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RESUMO

Contexto: Os bugs de tratamento de exceções (EH) decorrem do uso incorreto do mecanismo de

tratamento de exceção (EHM) e frequentemente acarretam consequências severas (e.g., tempo

de inatividade do sistema, perda de dados e risco de segurança). O rastreamento de bugs EH é

particularmente relevante para sistemas contemporâneos (como sistemas baseados em nuvem e

inteligência artificial), nos quais a lógica sofisticada do software representa uma ameaça adicional

ao uso correto do EHM. Além disso, as pessoas que reportam bugs raramente conseguem rotular

bugs como bugs EH, pois isso pode exigir um conhecimento abrangente da estratégia de EH do

software. Surpreendentemente, até onde sabemos, não existe um procedimento automatizado

para identificar bugs EH a partir das descrições dos relatórios. Objetivo: Primeiramente, bus-

camos avaliar até que ponto o Processamento de Linguagem Natural (NLP) e o Aprendizado

de Máquina (ML) podem ser usados para rotular de forma confiável os bugs EH utilizando os

campos de texto dos relatórios de bugs (e.g., resumo, descrição e comentários). Em segundo

lugar, pretendemos fornecer um conjunto de dados rotulados de maneira confiável que a comu-

nidade possa usar em esforços futuros. De modo geral, esperamos que nosso trabalho aumente a

conscientização da comunidade sobre a importância dos bugs EH. Método: Analisamos man-

ualmente 4.516 relatórios de bugs dos quatro principais componentes do projeto Hadoop da

Apache, dos quais rotulamos cerca de ≈ 20% (943) como bugs EH. Em seguida, utilizamos

técnicas de incorporação (embedding) de palavras (Bag-of-Words e Frequência de Termos -

Frequência Inversa de Documentos – TF-IDF) para resumir os campos textuais dos relatórios

de bugs. Posteriormente, usamos essas incorporações para ajustar quatro classes de métodos

de ML e registrar seu desempenho em dados não vistos. Também avaliamos se a consideração

exclusiva de palavras-chave de EH é suficiente para alcançar um alto desempenho preditivo.

Resultados: Nossos resultados mostram que a combinação de técnicas de NLP e ML pode rotular

bugs EH de forma razoavelmente eficaz, alcançando pontuações de Características de Operação

do Receptor - Área Sob a Curva (ROC-AUC) de até 0,70 e recall variando de 0,50 a 0,62.

Como verificação de sanidade, também avaliamos métodos que utilizam incorporações extraídas

apenas de palavras-chave. Embora as incorporações baseadas em palavras-chave gerem AUCs

semelhantes, observamos uma queda acentuada no recall (0,53). Isso sugere que palavras-chave

sozinhas não são suficientes para caracterizar relatórios de bugs EH, indicando a necessidade

de análises textuais mais complexas. Conclusões: Até onde sabemos, este é o primeiro estudo

a abordar o problema da rotulagem automática de bugs EH. Com base em nossos resultados,



podemos concluir que a combinação de técnicas de NLP e ML é promissora para automatizar

a tarefa de rotulagem de bugs EH. Esperamos, em geral, que (i) nosso trabalho contribua para

aumentar a conscientização sobre os bugs EH e (ii) que nosso conjunto de dados (disponível

publicamente) sirva como um conjunto de dados de referência, abrindo caminho para trabalhos

futuros. Além disso, nossas descobertas podem ser utilizadas para construir ferramentas que

ajudem os mantenedores a identificar bugs EH durante o processo de triagem.

Palavras-chave: bug de tratamento de exceção; rotulagem automática de bugs; aprendizado de

máquina; processamento de linguagem natural.



ABSTRACT

Context: Exception randling (EH) bugs stem from incorrect usage of exception handling mecha-

nisms (EHM) and often incur severe consequences (e.g., system downtime, data loss, and security

risk). Tracking EH bugs is particularly relevant for contemporary systems (e.g., cloud- and artifi-

cial intelligence based systems), in which the software’s sophisticated logic is an additional threat

to the correct use of the EHM. On top of that, bug reporters seldom can tag EH bugs — since it

may require an encompassing knowledge of the software’s EH strategy. Surprisingly, to the best

of our knowledge, there is no automated procedure to identify EH bugs from report descriptions.

Objective: First, we aim at evaluating the extent to which Natural Language Processing (NLP)

and Machine Learning (ML) can be used to reliably label EH bugs using the text fields from

bug reports (e.g., summary, description, and comments). Second, we aim at providing a reliably

labeled dataset that the community can use in future endeavors. Overall, we expect our work to

raise the community’s awareness regarding the importance of EH bugs. Method: We manually

analyzed 4,516 bug reports from the four main components of Apache’s Hadoop project, out

of which we labeled ≈ 20% (943) as EH bugs. Then, we used word embedding techniques

(Bag-of-Words and Term Frequency-Inverse Document Frequency (TF-IDF)) to summarize the

textual fields of bug reports. Subsequently, we used these embeddings to fit four classes of

ML methods and record their performance on unseen data. We have also evaluated whether

considering only EH keywords is enough to achieve high predictive performance. Results: Our

results show that the combination of NLP and ML techniques can label EH bugs reasonably well,

achieving Receiver Operating Characteristics-Area Under The Curve (ROC-AUC) scores of up

to 0.70 and recall ranging from 0.50 up to 0.62. As a sanity check, we also evaluate methods

using embeddings extracted solely from keywords. While keyword-based embeddings yield

similar AUC, we observe a steep decrease in recall (0.53). This suggests that keywords alone are

not sufficient to characterize reports of EH bugs — and there is an avenue for more complex

text analyses. Conclusions: To the best of our knowledge, this is the first study addressing the

problem of automatic labeling of EH bugs. Based on our results, we can conclude that the

combination of NLP and ML techniques sounds promising to automate the task of labeling EH

bugs. Overall, we hope (i) that our work will contribute towards raising awareness around EH

bugs; and (ii) that our (publicly available) dataset will serve as a benchmarking dataset, paving

the way for follow-up works. Additionally, our findings can be used to build tools that help

maintainers flesh out EH bugs during the triage process.



Keywords: exception handling bug; automatic bug labeling; machine learning; and natural

language processing.
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1 INTRODUCTION

Exception handling (EH) is a forward error-recovery technique that allows us to

anticipate abnormal situations. When a system reaches these abnormal states during runtime, it

triggers a series of pre-defined recovery actions.

Besides improving robustness (SHAHROKNI; FELDT, 2013), EH enables the sep-

aration of error-handling code from regular code, enhancing software comprehensibility and

maintainability (CHEN et al., 2009; CACHO et al., 2014a; CACHO et al., 2014b). However,

the way EH features are implemented in mainstream program languages (e.g., C#, Java, and

Python) leads developers to create multiple control flows, making the software harder to de-

bug (ROBILLARD; MURPHY, 2003; CHANG; CHOI, 2016) and posing new challenges to

software testing (SINHA; HARROLD, 2000; ZHANG; ELBAUM, 2014; DALTON et al., 2020;

MARCILIO; FURIA, 2021; LIMA et al., 2021).

