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“For every complex problem there is an answer  

that is clear, simple, and wrong.”  

- H. L . Mencken 



 
 

R E SUMO 

 

Este trabalho investiga múltiplos métodos de aprendizado de máquina para uma aplicação de 

modelagem substituta e otimização de um modelo de adsorção por oscilação de pressão 

validado experimentalmente, avaliando sua exatidão e precisão em comparação com o método 

mais amplamente utilizado de Redes Neurais Artificiais. A lém disso, foram explorados alguns 

meios de melhorar a precisão dos modelos de aprendizado de máquina com conhecimento e 

parâmetros disponíveis do processo, seguido pela otimização dos parâmetros de Pureza e 

Recuperação do sistema, finalizando com uma quantificação do tempo computacional total 

empregado. Todas as etapas descritas foram desenvolvidas e finalizadas com sucesso utilizando 

a linguagem de programação Python de código aberto e os resultados esperados e inesperados 

foram discutidos e a otimização foi finalizada e ampliada. 

 

Palavras-Chave: Adsorção; Machine Learning; Otimização; Modelagem;  

 

  



 
 

ABST R ACT  

 

This work investigates multiple methods of machine learning for an application of surrogate 

modelling and optimization of an experimentally validated Pressure Swing Adsorption model, 

evaluation their accuracy and precision compared to the more widely use method of Artificial 

Neural Networks. In addition, some means of improving the machine learning models accuracy 

with at-hand process knowledge and parameters were explored, which was followed by the 

optimization of the Purity and Recovery parameters of the system, finishing with a 

quantification of the total computational time employed. A ll steps described were developed 

and finished successfully using the open source Python programming language and the 

expected and unexpected results were discussed and the optimization was finalized and 

expanded. 

 

K eywords: Adsorption; Machine Learning; Optimization; Modelling;  
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1 INT R ODUCT ION 

 

1.1 Adsorption and Surrogate Modelling. 

 

Adsorption is a phenomenon where one or more components of a phase concentrate 

spontaneously in the surface of a solid. This process, by its nature is composed of two transport 

phenomena mechanisms, mass, through the concentration of the component, and heat by the 

change of energy through the phase transition. Thus, the modelling of adsorption has to take 

into account at least two equations to describe the change of properties, mass balance and 

energy balance (Bird et al., 2007), and if in the system of interest has also movement of fluid, 

an additional momentum balance should be added to the model. The general form for the 

Momentum, Mass and Energy balance are described, respectively, by Equations 1.1, 1.2 and 

1.3. 

���
��

= ∇∙�+�� 
 
(1.1) 

 
��௩��

��
=�+ �௩̇+∇∙(�∇�)   

 
 
(1.2) 

 

∇∙�௫+
��௫

∂t
−�௫=0 

 
 
(1.3) 

 

As most of the practical uses of adsorption involves movement of fluid (Ruthven, 1984), 

these three equations most likely will be present in an accurate model. Sometimes it is possible 

to apply simplifications to the system, such as considering an instantaneous transfer between 

the free phase and the adsorbed phase, thus removing the dynamic mass balance equation, only 

requiring models for thermodynamic equilibrium (Do, 1998). However, in common industrial 

processes of adsorption such as Pressure Swing Adsorption, PSA , such simplification are not 

so easily applicable and due to the large scale fluid motion, the modelling also has to employ 

Computational Fluid Dynamics, CFD, models, which are often computationally costly 

(Anderson, 1995). 

With these complex equations, often the application and optimization of adsorption 

processes run into the “Curse of dimensionality” (Bellman, 2010) which states that, for each 

additional parameter to be optimized, the number of simulations increase exponentially, so a 
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model that runs once a time of the order of 10 h, the optimization of n parameters would require 

10n+1 hours, which quickly reaches a time of years for the optimization to be complete, thus 

being impracticable. 

Due to this problem, in engineering it’s often employed what is called Surrogate 

modelling (Forrester et al., 2008), which adds a simpler, Surrogate model, to model the system 

of interest. The general model is only employed to offer a representative sample of data for the 

process, and the Surrogate is tuned to generate results that are within an acceptable margin of 

error in comparison to the rigorous model, thus reducing the computational time required. 

  

1.2 Machine L earning. 

 

Machine learning is a field that employs statistical models computationally with the goal 

of general prediction and optimization. To apply the models, it is necessary to gather data 

organized into “targets” the dependent variables and “features” the independent values. The full 

dataset is then split into the training set, that is fed to the model which fits appropriate 

parameters for regression or classification, and the test set, which is used to validate the model. 

(Hastle et al., 2009). The field of statistical learning has seen an increased growth in recent 

years, exhibiting considerable versatility, being able to predict medical conditions to market 

prices (Müller and Guido, 2017). 

 These models can be used as surrogates, as most of them employ simple statistical 

techniques for regression and classification, not being too much time consuming, but being 

devoid of any physical theory, they can only be used purely for quantitative analysis and can’t 

give theoretical information about the predicted system. The use of machine learning as a 

surrogate is simply that the training and test datasets would be generated by the detailed model, 

Figure 1 shows a brief description of the use of statistical learning as a surrogate model for 

modelling and optimization. 
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F igure 1.1 – Machine Learning as surrogate model. 

 
Source : Author 

There is a wide variety of models that use different approaches for prediction, the 

simplest is K -Nearest neighbors and most complex is Artificial Neural Networks, also know 

more recently as deep learning. Each model has one or more parameters that are tuned through 

a grid search, until a best value is achieved, for the K -Nearest neighbors, the parameter “K ” is 

the number of neighbors, a non-zero natural number. 

 

1.3 Objectives 

The general objective of this work is to use and evaluate Machine Learning as a 

surrogate model for the optimization of the Purity and Recovery of Nitrogen gas (N2) that is 

produced by the separation process of a mixture of CO2 and N2 via Pressure Swing Adsorption, 

while looking for ways to introduce process knowledge in the statistical models. 

As specific objectives, these are: 

 Evaluate model accuracy 

 Evaluate the effects of scaling in model accuracy 

 Evaluate model sensitivity 

 Analyze if there are ways of improving the models with process knowledge 

 Choose most accurate and convenient model 

 Obtain optimal values for purity and recovery 

 Filter the results based on practical importance 
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2 L IT E R AT UR E  R E V IE W 

 

2.1 R ecent research and historical context  

 

The interest in the optimization of PSA processes was always present in the literature, 

going back to works from Nilchan (1997), which uses a phenomenological model to construct 

a non-linear programing optimization problem solved with a sequential quadratic programming 

algorithm, applied to a 2-bed model in a 4-stage cycle. Barg (2000) did the modelling and 

optimization of an industrial PSA unit with 6 beds and 3 layers of different adsorbents for the 

purification of hydrogen gas, dealing with a problem with significantly more mathematical 

complexity.  

More works, such as J iang et al. (2005) using successive square programming for the 

optimization over some case studies of V SA processes, Agarwal et al. (2008) which uses a 

surrogate reduced order model applied to a two-bed four step PSA process for the separation of 

hydrogen gas and methane and Boukouvala et al. (2017), which expand the optimization 

techniques over a class of grey box models, show that there is a consistent relevance of the 

subject in the literature of the last three decades. A  common ground over all of the cited works 

is the emphasis in using optimization methods that provide viable computational times required. 

When surrogate modelling is included, in general, the surrogates are used for 

optimization of performance variables, such as gas purity, recovery and energy cost. Hasan et 

al. (2011) employed a surrogate-based optimization using a synergistic combination of a 

traditional adsorption model with Design and Analysis of Computer experiments, DACE. The 

relevant variables for optimization were Energy, Economic, Environmental and Capture costs 

of Carbon Dioxide. 

Beck et al. (2015), also uses surrogate modelling for optimization of V PSA systems, the 

used surrogate is known as K riging, a statistical interpolation technique modeled as a Gaussian 

process, the optimization parameters were Purity, recovery and molar work. The previous 

articles both discuss the necessity of fast converging models for tractable optimizations, but not 

many of them specifically deals with Machine learning or data science. These findings show 

that even with the rapid evolution of computer software and hardware, the computational times 

for simulations and the curse of dimensionality are still ever-present problems and also shows 

how new the field of data science and machine learning is and how it expanded. 
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To further elucidate this, Beck et al. (2016) discusses the importance of the field of data 

science for chemical engineering, it discusses the many benefits of the field, and explains the 

different types of learning, such as the supervised and unsupervised learning. The possible 

applications range from chemical reaction modelling, nanoscale modelling, synthetic biology 

and many more. The highlights for the potential of the models is explained through the use of 

artificial neural networks, the most powerful method of statistical learning. 

With the context of the novelty of machine learning, the application in adsorption is 

reflected by a very recent rise in published research. Y e et al. (2019) uses neural networks to 

optimize the process of purifications of hydrogen gas through PSA, the machine learning model 

is applied in MATLAB and the predicted parameters were purity and recovery. Similar works 

were published by Ma et al. (2019) which applies ANN’s for hydrogen purification and Leperi 

et al. (2019) for CO2 capture. Specifically dealing with optimization using machine learning 

models, Sant Anna et al. (2017) uses ANN’s to model and optimize and single-bed V PSA 

process for the separation of CH4 and N2. 

More recent works also couple the machine learning modelling and optimization with 

molecular simulation, providing a computational treatment of the multiple parts of the 

adsorption applications, works from Bobbitt and Snurr (2019) and Burns et al. (2020) integrate 

molecular simulation and artificial neural networks for screening of Metal organic frameworks, 

MOFs and process optimization. 

The most data science intensive work comes from Pai et al. (2020) which applies 

machine learning methods for experimentally validated models of pressure swing adsorption 

processes. The paper investigates the impact of the training set sizes in the accuracy of the 

predictions for performance variables for multiple statistical models and uses artificial neural 

networks to evaluate the impact of the training set sizes for the concentration profiles of the 

PSA columns, as this variable is a vector, only ANN’s are possible for the predictions. 

 

2.2 General Adsorption Fundamentals 

 

Adsorption is a physical or chemical phenomenon where a chemical species in a fluid 

concentrates itself on the surface of a solid, spontaneously, due to a chemical potential gradient. 

This process reduces the concentration of the compound in the fluid until a thermodynamic 

equilibrium is reached. The adsorbed species is the adsorbate and the solid is the adsorbent. 

Adsorbents have different affinities for different compounds, some are attracted to the surface 

more than others are, and this difference is the principle of the use of adsorption to separate 
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different chemicals. Detailed theoretical description of the phenomenon can be found in 

Ruthven (1984) and Do (1998). 

The amount of a compound, which is adsorbed by a solid, in equilibrium, can be 

correlated with bulk fluid concentration, for liquid adsorbates, and partial pressure, for gaseous 

adsorbates. These correlations are constructed in graphs known as adsorption or equilibrium 

isotherms. Different adsorbent-adsorbate systems will exhibit different forms of isotherms; the 

most recent report of IUPAC (Thommes et al., 2015) discusses these types of curves, which are 

shown in Figure 2.1.  
F igure 2.1 – Types of adsorption isotherms 

 
Source : Thommes et al. (2015) 

 

 

2.2.1 E quilibrium Models 

 

Equilibrium models for adsorption, also known as adsorption isotherms, are equations 

that are meant to appropriately correlate the adsorbed quantity of a species with a measurable 

property, such as concentration, in a fixed temperature. Some models are derived from theory, 

such as the Henry Law limit for low concentrations, and the Langmuir Isotherm, which assumes 
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that the adsorption happens in a monolayer and that the solid is energetically homogeneous, 

most models, however, are semi-empirical.  

Table 2.1 lists some models that were reviewed by Foo and Hameed (2010). In principle, 

it is possible to choose a model based on the adsorbate-adsorbent system properties, but 

generally, as discussed in L imousin et al. (2007), there is some trial and error. The choice 

escalates from trying to fit simpler models to more complex one by addition of parameters and 

modification of the equations to improve the model fit to the experimental data.  

 
T able 2.1 – Some Adsorption Isotherm Models. 

