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ABSTRACT

Edge-attributed graphs are a particular class of graphs designed to represent networks whose

edge content indicates a relationship between two nodes. The study of edge-attributed graphs

finds applications in diverse fields, such as anomaly detection, mobility analysis, and community

search. Since edge-attributed graphs usually contain sensitive information, preserving privacy

when releasing this data type for graph analytics becomes an important issue. In this context,

local differential privacy (LDP) has emerged as a robust definition for data release under solid

privacy guarantees. However, existing graph LDP techniques in the literature primarily focus

on traditional graph structures without considering the nuanced attributes associated with edges

in attributed graphs. This paper introduces PEG, a novel approach designed to release edge-

attributed graphs with local differential privacy guarantees. Combining partitioning and clustering

techniques enables more effective noise distribution among similar nodes, which preserves the

inherent structure and relationships within the released graph. Extensive experiments on real-

world datasets show that PEG can effectively release useful and private edge-attributed graphs,

enabling subsequent computation of various graph analysis metrics with high utility, including

applications in community detection.

Palavras-chave: local differential privacy; edge-attributed graphs; graph analytics.



RESUMO

Grafos com atributos nas arestas são uma classe particular de grafos projetados para representar

redes nas quais o conteúdo das arestas indica um tipo de relacionamento entre dois nós. O estudo

de grafos com atributos nas arestas encontra aplicações em diversos campos, como detecção de

anomalias, análise de mobilidade e busca de comunidades. No entanto, como os grafos com

atributos nas arestas geralmente contêm informações sensíveis, a preservação da privacidade ao

liberar esse tipo de dado para análise de grafos torna-se uma questão importante. Nesse contexto,

a privacidade diferencial local (PDL) emergiu como uma definição robusta para a liberação de

dados sob garantias sólidas de privacidade. No entanto, as técnicas existentes de PDL para grafos

na literatura se concentram principalmente em estruturas de grafos tradicionais, sem considerar

os atributos associados às arestas em grafos com atributos. Neste trabalho, introduzimos o PEG,

uma abordagem inovadora projetada para liberar grafos com atributos nas arestas com garantias

de privacidade diferencial local. Combinando técnicas de particionamento e agrupamento,

possibilitamos uma distribuição mais eficaz do ruído entre nós similares, preservando a estrutura

e os relacionamentos inerentes dentro do grafo liberado. Experimentos extensivos em conjuntos

de dados do mundo real mostram que o PEG pode liberar de forma eficaz grafos com atributos

nas arestas que são úteis e privados, permitindo a subsequente computação de várias métricas de

análise de grafos com alta utilidade, incluindo aplicações na detecção de comunidades.

Keywords: privacidade diferencial local; grafos com atributos nas arestas; análise de grafos.
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1 INTRODUCTION

Graphs, also known as networks, are fundamental structures that represent entities

and relationships between the entities. A graph consists of nodes (or vertices) and edges (or

links) that connect pairs of nodes. They can be classified into several types based on their

properties and the nature of the relationships. For instance, in undirected graphs, edges have

no orientation, meaning the relationship is bidirectional. Conversely, edges have a direction

in directed graphs (digraphs), indicating a one-way relationship. Furthermore, graphs can be

weighted or unweighted, depending on whether the edges carry numerical values (weights)

representing the relationships’ strength or capacity. Graphs are used extensively in various fields

due to their ability to model complex interactions and dependencies (BERGE, 2001).

Edge-attributed graphs emerge as a special class of graphs designed to represent

networks in which the edge content indicates a type of relationship between two nodes. Edge-

attributed graphs have been widely adopted in many fields to explain why and how users make

connections to each other. These graphs enable the modeling of complex relationships and

interactions in various domains, providing a richer representation of the underlying data than tra-

ditional graphs. Examples include communication networks (WANG et al., 2013), co-authorship

networks (ALSMADI; ALHAMI, 2015), protein-protein networks (HU; CHAN, 2013), and

heterogeneous information networks (SHI et al., 2017).

