

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS DE SOBRAL PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

IARA VERAS DE ARAÚJO

ANEMIA FALCIFORME: CRISES VASO-OCLUSIVAS PARECEM ESTAR RELACIONADAS À REDUÇÃO DA CONCENTRAÇÃO DE PROTEÍNAS NA MEMBRANA ERITROCITÁRIA

IARA VERAS DE ARAÚJO

ANEMIA FALCIFORME: CRISES VASO-OCLUSIVAS PARECEM ESTAR RELACIONADAS À REDUÇÃO DA CONCENTRAÇÃO DE PROTEÍNAS NA MEMBRANA ERITROCITÁRIA

Dissertação apresentada ao programa de Pós-Graduação em Biotecnologia da Universidade Federal do Ceará-*Campus* de Sobral como parte dos requisitos para obtenção como requisito parcial para obtenção do Título de Mestre em Biotecnologia. Área de concentração: Química de Macromoléculas Orientador: Prof. Dr. Vicente de Paulo Teixeira Pinto.

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca do Curso de Medicina – *Campus* de Sobral

A692a Araújo, Iara Veras de.

Anemia falciforme: crises vaso-oclusivas parecem estar relacionadas à redução da concentração de proteínas na membrana eritrocitária. / Iara Veras de Araújo. – 2015.

78 f.: il. color., enc.; 30 cm.

Dissertação (mestrado) – Universidade Federal do Ceará, Curso de Medicina, Programa de Pós-Graduação em Biotecnologia, Sobral, 2015.

Área de Concentração: Química de Macromoléculas.

Orientação: Prof. Dr. Vicente de Paulo Teixeira Pinto.

Coorientação: Prof. Dr. Rodrigo Maranguape Silva da Cunha.

1. Anemia falciforme. 2. Proteoma. I. Título.

IARA VERAS DE ARAÚJO

ANEMIA FALCIFORME: CRISES VASO-OCLUSIVAS PARECEM ESTAR RELACIONADAS À REDUÇÃO DA CONCENTRAÇÃO DE PROTEÍNAS NA MEMBRANA ERITROCITÁRIA

Dissertação apresentada ao programa de Pós-Graduação em Biotecnologia da Universidade Federal do Ceará-*Campus* de Sobral como parte dos requisitos para obtenção como requisito parcial para obtenção do Título de Mestre em Biotecnologia. Área de concentração: Química de Macromoléculas

Aprovada em 06 / 04 / 15

V-t-t

Prof. Dr. Vicente de Paulo Teixeira Pinto (Orientador)

BANCA EXAMINADORA

Universidade Federal do Ceará-UFC

Prof. Dr. Rodrigo Maranguape Silva da Cunha

Universidade Estadual Vale do Acaraú-UVA

Prof^a. Dr^a. Mirna Bezerra Marques

Universidade Federal do Ceará-UFC

Prof. Dr. João Garcia Alves Filho

Took Govie Alum Fil

Universidade Estadual Vale do Acaraú-UVA

Dedico este trabalho aos meus pais Artur Veras de Araújo e Maria Senhora Veras, as minhas irmãs Ariana, Jusciara e Naiara e ao meu sobrinho Cauã, que sempre me motivaram a continuar nesta trajetória e não desistir.

AGRADECIMENTOS

À Deus pelo dom da vida, por guiar meus passos e possibilitar a realização deste trabalho providenciando solução para todas as incertezas ao longo do caminho.

Aos meus pais, Artur Veras de Araújo e Maria Senhora Veras que são as pessoas mais importantes da minha vida, a eles agradeço por todo esforço, compreensão, durante a trajetória da minha vida estudantil. Amo vocês.

As minhas irmãs Ariana Veras de Araújo, Jusciara Veras de Araújo, Naiara Veras de Araújo e o meu sobrinho Cauã Araújo Ribeiro, por todo o apoio, força, amor e compreensão de sempre e por estarem presentes em todos os momentos da minha vida. Amo vocês.

Ao professor Dr. Vicente de Paulo Teixeira Pinto, pela confiança em mim depositada, pela orientação, amizade, apoio e atenção em todos os momentos.

Ao professor Dr. Rodrigo Maranguape Silva da Cunha pela co-orientação, por toda a ajuda, participação, disposição e conhecimento que me ofereceu.

Ao professor Dr. Frederico Bruno Mendes Batista Moreno por ter me dado a oportunidade de executar parte deste trabalho em seu laboratório (Proteômica) e me proporcionar uma experiência que contribui para meu crescimento pessoal e profissional.

A Profa. Julieta Maria Mendes Frota de Almeida pelo recrutamento dos pacientes por ela acompanhados, no Laboratório de Hematologia do Centro de Hematologia e Hemoterapia Regional de Sobral (HEMOCE - Sobral).

A Denyse Cruz pela valiosa contribuição neste trabalho.

Aos participantes portadores de Anemia Falciforme, embora sem conhecê-los permitiram que este trabalho se realizasse.

As minhas amigas, que Deus me presenteou desde o inicio da minha vida acadêmica Samylia Mayra, Sabrina, Aline, Darly, Rosália, Ana Aline, Suellen pela força, carinho e pelo apoio que me deram sempre.

A Izabel Santos e a Rebeca Carvalho pelo carinho de sempre, pela acolhida em sua casa sempre que precisei.

Aos companheiros (as) e amigos (as) do curso de Pós-Graduação, Vitória Virgínia, Mônica, Aurilene, Wanderléía, Marianne, Isabela, Chrisleny, Rafaele. Jedson, Renato, Ruliglesio, Raul, pela amizade, convivência nesta jornada e por todos os momentos de alegria, aflições que compartilhamos juntos.

A todos que fazem parte do laboratório de Biologia Molecular, Flávia, Nayanne, Auxiladora, João Garcia, Carlos Franciney, Pedro Paulo, Paulo de Tarso, Rafael, que de alguma forma estiveram presentes, seja ajudando ou dando apoio moral.

A todos os professores, ao curso de Pós-Graduação em Biotecnologia e todos os funcionários.

À FUNCAP, CAPES, INCT-IBISAB/UFC pelo auxílio financeiro/científico.

A todos que direta ou indiretamente colaboraram para o desenvolvimento e conclusão deste trabalho, o meu muitíssimo obrigado.

"É preciso força pra sonhar e perceber que a estrada vai além do que se vê". (Los Hermanos)

RESUMO

A anemia falciforme é uma doença genética frequente, decorrente de uma modificação pontual na posição seis do gene da hemoglobina, que resulta em alelos diferentes, que quando transcrito, codifica a hemoglobina S, que leva a formação das hemácias falcêmicas. As hemácias contendo hemoglobina S adquirem, em condições de hipóxia, a forma de foice, causando crise vaso oclusiva nos portadores. O presente trabalho teve como objetivo isolar proteínas da membrana eritrocitária de pacientes com anemia falciforme (nas fases sintomática e assintomática) e correlacionar alterações identificadas nestes períodos, utilizando Cromatografia Líquida de Alta Pressão (HPLC)-Troca iônica, SDS-PAGE 1D e 2D e Espectrometria de Massa (MS). Foi realizada análise proteômica em proteínas de membrana eritrocitária obtidas de amostras de sangue periférico de três pacientes, colhidas ao longo de dois anos, e separadas de acordo com a presença (PC) ou ausência de crise vaso oclusiva (PSC) no momento da coleta. O grupo controle foi formado por dois indivíduos sem diagnóstico de hemoglobinopatia. Foi identificada a presença de maior concentração de proteínas na membrana de eritrócitos falcêmicos, em especial nos pacientes PSC e evidenciou-se que durante as crises a quantidade de proteína presente na membrana do eritrócito dos pacientes sofre redução (20,7% - PC1; 34,2% - PC3 e 45,2% - PC2). Dentre as 159 proteínas extraídas da membrana de eritrócitos falcêmicos, 148 foram identificadas, e 11 não foram identificadas, usando-se como parâmetro a base de dados TagIdent ExPASy. Dentre as proteínas não identificadas, seis foram extraídas da membrana eritrocitária de pacientes PC e cinco de pacientes PSC. A identificação da proteína PRDX2 (uma peroxirredoxina com massa molecular aparente de 41 kDa) com massa molecular aparente inferior a 30 kDa sugere a alteração estrutural desta proteína. A não identificação de 11 proteínas extraídas da membrana de eritrócitos falcêmicos sugere alteração quantitativa na expressão proteica destes pacientes. Nossos resultados sugerem ainda que as crises vasooclusivas podem estar relacionadas a uma redução na concentração total de proteínas da membrana eritrocitária nos pacientes.

Palavras-chave: Anemia falciforme. Proteoma. Membrana eritrocitária.

ABSTRACT

Sickle cell anemia is a common genetic disorder resulting from a specific change in position six of the hemoglobin gene, which results in different alleles, which when transcribed, codes for hemoglobin S which leads to the formation of sickle erythrocytes. Red blood cells containing hemoglobin S acquire in hypoxic conditions, the sickle-shaped, causing vasoocclusive crisis in patients. This study aimed to isolate erythrocyte membrane proteins of patients with sickle cell anemia (in symptomatic and asymptomatic stages) and to correlate changes identified in these periods, using High Performance Liquid Chromatography (HPLC ion exchange), SDS-PAGE (1D and 2D) and Mass Spectrometry (MS-ESI)). Was performed proteomic analysis in erythrocyte membrane proteins obtained from peripheral blood samples from three patients, collected over two years, and separated according to the presence (PC) or absence of vaso-occlusive crisis (PSC) at the time of collection. The control group consisted of two individuals with no diagnosis of hemoglobinopathies. We identified the presence of a higher concentration of membrane proteins in sickle cell erythrocytes, particularly in CSP patients and showed that during attacks the amount of protein present in the erythrocyte membrane of patients undergoes reduction (20.7% -PC1; 34 2% - PC3 and 45.2% - PC2). Among the 159 membrane proteins extracted from sickle cell erythrocytes, 148 were identified and 11 were not identified, using as parameter the database ExPASy TagIdent. Among the proteins not identified, six were extracted from the plasma membrane of PC patients and five PSC patients. The identification of PRDX2 protein (peroxiredoxin with an apparent molecular mass of 41 kDa) with an apparent molecular weight below 30 kDa, suggesting the structural change of this protein. Failure to identify 11 proteins extracted membrane of sickle cell erythrocytes suggests quantitative changes in protein expression of these patients. Our results also suggest that the vaso-occlusive crises may be related to a reduction in total protein concentration of the erythrocyte membrane in patients.

Keywords: Sickle cell anemia. Proteome. Erythrocyte membrane.

LISTA DE ILUSTRAÇÕES

Figura 1	Molécula de hemoglobina com suas duas cadeias alfa e beta	19
Figura 2	Visão esquemática da fisiopatologia da anemia falciforme	22
Figura 3	SDS-PAGE 12% de proteínas de membrana de eritrócitos de pacientes	
	falcêmicos e grupo controle	35
Figura 4	Mapas de géis de eletroforese bidimensionais de proteínas de membrana de	
	eritrócitos de pacientes falcêmicos e grupo controle	39
Figura 5	SDS-PAGE 2D de proteínas de membrana de hemácias do paciente - PSC1	
	com anemia falciforme	42

LISTA DE GRÁFICO

Gráfico 1a	Proteínas de membrana de eritrócito isoladas por HPLC-Troca Iônica e	
	Espectrometria de Massa e analisadas por SDS-PAGE 2D, de acordo com	
	pI	37
Gráfico 1b	Proteínas de membrana de eritrócito isoladas por HPLC-Troca Iônica e	
	Espectrometria de Massa e analisadas por SDS-PAGE 2D, de acordo com	
	massa molecular aparente	38

LISTA DE TABELAS

Tabela 1	Valor da absorbância*/faixa de eluição das amostras de proteína de	
	membrana de eritrócito, utilizando-se cromatografia de troca iônica	34
Tabela 2	Distribuição, por ponto isoelétrico e massa molecular aparente, dos spots	
	obtidos por SDS-PAGE 2D de proteínas de membrana de	
	eritrócitos	36
Tabela 3	Relação de proteínas identificadas no TagIdent das amostras de proteínas	
	de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e	
	PSC)	58
Tabela 4	Relação de proteínas de membrana de eritrócitos falcêmicos separadas	
	utilizando Eletroforese Bidimensional e Espectrometria de Massa não	
	identificadas no TagIdent do ExPASy	41
Tabela 5	Lista das proteínas de paciente com anemia falciforme PSC1 identificadas	
	pelo MASCOT	43

LISTA DE SÍMBOLOS

% Porcentagem

°C Graus Celsius

μL Microlitro

 $\mu g/mL \hspace{1cm} Microgram as/mililitros$

Cm Centímetro kDa Kilo Dalton

M Molar

mA Miliampere

mBar Milibar

mg/mL Miligramas por Mililitros

mL Mililitros
mM Milimolar
mol/L Mol/litro

Mpa MegaPascal

MW Massa molecular

n.° Número

pH Potencial hidrogeniônico

pI Ponto isoelétrico RPM Rotação por Minuto

 α Alfa β Beta δ Delta

LISTA DE ABREVIATURAS E SIGLAS

1 D Unidimensional

2 D Bidimensional

ADRB2 Adrenoceptor Beta 2

AF Anemia Falciforme

AVC Acidente vascular cerebral

Bem Benin

CAR República Centro-Africana

GC Grupo Controle

Hb Hemoglobina

HbA Hemoglobina A

HbA₂ Hemoglobina A₂

HbAHbS Traço Falcêmico

HbC Hemoglobina C

HbD Hemoglobina D

HbF Hemoglobina Fetal

HbS Hemoglobina S

HEMOCE Centro de Hematologia e Hemoterapia do Ceará

HPLC High-performance liquid chromatography - Cromatografia Liquida de Alta

Eficiência

IL4R Interleucina 4

MS Espectrometria de Massa

PC Paciente com crise

PSC Paciente sem crise

SDS- PAGE Gel de Poliacrilamida contendo Dodecil Sulfato de Sódio

Sen Senegal

SNPs Polimorfismos de nucleotídeos únicos

STA Síndrome torácica aguda

UFC Universidade Federal do Ceará

UVA Universidade Estadual Vale do Acaraú

VCAM1 Molécula de adesão celular vascular

VOC Vaso-oclusão

SUMÁRIO

1 INTRODUÇÃO	15
2. OBJETIVOS	16
3 DESENVOLVIMENTO	17
3.1 Revisão Bibliográfica	17
3.1.2 A anemia falciforme	17
2.1.3 Hemoglobina	18
3.1.4 A biologia molecular da anemia falciforme	20
3.1.5 Fisiopatologia da doença falciforme	21
3.1.6 Principais sintomas relacionados à anemia falciforme	23
3.1.6.1 Acidente vascular cerebral (AVC)	23
3.1.6.2 Crise de dor	23
3.1.6.3 Priapismo	24
3.1.6.4 Vaso-oclusão (VOC)	24
3.1.6.5 Síndrome torácica aguda (STA)	24
3.1.6.6 Infecção	25
3.1.7 Diagnóstico da doença	25
3.1.8 Tratamento	26
3.1.9 A membrana eritrocitária	27
4 MATERIAIS E MÉTODOS	28
5 RESULTADOS	34
6 DISCUSSÃO	44
7 CONCLUSÃO	49
REFERÊNCIAS	51
APÊNDICE	57
ANEXOS	70

1 INTRODUÇÃO

A Anemia Falciforme (AF) é uma doença monogenética e hereditária, mais comum no Brasil, sendo a primeira a ser caracterizada em nível molecular. Está presente em cerca de 0,1 a 0,3% da população afrodescendente e se estima a existência de 2 a 10 milhões de portadores da hemoglobina S (HbS), cuja principal característica é a deformidade que causa nos eritrócitos, os quais mudam da forma normal arredondada para a forma de foice, quando em baixa tensão de oxigênio, origem do nome falciforme (BANDEIRA *et al.*, 1999). Descrita pela primeira vez por Herrick (1910), a doença caracteriza-se por mutação pontual (GAG - GTG) no cromossomo 11, com a substituição de uma adenina por timina no códon do gene da β-globina, conduzindo à permuta do ácido glutâmico por valina na sexta posição da cadeia polipeptídica.

Com características físico-químicas modificadas, as moléculas da hemoglobina S polimerizam-se em baixa concentração de oxigênio, ocasionando a deformação dos eritrócitos ou falcização, que leva a obstrução do fluxo sanguíneo e danos nos tecidos, causando crise dolorosas vaso-oclusivas, infarto e necrose de diversos órgãos, como ossos e articulações, baço, pulmões e rins, entre outros (REES *et al.*, 2010; DWORKIS *et al.*, 2011). A anemia falciforme é uma doença crônica multissistêmica que leva a falência múltipla de órgãos.

A anemia falciforme ocorre em indivíduos homozigóticos e resulta na substituição de um nucleotídeo do gene da beta-globina. Embora os resultados da anemia falciforme sejam de uma única mutação no gene β-globina, as manifestações clínicas são variáveis (MAHDI *et al.*, 2012). Tais manifestações clínicas da doença ocorrem a partir do primeiro ano e estendem-se durante a vida toda. O sintoma clínico mais frequente é a crise dolorosa vaso-oclusiva. Todos os pacientes com anemia falciforme não são igualmente afetados por esta doença, alguns apresentam sintomas leves enquanto outros possuem os mais graves. A anemia falciforme apresenta múltiplas complicações e um alto grau de variabilidade fenotípica (DWORKIS *et al.*, 2011; LOUREIRO; ROZENFELD, 2005). As causas mais prováveis dessa variabilidade são fatores modificadores da doença, dentre eles estão: a hemoglobina fetal (HbF), as anormalidades da membrana das hemácias e o aumento da adesão ao endotélio (FIGUEIREDO, 2007b). A HbF é o modulador da AF mais estudado e atua inibindo a polimerização da HbS, e sua concentração varia de 0,1% a 30% e é geneticamente controlada.

A membrana dos eritrócitos que contém HbS é constantemente exposta a danos mecânicos que causam a sua ruptura e originam um estado de anemia hemolítica intravascular

crônica. Todas essas alterações diminuem a capacidade da permeabilidade celular. A contínua alteração da morfologia dos eritrócitos com HbS causam lesões crônicas da membrana celular, a ponto do eritrócito tornar-se irreversivelmente falcizado, acentuando os problemas não só em nível celular como também em nível circulatório (MACHADO, 2007; MANFREDINI *et al.*, 2007).

Essa grande variabilidade clínica e características hematológicas encontradas nos pacientes com anemia falciforme não só proporciona um desafio para a compreensão dos mecanismos envolvidos, mas também pode ser a chave para as estratégias de intervenção terapêutica. Assim, a caracterização bioquímica de diferentes proteínas da membrana eritrocitária pode contribuir para o diagnóstico, desenvolvimento de tecnologias e conduta terapêutica nas hemoglobinopatias.

Com o desenvolvimento de técnicas de laboratório, hoje é possível se ter um prognóstico para doença, logo nos primeiros meses de vida, proporcionando informações fundamentais que auxiliam os médicos na escolha do melhor tratamento para o paciente, assim os pacientes podem vir a ter uma melhor qualidade de vida. Como a anemia falciforme implica na modificação da membrana dos eritrócitos é importante o reconhecimento de marcadores moleculares relacionados à progressão da doença.

2 OBJETIVOS

2.1 Objetivo Geral

Identificar proteína (s) da membrana eritrocitária de pacientes com hemoglobinopatias que possam ser utilizadas como marcador (es) de progressão da doença.

2.2 Objetivos Específicos

- Identificar proteínas membranares relacionadas à anemia falciforme, utilizando como ferramenta Cromatografia de Troca Iônica, SDS-PAGE 1D e 2D e Espectrometria de Massa (MS);
- Isolar e correlacionar alterações em proteínas da membrana eritrocitária de portadores de anemia falciforme com seu quadro clínico e sua evolução clínica, visando um diagnóstico precoce com intuito de identificar critérios que possam ser usados como

fatores prognósticos e possibilitar a prevenção das crises vaso-oclusivas e o acompanhamento laboratorial da evolução da doença.