Isotherm Equation Application 
Example 

Reference 

Henry Law �௘=�ு�௘ Low 
concentration 

sorption 

Classical 
Thermodynamics 

Langmuir �௘=
�௠��௘

1+��௘
 Methylene blue 

by Activated 
carbon 

Langmuir (1916) 

Freundlich �௘=�ி�௘ 
ଵ
௡ Ammonium by 

Zeolites 
Freundlich (1906) 

Sips �௘=
�௠��௘

௡ 
1+��௘

௡ CO2 by activated 
carbon 

Sips (1948) 

Toth �௘=
�௠��௘

(1+��௘
௡)

ଵ
௡
 H2 by activated 

carbon 
Toth (1971) 

BET �௘=
�஻ா் �஻ா் �௘

(�௦−�௘)[1+(�஻ா் −1)ቀ�௘
�௦

ቁ 
 Nitrogen at 77K  

in various 
sorbents 

Brunauer et al 
(1938) 

 

Source: Modified from Foo and Hameed (2010) 

 

2.2.2 K inetic models and diffusion mechanisms 

 

The transport of chemical species through the adsorbent pores can by described by a 

diffusional process which has the driving force from the chemical potential as first recognized 

by Einstein (1906). The form of the energy balance of a differential element of diffusion is 

given by Equation 2.1 

 

��௔=−
��௖

��
 

                 
(2.1) 
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Applying the thermodynamic definition of chemical potential and applying the 

definition of flux, Equation 2.2 is derived.  

 

�௔=�௔�=−
�௚�
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��
��

   

                 
(2.2) 

 

Diffusivity can be defined by the following terms of Equation 2.3 
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(2.3) 

 

Which can be rearranged to express the thermodynamically corrected diffusivity as 

described by Darken (1948), Equation 2.4. 

 

�௔=�௔଴ 
����௔

����
 

 

                 
(2.4) 

 

The accurate description of the diffusion of species in porous adsorbents is dependent 

on the pore size relative to particle size of the system. IUPAC (Sing et al., 1985) defines three 

main types of pores based on size; Macropores have widths exceeding about 50 nm; Mesopores 

comprise between 2 nm and 50 nm and Micropores have widths below 2nm. 

For diffusion in macropores, four types of mechanisms can be identified; Molecular 

diffusion, for when the relative size of the molecules in comparison with the pores is small; 

K nudsen Diffusion, when the macropore is narrow in relation with the molecules size; Surface 

Diffusion, when there is significant adsorption at the pore walls and Plug flow. The diffusivities, 

in order of the citation of the mechanisms is shown in Equations 2.6 to 2.9. They are to be used 

in a Fickian form of the Diffusional flux, Equation 2.5. 

 

�=−�
��
��

 
                 

(1.5) 

�=�஺஻ (2.6) 

�=�௄ =97� ቆ
√�
√�

ቇ  
(2.7) 

�௧=�௣�௣+�௦�௦ (2.8) 
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(2.9) 

 

 For diffusion in micropores, diffusivity can be described as an exponential function of 

temperature, Equation 2.10 and the general equation for diffusion in micropores in a spherical 

particle is described by Equation 2.11. 

�௖=�ஶ  �
ି ா

ோ೒்   
                 

(2.10) 
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  ൰ 
(2.11) 

 

More detailed description of diffusion mechanisms and models are to be found in K ärger et al 

(2011), Do (1998), Nicholson and Petropoulos (1985) and Bathia et al. (2004). Recent works 

in the general area of adsorption include CO2 capture, (Sánchez-Zambrano et al. 2019; Morales-

Ospino et al. 2020a), the promising research with Metal Organic Frameworks (MOFs) 

adsorbents for general use (Hossain et al. 2019; Jamshidifard et al. 2019), the growing field of 

Molecular Simulation (Y ang et al. 2019), and in the diffusion area, implementation of new 

measurement methods (Siqueira et al., 2018a; Richard et al., 2020). 

  

2.3 Separation adsorption processes 

 

In general, the use of adsorption as both a separation and a purification processe revolves 

around the reversibility of the phenomenon, one or more variables that move the 

thermodynamic equilibrium are manipulated to achieve the process goal. The global steps of 

the process are first adsorption, where the compound with the most affinity is retained, reducing 

its concentration in the bulk and raising the composition of the less adsorbed one, and second 

the desorption or regeneration, where the most adsorbed compound is released and the solid 

can be used for the adsorption process again. From this point the differences in the industrial 

and lab-scale process depends on which variable is manipulated to move the equilibrium and 

what type of operation the machinery undergoes; a brief description of the most used processes 

is included in the following sections. 
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2.3.1 F ixed Bed adsorption 

 

The fluid mixture flows into a column packed with adsorbent solids, the basic process 

is the same as other fixed bed industrial processes with the addition of the mass transfer caused 

by adsorption, as Figure 2.2 shows. 

 

 

 

 
F igure 2.2 – Fixed bed adsorption column 

 

 
Source: Author 

 

The two main classes of fixed bed adsorption are Pressure Swing Adsorption, PSA and 

Temperature Swing Adsorption, TSA. For PSA (Ruthven et al. 1994), pressure is cyclically 

manipulated to promote adsorption, by increasing pressure, and desorption, by decreasing 

pressure in the packed bed. In a classical isotherm, the path that changes the thermodynamic 

equilibrium is shown in Figure 2.3, for constant temperature. 
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F igure 2.3 – Paths to adsorption and desorption in an equilibrium isotherm, for PSA process. 

 
Source: Author 

 

The simplest form of a PSA cycle is the Skarström Cycle (Skarström, 1960) which is 

divided into three steps. Pressurization, where the fluid mixture flows into the bed with its exit 

stream closed, raising the pressure up to the projected value, Adsorption, where in the 

appropriate pressure, the separation occurs. Blowdown or desorption, where the pressure is 

abruptly decreased to release the most adsorbed compounds, and Purge, to remove residuals of 

adsorbate that persists in the solids. Figure 2.4 illustrates the cycle. 

 
F igure 2.4 – Pressure Swing adsorption process. 

 

 
Source: Author 
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For TSA instead the temperature is changed to promote adsorption, by cooling, or 

promote desorption, by heating. The path in an isotherm graph is illustrated in Figure 2.5, and 

the basic operation of the TSA bed is shown in Figure 2.6, where initially the mixture feeds the 

bed and the less adsorbed compounds are collected in the outflow, when the solids saturate the 

process is stopped and the temperature is increased to release the more adsorbed compounds.   

 
F igure 2.5 – Paths to adsorption and desorption in an equilibrium isotherm, for TSA  process 

  
Source: Author 

 

F igure 2.6 – TSA process illustration 

 
Source: Author 
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2.3.2 Continuous countercurrent adsorption beds 

 

General countercurrent flow processes are more advantageous than batch or cyclic batch 

processes due to maximizing the driving force of the transport phenomena (Bird et al., 2007), 

in the case of adsorption, it maximizes the amount of adsorbed compounds per mass of 

adsorbent solids. Two main types of countercurrent adsorptions exist, the Moving bed, where 

the solid, instead of being fixed in the bed, is in continuous movement as a stream while in 

contact with the adsorbate fluids, and Simulated moving bed, where no actual solid movement 

happens, but the same advantage of the countercurrent flow is achieved. 

Figure 2.7 illustrates a generic Moving bed system with two stages, the adsorption stage 

is where the fluid and the solid are in countercurrent contact and the desorption stage is where 

the saturated solids are transported to be reutilized in the adsorption stage. The solids flow 

downstream and it is required a solid transport system to move the used sorbent to the 

desorption stage. 
F igure 2.7 – Moving bed illustration 

 
Source: Author 

 

The greatest difficulty associated with the moving bed is the solid transport, which 

generates attrition and could cause obstruction problems in the tubes. 

The basic concept of the simulated moving bed is shown in Figure 2.8. A  series of beds 

are placed in two separate stages called adsorption and desorption train. In the adsorption train, 
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the feed flows into columns arranged in series, segmenting the mass transfer zone. The first bed 

becomes the most saturated while the last contains almost fully regenerated solids. In the 

desorption train the same series arrange is employed, a purge stream flows in series through the 

columns, the first one becomes the most sorbate-free while the last one maintains itself close to 

saturation. The simulation of the countercurrent flow then happens through switching the places 

of each column in and out of the two stages. Once the first column in the adsorption train 

becomes fully saturated, it is moved to the last position of the desorption train while the fully 

regenerated column in the desorption train moves to the last position of the adsorption train, 

this operation continues in a loop and that ensures a process similar to the countercurrent 

system.  
F igure 2.8 – Simulated Moving bed illustration 

 
Source: Author 

 

The switching of the columns as described does not happen in the literal sense, most of 

the time the switches are made through an arrange of valves. An important industrial process 

that uses the simulated moving bed principle is the Sorbex (Johnson and Oroskar, 1989), which 

employs a single column with multiple segments, the feeds are moved continuously through a 

rotary valve. Figure 2.9 illustrates the operation. 
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F igure 2.9 – Sorbex process. 

 
Source: Ruthven (1984) 

 

Recent work on the field of adsorption separation processes include High Pressure PSA  

simulation (Siqueira et al. 2018b), Zeolite studies for CO2 capture through TSA (Morales-

Ospino et al., 2020b) and Moving bed adsorption for natural gas separation (Mondino et al. 

2019). 

 

2.4 Machine L earning and data science 

 

Machine learning is a part of the field of Data Science that focuses on the study of 

algorithms that improve themselves automatically. In essence the algorithms are constructed to 

make predictions based on the data that is provided. The basic approach to this type of learning 

is first gathering a large amount of data related to a certain problem of interest, and organizing 

it into a matrix, where each row is labeled as a data sample and each column is labeled as a 

feature. One or more of those features is the parameter or variable of interest that is supposed 

to be predicted, which is commonly referred as the targets, and the rest of the features are the 

variables that are to be used to predict the target. This type of arrangement works to represent 

the target in function of selected features to form a function �் =�(�்) where �் is the target 

and �்  a vector of features. Table 2.2 shows how a data matrix looks like for a machine learning 

application. 
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T able 2.2 – Machine learning matrix 

Target Feature 1 Feature 2 Feature 3 Feature 4 
1 0.50 0.35 0.42 0.05 
0 0.24 0.67 0.78 0.00 
0 1.00 0.98 0.68 1.00 
1 0.65 0.53 0.31 0.27 
1 0 0.01 1.20 0.95 

 
Source: Author 

 

The two main types of problems that can be solved through machine learning are 

regression and classification problems. In regression problems, the algorithm predicts a numeric 

value of a target, as an example, the prediction of the Purity of a product of an adsorption 

process is done through regression. In the case of a classification problem, the algorithm 

predicts a class, as an example, the prediction of the malignity of a tumor is done through a 

classification algorithm, which indicates that the tumor is malign or not. 

Considering now the types of learning employed in Machine learning, there is 

supervised learning and unsupervised learning. In the supervised case, the dataset fed to the 

model contains both inputs and outputs, that is it contains both the features required for 

prediction and the value of the targets, that is, the dataset already contains the expected values 

and the goal of the A lgorithms is to find a model that generalizes the behavior. In unsupervised 

learning the outputs are not known and the goal of the algorithm is to find patterns in the dataset 

so it can use its features to predict the desired target. 

Surrogate modeling using machine learning is a type of supervised learning, as the 

expected values for the target are already known through the detailed model, and the goal of 

the learning algorithm is to generalize results for faster convergence. An example of 

unsupervised learning is face recognition (Müller and Guido, 2017), the algorithm looks for 

facial patterns of a specific person to identify it and check for the person’s identity through this 

features when necessary. Figure 2.10 illustrates both supervised and unsupervised learning. 
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F igure 2.10 – Supervised and unsupervised learning differences. 

 
 

2.4.1 Main types of Machine L earning models. 

 

The simplest type of algorithm is the K -Nearest-neighbors, the operation of this 

algorithm follows by first accounting for a number of known output points, then an unknown 

input is fed to the model, which calculates the output based on the smallest distance of known 

outputs. The parameter of the model is simply the number of neighbors, if the number is one, 

then the predicted value is simply the value of the nearest known output, any number larger 

than one neighbor calculated the values based on averages of the values of the nearest points. 

Figure 2.11 illustrates the process. 
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F igure 2.11 – K - Nearest neighbors’ algorithm example 

 
Source: Author 

 

The second main type of model is L inear regression and classification. The general for 

of the model is that a specific output point is modelled as a sum of linear functions for all the 

features provided by the dataset, as Equation 2.12 shows. 