Despite the importance of EH, several studies report that EH is often poorly under-

stood, usually neglected, and insufficiently tested by developers (mostly by novice ones) (SHAH

et al., 2010; KECHAGIA; SPINELLIS, 2014; ZHANG; ELBAUM, 2014; ASADUZZAMAN et

al., 2016; GOFFI et al., 2016; CHANG; CHOI, 2016; FILHO et al., 2017). The combination of

these factors creates a fertile ground for defects caused by the incorrect use of the EH mechanism

(EHM), baptized “exception handling bugs” by Ebert et al. (2015). While EH was always a

complex subject, (CHEN et al., 2019a) recently argued that the vast space of potential error

conditions and the sophisticated logic of modern systems (e.g., cloud-based, microservice-based,

and big data-oriented) makes using EHMs correctly even harder, leaving modern software

systems especially prone to EH bugs. In these complex systems, EH bugs may lead to dire

consequences, such as system downtime, data loss, and security risk (ZHANG et al., 2021).

Given these potential risks, EH bugs must be quickly triaged (i.e., identified, prioritized, and

assigned) and fixed.

The bug triage process is typically done by reading each bug report to better under-

stand its nature (e.g., source, kind, and severity), prioritizing and assigning it to a maintainer

who best fits (CATOLINO et al., 2019). However, as the bug report backlog increases, the

triage process becomes a time and resource-consuming task as well (PICUS; SERBAN, 2022;

KÖKSAL; ÖZTÜRK, 2022). A straightforward solution to improve this process consists of

enriching the bug report (before the triage starts) with informative labels to best characterize each

reported bug. Nevertheless, this labeling task mostly relies on the bug reporter’s knowledge, time,
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and convenience which may lead to reliability information issues, calling for automatization.

Previous works on EH bugs have explored the relationship between EH and post-

release defects by identifying, classifying, and quantifying the source of EH bugs (BARBOSA et

al., 2014; EBERT et al., 2015; COELHO et al., 2017; PáDUA; SHANG, 2017; EBERT et al.,

2020; SOUSA et al., 2020) and investigating the existence of statistical relationships between

them (MARINESCU, 2011; SAWADPONG et al., 2012; MARINESCU, 2013; SAWADPONG;

ALLEN, 2016; PáDUA; SHANG, 2018). These studies provide empirical evidence that discloses

a substandard in EH implementation practices and how this phenomenon can impact several

quality attributes (e.g., maintainability, reliability, and robustness) (MELO et al., 2019). On

a different note, a number of works focus on leveraging Machine Learning (ML) and Natural

Language Processing (NLP) techniques to help in bug triage by performing automatic issue

type classification (if bug or not) (PANDEY et al., 2017; CHAWLA; SINGH, 2015; AUNG

et al., 2022), labeling the kind of bug (e.g., security and permission) (CHAWLA; SINGH,

2014; PETERS et al., 2019; CATOLINO et al., 2019; ELZANATY et al., 2021), assigning bug

severity (GOMES et al., 2019; PICUS; SERBAN, 2022), estimating priority (TIAN et al., 2015;

UDDIN et al., 2017), and suggesting the fixer (HU et al., 2014; LEE et al., 2017; CHEN et al.,

2019b; AUNG et al., 2022). Surprisingly, however, there are no works on using ML and NLP to

improve the triage of EH bugs.

In this study, we empirically evaluate the idea of automatically labeling EH bugs

using ML classifiers and NLP techniques to extract features from bug report fields (e.g., summary,

description, and comments). However, the use of such techniques to label EH bug reports poses

challenges due to the lack of previously labeled datasets to build models and the existence of a

class imbalance problem (i.e., EH bugs represent a small percentage of reported bugs).

To bridge this gap, we first built a manually labeled dataset from an existing dataset

that contains 10 years of bug-fixing activity from the Apache Hadoop project. Thus, 4,516

bug reports were manually inspected and 943 (about 20%) of them were labeled as EH bugs.

Next, we analyzed our dataset to determine whether the lack of attention given to EH, as

reported in previous work, also occurs in bug-fixing activities. To this end, we compared EH and

non-EH bugs with respect to their priorities, fixing time, number of comments in reports, and

the number of changed test files in fix commits. Finally, we perform a controlled experiment

combining four ML classifiers (Support Vector Classifier, Multinomial Naive Bayes, Linear

Regression, and Random Forest) with two NLP strategies to extract features from the bug report
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text (Bag of Words and TF-IDF). We also evaluate if using Bag of Words and TF-IDF only

on keywords related to exception handling extracted from textual fields could improve the ML

models’ performance.

Our results show that the combination of NLP and ML techniques achieved good

performance for the task of automatic labeling of EH bugs. The approach achieved scores of

ROC-AUC metric up to 0.70. Additionally, considering only keywords related to EH, the ML

models yield similar AUC, and we observe a steep decrease in recall (0.53). To the best of our

knowledge, this is the first study addressing the task of automatic labeling of EH bugs.
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2 BACKGROUND

2.1 What is an Exception?

The terms failure, error, fault, defect, and bug are frequently referred to in software

testing literature. Although their meanings are related, there are important distinctions between

these four concepts. The first three terms (failure, error, and fault) are well understood in the

Dependable Computing and Fault Tolerance communities (AVIZIENIS et al., 2004). A failure

occurs when the system’s external behavior does not conform to its specification. An error is a

system’s internal state, which in the absence of a proper system recovery action could lead it to

failure. A fault is the adjudged or hypothesized cause of an error. A fault may remain dormant for

a long period until activated by some event. A defect is a flaw in a software system that could lead

it to behave erroneously or improperly, different from what is expected. Considering the source

of software failure, the terms defect and fault can be seen as synonymous and interchangeable.

The term bug is widely used by the developer’s community to refer to a software defect, thus we

adopt this term in this paper.

An exception is an event that models a state in which the normal flow of system

execution cannot continue (KIENZLE, 2008). In order for the system to continue executing

correctly, the flow of execution must deviate and an additional computation must be employed

to deal with that situation (KNUDSEN, 1987). In reliable systems, an error can be modeled as

an exception, as it rarely happens during system execution (GOODENOUGH, 1975; PARNAS;

WüRGES, 1976). Exception handling provides a means to structure fault tolerance activities

through error recovery (GARCIA et al., 2001). However, exceptions can model other situa-

tions (MILLER; TRIPATHI, 1997), such as (i) deviation - the emergence of an invalid state, but

which is allowed by the system; (ii) notification - information to the invoker of the operation that

the state of the system has changed; and (iii) languages - other uses where the occurrence of the

exception is rare rather than abnormal.

2.2 Java Exception Handling

In Java programming language, “an exception is an event, which occurs during the

execution of a program, which disrupts the normal flow of the program’s instructions” (GAL-

LARDO et al., 2014). When an error occurs inside a method, an exception is raised. In Java,
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the raising of an exception is called throwing. Exceptions are represented as objects following a

proper class hierarchy. Exceptions can be divided into two categories: checked and unchecked

exceptions. Checked exceptions are all exceptions that inherit, directly or indirectly, from

Exception class from java.lang package, except those that inherit, directly or indirectly, from

Error or RuntimeException classes (both from java.lang package), named unchecked ones.

Checked exceptions represent exceptional conditions that a robust application should anticipate

and recover from. Unchecked exceptions represent an internal (RuntimeException) or an

external (Error) exceptional conditions that the application usually cannot anticipate or recover

from. In Java, the handling of checked exceptions is mandatory while the handling of unchecked

exceptions is not.

