on the very first viability studies.
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1.3 General and Site-specific Data

Regarding weather forecasting, there are some well-known models to describe and

predict weather data around all the world. The so-called Numerical Weather Prediction (NWP)

models are driven by physics and fluid mechanics laws and present good results in a grid covering

all the globe, in scales less than 1 degree (latitude and longitude measurements). These short-term

models predict more than a week ahead. The short-time prediction often is presented in an hourly

basis. Two of the most commonly used NWP models are the American Global Forecast System

(GFS) model, from National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2021),

and the European Centre for Medium-Range Weather Forecasts (ECMWF) model (ECMWF,

2021).

Another important source of data is the Supervisory Control And Data Acquisition

(SCADA) system of the wind farm. This system controls the turbine’s operation and has special

databases for the turbines, which store data from Wind Turbine Generator (WTG) sensors.

These measurements include wind speed, wind direction, ambient temperature measured on the

turbine’s exterior, among others.

Regarding wind speed forecasting applied to the energy industries, it is mandatory to

have a reliable accuracy, which cannot be well achieved only by a generic numerical model, such

as GFS or ECMWF. It is also worth taking advantage of the power plant’s site-specific source of

data, in order to improve the model’s accuracy for the wind farm being monitored. One can mix

SCADA site-specific data with Numerical Weather Prediction (NWP) models in order to make

new site-adapted models.

The study will be based on a wind farm in the South of Brazil. The ECMWF’s ERA5

data is taken as the source of global forecasts, delimiting the area of the wind farm to simplify

the data acquisition. It is publicly available on the climate data service from European Centre

for Medium-Range Weather Forecasts (ECMWF) website1. The ECMWF Reanalysis Dataset

(ERA5) data set maintains hourly historical data for a wide variety of climate variables. The data

include some of the main features from the website, such as expectations of wind speed in both

longitude and latitude axis, pressure measurements, relative humidity, dew point temperatures,

among other information. For site-specific data, the SCADA system of the wind farm’s turbines

is also available. For this work, it is considered 2 years of data coverage from both sources.

1 Data available in https://cds.climate.copernicus.eu
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1.4 Bayesian Spatio-Temporal Forecasts

Deep learning is a subset of machine learning techniques comprising neural networks

in general, which are mathematical entities based on human neurons. Goodfellow et al. (2016)

introduce the main principles and algorithms regarding deep learning and neural networks.

Today, there are plenty of applications of neural networks, going from image recognition, disease

prevention and fraud detection to self-driving cars (ALZUBAIDI et al., 2021).

Spatio-temporal models are complex models which aims to capture both spatial and

temporal aspects of the data. It has been applied in many different areas, such as in epidemiology

(SCIANNAMEO et al., 2022) and traffic in cities (TASCIKARAOGLU, 2018). Wikle e Zammit-

Mangion (2023) reviews some of the research in spatial and spatio-temporal models and discusses

the best models and future work.

Machine Learning techniques are especially useful in the task of predicting wind

time series, as one can add many features to the model without the need of describing explicitly

the nature of climate changes, allowing the model to learn how to proceed with the data itself.

Bochenek e Ustrnul (2022) present a critical review of some data-driven methods for weather

prediction, discussing about future work in this area and concluding machine learning is now

a key feature in this context. Moshrefi-Torbati et al. (2014) also summarize some methods,

more specifically on the task of wind speed forecasting, and discuss different applications and

time ranges. Zhang et al. (2014) aggregate probabilistic models applied directly to the task of

wind generation forecasting, opposed to deterministic estimates. The article also states Bayesian

techniques have been subject of much of the recent research, presenting some related work, such

as Pinson e Madsen (2009) and Yang et al. (2012).

This study proposes a data-driven approach to predict the expected value for wind

speed in a certain short-term period, pursuing applications on wind energy industries, especially

on the wind farm’s daily operation. Importantly, turbines’ spatial positions were included to

achieve better turbine-specific accuracy.

Deep learning has been showing great results when dealing with large amounts of

data. Esteva et al. (2019) show examples in many healthcare areas. Although such network’s

complexity may bring better generalization in terms of point estimates, standard deep learning

methods have little to show in the matter of confidence about their predictions.

Uncertainty estimates are provided to the models, through a Bayesian uncertainty

quantification approach. A classical statistical Bayesian method to model predictive distributions
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basically consists in assuming a priori distributions over the model’s parameters, adding prior

beliefs to them, and then yielding an a posteriori distribution, a process which statisticians call

marginalization over the distribution parameters (GELMAN et al., 2003). For example, even if

the true value of a parameter is totally unknown, it is possible, for instance, to assume it follows

a prior Gaussian distribution, since a very large absolute value would drive the model to worse

generalization (GERON, 2019).

However, traditional Bayesian modeling, based on marginalization, becomes mathe-

matically intractable in deep neural networks, which are usually complex models, having a

huge number of parameters. Izmailov et al. (2021) discuss about this issue, arguing about

how challenging it is to train a pure Bayesian model and to use sampling methods to yield a

posterior distribution. To overcome these computing issues, some recent Bayesian uncertainty

quantification techniques using approximate techniques can be applied, in the context of neural

networks. Gawlikowski et al. (2021) and Abdar et al. (2021) review some Bayesian frameworks

that can be applied to deep neural networks.

Indeed, these methods yield more reliable predictions without increasing the com-

putational cost too much to train the models. Some of them are even capable of quantifying

uncertainty estimates from pre-trained models. With these techniques, it is possible to add

Bayesian uncertainty quantification on totally data-driven complex neural networks. Chapter 3

discusses more about Bayesian modeling and comments on concerns some authors have with

this terminology.

This study focuses on Bayesian spatio-temporal forecasts, comparing the usage of

recent simple to use approximate Bayesian frameworks, such as SWAG (MADDOX et al., 2019),

Monte Carlo Dropout (MC Dropout) (GAL; GHAHRAMANI, 2016) and Deep Ensembles

(LAKSHMINARAYANAN et al., 2017). The aim is to apply them on a totally data-driven wind

speed forecast framework and to discuss the obtained results. All models will be compared using

scoring metrics (GNEITING; RAFTERY, 2007) and calibration studies, which will be described

in Chapter 3.

1.5 General and Specific Objectives

In this section, it is presented the general and specific objectives of this work.
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1.5.1 General Objective

The main goal of this work is to model and evaluate spatio-temporal short-term site-

specific wind speed forecasting, along with uncertainty quantification, comparing approximate

Bayesian uncertainty quantification frameworks. The modeling process will take advantage of

data extracted primarily from two sources: the power plant’s data acquisition system (SCADA)

and a global forecast model’s predictions.

1.5.2 Specific Objectives

In order to pursue the goal above, the following efforts are performed:

1. To extract and process data from raw sources. Both SCADA data and ERA5 historical

forecast data are considered.

2. To apply machine learning models to the task of short-term spatio-temporal wind speed

forecasting. Hyperparameter tuning will be applied to sharpen the forecasts.

3. To leverage Bayesian deep learning frameworks to quantify uncertainty for the models’

forecasts.

4. To compare the models’ posterior beliefs using probabilistic metrics.

5. To discuss the results obtained from the models regarding their generalization capacity

and their usability in practical daily operations.

1.6 Document Organization

As follows, some related work will be presented in Chapter 2. In Chapter 3, it is

described the theoretical foundation behind the Bayesian uncertainty quantification models to be

deployed and the metrics to be evaluated. In Chapter 4, it is presented the methodology around

the data patterns and the models. Chapter 5 shows the results concerning these models and their

usage. Finally, at Chapter 6 there is a final conclusion, with some guidance for further work.
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2 RELATED WORK

Data-driven machine learning models are well-fitted for wind speed forecasts due

to the amount of available data, both local and global, as stated in Chapter 1. In this chapter,

it is presented recent related studies in Bayesian Deep Learning and in data-oriented weather

prediction, especially wind speed forecasting.

2.1 Bayesian Deep Learning

Deep neural networks have achieved many advances in several areas, such as health-

care (ESTEVA et al., 2019) and language models (BROWN et al., 2020). Soniya et al. (2015) and

Alzubaidi et al. (2021) present a summary of some of these applications. Within the area, the task

of quantifying uncertainty in deep neural networks is still a common research objective. Standard

Bayesian inference consists in marginalizing over a set of model parameters. In summary, first it

considers prior distributions for the parameters. Then, after the data are observed, a posterior

distribution is computed. Finally, the posterior distribution is used to marginalize the parameters

and obtain a predictive distribution. This will be better discussed in chapter 3. Early works in

Bayesian Deep Learning includes MacKay (1992a), MacKay (1992b), MacKay (1995), in which

the author describes a framework to regularize and compare neural networks through a Bayesian

perspective, relating Bayesian approach to Occam’s Razor principle applied in the modeling

process. Neal (1996) is another important early work which performs Bayesian inference over

neural networks via Markov Chain Monte Carlo sampling methods.

However, for large complex neural networks, standard Bayesian inference is often

computationally expensive and cannot be used in practical situations, which turns it to be in-

tractable for common problems. In order to achieve uncertainty quantification measurements,

many approximate Bayesian inference approaches have been introduced, including frameworks

focusing both on scalability and generalization capabilities (SMITH; JOHNSON, 2020; DAX-

BERGER et al., 2021; MADDOX et al., 2019; GAL; GHAHRAMANI, 2016). Some of these

methods can even be effortless adapted for production-ready models (MADDOX et al., 2019).