 

 
�=�[0]�[0]+�[1]�[1]+⋯+� 

                 
(2.12) 

 

 V ariations of the linear model commonly used are Ridge and Lasso models, these 

models add a constraint to all the � constants so their value approaches zero, such process is 

known as Regularization and is used to avoid overfitting of the model on the data. Figure 2.12 

shows a well-known L inear Regression to illustrate these models. As the L inear models are a 

more robust form of algorithm, in general they perform better than the kNN models. 
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F igure 2.12 – L inear algorithm example 

 
Source: Author 

 

A  more widely used type of algorithm are Decision Tree and its variations. The method 

of learning of the model is simply through a series of If/else questions based on known data, 

narrowing until an answer is found, Figure 2.13. The controlled parameter is the depth of the 

tree, if the relation between targets and features is more complex, it will require a deeper tree 

to make its decision. 
F igure 2.13 – Classic example of a Decision tree 

 
Source: Author 

 

V ariations of pure decision trees include Random Forests and Gradient Boosting trees, 

which are more sophisticated form of Trees that are built on to avoid overfitting as it’s a 

common occurrence when very deep trees are required for prediction. In the case of Random 
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forests, the algorithms averages on an ensemble of regular decision trees, for Gradient trees, the 

gradient boosting technique is applied, where the residual error (the prediction values minus 

the actual value) are fitted to be proportional to the gradients of the mean squared error of the 

model, thus multiple regular decision trees are trained with the boosting technique to avoid 

overfitting. 

Lastly the most robust type of algorithms is the Neural Networks, also known more 

recent as deep learning (Géron, 2019). There are multiple different types of statistical methods 

inside the Neural network algorithms, the simplest one that explains the overall process is the 

Multilayer Perceptrons (MLPs). For this, the MLPs are constructed through the computation of 

multiple weighted sums of L inear Models, starting from a regular one and progressing through 

multiple hidden layers. Figure 2.14 illustrates the path of the algorithm for one hidden layer and 

four features. 

 
F igure 2.14 – Multilayer perceptrons illustrations 

 
Source: Modified from Müller and Guido (2017) 

 

Each cell of the layer is composed of a regular linear model, Equations 2.13, 2.14, and 

2.15. 

 

ℎ[0]=�[0,0] �[0]+�[1,0]�[1]+�[2,0] �[2]+�[3,0] �[3]  
(3.13) 

 

ℎ[1]=�[0,0] �[0]+�[1,0]�[1]+�[2,0] �[2]+�[3,0] �[3] 

 
 
(2.14) 

 

ℎ[2]=�[0,0] �[0]+�[1,0]�[1]+�[2,0] �[2]+�[3,0] �[3] 

 
 
(2.15) 
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After this, a nonlinear model is applied to each one of the layer components, and those 

are merged in a final linear weighted sum, representing the output. Equations 2.16 to 2.18, 

where, in this example, the nonlinear model applied is tan®. In equation 2.19, a linear model is 

superposed onto the nonlinear model with its own intermediate weights, finishing the output. 

ℎ[0]=tan®(�[0,0] �[0]+�[1,0]�[1]+�[2,0] �[2]+�[3,0] �[3])  
(4.16) 

 

ℎ[1]=tan®(�[0,0] �[0]+�[1,0]�[1]+�[2,0] �[2]+�[3,0] �[3]) 

 
 
(2.17) 

 

ℎ[2]=tan®(�[0,0] �[0]+�[1,0]�[1]+�[2,0] �[2]+�[3,0] �[3]) 

 
 
(2.18) 

 

t =�௜௡௧[0]ℎ[0]+�௜௡௧[1]ℎ[1]+�௜௡௧[2]ℎ[2] 

 
 
(2.19) 

 

The number of layers can be controlled by the user and as this value rises the number of 

weighted sums increases sharply, with this approach, usually the Neural Network can make 

predictions of very complex datasets. 

Other than the shown examples, the versatility of Machine learning is even more evident 

by its use in predictions related to the COV ID-19 pandemic (Alimadadi et al. 2020) and 

applications in public policy and general economics (Athey and Imbens, 2019). Introductory 

material for Machine Learning and fast application can be found in the comprehensive book 

from Müller and Guido (2017), for an approach focused on Neural Networks, the work from 

Géron (2019) provides numerous approaches and applications. A  more theory-heavy look into 

the models can be found in Hastle et al. (2009), where most of the theory of the models exposed 

here is discussed in detail. 

 

 2.5 Unexplored parts of Machine L earning applied to adsorption 

 

As seen in the literature review, most works of Machine learning as surrogate modelling 

of adsorption focuses on the use of Artificial Neural Networks as the predictor model, being 

the most complex and therefore, the most expensive computationally. Since the alternative 

statistical models find success even on more complex systems such as market prices, it’s 

reasonable to assume that they also would work for a more studied and deterministic process 



41 
 

such as adsorption, an analysis on how each method performs could be useful to help in 

decreasing further the time required for convergence. 

A  second point is that most research focuses on PSA processes, leaving TSA , Moving 

bed and Simulated moving bed unexplored. Additional focus on different processes could lead 

to a more generalized approach of the use of Machine Learning in adsorption. A  third and final 

point is that mostly paid software is used to apply the algorithms. In recent years, numerous 

open-source alternatives are available and has seen success, constructing algorithms in this 

environment could help the general progress of research in this field. 

 

3 ME T HODOL OGY  

 

This section details the steps required to realize the optimization of an adsorption 

process via Machine Learning and the software used. Data analysis techniques to facilitate the 

process are discussed. 

 

3.1 Phenomenological PSA Model 

 

The model, developed in the software gPROMS®  (Siemens, Germany) version 4.0, 

simulates an experimentally validated (Siqueira et al. 2017; Siqueira et al. 2018b) dynamic 

Pressure Swing Adsorption (PSA) fixed bed under the Skarström Cycle for the separation of 

CO2 and N2. The adsorbent used for separation was a commercial microporous activated carbon 

(AC) named CHARBON 500 (Carbonado Comércio de Produtos Filtrantes L tda., Brazil), more 

information about the experimental aspect of the simulated PSA process can be found in the 

supporting information, Table 3.1 contains the properties of the AC. 

 
T able 3.1 – Properties of the adsorbent solid 

 Sorbent Properties 

CHAR BON 
500 

specific 
surface area 

particle 
diameter 

specific pore 
volume 

specific solid 
volume �� 

1025 m² g-1 1 mm 4.60E-4 m³ kg-1 4.90E-4 m³ kg-1 0.48 

 

 

The phenomenological model of the PSA process is based on transport phenomena 

equations and has been reported in multiple literature contributions: the mass balance is 
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described in Silva et al. (2013), energy balance can be found in the works of Ribeiro et al. 

(2008) and Luberti et al (2015)., momentum balance and full description of boundary 

conditions are included in Silva et al. (2014), Ferreira et al. (2015) and Marx et al. (2015). Once 

validated, the phenomenological model is used to generate the training and testing data of the 

machine learning algorithms. A  brief description of the assumptions of the model are given as 

follows. 

 

eDifferential mass, heat and momentum balances are considered only in the axial 

direction of the column; 

eThe bulk-phase mass balance considers axial dispersion according to K nox et al. 

(2016); 

eThe mass transfer rate is described by the L inear Driving Force model by Glueckauf 

(1955); 

eIdeal gas law behavior is assumed over the studied pressure and temperature ranges; 

eHomogeneous porosity and bed density along the column; 

eMass and heat transfer coefficients are considered to be temperature-independent under 

the experimental conditions. 

 

The main equations for the balances of mass, momentum and energy are summarized, 

respectively, in Equations 3.1-3.3 
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Competitive adsorption equilibrium of CO2 and N2 was represented by the extended 

dual site Langmuir (DSL ), as shown in Equation 3.4, and the kinetic model was L inear Driving 

Force (LDF), Equation 3.5. 
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Table 3.2 contains the main physical model parameters, such as mixture composition 

and adsorbent mass; those do not change during the sampling for the surrogate modelling or 

during the application of the machine learning models. 

 

 

 
T able 3.2 – Constant simulation parameters of the PSA model. 

Parameter values 
� 0.549 m �௚ 0.021 W m-1 K -1 �଴ଵ(�ଶ) 14.715 kJ  mol-1 

�௩ 0.406 m �௠ଵ(��ଶ) 1.28 mol kg-1 �଴ଶ(��ଶ) 14.72 kJ  mol-1 
�௜ 0.0286 m �௠ଵ(�ଶ) 1.92 mol kg-1 �଴ଶ(�ଶ) 5.76 kJ  mol-1 
�௢ 0.0313 m �௠ଶ(��ଶ) 7.645 mol kg-1 Δ�ூௌ(��ଶ) -24 kJ  mol-1 
�௦ 0.133 kg �௠ଶ(�ଶ) 7.64 mol kg-1 Δ�ூௌ(�ଶ) -15.07 kJ  mol-1 
�௕ 377 kg m-3 �଴ଵ(��ଶ) 5.35E-5 Pa-1 �௜௡(��ଶ) 0.136  
�௕ 0.642 �଴ଵ(�ଶ) 1.61E-6 Pa-1 �௜௡(�ଶ) 0.864 
��� 820 J  kg-1 K -1 �଴ଶ(��ଶ) 1.71E-6 Pa-1 4୧ 298.15 K  

��� 470 J  kg-1 K -1 �଴ଶ(�ଶ) 6.85E-8 Pa-1 4୭ 298.15 K  

�� 7860 kg m-3 �଴ଵ(��ଶ) 26.54 kJ  mol-1  �௚ 8.314 J  mol-1 K -

1 
�௪ 52 W m-1 K -1     

 

 

3.2 Process optimization setup and sampling 

 

The parameters used in the modelling and optimization of the PSA process are purity 

(Equation 3.7) and recovery (Equation 3.8) of N2, which are the targets of the machine learning 

models. Both variables are taken as the PSA process reaches cyclic steady state. 
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The variables, called features in the machine learning model, used to optimize the 

performance parameters are �௣௥ with range 20s – 100s , �௔ௗ௦ with range 20s – 120s  and �௢௨௧ 

with range 2 bar – 20 Notice that by fixing �௣௥,�௔ௗ௦ and �௢௨௧, the other two times of the 

Skarström cycle, desorption and purge, are already determined. The sampling was performed 

through Latin Hypercube Sampling (LHS) implemented in Python 3.7.4 (open source) using 

the package Design of Experiments for Python, pyDOE. The tested sample sizes ranged from 

600 up to 1200 data points, with special consideration to the results with 600, 800 and 1200 

data points. 

 

The LHS method is a statistical technique used to generate representative, near-random 

samples of multidimensional functions, i.e. functions with more than one independent variable. 

In the present case, the functions are Purity and Recovery which are going to be dependent on 

�௣௥,�௔ௗ௦ and �௢௨௧. The objective of the sampling is to get a good sample that represents the 

behavior of both performance parameters as the three variables change. The Latin hypercube 

sampling is a generalization of the Latin Square, Figure 3.1, in which a function of 2 variables 

is sampled in a way such that no more than one sample point is allowed for a given row and 

column of the sampling space, in higher dimensions, this means that no hyperplanes of the 

sampling space cross each other. 
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F igure 3.1 – Latin Hypercube sampling in 2 dimensions (latin square) 

 
Source: pythonhosted 

 

Once sampling and Machine learning model fitting is done, the models for Purity and 

Recovery are to be optimized simultaneously as to give the highest values possible for each. 

Since two objective functions are being optimized at the same time, the optimization problem 

is one of Multi-Objective-Optimization, as such there is not going to be one single optimal 

value, but a series of optimal values. The reason for that is because, for example, given two 

pairs of Purity 0.95, Recovery 0.5 and Purity 0.94 and Recovery 0.55, mathematically one pair 

is not better optimized than the other because in both pairs, one parameter is higher than the 

other, for the first pair, purity is higher, for the second pair, recovery is higher. However, a pair 

with Purity 0.96 and Recovery 0.6 will be better optimized than both previous pairs, as both 

objective functions are larger, the same would be true for a Pair Purity 0.96 and Recovery 0.55, 

as one objective function is bigger while the other is at least equal. 

Thus, for a optimization algorithm to search for optimal values, it has to satisfy the 

following optimality condition: For a given pair of points ��(�ଵ,�ଵ), another pair ��(�ଶ,�ଶ) 

is going to be better optimized, thus, will dominate the first pair if �ଶ>�ଵ,�ଶ>�ଵ or �ଶ>

�ଵ,�ଶ=�ଵ or �ଶ=�ଵ,�ଶ>�ଵ, Figure 3.2 illustrates this condition. If a set of pairs in a given 

point of the optimization does not satisfy the optimality condition and no other new points can 

be found, then these form a Non-Dominated Set, or a Pareto Set. 