When an exception is raised, the execution flow is interrupted and deviated to a spe-

cific point where the exceptional condition is handled. In Java, exceptions can be raised using the

throw statement, signaled using the throws statement, and handled in the try-catch-finally

blocks. The “throw new E()” statement is an example of throwing the exception E. The

“public void m() throws E” is an example of how throws statement is used in the method

declaration to indicate the signaling of exception E.

The try block is used to enclose the method calls that might throw an exception, also

called protected region. If an exception occurs within the try block, that exception is handled

by an exception handler associated with it. Handlers are associated with a try block by putting

a catch block after it. A try block can be associated with multiples catch blocks. Each catch

block catches a specific exception type and encloses the exception handler code. The finally

block is optional, but whether declared always executes when the try block finishes, even if an

exception occurs. Cleanup actions are usually coded within the finally block.

2.3 Exception Handling Bug

To better understand EH bugs, it is first necessary to precisely define when a bug

is considered an EH bug or not. One of the most accepted definitions for EH bugs was given

by Ebert et al. (2015): “An Exception Handling Bug is a bug whose cause is related to exception

handling. EH-bugs can occur when the exception is defined, thrown, propagated, handled, or

documented; in the clean-up action of a protected region where the exception is thrown; when

the exception should have been thrown or handled while it is not thrown or handled”. In this

study, we choose the Ebert et al. (2015) definition of EH bug to support our manual labeling of
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reported bugs as EH bug or not.

Identifying an EH bug is not an easy task. It requires inspecting the bug report fields

(summary, description, and comments) to understand the source of a bug and if it complies with

the EH bug definition. To illustrate this process, we present some examples of EH bugs from the

Apache Hadoop project in the next paragraphs.

Sometimes, the information needed to classify the reported bug as an EH bug is easy

to find in the bug report summary itself. It is exactly the case of the bug report HDFS-131001 from

Hadoop’s HDFS module (see Figure 1). In fact, the cause of HDFS-13100 bug is the incorrect han-

dling of two exceptions: UnsurportedOperationExcetion and IllegalArgumentException.

The fix action addresses the bug by implementing the following rules: (i) if the required operation

is not supported, the UnsurportedOperationExcetion must be thrown; and (ii) if the given

parameter is not a legal one, the exception IllegalArgumentException must be thrown.

Figure 1 – Summary content of HDFS-13100 bug report.

In other cases, it is necessary to go beyond and also inspect the bug report descrip-

tion, as in the case of MAPREDUCE-61562 bug report of the Hadoop’s MapReduce module (see

Figure 2). The description of MAPREDUCE-6156 bug gives us the idea that the handler (catch

block) associated with the IOException is not dealing properly with the connection timeout

variable. The fix provided by Hadoop’s maintainers addresses exactly this problem.

There are cases in which inspecting only the report summary and description is not

enough to classify the reported bug as an EH bug. In this case, it is necessary to go deeper

and analyze the comments posted by the maintainers and the discussions between them. The

HDFS-15053 bug report of Hadoop Distributed Filesystem (HDFS) module is an example of

that (see Figure 3). It is possible to infer from the comments that the maintainers reached

an understanding that the cause of the reported bug is the lack of throwing an exception to

characterize the failure to save in all image directories.

1 <https://issues.apache.org/jira/browse/HDFS-13100>
2 <https://issues.apache.org/jira/browse/MAPREDUCE-6156>
3 <https://issues.apache.org/jira/browse/HDFS-1505>
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Figure 2 – Description of MAPREDUCE-6156 bug report.

Figure 3 – Comments of HDFS-1505 bug report.
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3 RELATED WORK

In this section, we describe the existing studies that are, somehow, related to our

study. Although none of them focus on the problem to the automatic labeling of EH bugs, they

comprise studies regarding EH bugs (Section 3.1) and automatic bug labeling (Section 3.2).

3.1 Studies on Exception Handling Bugs

The studies conducted by Barbosa et al. (2014) and Ebert et al. (2015) gather

evidence that erroneous or improper usage of exception handling can lead to a series of fault

patterns, named “exception handling bugs”. This kind of fault refers to a bug in which the

primary source is related to (i) the exception definition, throwing, propagation, handling, or

documentation; (ii) the implementation of cleanup actions; and (iii) the wrong throwing or

handling (i.e., when the exception should be thrown or handled and it is not). Barbosa et al. (2014)

categorizes 10 causes of exception handling bugs, analyzing two open source projects, Apache

Tomcat and Hadoop framework. Ebert et al. (2015) presents a comprehensive classification of

exception handling bugs based on a survey of 154 developers and the analysis of 220 exception

handling errors reported from two open-source projects, Apache Tomcat and Eclipse Integrated

Development Environment (IDE).

Pádua and Shang (2017) conducted a study on the prevalence of exception-handling

anti-patterns across 16 open-source projects (Java and C#). They claim that the misuse of

exception handling can cause catastrophic software failures, including application crashes. They

found that all 19 exception-handling anti-patterns taken into account in the study are broadly

present in all subject projects but only 5 of them (unhandled exception, generic catch, unreachable

handler, over-catch, and destructive wrapping) are prevalent.

Kechagia and Spinellis (2014) studied undocumented runtime exceptions thrown by

the Android platform and third-party libraries. They mined 4,900 different stack traces from

1,800 apps looking for undocumented Application Programming Interface (API) methods with

undocumented exceptions participating in the crashes. They found that 10% of crashes might

have been avoided if the correspondent runtime exceptions had been properly documented.

Coelho et al. (2017) mined 6,000 stack traces from over 600 open-source projects

issues on GitHub and Google Code searching for bug hazards regarding exception handling.

Additionally, they surveyed 71 developers involved in at least one of the projects analyzed.
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As a result of the mining phase, they found four bug hazards that may cause bugs in Android

applications: (i) cross-type exception wrapping; (ii) undocumented unchecked exceptions raised

by the Android platform and third-party libraries; (iii) undocumented check exceptions signaled

by native C code; and (iv) programming mistakes made by developers. The survey results cor-

roborate the stack trace findings, indicating that developers are unaware of frequently occurring

undocumented exception handling behavior.

3.2 Studies on Automatic Bug Labeling

Chawla and Singh (2014) proposed an approach for automatic bug labeling by

incorporating semantically similar terms present in the bug data. The work presents an automated

technique for bug labeling using Term Frequency-Inverse Document Frequency (TF-IDF) and

Latent Semantic Indexing (LSI). For the study, they selected bug reports from Google Chrome

labeled with the following categories: security, regression, polish, and clean up, totalizing

4319 bug reports. The preprocessing included tokenization, stop-words removal, and stemming.

Multinomial Naive Bayes was used for labeling. The Experimental study shows that there is an

improvement in results with the addition of semantically similar words obtained from LSI in

conjunction with the terms extracted using TF-IDF. The labeling accuracy is improved in two

out of four categories with the addition of semantically similar terms.

To facilitate the screening of bugs, Catolino et al. (2019) analyzed 1280 bug reports

of 119 popular projects. They proposed a novel taxonomy of bug types and an automated

classification model to classify the reported bugs according to the defined taxonomy. They used

Logistic Regression and analyzed the performance using F-measure, AUC-ROC, and Matthew’s

Correlation Coefficient (MMC). As a result, nine different types of bugs were highlighted and the

proposed bug type classification model achieved an overall F-Measure, AUC-ROC, and MMC of

64%, 74%, and 72%, respectively, presenting a good performance for the bug type classification.