3 DESENVOLVIMENTO

3.1 Revisão Bibliográfica

3.1.2 A anemia falciforme

O Dr. James B. Herrick (1910), médico do Hospital Presbiteriano e professor de medicina da Rush Medical College, em Chicago, Illinois, foi o primeiro a descrever a anemia falciforme, através de um estudo de caso de um estudante indiano, onde encontrou glóbulos vermelhos em forma de foice. A anemia falciforme é mais frequente em indivíduos de origem africana, mais não é exclusiva. No Brasil a hereditariedade da doença falciforme foi constatada pela primeira vez no Estado da Bahia em 1947 (SILVA *et al.*, 2012).

Anemia falciforme é uma doença genética comum, grave, caracterizada por hemólise crônica, infecções frequentes, um estado inflamatório crônico e repetidas oclusões da microcirculação, resultando em crises dolorosas, danos a órgãos e morte prematura.

As variações como condições climáticas, sociais, econômicas, etnias e cuidados médicos contribuem para hereditariedade clínica, mas não explicam todo o seu contexto (CAJADO *et al.*, 2011; GALIZA NETO; PITOMBEIRA, 2003).

A AF esta presente em todo o mundo. O gene da HbS é muito frequente em toda América. No Brasil, a prevalência da AF (cerca de 4%) é maior entre a população negra e parda, mas ocorre também entre brancos, em uma porcentagem menor, devido à miscigenação ocorrida ao longo dos últimos séculos, sendo mais frequente nas regiões nordeste e sudeste (OLIVEIRA FILHO *et al.*, 2013). Estima-se que existam mais de 2 milhões de portadores da HbS heterozigotos e mais de 8 mil homozigotos (HbSS), sendo que há entre 700 a 1.000 novos casos anuais no país (GALARÇA *et al.*, 2014).

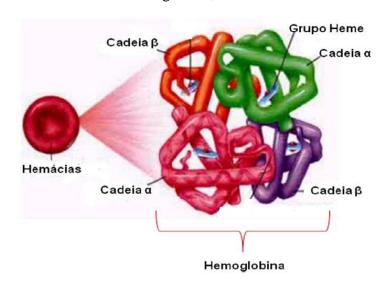
Segundo Valer *et al.* (2012), no Brasil há uma prevalência maior da AF no sexo masculino (1,43%), bem como nos indivíduos provenientes das regiões Nordeste (2,51%) e Sul (1,35%), caindo gradativamente nas regiões Sudeste (1,27%), Centro Oeste (1,19%) e Norte (0,85%).

Na região Sudeste, a prevalência estimada de heterozigotos é de 2% na população geral e de 6% a 10% entre os negros, nos estados do Rio de Janeiro e Minas Gerais

apresentando números intermediários com um caso novo para cada 1.200 nascimentos, já na região Nordeste, há um caso novo para cada quinhentos nascidos vivo no estado da Bahia. Quanto aos óbitos devidos à doença, estes são de aproximadamente 78,6% e ocorrem até os 29 anos de idade (LOBO *et al.*, 2007; MORAES; GALIOTI, 2010).

Durante o Fórum Nacional de Políticas Integradas de Atenção às Pessoas com Doença Falciforme, ocorrido em Belo Horizonte - MG, em 2007, foram propostas diversas resoluções relacionadas à previdência social, à educação, ao trabalho e geração de renda, que garantiriam a seguridade social dessa parcela da população. Na previdência recomendou-se ampliar o conceito de pessoa portadora de deficiência para pessoa portadora de necessidades especiais. Na educação foi proposto garantir condições de continuidade de estudos para suprir as faltas às aulas em virtude das crises da doença, com reposição das mesmas. Quanto ao trabalho e geração de renda, foi proposto qualificar e capacitar profissionalmente as pessoas com doença falciforme, respeitando as especificidades características da doença, para propiciar uma melhor inserção no mercado de trabalho (BRASIL, 2007).

Na África, um em cada 100 indivíduos desenvolve a doença e, na região Subsaariana, cerca 75% dos 300,000 nascimentos de crianças são afetadas pela AF (MAKANI *et al.*, 2011). Embora os dados sejam insuficientes para suportar afirmações definitivas, são consistentes quando se estima uma mortalidade precoce de 50-80% com AF antes da fase adulta.


De acordo com os padrões globais de migração, o número de portadores do gene da hemoglobina falciforme é crescente na Europa - estimada em cerca de 1% da população geral. Como tal, muitos países europeus introduziram programas para a detecção precoce de hemoglobinopatias em recém-nascidos. (PECES; PECES, 2011).

2.1.3 Hemoglobina

A hemoglobina é um tetrâmero composto de dois tipos de cadeias de globina (Figura 1), sendo que as cadeias do tipo alfa contêm 141 aminoácidos e as cadeias do tipo não alfa contém 146 aminoácidos. Cada cadeia proteica está ligada a um grupo heme; estes possuem um íon de ferro no seu centro, que forma seis ligações coordenadas: quatro com átomos de nitrogênio do grupo planar de porfirina, uma com átomo de nitrogênio da proteína e outra a uma molécula de O₂ (GALIZA NETO; PITOMBEIRA, 2003).

Sua principal função é a absorção, transporte e distribuição de oxigênio na corrente sanguínea, facilitando o seu acesso às células do organismo. E, simultaneamente, removendo

o dióxido de carbono resultante do catabolismo, colaborando na manutenção do equilíbrio ácido-base (GALIZA NETO; PITOMBEIRA, 2003).

Figura 1 - Molécula de hemoglobina, com suas duas cadeias alfa e beta.

Fonte: www.lookfordiagnosis.com

As hemácias humanas são caracterizadas pela sua forma discoide e a sua capacidade de sofrer deformação extensa passiva, durante a passagem repetida por várias vezes através dos capilares estreitos durante o seu período de vida de aproximadamente 120 dias na circulação.

As hemoglobinas anormais, ou variantes estruturais da hemoglobina, em sua maioria, resultam da substituição de um único aminoácido nas cadeias alfa ou beta sendo diferenciadas de acordo com a constituição das cadeias globínicas. Os tipos mais comuns são: hemoglobina A (HbA) constituída por duas cadeias alfa (α) e duas cadeias beta (β) ($\alpha_2\beta_2$), esta é a Hb predominante que representa cerca de 96% das moléculas totais em indivíduos sadios; hemoglobina A₂ (HbA₂) constituída de duas cadeias alfa (α) e duas cadeias delta (β) ($\alpha_2\delta_2$) (SANTOS; CHIN, 2012; SILVEIRA *et al.*, 2008).

De acordo com o tipo de alteração presente na hemoglobina, pode-se classificar essa hemoglobinopatia em formas clínicas distintas: forma homozigótica SS, que é a anemia falciforme (HbSS), e as formas heterozigóticas, representadas pelas associações de HbS com outras variantes de hemoglobinas, tais como: HbC, HbD e as interações com as talassemias $(\alpha, \beta^0 e \beta^+)$. As duas hemoglobinas variantes mais frequentes na população brasileira, são as hemoglobinas S e C, ambas de origem africana, evidenciando a intensa participação do negro

africano na composição populacional brasileira (FELIX; SOUZA; RIBEIRO, 2010; SILVEIRA *et al.*, 2008).

A hemoglobina fetal (HbF), é um tetrâmero de cadeias globínicas com duas cadeias 2α e 2y, sendo o maior modificador do curso clínico dos pacientes com anemia falciforme e α-talassemias. A HbF não se incorpora ao polímero hemoglobina falciforme (HbS), inibindo assim a polimerização da HbS que conduz a danos nos eritrócitos e a disfunção das α-talassemias. A HbF compensa a redução ou ausência de produção de HbA normal, assim devido à alta concentração de HbF nos primeiros meses de vida, os indivíduos são geralmente assintomáticos (SOLOVIEFF *et al.*, 2010).

3.1.4 A biologia molecular da anemia falciforme

A doença falciforme é decorrente da substituição de uma base Adenina por uma Timina que resulta em alelos diferentes, que quando transcrita, codifica uma hemoglobina defeituosa (HbS), que leva a formação de hemácias falcêmicas. Essa modificação faz com que em estados de baixos níveis de oxigênio haja exposição do resíduo hidrófico βVal6 que interage com βPhe85 e βLeu88 do grupo heme de outra molécula de HbS. Essa interação causa a polimerização das moléculas de HbS, provocando alterações morfológicas na estrutura dos eritrócitos, que culminam na deformação das células, que passam a adquirir forma de foice (SANTOS; CHIN, 2012).

Se uma pessoa recebe um gene do pai e outro da mãe para produzir a hemoglobina S, ela nasce com um par de genes HbSHbS e assim terá a doença falciforme. Se receber de um dos pais o gene para hemoglobina HbS e do outro o gene para hemoglobina HbA, ela terá o traço falciforme (HbAHbS), esses indivíduos são assintomáticos e não apresentam a doença, nem possuem anormalidades no número e forma das hemácias, no entanto estes devem saber que se tiverem filhos/filhas com outra pessoa que também herdou o traço, poderá vir a ter uma criança com a doença (BANDEIRA *et al.*, 1999; SILVA *et al.*, 2012).

A hemoglobina S quando desoxigenada *in vitro* sob condições próximas às fisiológicas, torna-se relativamente insolúvel e agrega-se em longos polímeros, os quais resultam do alinhamento de moléculas de hemoglobina S unidas por ligações não covalentes (STEINBERG, 1998).

A falcização dos eritrócitos ocorre pela polimerização reversível da HbS dentro da célula, sob condições de baixa oxigenação e concentrações elevadas de HbS no interior do eritrócito, sobretudo associada ao retardo na circulação sanguínea. Por outro lado, uma vez

que a hemoglobina for oxigenada em tempo hábil, a falcização se desfaz. Sob completa desoxigenação formam-se células em forma de foice, clássicas da anemia falciforme. Sob desoxigenação parcial podem existir pequenas quantidades de polímeros sem anormalidades morfológicas visíveis. A quantidade de polímeros aumenta progressivamente com a desoxigenação, até que as células vermelhas assumem a forma de foice. Este fenômeno é reversível com a oxigenação, desde que a membrana da célula não esteja definitivamente alterada. Quando isto ocorre formam-se os eritrócitos irreversivelmente falcizados, que permanecem deformados independentemente do estado da HbS intracelular. O acúmulo de hemácias falcizadas, desencadeia o fenômeno de vaso-oclusão e hipóxia, causando lesão tecidual, isquemia, dor, infarto e necrose em vários órgãos (GUALANDRO, 2001; MARTINS et al., 2010; VALER et al., 2012).

Pacientes sintomáticos de AF apresentam quadro clínico heterogêneo e há fatores que alteram a gravidade da doença como o tipo haplótipo associado à HbS, que pode ser um deles: Bantu (CAR, República Centro-Africana), Benin (Centro-Oeste da África), Senegal (Atlântico da África Ocidental), Camarões e Árabe-Indiano (também chamado de haplótipo Asiático ou Arábia Saudita), assim denominados por sua incidência geográfica. Este haplótipos quando associados ao nível de hemoglobina fetal (HbF) podem ter efeitos benéficos, já que o haplótipo Ben está associado a níveis intermediários de HbF e ao curso clínico da doença; o haplótipo CAR, que está associado a níveis diminuídos de HbF e grave quadro clínico e o Sen e Saudi Arabia estão associados a níveis elevados de HbF e curso clínico menos grave da doença. No Brasil prevalecem os haplótipos Bantu seguidos do Benin e Senegal. No Ceará predomina os haplótipos para HbS que foi de 66,2% para o tipo Bantu; 22%, Benin e de 11,8% para o tipo Atípico (SILVA; GONÇALVES; RABENHORST, 2009; SOUZA, 2013).

3.1.5 Fisiopatologia da doença falciforme

Sob condições de baixo teor de oxigênio, a ausência de um aminoácido polar na posição seis da cadeia β-globina promove a polimerização não covalente (agregação) da hemoglobina, o que distorce as células vermelhas do sangue numa forma de foice e diminui a sua elasticidade (Figura 2). Os eritrócitos em forma de foice não circulam adequadamente na microcirculação, resultando assim na obstrução do fluxo sanguíneo e na sua destruição precoce (MANFREDINI *et. al.*, 2007).

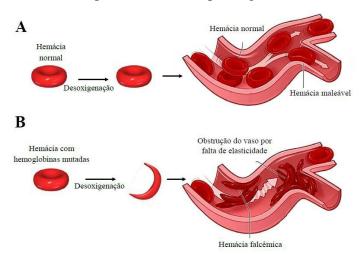


Figura 2 – Visão esquemática da fisiopatologia da anemia falciforme

Fonte: Gil (2012). Em $\underline{\mathbf{A}}$, está representado às hemácias normais quando oxigenadas e a sua circulação normal dentro dos vasos sanguíneos. Em $\underline{\mathbf{B}}$ está representado às hemácias com hemoglobinas mutadas e desoxigenadas que adquirem um formato de foice.

As manifestações clínicas das doenças falciformes resultam diretamente da anormalidade molecular representada pela presença da hemoglobina S em indivíduos homozigotos. Assim podem ser atribuídas alterações físicas no fluxo sanguíneo em nível de microcirculação. O gene da HbS também pode combinar-se com outras anormalidades hereditárias das hemoglobinas, como hemoglobina C (HbC), hemoglobina D (HbD), betatalassemia, dentre outros, gerando combinações que também são sintomáticas, denominadas, respectivamente, doença SC, doença SD, doença S/beta-talassemia. A AF pode exibir várias manifestações (chamadas de fenótipos patológicos), que incluem hipertensão pulmonar, acidente vascular cerebral (AVC), úlceras nos membros inferiores, osteonecrose, crises dolorosas e priapismo, entre outros problemas clínicos (HOSTYN *et al.*, 2011; JESUS; DEKERMACHER, 2009; ZAGO, 2001).

Existem vários fatores que participam da patogenia dos sintomas de AF. Dentre esses fatores, podemos citar: a percentagem de hemoglobina S e F, a tensão de oxigênio, os tipos de células afoiçadas, pH, viscosidade sanguínea, fragilidade mecânica das células afoiçadas e hemólise extravascular (HOLSBACH *et al.*, 2010).

Essa variabilidade clínica resulta da desoxigenação que leva à polimerização da HbS, e consequentemente à falcização das hemácias, e numerosos fatores condicionantes que podem vir a intensificar ou diminuir os efeitos da doença nos portadores de AF (ZAGO; PINTO, 2007). Alguns fatores influenciam no fenótipo da doença assim como o genótipo da

doença, fatores genéticos que podem influenciar no processo de polimerização da HbS, na resposta individual à doença e a fatores ambientais.

3.1.6 Principais sintomas relacionados à anemia falciforme

A gravidade dos sintomas e as manifestações hematológicas da anemia falciforme são variadas e influenciadas pela participação de vários genes na modulação do fenótipo da doença falciforme onde os polimorfismos destes genes podem estar relacionados com as diferentes manifestações entre os indivíduos. Algumas pessoas têm doença leve, que pode ser clinicamente inaparente, enquanto outros podem ter a maioria das complicações graves. As manifestações clínicas observadas nos pacientes com doença falciforme incluem:

3.1.6.1 Acidente vascular cerebral (AVC)

Uma das complicações mais sérias da AF e está associada à significativa morbidade e mortalidade. Estima-se que o tempo de vida do risco de acidente vascular cerebral está compreendido entre 8% e 10% (TAYLOR VI et al., 2002). As crianças com AF apresentam um risco aumentado de 300 vezes para o AVC (HOPPE et al., 2007), sendo geralmente um resultado de estenose ou obstrução dos grandes vasos intracranianos, incluindo a carótida distal interna, cerebral proximal média e artéria cerebral anterior. Em crianças ocorre por oclusão arterial, intracraniana e nos adultos, por trombose ou hemorragia. Alguns polimorfismos de nucleotídeos únicos (SNPs) como o VCAM1, ILAR e ADRB2 estão significativamente associados com o acidente vascular cerebral em indivíduos com AF (SEBASTIANI et al., 2005).

3.1.6.2 Crise de dor

Uma das principais causas de hospitalização e da má qualidade de vida dos pacientes acometidos com AF é a dor. Esta ocorre como resultado da obstrução da microcirculação causada pelo afoiçamento das hemácias. As crises dolorosas geralmente são de início agudo, duram em média de 3 a 5 dias, e ocorrem, às vezes, após episódio infeccioso, sugerindo que a febre, desidratação e acidose podem desencadear a vaso-oclusão, porém a causa da maioria dos episódios não é definida (LOBO *et al.*, 2007; MARQUES *et al.*, 2012; ZAGO; PINTO, 2007). As características da dor aguda são de início súbito, sem explicação, com intensidade

variável (leve a intensa), podendo durar horas ou dias, apresentando caráter persistente ou recorrente e migração de um local para outro do corpo. A dor crônica se caracteriza por durar de 3 a 6 meses ou mais, causando debilitação física e mental (ÂNGULO, 2003).

3.1.6.3 Priapismo

Definido como uma ereção prolongada e bastante dolorida do pênis que se não tratado corretamente associa-se a impotência, ocorrendo em 30-40% dos homens com AF (ELLIOTT *et al.*, 2007). Sendo comum em crianças, adolescentes ou adultos jovens, manifestando-se nas primeiras horas da manhã, podendo vir a causar a obstrução da drenagem venosa do pênis. A idade média de acometimento é de 20 anos, sendo que o primeiro episódio pode ocorrer ainda na infância. O priapismo pode ser intermitente, quando os episódios têm duração de 30 minutos a 4 horas, ou prolongado, quando se mantém por mais de 4 horas, podendo levar a fibrose e impotência. O mecanismo exato para episódios de priapismo em pacientes com AF ainda é pouco conhecido (ÂNGULO, 2003; BRUNETTA *et al.*, 2010; VICARI; FIGUEIREDO, 2007a).

3.1.6.4 Vaso-oclusão (VOC)

Caracterizada como crise de dor, os episódios de vaso-oclusão ocorrem devido à adesão de células sanguíneas à parede do vaso facilitada por componentes do plasma, resultando na obstrução do fluxo sanguíneo, em dores, isquemias e disfunção dos órgãos acometidos. A frequência com que as crises de dor ocorrem pode variar de quase diárias até menos de uma por ano, estas crises dolorosas duram em média 3 a 5 dias (MARQUES *et al.*, 2012). É uma das manifestações mais comuns entre os pacientes e aproximadamente 90% das internações dos pacientes são para tratamento desta complicação. Os locais mais frequentemente acometidos pela VOC são a região lombar (48,6%), o fêmur (29,5%) e os joelhos (20,8%) (BRUNETTA *et. al.*, 2010).

3.1.6.5 Síndrome torácica aguda (STA)

Caracterizada pelo aparecimento de um infiltrado pulmonar radiológico recente com sintomas respiratórios e dor torácica. Estima-se que cerca de 50% dos pacientes com AF apresentem pelo menos um episódio de síndrome torácica aguda (STA) no percurso da

doença, geralmente desenvolve-se após 24 a 72 horas da vaso-oclusão, nos membros ou no tórax (YOO *et al.*, 2002).

A STA é a segunda causa mais frequente de hospitalização, e a maior causa de internação em centro de terapia intensiva de pacientes com AF e com altas taxas de morbidade e mortalidade. Sua fisiopatologia é complexa e envolve infecção, embolia gordurosa (por necrose óssea), trombose pulmonar *in situ* e vaso-oclusão (BRUNETTA *et al.*, 2010; HOSTYN *et al.*, 2011).