Izmailov et al. (2021) argue about the performance of approximate Bayesian methods,

compared to the classical Bayesian approach. Leading a computationally costly experiment, the

authors trained a rigorously Bayesian network, applying Markov-Chain Monte Carlo (MCMC)

models to sample the posterior predictive distribution in a classification problem. The work
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showed that Bayesian approximate frameworks also result in precise data generalization, being

able to approximate the true posterior distributions.

Regarding Bayesian Deep Learning, Gawlikowski et al. (2021) gather some recent

state-of-the-art research, summarizing and classifying them in certain groups of study: Variatio-

nal Inference, which approximates the posterior by tractable well-behaved functions, Sampling,

which yields the posterior distribution by sampling, and Laplace Approximations, which simpli-

fies the target distribution by approximating it, deriving a normal distribution for the network

weights. Abdar et al. (2021) also summarize several Bayesian strategies, including Monte Carlo

methods, variational inference for neural networks, auto-encoders and many others.

Presenting a Bayesian approximate approach for neural networks, Gal e Ghahramani

(2016) state a simple technique that became a baseline in terms of Bayesian Deep Learning. One

can estimate a posterior predictive distribution with a dropout strategy over neurons of a model,

sampling outputs and performing Bayesian Model Averaging (BMA). Dropout (SRIVASTAVA

et al., 2014) is the process of turning off some neurons on each training step, forcing the model

not to depend on any of them directly and preventing overfitting the data set. It is mathematically

proven the relation between dropout’s inferred distribution and the posterior of a deep Gaussian

Process (DAMIANOU; LAWRENCE, 2013), showing that the objective function is actually

equal to minimizing the Kullback-Leibler divergence, which is a measurement of the difference

between the true posterior and the inferred distribution. It is a seminal study that can be used as

a baseline for Bayesian approximate frameworks, due to its simplicity. However, this process

should attach dropout layers to the model in the training process, as the author states. Details

about it will be presented at Chapter 4.

Another well-known method, perhaps currently one of the most recognized ones due

to its impressive results, is Deep Ensembles (LAKSHMINARAYANAN et al., 2017). It has a

simple procedure: (1) choose a proper scoring rule, as defined by Gneiting e Raftery (2007);

(2) train some models, optionally using adversarial (GOODFELLOW et al., 2015) training,

as suggested in the original work; (3) build an ensemble with these models. Izmailov et al.

(2021) give credit to this framework for being highly similar, in terms of model performance,

to a Bayesian Neural Network yielded from sampling methods, which is the gold standard for

rigorous Bayesian inference. On the other hand, Abe et al. (2022) mention that good calibration

and results can be obtained from single networks alone, arguing that Deep Ensembles is more

like a convenient tool than a ”superior” technique. Although Deep Ensembles is presented as a
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non-Bayesian probabilistic method, Hoffmann e Elster (2021) discuss about how it can as well

be seen as a Bayesian method. Wilson e Izmailov (2020) also argue about Deep Ensembles being

a Bayesian Model Averaging technique.

Maddox et al. (2019) present Stochastic Weight Averaging - Gaussian (SWAG), a

simple method that can be used on pre-trained models. It is an enhancement over the ideas

presented in Izmailov et al. (2018). After considering the weight’s distribution as being Gaussian,

the output’s posterior predictive distribution can then be obtained by a sampling strategy. The

authors argue about the fact that the Stochastic Gradient Descent (SGD) captures the geometry

of the loss space, using its trajectory to infer a distribution over the parameters set. Recently,

Wilson e Izmailov (2020) presented another variety for SWAG, called MultiSWAG, extending

this inference approach to multiple independently trained SWAG models to achieve additional

performance gains. The authors also argue about how this procedure can be viewed as an

approximate marginalization method.

Daxberger et al. (2021) recently revisited Laplace approximation methods and argue

that they can be competitive to sampling and other approximate inference strategies. The first

studies involving Laplace approximations in neural networks date from the early 90s (MACKAY,

1992a; NEAL, 1996). In order to improve practical usage, this work also presents ’laplace’

library for PyTorch (PASZKE et al., 2019), one of the most used machine learning frameworks for

the Python coding language, containing scalable implementations for the Laplace approximation

method. The idea consists in approximating the posterior using a Taylor series expansion around

the maximum a posteriori estimate. The posterior is approximated by a Gaussian distribution,

with its covariance being the Hessian matrix of the loss function relatively to its parameters.

The Hessian component can be calculated on post-trained models. This approach also includes

regularization terms to represent the log-prior component of the loss function.

General methods for performing approximate Bayesian inference over neural networks

were presented in this section. Interestingly, some of them can be used even on pre-trained

models. Later, the aforementioned methods will be used to extract uncertainty quantification for

the models evaluated in the task of wind speed forecasting.

2.2 Weather Forecasting

Numerical Weather Prediction (NWP) models are widely used by forecasting services

around the world. Regarding accurate site-specific predictions, which is the focus of this work,
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there is plenty of study on data-driven weather forecasting approaches. As highlighted below,

some works include uncertainty estimates as a goal and consider site-specific spatial coordinates

as important features, similar to what this work proposes.

Liu et al. (2020) follow a Bayesian approach to perform spatio-temporal wind

speed forecasts by using an image recognition network in a grid of measurement points. The

proposed network combines a recurrent neural network and a convolutional network. Variational

inference is employed to overcome the intractable marginalization of the parameters. The

approximate posterior is chosen to be a mixture of two Gaussians. By targeting the maximization

of the Evidence Lower Bound (ELBO), the network minimizes the KL divergence between the

approximation and the true posterior. The posterior distribution, after some assumptions, is

approximated by Monte Carlo sampling and Kernel Density Estimation (KDE). However, the

modeling process assumes well distributed turbines over the area, to form an approximately

well-defined grid, which is not the real scenario in most wind farms.

Yu et al. (2019) use a similar grid embedding idea. In this case, the turbines

are attached to the grid based on their locations, following a simple algorithm that yields a

possibly sparse grid over the plant’s area. It states the concept of spatio-temporal scenes as

multi-channel images and compares the usage of deep Convolutional Neural Network (CNN)

to well-known machine learning models, such as Support Vector Regressors (SVRs) and Multi-

Layer Perceptrons (MLPs). The results show great accuracy gain compared to other baseline

deep learning methods.

A. Sanandaji (2022) aim to achieve spatio-temporal forecasting with graphs using a

Long Short-Term Memory (LSTM) neural network. The nodes in the graphs represent the data

generating stations and the edges between nodes indicate the relationship between them. No

initial assumptions are made about the stations relationships. The predicted values for every node

are retrieved at the same time. Results show significant improvement in short-term prediction

performance, compared to other methods.

Zhu et al. (2018) present a CNN based network to tackle the task of spatio-temporal

correlation, stating that the experimental results outperform common machine learning models,

such as SVR, MLP and Decision Trees.

Taking advantage of powerful Markov-Chain Monte Carlo (MCMC) methods, He

et al. (2014) use data from the power output of turbines, instead of the wind speed. The target

remains correlated, as these two quantities are intrinsically dependent of each other. The work
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takes into accounts the seasonality and diurnal aspects of the wind speed behavior, focusing on

a specific time range of the day. This sounds consistent, since wind speed depends on several

climate variables that are affected by daily, monthly or even yearly seasonality.

In opposition to traditional physical modeling for global forecasts, Espeholt L.

(2022) propose a data-driven solution based on neural networks. According to the article, NWP

physical models, which are complex and computationally costly, could be surpassed using deep

learning for the task of global predictions itself. The network would do the work of learning the

relationships between weather measurements over space and future. The trained model yields a

12-hour ahead prediction for precipitation that outperformed numerical predictors in a region in

United States.

Wang et al. (2019) apply the strategy of combining historical data and using NWP

data as a prior knowledge, in the context of weather forecasting. Their focus is forecasting in

weather stations in China. Their modeling process includes information fusion, NLL-based

training and ensembling. They focus on modeling different climate measurements gathered from

the stations, such as temperatures, relative humidity and scalar wind speed.

In this study, it is presented a practical model combining both NWP data and histori-

cal SCADA data to achieve wind speed forecasting within a wind farm. Uncertainty quantification

is attached through simple but effective approximate Bayesian inference techniques, while mode-

ling both spatial and temporal aspects of the wind speed. Several neural network architectures

are compared in terms of model generalization, using different metrics and calibration methods,

as detailed in Section 3.3.

From the above, there is plenty of recent work on Bayesian Deep Learning applied

to wind speed forecasting and other weather-related tasks. Chapter 3 details the approaches

pursued in this research.
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3 THEORETICAL FOUNDATION

Data-driven forecasting, in general, aims to find a function f (·) that estimates

future patterns Y f ut ∈ R
L×D1 based on the past data Xpast ∈ R

L×D2 , along with other available

information Z, with L being time steps in future and past data and D the dimension of the

attributes involved in the task. Thus, it is possible to write

Y f ut = f (Xpast ,Z). (3.1)

Wind speed forecasting, as other environmental forecasting with applications in

the energy industry, has the purpose of supporting decision making in operational situations.