Elzanaty et al. (2021) presents an approach to automatically recover issue types in

an industrial setting. In his work, a random sample of 951 issue reports from three repositories

developed by Shopify were manually classified. The study trained four machine learning

classifiers (K-nearest neighbors (KNN), Multinomial Naive Bayes (MNB), Support Vector

Classifier (SVC), and Multilayer Perceptron (MLP)) to automatically label issue reports as

defect-fixing or not using NLP-based features. As a result, the classifiers outperform random

guessing (AUC values of 0.5271–0.8070) and Zero-R baselines (F1-score improvements of 0.31–
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21.72 percentage points). When datasets from other projects are integrated to create a unique

training sample, the models achieve performances equivalent to the intra-project classifiers. In

the analysis, the SVC and MLP classification techniques improve the F1-score and AUC from

within-design baselines in four out of six and two out of six experiments. The study highlights

the combining NLP and ML techniques to classify missing issue types and lay the groundwork

for adopting software analytics at Shopify.

Peters et al. (2019) proposed a way to reduce the mislabelling of security bug reports

by developing a framework composed of a combination of Filtering And Ranking methods by

text-based prediction models. The study evaluated 45.940 bug reports from Chromium and four

Apache projects. The framework begins by finding security-related keywords from the security

bug reports. Each security-related keyword is scored according to its frequency. After that,

the authors removed nonsecurity reports with scores that are similar to the ones obtained by

security bug reports. The remaining reports are used to build the prediction models. The analysis

demonstrated that the proposed framework improves the performance of text-based prediction

models for security bug reports in 90% of cases, mitigates the class imbalance issue, and reduces

the number of mislabelled security bug reports by 38%.
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4 THE EH-BUG DATASET

Our EH-Bug dataset was derived from an existing Bug-Fixing dataset. In this section,

we first describe the original dataset (Section 4.1) and then we describe the EH-Bug dataset itself

(Section 4.2).

4.1 The Original Dataset

Vieira et al. (2019) propose a dataset comprising a set of 10-years bug-tracking

information from 55 open-source projects from the Apache ecosystem. We describe in this

section the Vieira et al. (2019) data collection methodology and the description of the dataset

itself.

The Vieira et al. (2019) dataset was created using data extracted from the official

Jira1 and Git2 repositories of the Apache Software Foundation (ASF). First, the Jira repository

was mined selecting issues labeled as “Bug” with CLOSED or RESOLVED status and with the

“Fixed” resolution status. The mining process targeted bug reports created and fixed between

2009-01-01 and 2019-01-02. They used Python Jira3 library to automate the mining process.

Second, they used the bug report ID of mined issues from Jira to mine Git repository using

Pydriller4 (SPADINI et al., 2018) framework to retrieve the respective fixing commits, resulting

in the first dataset they called snapshot.

Using the list of retrieved issues IDs from Jira, they mined other datasets. The first

one was the change-log dataset, which contains all the changes made in each bug report during

the considered time period. The second set was the comment-log dataset, which contains all the

comments on each bug report posted during the same period of time. The last one was called of

commit-log, which contains a dataset with detailed information about fixing commits.

Finally, Vieira et al. (2019) performed a pre-processing in the text fields (i.e, sum-

mary, description, comments, and commit messages) of each bug report using the NLTK5, a

Python library for Natural Language Processing, to extract and store the 1,000 most frequent

words and their respective frequencies in the dataset.

Overall, Vieira et al. (2019) dataset provides information under two perspectives

1 <https://issues.apache.org/jira>
2 http://gitbox.apache.org
3 https://jira.readthedocs.io/
4 <https://github.com/ishepard/pydriller>
5 <https://www.nltk.org/>
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(static and dynamic) we explain in the following.

Static Perspective. For each bug report, 53 attributes are available, divided into data points

collected from Jira and from Git. Additionally, the attributes were also classified according

to the nature of the information they represent: general (standard information), text (textual

information), time (time-related information), versioning (system version-related information),

summation (fields that store counting information), link (bug dependencies), and source (source

code related information). The complete list of static perspective (snapshot) dataset fields can

be found in Table 1.

Dynamic Perspective. The bug reports contain attributes with immutable information such

as the CreationDate and Key (identifier). Other attributes, such as AffectsVersions and

Assignee, may not be required and may change during the lifetime of the report. The Bug

Report is constantly changing and updating until it is resolved. The dynamic dataset perspective

represents those times when the report changes, when new information is added to the report,

or a field changes, such as status or priority change; a new comment is added; a new employee

starts to be responsible for fixing the problem. The dynamic dataset is composed of three files: (i)

changelog: This dataset stores every modification that ever happened on every Jira report field.

The data fields are shown in Table 2 and they were mined from Jira; (ii) comment-log: This

dataset stores information about each comment related to its report. These data fields, mined

from Jira, are shown in Table 3; and (iii) commit-log: A number of bug reports is related to

some commits that fixes that bug. This dataset stores commit information related to each report

that has one commit. The dataset entries bring detailed information about each file modified by

bug-fix commits. The data fields are shown in Table 4.

4.2 Our Dataset

Our EH-Bug dataset was derived from Vieira et al. (2019) dataset (see Section 4.1)

considering only the Apache Hadoop project. Hadoop is an open-source framework developed by
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Table 1 – The snapshot dataset fields, with 53 attributes acquired from Jira and Git.

From Type Field

Jira (30)

General (10)

Project

Owner

Manager

Category

Key

Priority

Status

Reporter

Assignee

Components

Link (2)
InwardIssueLinks

OutwardIssueLinks

Summation (4)

NoComments

NoWatchers

NoAttachments

NoAttachedPatches

Text (3)

SummaryTopWords

DescriptionTopWords

CommentsTopWords

Time (8)

CreationDate

ResolutionDate

FirstCommentDate

LastCommentDate

FirstAttachmentDate

LastAttachmentDate

FirstAttachedPatchDate

LastAttachedPatchDate

Versioning (2)
AffectsVersions

FixVersions

Git (24)

Text (1) CommitsMessagesTopWords

Versioning (1) HasMergeCommit

Summation (3)

NoCommits

NoAuthors

NoCommitters

Time (4)

AuthorsFirstCommitDate

AuthorsLastCommitDate

CommittersFirstCommitDate

CommittersLastCommitDate

NonSrcAddFiles

NonSrcDelFiles

NonSrcModFiles

NonSrcAddLines
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Table 2 – The changelog dataset fields.

Field From Type

Jira (9)

General (6)

Project

Manager

Category

Key

Author

Field

Time (1) ChangeDate

Text (2)
From

To

Table 3 – The comment-log dataset fields.