The study of edge-attributed graphs has become a thriving research area, finding

applications in many fields. For instance, edge-attributed graphs are employed in anomaly

detection to identify unusual patterns and deviations within network data, which can indicate

potential security breaches or system malfunctions (SHAH et al., 2016). In mobility analysis,

these graphs help to understand and predict movement patterns and behaviors in transportation

networks and urban planning (KAYTOUE et al., 2017). Finally, in community search, edge-

attributed graphs enable the identification and exploration of connected groups or communities

within larger networks, facilitating a better understanding of social structures and interactions (LI

et al., 2023).

Figure 1 illustrates an edge-attributed graph �, where the edge labels represent the

topics of exchanged emails. In this example, graph � comprises ten nodes and twelve edges, with

two distinct labels for the topics. The label ‘‘AM’’ indicates administrative matters, referring

to messages related to managing and organizing business operations. On the other hand, the

label ‘‘WR’’ denotes work-related topics, including messages such as project updates, meeting
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Figure 1 – An edge-attributed � where nodes represent users and edges are emails exchanged
among them. The topic of the emails represents the edge attribute. ‘‘AM’’ denotes

administrative matters, and ‘‘WR’’ depicts work-related topics.

Source: Elaborated by the author.

requests, collaboration inquiries, and task assignments.

Due to the sensitive nature of the information found in edge-attributed graphs, re-

leasing such data for analysis and statistical purposes to machine learning practitioners and

data scientists without adequate privacy guarantees could put individuals’ privacy at risk. For

instance, in Figure 1, let’s say an adversary knows that user ‘‘g’’ only sends administrative

matters (topic AM) to user ‘‘a’’. The adversary can infer that user ‘‘g’’ likely holds a position of

authority or responsibility within the organization, particularly concerning administrative tasks

or decision-making processes. This inference could lead to targeted attacks on user ‘‘g’’ for

private information. Additionally, if other edges in the graph reveal patterns of communication

or collaboration, an adversary might deduce further details about the organizational structure and

relationships between users. Consequently, it is important to implement robust privacy-preserving

techniques when sharing such sensitive graph data to prevent unintended disclosures and protect

individuals’ privacy.

In this context, differential privacy (DP) (DWORK, 2006) has emerged as a robust

privacy definition that has become the standard for data release under strong privacy guarantees.

The main idea behind DP is that an analysis is determined by a randomized algorithm, also

known as a mechanism, that computes private information and returns a randomized answer

sampled from a probability distribution. This ensures that the mechanism’s output does not

significantly change when any single individual’s data is added or removed from the dataset.

DP achieves this by introducing a controlled amount of randomness, which effectively masks

the contribution of any individual data point, making it difficult for an attacker to infer specific

information about individuals. This trade-off between accuracy and privacy is carefully balanced
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through parameters that dictate the level of noise added to the data.

In the literature, the primary DP setups are the global DP (DWORK, 2006) and the

local DP (LDP) (DUCHI et al., 2013). The key difference between them consists in the nature

of the data curator. In the global setting, it is assumed that a trusted data curator exists who has

indiscriminate access to the complete data and is responsible for releasing it after a differentially

private procedure. In other words, the data curator is the entity responsible for ensuring privacy.

Conversely, in the local setting, the data curator is assumed to be untrustworthy. In this case,

each user is responsible for applying privacy to their own data before sending it to the data

curator. Compared to the global DP, local DP has a stronger notion of privacy since it keeps the

individuals’ sensitive data private, even from untrustworthy data curators.

The standard DP models (global and local) have been initially defined to attend

to tabular data. However, several studies have been developed over the years in the field of

the differentially private release of graph data (BRITO et al., 2024). Within the graph scope

and following the definition of neighboring graphs, there are two main DP settings: the edge

differential privacy (edge-DP) (HAY et al., 2009) and the node differential privacy (node-DP)

(KASIVISWANATHAN et al., 2013). In the DP model, two datasets are neighbors if they differ

in at most one single record. But, in the graph context, the edge-DP model states that two graphs

are neighbors if they differ in at most one single edge. In contrast, the node-DP model states that

two graphs are neighbors if they differ in exactly one node and all its incident edges. However, for

attributed graphs, neither edge-DP nor node-DP privacy models are adequate since they ignore

the presence of attributes in the edges.