For example, take management use cases in a wind farm. Maintenance interventions in wind

turbines, for security and regulatory reasons, cannot be done in winds higher than a critical

value. Thus, cranes, for example, are required to repair some damaged machinery, which results

in an expensive operational cost. Besides, paying for keeping on hold personnel and other

equipment to wait for low wind days makes it even more expensive. Furthermore, when wind

speed increases in the middle of an operation, it could lead to dangerous accidents.

Forecasting weather with point estimates becomes inadequate in this situation. Un-

certainty quantification must be gathered to model outcomes for the predictions to show how

certain they are, based on the data they were presented to. In order to enhance predictive analysis

and quantify uncertainty estimates, this work takes advantage of Bayesian inference to yield a

posterior predictive analysis.

In this chapter the theoretical background behind the models used for weather

forecasting is described, in section 3.1. It is also detailed how one can compare them, measuring

generalization capacity and verifying the models calibration. An overview of Bayesian statistics,

along with a discussion about the concerns when applying some methods in the context of deep

learning, will be also discussed further, in section 3.2.

3.1 Time Series Modeling

Data with both spatial and temporal features are considered. From the perspective

of deep learning modeling, for comparison purposes, it feels natural to add the data behaviors

separately to the models, and see the results yielded when adding complexity to the models

evaluated. In other words, the models will increase complexity with temporal capabilities, and
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then with both temporal and spatial capabilities. In this section, it is introduced three different

networks, and the difference between them, in terms of learning process, is detailed.

The first one is the Multi-Layer Perceptron (MLP), a fully connected network, which

is not capable to directly learn neither spatial nor temporal features from data, due to its limited

architecture. However, temporal and spatial data can still be extracted from global forecast

models, turning this model applicable as a baseline. These features will be added, still, using an

auto-regressive technique. As follows, it is also analyzed two other networks: the Long Short-

Term Memory (LSTM), a recurrent neural network capable of learning temporal relationship

from data, and the Convolutional LSTM Network (ConvLSTM), a convolutional network which

can learn both spatial and temporal relationship from the data.

3.1.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is one of the first proposed artificial neural

networks. Perceptrons, which are mathematical entities inspired by human’s neurons, were first

presented by Rosenblatt (1958). MLPs extended that initial approach, having fully-connected

layers of neurons, organized hierarchically. This new model became recognized a few decades

later, at the 80s, with many practical applications, for example speech recognition (BOURLARD;

WELLEKENS, 1989). Since then, MLP has been widely used as a powerful tool for many

regression and classification problems.

This network consists in having layers with several neurons, all of them fully con-

nected to the neurons in the previous and next layer, linked with an activation function, such as

the hyperbolic tangent, the sigmoid function or the ReLU (rectified linear unit). The information

is propagated without any cyclical step, which describes a feedforward network. The network’s

parameters are fitted to the data usually by the means of the backpropagation algorithm, which

consists in a gradient descent method applied to the neural network. Goodfellow et al. (2016) go

deeper in the explanation of the network. Fig. 3 shows the representation of a neural network

with its input, output and hidden layers.

A simple example of this neural network, with one layer, can be described by (3.2).

The architecture can be repeated to define more layers, producing a more complex network.

In this equation, subscript h refers to the hidden layers parameters, and o to the output layer

parameters, Wh ∈ R
D1×H and Bh ∈ R

D1×H are the coefficient and bias matrices in the input,

respectively, and Wo ∈ R
H×D2 and Bo ∈ R

H×D2 are the coefficient and bias matrices of the
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Figura 3 – Scheme of Multi-Layer Perceptron (MLP) with its multiple fully-connected layers.

Fonte: Extracted from Nielsen (2015).

output, with D1 and D2 representing input and output dimensions, respectively, and H being a

defined hidden layers’ dimension. φ is an arbitrary activation function. It has to be the same on

each layer. X ∈ R
...×D1 and Y ∈ R

...×D2 are the input and output data being modelled.

H = φ
(

XWT
h +BT

h

)

Y = φ
(

HWT
o +BT

o

)
(3.2)

3.1.2 Long Short-Term Memory

Hochreiter e Schmidhuber (1997) first presented the Long Short-Term Memory

(LSTM), one example of Recurrent Neural Network capable of updating hidden states in order

to learn relationships between sequential data. This network became acknowledged for tackling

problems such as speech recognition (LIU et al., 2018).

A recurrent neural network can be viewed as multiple copies from the same neural

network, each one of them propagating knowledge for its successors in a series. Fig. 4 represents

a common scheme for RNNs. xt represents the pattern’s features over time, and ht is the hidden

state responsible for carrying knowledge throughout the time steps.

The architecture of a LSTM cell (see Fig. 5) is composed by intern neurons called

gates. There is particularly three of them:

– Forget Gate: This gate throws out unnecessary information from the cell.

– Input Gate: Useful information is added to the cell by this gate.

– Output Gate: This gate yields useful information from the cell as an output.



29

Figura 4 – The idea of Recurrent Neural Network is to copy multiple times the same network,
each one of them propagating knowledge for its successors.

Fonte: Extracted from Academy (2022).

Figura 5 – The structure of an LSTM cell. Here are represented the input, output and forget
gates.

Fonte: Extracted from Moreira et al. (2022).

The mathematical representation of a LSTM network is defined in (3.3), where the

symbol » denotes Hadamard (element-wise) product operator. One can write the network as

ft = σg(W f xt +U f ht−1 +b f ),

it = σg(Wixt +Uiht−1 +bi),

ot = σg(WoxtUoht−1 +bo),

ĉt = σc(Wcxt +Ucht−1 +bc),

ct = ft » ct−1 + it » ĉt ,

ht = ot »σh(ct),

(3.3)

where xt ∈ R
D represents a pattern at time t, ft , it and ot the forget, input and output’s activation

vectors, both of them with values between 0 and 1, ht and ĉt the hidden state and cell input

activation vectors, both with values between −1 and 1, ct ∈ RH the cell input activation vector,

and W ∈ R
H×D, U ∈ R

H×H , b ∈ R
H are the parameters and bias sets to be learned along the

training steps. Superscripts D and H represent the number of input features and hidden units,

respectively. Goodfellow et al. (2016) goes deeper in the explanation of this network and other
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Figura 6 – An example of convolution operation in matrices. This operation is designed to
extract relevant features from input data.

Fonte: Extracted from this article.

recurrent networks.

3.1.3 Convolutional LSTM Network

The ConvLSTM, first presented in Shi et al. (2015), is a network capable of learning

both spatial and temporal relationship. This is achieved extending the behavior in LSTM network

by adding convolutional structures in state transitions. Fig. 6 is an example of how a convolution

happens in a matrix. This operation is designed to help extracting relevant features from the input

data by capturing spatial patterns and dependencies. Many convolution layers with different

filters can be combined, enhancing the learning capabilities of these structures. Fig. 7 represents

the structure of one ConvLSTM cell, which is enhanced with convolution operators on the cell’s

gates. Combining spatial and temporal learning features allows these networks to be applied in

many problems, such as prediction of the next frame in videos (DESAI et al., 2022).

3.2 Bayesian Inference in Deep Learning

Point estimates can be highly uninformative, especially in cases where statisticians

do not have much information about the real behavior of the data, or where the models disagree

too much between the data being modelled and the ground truth values. Bayesian inference,

however, indicates not only an estimate for what the real value is most likely to be, but also a

measurement of confidence one can have for this information.

When predictive distributions are wider, the expected beliefs become much more
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Figura 7 – An illustration of a ConvLSTM cell. The cell’s gates are now enhanced with
convolution operations.

Fonte: Extracted from this article.

unlikely to become true, and the model tells, in qualitative and quantitative ways, that the

stakeholders cannot rely on them in this region of the data. On the other hand, when the models

have reliable information and support to enforce their beliefs, Bayesian inference carries good

support to what they are claiming, through thinner predictive distributions. Statistical models

can tell when the data indeed indicates, with great confidence, that ground truth value should be

close to what it is expected to be.

In terms of uncertainty types, Bayesian approaches, in general, are able to capture

both epistemic uncertainty, the one that comes from the lack of data and from the unknowledge

of the analyzed phenomena, and aleatoric uncertainty, the one coming from the intrinsic variation

from data generation sources (GAL et al., 2022). It is possible to reduce epistemic uncertainty

by gathering more data or mastering the modeling process, but aleatoric uncertainty cannot be

reduced, although it can be quantified, still (MUKHOTI et al., 2022).

In the context of the energy industry, regarding wind speed forecasting, it is common

to associate an estimate for wind speed, for example the 50% data percentile P-50, along

with other percentiles, to add uncertainty information extracted from the predictive modeling

procedure (PINSON et al., 2006). It is very important to show information about uncertainty,

indeed, because climate variables are highly unpredictable, due to the vast possibilities of unusual

phenomena that can be involved in this matter. Rainy days can be difficult to predict in a small

area, for example.
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When talking about statistics, there are two different schools of studies: the frequen-

tist and the Bayesian. The frequentist school focuses on the frequency of the observed data,

inferencing statistics from an estimation approach (CASELLA; BERGER, 2002). In frequentist

statistics, parameters are considered to be fixed but unknown values, and conclusions are drawn

based on observed data by using methods such as hypothesis testing and confidence intervals.