 



46 
 

F igure 3.2 – Criteria for multi objective optimization 

 
Source: Author 

 

The algorithm used to perform the optimization was the Non-dominated Sorting Genetic 

A lgorithm II (NSGA-II) implemented in python language using the Python Multi-Objective 

Optimization (PY MOO) package to obtain the Pareto set for purity and recovery parameters. 

The genetic algorithm was chosen due to being the most used similar works, such as Pai et al. 

(2020) and Balashankar et al. (2019). A  comprehensive description of the NSGA-II algorithm 

can be found in K alyanmoy (2002). Once the sampling is complete, the phenomenological PSA 

model is ran for each combination of �௣௥,�௔ௗ௦ and �௢௨௧ for each sample size, making it 600, 

800 and 1200 runs, respectively. This step of the optimization has the largest majority of 

computational effort required. 

 

 

3.3 Python Machine L earning Setup 

 

This subsection describes all the steps and techniques used to successfully model the 

PSA process with the data provided by the LHS sampling described in the previous section. 

The package that was used to fit the machine learning models was scikit-learn version 0.23.1, 

the up to date documentation can be found in scikit-learn (2023), the original paper with the 

methods of the package refers to Pedregosa et al. (2011). Every programming function 

described in this section and used in this thesis are part of the cited package. 
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3.3.1 Splitting of the training and test sets and data Scaling 

 

After generating the sample, it’s necessary to split into two subsamples of training and 

test sets, but there is no general rule of what percentage of the total sample is going to be. Too 

big of a training set will provide poor generalization of the model and tendency of overfitting 

and too small of a training set will provide the algorithms with too few data to be reasonably 

accurate. The percentage of splitting used follows the function train_test_split which uses 75% 

of the data to train the model and 25% to test it. 

The separation of both sets is done randomly with the aid of Random number generation 

(RNG) functions that can be controlled inside the function, different random splitting can be 

achieved by changing the number at the end of the function, such numbers exist primarily to 

guarantee that the results are reproducible as even though the separation is done by random, the 

RNG function guarantees that as long as the same number is used, the data will be split in the 

exact same manner, with the same training and test sets for every use.  

The statistical algorithms are then ready to be fitted, however not always it’s advisable 

to use the original numerical representation of the data to fit the models. Given that each 

supervised learning algorithm can be fitted to any numerical range that the data possesses, from 

very small numbers to very large numbers, some algorithms have more difficulty producing 

good fits to certain types of data (Müller and Guido, 2017). Scaling normalizes the data to more 

tractable values, the simplest type of such technique is normalization between 0 and 1. 

In the present work, three types of data representation were used: Unscaled; Scaled and 

Polynomial Scaled. The Scaled mode uses the function min_max_scaler , which normalizes the 

data between 0 and 1 using Equation 3.9, while the polynomial scaling mode uses the function 

PolynomialFeatures of degree 2 on top of min_max_scaler to transform each feature of the data 

samples into polynomial products of each other, creating “new variables”. The implementation 

of this type of scaling is represented in a linear model in Equations 3.10 and 3.11, with 3.10 

representing the model without polynomial scaling and 3.11 with polynomial scaling. 

 

�௦௖=
�−�௠௜௡

�௠௔௫−�௠௜௡
 (3.9)

�=�+�଴�଴+�ଵ�ଵ+�ଶ�ଶ (3.10)

�=�+�଴�଴+�ଵ�ଵ+�ଶ�ଶ+�ଷ�଴�ଵ+�ସ�଴�ଶ+�ହ�଴
ଶ+�଺�ଵ�ଶ+�଻�ଵ

ଶ

+�଼ �ଶ
ଶ 

(3.11)
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3.3.2 Machine L earning models used 

Once data is properly preprocessed, the ML models can be fitted into it and their 

accuracy evaluated with the adjusted R² metric with additional support of the RMSE metric for 

consistency. A  priori it’s reasonable to just go for the most robust and complex models like 

ANN as they have on average better accuracy than the simpler models, however this isn’t a 

guaranteed behavior (Müller and Guido, 2017; Géron, 2019) thus is advisable to test a wide 

arrange of models and check which one is best suitable for the problem. Moreover, the more 

complex the statistical model, the more “blackbox” it becomes, so even if a model like ANN 

has better R² than a L inear Regression, if this difference is negligible, like 0.995 for the formed 

and 0.99 for the latter, it is preferable to optimize the objectives with the later, as it’s easier to 

interpret and extract more useful information from it. 

To better evaluate model performance, the technique of k-fold cross validation is 

employed, this technique allows for more stable evaluation of model generalization, avoiding 

leakage of information between the test and training sets. This is done by making k splitting’s 

(folds) of the training set into training and validation sets, the model is then fit into the training 

set and its performance is evaluated by calculating the R² with the validation set k times, making 

it k values of R² which are then validated to obtain the training accuracy. For this work the 

value of k was 3, thus each training of a single model will contain a mean of 3 R² values. Figure 

3.3 illustrates the process of cross validation with 5 folds. 

 
F igure 3.3 – Cross validation with 5 folds 

 
Source: Modifier from Müller and Guido (2017). 

 

Each machine learning algorithm has its own hyperparameters, which are used to tune 

the model into fitting the data better, the best hyperparameters are found via a searching 

algorithm called gridsearchcv which also realizes the cross validation. The criteria for what is 

the best value is by evaluating the best R² on the training and validation sets, and then after this, 

the model with its optimal values is evaluated against the test set, where the R² on the test set 
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indicates the actual model accuracy, as a high value on the training set may just be overfitting. 

Every result in this work that shows R² refers to only the test set ones. Table 3.3 shows the 

evaluated models and their corresponding tuned hyperparameters and the search domain, the 

MLP step size varies due to the very large possible combinations of number of neurons per 

layer versus number of layers, but in general, each layer has the same number of neurons and 

the size of the neurons increase have a step of 1,2,5 or 10, depending on the differences of score, 

requiring a bit of experimentation.  A  brief discussion of each parameter can be found elsewhere 

(Hastle et al., 2009; Müller and Guido, 2017; Géron, 2019). The type of neural networks used 

on this work was the Multi-Layer-Perceptrons, MLP. 

 
T able 3.3 – Machine learning models and their hyperparameters. (MLP parameter reading, A  x B; A  = Layer 

size; B = Number of hidden Layers). 

model hyperparameter L ower 
bound 

Upper 
bound 

Step 
size 

K NN Number of neighbors 2 40 1 

Ridge Regularization weight (alpha) 0 10 0.05 

Lasso L1 regularization weight 
(alpha) 

5E-06 0.05 5E-04 

Decision Tree Maximum tree depth 1 40 1 

Random forests Number of estimators 1 100 1 

Gradient 
boosted trees Maximum tree depth 1 10 1 

MLP Number of hidden layers and 
size of the layers 

0 x 0 100 x 10 varies 

 

The activation function of the MLP model was Rectified linear unit (Relu), the choice 

is justified initially as the function doesn’t have problems with vanishing gradients and later as 

it was the function that provided the best score and convergence. The chosen solver was the 

default adam(Adaptative moment estimation) due to its adaptative learning rate and overall cost 

efficiency compared to the other options, more discussion on the results section. Each model 

has other possible tuned parameters, such as metrics and solvers, these are kept on their default 

value on the python package, these values can be accessed in the documentation of scikit-learn 

(2023). Tables 3.4-3.9 shows the constant parameters of each model. 
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T able 3.4 – K -Nearest Neighbors constant parameters 

K -Nearest Neighbors 

Weights Uniform 

Algorithm Automatic selection between “ball -tree”, “K D-
tree” and brute force 

Metric Minkowski 

Metric power 2 (Euclidian distance) 

Leaf size 30 

 
T able 3.5 – Ridge Constant Parameters 

R idge 

Sample weight None 

Solver Automatic selection between 7 available solvers, 
refer to scikit-learn (2023)  

Max iterations None 

Tolerance 1E-04 

 
T able 3.6 – Lasso constant parameters 

L asso 

Fit intercept True 

Precompute Gram Matrix False 

Max iterations 1000 

Tolerance 1E-04 

Warm start False 

Coefficient calculation Cyclic 
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T able 3.7 – Decision Tree constant parameters 

Decision T ree 

Quality Criterion Squared error 

Splitter Best split 

Minimum samples to 
split 2 

Minimum samples at 
leaf 1 

Maximum number of 
features None 

Minimum impurity 
decrease 0 

Complexity parameter 0 

 
T able 3.8 – Random Forests constant parameters 

R andom Forests 

Quality Criterion Squared error 

Maximum tree depth None 

Minimum samples to split 2 

Minimum samples at leaf 1 

Maximum number of 
features None 

Minimum impurity 
decrease 0 

Complexity parameter 0 

Maximum leaf nodes None 

Bootstrap samples True 

Out of bag sample 
estimates None 

Warm start  False 

Maximum number of 
samples None 
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T able 3.9 – Gradient boosted trees constant parameters 

Gradient boosted T rees 

Quality Criterion Friedman mean squared error 

Number of estimators 100 

Minimum samples to split 2 

Minimum samples at leaf 1 

Maximum number of 
features None 

Minimum impurity 
decrease 0 

Complexity parameter 0 

Maximum leaf nodes None 

Bootstrap samples True 

Out of bag sample 
estimates None 

Warm start  False 

Maximum number of 
samples None 

Loss Squared Error 

Learning Rate 0.1 

Fraction of samples for 
learning 1 

alpha 0.9 

Tolerance  1E-04 
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T able 3.10 – MLP constant parameters 

Multilayer Perceptrons 

Solver Adam 

Alpha 1E-04 

Initial learning rate 2 

Maximum iterations 100000 

Shuffle samples on 
each iteration True 

Random State 0 

Tolerance 1E-4 

Beta 1 (Adam) 0.9 

Beta 2(Adam) 0.999 

Epsilon (Adam) None 

Warm start  False 

Maximum epoch 
faiures 10 

Early stopping False 

V alidation Fraction 0.1 

Fraction of samples for 
learning 1 

Activation Fucntion Relu 
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3.3.3 Sensitivity tests 

 

Sometimes the random split of the train_test_split can generate training samples that 

are too similar to the test set, or vice versa, which makes the test accuracy be slightly 

misleading. Since different numbers on the RNG parameter of the function gives different 

random splittings, sensitivity tests can be done to control for biased results and to test how 

sensitive the machine learning models themselves are relative to changes in training and test 

sets. On top of that, the Cross-validation folds are also chosen by random and the function 

gridsearchcv has its own RNG parameter that is also used to test sensitivity. Table 3.11 shows 

the value of the RNG parameter of both functions. 

 
T able 3.11 – RNG parameters of the splitting functions 

splitting function R NG parameters, random_state 

Train_test_split [0,1,2,11,42] 

gridsearchcv [0,1,2,11,42] 
 

 

4 R E SUL T S AND DISCUSSION 

 

This section shows and discusses the accuracy and sensitivity tests of the machine 

learning models, as well as the final optimization of the performance parameters. Methods on 

improving the algorithms accuracy are proposed. This section presents in more detail what was 

published in the article by Richard et al. (2023) 

 

4.1 Analysis of model accuracy 

 

Figure 4.1 shows the goodness of fit for all tested machine learning algorithms 

considering different total data sample sizes of 600 up to 1200 data points for both purity and 

recovery. Note that the R² values shown in the figure stand for an average of all the tested 

scenarios, namely Unscaled, Scaled and Polynomial scaling, therefore the results represent an 

“agnostic” view about the methods of data manipulation used, they are also the average R² for 

both purity and recovery. 
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F igure 4.1 – Overall R² for evaluated scaling scenarios. 

 
Source: Author 

 

K -Nearest, Ridge and Lasso models exhibit a pattern of steady increase of R² with data 

sample size, however the decision tree-based models (Decision trees, Random forests and 

Gradient boosted trees) show a more unstable pattern with no significant variations for Random 

forests and Gradient boosted trees from sample size 600 to 800 and a more pronounced decrease 

in R² for Decision trees in the same range. MLP model also exhibits a pattern of increasing R² 

with sample size. Remarks from these results are that the simplest model, K -Nearest, was the 

overall third best model (based on R²) for the maximum amount of sample sizes. Interestingly, 

the MLP model, the one which is expected to have the better overall fitting as in Beck et al. 

(2016) is the worst at the lowest data sample size. 

In order to remove biases from the data manipulation methods for better evaluation of 

the algorithms, Figure 4.2 was plotted to show the R² for each machine-learning model in the 

Unscaled, Scaled and Polynomial Scaling scenarios. 
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F igure 4.2 – Overall R² for the (a) Unscaled, (b) Scaled and (c) Polynomial Scaling scenarios. 