Field From Type

Jira (7)

General (5)

Project

Manager

Category

Key

Author

Time (1) CommentDate

Text (1) Content

the Apache Software Foundation for distributed and scalable computing. This distributed system

allows the storage and processing of large datasets across clusters of computers and is designed

to detect and handle faults, providing a highly reliable service (WHITE, 2015). The Hadoop

architecture comprises four main components: (i) Core: which provides the utility package to

support other Hadoop modules; (ii) MapReduce: a programming model for storage and data

processing. Its parallel programming comes into its own in large-scale data analysis; (iii) Hadoop

Distributed Filesystem (HDFS): a distributed filesystem that runs on clusters designed for storing

very large files and providing high-throughput access; (iv) Yet Another Resource Negotiator

(YARN): a framework for job scheduling/monitoring and cluster resource management. Provides

APIs for requesting and working with cluster resources hiding the resource management details

from the user. YARN was introduced to improve the MapReduce implementation, but its

functions allowed other distributed computing projects and paradigms to be aggregated as well.

Table 5 shows the name, year of the first release, and number of bugs for each component

considering both filtering steps we explain later.
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Table 4 – The commit-log dataset fields.

Field From Type

Jira (4) General (4)

Project

Manager

Category

Key

Git (18)

Versioning (2)
CommitHash

IsMergeCommit

General (2)
Author

Committer

Time (2)
AuthorDate

CommitterDate

Text (1) CommitMessageTopWords

Source (11)

FileName

FilePath

ChangeType

IsSrcFile

IsTestFile

AddLines

DelLines

NoMethods

LoC

CyC

NoTokens

Table 5 – Target components of Hadoop project.
Category Hadoop Component 1st Release #Bugs 1st #Bugs 2nd

big-data (4)

Core 2006 2861 1105
YARN 2012 2090 1017
HDFS 2009 3214 1504

MapReduce 2009 2210 890
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Hadoop (and consequently its components) has been chosen because it has a set of

well-documented bug reports. Furthermore, Hadoop is widely used and incorporated in a large

number of companies and their products. Its commercial support is available on large scale from

companies such as EMC, IBM, Microsoft, and Oracle (WHITE, 2015).

The methodology we used to create the EH-Bug dataset is depicted in Figure 4.

In the 1st filtering, we select from the original snapshot dataset only the records related to

the four components of Hadoop, resulting in a total of 10,375 bug reports. After that, we try

to get more probably EH bugs by applying a 2nd filtering over the set of the selected bug

reports. In this filtering, we select only reported bugs that in at least one text field (summary,

description, comments, and commits message) have any EH-related keyword. We build our set

of EH keywords based on the (EBERT et al., 2015) study, which considers relevant radicals for

EH-related keywords, such as “catches”, “thrown”, and “raises” and believes that these keywords

are likely linked to EH issues. Thus, our final set of EH-related keywords is [“catch”, “caught”,

“handl”, “exception”, “throw”, “rais”, “signal”]. This 2nd filtering results in 4,516 bug reports.

Figure 4 – Dataset creation methodology flow covering all the steps to the final EH bug dataset.

All bug reports resulting from the second filtering were manually inspected and
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classified into two categories: EH bug and non-EH bug. The attribute “Type” was created in the

dataset and assigned 1.0 for the EH bug and 0.0 for the non-EH bug. This manual labeling was

performed by the first author of this study taking into account information available in all text

fields (summary, description, comments, and commits message) of each report. As a result, 943

(≈ 20%) were labeled as EH bugs and 3,573 were labeled as non-EH bugs.

After the first manual classification, we performed an evaluation to assess the clas-

sification reliability. To do that, we performed a second manual classification and calculate

the level of agreement between them. The second manual classification was performed by

another independent author of this study on a random-selected significant sample from the bug

reports under consideration. The sample size was computed considering the following statistical

constraints: confidence level of 95% and margin of error of 5%. Considering the population of

4,573 reports and the statistical constraints, the significant sample size was computed as 355 bug

reports.

We used Cohen’s Kappa coefficient (COHEN, 1960) to measure the level of agree-

ment between the two labelers. The Kappa coefficient can be computed using the formula:

(Pc−Pe)/(1−Pe). Where Pc is the proportion of units for which the labelers agreed and Pe

is the proportion of units for which agreement is expected by chance. Table 6 provides an

interpretation of Cohen’s Kappa coefficient.

Table 6 – Cohen’s kappa score interpretation.
Kappa Statistic Strength of Agreement

<0.00 Poor
[0.00,0.20] Slight
[0.21,0.40] Fair
[0.41,0.60] Moderate
[0.61,0.80] Substantial
[0.81,1.00] Almost Perfect

In our evaluation, we obtained a Cohen’s kappa score of 0.673. Thus, according to

Table 6, Cohen’s kappa score obtained (0.673) is classified as a substantial level of agreement,

being a result considered relevant to guarantee the reliability of our dataset.
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4.3 Our Dataset Analysis

In this section, we will examine our dataset to assess whether developers approach

EH bug-fixing in the same manner as they approach other bug-fixing tasks regarding priority,

fixing time, discussion, and testing. We first establish the analysis design, with the overall goal,

research questions, and methodology, followed by the results and answers to posed research

questions.

4.3.1 Goal and Research Questions

As we mentioned early, previous studies have suggested that developers often

pay less attention to exception handling (EH) design and code compared to other design and

code parts (SHAH et al., 2010; KECHAGIA; SPINELLIS, 2014; ZHANG; ELBAUM, 2014;

ASADUZZAMAN et al., 2016; GOFFI et al., 2016; CHANG; CHOI, 2016; FILHO et al., 2017).

In this analysis, we aim to investigate whether this phenomenon also occurs during bug-fixing

activity in the Hadoop project. By controlling the EH bug fields of our dataset (priority, bug-

fixing time, number of comments, and number of test files changed) with its non-EH bug fields

counterpart, we can reason how EH bug fixing can differ from the activity to fix other types of

bugs. Hence, we asked the following research questions:

RQ1. To what extent are EH bugs prioritized compared to non-EH bugs?

To gain a better understanding of whether EH bugs receive less attention than other

types of bugs, we will compare the extent to which EH bugs are assigned a lower/higher priority

and require more/less time to be resolved compared to non-EH bugs.

RQ2. To what extent are EH bugs discussed compared to non-EH bugs?

We consider the number of comments posted in bug reports as a proxy for developers’

discussions in bug-fixing tasks. Based on that, we compare the extent to which EH bugs have

more/less discussion compared to non-EH bugs.

RQ3. To what extent are EH bugs tested compared to non-EH bugs?

Finally, we use the number of test files modified in the bug-fixing commits as an

indicator of the developers’ level of commitment to testing the fixed code. Then, we use this

information to compare the extent to which EH bugs fixed are more/less tested compared to

non-EH fixed ones.
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To answer the research questions, first, we split the dataset into two groups: EH bugs

and non-EH bugs. For each specific RQ, we apply hypothesis tests to look at the difference

between both groups, considering specific dataset fields. To answer RQ1, we evaluate the priority

and the fixing time (i.e., the time between the creation and resolution of the report); RQ2, the

number of comments; and RQ3, the number of changed test files (i.e., the sum of deleted, added

and modified test files). We use the Mann-Whitney U test, value of α = 0.05, and also compute

the Cohen’s delta effect size for each result. We have formalized both null and alternative

hypotheses for each RQ.