Bayesian statistics, in opposition to a frequentist approach, consists in adding prior

beliefs to the model, and then, after incorporating evidence from the observed data, yielding a

predictive distribution combining both, which is finally called posterior distribution (BISHOP,

2006).

The likelihood function, with respect to the parameter set, is a function assigning

higher values to parameter sets which are more likely to describe the data in a certain statistical

model. From a frequentist approach, the most well-fitted parameter set would be the one that

maximizes the likelihood, which is the same as minimizing the negative log-likelihood.

Let w be the parameters of the predicted distribution, y and X the output and input

from observed data, respectively. The likelihood function L, defined for a probability distribution

p parameterized by w, can be written as

L(w) = p(y|X,w). (3.4)

From a Bayesian viewpoint, there is not only one ”correct” parameter set. Instead,

it is usually assumed that the parameter set is also represented by a distribution p(w). The

integration of the likelihood function, over all the parameter set distribution, is called the

marginal likelihood, or the evidence of the model, which is a measurement representing how

strong observed data is connected to the particular statistical model being evaluated. Importantly,

it considers the whole parameter distribution, instead of a particular point estimate, a process

called marginalization (GELMAN et al., 2003). It is given by

p(y|X) =
∫

p(y|X,w)p(w)dw. (3.5)

By the Bayes theorem, the posterior distribution of the parameter set, which combines

the prior information and the knowledge gathered from the data, can be described mathematically

by

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)
. (3.6)
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Usually p(y|X) is not available. It can be understood, though, as a normalization

factor, assuring the mathematical integrity of the posterior (BISHOP, 2006). It is worth emphasi-

zing that the marginal likelihood has important applications in hyperparameter tuning, such as

in Gaussian Processes models (WILLIAMS; RASMUSSEN, 2006). On the other hand, some

algorithms are able to ignore it, for example, sampling from the posterior (WANG; PARK, 2020)

and Naive Bayes classifiers (MURPHY, 2012), which consider only the numerator of the Bayes

theorem.

After obtaining the posterior distribution for the parameter set, the predictive dis-

tributions for a new input and unobserved output, denoted respectively by x∗ and y∗, can be

computed by

p(y∗|x∗) =
∫

p(y∗|x∗,w)p(w|X,y)dw. (3.7)

In this work, the Bayes rule is not used directly to compute the posterior distribution.

Considering different Bayesian approximate methods, described in the next sections, K samples

are taken from the posterior p(w|X,y), without computing the marginal likelihood. Then, these

samples are used to approximate p(y∗|x∗):

w̃k ∼ p(w|X,y),

p(y∗|x∗)≈
1
K

K

∑
k=1

p(y∗|x∗, w̃k). (3.8)

There are different workarounds to deal with the difficulty to work with the equations

involved, often analytically intractable. One can assume, for example, conjugate prior and

posterior distributions to simplify mathematics, a process which leads to analytical solutions

(BISHOP, 2006). This may not be suitable for all models though, due to its strong hypothesis.

There is also methods for approximating this posterior, such as Laplace approximations (SMITH;

JOHNSON, 2020; DAXBERGER et al., 2021), or forming its distribution by sampling methods,

such as in Markov Chain Monte Carlo and Hamiltonian Monte Carlo (NEAL, 2011; WILSON;

IZMAILOV, 2020).

Deep learning models, however, have several parameters to marginalize in com-

plicated nonlinear structures, which turns the above equations and the training process to be

often intractable and computationally costly. Much has been discussed abut this issue in the

recent years, with the raise in the number of data-driven models, as the amount of available data

keeps growing (IZMAILOV et al., 2021). Still, the Bayesian paradigm has been applied over
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approximations and adaptations of machine learning inference techniques. Gal et al. (2022)

present a great discuss between some qualified and influential researchers on statistics and

machine learning about this matter of quantifying predictive uncertainty and the many concerns

about how this uncertainty is being extracted, what it represents and how rigorous the theoretical

background behind them is.

Many recent researches state how to handle Bayesian inference and extract uncer-

tainty quantification from deep neural networks. Some of them can be applied even on pre-trained

models, and require much less time and resource to extract uncertainty quantification to enhance

the model. This work particularly focus on four of them: Monte Carlo Dropout (MC Dropout),

Deep Ensembles, Stochastic Weight Averaging - Gaussian (SWAG) and its successor Multi

Stochastic Weight Averaging - Gaussian (MultiSWAG), described as follows.

3.2.1 Monte Carlo Dropout

Monte Carlo Dropout (MC Dropout) was first presented by Gal e Ghahramani (2016)

and it is particularly important as a practical baseline. This method takes advantage of the

Dropout strategy (SRIVASTAVA et al., 2014), which is simply randomly ”turning off” some of

the neurons in the process of training. This process is commonly used as regularization method:

(1) At training time, some neurons are turned off. By doing this, the neurons are trained to

be more “independent” from each other, forcing the network to generalize better and prevent

overfitting. (2) In prediction time, no neurons are turned off. The outputs from the model are

rescaled to compensate that. Fig. 8 illustrates the process of deactivating neurons using dropout.

However, the dropout procedure can be thought as a method of sampling from neural

networks, after which a predictive distribution can be inferred. This way, Gal e Ghahramani

(2016) describe Monte Carlo Dropout (MC Dropout), presenting dropout as a Bayesian ap-

proximate inference method. The authors also show that the dropout strategy is equivalent to

minimizing the Kullback-Leibler Divergence between an approximate distribution and a Deep

Gaussian Process (DAMIANOU; LAWRENCE, 2013), which is purely Bayesian. This method

has no constraints or particularities in the matter of usage, so it can be applied in any neural

network with dropout layers before neuron layers.

Be the random variable z ∼ Bernoulli(r), with r representing the dropout rate of the

neurons, zk a sample from z, and w the parameter set of the trained model. The element-wise

product of these vectors sampled from z and the parameter set defines another random variable wz.
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Figura 8 – Illustrating the Dropout strategy. Neurons are dropped randomly in the process of
training. Sampling with this strategy is the center idea of Monte Carlo Dropout (MC Dropout)
framework.

Fonte:
Elaborated by the author.

Let wk be samples from this random variables. Approximating the output posterior distribution

y∗ by a Gaussian, it is possible to write

wk ∼ wz = z»w,

y∗,k = f (X∗,wk),

µ∗ =
1
K

K

∑
k=1

y∗,k,

σ2
∗ =

1
K −1

K

∑
k=1

(y∗,k −y∗)(y∗,k −y∗)T
,

p(y∗|x∗)≈ N (y∗|µ∗,σ
2
∗ ).

(3.9)

with f representing the neural network function. µ∗ and σ2
∗ represent the mean and the variance

of the Gaussian predictive distribution approximating the posterior. The symbol » represent

the Hadamard (element-wise) product operator. The predictive distribution is sensitive to the

hyperparameter r, that must be tuned in the modeling process.

3.2.2 Deep Ensembles

Acknowledged for the good results achieved in diverse areas, Deep Ensembles, pre-

sented by Lakshminarayanan et al. (2017), is a widely used method when pursuing approximate

Bayesian inference in deep learning models. The author suggests a framework for this method,

consisting in three steps:

1. Choose a proper scoring rule. The concept of proper scoring rules will be presented later

in Section 3.3. Negative Log-Likelihood (NLL), for example, is a proper scoring rule.
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2. Train models using adversarial training (GOODFELLOW et al., 2015). The core idea is to

input slightly different training data in order to force the model to generalize. Adversarial

training at this phase of the process is optional, as the author says.

3. Train an ensemble with the models and infer from its outputs.

At step 3, there are have several ways to proceed. The authors focus on training

the models using the full training data set and takes advantage of random shuffling of data and

random initialization to yield different models. Ensemble is then treated as a uniformly-weighted

mixture model. Although there are other ensemble methods, this work focus on this simple one.

In order to use this ensemble method, each model has to be trained yielding two outputs: the

mean and variance of the output data, as state Nix e Weigend (1994). The article is not precise

whether to double the whole network or to fork the final layer into two different outputs. In this

study, all the networks layers are doubled to output variance. It means the variance output has its

own network.

Consider a mixture model composed by K Gaussian models, with predicted means

and predicted variances given by µm and σ2
m, respectively. The output y∗ of the ensemble model

is described by a Gaussian distribution, with predicted mean and variance µ∗ and σ2
∗ given by

µ∗ = K−1
M

∑
m=1

µm(x),

σ2
∗ = K−1

M

∑
m=1

(σ2
m(x)+µ2

m(x))−µ2
∗ (x),

p(y∗|x∗)≈ N (y∗|µ∗,σ
2
∗ ).

(3.10)

Although it is presented as a non-Bayesian probabilistic method, Hoffmann e Elster

(2021) discuss about how it can as well be seen as an approximate Bayesian method. Wilson e

Izmailov (2020) also argue about Deep Ensembles being a Bayesian Model Averaging technique.

3.2.3 Stochastic Weight Averaging - Gaussian

More recently, Maddox et al. (2019) presented a simple method, applicable even in

pre-trained neural networks, with a particular framework based on Stochastic Weight Averaging

(IZMAILOV et al., 2018).