 
Source: Author 

 

Splitting up the scaling scenarios revealed no significant change in the patterns and the 

Decision tree model still shows a high drop in performance for 600 to 800 data points. That 

represents an anomaly with no clear explanation, but since it only happens with a single model, 

it doesn’t affect the general results and, for practical applications, the decision tree model would 

be discarded due to this behavior in this specific situation. With respect to the relative accuracy 

of the models, in the Unscaled scenario, remarkably the k-nearest neighbors was tied with 

Random Forests and Gradient methods as the best ones in the N = 1200 case. The MLP model, 

while unscaled, was the worst performing method at the lowest amount of data, N = 600. The 

underperformance of the MLP without data scaling is to be expected. 

In the Scaled scenario, the relative performance of each method changed. For N = 600, 

scaling improves the MLP model performance by a significant margin, while worsening the K -

Nearest model to a great extent. The other models preserve their relative performance. Lastly, 

in the Polynomial Scaling scenario, the K -Nearest model is aggravated even further, being the 

worst performing model in N = 600. However, for the linear-type models, Ridge and Lasso had 

their performance significantly improved being tied with Random Forests and Gradient 

methods as the best methods at all sample sizes. This result is in line with what the literature 

establishes about tree-based algorithms, since they are reported to be widely successful in a 
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multiple range of problems (Fernandez-Delgado et al., 2015; Müller and Guido, 2017; Géron, 

2019). The MLP model is consistently outperformed by the modified decision tree methods in 

all situations and performs worse than the linear turned into Polynomial of 2nd degree models, 

which is an unexpected result, because the MLP model was initially considered as the most 

robust for the regressions. 

Figure 4.3 helps visualizing the multiple effects of scaling in the models for a sample 

size of 600. Further analyses of such effects for samples size of 800 and 1200 are presented in 

Figures 4.4 and 4.5, respectively. Table 4.1 summarizes such effects qualitatively. Tables 4.2 

to 4.7 shows the hyper parameter for each model of both purity and recovery variables. Figure 

4.6 shows the same evaluation of the accuracy of the models by using the inverse RMSE. The 

alternate metric yields similar results to that of Figure 4.3, using R². The choice for the inverse 

RMSE was done in order to allow a more straightforward comparison between both metrics in 

the same score scale (i.e., higher score = better fit), as the conventional RMSE metric would 

relate lower values to better fits. The same metric is used to evaluate the sample sizes of 800 

and 1200, which are presented in Figures 4.7 and 4.8. 

These findings provide an important insight on the decision making regarding the choice 

of a machine learning model. Contrary to what is to be expected, simpler linear models can 

6perform significantly better than non-linear models such as the MLP neural network even with 

a smaller sample size. Since the MLP model only becomes consistent in higher sample sizes, 

choosing it for the problem at hand would require an unnecessary increase of computational 

resources employed to generate more data for the algorithm, while similar results could be 

achieved with simpler models with lower sample sizes. This implies that a wide screening of 

machine learning models is advised for a more efficient problem-specific modelling. 
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F igure 4.3 – Effects of scaling for sample size = 600. 

 
Source: Author 

 

F igure 4.4 – Effects of scaling for sample size = 800. 

 
Source: Author 
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F igure 4.5 – Effects of scaling for sample size = 1200. 

 
Source: Author 

 
T able 4.1 – Effects of the scaling mechanisms on R² 

Method Scaled Polynomial Scaled 

K NN Decreases Decreases further 

Ridge Negligible effect Large improvement 

Lasso Negligible effect Large improvement 

Decision Tree Unclear effect Unclear effect 

Random Forests Negligible effect Negligible effect 

Gradient boosted trees Negligible effect Negligible effect 

MLP Large improvement Possible improvement 
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T able 4.2 – Tuned hyperparameters of each machine learning algorithm for each tested sample size. Name of the 

parameters as given in Table 2. Unscaled mode – Figure 4.2 a). V ariable: Purity. (MLP parameter reading, A  x 

B; A  = Layer size; B = Number of hidden Layers). 

Method - Unscaled N600(R²) N800(R ²) N1200(R ²) 

K NN 4 (0.889) 4(0.929) 6(0.951) 

Ridge 0 (0.887)  0(0.888) 0(0.873) 

Lasso 5E-06 (0.886) 5E-06(0.881) 5E-06(0.875) 

Decision Tree 13 (0.904) 8(0.82) 13(0.923) 

Random Forests 100 (0.945)  56 (0.936) 100(0.972) 

Gradient boosted   4 (0.965) 4 (0.958) 5(0.981) 

MLP 80x10(0.753) 70x5(0.686) 100x9(0.882) 

 

 
T able 4.3 – Tuned hyperparameters of each machine learning algorithm for each tested sample size. Name of the 

parameters as given in Table 2. Unscaled mode – Figure 4.2 a). V ariable: Recovery. (MLP parameter reading, A  

x B; A  = Layer size; B = Number of hidden Layers). 

Method - Unscaled N600(R²) N800(R ²) N1200(R ²) 

K NN 4(0.985) 12(0.979) 8(0.997) 

Ridge 10(0.957) 0(0.953) 10(0.966) 

Lasso 5E-06(0.957) 5E-06(0.953) 5E-06(0.966) 

Decision Tree 14 (0.971) 4(0.810) 15(0.988) 

Random Forests 78 (0.990) 67(0.941) 67(0.996) 

Gradient boosted  4 (0.991) 1(0.981) 5(0.997) 

MLP 90 x 9 (0.981) 100x9(0.992) 90 x 9(0.998) 
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T able 4.4 – Tuned hyperparameters of each machine learning algorithm for each tested sample size. Name of the 

parameters as given in Table 2. Scaled mode – Figure 4.2 b): Purity. (MLP parameter reading, A  x B; A  = Layer 

size; B = Number of hidden Layers). 

Method - Scaled N600(R²) N800(R ²) N1200(R ²) 

K NN 6 (0.878) 6(0.933) 6(0.959) 

Ridge 0.30 (0.886) 0.3(0.888) 0.05(0.874) 

Lasso 5E-06(0.887) 5E-06(0.888) 5E-06(0.874) 

Decision Tree 13 (0.904) 8(0.82) 13 (0.923) 

Random Forests 100 (0.945) 56(0.936) 100(0.972) 

Gradient boosted   4 (0.965) 4 (0.958) 5(0.981) 

MLP 80x4 (0.885) 100x10(0.85) 100x9(0.91) 

 

 
T able 4.5 – Tuned hyperparameters of each machine learning algorithm for each tested sample size. Name of the 

parameters as given in Table 2. Scaled mode – Figure 4.2 b). V ariable: Recovery. (MLP parameter reading, A  x 

B; A  = Layer size; B = Number of hidden Layers). 

Method - Scaled N600(R²) N800(R ²) N1200(R ²) 

K NN 8(0.945) 8(0.941) 6(0.973) 

Ridge 0.15(0.957) 0(0.953) 0.1(0.966) 

Lasso 5E-06(0.957) 5E-06(0.953) 5E-06(0.966) 

Decision Tree 14 (0.971) 4(0.810) 15(0.988) 

Random Forests 78 (0.990) 67(0.941) 67(0.996) 

Gradient boosted  4 (0.991) 1(0.981) 5(0.997) 

MLP 90 x 9 (0.992) 50x7(0.985) 90 x 9(0.998) 
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T able 4.6 – Tuned hyperparameters of each machine learning algorithm for each tested sample size. Name of the 

parameters as given in Table 2. Polynomial scaling mode – Figure 4.2 c): Purity. (MLP parameter reading, A  x 

B; A  = Layer size; B = Number of hidden Layers). 

Method – Poly  N600(R ²) N800(R ²) N1200(R ²) 

K NN 6(0.847) 4(0.913) 4(0.948) 

Ridge 0.10 (0.957) 0(0.954) 0(0.969) 

Lasso 5E-06 (0.957) 5E-06(0.954) 5E-06(0.970) 

Decision Tree 9 (0.919) 17(0.861) 12(0.928) 

Random Forests 100 (0.957) 100(0.941) 45(0.978) 

Gradient boosted   3 (0.956) 4 (0.950) 5(0.989) 

MLP 100x7 (0.847) 90x4 (0.85) 100x9(0.92) 

 

 
T able 4.7 – Tuned hyperparameters of each machine learning algorithm for each tested sample size. Name of the 

parameters as given in Table 2. Unscaled mode – Figure 4.2 c). V ariable: Recovery. (MLP parameter reading, A  

x B; A  = Layer size; B = Number of hidden Layers). 

Method - Poly N600(R²) N800(R ²) N1200(R ²) 

K NN 6(0.924) 8(0.915) 4(0.963) 

Ridge 0.05(0.994) 0(0.989) 0(0.997) 

Lasso 5E-06(0.995) 5E-06(0.989) 5E-06(0.997) 

Decision Tree 12(0.980) 7(0.57) 13(0.985) 

Random Forests 78 (0.990) 67(0.955) 100(0.995) 

Gradient boosted  4 (0.987) 1(0.979) 4(0.997) 

MLP 100x9 (0.991) 100x 9(0.992) 90 x 9(0.998) 
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F igure 4.6 – Effects of scaling for sample size = 600 using RMSE-1 metric. 

 
Source: Author 

F igure 4.7 – Effects of scaling for sample size = 800 using RMSE-1 metric. 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Author 
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F igure 4.8 – Effects of scaling for sample size = 1200 using RMSE-1 metric. 

 
Source: Author 

 

Additionally, Figures 4.9 to 4.14 shows the comparison between the predicted values 

by the machine learning models with the detailed model values, with additional measures of 

Average and Maximum absolute error (AAE) and average and maximum relative error (ARE), 

Equations 4.1 and 4.2 with � being the actual value and � the predicted value and � the number 

of observations. The graphs present the predicted values for all 3 scaling scenarios on all sample 

sizes, with the abbreviations of “U, S, P” meaning, respectively, Unscaled, Scaled, and 

polynomial scaling. The Ridge and Lasso models are collectively represented by Figure 10 due 

to them predicting almost the same values. 
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F igure 4.9 – Comparison of predicted values by the K -Nearest Neighbors model with the detailed model test set 

values on (a) Purity 600 size , (b) Recovery 600 size, (c) Purity 800 size, (d) Recovery 800 size, (e) Purity 1200 

size and (f) Recovery 1200 size. 

 
Source: Author 
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F igure 4.10 – Comparison of predicted values by the Ridge and Lasso models with the detailed model test set 

values on (a) Purity 600 size, (b) Recovery 600 size, (c) Purity 800 size, (d) Recovery 800 size, (e) Purity 1200 

size and (f) Recovery 1200 size. 

 
Source: Author 
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F igure 4.11 – Comparison of predicted values by the Decision Tree model with the detailed model test set 

values on (a) Purity 600 size, (b) Recovery 600 size, (c) Purity 800 size, (d) Recovery 800 size, (e) Purity 1200 

size and (f) Recovery 1200 size. 

 
Source: Author 
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F igure 4.12 – Comparison of predicted values by the Random Forests model with the detailed model test set 

values on (a) Purity 600 size, (b) Recovery 600 size, (c) Purity 800 size, (d) Recovery 800 size, (e) Purity 1200 

size and (f) Recovery 1200 size. 

 
Source: Author 
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F igure 4.13 – Comparison of predicted values by the Gradient Boosted trees model with the detailed model test 

set values on (a) Purity 600 size, (b) Recovery 600 size, (c) Purity 800 size, (d) Recovery 800 size, (e) Purity 

1200 size and (f) Recovery 1200 size. 

 
Source: Author 
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F igure 4.14 – Comparison of predicted values by the Neural networks (MLP) model with the detailed model test 

set values on (a) Purity 600 size, (b) Recovery 600 size, (c) Purity 800 size, (d) Recovery 800 size, (e) Purity 

1200 size and (f) Recovery 1200 size. 

 
Source: Author 

 

4.2 Hyperparameter and training critical Analysis 

 

This section describes in more detail the accuracy results of section 4.1 as well as the 

anomalous results that were shown, while showing the training part of each models with its 

hyperparameters in more detail. 
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4.2.1 Neural Networks performance 

 

It’s possible for Neural Networks to perform worse than algorithms like Random Forests 

and Gradient Boosted regression trees, however performing worse than linear models is not to 

be expected, even while unscaled, Tables 4.2 to 4.7 show that the worse behavior is due to the 

purity variable, as the R² values for the recovery are largely superior to the linear models, thus 

the discussion focuses on this variable. Given that the simplest neural network possible is one 

with zero hidden layers, it becomes a linear regression model, when no activation function is 

provided, thus at the very least, the MLP model should have been performing similar to both 

linear models tested. Thus, its possible that poor hyperparameter training and overfitting are the 

cause of the worse accuracy, especially considering that the hyper parameters of table 4.2 shows 

a complex model of 10 hidden layers each with 80 neurons for the 600 sample size, which 

would possibly indicate that the model is too complex for the data size it fits. 