3.1.6.6 Infecção

As infecções são as complicações mais frequentes nos indivíduos com AF, por terem a imunidade prejudicada, estando assim mais predisposto a infecções. Em crianças menores de 5 anos com AF a porcentagem da taxa de mortalidade é de cerca de 25 a 30% e o risco de adquirir algum tipo de infecção é 30 a 100 vezes maior do que em crianças saudáveis (DI NUZZO; FONSECA, 2004).

3.1.7 Diagnóstico da doença

O diagnóstico da anemia falciforme é baseado na análise da hemoglobina. Esta análise envolve eletroforese de proteínas, cromatografia e focalização isoelétrica que são baratas e mais acessíveis no mundo todo, mas hoje já se utiliza espectrometria de massa, análise do DNA da hemoglobina, técnicas que possuem alto rendimento, que são realizadas com amostras de sangue ou do cordão umbilical, para saber se individuo é portador, se possui traço ou se não tem a enfermidade. É possível que a hemoglobina seja detectável em fase precoce da vida fetal, a partir da 10^a a 12^a semana de gravidez, o que possibilitaria o diagnóstico prénatal da AF (DI NUZZO; FONSECA, 2004; REES *et al.*, 2010).

No Brasil a AF pode ser diagnosticada através do teste do pezinho, que deve ser realizado antes dos dois primeiros anos de vida da criança, que pode auxiliar na escolha da profilaxia mais adequada.

O Ministro de Estado da Saúde em 06 de junho de 2001 implantou o Programa Nacional de Triagem Neonatal n° 822, visando o diagnóstico da AF ainda nas primeiras semanas de vida dos recém-nascidos, este programa é constituído por três fases, são elas:

Fase I: Fenilcetonúria e Hipotireoidismo Congênito

Fase II: Inclui Doenças Falciformes e outras Hemoglobinopatias

Fase III: Inclui Fibrose Cística

Este programa apenas dar o diagnóstico se o indivíduo é portador ou não da AF, mas não possibilita o acompanhamento clínico e a evolução da doença que acometem os portadores de AF ao longo de sua vida. Ainda não há nenhuma cura definitiva para esta alteração genética (RAMALHO; MAGNA; SILVA, 2002).

O diagnóstico e tratamento precoce, assim como a prática preventiva que incluem a triagem neonatal, a educação dos cuidadores e dos pacientes, o aconselhamento nutricional, a imunização e a profilaxia com penicilina na prevenção da infecção pelo pneumococo, e até mesmo o transplante de células-tronco hematopoiéticas, contribuem aumentando a sobrevida, portanto diminuindo suas sequelas e atenuando as suas complicações clínicas, assim melhorar a qualidade de vida, das pessoas com AF que devem buscar acompanhamento em centros de referência especializados. O aconselhamento genético, em um contexto educativo, pode contribuir para reduzir a sua incidência (CANÇADO; JESUS, 2007; MORAES; GALIOTI, 2010; ZAGO, 2002).

3.1.8 Tratamento

O tratamento pode ser farmacológico e não farmacológico. Algumas medidas preventivas podem ser tomadas para diminuir os sintomas que incluem uma boa nutrição e profilaxia; diagnóstico e terapêutica precoce das infecções; aconselha-se evitar condições climáticas adversas e manter-se hidratado (SAAD, 2001).

Atualmente, o único fármaco disponível para o tratamento da AF é a hidroxiuréia, que age aumentando nível de hemoglobina fetal e reduzindo, portanto a polimerização da HbS. O uso de hidroxiuréia tem demonstrado eficácia, ao agir aumentando os níveis de hemoglobina fetal, do volume corpuscular médio, reticulocitopenia, da produção de óxido nítrico, da eritropoetina e do fator de necrose tumoral alfa, da hidratação dos glóbulos vermelhos e redução na expressão de moléculas de adesão na membrana eritrocitária. Seu uso já é aprovado para o tratamento de pacientes, incluído crianças com AF moderada e/ou grave que tenha tido três ou mais episódios de crise dolorosa e síndrome torácica aguda no ano anterior. O tratamento com hidroxiuréia não deve ser feito por gestantes e por mulheres que desejam ter filhos por ser um medicamento teratogênico. No entanto é a terapia de maior sucesso para AF, desde que se considerem os critérios descritos no Protocolo Clínico e Diretrizes Terapêuticas da Doença Falciforme, Portaria SAS/MS nº 872, de 06 de novembro de 2002 (BANDEIRA *et al.*, 2004; FIGUEIREDO, 2007a; PLATT, 2008).

Outras alternativas utilizadas para diminuir a morbidade são os transplantes de células tronco hematopoiéticas e a terapia de transfusão de sangue que são utilizadas por aquelas pessoas que não obtiveram uma boa resposta ao tratamento com hidroxiuréia. O transplante de células tronco hematopoiético, apesar de ser uma medida curativa, quando há doador compatível é considerado de alto risco por apresentar grande índice de complicações e mortalidade (SILVA; SHIMAUTI, 2006).

Para a prevenção de infecções por pneumococo aconselha-se o tratamento com penicilina até os cincos anos de idade, porém nem sempre é uma terapia funcional, já que a resistência de pneumocócica à penicilina ou pela possibilidade de infecções por outros organismos encapsulados vem aumentando cada dia. A imunização dos pacientes com a administração de vacinas também é um processo muito importante para portadores de AF, pois melhorar a qualidade de vida e aumenta os índices de sobrevivência (DI NUZZO; FONSECA, 2004).

3.1.9 A membrana eritrocitária

A membrana plasmática do eritrócito é constituída por uma bicamada lipídica com 42% de lipídios, 52% de proteínas e 7% de carboidratos que apresenta papel importante na manutenção da forma bicôncava da célula. No eritrócito normal o lado externo é composto por fosfatidil-colina e esfingomielina, o lado interno contém serina e fosfatidil-etanolamina. Nas células falciformes, essa assimetria é perdida, pois a fosfatidilserina está localizada no lado externo, o que pode estar relacionado ao aumento de aderência das células e sua contribuição para o processo de vaso-oclusão. Os eritrócitos constituem um mecanismo eficaz de transporte de gases no sangue, função essa facilitada por sua geometria discoide e bicôncava (DOMINGOS *et al.*, 1997; PINTO *et al.*, 2013).

As proteínas que compõem a membrana eritrocitária são classificadas em integrais ou transmembranárias e periféricas ou extramembranárias. Essas últimas proteínas compõem o citoesqueleto membranário, uma verdadeira malha que constitui uma espécie de concha para o material intracelular. Este citoesqueleto é responsável pela forma, bicôncava normal ou anormal, em caso de defeitos genéticos dos glóbulos vermelhos, e representa por si só 60% da massa proteica de toda a membrana (MURADOR; DEFFUN, 2007).

Das diferentes proteínas da membrana eritrocitária, o domínio citoplasmático da banda 3, destaca-se como um grande centro organizacional que interage com muitas outras proteínas periféricas ou ligantes: anquirina, espectrina-actina considerada a maior ponte para o

citoesqueleto, proteína 4.1, proteína 4.2, aldolase, gliceraldeído-3-fosfato, desidrogenase, fosfofrutoquinase desoxihemoglobina, tirosinaquinase e hemicromos, que regulam a interação do citoesqueleto com enzimas glicolíticas (MURADOR; DEFFUN, 2007).

A polimerização da HbS altera o eritrócito, fazendo com que a célula perca seu formato discoide, tornando se alongada com filamentos na sua extremidade. A contínua modificação do eritrócito da HbS causam lesões da membrana celular a ponto de torna-lo irreversivelmente falcizado, causando problemas não apenas no nível celular, mas também circulatório. Dentre as alterações da membrana temos os seguintes eventos: rearranjo das proteínas espectrina-actina, diminuição de glicoproteínas, geração de radicais livres, externalização da fosfatidilserina e aceleração da apoptose, devido ao aumento da atividade citosólica de cálcio (GALARÇA *et al.*, 2014).

No processo de falcização, em nível celular, as células irreversivelmente falcizadas nos homozigotos HbSS representam entre 4 e 44% do total dos eritrócitos. Assim os eritrócitos irreversivelmente falcizados, formados em decorrência do afoiçamento, são removidos e destruídos tanto no meio extravascular, como intravascular, encurtando assim a sua sobrevida média eritrocitária para cerca de 17 dias, contribuindo dessa forma para o agravamento da anemia (MANFREDINI *et al.*, 2007; SILVA; SHIMAUTI, 2006). A concentração de HbS é um fator determinante do início e da progressão da falcização, da capacidade do eritrócito em manter sua hidratação, e consequentemente do volume intracelular que é importante na fisiopatologia da AF. As alterações no volume eritrocitário induzem ao desequilíbrio da relação desidratação/hidratação do eritrócito (FIGUEIREDO, 2007b).

4 MATERIAIS E MÉTODOS

4.1 Amostras

A população foi composta por 55 pacientes, dos quais 37 compuseram inicialmente a amostra. Para a análise dos dados estes pacientes foram categorizados em: pacientes sem crise no momento da coleta das amostras (PSC) e pacientes com crise no momento da coleta das amostras (PC). O critério de exclusão foi adotado para os pacientes que estavam em tratamento com hidroxiuréia ou foram submetidos a repetidas transfusões sanguíneas durante o período de coleta das amostras. A investigação hematológica foi realizada em 37 pacientes. Para a análise proteômica, foram selecionados três pacientes: PSC (n=3); PC (n=3). Dois

voluntários sem diagnóstico de anemia falciforme, sendo um masculino e outro feminino, formaram o controle GC (n=2).

Os participantes assinaram o Termo de Consentimento Livre e Esclarecido (anexo 1), seguindo as normas que regulam a pesquisa em seres humanos.

Este trabalho foi aprovado pelo Comitê de Ética da Universidade Vale do Acaraú - Processo: 304425 (anexo 2).

4.2 Coleta de material venoso e extração de proteínas

Amostras de sangue periférico de pacientes (PC e PSC) e grupo controle (GC) foram coletadas em tubos BD vacultainer com hepaina sódica 143 USP Units e conservados em 4°C até o momento de sua manipulação.

Inicialmente, as amostras de sangue foram lavadas três vezes com NaCl 0,15 M, centrifugadas a 1.500 rpm durante 5 minutos. Em seguida o precipitado contendo os eritrócitos foi ressuspenso em tampão fosfato de sódio (PBS) 5 mM pH= 8,0, por 20 minutos x 1000 rpm por 2 vezes e refrigerado a 4°C. Para a extração das proteínas de membrana, a cada mL da solução estoque acondicionado em microtubos foi adicionado 100 μL de tampão de lise (tampão Hepes 0,01 M pH 7,2 com 0,1% Tween 20). Após 4 horas armazenados a 4°C, esta solução foi homogeneizada usando-se vortex, a intervalos de 5 minutos, durante 30 minutos. Após a solubilização, as proteínas foram separadas por centrifugação a 12.100 rpm durante 10 minutos, a 4°C. Em seguida, as amostras foram dialisadas com água Mili-Rios em sacos de diálise de 5 a 10 kDa durante 3 dias consecutivos, com intervalo de troca a cada 4 horas. As proteínas solubilizadas foram estocadas a -20°C em tubos Falcon de 15 mL e liofilizadas a temperatura de -49°C e pressão de 0,060 mBar de mercúrio. A concentração de proteínas foi determinada por absorbância a 595 nm, pelo método de quantificação por Bradford (1976).

4.3 Cromatografia Líquida de Alta Eficiência (HPLC) Troca iônica

Após a extração, as proteínas de membrana foram solubilizadas em solução Tris HCl 0,1 M, pH 7,6 na proporção 1:1 (mg/mL) e submetidas a Cromatografia Líquida de Alta Eficiência (HPLC -Akta Explorer, GE - Healthcare) em coluna de troca iônica HiTrap Q-Sepharose FF. A eluição foi realizada com as soluções Tris HCl 0,1 M, pH 7,6, e Tris-HCl 0,1M contendo 2 M de NaCl, pH 7,6, sob pressão de 0,28 MPa, com um padrão de

absorbância das proteínas variando de 0 a 180 mAU e um volume de eluição de 0 a 20 mL do tampão aplicado a coluna. Os dados de eluição foram tabulados utilizando o software UNICOR 5.1.

4.4 Eletroforese uni-dimensional

As proteínas extraídas de membranas dos pacientes e do grupo controle foram submetidas à eletroforese vertical em gel de poliacrilamida (SDS-PAGE) de acordo com a metodologia descrita por LAEMMLI (1970). Os géis foram montados entre placas de vidro de 18 x 16 cm. O gel de separação contendo 2,7 mL de acrilamida/bisacrilamida 22,2%; 1,75 mL de Tris-HCl 1 M, pH 8,8, 50 µL de SDS 10%, 25 µL de persulfato de amônio 10%; 2,5 µL de TEMED e 345 µL de água destilada e, após a polimerização, completado com gel de empilhamento contendo 0,5 mL de acrilamida/bisacrilamida 22,2%; 312,5 µL de Tris-HCl 1M, pH 8,8; 25 μL de SDS 10%; 12,5 μL de persulfato de amônio 10%; 1,5 μL de TEMED e 1,65 mL de água destilada. Em cada poço foram aplicadas 1 µL de amostras de proteína em 10 μL de tampão de amostra contendo 25 mL de glicerol, 750 μL de azul de bromofenol, e 5 μL de 2-mercaptoetanol. Para estimar a massa molecular aparente foi utilizado o marcador Protein mixture lot 4630784 (GE Healthcare). A corrida eletroforética teve duração de 80 min, em cuba vertical de acrílico (Amerham Biociences) contendo tampão de corrida (30,285 g de Glicina, 144 g de Tris, 10g de SDS), com amperagem constante de 25 mA. O gel foi fixado com solução de etanol, ácido acético e água (4:1:5, v:v:v) por 15 minutos, coradas com Coomassie brilliant blue G-250 98% por 24 horas e, em seguida, descoradas em água destilada à 100°C, para remover o corante residual.

4.5 Eletroforese bi-dimensional

4.5.1 Isoeletrofocalização

A isoeletrofocalização (IEF) das proteínas foi realizada usando-se tiras de 7 cm com gradiente imobilizado de pH 3-10 (IPG) em equipamento IPGphor (GE Healthcare).

As amostras (150 μg/mL) foram aplicadas nas tiras IPG em solução de reidratação contendo 7 M de ureia, 2 M de tiureia, 1% de CHAPS, 0,5% de tampão IPG, 65 mM de DTT e traços de azul de bromofenol 0,002%. A reidratação foi realizada no equipamento IPG Box, a temperatura ambiente, durante 16 horas.

A IEF foi iniciada logo após o término da reidratação. Foram feitas quatro etapas totalizando 24459 Vh, durante 8 horas, a 50 V. Após a IEF as tiras foram imediatamente armazenadas em congelador -20°C para posterior utilização.

Após IEF as tiras foram equilibradas em 5 mL de tampão de equilíbrio (1,5 M/L Tris-HCl, 6 mol/L uréia, 87% (p/v) glicerol e 1 g SDS, traços de azul de bromofenol e 57,8 mg de DTT) por 15 minutos à temperatura ambiente em agitação.

Em seguida, as tiras foram equilibradas na mesma solução por 15 minutos, sendo o DTT substituído por 69,3 mg de iodoacetamida. Após as duas etapas de equilíbrio as tiras foram submersas em tampão de corrida e imediatamente submetidas à segunda dimensão: eletroforese em gel de poliacrilamida na presença de SDS (SDS-PAGE), conforme descrito no item 3.5.

4.5.2 Coloração dos géis

Foi utilizada coloração com Coomassie brilliant blue G-250, seguida de coloração com Kit nitrato de prata (Sigma). Para corar com Coomassie G-250, as proteínas foram fixadas ao gel durante 30 minutos com uma solução contendo 10% (w/v) ácido acético e 40% (v/v) etanol. Após esta etapa, o gel foi corado por um período de 24 horas em 300 mL de solução corante coloidal contendo 85% ácido fosfórico, sulfato de amônio, Coomassie G-250 e metanol, e logo em seguida armazenados em 300 mL de acido acético 5%.

Os géis bidimensionais foram corados com o kit de coloração com prata Sigma de acordo com o protocolo estabelecido pelo fabricante.

4.5.3 Captura das imagens e análise dos géis

As imagens dos géis mono e bidimensionais foram digitalizadas utilizando o digitalizador Labscan (GE Healthcare). As análises foram feitas utilizando o Programa ImageMaster TM Platinum v. 6.0 (GE Healthcare). O gradiente de pH do gel foi calibrado conforme a faixa de pH da tira utilizada e a massa molecular foi calculada utilizando marcadores com massa molecular conhecida entre 14 e 97 kDa (GE Healthcare).

4.5.4 Análise estatística

Os valores foram expressos em média ± S.E.M. A fim de comparar pontos isoelétricos e características de peso molecular de proteínas extraídas de membrana de eritrócitos humanos foi usado o teste de ANOVA, seguido por teste post-hoc de Bonferroni, para comparações múltiplas. Probabilidade (P) - valores inferiores a 0,05 foram considerados significativos. Todas as análises estatísticas foram realizadas utilizando o GraphPad InStat (versão 6.0, 2012, San Diego, Califórnia, EUA), sistema de software.

4.6 Espectrometria de Massa

4.6.1 Extração de peptídeos

Os spots do gel 2D corados com prata foram retirados usando uma lâmina de bisturi, transferidos para microtubos e descorados com duas lavagens com 200 µL de uma solução de acetonitrila 50% e bicarbonato de amônio 25 mM, pH 8,8 sob constante agitação, overnight no shaker. Em seguida, os spots foram desidratados com duas lavagens com 200 µL de acetonitrila em bicarbonato de amônio 25 mM, pH 8,8, sob agitação no vortex, sendo a solução removida em centrifuga à vácuo. Posteriormente foram adicionados aos tubos 100 µL de DTT 65 mM em bicarbonato de amônio 100 mM, seguidos por 30 minutos, a 56°C, em banho-maria, após a solução foi removida em centrifuga à vácuo. Logo em seguida, foi adicionado 100 µL de iodoacetamida 200 mM em bicarbonato de amônio 100 mM, seguidos por 30 minutos, a temperatura ambiente, no escuro. Após a solução foi removida em centrifuga à vácuo.

Em seguida, foram adicionados 200 μL de bicarbonato de amônio, por 10 minutos, seguido da adição de 200 μL de acetonitrila 100% por 5 minutos. Este passo foi repetido uma vez. Logo após os spots foram novamente irrigados com 200 μL de acetonitrila 100%, sendo em seguida removida em centrifuga à vácuo.

Após a secagem foram adicionados 200 μL de uma solução contendo tripsina (1 μg/ul) e deixados no gelo por 45 minutos. Em seguida foram adicionados 50 μL de solução de bicarbonato de amônio 40 mM em acetonitrila 10%, deixado overnight a 37°C para a completa digestão e fragmentação das proteínas.

As soluções contendo tripsina e bicarbonato de amônio foram coletadas e transferidas para tubos novos, e ao tubo anterior, contendo os fragmentos de géis, foi adicionada uma

solução de ácido fórmico 5% e acetonitrila 50% e deixado por 15 minutos em repouso. Após esse tempo a solução foi removida e transferida para o tubo contendo a primeira solução retirada.

O procedimento anterior com ácido fórmico 5% e acetonitrila 50% foi repetido e essa solução também foi transferida para o tubo contento os outros extratos e concentradas usandose centrifuga a 14.000 rpm por 30 s.

Após secagem à vácuo, os peptídeos foram guardados em freezer para posterior análise por espectrometria de massa.