Stochastic Weight Averaging (SWA) takes advantage of the route traced by Stochastic

Gradient Descent (SGD) training in the loss function’s surface. After the commons training

phase, with the network already in a convergence region, one can take an average of different
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possible parameter values, instead of taking only the final parameters estimates. The parameters

samples can be extracted through SGD iterations in this region of the loss function. Izmailov et

al. (2018) state that using a high constant learning rate force the model to explore other areas

and ensure not to be around only one estimate. This can be viewed as a regularization method

for deep neural networks.

Considering the training steps over a pre-trained model, SWA is the process of taking

the parameters vector w as an average over M of these SGD iterates:

wSWA =
1
M

M

∑
m=1

wm. (3.11)

Stochastic Weight Averaging - Gaussian (SWAG)’s main idea is to generalize the

SWA approach by taking not only the average, but inferring a posterior Gaussian distribution

over the parameter’s set. The output’s posterior distribution can be achieved by just sampling

from the pre-trained Bayesian model. This framework performs BMA with little additional

computational cost. The inferred Gaussian distribution of the parameters, whose mean and

variance are represented by µw and σ2
w, is given by

µw =
1
M

M

∑
m=1

wm,

σ2
w =

1
M−1

M

∑
m=1

(wm −µw)(wm −µw)
T
,

p(w|X,y)≈ N
(

w|µw,σ
2
w

)

.

(3.12)

The output distribution y∗ can be achieved from K network outputs f (X∗,wk), using parameters

sampled from the p(w|X,y) distribution. Approximating y∗ by a Gaussian distribution, it is

written

wk ∼ p(w|X,y),

y∗,k = f (X∗,wk),

µ∗ =
1
K

K

∑
k=1

y∗,k,

σ2
∗ =

1
K −1

K

∑
k=1

(y∗,k −y∗)(y∗,k −y∗)T
,

p(y∗|x∗)≈ N
(

y∗|µ∗,σ
2
∗

)

,

(3.13)

where µ∗ and σ2
∗ represents the mean and the variance of the Gaussian distribution approximating

the posterior. The predictive distribution is sensitive to the SWAG learning rate hyperparameter,
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Figura 9 – NeurIPS 2019 presentation of the SWAG method. Here are the loss function’s surface
and the samples in which the posterior the parameter’s distribution inference is evaluated.

Fonte: The presentation can be found on https://github.com/wjmaddox/swa_gaussian.

which is the one defined after the training phase is already over and the process of collecting

parameters for SWAG takes place. It must be tuned in the modeling process.

Fig. 9 is part of the presentation at Neural Information Processing Systems (NeurIPS),

2019 edition, that took place in Vancouver, Canada. It represents graphically the idea of the SGD

iterates through the surface of the loss function.

3.2.4 Multi Stochastic Weight Averaging - Gaussian

In Wilson e Izmailov (2020), the authors show the results for some Bayesian appro-

ximate methods, comparing them to computationally heavy Bayesian sampling networks, and

showing one can achieve good results without the need to train this kind of networks. They also

present Multi Stochastic Weight Averaging - Gaussian (MultiSWAG), an extension to SWAG,

by generalizing the idea proposing a multimodal posterior inference, opposed to one simple

Gaussian approximation. It can be evaluated in a simple way, averaging multiple independently

trained SWAG Bayesian model outputs.
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Let be K Gaussian distributions p(wk|X,y), defined as in Eq. (3.12), for the parame-

ters of the trained models. The posterior distribution of the parameters p(w|X,y) can now be

represented by a mixture of these distributions

p(w|X,y) =
1
K

K

∑
k=1

p(wk|X,y). (3.14)

The predictive distribution of y∗ is similar to the one described in Eq. (3.13).

3.3 Probabilistic Evaluation Metrics

In order to compare the approximate Bayesian frameworks for deep neural networks,

it is necessary to use proper scoring rules (GNEITING; RAFTERY, 2007). A proper scoring rule

is a metric that rewards accurate and reliable predictions by assigning higher values to forecasts

that are closer to the true probabilities. It encourages forecasters to provide calibrated probability

estimates rather than biased or overconfident predictions. As follows, two important proper

scoring rules are presented. They will be used for comparison purposes in the evaluated models.

3.3.1 Negative Log-Likelihood (NLL)

The likelihood function was described in Eq. (3.4). The negative logarithm of the

likelihood is commonly taken, for simplicity and convenience. Defined this way, NLL is a proper

score. For the special case of a Gaussian distribution, with σ2
n,d being the variance for N patterns

with D dimensions, yn,d the true value and ŷn,d the predicted value, the NLL function is given by

L(y) =
N

∑
n=1

D

∑
d=1

1
2

(

− log(σ2
n,d)−

(ŷn,d−yn,d)
2

σ2
n,d

)

+
ND

2
log(2π). (3.15)

3.3.2 Continuous Ranked Probability Score (CRPS)

Gneiting e Raftery (2007) state the Continuous Ranked Probability Score, a proper

score designed for cumulative distributions. It was first designed to deal with CDFs with

intractable PDFs. This score is much used for probabilistic forecasts. The lower the value, the

better the probabilistic model performs.

Let F(x) be a Cumulative Distribution Function of a given random variable x. The

CRPS of a particular value y of this variable over F is defined by

l(F,y) =
∫

(F(x)−1xgy)
2dx, (3.16)

where the expression 1xgy represents the value 1, if x g y, and 0 otherwise.
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3.3.3 Root Mean Squared Error (RMSE)

Despite not being a probabilistic quantity, the Root Mean Squared Error (RMSE)

metric is well known as one of the simplest ways to measure the difference between the predicted

estimates and the true values of the data set. Let yi be the output value for the pattern i and ŷi the

predicted output from the model for this pattern, the RMSE for a set of N patterns is the given by

RMSE =

√

N

∑
i

(ŷi − yi)2

N
. (3.17)

3.4 Calibration Graphs

In statistics, calibrating predictive distributions means verifying uncertainty quantifi-

cation through a frequentist approach over the test data set. A calibrated predictive distribution

should ”follow” the true ground truth distribution of the real data. One can do this by using

graphical methods to compare predictive and ”true” cumulative sample rates and verify the

model behavior on a test data set.

3.4.1 Cumulative Sample Rates

Calibrating probabilistic forecasts means respecting the ”contract” between real data

and its predictive distribution: if a given value is meant to be under P− 90 percentile of the

distribution, it is expected that it will indeed be there in 90% of the observations, for a large

amount of unobserved data. It means the random values must follow the distribution that is

assigned to them. If the predictive distribution is poorly calibrated, sample rates in each quantile

is far from ideal, and the uncertainty estimates obtained from them are not trustful.

The Fig. 10 shows cumulative percentages of empirical data in each data percentile

(KULESHOV et al., 2018). Well-suited models would yield equal amount of samples in each

equispaced quantile of the posterior distribution, as real data would do. It can be tested it

by assuming data from test data set indeed represent the real data’s distribution, a frequentist

approach. For example, if the model consistently yields biased samples, the graph would show a

higher percentage being covered on the first percentiles. In terms of numbers, a biased model,

for example, would yield 40% of the samples in the 20% percentile region of the test data set.
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Figura 10 – Cumulative sample percentages, from real data, for each percentile. It is expected
that real data matches the predictive distribution percentiles properly. The red line represent a
well-calibrated predictive distribution, and the darker line a poorly-calibrated one.

Fonte: Elaborated by the author.

3.4.2 Sharpness × Lead Time

In the context of weather forecasting, one can argue predicted values could have a

distribution varying along time. Let IQ-T be the interquantile distance between P-(50+T ) and

P-(50−T ) percentiles, as follows:

IQ-10 = P-60−P-40, IQ-20 = P-70−P-30, . . . (3.18)

This represent an “error range” of posterior samples expected to be between P-60 and

P-40 values. The sharpness of a distribution means how concentrated the posterior probabilities

are. A ”perfect” forecast would assign 100% probability to a single value, equal to the observed

value. Sharp models have narrowly distributed predictions. These inter-quantile distances are a

measurement of the sharpness of a predictive distribution. Fig. 11 shows how sharpness varies

along the forecast lead time, which is the distance between forecast time and the occurrence

of the phenomena that were predicted. Thin distribution, with low sharpness values, do not

necessarily mean a calibrated predictor.
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Figura 11 – This graph shows the sharpness of the posterior distribution, shown in terms of
inter-quantile distances, over different forecast lead times.

Fonte: Elaborated by the author.

3.4.3 Error Plot

Another way to graphically present sharpness and calibration is plotting observed

and predicted values, extracted from the test data set, in a scatter plot (TRAN et al., 2020). The

dispersion can show concentrated biases in a region of the data and the predictive distribution

sharpness. Fig. 12 presents the difference between a sharp and calibrated model and one which

is not. When dealing with a large amount of data dispersion, it is also worth adding binned

confidence intervals summarizing the error distribution in each region of the data.

3.5 After All, Are These Methods Truly Bayesian?

Traditionally, Bayesian approach consists in considering a prior belief, usually by

assuming a prior distribution over the parameter set, mathematically speaking. Point estimates

are not used anymore, therefore a predictive distribution from the posterior of the parameters,

obtained after observing the data.

One could question if the methods described in this chapter are actually Bayesian

methods in the manner how they quantify uncertainty. This section argues in favor of each one
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Figura 12 – This graph plots observed and predicted values, extracted from the test data set. Blue
points represent a sharp and calibrated model, while red points show an erratic and biased model.