Many efforts have already been made to protect individuals’ privacy in edge-weighted

graphs, i.e., graphs that contain numerical attributes on their edges (SEALFON, 2016; PINOT

et al., 2018; WANG; LONG, 2019; CHEN et al., 2022; FAN; LI, 2022; BRITO et al., 2023).

However, these works often face limitations when dealing with non-numeric attributes. Some

studies (JORGENSEN et al., 2016; CHEN et al., 2020; WEI et al., 2020; ZHOU et al., 2022)

have applied DP in node-attributed graphs, focusing on methods that consider node attributes

(instead of edge attributes) for privacy-preserving data releases. On the other hand, Lie et al.

(LIU et al., 2020) proposes a method that specifically addresses local differential privacy for

edge-attributed graphs with non-numerical attributes. However, it only provides privacy for a

few statistics rather than releasing the entire attributed graph for comprehensive graph analytics.
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1.1 Problem Statement

Given a network, represented as an edge-attributed graph, connected through edges

that store information about the relationship of the related nodes, our problem is defined as ‘‘how

to privately release a meaningful edge-attributed graph while preserving as much of the original

graph structure as possible?’’.

Consider an undirected edge-attributed graph � = (+, �, -) representing a network,

where + is the set of nodes (or users), � is the set of edges that means the relationships between

nodes from+ , and - is the set of the possible edge attributes. We aim to release an edge-attributed

graph �′ = (+, �′, -), such that �′ denotes a perturbed version of �, which is composed of �′,

a perturbed version of � , ensuring local DP guarantees and maintaining as many characteristics

of the original graph structure as possible.

In this problem, we have two main characteristics: (i) the number of nodes is publicly

known, and (ii) the edges that represent the connections between nodes are attributed, i.e., store

some information about its relationship. Then, the information that must be protected is the

edges and their attributes. In terms of utility, many useful metrics, such as the node degree

distribution, number of edges, edge attribute proportions, graph similarity, and community

similarity, should perform in the private graph similarly to the original graph. In particular, we

measure the Kolmogorov–Smirnov divergence, the mean absolute error (MAE), the mean relative

error (MRE), the Jaccard similarity, and a maximization objective function to evaluate the error

introduced by our approach.

1.2 Hypothesis

Given an edge-attribute graph, there is an LDP approach that is able to publish a

perturbed version of this graph without adding an amount of noise that makes the published data

useless. Moreover, there are protocols associated with this DP setting that have low variance, i.e.,

they achieve better data utility levels.

1.3 Contributions

To address the mentioned concerns, we propose PEG (Privacy for Edge-attributed

Graphs), an approach for releasing entire edge-attributed graphs under local differential privacy

guarantees. In summary, the main contributions of this work are as follows:
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1. We first introduce the Randomized Attribute Neighbor List (RANL), a novel data structure

for encoding edge-attribute graphs in the LDP setting.

2. We then present a new method that combines partitioning and clustering techniques to

achieve more effective noise distribution among similar nodes, which improves data utility

when applying RANL data structure.

3. We also improve the accuracy of the released graph by developing a post-processing

technique to guarantee graph consistency.

4. Finally, we conduct an extensive experimental analysis on four real-world edge-attributed

graphs to evaluate the performance of PEG. We show that our approach achieves high

utility for a variety of graph analysis metrics on the released graph, including applications

in community detection.

The contributions of this thesis resulted in the submission of the following paper,

which is still under revision:

- MENDONÇA, A. L. C.; BRITO, F. T.; MACHADO, J. C. PEG: Local Differential

Privacy for Edge-Labeled Graphs. 2024. Submitted for publication to the International

Conference on Extending Database Technology (EDBT, 2025).