4.6.2 Identificação das proteínas por espectrometria de massa de ESI-Q-TOF

Para LC-MS/MS, as amostras digeridas foram injetadas utilizando o gestor de amostra nano ACQUITY UPLC e a separação cromatográfica foi realizada utilizando uma coluna de UPLC C18 (75 mm x 20 cm) com um caudal de 0,30 mL/min. Os espectros de massa foram adquiridos num instrumento SYNAPT G1 HDMS Acquity UPLC (Waters Co., Milford, MA, EUA) utilizando uma aquisição de dados dependente (DDA), onde os três picos principais foram submetidos a MS/MS. Fases móveis A e B consistiam em ácido fórmico a 0,1% em água e ácido fórmico a 0,1% em acetonitrila, respectivamente. As condições do gradiente foram usadas como se segue: 0 min com 3% de B, aumentando linearmente para 40% de B em 20 min, em seguida, aumentada até 70% de B em 40 min, onde permaneceu até 50 min e no minuto seguinte foi diminuída para 3% de B. Os dados foram processados utilizando o Protein Lynx Servidor Global software (Waters Co., EUA) e submetidos à pesquisa do banco de dados SwissProt usando MASCOT, como mecanismo de busca (PERKINS et al., 1999). A análise foi realizada supondo-se que não ocorreu perda de clivagem triptica, que os peptídeos eram monoisotópicos e usando resíduos de metionina parcialmente oxidados e resíduos cisteína completamente carbamidometilado. Tolerância da massa dos peptídeos e a tolerância da massa do fragmento foram inicialmente estabelecidas a ± 0,1Da, respectivamente, por MS/MS. No entanto, as IDs dos peptídeos encontrados foram consideradas quando os valores de m/z foram de aproximadamente 0,1Da (normalmente menos do que 0,05Da) da massa teórica.

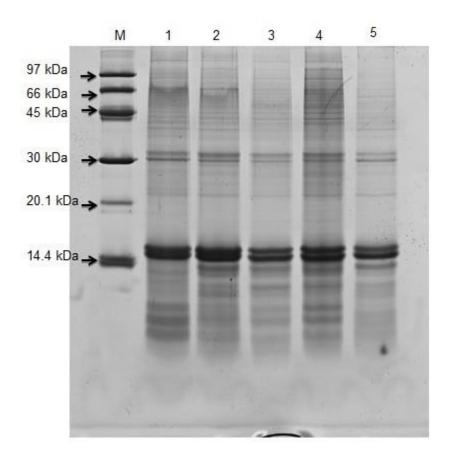
5 RESULTADOS

A análise das proteínas de membrana de eritrócitos do paciente com crise (PC), sem crise (PSC) e voluntários sem diagnóstico de anemia falciforme - Grupo Controle (GC) é apresentada na Tabela 1. Foi constatado que na membrana de eritrócitos dos pacientes em crise (PC) havia menor concentração de proteínas, quando comparado ao grupo controle (GC), nas faixas de eluição 0 a 2,5 mL (6 vezes mais proteínas no GC) e 2,5 a 5 mL (17 vezes mais proteínas no GC), não havendo diferenças na concentração de proteínas entre estes dois grupos na faixa de eluição de 5 a 10 mL. Por outro lado, a concentração de proteínas eluidas entre 10 e 20 mL foi maior nos PC que no GC.

Foram identificadas diferenças significativas na concentração de proteínas dos pacientes PC e PSC nas faixas de eluição 0 a 2,5 mL (8 vezes mais proteínas no PSC) e 2,5 a 5 mL (15 vezes mais proteínas no PSC).

Os resultados permitem apontar diferença significativa entre as concentrações totais de proteínas de membrana de eritrócitos quando comparados PC, PSC e GC. Ficou constatada, ainda, redução significativa da quantidade total de proteína presente na membrana dos eritrócitos durante as crises: PC1 - 20,7%, PC2 - 45,2% e PC3 - 34,2%.

Tabela 1 - Valor da absorbância*/faixa de eluição das amostras de proteína de membrana de eritrócitos, utilizando-se cromatografia de troca iônica. **GC** - grupo controle; **PSC** - paciente sem crise; **PC** - paciente com crise.


	Valor da absorbância*/Faixa de eluição (mL)						
Amostras	0 a 2,5	2,5 a 5,0	5,0 a 10,0	15,0 a 17,0			
GC1	95	15	15	8			
GC2	85	20	10	0			
PSC1	80	15	20	7			
PSC2	70	10	10	0			
PSC3	100	20	20	5			
PC1	15	1	5	5			
PC2	5	1	10	5			
PC3	10	1	10	10			

^{*} Absorbância a 280 nm

Na Figura 3 (eletroforese unidimensional - SDS-PAGE), as amostras apresentaram bandas proteicas semelhantes entre si na faixa de 14,4 e 30 kDa. Observa-se que as proteínas,

embora presentes nas mesmas faixas de massa molecular aparente parecem diferir quanto à concentração, confirmando os dados cromatográficos. Aparentemente, a concentração destas proteínas parece variar nos pacientes com AF.

Figura 3 - SDS-PAGE 12% de proteínas de membrana de eritrócitos de pacientes falcêmicos e grupo controle. **PSC**= paciente sem crise; **PC**= paciente com crise; **M** - marcador de peso molecular; **1** - Controle; **2** - PSC1; **3** - PC1; **4** - PSC2; **5** - PC2.

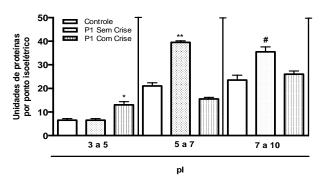
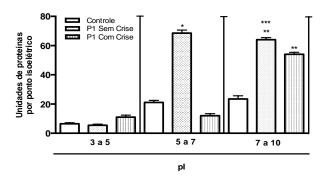
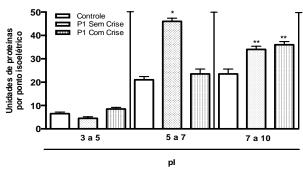

Os mapas de géis bidimensionais contendo proteínas de membrana de eritrócitos dos controles e dos pacientes com (PC) e sem crise (PSC) revelaram maioria dos spots na faixa de pH variando de 7 a 10 (Tabela 2, Gráfico 1a e 1b, e Figura 4).

Tabela 2 – Distribuição, por ponto isoelétrico e massa molecular aparente, dos spots obtidos por SDS-PAGE 2D de proteínas de membrana de eritrócitos de **GC** - grupo controle; **PSC** - paciente sem crise; **PC** - paciente com crise.

Variáveis				Amos	tras			
	GC1	GC2	PSC1	PSC2	PSC3	PC1	PC2	PC3
Ponto isoelétrico								
3 a 5	7	6	6	5	4	12	10	8
5 a 7	20	22	39	67	45	15	11	22
7 a 10	22	25	34	63	33	25	53	35
Total	49	53	79	135	82	52	74	65
Spots por massa molecular								
<20 kDa	30	33	38	51	29	22	29	25
20 a 40 kDa	14	15	12	33	22	10	19	18
40 a 60 kDa	1	1	23	40	26	16	23	19
60 a 80 kDa	3	3	6	11	5	4	3	3
≥80 kDa	1	1	0	0	0	0	0	0
Total	49	53	79	135	82	52	74	65

.

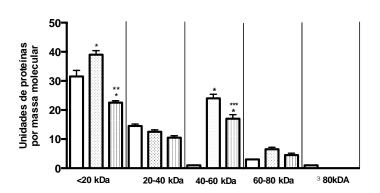

Gráfico 1a – Proteínas de membrana de eritrócito isoladas por HPLC-Troca Iônica e Espectrometria de Massa e analisadas por SDS-PAGE 2D, de acordo com pI.


*p<0,05 em relação ao P1 sem crise

**p<0,0001 em relação ao P1 com crise

#p<0,01 em relação ao P1 com crise

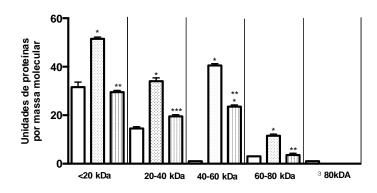
*p<0,0001 em relação ao controle e em relação ao P2 com crise


*p<0,0001 em relação ao controle e em relação ao P3 com crise

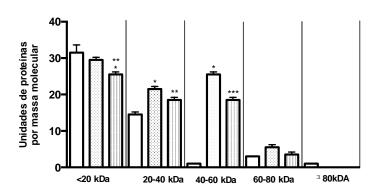
^{**}p<0,0001 em relação ao controle

^{***}p<0,01 em relação ao P2 com crise

^{**}p<0,01 em relação ao controle


Gráfico 1b – Proteínas de membrana de eritrócito isoladas por HPLC-Troca Iônica e Espectrometria de Massa e analisadas por SDS-PAGE 2D, de acordo com massa molecular aparente..

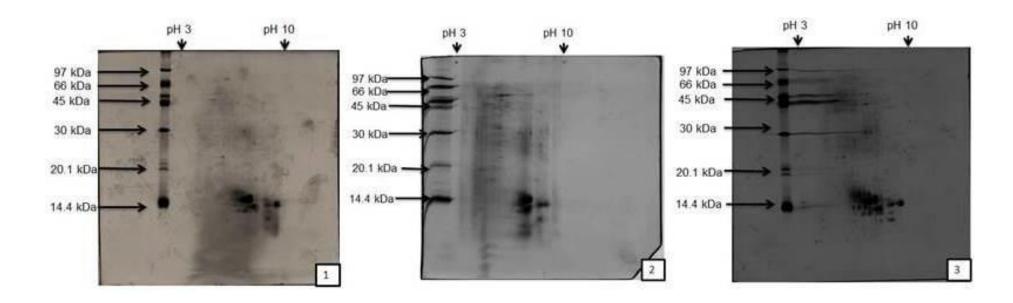
*p<0,0001 em relação ao controle


**p<0,0001 em relação ao P1 sem crise

***p<0,01 em relação ao P1 sem crise

*p<0,0001 and ***p<0,01 compared to control

**p<0,0001 compared to P2 without crisis



*p<0,0001 compared to control

**p<0,05 compared to P3 without crisis

***p<0,0001 compared to P3 without crisis

Figura 4 - Mapas de géis de eletroforese bidimensionais de proteínas de membrana de eritrócitos de pacientes falcêmicos e grupo controle. 1. Grupo controle 1 (GC1); 2. Paciente **sem** crise 1 (PSC1); 3. Paciente **com** crise 1 (PC1).

Os resultados revelaram que para o GC há predomínio de proteínas com pI na faixa de pH 7 a 10, sendo mais baixa na faixa de pH de 3 a 5. Importante observar que nos pacientes PSC o número de proteínas com pI entre 3 a 5 cai pela metade quando comparado com aqueles com crise (PC). Identifica-se predomínio de proteínas na faixa de pH 7 a 10 nos PC, enquanto os PSC expressam mais proteínas na faixa de pH 5 a 7.

Análise da distribuição das proteínas em relação à massa molecular aparente identifica proteínas na faixa de <20 a 80 kDa. Nos controles, bem como nos pacientes PC e PSC, foi encontrado predomínio de proteínas com massa molecular <20 kDa, sendo observado apenas 1 spot com massa entre 40 e 60 kDa, bem como 1 spot maior que 80 kDa. Cabe destacar que a concentração destas proteínas é maior nos pacientes PSC.

Ao contrário do que foi observado no GC, não foi identificado nenhum spot maior que 80 kDa entre os pacientes, independentemente de estarem ou não com crise falcêmica. Por outro lado, os pacientes apresentavam, em média, concentração 30 vezes maior de proteínas com massa molecular aparente variando entre 40 a 60 kDa quando comparados ao GC.

Também se observa que a membrana eritrocitária de pacientes PSC expressa até 40 vezes mais proteínas com massa molecular variando entre 40 e 60 kDa que o controle e que esta quantidade é menor nos pacientes PC (média de 19 spots). De fato, todos os pacientes apresentaram maior quantidade de proteínas no período assintomático (PSC), quando comparados ao período sintomático (PC).

As proteínas de membrana extraídas de eritrócitos falcêmicos (PC e PSC) e separadas utilizando Eletroforese Bidimensional e Espectrometria de Massa, foram submetidas a identificação usando como ferramenta o programa TagIdent. O programa TagIdent permitiu identificar proteínas através da correlação de seu pI e Massa Molecular Aparente, com aqueles depositados no banco de dados do ExPASy.

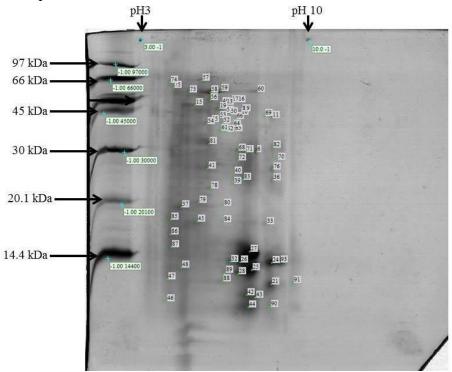

Foram utilizadas 589 proteínas diferentes, obtidas das amostras descritas na Tabela 3 (Apêndice). A partir do cruzamento de informações no banco de dados SwissProt usando TagIdent do ExPASy foi possível identificar 148 proteínas distintas. Por outro lado, 11 proteínas (seis extraídas de membrana de eritrócitos de pacientes com crise e cinco extraídas de membrana de eritrócitos de pacientes sem crise) não puderam ser identificadas usando este banco de dados, sugerindo que existe na membrana de eritrócitos falcêmicos, alterações quantitativas na expressão de proteínas (Tabela 4).

Tabela 4 - Relação de proteínas de membrana de eritrócitos falcêmicos separadas utilizando Eletroforese Bidimensional e Espectrometria de Massa não identificadas no TagIdent do ExPASy. **pI** ponto isoelétrico; **MW** massa molecular; **PSC** paciente sem crise; **PC** paciente em crise.

				Proteínas	
SpotID	pΙ	MW	Código de acesso	identificadas no	Amostra
				TagIdent	
25	7.58182	13430.0	Não encontrado	Não encontrado	PC
36	7.37853	13882.0	Não encontrado	Não encontrado	PC
42	7.35909	11475.0	Não encontrado	Não encontrado	PC
44	7.41477	10626.0	Não encontrado	Não encontrado	PC
59	5.14802	50133.0	Não encontrado	Não encontrado	PSC
74	4.16932	64260.0	Não encontrado	Não encontrado	PC
128	7.37989	13718.0	Não encontrado	Não encontrado	PSC
163	3.97765	63040.0	Não encontrado	Não encontrado	PSC
769	7.31176	13657.0	Não encontrado	Não encontrado	PC
786	7.15882	11837.0	Não encontrado	Não encontrado	PSC
798	6,48793	10964.0	Não encontrado	Não encontrado	PSC

Foram descriminados 71 pontos no gel 2D de proteínas de membrana de eritrócitos de pacientes com anemia falciforme, dos quais 38 spots foram excisados para análise por Espectrometria de Massa (Figura 5).

Figura 5 - SDS-PAGE 2D de proteínas de membrana de hemácias do paciente - PSC1com anemia falciforme. O gel mostra a distribuição dos spots de proteínas de pH entre 3 - 10 e massa molecular aparente variando de 14.4 kDa a 97 kDa.

Os dados para cada proteína identificada incluem a descrição da proteína designada, massa molecular, pI e a cobertura das sequência das proteinas e número de sequência. Como esperado, algumas proteínas foram encontradas em mais de um ponto. Identificamos as seguintes proteinas com pI diferentes: HBA_HUMAN nos pontos 24, 28 e 93, HBB_HUMAN nos pontos 25, 26 e 27, FIBB_HUMAN nos pontos 58, 59 e 60; CAH1_HUMAN, ALBU_HUMAN, PRDX2_HUMAN e FIBG_HUMAN em apenas um ponto cada (Tabela 5). A proteína HBB_HUMAN foi identificada com uma elevada cobertura.

Tabela 5 - Lista das proteínas de paciente com anemia falciforme PSC1 identificadas pelo MASCOT.

SpotID	Proteína	Proteína descrita	Massa	pI	Score	Coberturadas sequências das proteínas	Matches	Sequências
06	CAH1_HUMAN	Carbonic anhydrase 1 OS=Homo sapiens GN=CA1 PE=1 SV=2	28909	6.59	50	8%	2(0)	2 (0)
24	HBA_HUMAN	Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2	15305	8.72	251	42%	8(2)	6(1)
25	HBB_HUMAN	Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2	16102	6.75	471	72%	21(12)	9(6)
26	HBB_HUMAN	Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2	16102	6.75	344	57%	10(5)	7(4)
27	HBB_HUMAN	Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2	16102	6.75	669	78%	42(19)	12(8)
28	HBA_HUMAN	Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2	15305	8.72	83	16%	2(1)	2(1)
56	ALBU_HUMAN	Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2	71317	5.92	123	5%	3(1)	3(1)
58	FIBB_HUMAN	Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2	56577	8.54	871	39%	22(10)	15(7)
59	FIBB_HUMAN	Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2	56577	8.54	472	29%	13(6)	11(4)
60	FIBB_HUMAN	Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2	56577	8.54	116	10%	4(1)	4(1)
79	PRDX2_HUMAN	Peroxiredoxin-2 OS=Homo sapiens GN=PRDX2 PE=1 SV=5	22049	5.66	203	15%	4(3)	4(3)
81	FIBG _HUMAN	Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3	52106	5.37	173	9%	4(2)	4(2)
93	HBA_HUMAN	Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2	15305	8.72	178	31%	6(3)	4(2)

6 DISCUSSÃO

Os eritrócitos normais possuem a capacidade de sofrer deformações extensivamente durante a passagem repetida através dos capilares estreitos. Os eritrócitos falcêmicos apresentam membrana mais rígida devido às alterações físico-químicas em sua estrutura, o que torna sua meia vida mais curta. Em resposta, o organismo aumenta a produção de novos eritrócitos, o que influencia na concentração de proteínas (AN; MOHANDAS, 2008).

Os cromatogramas aqui apresentados sugerem que existem diferenças significativas nas proteínas de membrana de eritrócitos, quando comparados pacientes e grupo controle, bem como quanto comparado o paciente com e sem crise falcêmica (PC e PSC).

As diferentes concentrações de proteínas na membrana de eritrócitos falcêmicos podem estar relacionadas às alterações na membrana que desencadeiam as crises de vaso-oclusão. De fato, algumas proteínas presentes na membrana sofrem modificações após sua síntese para atuarem em diversas funções como no reconhecimento de moléculas e interação célula-célula (LAUC; ZOLDOŠ, 2010). Na AF, essa alteração se apresenta de forma distinta em cada paciente, permitindo que sua investigação seja correlacionada com a intensidade e a frequência das crises. Neste trabalho, ao se analisar as proteínas de membrana de eritrócitos identificadas pelo TagIdent Expasy (portal com recursos de bioinformática) observou-se padrões de modificações pós-traducionais em glicoproteínas, lipoproteínas e fosfoproteinas, o que reforça nossa hipótese de que há mudanças significativas na quantidade de proteínas presente na membrana do eritrócito.

Kakhniashvili *et al.* (2005) estudando a proteômica da AF, ao analisar a membrana de eritrócitos dos pacientes, encontraram pI aparente variando de 4.4 a 10 e predomínio de spots na faixa de 7 a 10. No presente trabalho encontrou-se predominância de proteínas com pI variando de 7 a 10, sendo que em maior número quando as amostras de sangue foram coletadas de pacientes sintomáticos. No grupo PSC houve leve predomínio de proteínas na faixa de pI 5 a 7.

Em relação à massa molecular aparente, Kakhniashvili *et al.* (2005) descrevem variação de 22 a 92 kDa, com predomínio de proteínas de membrana na faixa de 54 kDa. Entretanto em seu estudo, os autores não descrevem se no momento da coleta das amostras os pacientes por eles estudados estavam ou não em crise. No entanto neste estudo, que avaliou os mesmos pacientes, comparando-os quando em crise (PC), e sem crise (PSC), identificamos proteínas com massa molecular aparente variando de < 20 a 80 kDa, com predomínio daquelas com massa molecular aparente < 20 kDa em todas as amostras analisadas, e outro

pico no intervalo de 40 < 60 kDa, não sendo encontrado na membrana eritrocitária dos pacientes nenhuma proteína com massa molecular aparente > 80 kDa.