As a sanity check, Figure 4.15 shows a snippet of a code training the MLP model of the 

purity variable to the 600 size sample, without any hidden layers at all, no regularization 

parameters, and no activation functions. The resulting negative R² shows that the model is not 

behaving as the linear model its supposed to, and hints that the table 4.2 results do not indicate 

overfitting. 

 
F igure 4.15 – L inear fit of the MLP model. 

 
Source: Author 

 

Indeed, as Figure 4.16 shows, when doing a parametric sweep of the model using one 

hidden layer from sizes 0 to 100, it shows that, though almost every model has an abysmal 

score, the ones with higher complexity perform on average better than the linear one. Figure 

4.16 shows both the training score and the cross-validation score are low, which in fact would 

indicate underfitting at a first glance. This is further shown by Figure 4.17 showing the entire 
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parametric sweep from 0x0 to 100x10 hidden layer sizes, though some oscillations happen, on 

average the models with more layers and more neurons on each layer perform better, which 

culminates with the 80x10 value of Table 4.2, as the more complex models are one of the few 

ones that actually provide a non-negative R². 

 
F igure 4.16 – Unscaled hyperparameter training of the MLP model with one hidden layer 

 
Source: Author 

 

F igure 4.17 – Unscaled hyperparameter training of the MLP model with multiple layers 

 
Source: Author 
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Further, also from Figure 4.17, it shows that once the model reaches enough layers, 

about 7 and above, increasing the number of neurons produces diminishing results, thus a model 

of 40x7 layer sizes performs similarly to the chosen 80x10, only with a small difference of 

decimals in the R², even though one model is much more complex than the other. 

These number of anomalous results are, instead, a not uncommon behavior of neural 

networks when no data scaling is used, in addition to smaller sample sizes, and its likely due to 

the behavior of the solver of the model. The used solver, adam , is a modified gradient-descent 

solver with adaptative learning rates, thus, it only consider first order gradients in the 

optimization algorithm to obtain the weights of the function, this is in contrast with traditional 

newton-method optimizations, which considers second order gradients. Given a function �(�) 

and a step size parameter � the minimization by the gradient descent and Newton’s method are 

shown respectively by Equations 4.3 and 4.4 

 

�௧ାଵ=�௧−�∇� (4.3)

�௧ାଵ=�௧−
�∇�
∇ଶ�

 
(4.4)

 

With the first order method, in an unscaled scenario, gradients may be dominated by the 

larger features, ending up in slow or convergence to sub-optimal values. To test this hypothesis, 

scikit learn has a solver option called L imited-memory Broyden–Fletcher–Goldfarb–Shanno 

Algorithm (LBFGS) which is a quasi-newton method that accounts for second order gradients, 

which can be used to train the model in its simplest form. This solver does produce reasonable 

results with an R² of 0.882 being very close to the Ridge and Lasso unscaled values of 0.887, 

Figure 4.18. 
F igure 4.18 – L inear fit of the MLP model with LBFGS solver. 

 
Source: Author 
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The cost of superior convergence of the quasi-newton method comes with significantly 

more computational resources needed to finish the training, which made it unviable to train the 

whole range of 0x0 to 100x10 hidden layer sizes that was trained with the adam solver. 

However, using a narrower search domain, limiting the number of hidden layers to 4 and neuron 

size from 10 to 100 with 10 step size, a general improvement is found and the new standing of 

the ANN compared with the other models can be visualized in Figure 4.19 for all scaling 

scenarios. Table 4.8 shows the individual values of R² for both purity and recovery and their 

hyperparameters. 
F igure 4.19 – Performance of MLP model with the LBFGS solver 

 
Source: Author 

 
T able 4.8– Tuned hyperparameters of MLP with their individual R², purity and recovery. 

V ariable N600(R ² N800(R ²) N1200(R²) 

Purity Unscaled 60x4(0.887) 70x4 (0.910) 80 x 4 (0.935) 

Recovery Unscaled 90 x 4 (0.981) 100x4(0.992) 90 x 4(0.998) 

Purity Scaled 80x3 (0.872) 100x4(0.927) 80x3(0.935) 

Recovery Scaled 90 x 4 (0.992) 50x4(0.985) 90 x 4(0.998) 

Purity Poly 0x0 (0.94) 0x0(0.952) 0x0(0.969) 

Recovery Poly 100x4 (0.991) 100x 4(0.992) 90 x 4(0.998) 
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This shows a significant improvement of the MLP model and the results are more of a 

match with what was expected, being overall the 3th-4th best performer among all scaling 

scenarios. It also highlights the impressive performance of the K -nearest neighbors’ model in 

the unscaled mode, able to outperform all but the gradient model. Thus, it has been shown that 

the underperformance of the MLP model mainly in the lowest sample sizes and while unscaled, 

was due to the solver choice. 

Another possibility of the low performance was that the layers tested consistent on 

layers of the same size, which might not be the best way for the algorithm to approach. Due to 

the size of the neural networks, it not possible to confirm with certainty that some possible 

neuron structure in the domain of 0x0 to 100x10 hidden layers is better than those so far tested, 

since there are more than 1020 possible combinations in the domain. However, a testing with 

LHS over 5000 possible neuron configurations on the default adam solver with 600 data 

samples, on the purity variable, provided a best R² of 0.78 on the Unscaled scenario, 0.88 on 

the Scaled scenario and 0.87 on the polynomial scaling scenario, which don’t significantly 

differ from the obtained original results, but may hint on a marginal possible improvement of 

randomizing the hyperparameter selection. 

However, the evaluation above was very computationally costly, requiring an 

approximated runtime of 8 hours to fully train all the models, which hints that more modest 

sample sizes for the hyperparameter be utilized as a reasonable tradeoff for a small 

improvement in accuracy. 

 

4.2.2 Decision T ree behavior 

 

The large drop of accuracy of the decision tree model while raising the data size is 

completely unexpected, it cannot be attributed by small statistical variance since the drop goes 

up to 0.4 units of R². Some values of the hyperparameters in tables 4.2 to 4.7 may indicate under 

or overfitting. Figure 4.20 shows the cross-validation score for each scaling scenario for the 

800 sample size for different hyperparameters, focusing on the purity variable. The behavior of 

the training set scores is as expected, the model tends to memorize the training pattern to reach 

R² of 1, which does not correspond to the validation score, which plateaus at about 0.8. 

However, there is no visible overfitting as the validation score remains stable as the tree depth 

increases, albeit with variations in the range of 5 to 20, where the best values, that were selected 

in Tables 4.2 to 4.7, stand. It remains unclear as to why the performance declined. 
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F igure 4.20 – Hyperparameter training of the decision tree model at 800 sample size, purity variable for (a) 

Unscaled, (b) Scaled, (c) Polynomial scaling scenarios. 

 
Source: Author 

4.2.3 R emaining models 

 

Given that the remaining models didn’t exhibit any unusual behavior, the following 

analysis will be brief compared to the previous ones, the analysis here will focus on the purity 

variable, since it’s the one with more variability in the R² and at 600 sample size, as the other 

sample size values exhibit similar qualitative behavior, differing mostly on the value of R² and 

specific best hyperparameters.  

For the K -Nearest Neighbors, Figure 4.21 shows an expected pattern for the training 

score, lower values of K  tend to overfit to the training data and yield high R² which consistently 

falls as K  increases. On the validation score, however, the optimal value of K  seems to be at the 

range of 4 to 8, so from 0 to 4 the model overfits and from 8 and beyond, underfits. 
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F igure 4.21 – Hyperparameter training of the K -Nearest Neighbors model at 600 sample size, purity variable for 

(a) Unscaled, (b) Scaled, (c) Polynomial scaling scenarios. 

 
Source: Author 

 

For the Ridge model, Figure 4.22, it shows a consistent pattern on the training set that 

signals that the higher the regularization parameter, the lower the R² score, being a sharp decline 

in the unscaled scenario and smoother drops on the remaining scenarios. However, for the 

validation score, the trend has a maximum score between 0 and 0.3 for alpha, which leads to an 

optimal value different from 0 in the unscaled and polynomial scenarios. The lasso model 

exhibits an almost identical pattern, but the optimal values for R² are all found with the smallest 

regularization parameters, in the present case, 5E-06, as can be seen in tables 4.2-4.7. This 

indicates that all three features, Adsorption pressure, Pressurization time and Adsorption time, 

have a large impact on the value of purity, which is to be expected, thus, regularization, except 

in some fortunate cases, is ineffective on the present application. 
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F igure 4.22 – Hyperparameter training of the Ridge model at 600 sample size, purity variable for (a) Unscaled, 

(b) Scaled, (c) Polynomial scaling scenarios. 

 
Source: Author 

 

For the Random forests’ algorithm, Figure 4.23, the training pattern is expected, as the 

number of estimators increase, the algorithm memorizes the training data yielding an R² of 1. 

This pattern is the same for the validation score, showing that increasing the number of 

estimators does not cause overfitting tending to a very slowly increasing asymptote at about 40 

estimators with the highest R² found at 100 estimators. However, it’s important to note that, 

although the highest R² possible for this case is 100, this is due to very small decimals of 

difference, in practice, a model with 40 estimators would perform identically to a model with 

100, but with the added benefit of being significantly less complex and less computationally 

expensive. 
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F igure 4.23 – Hyperparameter training of the Random Forests model at 600 sample size, purity variable for (a) 

Unscaled, (b) Scaled, (c) Polynomial scaling scenarios. 

 
Source: Author 

 

Lastly, the Gradient Boosted Regression trees algorithm shows, Figure 4.24, the 

expected memorization training patterns of decision tree-based models, but differs from both 

Random forests and regular decision trees in that, on the validation score, it shows overfitting 

past a certain depth. The optimal values are generally located between 3 and 5. 
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F igure 4.24 – Hyperparameter training of the Gradient model at 600 sample size, purity variable for (a) 

Unscaled, (b) Scaled, (c) Polynomial scaling scenarios. 

 
Source: Author 

 

4.3 Model sensitivity to R NG parameter choice 

 

As previously explained, each algorithm was tested to check how sensitive they are to 

the pseudo-random functions used to split data into the training, validation and test sets and to 

perform the cross validation. Since the choice of the parameter is up to the user, several options 

can be taken into account and the desired outcome is that the chosen machine-learning model 

is not affected significantly by this choice. Reproducing the same procedure in the previous 

section, each test was done separately for the unscaled, scaled and polynomial scaling scenarios.  

Figure 4.25 shows the sensitivity of the algorithms for a fixed sample size of 800. One 

should note, however, that the R² of those figures are representative of only the purity 

parameter, while the results presented in section 3.1 are an average for the fits of both purity 

and recovery, the reason for choosing purity is due to this variable being the one that presents 

the most variability in R² model by model. 
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F igure 4.25 – RNG sensitivity for a sample size of 800 for (a) Unscaled, (b) Scaled and (c) Polynomial scaling 

scenarios. 

 
Source: Author 

 

According to the probability densities shown in Figure 4.25, MLP model is clearly more 

sensitive to the RNG parameters than the other models. Besides, in opposition to what was 

observed in the accuracy tests, scaling does not change this behavior. The decision tree model 

also exhibits a large variation, but not as large as the ANN type model. That represents another 

unexpected result given the robustness of the neural network models and the multiple possible 

hyperparameters that can be tuned to improve fitting. In the present situation, despite the proper 

scaling, the MLP model is still capable of yielding bad fits. This unreliability would not be 

acceptable for an application. 

Figure 4.26 shows the sensitivity for a sample size of 1200. A ll models have improved 

their precision, especially the MLP model. Considering that such improvement only happens 

with an increased sample size, which requires more computational effort, the models that 

perform the same or better for smaller sample sizes are preferred. In that case, again, the 

Random Forests Model and the Gradient boosted trees model were the best performing for all 

the types of scaling and the Ridge and Lasso models were also at the top for the polynomial 

scaling. The fact that these linear models have very good accuracy and precision is a great result 

in terms of qualitative analysis and optimization, as the equations for these models are simple 
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and explicit in the form of � (�ଵ,�ଶ,�ଷ…). A direct analysis of their angular coefficients can 

help extract the most influential parameters and show how each of them affects the prediction 

and physical consistency of the model, which can be easily evaluated due to the explicit 

correlations among the variables. For optimization purposes, simpler equations greatly improve 

convergence and overall technical difficulties that arise by employing more complex models. 