Fonte: Elaborated by the author.

of them.

The first one, Monte Carlo Dropout, is a method based on the dropout strategy, as

stated before. Gal e Ghahramani (2016) argue it is actually comparable to a deep Gaussian

Process (DAMIANOU; LAWRENCE, 2013), with no simplifying assumptions, which is a

Bayesian machine learning method. It is possible to support it is indeed Bayesian, due to its

nature.

In Wilson e Izmailov (2020), the authors add some discussion about academical

criticism to Bayesian concept, in a way that some researchers undermine ”non-Bayesian” results,

criticizing terminology the most, which does no good for the research itself. In Izmailov et al.

(2018), the authors claim SWAG and MultiSWAG, extensions to Stochastic Weight Averaging

(SWA), perform “approximate fully Bayesian inference”.

According to Lakshminarayanan et al. (2017), Deep Ensembles is a non-Bayesian

approach to obtain predictive distributions. However, it can still be seen as a Bayesian Model

Averaging technique (WILSON; IZMAILOV, 2020), and it is considered as a practical way to

surpass the complexity of fully Bayesian Neural Networks. Thus, it can be seen as a Bayesian

approximation (HOFFMANN; ELSTER, 2021).
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Above all, this work uses the terminology “Bayesian uncertainty quantification”, a

general term, not getting attached to any Bayesian method itself, a terminology which is used, for

instance, by Gal et al. (2022). In that article, the authors also emphasize Monte Carlo Dropout

(GAL; GHAHRAMANI, 2016) and Deep Ensembles (LAKSHMINARAYANAN et al., 2017) as

being approximate Bayesian methods.

3.6 Concluding Remarks

In this chapter, it is described the details behind the models that are going to be used,

the Bayesian frameworks attached to them, and the metrics evaluated for comparison. Chapter 4

explains how to proceed in the task of forecasting wind speed, with the data gathered.
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4 METHODOLOGY

This chapter details the machine learning problem that are going to be modeled,

in terms of data definition, deep learning architectures, approximate Bayesian strategies, and

evaluation metrics for comparison purposes.

4.1 Data Definition

To accomplish the goal of achieving short-term wind speed predictions, there are

two main data sources: the wind farm’s SCADA system and the publicly available NWP models.

There are also general information from the park, like latitude and longitude for each Wind

Turbine Generator (WTG). Combining these different data sources, one could have site-specific

predictions for each turbine.

4.1.1 The Wind Farm’s SCADA System

Every modern hard asset has several analog sensors measuring the most important

operational variables. Among other variables, there are some important ones that can explain

climate site-specific behavior. Regarding wind turbines, this huge amount of data is often stored

as 10-minute timestamps in a Supervisory Control And Data Acquisition (SCADA) system

(DANEELS, 1999). It is cataloged a data set including measurements of wind speed, wind

direction, ambient temperature, pressure and humidity, for each turbine. Data is always being

processed and stored, allowing the update of the model on a daily basis.

This study will be based on a wind farm containing eighteen turbines, localized at

the South of Brazil. SCADA data cover two years of measurements for wind speed and wind

direction variables. It is taken hourly measurements, down-sampled by picking always the first

interval value to match NWP data format. Fig. 13 shows the turbine’s relative positions.

4.1.2 Numerical Weather Forecast Systems

The models take advantage of already existent wide-spread Numerical Weather

Prediction forecast models. These complex models are based on data stored from multiple

measurement sites around the world, making them a great source of information to improve

the solution. The most complete models include hourly predictions for wind speed, ambient
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Figura 13 – There are 18 turbines in the wind farm focus of this work. The red points represent
the location of each one of them.

Fonte: Elaborated by the author.

temperature, wind direction, rain and storm probabilities, and many other variables, for different

heights and geographical locations.

For the purpose of this work, it is considered data collected from ERA5 historical

data. Details of this data set were presented in Chapter 1. Data is collected from a 3×3 grid

located around the same region of the park. Fig. 14 shows these positions relative to the wind

farm.

Figura 14 – ERA5 provides historical data for a grid over the whole globe. In the photo, the blue
points represent the subset used in this work. The red point is the wind farm’s location.

Fonte: Elaborated by the author.
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4.1.3 Pattern Building

Let k be the index to represent wind turbine WT Gk. [t +1, t +L f ut ] is the interval in

the forecast future and [t −Lpast +1, t] the interval in the past used as input pattern to the model,

with Lpast and L f uture being a length of time steps in the past and in the ”future”, that is, in the

forecast at that moment. At each time t, St represents SCADA information, and Ft represents the

global forecast model’s information.

The model will be trained using wind speed in each direction as features. For each

timestamp t in WT Gk, SCADA information, which consists of wind speed in each direction u

(along latitude axis) and v (along longitude axis), is represented by a vector Sk,t ∈ RDS , with DS

representing SCADA features dimension. The spatial coordinates lat and lon are added to this

vector, for simplicity. Each of these vectors can be represented by the equation:

Sk,t = [lat, lon,uk,t ,vk,t ]. (4.1)

The global forecast source of data also has many different climate variables, such as

wind speed components u and v, pressure p, temperature T , and humidity ρ in many different

altitudes above sea level. The model training will use only wind speed information, for simplicity.

The global forecast model’s information u and v in the coordinate m of the grid at time t are

represented by um,t ,vm,t , for example. At this point of the grid, the information vector is written

as

Fm,t = [um,t ,vm,t ]. (4.2)

Each batch of information from the global source of data will then have the shape

Ft ∈ RDF×Lat×Lon
. (4.3)

where DF is the climate variables dimension, and Lat ×Lon represents the portion of the global

grid used in the model.

In the experiments, for simplicity, since only wind speed information and geographic

coordinates are used as features, DS = 4 and DF = 2.

Respecting the differences between the models and the data to be used, each modeling

approach will have a different data conformation procedure, allowing them to use spatial and

temporal aspects of the data when they are able to do this.

When it comes to the MLP model, which is neither temporal nor a spatial model, all

spatial and temporal data are just flattened, turning them into features of the model. All turbine
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Tabela 1 – Dimensions of the feature vectors, for each network. Notation ν(...) represents the
resulting dimension when flattening the others.

Model dim(S) dim(F)

MLP ν(Lpast ,DS) ν(L f ut +Lpast ,DF ,Lat,Lon)
LSTM Lpast×DS (L f ut +Lpast)×ν(DF ,Lat,Lon)
ConvLSTM Lpast×DS (L f ut +Lpast)×DF ×Lat ×Lon

Fonte: Elaborated by the author.

and forecast data can be concatenated before applying the network, as they now have the same

dimensions. LSTM model, in opposition to it, has short-memory temporal modeling capacities,

so only spatial information from forecast model has to be flattened into features. When it comes

to the Convolutional LSTM Network, both temporal and spatial dimensions of the NWP forecast

data set are kept. The turbine SCADA data, however, do not have any spatial dimensions the

way they have been described (latitude and longitude information were put as features, as stated

before), forcing the model to use separately two neural networks this time: a LSTM network

will be applied on the turbine’s data, and a ConvLSTM layer will be applied separately in the

forecast data. All of the three schemes will have a final fully-connected dense layer after network

layers. The dimensions for S and F , for each pattern, are shown in Table 1, where notation ν(...)

represents the resulting dimension after flattening others, as described above.

The goal is to yield wind speed forecasts yt , in both directions ut ,vt , for each

timestamp t in the interval [t + 1, t +L f ut ] in future time, using data from [t −Lpast , t], which

is in the past. It is important to observe that there are information from SCADA referring to

the past, while Numerical Weather Prediction (NWP) model’s information exists both in the

past and the future. It is important to emphasize that there is no information leakage, as NWP

future information is a prediction used as a feature. In order to add global forecast information

to enhance the models, all [t −Lpast , t +L f ut ] interval from the forecast will be included as input

for timestamp t.

The data can be expressed in terms of these vectors. Each forecast output Y∈R
L f ut×2

can be defined as matrices, as in Eq. (4.4). The dimensions for input patterns are shown in Table

1, as described above.

yk(t) =











uk,t+1 vk,t+1

... ...

uk,t+L f ut
vk,t+L f ut











L f ut×2

. (4.4)
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4.2 Training Scenario

For this work’s purpose, it is stated one day (24 hourly steps) for past data and one

day for future data. In order to take non-intersected, consecutive periods in time, the interval of

the study is partitioned into many 2-day pieces, each one of them representing a pattern and its

output. This way, the full data set will have around 182 patterns per turbine per year, depending

on data quality, because the data sources may have invalid values to be removed.

Figura 15 – The red points represent different turbines. For each turbine, the daily partitioned
time series is shown. 01/01, 03/01 and 05/01 are dates in January.

Fonte: Elaborated by the author.

Four turbines will be separated to validate the model, while the others will be used

to train the model. Fig. 16 illustrates this split. One of the validation turbines is taken at the top

of the farm on purpose, to include patterns affected by wind at the border.

4.3 Neural Network Architectures

Three different neural networks are considered to capture the data behavior: MLP,

LSTM and ConvLSTM. It is expected that the ConvLSTM performs better, capturing both

temporal and spatial aspects of the data. As follows, the model’s configuration is detailed.