Num estudo conduzido por Chou *et al.* (2006) foi determinado que cinco famílias de proteínas: 1 - proteínas acessórias de actina, 2 - proteínas de reparo de proteínas, 3 - balsas lipídicas, 4 - componentes da proteína de *turnover*, e 5 - removedores dos radicais de oxigênio tem expressão alterada quando as proteínas da membrana do eritrócito dos pacientes com AF foram comparadas com as do controle.

Destaca-se também, que há diferença no número de spots identificados quando comparados PC e PSC. Nossos resultados revelaram que a membrana do eritrócito do paciente com crise (PC) expressava menor quantidade de proteínas quando comparado ao período em que este paciente está sem crise (PSC). De fato, uma mudança encontrada na quantidade de proteínas pode ser o resultado de uma redistribuição quantitativa, de modificações da proteína ou no conteúdo de proteína (KAKHNIASHVILI *et al.*, 2005).

Para o eritrócito que não tem a capacidade para sintetizar proteínas, uma mudança no conteúdo da membrana exigiria uma diferença na síntese de proteínas ou degradação durante a eritropoese (KAKHNIASHVILI *et al.*, 2005). De fato, os eritrócitos SS variam entre si na sua capacidade de interagir à ligantes de matriz extracelular e células endoteliais, e a subpopulação de células que aderem a um substrato particular, como pode variar com o ligante e o seu receptor (UDANI *et al.*,1998). Esta particularidade interessa sobretudo à área dos transplantes, quando a integridade destes componentes é essencial.

Eletroforese em gel de poliacrilamida monodimensional (1D) pode revelar defeitos qualitativos ou quantitativos em eritrócitos, enquanto que a eletroforese em gel de poliacrilamida bidimensional (2D) pode ser utilizada para a identificar as alterações de proteínas causadas pelo processo de doença, uma vez que permite uma análise de milhares de proteínas que tenham sofrido modificação pos-traducionais ou não, simultaneamente (LOW; SEOW; CHUNG, 2002).

Low *et al.* (2002) compararam SDS-PAGE 1D e 2D de uma mesma preparação de proteínas de membrana de eritrócitos e identificaram proteínas presentes exclusivamente em géis 1D. Curiosamente, em contraste com os géis 2D, subunidades proteossomas não foram identificados nos géis 1D, o que sugere que na identificação de proteínas as duas técnicas se complementam. A análise proteômica de eritrócitos de humanos saudáveis revelou 102 spots, a partir de um gel 2D, a maioria, 19, proteínas da membrana do citoesqueleto que são muitas

vezes referidas como "banda" de proteínas. Vários outros spots identificados eram proteínas integrais, periféricas e do citoesqueleto.

Neste trabalho foram encontrados 589 spots, dos quais foi possível identificar 148 proteínas, com destaque para a diferença do número de spots entre pacientes PC e PSC. Os resultados revelaram que quando o paciente apresenta manifestações clínicas relacionadas à doença no período da coleta de sangue, o número de spots identificados cai pela metade na faixa de pI 3 a 5, quando comparado ao período em que ele estava assintomático, podendo representar uma das variadas modificações possíveis para uma proteína específica. Mais interessante ainda é o fato de ter-se encontrado, na membrana de eritrócitos falcêmicos, 11 proteínas que não foram identificadas no TagIdent ExPASy como sendo proteínas normalmente presentes na membrana eritrocitária. Os resultados revelaram, ainda, que entre essas 11 proteínas, seis foram obtidas do paciente com crise, a maioria com pI 7 e 10. A eletroforese bidimensional também revelou que a membrana dos eritrócitos de pacientes em crise expressava duas vezes mais proteínas na faixa de pI 3 e 5.

De fato, a alteração encontrada na quantidade de spots pode ser o resultado de uma redistribuição quantitativa de modificações da proteína ou no conteúdo de proteína (KAKHNIASHVILI *et al.*, 2005; YUDITSKAYA; SUFFREDINI; KATO, 2010). O processo de falcização e seus sintomas também induzem danos à membrana celular e ao esgotamento da capacidade antioxidante celular da hemácia falcêmica e está associado à anemia hemolítica grave (KATO; GLADWIN; STEINBERG, 2007), o que pode desencadear na redução de proteínas expressas, corroborando com os dados do presente trabalho que destaca a redução do número de spots, dos pacientes com crise.

A comparação dos perfis de SDS-PAGE 2D de proteínas de pacientes (PC e PSC) e controle (GC) revelou mudanças quantitativas. Isto enfatiza a importância da investigação das alterações da bicamada lipídica dos eritrócitos, que podem desencadear em mudança na permeabilidade da membrana alterada para cálcio, sódio e potássio, que resultam em fluxos de íons e desidratação celular anormal; aumento de produção de espécies reativas de oxigênio (ROS); depleção das defesas antioxidantes com resultante em danos oxidativos para a célula, e a fosforilação das proteínas alteradas na estrutura do citoesqueleto e membrana (GEORGE et al., 2010). Ademais, a produção excessiva de ROS ativa os membros da família oxidoredutase de proteínas dentro de eritrócitos (BASU et al., 2013).

Em trabalhos realizados para identificar proteínas como um marcador clínico para eliptocitose e esferocitose hereditária foi identificado apenas 20 proteínas, com níveis de expressão diferentes, sendo três proteínas utilizadas como biomarcador (anquirina, espectrina

e faixa 3). Realmente, a identificação de uma deficiência em proteínas de membrana, associadas ao citoesqueleto de glóbulos vermelhos, pode ter importância prognóstica ou preventiva (DEMIRALP *et al.*, 2012).

Mais recentemente, Barasa e Slijper (2014) num estudo que busca biomarcadores para diferentes doenças nos eritrócitos através da proteômica concluíram que o desafio é adquirir e validar biomarcadores únicos para as mudanças que ocorrem para diferentes questões clínicas: no envelhecimento dos eritrócitos, para talassemia ou a AF, entre outras.

Kakhniashvili *et al.* (2005) relatam que a melhor maneira de compreender as diferenças na gravidade clínica e os resultados para pacientes com AF é obter uma compreensão completa de alterações específicas no proteoma dos eritrócitos, leucócitos, plasma e do endotélio vascular, já que estão relacionadas com a vaso-oclusão, principal característica da doença.

Um fator que torna este estudo diferente dos demais é que foram analisados e comparados eritrócitos coletados de um mesmo paciente (que tiveram amostras de sangue colhidas em diferentes momentos, num período de três anos, e que foram agrupados de acordo com a presença ou ausência de crises). Importante também destacar que as amostras analisadas neste estudo foi formada de pacientes que não receberam transfusão sanguínea ou faziam uso de hidroxiuréia, que aumenta os níveis de HbF, que por sua vez inibe a polimerização de HbS e aumenta a quantidade de proteínas envolvidas na regulação de forma e flexibilidade da membrana dos eritrócitos, e causa redução nos componentes de degradação e/ou reparo de proteínas (GHATPANDE *et al.*, 2010). Isto porque muitos fatores afetam o resultado da avaliação hematológica e análise das proteínas de membrana eritrocitária de pacientes com AF. Estes incluem alimentação, gravidade da AF, variabilidade das manifestações clínicas, técnicas de coleta e análise das amostras, entre outros. Adicionalmente, o número de amostras nos grupos era pequeno; as diferenças entre eles poderiam ter sido mais expressivas se os grupos fossem maiores. Mesmo assim, este estudo apresentou diferenças nos resultados obtidos.

Desde a sua criação em 1975 por O'Farrell, a eletroforese bidimensional tem sido usada para separar as proteínas de eritrócitos. Isto é devido principalmente à fácil disponibilidade de eritrócitos em grandes quantidades. Além disso, a ausência de outras organelas também facilita o processo de purificação. Como resultado, eritrócitos são usados como um sistema modelo para muitas doenças que podem ser prontamente estudados por comparação dos perfis SDS-PAGE 2D de proteínas das membranas normais. No entanto, o estudo de proteômica em gel 2D de proteínas de membrana é desafiador devido às suas baixas

concentrações e alta hidrofobicidades, e por apresentarem pIs geralmente básicos (LOW; SEOW; CHUNG, 2002).

Goodman *et al.* (2013) estudaram aproximadamente 500 spots de membrana de eritrócito normal (AA) e falcêmico (SS) das quais 49 provenientes de pacientes SS foram alteradas em pelo menos 2,5 vezes quando comparado com o controle (AA). Foi ainda observado que 38 spots tiveram concentração aumentada e outros 11 spots tiveram concentração reduzida 2,5 vezes ou mais. Dos 38 spots analisados, foram obtidas 44 proteínas (com as suas modificações) e 22 proteínas únicas. Estas 22 proteínas pertenciam a categorias funcionais como: membrana esquelética, reparação de proteínas participantes, catadores de radicais de oxigênio e outras categorias.

Goodman *et al.* (2013) relatam que hoje já foram identificadas 2.289 proteínas no eritrócito humano normal e que com a melhoria na espectrometria de massa será possível identificar proteínas com baixo números de cópias (1 a 100 cópias) e, assim, poderemos averiguar o papel destas proteínas com distúrbios relacionados ao eritrócito, já que o desafio em identificar proteínas consiste na elevada hidrofobicidade e ponto isoelétrico de muitas proteínas de membrana integrais transmembranares e o baixo número de cópias.

Neelam *et al.* (2011) identificaram 23 proteínas citosólicas e cinco proteínas de membrana, com alterações estatisticamente significativas. Estas proteínas individuais foram identificadas na maioria dos spots, em mais de um local, implicando a presença de modificações pós-traducionais.

Os marcadores mais abundantes (α e β da hemoglobina do sangue) são identificados com dezenas de peptídeos por proteínas e estão dentro das três principais proteínas detectadas por espectrometria de massa, o marcador de proteínas remanescentes estão dentro da parte superior 20, com a exceção de espectrina no sangue (YANG *et al.*, 2013).

Embora as proteínas de tamanho médio sejam abundantes e identificadas por vários peptídeos, proteínas em baixas concentrações geralmente são detectadas por um único peptídeo (KAKHNIASHVILI *et al.*, 2004).

As proteínas identificadas incluem: proteínas de transporte, regulação osmótica e proteínas de defesa. Identificamos PRDX2 (peroxirredoxinas) na região do gel com massa molecular 20.1-30 kDa, enquanto Basu *et al.* (2013) encontraram a PRDX2 no gel na região de massa molecular de 40-45 kDa, sugerindo alteração na estrutura desta proteína. As peroxirredoxinas são varredoras de radicais de oxigênio, uma família de enzimas antioxidantes que controlam o conteúdo de peróxido de hidrogênio e desempenham um papel

protetor nas células. Estes radicais podem refletir o aumento da demanda por proteínas nas condições de oxidação severa nas células falciformes (KAKHNIASHVILI *et al.*, 2005).

Entretanto, não há uma caracterização completa de proteínas de eritrócitos falcêmicos, provavelmente devido às limitações das técnicas e de estudos de solubilização com vários detergentes. Mas a eletroforese 2D de proteínas é um método potencialmente valioso para estudar doenças hereditárias, sendo necessário associação a outras técnicas como espectrometria de massa, para diminuir o número de etapas e amenizar perdas de proteínas no processo. Recentemente, Goodman *et al.* (2013) relatou que SDS-PAGE 2D pode detectar separadamente modificações pós-tradução e formas de splicing alternativo sem demonstrar valores alterados.

Uma das metas principais na análise proteômica é a descrição compreensiva e precisa de um proteoma. Esta tarefa não apenas inclui a identificação de proteínas numa amostra, mas também a quantificação precisa das suas abundâncias. Entretanto, neste estudo, o objetivo não foi realizar a caracterização físico-química das proteínas que possam ser relacionadas à alteração funcional do eritrócito falcêmico.

Muito intrigante e estimulante encontrar 11 proteínas não identificadas no perfil do Banco de Dados de proteínas eritrocitárias normais. Seriam estas alterações secundárias às crise vaso-oclusivas? Seriam permanentes, serviriam com marcadores de novas crises? Em artigo publicado em julho de 2014, em fase 1 do uso de inibidor da E-Seletina em pacientes com AF foi visto que entra e 4 e 48 horas após o uso da GMI 1070 houve uma significante diminuição dos marcadores da ativação endotelial e da coagulação, o que poderia indicar sua aplicação no tratamento de VOC agudas (WUN, 2014).

A cromatografia de troca iônica seguida por eletroforese 1D e 2D se acompanhada de melhor identificação proteômica, isto é, com detalhamento de estrutura/função, pode ser importante para o estudo da VOC, auxiliando na compreensão da fisiopatologia e na melhora da qualidade e expectativa de vida de pacientes com AF.

7 CONCLUSÃO

A análise da proteômica utilizando HPLC, SDS-PAGE 2D e ESI-Q-ToF se apresenta como ferramenta aplicada à identificação de proteínas da membrana do eritrócito falciforme. Este estudo revelou diferenças significativas nas concentrações de proteínas presentes nas membranas de eritrócitos falcêmicos de pacientes (em fase sintomática e assintomática), em relação às membranas eritrocitárias normais, com destaque para o aumento significativo de

proteínas na membrana de eritrócitos de pacientes sem crise. Nossos resultados sugerem ainda que as crises vaso-oclusiva parecem estar relacionadas a uma redução na concentração de proteínas na membrana do eritrócito falcêmico.

REFERÊNCIAS

- AN, X.; MOHANDAS, N. Disorders of red cell membrane. *British Journal of Haematology*, v. 141, p. 367–375, 2008.
- ÂNGULO, I. L. **Crises falciformes**. Simpósio: urgências e emergências hematológicas Medicina. Ribeirão Preto. 36: 427-430, abr./dez. Capítulo I, 2003.
- BANDEIRA, F. M. G. C. *et al.* Características de recém-nascidos portadores de hemoglobina S" detectados através de triagem em sangue de cordão umbilical. **Jornal de Pediatria**. v. 75, n. 3, p. 167-171, 1999.
- BANDEIRA, F. M. G. C. *et al.* Hidroxiuréia em pacientes com síndromes falciformes acompanhados no Hospital Hemope, Recife-PE. **Rev. Bras. Hematol. Hemoter.** v. 26, n.3, p. 189-194, 2004.
- BARASA, B.; SLIJPER, M. Challenges for red blood cell biomarker discovery through proteomics. **Biochim. Biophys. Acta**. v. 1844, p. 1003-1010, 2014.
- BASU, A. *et al.* 2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: Altered proteostasis and oxidative stress. **Proteomics**, v. 13, p. 3233–3242, 2013.
- BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. **Analytical Biochemistry**. v. 72, p. 248-254, 1976.
- BRASIL. Ministério da Saúde. Relatório final Resoluções. **In**: Fórum Nacional de Políticas Integradas de Atenção às Pessoas com Doença Falciforme, 22 junho. Belo Horizonte (MG); 2007. Disponível em:http://www.cehmob.org.br/downloads/resolucoes.pdf> Acessado em 09 de dezembro de 2014.
- BRUNETTA, D, M. *et. al.* Manejo das complicações agudas da doença falciforme. **In**: Medicina (Ribeirão Preto), v. 43, n. 3, p. 231-237, 2010.
- CAJADO, C. *et al.* TNF-alpha and IL-8: Serum levels and gene polymorphisms (308G>A and -251A>T) are associated with classical biomarkers and medical history in children with sickle cell anemia. **Cytokine**, v. 56, p. 312–317, 2011.
- CANÇADO, R. D.; JESUS, J. A. A doença falciforme no Brasil. **Rev. Bras. Hematol. Hemoter**. v. 29, n.3, p. 203-206, 2007.
- CHOU, J.; CHOUDHARY, P. K.; GOODMAN, S. R. Protein profiling of sickle cell versus control RBC core membrane skeletons by ICAT technology and tandem mass spectrometry. **Cell Mol. Biol. Lett.** v. 11, p. 326-337, 2006.
- DEMIRALP, D. O. *et al.* Comprehensive identification of erythrocyte membrane protein deficiency by 2D gel electrophoresis based proteomic analysis in hereditary elliptocytosis and spherocytosis. **Proteomics Clin. Appl.** v. 6, p. 403-411, 2012.

DI NUZZO, D. V.; FONSECA, S. F. Anemia falciforme e infecções. **Jornal de Pediatria**, v. 80, n.5, p. 347-354, 2004.

DOMINGOS, C. R. B. *et al.* Hemoglobina S - Uma revisão. **UNI Ciências**, v.1, n.1, p. 127 140, 1997.

DWORKIS, D. A. *et al.* Severe sickle cell anemia is associated with increased plasma levels of TNF-R1 and VCAM-1. **American Journal of Hematology**, v. 86, n. 2, p. 220-223, 2011.

ELLIOTT, L. *et al.* Genetic polymorphisms associated with priapism in sickle cell disease. *British Journal of Haematology*, v. 137, p. 262–267, 2007

FELIX, A. A.; SOUZA, H. S.; RIBEIRO, S. B. F. Aspectos epidemiológicos e sociais da doença falciforme. **Rev. Bras. Hematol. Hemoter.** v. 32, n. 3, p. 203-208, 2010.

FIGUEIREDO, M. S. Agentes indutores da síntese de hemoglobina fetal. **Rev. Bras. Hematol. Hemoter.** v. 2 n. 3, p. 313-315, 2007a.

FIGUEIREDO, M. S. Fatores moduladores da gravidade da evolução clínica da anemia falciforme. **Rev. Bras. Hematol. Hemoter.** v. 29, n. 3, p. 215-217, 2007b.

GALARÇA, L. L. *et al.*, Anemia Falciforme: Alterações Moleculares e Celulares da Hemoglobina S. **NewsLab**, ed. 124, 2014.

GALIZA NETO, G. C.; PITOMBEIRA, M, S. Aspectos moleculares da anemia falciforme. **Jornal Brasileiro de Patologia e Medicina Laboratorial**, v. 39, n. 1, p. 51-56, 2003.

GEORGE, A. *et al.* Altered phosphorylation of cytoskeleton proteins in sickle red blood cells: The role of protein kinase C, Rac GTPases, and reactive oxygen species. **Blood Cells Mol. Dis.** v. 45, p. 41-45, 2010.

GHATPANDE, S. S. *et al.* In vivo pharmaco-proteomic analysis of hydroxyurea induced changes in the sickle red blood cell membrane proteome. **J. Proteomics**. v. 73, p. 619-626, 2010.

GIL, G. P. Análise de polimorfismos em genes envolvidos no estresse oxidativo e associação com a severidade da doença em pacientes com anemia falciforme. 2012. 94f. Dissertação (Mestrado em Clínica Médica) - Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, 2012.

GOODMAN, S. R. *et al.*, The proteomics and interactomics of human erythrocyte. **Experimental Biology and Medicine**. v. 238, p. 509–518, 2013.

GUALANDRO, S. F. M. Lesões osteoarticulares na doença falciforme. Manual de **Diagnóstico e Tratamento de Doença Falciformes**. Brasília: ANVISA, p. 90- 97, 2001.

HERRICK, J. B. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. **Arch Int Med.** v. 6, p. 17-21, 1910.