For this analysis, we perform a few data processing steps. First, we transform the

priority fields (originally reported as words, as seen in Table 8) to ordinal variables, from 1

(lower priority) to 5 (highest priority). We also remove some reports based on two rules: i)

reports resolved in less than 15 minutes after their creation (4 reports); and ii) reports with no

associated commit (817 reports). These filter rules are based on another work (VIEIRA et al.,

2022) that uses the same dataset discussed in Section 4.1. Based on a sample of 300 bug reports,

the authors verify that 80% of the filtered-out bugs fall in one of the cases: duplicated, already

resolved by another report, created with a solution (report to document the bug only, with no

discussion purposes or bug resolution details), discovered later that was not a bug or reports

asking for documentation updates. Finally, we removed some outliers that were three standard

deviations away from the mean.

4.3.2 Results

Table 7 shows the hypothesis tests results, p-value, and effect size values for each

hypothesis established in the RQs.

4.3.2.1 RQ1. To what extent are EH bugs prioritized compared to non-EH bugs?

�

�

�

�

Summary of RQ1: The EH bugs are significantly (i) less prioritized and (ii) take more

time to be fixed than non-EH bugs.

To answer this question, we have formulated two groups of hypotheses, considering

the priority level and bug-fixing time of EH and non-EH bugs.
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Table 7 – Summary of hypothesis statement, the statistics test, and the Cliff’s Delta effect size
results. The symbols X and 7 indicate the result of the null hypothesis test (X fail to
reject, and 7 reject). The Cliff’s Delta effect size interpretation: negligible = [0,0.147),
small = [0.147,0.33), medium = [0.33,0.474), and large = [0.474,1].

MW Hypothesis p-value Effect Size

H A
0 : EH_PRIORITY = NON_EH_PRIORITY (7)

5.923×10−4

0.14993

H A
1 : EH_PRIORITY > NON_EH_PRIORITY (7) (small)

H A
2 : EH_PRIORITY < NON_EH_PRIORITY (X)

H B
0 : EH_FIXING-TIME = NON_EH_FIXING-TIME (7)

6.066×10−3

0.1238

H B
1 : EH_FIXING-TIME > NON_EH_FIXING-TIME (X) (negligible)

H B
2 : EH_FIXING-TIME < NON_EH_FIXING-TIME (7)

H C
0 : EH_COMMENTS = NON_EH_COMMENTS (X)

7.468×10−1

0.0030

H C
1 : EH_COMMENTS > NON_EH_COMMENTS (7) (negligible)

H C
2 : EH_COMMENTS < NON_EH_COMMENTS (7)

H D
0 : EH_TEST = NON_EH_TEST (X)

7.704×10−1

0.0133

H D
1 : EH_TEST > NON_EH_TEST (7) (negligible)

H D
2 : EH_TEST < NON_EH_TEST (7)

The first group of hypotheses contains the null hypothesis (H A
0 ), stating that there

is no difference in priority level between EH bugs and non-EH bugs. The alternative hypotheses,

on the other hand, assume that EH bugs have either a higher (H A
1 ) or a lower (H A

2 ) level of

priority than non-EH bugs.

The second group of hypotheses contains the null hypothesis (H B
0 ) stating that

there is no difference in bug-fixing time between EH bugs and non-EH bugs. The alternative

hypotheses, in this case, assume that EH bugs have either a higher (H B
1 ) or a lower (H B

2 )

bug-fixing time than non-EH bugs. Table 7 (two first rows) shows the statistical test results for

both groups of hypotheses.

In our dataset, a bug report can receive five different levels of priority (see Table 8):

Trivial, Minor, Major, Critical, and Blocker. Table 9 shows the priority distribution of

both groups of bugs (EH and non-EH bugs) and also the total and the percentile of each priority

group. Looking at Table 9, one can see that EH bugs have less percentage of higher priority bugs



35

Table 8 – Bug report priority classification in Jira plataform.

Priority Description

Blocker Highest priority. Indicates that this issue takes precedence over all others.

Critical Indicates that this issue is causing a problem and requires urgent attention.

Major Indicates that this issue has a significant impact.

Minor Indicates that this issue has a relatively minor impact.

Trivial Lowest priority.

(7.41%) when compared with non-EH bugs (12.12%). Additionally, it is possible to see that

EH bugs tend to have a greater percentage of lower-priority bugs when compared with non-EH

bugs. This perception is confirmed by the statistical test results that reject the null hypothesis

H A
0 , accepting the alternative hypothesis H A

2 . This indicates that not only the priority of EH

and non-EH bugs are statistically different but also that the non-EH bugs are statistically more

prioritized than EH bugs. In fact, the effect size shows that the average priority of EH bugs is

0.14993 standard deviations lower than the average priority of non-EH bugs.

Table 9 – Distribution of EH and non-EH bugs priority.

Priority
EH Bugs Non-EH Bugs

Number (%) Number (%)

Blocker 59 07.41 352 12.12

Critical 117 14.69 416 14.33

Major 482 60.55 1732 59.66

Minor 119 14.94 348 11.98

Trivial 19 02.38 55 01.89

Table 10 presents the bug-fixing time descriptive statistics for EH and non-EH

bugs, while Fig 5 shows the boxplot of bug-fixing time. When comparing the boxplots, it is

possible to see that the interquartile EH bug-fixing time is larger than the non-EH bug-fixing time.

Additionally, all statistics of EH bugs in Table 10 are greater than non-EH bugs. This perception

is confirmed by the statistical test results that reject the null hypothesis H B
0 and accept H B

1 .

This indicates that the bug-fixing times of EH and non-EH bugs are statistically different and
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non-EH bugs are statistically fixed faster than EH bugs. The effect size shows that the average

bug-fixing time of EH bugs is 0.1221 standard deviations lower than the average bug-fixing time

of non-EH bugs.

Table 10 – Descriptive statistics results for EH and non-EH bugs concerning the lag time in bug
fixing activities.

Bug Category
Fixing Time (days)

Mean Minimum Maximum Median Std. Deviation

EH 58.80 0.03 615.77 14.31 111.16

Non-EH 46.60 0.00 669.43 9.82 94.92

Figure 5 – Bug-fixing time boxplot. When comparing the boxplots, it is possible to see that the
interquartile EH bug-fixing time is larger than the non-EH bug-fixing time.
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4.3.2.2 RQ2. To what extent are EH bugs discussed compared to non-EH bugs?

�

�

�

�
Summary of RQ2: The EH bugs are not significantly less discussed than non-EH bugs.

To answer this question, we have formulated one group of hypotheses, considering

the number of comments of EH and non-EH bugs.

The set of hypotheses includes the null hypothesis (H C
0 ), which suggests that there

is no difference in the number of comments between EH and non-EH bug reports. Conversely,

the alternative hypotheses propose that EH bugs have either a higher (H C
1 ) or a lower (H C

2 )

number of comments compared to non-EH bugs.

Table 11 – Descriptive statistics results for EH and non-EH bugs concerning the number of
comments.

Bug Category
Number of Comments

Mean Minimum Maximum Median Std. Deviation

EH 20.15 4 64 17 11.36

Non-EH 20.19 2 64 17 11.26

Table 11 presents the descriptive statistics for the number of comments posted in EH

and non-EH bug reports, while Figure 6 shows the boxplot of the number of comments. Upon

comparing the boxplots and statistics, it is evident that they are very similar. This observation is

confirmed by the statistical test results that failed to reject the null hypothesis H C
0 . Therefore,

we can assume that the number of comments in EH bug reports is not statistically different from

non-EH bug reports. Additionally, the computed effect size between the two groups, EH and

non-EH bugs, is very low, 0.0030, almost negligible.