Bayesian inference, with the purpose of extracting uncertainty estimates, will be also applied

using Monte Carlo Dropout, Stochastic Weight Averaging - Gaussian, Multi Stochastic Weight

Averaging - Gaussian and Deep Ensembles inference methods.

There will also be a simple NLL-trained model, as a baseline for uncertainty quan-

tification comparison. It is trained similarly to one of the models from the Deep Ensemble,

which are trained following Nix e Weigend (1994) guidelines. This model is trained without any

adversarial training technique, however.

All the Bayesian models, except the Deep Ensembles, will be pre-trained with
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Figura 16 – The soft red points represent the turbines used to validate the model in the Turbine-
Driven data set. Note that they are spread along the area.

Fonte: Elaborated by the author.

regular MSE loss. Deep Ensembles have to be trained using the NLL loss due to the ensembling

technique used, based on Lakshminarayanan et al. (2017) and Nix e Weigend (1994). All models

yield the same output architecture shown in (4.4), except Deep Ensembles and the NLL baseline,

which models two output time series, both dimensionally equal to (4.4), but with the second one

standing for the output’s variances (see subsection 3.2.2). Deep Ensembles will also follow the

guidelines described in Subsec. 3.2.2, using adversarial training, as suggested.

It is included one more model, called Dummy, that will ”forecast” wind speed by

just copying the past data to the future. This model will be used only as a naive baseline for the

RMSE metric of the main neural networks.

4.4 Evaluation Metrics

Evaluation metrics RMSE, NLL and CRPS are applied in order to compare the

results of the different models in the both train and validation data sets. The last two, which are

probabilistic metrics, are expected to show lower values to the models which generalize best

at the domain space. There are also some calibration plots. Section 3.3 has more details on all
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these comparison metrics and techniques.

This chapter described how the models are designed. Chapter 5 shows the results

obtained from the experiments with respect to its different model strategies and data set configu-

rations.
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5 RESULTS

This chapter is divided in four sections. The first one discusses the training phase

and states some general additional information about the models. The second subsection shows

the results obtained from the models, which was described in Chapter 4. This part comprises

the models results, including how they compare to each other in terms of probabilistic and

deterministic metrics and calibration graphics. The third subsection shows practical examples of

how to use the model, showcasing them with a hypothetical situation in a wind farm operational

context. The fourth is an experiment to see how the model would perform if information from

only one source, either NWP global forecasts or SCADA data, was provided.

5.1 Model Training

In order to prevent overfitting the data, the training phase of these models included

weight decay and dropout as regularization strategies. Dropout, as well as being a method

of sampling for Bayesian approximate inference and uncertainty quantification, is used here

to regularize (SRIVASTAVA et al., 2014) all networks parameters as well, independently on

which Bayesian inference method they are aiming to perform. Weight decay is also applied

in all training procedures, performing L2 regularization and preventing overfitting (BISHOP,

2006). In the process of choosing the best models, hyperparameter tuning was done by using

grid search strategy, applied to dropout rates (with values varying from 0.15 to 0.5 dropout rate

(GAL; GHAHRAMANI, 2016)), hidden layers size (with values varying between 24, 48 and 96

neurons) and SWAG learning rates (with values varying from 0.01 to 0.5 for learning rate, based

in Maddox et al. (2019) guidelines).

Now, it is time to determine which one of the model combinations got better results

and discuss about these results and the practical situations in which they can be evaluated, in

terms of the metrics defined to compare them. The combinations are made by choosing:

1. The machine learning model to train, chosen between MLP, LSTM, ConvLSTM and the

Dummy model 1;

2. The Bayesian model used to extract posterior uncertainty estimates, chosen between Deep

Ensembles, MC Dropout, SWAG, MultiSWAG, and the NLL-trained model (see Sec. 4.3

for details).

1 The Dummy model is not probabilistic, thus, it cannot be compared using probabilistic metrics. However, it can
still be calculated the RMSE metric to compare it to the other models.
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Tabela 2 – Metrics for all evaluated models. As CRPS was chosen to be the main value to
compare the forecasts, the ConvLSTM network along with the Deep Ensembles strategy got
the best results. Models are trained multiple times, and the standard deviation of each metric is
attached.

Model Bayesian Framework CRPS NLL RMSE

ConvLSTM MC Dropout 0.925 ± 0.004 1.447 ± 0.018 1.728 ± 0.005
Deep Ensembles 0.923 ± 0.001 0.979 ± 0.001 1.981 ± 0.003
MultiSWAG 1.116 ± 0.014 1.740 ± 0.039 2.065 ± 0.030
NLL Baseline 1.160 ± 0.006 1.281 ± 0.004 2.339 ± 0.011
SWAG 1.221 ± 0.031 1.847 ± 0.046 2.245 ± 0.064

LSTM MC Dropout 1.303 ± 0.007 2.501 ± 0.018 2.301 ± 0.010
Deep Ensembles 1.295 ± 0.003 1.455 ± 0.003 2.667 ± 0.013
MultiSWAG 1.552 ± 0.026 2.207 ± 0.053 2.871 ± 0.060
NLL Baseline 1.420 ± 0.017 1.592 ± 0.020 2.816 ± 0.046
SWAG 1.605 ± 0.050 2.314 ± 0.074 2.959 ± 0.093

MLP MC Dropout 1.620 ± 0.085 3.091 ± 0.023 2.801 ± 0.123
Deep Ensembles 1.370 ± 0.003 1.529 ± 0.003 2.797 ± 0.004
MultiSWAG 1.615 ± 0.018 2.751 ± 0.089 2.898 ± 0.034
NLL Baseline 1.617 ± 0.018 1.841 ± 0.033 3.134 ± 0.039
SWAG 1.682 ± 0.031 2.849 ± 0.168 3.003 ± 0.056

Dummy — — — 6.122

Fonte: Elaborated by the author.

5.2 Model Results

Table 2 present the metrics for all evaluated models. The metrics shown are extracted

as an average among all output data for test data set. The models were trained multiple times, so

as all metrics are presented with an error estimate, which is represented by the standard deviation.

The symbol ± is used here to separate the metrics and their deviations. All evaluation metrics

are calculated on the real scaled data set. The best results for each metric are highlighted with

bold letters.

In addition to the numerical model comparison, which can be done with the metrics

scalar values, the calibration graphs in Fig. 17 present cumulative sample rates, compared to

the ground truth values in test data set, and models sharpness over the lead time for predictions.

Note that a sharper model is not necessarily well-calibrated. It is also worth noting a trend of

uncertainty increasing along with the lead time.

Fig. 18 presents a graph showing error dispersion between real and predicted values.

95% confidence intervals are shown for binned real values. It indicates ConvLSTM models are

more well-calibrated than other models, especially when paired with the Deep Ensemble strategy.

The predicted values are closer to the real ones, and the model biases are much lower than the

ones yielded by MLP and LSTM, especially in extreme values of wind. Explanations about these
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calibration graphs were detailed in Section 3.4.

As expected, the three neural networks yielded much lower RMSE values than the

Dummy predictor. ConvLSTM neural network achieved better results, in general, both for

predictive and point estimate metrics. LSTM metrics were lower than MLP ones, too. Adding

temporal and spatial capabilities to the model helped to enhance their generalization capacity,

proving the benefits of using convolutional recurrent neural networks.

Take CRPS to be the main metric, for comparison purposes. It is designed to

measure the difference between the whole predictive distribution and empirical CDFs. It is

also a common choice to compare predictive forecasts. Deep Ensembles framework yielded

better predictive generalization at the validation data set, due to the lower CRPS. Comparing all

these combinations, the one that generalizes the best the data being modelled is the ConvLSTM

combined with Deep Ensembles Bayesian uncertainty quantification method. The network also

had lower NLL values. MC Dropout method, however, achieved lower RMSE metric.

One unexpected behavior was the NLL-trained baseline achieving better results than

some Bayesian approximate methods, such as MultiSWAG and MC Dropout. It is also seen that

models using Monte Carlo Dropout, SWAG and MultiSWAG got generally higher probabilistic

metrics and their calibration curves (see Fig. 17) are not as well-suited as the NLL-trained

models, especially the one using Deep Ensembles. This can be associated to the fact that MC

Dropout, SWAG and MultiSWAG training processes aim to lower RMSE metric and Deep

Ensembles and the NLL baseline aims to lower NLL metric. That seems to be more suited for

the problem, since wind speed probability distributions if often modeled with a Weibull curve,

which is quite similar to a Gaussian distribution (JENKINS, 2021).

Finally, Fig. 17 also shows how sharpness curves vary over the lead time of the pre-

dictive distribution. NLL-trained models, which have performed better in terms of probabilistic

metrics comparison, have wider distributions in the end of the lead time. This means the models

indeed vary their uncertainty along the time period. Deep Ensembles also got wider predictive

distributions (represented by higher inter-quantile intervals) than SWAG, MultiSWAG and MC

Dropout, which is not a bad thing, since the probabilistic metrics are lower, demonstrating better

fitting to the test data set.

Now, there will be presented some practical applications for the models, in the

context of maintenance scheduling in a wind farm.
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Figura 17 – The two graphs measure the posterior predictive distribution calibration with respect
to the test data set.

(a) Cumulative sample rates, yield from predictive distribution, compared to theoreti-
cal sample rates in each quantile. ConvLSTM models trained with Deep Ensembles
framework are the most well-calibrated models.