- HOLSBACH, D. R. Investigação bibliográfica sobre a hemoglobina S de 1976 a 2007. **Acta Paul Enferm**. v. 23, n. 1, p. 119-24, 2010.
- HOPPE, C. *et al.* Confirmation of an Association Between the TNF(308) Promoter Polymorphism and Stroke Risk in Children With Sickle Cell Anemia. *Stroke*. v. 38, p. 2241 2246, 2007.
- HOSTYN, S. V. *et. al.* Fisioterapia respiratória em crianças com doença falciforme e síndrome torácica aguda. **Rev Paul Pediatr**, v. 29, n. 4, p. 663-668, 2011.
- JESUS, L. E; DEKERMACHER, S. Priapism in children: review of pathophysiology and treatment. **Jornal de Pediatria**, v. 85, n. 3, p 194-200, 2009.
- KAKHNIASHVILI, D. G.; BULLA JR, L. A.; GOODMAN, S. R. The Human Erythrocyte Proteome. Analysis by ion trap mass spectrometry. **Molecular & Cellular Proteomics**, v. 3, p. 501–509, 2004.
- KAKHNIASHVILI, D. G. *et al.* The Proteomics of Sickle Cell Disease: Profiling of Erythrocyte Membrane Proteins by 2D-DIGE and Tandem Mass Spectrometry. **Exp. Biol. Med.** v. 230, p. 787-792, 2005.
- KATO, G. J.; GLADWIN, M. T.; STEINBERG, M. H. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. **Blood**. v. 21, n. 1, p. 37-47, 2007.
- LAEMMLI U K. Cleavage of strutural proteins during the assembly of the head of bacteriophage T4. **Nature Cambridge**. v. 227, p. 680-685, 1970.
- LAUC, G.; ZOLDOŠ, V. Protein glycosylation-an evolutionary crossroad between genes and environment. **Mol. BioSyst.** v. 6, p. 2373-2379, 2010.
- LOBO, L.; MARRA, V. N.; SILVA, R. M. G. Crises dolorosas na doença falciforme. **Rev. Bras. Hematol. Hemoter.** v. 29, n. 3, p. 247-258, 2007.
- LOUREIRO, M. M.; ROZENFELD, S. Epidemiologia de internações por doença falciforme no Brasil. **Rev Saúde Pública**, v. 39, n. 6, p. 9 43-949, 2005.
- LOW T. Y.; SEOW, T. K.; CHUNG, M. C. Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption / ionization-time of flight mass spectrometry. **Proteomics**. v. 2, p. 1229-1239, 2002.
- MACHADO, R. F. P. Hipertensão arterial pulmonar associada à anemia falciforme. **J Bras Pneumol**. v. 33, n. 5, p. 583-591, 2007.
- MAHDI, N. *et al.* Protein Z polymorphisms associated with vaso-occlusive crisis in young sickle cell disease patients. **Ann Hematol**, v. 91, p. 1215–1220, 2012.
- MAKANI, J, *et al.* Mortality in sickle cell anemia in Africa: a prospective cohort study in Tanzania. **PLoS ONE**, v. 6, n. 2, p. 1-7, 2011.

MANFREDINI, V. et al. A fisiopatologia da anemia falciforme. Infarma, v. 19, n. 1/2, 2007.

MARTINS, P. R. J.; SOUZA, H. M.; SILVEIRA, T. B. Morbimortalidade em doença falciforme. **Rev. Bras. Hematol. Hemoter.** v. 32, n. 5, p. 378-383, 2010.

MARQUES, V. et. al. Revendo a anemia falciforme: sintomas, tratamentos e perspectivas. **Revista Científica da Faculdade de Educação e Meio Ambiente**, v. 3, n. 1, p. 39-61, 2012.

MORAES, K. C. M.; GALIOTI, J. B. A doença falciforme: um estudo genético-populacional a partir de doadores de sangue em São José dos Campos, São Paulo, Brasil. **Rev. Bras. Hematol. Hemoter.** v. 32, n. 4, p. 286-290, 2010.

MURADOR, P.; DEFFUNE, E. Aspectos estruturais da membrana eritrocitária. **Rev. Bras. Hematol. Hemoter.** v. 29, n. 2, p. 168-178, 2007.

NEELAM, S. *et al.* Functional 20S proteasomes in mature human red blood cells. **Experimental Biology and Medicine**. v. 236, p. 580–591, 2011.

NELSON, D. L.; COX, M. M. **Princípios de bioquímica**. 5. ed. Porto Alegre: Artmed, 2011. 1273 p.

O"FARREL, P. H. High resolution two-dimensional electrophoresis of proteins. **J. Biol. Chem.** v. 250, n. 10, p. 4007-4021, 1975.

OLIVEIRA FILHO, R. A. *et al.* Association between the genetic polymorphisms of glutathione S-transferase (GSTM1 and GSTT1) and the clinical manifestations in sickle cell anemia. **Blood Cells, Molecules and Diseases,** v. 51, p. 76–79, 2013.

PLATT, O. S. M. D. Hydroxyurea for the treatment of sickle cell anemia. **N Engl J Med**. v. 358, p. 1362–1369, 2008.

PECES, R.; PECES, C. Autosomal dominant polycystic kidney disease and sickle cell trait. **Revista Nefrologia - Spanish Nephrology Society.** v. 31, n. 2, p.134-136, 2011.

PERKINS, D. N. *et al.* Probability-based protein identification by searching sequence databases using mass spectrometry data. **Electrophoresis**. v. 20, p. 3551-3567, 1999.

PINTO, W. J. *et al.* Topologia das principais proteínas da membrana e do citoesqueleto eritrocitário. **Rev. Ciênc. Méd. Biol.** v. 12, n. 1, p. 106-120, 2013.

RAMALHO, A. R.; MAGNA, L. A; SILVA, R. B. P, A Portaria MS n.° 822/01 e a triagem neonatal das hemoglobinopatias. **Rev. Bras. Hematol. Hemoter**. v. 24, n. 04, 2002.

REES, D. C; WILLIANS, T. C; GLADWIN, T. M. Sickle-cell dissease. **Lancet-Seminar**, v. 376, p. 2018-2031, 2010.

SAAD, S. T. O. Medidas gerais para tratamento das doenças falciformes. Manual de Diagnóstico e Tratamento de Doença Falciformes. Brasília: ANVISA, p. 41-51, 2001.

- SANTOS, J. L.; CHIN, C. M. Anemia falciforme: desafios e avanços na busca de novos fármacos. **Química Nova**, v. 35, n. 4, p. 783-790, 2012.
- SEBASTIANI, P. *et al.* Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. **Nature Genetics**. v. 37, n. 4, p. 435-440, 2005.
- SILVA, M. C.; SHIMAUTI, E. L. T. Eficácia e toxicidade da hidroxiuréia em crianças com anemia falciforme. **Rev. Bras. Hematol. Hemoter**. v. 28, n. 2, p. 144-148, 2006.
- SILVA, L. B.; GONÇALVES, R. P.; RABENHORST, S. H. B. Análise dos haplótipos da anemia falciforme em Fortaleza revela as origens étnicas da população cearense. **J Bras Patol Med Lab**. v. 4, n. 2, p. 115-118, 2009.
- SILVA, R. A. *et al.* Estudo genético-populacional da doença falciforme a partir de doadores de sangue em primavera do Leste-MT. **Biodiversidade**, v.11, n. 1, p. 108-114, 2012.
- SILVEIRA, Z. M. L. *et al.* Variantes estruturais da hemoglobina: estudo sobre prevalência em militares. **RBAC**, v. 40, n. 2, p. 155-157, 2008.
- SOLOVIEFF, N. *et al.* Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5 olfactory receptor gene cluster. **Blood**. v. 115, n. 9, p. 1815-1822, 2010.
- SOUZA, C. C. Estudo de Marcadores Genéticos Associados a Inflamação em pacientes com Anemia Falciforme. 2013. 154 f. Tese (Doutorado em Biotecnologia em Medicina e Saúde Investigativa). Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz. Salvador, 2013.
- STEINBERG, M. H. Pathophysiology of sickle cell disease. **Baillière Clinical Haematology**, v. 11, n. 1, p. 163-184, 1998.
- TAYLOR VI, J. G. *et al.* Variants in the *VCAM1* gene and risk for symptomatic stroke in sickle cell disease. **Blood**, v. 100, n.13, p. 4302-4309, 2002.
- UDANI, M. *et al.* Basal Cell Adhesion Molecule/Lutheran Protein: The Receptor Critical for Sickle Cell Adhesion to Laminin. **J. Clin. Invest**. v. 101, n. 11, p. 2550-2558, 1998.
- VALER, T. S. P. *et al.* Hemoglobinopatias: prevalência em doadores de sangue. **Revista Saúde e Pesquisa**, v. 5, n. 1, p. 27-34, 2012.
- VICARI, P.; FIGUEIREDO, M. S. Priapismo na doença falciforme. **Rev. Bras. Hematol. Hemoter**. v. 29, n. 3, p. 275-278, 2007.
- WUN, T. Phase 1 study of the E-selecti inhibitor GMI 1070 in patients with sickle cell anemia. **PLoS One**. v. 9, n. 7, p. 1-12, 2014.
- YANG, A. *et al.* Body fluid identification by mass spectrometry. **Int J Legal Med.** v. 127, p. 1065–1077, 2013.

- YOO, H. H. B. *et al.* Síndrome aguda do tórax como primeira manifestação de anemia falciforme em adulto. **J Pneumol**. v. 28, n. 4, p. 237-240, 2002.
- YUDITSKAYA, S.; SUFFREDINI, A. F.; KATO, G. J. The proteome of sickle cell disease: insights from exploratory proteomic profiling. **Expert Rev. Proteomics**, v. 7, p. 833-848, 2010.
- ZAGO, M. A. A anemia falciforme e doenças falciformes. Manual de doenças mais importantes por razões étnicas na população afrodescendente. Brasília: Ministério da Saúde; p. 13-35, 2001.
- ZAGO, M. A. Considerações gerais sobre as doenças falciformes. **In:** Manual de Diagnóstico e Tratamento das Doenças Falciformes (Agência Nacional de Vigilância Sanitária, org.), p. 9-11, Brasília: Ministério da Saúde. 2002.
- ZAGO, M. A.; PINTO, A. C. S. Fisiopatologia das doenças falciformes: da mutação genética à insuficiência de múltiplos órgãos. **Rev. Bras. Hematol. Hemoter.** v. 29, n. 3, p. 207-214, 2007.

APÊNDICE

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do controle (GC) e dos pacientes (PC e PSC).

SpotID	pI	MW	GC	PC	PSC	Proteínas identificadas no TagIdent	Código de acesso com a palavra: membrane, 20%
54	6.88715	45882.0	Ausente	Ausente	Presente	55 kDa erythrocyte membrane protein	EM55 HUMAN (Q00013)
56	5.82386	52473.0	Ausente	Presente	Ausente	Acetylcholine receptor subunit gamma	ACHG_HUMAN (P07510)
57	5.48977	65853.0	Ausente	Presente	Ausente	Acid-sensing ion channel 1	ASIC1 HUMAN (P78348)
123	4.61899	10887.0	Ausente	Ausente	Presente	ADP-ribosylation factor-binding protein GGA1	GGA1_HUMAN (Q9UJY5-5)
105	6.34749	52376.0	Ausente	Ausente	Presente	Alfa-1-syntrophin	SNTA1 HUMAN (Q13424)
5596	4.16251	32764.0	Presente	Ausente	Ausente	Amyloid beta A4 protein, N-APP	A4_HUMAN (P05067)
69	8.10682	43685.0	Ausente	Presente	Ausente	Ancient ubiquitous protein 1	AUP1 HUMAN (Q9Y679-3)
79	6.32402	32699.0	Ausente	Ausente	Presente	Armadillo repeat-containing protein 10	ARM10 HUMAN (Q8N2F6-2)
83	5.82346	43652.0	Ausente	Ausente	Ausente	Asialoglycoprotein receptor 2	ASGR2_HUMAN (P07307)
5626	7.11032	29541.0	Presente	Ausente	Ausente	Atrial natriuretic peptide-converting enzyme	CORIN HUMAN (Q9Y5Q5)
44	5.62011	48978.0	Ausente	Ausente	Presente	Autophagy-related protein 16-1	A16L1_HUMAN (Q676U5-3)
87	4.22500	15441.0	Ausente	Presente	Ausente	Bcl-2-interacting killer	BIK HUMAN (Q13323)
52	8.55307	13703.0	Presente	Presente	Presente	Bcl-2-like protein 11	B2L11_HUMAN (O43521-2)
60	8.56089	15685.0	Ausente	Ausente	Presente	Bcl-2-like protein 12	B2L11_HUMAN (O43521-2)
166	8.25587	28090.0	Ausente	Ausente	Presente	Calcium-activated potassium channel subunit beta-3	KCMB3_HUMAN (Q9NPA1- 2) CTND1_HUMAN (O60716-
121	6.26927	76352.0	Ausente	Ausente	Presente	Catenin delta-1	26)
158	7.41899	24556.0	Ausente	Ausente	Presente	CD151 antigen	CD151_HUMAN (P48509)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

(1001	SC) conti	iruuçuo					
4	7.81006	15439.0	Ausente	Ausente	Presente	CD160 antigen	BY55 HUMAN (095971)
161	4.57207	19868.0	Ausente	Ausente	Presente	CD302 antigen	CD302_HUMAN (Q8IX05-2)
140	8.23240	14370.0	Ausente	Ausente	Presente	CD99 antigen-like protein 2	C99L2 HUMAN (Q8TCZ2-4)
5585	6.86121	15733.0	Presente	Ausente	Ausente	Cdc42 effector protein 5	BORG3 HUMAN (Q6NZY7)
43	7.71705	11287.0	Ausente	Presente	Ausente	Chemokine-like factor superfamily member 1	CKLF1_HUMAN (Q8IZ96-6)
45	5.29886	18049.0	Ausente	Presente	Presente	CKLF-like MARVEL transmembrane domain-containing protein	CKLF5 HUMAN (Q96DZ9-2)
97	5.89385	51098.0	Ausente	Ausente	Presente	Clusterin	CLUS_HUMAN (P10909)
125	6.79330	12808.0	Ausente	Ausente	Presente	Copper-transporting ATPase	ATP7A HUMAN (Q04656-6)
104	6.23799	52191.0	Ausente	Ausente	Presente	Coronin-1 ^a	COR1A_HUMAN (P31146)
5634	8.04864	26150.0	Presente	Ausente	Ausente	C-type lectin domain family 10 member A	CLC10 HUMAN (Q8IUN9-3)
155	6.91061	24591.0	Ausente	Ausente	Presente	C-type lectin domain family 2 member D	CLC2D_HUMAN (Q9UHP7-3)
62	6.80112	26264.0	Ausente	Presente	Presente	C-type lectin domain family 2 member L	CLC2L HUMAN (P0C7M8)
5633	7.65836	29127.0	Presente	Ausente	Ausente	CUB and zona pellucida-like domain-containing protein 1	CUZD1_HUMAN (Q86UP6-3)
62	6.51591	37218.0	Ausente	Presente	Ausente	Cyclin-dependent kinase 4	CDK4_HUMAN (P11802)
50	6.66705	44557.0	Ausente	Presente	Ausente	DnaJ homolog subfamily A member 1	DNJA1 HUMAN (P31689)
89	6.46818	13178.0	Ausente	Presente	Ausente	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit DAD1	DAD1 HUMAN (P61803)
114	7.59888	36742.0	Ausente	Ausente	Presente	DOMON domain-containing protein FRRS1L	FRS1L_HUMAN (Q9P0K9)
5615	6.37960	76888.0	Presente	Ausente	Ausente	Dynamin-1-like protein	DNM1L HUMAN (000429-4)
51	6.49205	45100.0	Ausente	Presente	Ausente	E3 ubiquitin-protein ligase MARCH11	MARHB HUMAN (A6NNE9)
28	7.00114	13054.0	Ausente	Presente	Ausente	Ectodysplasin-A	EDA_HUMAN (Q92838-8)
45	9.12402	44848.0	Ausente	Ausente	Presente	Endothelin B receptor	EDNRB HUMAN (P24530)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

uos pu	*********	0 0 1 2 0	Continua	300			
41	5.75227	26498.0	Ausente	Presente	Ausente	Enterokinase Envolvido no desenvolvimento e / ou manutenção de um circuito	ENTK_HUMAN (P98073)
5629	6.03084	25684.0	Presente	Ausente	Ausente	neuronal.	TM222_HUMAN (Q9H0R3
77	5.69050	23290.0	Ausente	Ausente	Presente	Ephrin-A5	EFNA5 HUMAN (P52803)
5610	8.18149	17955.0	Presente	Ausente	Ausente	Epithelial membrane protein 1	EMP1 HUMAN (P54849)
73	6.14413	18125.0	Presente	Ausente	Ausente	FAM26D	FA26D HUMAN (Q5JW98-4)
86	4.18523	16694.0	Ausente	Presente	Ausente	Fasciculation and elongation protein zeta-1	<u>NU6M HUMAN (P03923)</u>
85	4.19318	18286.0	Ausente	Presente	Ausente	Fasciculation and elongation protein zeta-2	NU6M HUMAN (P03923)
129	9.29609	16207.0	Ausente	Ausente	Presente	Fer-1-like protein 4	FR1L4 HUMAN (A9Z1Z3-4)
82	5.73743	42416.0	Ausente	Ausente	Presente	Focal adhesion kinase 1	FAK1 HUMAN (Q05397-6)
134	8.96760	51008.0	Ausente	Ausente	Presente	Gamma-aminobutyric acid receptor subunit alpha-3	GBRA3 HUMAN (P34903)
108	7.17654	44924.0	Ausente	Ausente	Presente	Gamma-aminobutyric acid receptor subunit gamma-1	GBRG1 HUMAN (Q8N1C3)
5637	7.74140	17567.0	Presente	Ausente	Ausente	Gamma-secretase subunit APH-1A	APH1A HUMAN (Q96BI3-2)
22	9.25698	13026.0	Presente	Ausente	Ausente	Gamma-secretase subunit PEN-2	PEN2 HUMAN (Q9NZ42)
15	5.21136	49522.0	Ausente	Presente	Ausente	Gap junction alpha-8 protein	CXA8 HUMAN (P48165)
66	6.90568	42408.0	Ausente	Presente	Ausente	Gap junction gamma-1 protein	CXG1_HUMAN (P36383)
33	8.16250	17774.0	Ausente	Presente	Ausente	Glucosamine 6-phosphate N-acetyltransferase	GNA1 HUMAN (Q96EK6)
6	7.09050	16037.0	Ausente	Ausente	Presente	Glycoprotein Xg	XG HUMAN (P55808)
36	6.64469	16070.0	Presente	Presente	Presente	Glycosyl-phosphatidylinositol-anchored molecule-like protein	<u>GML HUMAN (Q99445)</u>
9	7.31136	46013.0	Ausente	Presente	Ausente	GPI ethanolamine phosphate transferase 2	PIGG_HUMAN (Q5H8A4-4)
111	7.53631	44773.0	Ausente	Ausente	Presente	G-protein coupled receptor 143	<u>GP143_HUMAN (P51810)</u>
54	5.69659	40282.0	Ausente	Presente	Ausente	Guanine nucleotide-binding protein G(i) subunit alpha-1	GNAI1_HUMAN (P63096)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