4.3.2.3 RQ3. To what extent are EH bugs tested compared to non-EH bugs?

�

�

�

�
Summary of RQ3: The EH bugs are not significantly less tested than non-EH bugs.

To answer this question, we have formulated one group of hypotheses, considering

the number of changed test files of EH and non-EH bugs.

The group of hypotheses contains the null hypothesis (H D
0 ) stating that there is no

difference in the number of changed test files between EH and non-EH bugs. The alternative
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Figure 6 – Number of comments boxplot. Upon comparing the boxplot, it is evident that they
are very similar.

hypotheses, on the other hand, assume that EH bugs have either a higher (H D
1 ) or a lower (H D

2 )

number of changed test files than non-EH bugs.

Table 12 – Descriptive statistics results for EH and non-EH bugs concerning the number of test
files changed.

Bug Category
Number of Changes

Mean Minimum Maximum Median Std. Deviation

EH 1.138 0 12 1 1.51

Non-EH 1.119 0 12 1 1.45

Table 12 presents descriptive statistics for the number of test files changed in fixing

commits of both EH and non-EH bugs. Meanwhile, Figure 7 displays a boxplot of the number

of test files changed. Upon comparing the boxplots and statistics, it is evident that they are
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very similar. This observation is confirmed by the statistical test results that failed to reject the

null hypothesis H D
0 . Therefore, we can assume that the number of test files changed in fixing

commits of EH bugs is not significantly different from non-EH bugs. The computed effect size

between the two groups, EH and non-EH bugs, is almost negligible at 0.0133.

Figure 7 – Boxplot of the number of test files changed in fixing commits. Upon comparing the
boxplots, it is evident that they are very similar.
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5 THE EH-BUG CLASSIFICATION MODEL

In this chapter, we describe the method to automatically label EH bugs using Machine

Learning and Natural Language Processing techniques, along with the obtained results.

5.1 Method Description and Goal

The manual labeling of EH bugs is time-consuming, demanding the reading, un-

derstanding, and discussion of the bug report. Despise not being a trivial task, all conclusion

around the EH bug classification is based on the report’s textual fields: summary, description,

and comments. These fields are usually presented in all bug reports, even though their “quality”

may vary (i.e., how they are detailed or faithful to the actual bug), impacting the task’s challenge.

Once we have the labeled dataset and the necessary fields to classify an EH bug,

we have a good setup to automate the EH bug classification task using machine learning. This

section describes exploring machine learning models to identify bug reports as EH ones. We

verify the feasibility of this model by testing different ML algorithms, NLP techniques, and

how complex the task is, evaluating how much textual detail is necessary to achieve satisfactory

results.

5.2 Experiment Design

All models use bug reports’ textual fields as machine learning input: the content of

summary, description, and comments. We test different machine learning and NLP techniques

to evaluate the automatic EH classification. We use four models - Support Vector Classifier

(SVC), Multinomial Naive Bayes (MNB), Linear Regression Classification (LRC), and Random

Forest Classification (RFC) - and two different NLP encoding - Bag of Words (BoW, where

the document corpus is converted in an array containing each text token/word count) and

Term Frequency-Inverse Document Frequency (TF-IDF, which weights the relevance of each

token/word in the document) (JONES, 1988). We also evaluate two different sets of words: i)

All available Words (AW, containing all text from the report’s textual fields) and ii) Exception

Handling Keywords (EHK, where the keywords are catch, caught, handl, exception, throw,

rais and signal), as defined by (EBERT et al., 2015). The idea is to verify how complex the

EH Bugs classification problem is and if it is feasible to identify them only using these specific

keywords rather than using all available words (AW). Combining all these options, we have 16
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Table 13 – Hyper-parameters Grid-search
Model Hyper-parameters Grid-Search

α: {0.00001, 0.00005, 0.0001,
Multinomial Naive Bayes 0.0005, 0.001, 0.005, 0.01, 0.05,

1.0, 5. 10,15, 20, 25, 30, 35, 40};
C: {0.001,0.005,0.01,0.05,

Logistic Regression 0.1, 0.5, 1, 5, 10 };
penalty: {‘l1’, ‘l2’};

solver: {‘liblinear’, ‘lbfgs’};
Support Vector Classifier C: [0.01, 0.05, 0.1, 0.5, 1, 5, 10]

Random Forest n_estimators: [5, 30, 50, 75,
100, 150, 200]

max_depth: [4, 5, 6, 7, 8, None]

results based on the combination of four models, two different NLP encoding, and two sets of

features (4×2×2 = 16).

We also train the models using 10-fold cross-validation and perform a grid search

for the models’ hyper-parameters. Table 13 presents the space search of each model. We

use the nomenclature of the scikit-learn package for the parameters and suggest the official

documentation1 for more details about their meaning.

5.2.1 Results

Table 14 presents the average and standard deviation values for several metrics of

the 10-fold runs. We highlight the best results of each metric in boldface.

Considering all the results, we highlight the results obtained by using BoW+LRC+AW.

This combination provides the best F1 and ROC-AUC results, with values of accuracy and recall

higher compared to the majority of results. We argue that recall is the major concern due to the

main interest being to identify the majority of EH bugs. The combination BoW+MNB+AW

provides the highest recall value, but presents one of the lowest precision values. Hence, we

highlight the combination of BoW+LRC+AW for presenting the best balance between recall and

precision compared to the other results.

1 <https://scikit-learn.org/stable/modules/classes.html>
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NLP Models Precision Recall Accuracy ROC AUC F1
(Tokens)

SVC 0.49 ± 0.1 0.56 ± 0.1 0.78 ± 0.0 0.70 ± 0.0 0.52 ± 0.0
BoW MNB 0.28 ± 0.1 0.62 ± 0.2 0.57 ± 0.1 0.59 ± 0.1 0.37 ± 0.1
(AW) LRC 0.52 ± 0.1 0.55 ± 0.1 0.79 ± 0.0 0.70 ± 0.0 0.53 ± 0.0

RFC 0.43 ± 0.1 0.20 ± 0.1 0.78 ± 0.0 0.56 ± 0.0 0.27 ± 0.1
SVC 0.60 ± 0.1 0.39 ± 0.2 0.81 ± 0.0 0.66 ± 0.1 0.45 ± 0.1

TF-IDF MNB 0.51 ± 0.4 0.04 ± 0.0 0.80 ± 0.0 0.52 ± 0.0 0.08 ± 0.1
(AW) LRC 0.65 ± 0.1 0.40 ± 0.2 0.83 ± 0.0 0.67 ± 0.1 0.47 ± 0.1

RFC 0.40 ± 0.1 0.18 ± 0.0 0.77 ± 0.0 0.55 ± 0.0 0.25 ± 0.0
SVC 0.72 ± 0.1 0.29 ± 0.1 0.83 ± 0.0 0.63 ± 0.0 0.41 ± 0.0

BoW MNB 0.53 ± 0.1 0.53 ± 0.1 0.80 ± 0.0 0.70 ± 0.1 0.52 ± 0.1
(EHK) LRC 0.70 ± 0.1 0.33 ± 0.1 0.83 ± 0.0 0.65 ± 0.0 0.45 ± 0.0

RFC 0.62 ± 0.0 0.44 ± 0.1 0.83 ± 0.0 0.68 ± 0.0 0.51 ± 0.0
SVC 0.68 ± 0.1 0.23 ± 0.1 0.82 ± 0.0 0.60 ± 0.1 0.33 ± 0.2

TF-IDF MNB 0.00 ± 0.0 0.00 ± 0.0 0.79 ± 0.0 0.50 ± 0.0 0.00 ± 0.0
(EHK) LRC 0.68 ± 0.1 0.25 ± 0.1 0.82 ± 0.0 0.61 ± 0.1 0.35 ± 0.2

RFC 0.58 ± 0.0 0.41 ± 0.1 0.81 ± 0.0 0.67 ± 0.0 0.48 ± 0.1

Table 14 – The EH models for classification results.