(b) Sharpness measurements for each lead time, with respect to P-60, P-70, P-80 and
P-90 percentiles. Note that a sharper model do not necessarily is well-calibrated. It is
also seen a trend to increase uncertainty over the lead time.

Fonte: Elaborated by the author.
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5.3 Practical Application in Maintenance Scheduling

In order to showcase the model into one of the main applications of wind speed

forecasting, be a hypothetical situation of a maintenance scheduling application of the models.

There are many other applications for wind forecasting, as mentioned in Chapter 1. In order to

graphically see the difference in the models discussed in Sec. 5.2, forecasts from each Bayesian

model will be shown. Models from ConvLSTM network architecture are taken for this matter.

During the windy season, one concerned manager needs to know if there will be any

good window to schedule a quick maintenance to one or more turbines of the complex. In order

to be sure about the decision to provide personnel and equipment for the job during the daily

hours, that manager must be confident about that window. In other words, he/she waits for the

wind to be around a specific secure level, with 90% of certainty that the wind will not be higher

than that, because the work could not be done in worse circumstances.

His/her staff engineer decided to use this work to model and predict the wind, using

data extracted from both SCADA system and NWP models. The model yielded a wind speed

time series for the wind farm, predicted for the next day, along with an 80% confidence interval

for uncertainty estimates, whose upper and lower boundaries are P-10 and P-90, respectively.

The engineer then answered him/her, based on Fig. 19, that the wind may be lower by the

Figura 18 – The plot shows the dispersion graphs of real value versus predicted value, for each
model. The bars in blue show 95% confidence intervals in each binned real value.

.

Fonte: Elaborated by the author.
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afternoon, and 12pm should be a good time to start the intervention.

The manager found the model very useful. He/she asked the engineer if he could

help him/her with another question: what would be the best turbine to stop for intervention? The

engineer then showed him/her Fig. 20, a forecast map for each turbine in a specific time, arguing

the most impacted turbine, in terms of frustrated generation, would be the further southwestern

one, and the lowest impacted would be the further northeastern one, on the opposite side, by the

time they chose to begin the intervention.

That was an example of how a manager could use the model to accurately plan a

maintenance intervention in wind farm’s operational context. Now, it is presented an experiment

of the deployment using the same modeling process, but without adding any information from

one of the data sources to the model. The aim is to see the effects of taking off either NWP or

SCADA information from the model.

5.4 How Important Is It to Attach Each Source of Information to the Model?

The results of the modeling process were shown, using both SCADA site-specific data

and NWP global forecast data. Wind speed forecasting has been modelled with many network

architectures, quantifying uncertainty taking advantage of Bayesian uncertainty quantification

techniques.

But how important is it to add each data source to the model? Does the SCADA data,

with wind measurements from the wind farm, bring enough information to predict the future

patterns? Opposed to that, could the NWP global forecast data be able to yield a well-fitted

predictive distribution by itself?

In order to answer those questions, an additional experiment is designed by sim-

plifying the networks. An LSTM will be trained only with the turbine’s SCADA data source.

No information from global forecasts will be added to the model. For the NWP only model, a

ConvLSTM will be trained with only global forecast information as input, as this network is able

to attach spatial capabilities to this model. Table 3 shows the metric results for this experiment.

The performance of the model is notably worse, compared to the models using both site-specific

SCADA data and NWP global forecast data, presented in Section 5.2.

Fig. 21 shows examples of forecasts produced by this model. The Bayesian uncer-

tainty quantification is extracted using Deep Ensembles. Observe that the predictive distributions

obtained are much wider than the ones of the complete model.
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Figura 19 – Wind speed forecasts for the turbine in south-east, in black, with 80% Confidence
Interval, compared to real data in red. In light grey, samples yielded from the predictive
distribution. Lower boundary is equivalent to P-90 wind speed. The examples were obtained
from ConvLSTM networks for all Bayesian uncertainty quantification methods.

Fonte: Elaborated by the author.
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Figura 20 – Wind speed forecasts for each turbine in red, compared to ground truth ones in
black. In light grey, samples yielded from the predictive distribution. Example extracted from
ConvLSTM neural network, along with Deep Ensembles Bayesian framework.

Fonte: Elaborated by the author.

Tabela 3 – Performance metrics when using: (1) only WTG data to train the model. (2) only
NWP data to train the model. ConvLSTM results are also shown for a quick reference. The
performance of these models are significantly lower compared to the scenario where both sources
of information are combined.

Model Bayesian Framework CRPS NLL RMSE

LSTM1
WT G MC Dropout 2.018 ± 0.034 3.041 ± 0.268 3.169 ± 0.046

Deep Ensembles 1.807 ± 0.016 2.147 ± 0.020 3.543 ± 0.033
MultiSWAG 1.787 ± 0.036 2.786 ± 0.016 3.306 ± 0.071
NLL Baseline 2.164 ± 0.018 2.611 ± 0.038 4.102 ± 0.030
SWAG 2.104 ± 0.057 3.090 ± 0.133 3.901 ± 0.086

ConvLSTM2
NWP MC Dropout 1.645 ± 0.077 2.475 ± 0.130 2.787 ± 0.087

Deep Ensembles 1.447 ± 0.001 1.588 ± 0.001 2.823 ± 0.002
MultiSWAG 1.903 ± 0.013 2.530 ± 0.032 2.243 ± 0.021
NLL Baseline 1.610 ± 0.012 1.752 ± 0.022 3.058 ± 0.029
SWAG 2.023 ± 0.016 3.523 ± 0.067 3.478 ± 0.033

ConvLSTM MC Dropout 0.925 ± 0.004 1.447 ± 0.018 1.728 ± 0.005
Deep Ensembles 0.923 ± 0.001 0.979 ± 0.001 1.981 ± 0.003
MultiSWAG 1.116 ± 0.014 1.740 ± 0.039 2.065 ± 0.030
NLL Baseline 1.160 ± 0.006 1.281 ± 0.004 2.339 ± 0.011
SWAG 1.221 ± 0.031 1.847 ± 0.046 2.245 ± 0.064

Fonte: Elaborated by the author.
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This chapter presented the results achieved with the models. In Chapter 6 this work

is concluded with some final comments and proposals for future work.
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Figura 21 – The two graphs shows the same application example with the simplified models.
The posterior predictive distribution is much wider and less accurate than the model trained with
both data sources.

(a) Forecasts from The Model trained using only SCADA data.

(b) Forecasts from The Model trained using only NWP data.
Fonte: Elaborated by the author.
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6 CONCLUSION AND FURTHER WORK

Weather forecasting has several different applications. In the context of wind energy,

wind speed forecasts are particularly important, having many applications, such as maintenance

scheduling, generation predictability and short-term energy trading markets. Enhancing these

forecasts with uncertainty estimates is also very important, helping managers to reduce risks in

any operational decisions. This chapter summarizes this work, highlighting the most important

results, and presents some proposals for future work in this context.

6.1 Summary of Results

This work proposed a data-driven spatio-temporal approach to wind speed forecast

prediction by combining general Numerical Weather Prediction global forecast data and local

data collected from turbines’ Supervisory Control And Data Acquisition (SCADA) systems. It

has shown that training a Convolutional LSTM Network (ConvLSTM) neural network combined

with the Deep Ensembles method achieved the best probabilistic performance metrics and

calibration, compared to other network architectures and Bayesian frameworks.

The main motivation behind this work was to explore how spatio-temporal charac-

teristics of the wind farm and global forecasts could be attached to the models. By combining

these two data sources, one can model spatio-temporal behaviour and differentiate predictions

between turbines.

Also, it was exemplified two practical applications of the model, using common

situations in the daily operation of a wind energy farm. One could use this model to assist

scheduling maintenance interventions and deciding which would be the best turbine to do the

work, based on wind resource forecasts.

It is also shown that combining both global forecast NWP and site-specific SCADA

data is of fundamental importance to enhance the model’s performance metrics, since models

with only one of these sources achieve worse performance than the complete ones.

It is worth pointing some limitations of this work. Since the pattern building process

takes many temporal and spatial data, the models wound up having few patterns to train and

test, forcing the deployments to gather many years of data to increase this number, especially

when the model yields longer forecasts. Besides, since the model depends on SCADA data

to be applied, low data quality in the wind farm’s historian systems could restrict the model
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application.

6.2 Future Work

Future work in this area could further explore the relation between the wind speed

distribution and the Weibull distribution (JENKINS, 2021), for example training Deep Ensembles

models using NLL with respect to a Weibull curve, or approximating the posterior distribution

with a Weibull instead of a Gaussian distribution. Some concerns would be necessary when

modeling wind speed latitude and longitude components through a Weibull distribution, however,

as these variable can reach negative values too. It would also be interesting to compare Deep

Ensembles results to Bayesian Neural Networks that use sampling techniques to yield a posterior

distribution, such as Hamiltonian Monte Carlo (WILSON; IZMAILOV, 2020). Adding Laplace

approximation methods to the methods being compared (DAXBERGER et al., 2021) can be

considered too. Finally, another possibility is comparing the training strategies to networks

trained using probabilistic backpropagation (HERNANDEZ-LOBATO; ADAMS, 2015), which

another Bayesian probabilistic method applied to neural networks by changing the training

phase.
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