uos pa	cientes (F	CCISC) continua	içao			
5655	4.34520	23297.0	Presente	Ausente	Ausente	Guanylyl cyclase-activating protein 1	GUC1A HUMAN (P43080)
50	4.73631	12971.0	Ausente	Ausente	Presente	HCLS1-associated protein X-1	<u>HAX1 HUMAN (000165-4)</u>
37	4.63068	19723.0	Ausente	Presente	Ausente	Hemojuvelin	RGMC HUMAN (Q6ZVN8-3)
43	7.23129	31667.0	Ausente	Presente	Presente	Hereditary hemochromatosis protein	HFE HUMAN (Q30201-7)
11	8.39318	42914.0	Ausente	Presente	Ausente	HERV-K_7p22.1 provirus ancestral Env polyprotein	ENK2 HUMAN (Q69384)
5665	9.44365	10653.0	Presente	Ausente	Ausente	HIG1 domain family member 1A	HIG1A HUMAN (Q9Y241-2)
58	5.82386	57234.0	Ausente	Presente	Ausente	High affinity cGMP-specific 3',5'-cyclic phosphodiesterase 9A	PDE9A_HUMAN (O76083)
80	6.58994	32755.0	Ausente	Ausente	Presente	HLA class II histocompatibility antigen, DR beta 4 chain	DRB4 HUMAN (P13762)
83	7.21591	24321.0	Ausente	Presente	Ausente	HLA class II histocompatibility antigen, DRB1-10 beta chain	2B1A HUMAN (Q30167)
66	7.88045	31881.0	Ausente	Ausente	Presente	HLA class II histocompatibility antigen, DRB1-3 chain	2B13 HUMAN (P01912)
47	8.22458	46617.0	Ausente	Ausente	Presente	Ig-like V-type domain-containing protein FAM187A	F187A_HUMAN (A6NFU0)
68	6.99318	30539.0	Ausente	Presente	Ausente	Inhibitor of nuclear factor kappa-B kinase subunit beta	<u>IKKB_HUMAN (O14920-3)</u>
5612	7.22657	17978.0	Presente	Presente	Ausente	Integrin alpha-E	ITAE_HUMAN (P38570)
6	7.76477	30119.0	Ausente	Presente	Ausente	Intercellular adhesion molecule 2	ICAM2 HUMAN (P13598)
11	7.77877	13631.0	Ausente	Ausente	Presente	Interferon-induced transmembrane protein 1	<u>IFM1_HUMAN (P13164)</u>
5608	6.89442	14474.0	Presente	Ausente	Presente	Interferon-induced transmembrane protein 2	<u>IFM2_HUMAN (Q01629)</u>
127	6.46480	14446.0	Ausente	Ausente	Presente	Interferon-induced transmembrane protein 3	<u>IFM3_HUMAN (Q01628)</u>
112	7.72402	37685.0	Ausente	Ausente	Presente	Interleukin-1 receptor type 2	<u>IL1R2_HUMAN (P27930)</u>
64	6.77841	39182.0	Ausente	Presente	Ausente	Interleukin-23 receptor	IL23R_HUMAN (Q5VWK5-3)
5640	8.18149	12830.0	Presente	Ausente	Ausente	Jumping translocation breakpoint protein	JTB_HUMAN (076095)
10	7.10455	44206.0	Ausente	Presente	Ausente	KH domain-containing, RNA-binding, signal transduction-associated protein 1	KHDR1 HUMAN (Q07666-2)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

dos pu	erentes (I	CTRO) continua	içuo			
5655	4.34520	23297.0	Presente	Ausente	Ausente	Guanylyl cyclase-activating protein 1	GUC1A_HUMAN (P43080)
50	4.73631	12971.0	Ausente	Ausente	Presente	HCLS1-associated protein X-1	<u>HAX1_HUMAN (O00165-4)</u>
37	4.63068	19723.0	Ausente	Presente	Ausente	Hemojuvelin	RGMC_HUMAN (Q6ZVN8-3)
43	7.23129	31667.0	Ausente	Presente	Presente	Hereditary hemochromatosis protein	HFE_HUMAN (Q30201-7)
11	8.39318	42914.0	Ausente	Presente	Ausente	HERV-K_7p22.1 provirus ancestral Env polyprotein	ENK2_HUMAN (Q69384)
5665	9.44365	10653.0	Presente	Ausente	Ausente	HIG1 domain family member 1A	HIG1A HUMAN (Q9Y241-2)
58	5.82386	57234.0	Ausente	Presente	Ausente	High affinity cGMP-specific 3',5'-cyclic phosphodiesterase 9A	PDE9A HUMAN (076083)
80	6.58994	32755.0	Ausente	Ausente	Presente	HLA class II histocompatibility antigen, DR beta 4 chain	DRB4_HUMAN (P13762)
83	7.21591	24321.0	Ausente	Presente	Ausente	HLA class II histocompatibility antigen, DRB1-10 beta chain	2B1A_HUMAN (Q30167)
66	7.88045	31881.0	Ausente	Ausente	Presente	HLA class II histocompatibility antigen, DRB1-3 chain	2B13 HUMAN (P01912)
47	8.22458	46617.0	Ausente	Ausente	Presente	Ig-like V-type domain-containing protein FAM187A	F187A HUMAN (A6NFU0)
68	6.99318	30539.0	Ausente	Presente	Ausente	Inhibitor of nuclear factor kappa-B kinase subunit beta	<u>IKKB HUMAN (O14920-3)</u>
5612	7.22657	17978.0	Presente	Presente	Ausente	Integrin alpha-E	ITAE HUMAN (P38570)
6	7.76477	30119.0	Ausente	Presente	Ausente	Intercellular adhesion molecule 2	ICAM2 HUMAN (P13598)
11	7.77877	13631.0	Ausente	Ausente	Presente	Interferon-induced transmembrane protein 1	<u>IFM1 HUMAN (P13164)</u>
5608	6.89442	14474.0	Presente	Ausente	Presente	Interferon-induced transmembrane protein 2	IFM2 HUMAN (Q01629)
127	6.46480	14446.0	Ausente	Ausente	Presente	Interferon-induced transmembrane protein 3	IFM3 HUMAN (Q01628)
112	7.72402	37685.0	Ausente	Ausente	Presente	Interleukin-1 receptor type 2	<u>IL1R2 HUMAN (P27930)</u>
64	6.77841	39182.0	Ausente	Presente	Ausente	Interleukin-23 receptor	IL23R HUMAN (Q5VWK5-3)
5640	8.18149	12830.0	Presente	Ausente	Ausente	Jumping translocation breakpoint protein	JTB HUMAN (076095)
10	7.10455	44206.0	Ausente	Presente	Ausente	KH domain-containing, RNA-binding, signal transduction-associated protein 1	KHDR1_HUMAN (Q07666-2)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

	erentes (r						
52	6.35682	40682.0	Ausente	Presente	Ausente	Killer cell immunoglobulin-like receptor 2DL	KI2L1_HUMAN (P43626)
5630	5.95611	24525.0	Presente	Ausente	Ausente	Killer cell lectin-like receptor subfamily B member 1	KLRB1_HUMAN (Q12918)
5599	5.10083	19997.0	Presente	Ausente	Ausente	Kit ligand	SCF_HUMAN (P21583)
8	7.14432	46116.0	Ausente	Presente	Presente	Kremen protein 2	KREM2_HUMAN (Q8NCW0)
53	6.20568	42914.0	Ausente	Presente	Ausente	Laforin	<u>EPM2A_HUMAN (095278)</u>
165	8.49050	14446.0	Ausente	Ausente	Presente	LEM domain-containing protein 1	LEMD1_HUMAN (Q68G75-5)
65	6.19888	26301.0	Ausente	Ausente	Presente	Leucine-rich repeat and transmembrane domain-containing protein 1	LRTM1_HUMAN (Q9HBL6- 2)
120	7.10615	72229.0	Ausente	Ausente	Presente	Leucine-rich repeat transmembrane protein FLRT2	FLRT2 HUMAN (043155)
118	7.61453	29029.0	Ausente	Ausente	Presente	Leukocyte surface antigen CD53	CD53 HUMAN (P19397)
117	761453	29659.0	Ausente	Ausente	Presente	Leukocyte surface antigen CD54	CD53 HUMAN (P19397)
91	9.28409	12377.0	Ausente	Presente	Ausente	Linker for activation of T-cells family member 2	NTAL_HUMAN (Q9GZY6-2)
99	6.94972	53309.0	Ausente	Ausente	Presente	L-selectin	LYAM1 HUMAN (P14151-2)
14	7.53631	31720.0	Ausente	Ausente	Presente	Ly6/PLAUR domain-containing protein 3	<u>LYPD3 HUMAN (095274)</u>
56	6.28492	10968.0	Ausente	Ausente	Presente	Lymphocyte antigen 6H	<u>LY6H HUMAN (094772)</u>
98	5.60447	52284.0	Ausente	Ausente	Presente	Lysosome-associated membrane glycoprotein 2	<u>LAMP2 HUMAN (P13473-3)</u>
16	6.98523	51318.0	Ausente	Presente	Ausente	Major facilitator superfamily domain-containing protein 7	MFSD7_HUMAN (Q6UXD7- 3)
75	4.32841	60645.0	Ausente	Presente	Ausente	Melanoma inhibitory activity protein 3	MIA3 HUMAN (Q5JRA6-3)
5589	8.87900	14437.0	Presente	Ausente	Ausente	Membrane magnesium transporter 1	MMGT1_HUMAN (Q8N4V1)
23	8.99106	12999.0	Ausente	Ausente	Presente	Membrane-spanning 4-domains subfamily A member 13	M4A13 HUMAN (Q5J8X5-2)
132	6.34749	36867.0	Ausente	Ausente	Presente	membro da família SLAM 6	SLAF6 HUMAN
71	5.25251	17992.0	Ausente	Ausente	Presente	membro da família SLAM 8	SLAF8 HUMAN (Q9P0V8-2)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

		0 0 1 2 0	<u>′</u>	3			
17	6.72273	51318.0	Ausente	Presente	Ausente	Metallophosphoesterase 1	MPPE1_HUMAN (Q53F39)
5580	7.86595	14642.0	Presente	Ausente	Ausente	Microtubule-associated proteins 1A/1B light chain 3 beta 2	MP3B2 HUMAN (A6NCE7)
92	8.71932	13997.0	Ausente	Presente	Ausente	Microtubule-associated proteins 1A/1B light chain 3A	MLP3A_HUMAN (Q9H492)
35	6.51955	15277.0	Ausente	Ausente	Presente	molécula não-inflamatória vascular 3	VNN3_HUMAN (Q9NY84-4)
84	6.38068	18028.0	Ausente	Presente	Presente	Mucin-1	MUC1_HUMAN (P15941)
55	5.87955	41005.0	Ausente	Presente	Ausente	Myocardial zonula adherens protein	MYZAP HUMAN (P0CAP1-8)
59	6.26932	58263.0	Ausente	Presente	Ausente	NADH dehydrogenase [ubiquinone] iron-sulfur protein 2	NDUS2 HUMAN (075306)
71	7.31136	30059.0	Ausente	Presente	Ausente	NADH-cytochrome b5 reductase 3	NB5R3_HUMAN (P00387)
154	7.05140	20448.0	Presente	Presente	Presente	Natural cytotoxicity triggering receptor 3	NCTR3 HUMAN (014931-5
85	6.31620	41706.0	Ausente	Ausente	Presente	Nesprin-2	SYNE2_HUMAN (Q8WXH0- 6)
48	4.64659	13605.0	Ausente	Presente	Ausente	Neuron-specific vesicular protein calcyon	CALY HUMAN (Q9NYX4-2)
5614	5.96441	21078.0	Presente	Ausente	Ausente	Neuropilin and tolloid-like protein 1	NETO1_HUMAN (Q8TDF5-1)
82	8.44091	31521.0	Ausente	Presente	Ausente	NK1/MAPK8-associated membrane protein	JKAMP_HUMAN (Q9P055-2)
2	9.22570	14785.0	Ausente	Ausente	Presente	OSTC subunidade Oligosaccharyltransferase complexo	OSTC_HUMAN (Q9NRP0)
18	7.56760	46699.0	Ausente	Ausente	Presente	P2X purinoceptor 5	P2RX5_HUMAN (Q93086)
86	6.69162	42993.0	Ausente	Ausente	Presente	p53 apoptosis effector related to PMP-22	PERP_HUMAN (Q96FX8)
5619	8.94543	11895.0	Presente	Ausente	Ausente	Peptidyl-prolyl cis-trans isomerase FKBP2	FKBP2_HUMAN (P26885)
5593	5.30012	49038.0	Presente	Ausente	Ausente	Perilipin-3	PLIN3 HUMAN (060664)
103	6.09721	52284.0	Ausente	Ausente	Presente	Peripheral plasma membrane protein CASK	CSKP_HUMAN (O14936-5)
88	6.52737	46617.0	Ausente	Ausente	Presente	Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha	PI42A_HUMAN (P48426)
160	6.19106	25196.0	Ausente	Ausente	Presente	Phospholipid scramblase 4	PLS4_HUMAN (Q9NRQ2-2)
130	6.13631	20419.0	Ausente	Ausente	Presente	Platelet glycoprotein IX	GPIX_HUMAN (P14770)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

			<u></u>	3			
69	6.66816	19168.0	Ausente	Ausente	Presente	Platelet-activating factor acetylhydrolase IB subunit alpha	LIS1_HUMAN (P43034-2)
31	6.84804	15261.0	Ausente	Ausente	Presente	Protein C19orf12	CS012 HUMAN (Q9NSK7)
101	5.75307	55615.0	Ausente	Ausente	Presente	Protein ERGIC-53	<u>LMAN1 HUMAN (P49257)</u>
93	5.97207	43358.0	Ausente	Ausente	Presente	Protein kinase C delta type	KPCD HUMAN (Q05655)
5623	6.52076	12814.0	Presente	Ausente	Ausente	Protein S100-A8	<u>\$10A8_HUMAN (P05109)</u>
113	7.42682	37432.0	Ausente	Ausente	Presente	Protein sprouty homolog 3	<u>SPY3_HUMAN (043610)</u>
168	6.44916	77688.0	Ausente	Ausente	Presente	Proteína transporte de proteínas Sec23B	SC23B_HUMAN (Q15437)
27	7.73295	14920.0	Ausente	Presente	Ausente	Protein-tyrosine phosphatase-like member A	HACD1 HUMAN (B0YJ81-2)
5671	7.52550	14456.0	Presente	Ausente	Ausente	Protransforming growth factor alpha	TGFA_HUMAN (P01135-2)
27	8.55307	12930.0	Ausente	Ausente	Presente	Putative HIG1 domain family member 2B	HIG2B_HUMAN
81	5.78409	32728.0	Ausente	Presente	Ausente	Putative HLA class I histocompatibility antigen, alpha chain H	HLAH_HUMAN (P01893)
73	4.95682	57489.0	Ausente	Presente	Ausente	Putative inactive maltase-glucoamylase-like protein LOC93432	MGAL2_HUMAN (Q2M2H8)
5664	8.92052	10790.0	Presente	Ausente	Ausente	Putative membrane-spanning 4-domains subfamily A member 4E	M4A4E_HUMAN (Q96PG1-2
59	7.59888	54258.0	Ausente	Ausente	Presente	Putative sodium-coupled neutral amino acid transporter 9	S38A9 HUMAN (Q8NBW4)
5588	8.97865	13627.0	Presente	Ausente	Ausente	Putative transmembrane protein ENSP00000320207	YO011_HUMAN (A6NDX4)
90	8.33750	10664.0	Ausente	Presente	Ausente	Putative uncharacterized protein C6orf50	CF050 HUMAN (Q9HD87)
28	7.17654	15261.0	Ausente	Presente	Presente	Putative uncharacterized protein encoded by LINC00052	TMM83 HUMAN (Q96N35)
61	6.14413	23457.0	Ausente	Ausente	Presente	Ras-related protein Rab-11A	RB11A HUMAN (P62491)
142	5.87821	26339.0	Ausente	Ausente	Presente	Ras-related protein Rab-14.	RAB14 HUMAN (P61106)
74	8.30279	18453.0	Ausente	Ausente	Presente	Ras-related protein Rab-22A	RB22A HUMAN (Q9UL26)
80	6.38864	19934.0	Ausente	Presente	Ausente	Ras-related protein Rap-1A	RAP1A HUMAN

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

	,			<u>, </u>			
79	5.37045	20369.0	Ausente	Presente	Ausente	Ras-related protein Rap-1b-like protein	RP1BL_HUMAN (A6NIZ1)
13	6.49205	49632.0	Ausente	Presente	Ausente	Regulator of G-protein signaling 20	RGS20_HUMAN (O76081)
115	6.84804	27930.0	Ausente	Ausente	Presente	Regulator of G-protein signaling 9- binding protein	R9BP_HUMAN (Q6ZS82)
164	6.76201	95002.0	Ausente	Ausente	Presente	Rho GTPase-activating protein 10	RHG10_HUMAN (A1A4S6)
19	6.21364	47365.0	Ausente	Presente	Ausente	Rhodopsin	OPSD_HUMAN (P08100)
89	6.60559	51369.0	Ausente	Ausente	Presente	Scavenger receptor class A member 5	SCAR5_HUMAN (Q6ZMJ2)
75	8.67039	18414.0	Ausente	Ausente	Presente	Secretory carrier-associated membrane protein 4	SCAM4_HUMAN (Q969E2-3)
107	5.49497	42848.0	Ausente	Ausente	Presente	Serine/threonine-protein kinase 24	STK24_HUMAN (Q9Y6E0)
172	4.33743	10705.0	Ausente	Ausente	Presente	Serine-rich and transmembrane domain- containing protein 1.	SRTM1_HUMAN (A2A2V5)
5594	6.24674	77144.0	Presente	Ausente	Ausente	SH3 domain-containing kinase-binding protein 1	SH3K1_HUMAN (Q96B97)
137	7.17654	63151.0	Ausente	Ausente	Presente	Sialic acid-binding Ig-like lectin 5	SIGL5_HUMAN (O15389)
84	6.39441	43358.0	Ausente	Ausente	Presente	Sialic acid-binding Ig-like lectin 6	SIGL6_HUMAN (O43699-4)
110	6.96536	42993.0	Ausente	Ausente	Presente	Sialic acid-binding Ig-like lectin 7	SIGL7_HUMAN (Q9Y286)
5586	7.40095	15492.0	Presente	Ausente	Presente	Sialomucin core protein 24	MUC24_HUMAN (Q04900-5)
34	7.48156	16207.0	Ausente	Ausente	Presente	Sialomucin core protein 25	MUC24_HUMAN (Q04900-4)
138	7.48939	18298.0	Ausente	Ausente	Presente	Sialomucin core protein 26	MUC24_HUMAN (Q04900-4)
7	7.52067	14461.0	Ausente	Ausente	Presente	Sialomucin core protein 27	MUC24 HUMAN (Q04900-4)
136	7.32514	63151.0	Ausente	Ausente	Presente	Sodium- and chloride-dependent taurine transporter	SC6A6_HUMAN (P31641)
133	8.49050	50381.0	Ausente	Ausente	Presente	Sodium-coupled monocarboxylate transporter 2	SC5AC HUMAN (Q1EHB4-2)
87	6.64469	46289.0	Ausente	Ausente	Presente	Solute carrier family 22 member 1	S22A1_HUMAN (O15245-3)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