We also evaluate the extent to which fine-grained text embeddings help classify

EH bugs. Put simply: is the rich textual content of bug reports useful, or is focusing on a few

keywords enough? To answer this question, we evaluate the effect of using AW over EHK as

model inputs. More specifically, given a combination of a machine learning algorithm (RFC,

SVC, MNB, and LRC) and an NLP word embedding (BoW or TF-IDF), we compare the recall

performance in each test fold obtained using EHK and AW — subtracting the first from the

latter. We repeat the experiment 10 times (using 10-fold cross-validation) to compute the average

treatment effect of using AW over EHK. If using AW is consistently better than using EHK, we

should see a positive effect. Figure 8 shows that using AW over EHK usually results in a positive

effect. The only exception occurs with random forests. A plausible explanation is the higher

dimension of AW embeddings can be harmful when training individual classification trees (XU

et al., 2012).
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Figure 8 – Effect measure on recall of using AW × EHK on four models.
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6 DISCUSSION, IMPLICATIONS, AND THREATS TO VALIDITY

6.1 Discussion and Implications

In this section, we discuss our results (Section 6.1.1), their implications for both,

researchers (Section 6.1.2) and practitioners (Section 6.1.3), and threats to validity (Section 6.2).

6.1.1 Overall Discussion

The dataset allowed us to analyze how the eh-bugs are fixed compared to non-eh

bugs. As mentioned earlier, many studies report that EH is often poorly understood, usually

neglected, and insufficiently tested by developers (ASADUZZAMAN et al., 2016; GOFFI et

al., 2016; CHANG; CHOI, 2016; FILHO et al., 2017). With the dataset, we may verify if this

is also reflected in the bug-fixing process. Our results indicate that even if the eh-bugs reports

are less prioritized and demand more time to be fixed, which may indicate some negligence, the

number of comments and the number of modified test files suggests that the EH bugs are not less

understood nether less tested.

While we observed reasonable results using simple word embeddings (TF-IDF and

BoW), we believe there is still room to improve our results using more complex encoders, e.g.,

based on transformer models (DEVLIN et al., 2019). Additionally, we could weigh the loss

function to account for cases where correctly classifying some is more important than others.

These weights can, e.g., be estimates of the (monetary) cost of miss-classifying a bug report.

Methods to “handle” imbalance is a special case of this concept where the cost of getting a

sample wrong is inversely proportional to the frequency of its label. We believe, however, that

using these techniques can be miss-guiding outside the context where these costs are explicitly

defined — and decided not to use “data balancing” procedures in our experiments.

6.1.2 Implications for Researchers

Our study brings at least two implications for researchers. The first one concerns the

possibility of performing in-depth research on EH bugs using the proposed dataset to explore

other dimensions such as reproducibility, testability, and the extent to which they impact other

bugs and how they impact. The second implication is related to the first step to provide a labeled

dataset to evaluate other ML and NLP techniques for the task of EH bugs classification.
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6.1.3 Implications for Practitioners

The findings of our study show that the EH bugs take more time to be fixed them

other kinds of bugs in our dataset. On the one hand, previous studies claim that EH bugs may

cause severe consequences and must be quickly identified and fixed. On the other hand, based on

our findings, these kinds of bugs are not receiving the expected prioritization. Perhaps developers

could be taking time to identify the EH bugs. In this case, our approach to the automatic labeling

of EH bugs could help developers be more aware of EH bugs.

6.2 Threats to Validity

The threats to the validity of our study are discussed using the classification presented

by Wohlin et al. (2012). However, once we do not investigate causal relations, the internal validity

was omitted.

6.2.1 Conclusion Validity

This threat affects the ability to draw correct conclusions about the relationship

between treatment and outcome. To avoid this kind of threat, we carefully choose and employed

(i) statistical methods to analyze the EH-Bug dataset; and (ii) different ML methods and NLP

text encoding techniques to experimentally find the best combination for the task of automatic

labeling of EH bugs.

6.2.2 Construct Validity

This threat refers to the extent to which the experiment setting reflects the theory.

To avoid this threat we started from an existing dataset and employed strategies to assess the

reliability of the manual labeling process (peer review, perspectives aligning, and agreement

level analysis). Additionally, we tried to reproduce, using NLP techniques, the process used by

developers to apply a label to a bug report (i.e., look at text fields to identify what kind of bug

the report records).
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6.2.3 External Validity

This threat limits the ability to generalize the results beyond the experiment setting.

To alleviate this threat we did two actions: (i) we build a dataset from a long-lived real-world

large-scale software project; and (ii) used strategies to make the ML models aware of some

domain issues, such as data imbalance and EH-related keywords.
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7 CONCLUSION AND FUTURE WORK

Exception handling (EH) is an error-recovery technique that allows developers to

anticipate abnormal situations by implementing recovery actions. The way EH features are

implemented in major programming languages leads developers to create different flows of

control, reducing the overall debugging capability of the software, and presenting new challenges

for software testing. Studies have reported that EH is often not well understood, poorly tested,

and usually neglected. All these situations can lead to serious consequences such as system

downtime, data loss, and security risk. Therefore, to avoid serious consequences, EH bugs

must be quickly identified, prioritized, and assigned. However, this triage and labeling task

depends mainly on the knowledge, time, and convenience of the bug reporter, which can lead to

information reliability issues, requiring automation.

In this study, we empirically evaluated the idea of automatic labeling of EH bugs

using ML and NLP techniques on features extracted from bug report fields. As a result, we

obtained a hand-labeled dataset from an existing dataset containing 10 years of bug-fixing activity

from the Apache Hadoop project resulting in 4516 bug reports with 943 (about 20%) of them

labeled like EH bugs.

With the dataset of EH bugs obtained, we performed a controlled experiment com-

bining four ML classifiers with two NLP strategies to extract features from the bug report text

(Bag of Words and TF -IDF) and also evaluated whether the use of Bag of Words and TF-IDF

only on keywords related to exception handling extracted from textual fields could improve the

performance of ML models.

Our results show that the combination of NLP and ML techniques achieved ROC-

AUC scores of up to 0.70 and recall ranging from 0.50 up to 0.62 for the automatic labeling

of EH bugs. Additionally, considering only keywords related to EH as inputs, the ML models’

performance was worst compared to using all words from the textual fields.

In future work, we plan to investigate how to build a model to perform the task of

automatic maintainer assignment (i.e., who is the best fit to fix this EH bug?), evaluate both

strategies (automatic labeling and assigning) in real settings and test different word embedding

to improve the ML results.

The proposed dataset and all the code that support the findings of this study are

available in Figshare with the identifier <https://doi.org/10.6084/m9.figshare.22735124.v1>.
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