 
F igure 4.26 – RNG sensitivity for a sample size of 1200 for (a) Unscaled, (b) Scaled and (c) Polynomial scaling 

scenarios. 

 
Source: Author 

 

 

 

 

4.4 Improving model accuracy with process knowledge 

 

 A lthough it is possible to tweak and experiment with any machine learning and 

statistical modelling algorithm until it yields an adequate R², such manipulations are more likely 

to lead to physically meaningless conditions. There are no guarantees that pushing the data 

science work to its limits for a particular problem will work out for other problems, even within 

the same topic. However, it is possible to introduce additional knowledge about the process into 
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the machine learning without the use of any complex differential equations. The introduction 

of these new variables can help achieving not only a better accuracy in a given sample size, but 

also improve the general accuracy with less sample sizes, which is the most desirable outcome 

of surrogate modelling: high accuracy with the least amount of computational resources used. 

To illustrate that in adsorption processes, we start by plotting Figure 4.27, which shows 

the experimental breakthrough curve of CO2 and the simulated breakthrough curve according 

to the equilibrium non-dispersive model as in Ruthven (1984) (i.e. instantaneous adsorption and 

no axial dispersion) under the same operating conditions. The similarity regarded by the 

steepness of both curves suggests that mass transfer resistances are not significant, and the 

experimental tests by Siqueira et al. (2018a) show that this is the case. Therefore, we can 

correlate the purity variable with the mean retention time parameter (Ruthven, 1984) or 

stoichiometric time, as defined in Equation 4.5 alongside the other variables already in the 

model, �௢௨௧,�௣௥,�௔ௗ௦ . This correlation can be maintained as long as blowdown pressure is low, 

ensuring desorption. The relationship between raffinate purity in a PSA and the stoichiometric 

time of the heavy component would be that, if the adsorption phase of the PSA (�௣௥+�௔ௗ௦ ) is 

longer than the stoichiometric time, a significant drop in N2 purity would be expected. For the 

machine-learning model, the new information comes from the equilibrium isotherm of CO2 on 

the AC CHARBON 500, as an additional constraint, which would lead to an improvement in 

accuracy. 
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F igure 4.27 – CO2 Breakthrough at 10% molar composition when adsorbed by CHARBON 500 versus the result 

from equilibrium non-dispersive model. 

 
Source: Author 
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A  new variable is introduced, mathematically represented by (�௣௥+�௔ௗ௦ )−�௦௧ and the 

corresponding objective function of purity given by �(�௢௨௧,(�௣௥+�௔ௗ௦ )−�௦௧), instead of 

�(�௢௨௧,�௣௥,�௔ௗ௦)It is worth mentioning that there is effectively no new independent variable 

introduced, as the stoichiometric time is a function of the flowrate, which is a function of �௢௨௧  

and �௣௥ , and also a function of the isotherm, which is also a function of pressure, so the model 

would end up bearing the same independent variables. While it is true that the functions 

�(�௢௨௧,�௣௥,�௔ௗ௦) and �(�௢௨௧,(�௣௥+�௔ௗ௦ )−�௦௧) carry the same independent variables, they 

are nonetheless different functions. This can be shown by fixing all the remaining variables and 

changing only (�௣௥+�௔ௗ௦ )−�௦௧. This test function is represented by Equation 4.6: 

 

���=�൫�௣௥+�௔ௗ௦−�௦௧൯=(generic ally)�(�ଵ+�ଶ−�ଷ) (4.6)

 

Here �௣௥,�௔ௗ௦,�௦௧ can be varied at random but, analytically, if �ଵ+�ଶ−�ଷ=�������� 

, then �(�ଵ+�ଶ−�ଷ )=�������� . That is, the function �(�ଵ+�ଶ−�ଷ ) is translationally 
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invariant. This result sets a clear constraint in the generic analytical function of �(�௣௥,�௔ௗ௦,�௦௧), 

and the proper definition of the new function is then represented by Equation 4.7 instead: 

 

�൫�௣௥+�௔ௗ௦−�௦௧൯=�൫�௣௥,�௔ௗ௦,�௦௧൯ for �௣௥+�௔ௗ௦−�௦௧ ≠�������� (4.7)

 

Thus, the new function is the old one plus a constraint defined by a physical argument.  

In the present case, given the breakthrough curve, it is assumed that mass transfer resistances 

small enough so that the raffinate purity should have a reasonable correlation with the 

stoichiometric time, which carries more meaningful information, as inferred from Figure 4.28 

By taking all the raw data of Purity and correlating solely with (�௣௥+�௔ௗ௦ )−�௦௧, a R² of 0.64 

is obtained, suggesting that the new constraint indeed carries a significant portion of 

information. 

 

 
F igure 4.28 – Correlation of purity with the new variable 

 
Source: Author 

 

Figure 4.29 presents a comparison for the average R² in all situations (Unscaled, Scaled 

and Polynomial Scaling) for the sample size of 600 with (600 extra) and without (600) the 

stoichiometric time as a variable, for each machine-learning model. It is possible to see that the 

extra variable improved the performance of 5 out of the 7 models used. It is unclear why the 

accuracy was reduced for Random Forests and Decision Trees, although the difference for the 
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former is not sufficiently large to characterize a decrease in performance due to the introduction 

of the stoichiometric time. For the model of the Decision Trees, it might be the case of 

overfitting or the natural instabilities of this model as discussed in section 4.3. When applying 

the new variable to higher sample sizes, such as 1200, figure 4.29 shows still a large 

improvement for the lasso and ridge models, but no significant changes to the remaining, even 

with some small decrease in the case of the K NN and MLP methods. 

It has to be noted, though, that while intuitive that process information would cause 

better fitting, this improvement is not guaranteed due to the black box nature of the statistical 

models, though surprising, it wouldn’t be impossible for the inclusion of the new information 

to have negative impact, as many factors outside of the physical ones influence on the accuracy 

of the algorithms. What is being presented is that it is worth it to try and use process knowledge 

in hopes of improving the model. 

 
F igure 4.30 – Average R² of each method for the sample size of 600 without and with (600 extra) the addition of 

the stoichiometric time as a variable. 

 
Source: Author 
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F igure 4.30 – Average R² of each method for the sample size of 1200 without and with (1200 extra) the addition 

of the stoichiometric time as a variable. 

 
Source: Author 

 

Provided the proper process knowledge, a step further into this approach can be taken. 

If the adsorption phase of the PSA exceeds the stoichiometric time, for a given adsorbent and 

operating conditions, the purity will be low, which is undesirable. Thus, one can beforehand 

use this “filter” to exclude from the LHS sampling, the values of  (�௣௥+�௔ௗ௦ ) larger than the 

stoichiometric time. By applying this filter onto the sample of 600 data points, the total size of 

the filtered sample decreases to 521. Figure 4.31 shows how the filtering affects R² for all the 

scaling scenarios. 
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F igure 4.31 – Average R² of each method for the sample size of 600 with the stoichiometric time compared with 

a “filtered” sample of 521 data points.   

 
Source: Author 

 

For every model except the MLP, the results are effectively the same, showing that there 

is no relevant decrease in accuracy, but the sample size required is yet again smaller, saving 

further computational resources. The sharp decrease for the MLP model is most likely due to 

its high sensitivity, as shown in section 4.3.  

Finally, instead of showing how the average R² for all tested scenarios (Unscaled, Scaled 

and Polynomial scaling) compares for each model and scaling, Figure 4.33 shows the best 

possible fit in the Ridge model for each sample, the reason to show this specific model is due 

to the use of the same in the optimization and to show that even this simple model also yields 

very high R² values. The worst performing R² was about 0.965, which is already high, so these 

are effectively all good results for an application. An even more remarkable result is that the 

samples of size 600 with the extra variable (600 extra) and the filtered sample of size 521 

outperform both the original 600-sized sample and the 800-sized sample, demonstrating the 

effectiveness of the introduction of the process variable to improve the fitting.   
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F igure 4.33 – Best R² in each sample size for the Ridge model. 

 
Source: Author 

 

4.5 Optimization. 

 

To obtain the purity-recovery Pareto non-dominated front, the polynomial scaled form 

of the Ridge and the Lasso models were chosen due to their top performances despite the 

simplicity, which facilitates code implementation and convergence, despite the fact that the 

random forests and gradient boosted trees are the best performing methods, the simpler Ridge 

and lasso were chosen due to the mathematical difficulties associated with optimizing tree-

based algorithms who have larger degree of discrete behavior. A lso, given that the simple 

polynomial models were chosen, it would be possible to use alternative optimization methods 

that would include analytical solutions, or employment of derivative-free methods such as 

Bayesian optimization, however, since the code for the optimization was chosen before the 

models were selected as an “all purpose” model and, as will be shown, the computational effort 

on the NGSA will be negligible, it was kept. The optimization was carried out with the filtered 

sample of 521 data points, 800 data points and 1200 data points. Table 4.9 shows the weights 

and the intercepts of the regressed equations of purity and recovery, according to Equation 3.11 

for the variables �଴=�௣௥;�ଵ=�௔ௗ௦;�ଶ=�௢௨௧. 

The NSGA-II algorithm was used to maximize the functions of purity (Equation 3.7) 

and recovery (Equation 3.8) subject to the following constraints: 0≤���≤1 and 0≤���≤



90 
 

1 with the ε  constraint method used for scalarization. The population number of the genetic 

algorithm was 40 with the number of offspring of 10 and termination in the 40th generation. 

Figure 4.33 shows the results of the optimization with the Pareto non-dominated set. A ll 

evaluated sample sizes reasonably agree, which validates further the accuracy analysis of the 

previous sections. Since the results from the smallest sample size equals to those from the 

largest sample size, one could conveniently use the 521-sized sample for optimization, saving 

a significant amount of computational resources without loss of accuracy. Figure 4.33 also 

presents the accuracy threshold of R², from which these and lower values would have large 

errors. Table 4.10 shows the total computational time taken for the full process of data 

generation, regression and optimization for each size. Each optimal value of Pressure, 

Adsorption and pressurization times were fed into the detailed model to check if the Pareto 

curves are reasonably close, and Figure 4.33 shows that they are similar. 

 
T able 4.9 – Ridge coefficients for the tested data set sizes. Numbers in parenthesis “()” indicate the sample size 

to which the parameter belongs. 

 Purity R ecovery 

�(521) 0.936 0.439 

�଴(521) 0.0879 -0.464 

�ଵ(521) -0.0892 0.658 

�ଶ(521) 0.0501 0.0898 

�ଷ(521) -0.0357 0.149 

�ସ(521) 0.000778 0.0478 

�ହ(521) -0.00394 -0.0446 

�଺(521) 0.0276 -0.314 

�଻(521) 0.0228 0.0329 

�଼ (521) -0.0322 -0.0592 

�(800) 0.934 0.439 

�଴(800) 0.106 -0.572 

�ଵ(800) -0.105 0.687 

�ଶ(800) 0.0668 0.0863 

�ଷ(800) -0.0508 0.233 

�ସ(800) 0.00606 0.0145 

�ହ(800) -0.0126 -0.0313 

�଺(800) 0.0313 -0.319 

�଻(800) 0.0309 -0.0172 

�଼ (800) -0.0477 -0.00764 

�(1200) 0.944 0.410 
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�଴(1200) 0.110 -0.591 

�ଵ(1200) -0.0993 0.640 

�ଶ(1200) 0.0496 0.0687 

�ଷ(1200) -0.0589 0.282 

�ସ(1200) 0.0182 -0.0569 

�ହ(1200) -0.0165 -0.0231 

�଺(1200) 0.0230 -0.247 

�଻(1200) 0.0357 -0.00939 

�଼ (1200) -0.0343 -0.0316 
 

F igure 4.33 – Pareto optimization sets yielding a pair of purity/recovery for the selected sample sizes with their 

respective goodness of fit, R², and the accuracy threshold of R² from which the error would be too large for a 

model. 

 
Source: Author 

 

T able 4.10 – Breakdown of computational times. 