F	erences (r		,	- 3			
53	8.65475	68567.0	Ausente	Ausente	Presente	Solute carrier family 22 member 5	S22A5_HUMAN (O76082-3)
17	7.23129	53971.0	Ausente	Ausente	Presente	Solute carrier family 23 member 3	S23A3_HUMAN (Q6PIS1)
25	8.99106	15570.0	Ausente	Ausente	Presente	Solute carrier family 25 member 48	S2548_HUMAN (Q6ZT89-3)
5583	6.99407	12847.0	Presente	Ausente	Presente	Sorting nexin-20	SNX20_HUMAN (Q7Z614-4)
100	5.89385	55615.0	Ausente	Ausente	Presente	STAM-binding protein	STABP_HUMAN (095630)
106	6.32402	54546.0	Ausente	Ausente	Presente	subfamília receptor de leucócitos imunoglobulina como um membro 2	LIRA2_HUMAN (Q8N149)
5662	5.76512	17635.0	Presente	Ausente	Ausente	Surfeit locus protein 4	SURF4_HUMAN (O15260-2)
5661	5.76512	18163.0	Presente	Ausente	Ausente	Surfeit locus protein 5	SURF4 HUMAN (O15260-2)
5628	5.79834	23598.0	Presente	Ausente	Ausente	Synaptogyrin-1	SNG1 HUMAN (043759-2)
152	6.76983	56605.0	Ausente	Ausente	Presente	Tapasin	<u>TPSN_HUMAN (015533-3)</u>
5620	8.02372	13575.0	Presente	Ausente	Ausente	Tax1-binding protein 3	TX1B3_HUMAN (O14907)
5631	5.20878	22736.0	Presente	Ausente	Ausente	T-cell immunoreceptor with Ig and ITIM domains	TIGIT HUMAN (Q495A1)
72	5.86257	18068.0	Ausente	Ausente	Presente	T-cell receptor beta-2 chain C region	TRBC2 HUMAN (A0A5B9)
1	9.82793	15021.0	Ausente	Ausente	Presente	T-cell surface glycoprotein CD1e, membrane-associated	CD1E HUMAN (P15812-11
5576	6.38790	13874.0	Presente	Ausente	Presente	Teneurin-1	TEN1 HUMAN (Q9UKZ4)
49	6.31705	50076.0	Ausente	Presente	Ausente	Thiamine transporter	S19A2 HUMAN (O60779)
156	6.62905	24556.0	Ausente	Ausente	Presente	Tissue fator	<u>TF HUMAN (P13726-2)</u>
81	6.16760	37117.0	Ausente	Ausente	Presente	Torsin-1 ^a	TOR1A HUMAN (O14656)
167	6.38659	77419.0	Ausente	Ausente	Presente	Transferrin receptor protein 1	TFR1 HUMAN (P02786)
78	5.84773	22723.0	Ausente	Presente	Ausente	Transforming protein RhoA	RHOA HUMAN (P61586)
5597	4.34520	30295.0	Presente	Ausente	Ausente	Translocon-associated protein subunit alpha	SSRA HUMAN (P43307)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) continuação

76	7.04358	19310.0	Ausente	Ausente	Presente	Translocon-associated protein subunit beta	SSRB HUMAN (P43308)
96	5.97207	50470.0	Ausente	Ausente	Presente	Transmembrane prolyl 4-hydroxylase	P4HTM HUMAN (Q9NXG6- 2)
159	7.72402	23491.0	Ausente	Ausente	Presente	Transmembrane protein 129	TM129_HUMAN (A0AVI4-2)
5590	419.573	12346.0	Presente	Ausente	Ausente	Transmembrane protein 210	TM210_HUMAN (A6NLX4)
124	5.58101	10910.0	Ausente	Ausente	Presente	Transmembrane protein 213	TM213_HUMAN (A2RRL7-2)
26	8.78771	15471.0	Ausente	Ausente	Presente	Transmembrane protein 220	TM220_HUMAN (Q6QAJ8-2)
39	6.80227	23543.0	Ausente	Presente	Ausente	Transmembrane protein 253	TM253_HUMAN (P0C7T8)
5669	9.60142	13821.0	Presente	Ausente	Ausente	Transmembrane protein 257	TM257_HUMAN (096002)
177	8.85028	19474.0	Ausente	Ausente	Presente	Transmembrane protein 95	<u>TMM95_HUMAN (Q3KNT9-</u> <u>2)</u>
176	8.86592	20036.0	Ausente	Ausente	Presente	Transmembrane protein 96	TMM95_HUMAN (Q3KNT9- 2)
70	6.40223	18927.0	Ausente	Ausente	Presente	Tubulin-specific chaperone D	TBCD_HUMAN (Q9BTW9-3)
141	6.44916	28740.0	Ausente	Ausente	Presente	Tumor necrosis fator	TNFA_HUMAN (P01375)
72	7.00909	28278.0	Ausente	Presente	Ausente	Tumor necrosis factor ligand superfamily member 10	TNF10_HUMAN (P50591)
64	6.47263	26414.0	Ausente	Ausente	Presente	Tumor necrosis factor ligand superfamily member 13B	TN13B HUMAN (Q9Y275-2)
157	7.63799	25017.0	Ausente	Ausente	Presente	Tumor necrosis factor ligand superfamily member 8	TNFL8_HUMAN (P32971)
169	6.46480	51278.0	Ausente	Ausente	Presente	Tumor necrosis factor receptor superfamily member 10A	TR10A_HUMAN (O00220)
70	8.63977	28320.0	Ausente	Presente	Ausente	Tumor necrosis factor receptor superfamily member 18	TNR18_HUMAN (Q9Y5U5-2)
153	6.59777	56307.0	Ausente	Ausente	Presente	Tumor necrosis factor receptor superfamily member 1A	TNR1A_HUMAN (P19438)
5627	7.37604	29390.0	Presente	Ausente	Ausente	Tumor necrosis factor receptor superfamily member 25	TNR25_HUMAN (Q93038-4)
76	8.44886	26342.0	Ausente	Presente	Ausente	Tumor necrosis factor receptor superfamily member 4	TNR4_HUMAN (P43489)

Tabela 3 - Relação de proteínas identificadas no TagIdent das amostras de proteínas de membrana de hemácias do grupo controle (GC) e dos pacientes (PC e PSC) conclusão

			<u></u>				
26	7.07273	14164.0	Presente	Presente	Ausente	Tumor necrosis factor receptor superfamily member 6	TNR6_HUMAN (P25445-4)
92	6.61341	53215.0	Ausente	Ausente	Presente	Tyrosine-protein kinase CSK	CSK HUMAN (P41240)
135	7.52067	63263.0	Ausente	Ausente	Presente	Tyrosine-protein kinase RYK	RYK HUMAN (P34925-2)
139	9.08492	11771.0	Ausente	Ausente	Presente	Uncharacterized membrane protein C19orf24	CS024 HUMAN (Q9BVV8)
9	6.73855	14370.0	Ausente	Ausente	Presente	Uncharacterized membrane protein C1orf95	CA095_HUMAN (Q69YW2)
24	9.22570	13907.0	Ausente	Ausente	Presente	Uncharacterized protein C16orf92	CP092_HUMAN (Q96LL3)
5645	6.24674	11668.0	Presente	Ausente	Ausente	UPF0668 protein C10orf76	B2L11_HUMAN (O43521-7)
5632	4.61922	27812.0	Presente	Ausente	Ausente	Uroplakin-3 ^a	<u>UPK3A HUMAN (075631)</u>
68	7.87263	25596.0	Ausente	Ausente	Presente	Uroplakin-3b-like protein	UPK3L_HUMAN (B0FP48)
5657	5.60735	24150.0	Presente	Ausente	Ausente	Vacuolar protein sorting-associated protein 26A	<u>VP26A_HUMAN (O75436-2)</u>
65	6.84205	37365.0	Ausente	Presente	Ausente	Vacuolar protein sorting-associated protein 26B	VP26B_HUMAN (Q4G0F5)
88	6.35682	12465.0	Ausente	Presente	Ausente	Vesicle-associated membrane protein 1	VAMP1_HUMAN (P23763)
5618	6.76987	13733.0	Presente	Ausente	Ausente	Vesicle-associated membrane protein 4	VAMP4_HUMAN (O75379)
5	7.75531	16379.0	Ausente	Ausente	Presente	Voltage-dependent calcium channel subunit alpha-2/delta-2	CA2D2_HUMAN (Q9NY47)
5587	7.12693	15592.0	Presente	Ausente	Presente	Voltage-dependent calcium channel subunit alpha-2/delta-4	CA2D4_HUMAN (Q7Z3S7)
5592	7.14354	14474.0	Presente	Ausente	Ausente	Voltage-dependent calcium channel subunit alpha-2/delta-5	CA2D4_HUMAN (Q7Z3S7)
5582	7.18505	13680.0	Presente	Ausente	Ausente	Voltage-dependent calcium channel subunit alpha-2/delta-6	CA2D4_HUMAN (Q7Z3S7)
60	7.78068	57875.0	Ausente	Presente	Ausente	Voltage-dependent L-type calcium channel subunit beta-2	CACB2_HUMAN (Q08289-3)
116	7.10615	28905.0	Ausente	Ausente	Presente	ZDHHC17 é o único palmitoyltransferase em hemácias.	ZDH17_HUMAN (Q8IUH5-2)
173	6.11285	40525.0	Ausente	Ausente	Presente	Zinc transporter 4	ZNT4_HUMAN (O14863)

ANEXOS

ANEXO 1- Termo de consentimento livre e esclarecido

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS DE SOBRAL PROGRAMA DE MESTRADO EM BIOTECNOLOGIA TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

Você está sendo convidado a participar do Projeto de pesquisa:

"Identificação, isolamento e caracterização físico-química de marcadores moleculares presentes em eritrócitos de portadores de anemia falciforme".

Nome dos pesquisadores responsáveis: Julieta Maria Mendes Frota de Almeida, Monalysa Neves Costa e Vicente de Paulo Teixeira Pinto.

Termo de Consentimento:

Para ter maior conhecimento das Anemias Falciformes, esta instituição desenvolve pesquisas científicas nesta área.

Este termo faz parte do processo de consentimento livre e esclarecido para a participação de pesquisa. Tem como objetivo informar-lhe sobre o estudo e oque irá lhe acontecer se você decidir participar dele. Leia este documento atentamente para ter certeza de que entendeu todas as informações que ele apresenta. Sua participação no estudo é completamente voluntária. Você não é obrigado a participar do estudo e, participando, sua saúde não será afetada. Esse estudo poderá não lhe trazer nenhum benefício, tampouco lhe fará mal algum, salvo riscos decorrentes do uso de agulhas, na hora da coleta do sangue venoso e na coleta da medula óssea. Se você quiser saber mais sobre alguma informação

mencionada neste documento ou se tiver dúvidas sobre este estudo, não deixe de perguntar a seu médico ou enfermeira. Você também receberá uma cópia deste documento.

Informações sobre o estudo:

Neste projeto buscamos: Identificar na membrana das hemácias proteínas relacionadas à anemia falciforme, que possam ser utilizadas para diferenciá-la da membrana de hemácias não falcêmicas; Avaliar a utilização de proteínas relacionadas à anemia falciforme no seguimento da evolução clínica da doença; Estudar os mecanismos que regulam as alterações genéticas responsáveis pela produção de proteínas na membrana de hemácias de pacientes com anemia falciforme; Correlacionar alterações em proteínas relacionadas à anemia falciforme com seu quadro clínico. Portanto, estudar as alterações genéticas para saber se as proteínas da membrana da hemácia poderão contribuir para o desenvolvimento de tecnologias, como a produção de anticorpos monoclonais, oferecendo novas abordagens terapêuticas aos pacientes com anemia falciforme. Ao mesmo tempo é nossa meta estimular a formação de recursos humanos, gerando dados para a conclusão de uma Dissertação de Mestrado, no programa de Pós-Graduação em Biotecnologia da Universidade Federal do Ceará-*Campus* de Sobral.

Agulhas intravenosas e intraósseas / exames de sangue e medula óssea:

Alguns riscos conhecidos, embora raros, estão associados à colocação de uma agulha na veia ou medula óssea. Entre esses riscos estão: desconforto, a possibilidade de infecção (que é mínima, uma vez que são usadas agulhas estéreis e descartáveis), além de hematoma ou inchaço temporário.

Testes em sua amostra de sangue:

Amostras de seu sangue e medula ficaram armazenados e puderam ser utilizados em estudos futuros, desde que haja sua autorização e aprovação do Conselho de Ética e Pesquisa. No entanto, você pode não concordar que seu sangue fique guardado em nosso banco de dados após o término deste estudo. Para tanto, basta que você comunique a seu médico que

não quer mais que o sangue seja utilizado. Depois disso, seu sangue não mais será utilizado para pesquisa ou quaisquer outros fins.

Você concorda que uma amostra de seu sangue seja retirada e utilizada para a presente pesquisa?

SIM () NÃO () Iniciais do paciente:

Custos:

Você não desembolsará nada para participar deste estudo.

Benefícios potenciais:

A participação neste estudo poderá não lhe trazer benefício algum. Entretanto, com base nos resultados obtidos, espera-se, em longo prazo, conhecer mais sobre a anemia falciforme e gerar maior conhecimento científico sobre ela. Desta forma, poderemos contribuir para desenvolver um tratamento mais adequado para os portadores.

Você não terá nenhuma vantagem financeira imediata e nem terá direito a qualquer remuneração de eventuais contratos ou patentes que possam advir dos estudos utilizando sua amostra de sangue.

Confidencialidade:

As informações coletadas como partes deste estudo serão reveladas a outros pesquisadores e médicos. Todavia, você não será identificado em nenhum desses relatórios. Será mantida confidencialidade absoluta e você não será identificado pelo nome em nenhum dos dados e materiais submetidos. Todo material coletado para este estudo será mantido em local seguro.

Se você tiver qualquer dúvida sobre esta pesquisa, problemas médicos ou qualquer outra pergunta sobre os procedimentos deste estudo, entre em contato com os Pesquisadores Coordenadores do estudo. O principal investigador é o Dr. Vicente de Paulo Teixeira Pinto,

74

que se encontra no endereço: Av. Comandante Maurocélio Rocha Pontes, 100, CEP. 62.042-280; Sobral-Ce; Telefone de contato: 88-36118000, e-mail: vppinto@ufc.br. Se você tiver alguma consideração ou dúvida sobre a ética da pesquisa, entre em contato com o **Comitê de Ética em Pesquisa (CEP) da Universidade Estadual Vale do Acaraú** — Avenida da Universidade, 850, Betânia, Sobral-CE, fone (88) 36774243, www.uvanet.br ou — Comitê de Ética em Pesquisa (CEP) Rua Botucatu, 572 — 1º andar — fone (11) 5571-1062, FAX: 5539-7162 da Universidade Federal de São Paulo — E-mail: cepunifesp@unifesp.br

Consentimento do Paciente:

Acredito ter sido suficientemente informado a respeito das informações que liou que foram lidas para mim, descrevendo o estudo. "Identificação, isolamento e caracterização físico-química de marcadores moleculares presentes em eritrócitos de portadores de anemia falciforme."

Eu discuti com o Dra. Julieta Maria Mendes Frota de Almeida sobre a minha decisão em participar nesse estudo. Ficaram claros para mim quais são os propósitos do estudo, os procedimentos a serem realizados, seus desconfortos e riscos, as garantias de confidencialidade e de esclarecimentos permanentes. Ficou claro também que minha participação é isenta de despesas e que tenho garantia do acesso a tratamento hospitalar quando necessário. Concordo voluntariamente em participar deste estudo e poderei retirar o meu consentimento a qualquer momento, antes ou durante o mesmo, sem penalidades ou prejuízo ou perda de qualquer benefício que eu possa ter adquirido, ou no meu atendimento neste Serviço.

Assinatura do paciente/representante legal Data//
Assinatura da testemunha
Data//

75

Para casos de voluntários menores de 18 anos, analfabetos, semi-analfabetos ou portadores de deficiência auditiva ou visual.

Declaro que obtive de forma apropriada e voluntária o Consentimento Livre e

Esclarecido deste paciente ou representante legal para a participação neste estudo.

Assinatura do responsável pelo estudo

Data __/__/__

ANEXO 2 - Parecer consubstanciado de análise de protocolo de pesquisa

PARECER CONSUBSTANCIADO DE ANÁLISE DE PROTOCOLO DE PESQUISA

Processo Nº: FR		Protocolo I	DO PROJE	Data de entrada CEP: 1	9 de novembro	
Título	Identificação, isolamento e	e caracterização	o fisico-químic	de 2009 a de marcadores molecula nemia falciforme	res presentes em	
Área de Conheci Medicina Diag.	mento: 4.00 - Ciências da Sa		Grupo: III	Nível: Diagnóstico	Fase: N/A	
Pesquisador Responsável Almeida			Titulação máxima: Mestre			
Objetivo Geral	Identificar glicoproteína(s) da membrana eritrocitária de pacientes con hemoglobinopatias que possam ser utilizadas como marcadores de progressão da doença.					
Objetivos Específicos	do como ferm Isolar e carac sentes na mer Avaliar a uti da doença; Estudar os m pressão de gi forme; Correlaciona de hemoglob	amentas lectino eterizar marcad mbrana celular lização de ma necanismos que licoproteínas de r alterações er pinopatias com	as associadas a iores molecula ; readores mole e regulam o p e membrana e n glicoproteím a seu quadro o	elacionadas às hemoglobir cromóforos; res relacionados às hemog culares no seguimento da olimorfismo genético que m hemácias de pacientes o las da membrana critrocitás elínico, sua resposta ao tra que possam ser usados co	evolução clínica determina a ex- om anemia falci- ria de portadores atamento, e con-	

II METODOLOGIA DO ESTUDO
Experimental
Pacientes com diagnóstico de hemoglobinopatias atendidos no Serviço de Hematologia e Hemoterapia da Santa Casa de Misericórdia de Sobral
Não especificados
Laboratório de Hematologia do Hemocentro Regional de Sobral do Centro de Hematologia e Hemoterapia do Ceará (Hemoce)
Novembro de 2009 a Novembro de 2011
Coleta de sangue e coleta de dados clínicos através de um protocolo com dados clínicos de interesse da pesquisa
Análise estatística utilizando programa Epi Info 3.3.2
Dissertação de Mestrado, tese de Doutorado e artigos científicos

Reconhecide pela Portaria Nº 821/ MEC D.O.U. de 01/06/1994 1 Avenide de Universidade, 850 -- Betânia -- CEP: 62.040-370 -- Sobral -- Ceará Fone: (88) 3677.4243 / FAX: (86) 3613.1886 - www.uvanet.br

III ASPECTOS A	AVALIADOS		
Dados da Folh	a de Rosto		
Título	Adequado		
Área de Conhecimento, Grupo e Nível	Adequado		
Termo de Compromisso do Pesquisador	Adequado		
Anuência da Instituição envolvida	Adequado		
Dados do I	Projeto		
Relação e titulação dos pesquisadores	Adequado		
Objetivos exeqüíveis	Adequado		
Projeto elaborado por patrocinador	Não		
Condições para realização	Adequadas		
Metodol	ogia		
Amostra	Adequada		
Participantes de grupos vulneráveis	Sim		
Uso de placebo	Não		
Critérios de inclusão e exclusão dos sujeitos	Não especificados		
Relação de risco-beneficio	Não se aplica		
Privacidade e confidencialidade	Adequado		
Monitoramento da segurança e dados	Não se aplica		
Instrumentos de coleta de dados	Adequado		
Análise dos dados	Programa estatístico Epi Info		
Cronograma	Adequado		
Orçamento	Adequado		
Termo de Consentimento Livre e Esclarecido	Adequado		
Consentimento Pós-Informado	Adequado		
Referências	Adequadas		

IV ANÁLISE CRÍTICA E ÉTICA RESPALDADA NA Res. 196/96 E COMPLEMENTARES DO CONSELHO NACIONAL DE SAÚDE

O protocolo de pesquisa foi analisado no Comitê de Ética em Pesquisa da Universidade Estadual do Acaraú, na reunião do dia 03 de março de 2010, tendo sido deliberado o que se segue:

Destacamos a evidente importância do projeto de pesquisa que se propõe a fazer uma identificação, isolamento e caracterização físico-químico de marcadores moleculares presentes em eritrócitos de portadores de anemia falciforme. Observamos que o protocolo encontra-se bem delineado, com metodologia estruturada e adequada.

Observamos ainda que todos os requisitos que norteiam o Comitê de Ética em Pesquisa da Universidade Estadual Vale do Acaraú (UVA) e do CONEP foram atendidos, portanto, demos o projeto por Aprovado. Entretanto,

este comitê exige que no termo de consentimento livre e esclarecido (TCLE) e termo de consentimento pós esclarecido (TCPI) conste o endereço e telefone deste comitê de ética, além do contato com os pesquisadores.

	V CONCLUSÃO DO PARECER	
Aprovado		

VI. DECISÃO DO PLENÁRIO E PARECER DO CEP	VII. DATA DA REUNIÃO
Aprovado o voto do relator(a). Projeto classificado como: Aprovado	Sobral (CE), 03 de março de 2010.

Prof^a Dr^a Maristela Inês Osawa Chagas Coordenadora do CEP/UVA