Sample size Data 
generation 
time 

Machine 
learning 
time 

Optimization 
time 

T otal time 
employed 

T ime/L ongest 
time 

521 101.30 h 0.74 h 0.20 s 102.04 h 0.44 

800 155.55 h 0.74 h 0.20 s 156.29 h 0.67 

1200 233.33 h 0.88 h 0.20 s 234.22 h 1.00 
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The pareto front of Figure 4.33, shows all optimal pairs within the tested ranges of 

�௣௥,�௔ௗ௦,�௢௨௧ , but not all of these values are of practical interest, literature typically reports a 

minimum of 95% for practical applications (Ivanova and Lewis, 2012; K arimi and Fatemi, 

2021), thus Figure 4.33 can be segmented into two regions, one of accepted optimal results and 

one of not accepted, Figure 4.33. Looking at the accepted results, Table 4.11 shows the recovery 

values for each acceptable purity range from 95% to 99% and alongside it, the values of 

�௣௥,�௔ௗ௦,�௢௨௧ given by the optimizer for the sample size of 1200. 

 
F igure 4.34 – Separating the general optimized results into acceptable and not acceptable according to practical 

requirements. 

 
Source: Author 

 

T able 4.11 – Purity thresholds with associated Recovery and operational parameters for 1200 sample size. 

Purity  R ecovery ��� ���� ����  

95 % 67.62% 112.68 s 47.48 s 11.65 bar 

96% 60% 109.32 s 82.28 s 13.95 bar 

97% 55.42% 43.03 s 84.06 s 13.99 bar 

98% 48.85% 100.38 s 51.64 s 15.08 bar 

99% 32.15% 67.67 s 89.36 s 13.76 bar 

 

Note that a pair of purity and recovery is not necessarily tied to the same triad of 

�௣௥,�௔ௗ௦,�௢௨௧, the algorithm can find two points of similar Purity and Recovery with very 
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different triad of parameters, to show how this is possible, Table 4.12 shows all the Pareto Front 

points with their respective parameters, Notice that point 97.73% of Purity has 22.50 s, 85.91s 

and 14.34 bar as, respectively, Pressurization time, adsorption time, and Outlet pressure, but 

point nearby 97.98% has 35.82 s, 95.16 s, and 16.20 bar. The algorithm can find different 

combinations of the operational parameters for a single pair Purity-Recovery if it is asked to 

generate a finer front, with many points close to one another. 

 
T able 4.12 – Pareto front pairs with associated operational parameters for 1200 sample size 

Purity (% ) R ecovery (% ) ��� (s) ���� (s) ���� (bar) 
92.12% 82.23% 20.68 98.50 19.44 
99.99% 18.80% 88.96 20.63 13.95 
98.45% 41.14% 112.69 43.41 11.56 
95.76% 60.65% 41.44 93.45 17.57 
99.10% 32.15% 67.68 89.37 13.77 
97.36% 54.59% 88.54 27.52 14.38 
99.89% 19.59% 51.20 84.48 18.28 
94.14% 73.38% 43.77 84.22 16.95 
98.75% 35.22% 55.98 87.08 15.37 
98.28% 46.61% 72.73 89.37 15.84 
99.67% 27.87% 110.67 48.95 14.00 
99.84% 25.69% 91.22 82.94 14.95 
92.97% 77.80% 117.82 79.91 14.37 
96.89% 57.20% 110.67 84.48 13.06 
95.63% 64.03% 30.79 87.16 17.64 
95.11% 67.63% 112.69 47.48 11.65 
93.69% 74.26% 25.66 84.78 14.35 
94.53% 71.11% 21.15 85.96 19.13 
97.98% 49.79% 35.82 95.16 16.20 
97.73% 51.81% 22.51 85.92 14.35 
92.80% 79.83% 103.28 66.66 13.96 
93.54% 75.09% 29.01 84.73 19.44 
94.43% 72.42% 89.56 85.19 15.89 
95.40% 66.45% 88.96 22.63 13.82 
92.50% 81.81% 101.29 63.57 13.82 
94.82% 69.34% 76.31 84.61 13.77 
97.17% 55.42% 43.04 84.06 14.00 
98.17% 48.85% 100.38 51.65 15.08 
92.63% 81.14% 112.69 44.64 14.09 
95.44% 64.97% 98.60 54.66 13.95 
94.92% 69.22% 55.98 87.08 13.01 
97.73% 51.49% 21.06 84.59 19.44 
96.99% 56.41% 88.56 26.33 14.38 
99.11% 29.80% 81.71 85.82 17.57 
98.62% 39.38% 35.82 95.73 16.16 
98.65% 36.31% 21.45 87.07 19.44 
99.47% 29.78% 91.22 27.22 15.01 
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93.36% 77.77% 100.60 57.73 13.95 
96.50% 60.09% 109.33 82.28 13.96 
95.47% 64.49% 101.66 52.95 14.00 

 

However, it is still possible to narrow down the search further by introducing another 

performance variable: Productivity. Its desirable not only to have substantial values of purity 

and recovery, but to also achieve the highest productivity possible given those values. Equation 

4.8 shows how the productivity can be calculated given values of purity and recovery and 

Equations 4.9 and 4.10 shows how to calculate the inlet flowrate �̇௜௡ given �௣௥ and �௢௨௧, these 

two equations were obtained via regression after observing the behavior of �̇௜௡ given different 

values of �௣௥ and �௢௨௧.  

 

����=
�̇௜௡�௜௡�௜௡ே

60�௚�௜௡

���൫�௣௥+�௔ௗ௦൯
�௧௢௧�௦

 
(4.8)

�̇௜௡=ቆ
�௣�௢௨௧

�௣௥
ቇ

ଵ
ଵ.ଵ଺

 
(4.9)

�௣=
14.22�௢௨௧

ଵ.ଽ଺

1+0.23�௢௨௧
ଵ.ଽ଺ 

(4.10)

  

With these new formulas, we can explore points with similar purity and recovery and 

observe if there are significant differences in productivity, which there are, as Table 4.13 shows. 

These findings allow for a rewrite of Table 4.11 as 4.14 filtering for the highest productivity 

possible and table 4.12 as 4.15 for a full picture of all relevant performance variables. 

 
T able 4.13 – Similar pairs of purity and recovery with very distinct productivity values 

Purity(% )  Recovery(% ) Productivity 
(mol h-1 kg-1) 

���(s) ����(s) ���� (bar) 

97.73% 51.49% 145.76 21.06 84.59 19.44 

97.73% 51.81% 105.60 22.51 85.92 14.35 

97.98% 49.79% 75.83 35.82 95.16 16.20 

 

T able 4.14 – Purity thresholds with associated Recovery and operational parameters with highest productivity 

Purity(% )  Recovery(% ) Productivity 
(mol h-1 kg-1) 

���(s) ����(s) ���� (bar) 
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95% 69.34% 58.89 55.98 87.08 13.01 

96% 60.65% 87.55 41.44 93.45 17.57 

97% 55.42% 63.18 43.04 84.06 14.00 

98% 51.49% 145.76 21.06 84.59 19.44 

99% 35.22% 34.82 55.98 87.08 15.37 

 

T able 4.15 – Pareto front pairs with associated operational parameters and productivity for 1200 sample size 

Purity (% ) R ecovery (% ) Productivity 
(mol h-1 kg-1) 

��� (s) ���� (s) ����(bar) 

92.12% 82.23% 236.49 20.68 98.50 19.44 
99.99% 18.80% 11.43 88.96 20.63 13.95 
98.45% 41.14% 17.18 112.69 43.41 11.56 
95.76% 60.65% 87.56 41.44 93.45 17.57 
99.10% 32.15% 24.44 67.68 89.37 13.77 
97.36% 54.59% 34.24 88.54 27.52 14.38 
99.89% 19.59% 24.41 51.20 84.48 18.28 
94.14% 73.38% 97.92 43.77 84.22 16.95 
98.75% 35.22% 34.83 55.98 87.08 15.37 
98.28% 46.61% 37.79 72.73 89.37 15.84 
99.67% 27.87% 14.08 110.67 48.95 14.00 
99.84% 25.69% 16.27 91.22 82.94 14.95 
92.97% 77.80% 38.12 117.82 79.91 14.37 
96.89% 57.20% 27.13 110.67 84.48 13.06 
95.63% 64.03% 119.85 30.79 87.16 17.64 
95.11% 67.63% 28.45 112.69 47.48 11.65 
93.69% 74.26% 135.18 25.66 84.78 14.35 
94.53% 71.11% 197.70 21.15 85.96 19.13 
97.98% 49.79% 75.84 35.82 95.16 16.20 
97.73% 51.81% 105.61 22.51 85.92 14.35 
92.80% 79.83% 42.68 103.28 66.66 13.96 
93.54% 75.09% 161.31 29.01 84.73 19.44 
94.43% 72.42% 49.18 89.56 85.19 15.89 
95.40% 66.45% 40.04 88.96 22.63 13.82 
92.50% 81.81% 44.09 101.29 63.57 13.82 
94.82% 69.34% 47.54 76.31 84.61 13.77 
97.17% 55.42% 63.19 43.04 84.06 14.00 
98.17% 48.85% 28.70 100.38 51.65 15.08 
92.63% 81.14% 40.59 112.69 44.64 14.09 
95.44% 64.97% 36.14 98.60 54.66 13.95 
94.92% 69.22% 58.89 55.98 87.08 13.01 
97.73% 51.49% 145.76 21.06 84.59 19.44 
96.99% 56.41% 35.38 88.56 26.33 14.38 
99.11% 29.80% 23.96 81.71 85.82 17.57 
98.62% 39.38% 59.83 35.82 95.73 16.16 
98.65% 36.31% 101.18 21.45 87.07 19.44 
99.47% 29.78% 18.92 91.22 27.22 15.01 
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93.36% 77.77% 42.51 100.60 57.73 13.95 
96.50% 60.09% 30.59 109.33 82.28 13.96 
95.47% 64.49% 35.04 101.66 52.95 14.00 

 

 

 

 

5 CONCL USION AND FUT UR E  WOR K S 

 

Several machine-learning models, even the simplest ones, are suitable for surrogate 

modeling and optimization of adsorption processes. Overall, the use of the ANN model of 

multilayer perceptrons was unstable, varying from very low to very high qualities of fit, and 

unexpected results which led to the choice of the alternative models, even though they are less 

complex. However, such instability was present mostly on the unscaled scenario in lower 

sample sizes, which is likely due to the behavior of the adam solver, as the hyperparameter 

analysis shows, thus the lower performance of the ANN’s is not to be taken as definitive. 

Instead, it shows that the use of the gradient descent solvers introduce too many instabilities 

and Newton-based algorithms should be preferred if the computational cost is feasible. 

However, even with the solver correction, despite significant increase in the ANN performance, 

simpler models still manage to offer very close quality of fitting, which offers an advantage on 

its use due to lower computational cost and easier model interpretation. 

The introduction of a physically meaningful constraint based on the breakthrough 

stoichiometric time was successful in both increasing the model accuracy for all tested sample 

sizes and reducing the computational time employed of the full modelling plus optimization 

process by more than 50%. These two findings shift the weight of the evaluated surrogate 

models with machine learning from finding better statistical models to introducing small bits 

of process information, as even the most primitive models are capable of delivering reasonable 

accuracies. 

However, these improvements are not guaranteed since the Machine learning models 

are black box in nature, so their behavior is not necessarily in tune with physical consistency, 

it has been shown that in this case, the introduction of the process knowledge helped improve 

accuracies, not on all cases. It’s then concluded that its worth it to try and use process knowledge 

to check if the model becomes more accurate, before trying to get more data points.  

The use of a simple linear-type model with polynomial scaling was successful in 

obtaining the Pareto set in all sample-sizes, increasing the reliability of the previous discovered 
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information. The implementation of the machine learning modelling and the optimization in the 

open source Python language was also successful and relatively straightforward leading to 

easier replication and further findings in the field with a widely accessible mean. The optimized 

values do not generate unique sets of �௣௥,�௔ௗ௦,�௢௨௧ for very similar values of Purity and 

recovery, which cause ambiguity on which set to choose, this ambiguity can be overcome by 

expanding onto the Pareto results filtering for acceptable purity ranges and focusing on 

maximizing productivity to narrow down the values to obtain the values of the operational 

parameters Pressurization time, Adsorption time and outlet Pressure. 

As possible extensions and future works on the topic is to extend the modelling and 

optimization for variable adsorbent solids and including the isotherm and diffusion parameters 

in the model, as to try and find the “best adsorbent” for a particular set of conditions with its 

equilibrium and isotherm parameters would be selected to be the closest of a list of existing 

material creating a model capable of material screening. 
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