Additionally, we highlight side contributions, which were developed and disseminated

at various conferences throughout this Ph.D. These contributions significantly broadened the

scope and impact of our research:

- MENDONÇA, A. L.; BRITO, F. T.; MACHADO, J. C. Análise de dados privada em redes

sociais. Jornadas de Atualização em Informática, 2024.

- BRITO, F. T.; MENDONÇA, A. L. C.; MACHADO, J. C. A differentially private guide for

graph analytics. In: Proceedings 27th International Conference on Extending Database

Technology (EDBT). Paestum, Italy: OpenProceedings.org, 2024. p. 850–853.

- MENDONÇA, A. L.; BRITO, F. T.; MACHADO, J. C. Privacy-preserving techniques

for social network analysis. In: Anais Estendidos do XXXVIII Simpósio Brasileiro de

Bancos de Dados. Belo Horizonte, MG, Brazil: SBC, 2023. p. 174–178.

- VIDAL, I. C.; MENDONÇA, A. L.; ROUSSEAU, F.; MACHADO, J. de C. Protecting:

An application of local differential privacy for iot at the edge in smart home scenarios.

In: XXXVIII Brazilian Symposium on Computer Networks and Distributed Systems

(SBRC). Rio de Janeiro, RJ, Brazil: SBC, 2020. p. 547–560.

- NETO, E. R. D.; MACHADO, J. C.; MENDONÇA, A. L. Privlbs: Preserving privacy in
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location based services. Journal of Information and Data Management, v. 10, n. 2, p.

81–96, 2019.

- NETO, E. R. D.; MENDONÇA, A. L. C.; BRITO, F. T.; MACHADO, J. C. Privlbs: uma

abordagem para preservação de privacidade de dados em serviços baseados em localização.

In: XXXIII Simpósio Brasileiro de Banco de Dados (SBBD). Rio de Janeiro, RJ, Brazil:

SBC, 2018. p. 109–120.

1.4 Organization

The rest of this document is described as follows. Chapter 2 presents an overview of

several concepts to help understand this work, such as some graph concepts and the properties

and settings of DP. Chapter 3 presents some studies under the edge-DP model and its variations to

address the problem of releasing general graphs and attributed graphs under DP guarantees. We

then detail the RANL data structure and present our approach PEG in Chapter 4. Furthermore,

Chapter 5 shows the experimental results. Finally, Chapter 6 concludes our work by presenting

the conclusion and future research directions.
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2 THEORETICAL BACKGROUND

In this chapter, we describe the main concepts and components of this thesis, such

as differential privacy, including its variation for graphs, along with its key principles. We also

present a few notions of graph theory and graph analytics.

2.1 Graph Theory

We start by presenting important aspects of understanding the graph data structure,

which includes the notion of edge-weighted graphs, the notion of edge-weighted graphs, and

attributed graphs, which consist of graph variations such that additional information may be

present in the edges or nodes.

2.1.1 Graphs

Graphs are mathematical representations consisting of vertices (nodes) connected by

edges that can have attributes like direction, weight, or labels, which can be applied in several

applications, such as social network analysis.

Let� = (+, �) be an undirected graph composed of a set of nodes+ and a set of edges

� representing the relationships between nodes. The set of nodes is defined as + = {E1, . . . , E=},

such as |+ | = =. The set of edges is defined as � ⊆ + ×+ = {48, 9 , . . . , 4>,?}, where 48, 9 refers to

an undirected edge between nodes E8 and E 9 ∈ + (48, 9 ≡ 4 9 ,8), and |� | = <.

Figure 2 presents an example of a graph� = (+, �) with 4 nodes (= = 4) and 4 edges

(< = 4), and its corresponding sets of vertices and edges, composed of + = {E0, E1, E2, E3} and

� = {40,1, 41,2, 41,3 , 42,3}, respectively.

Figure 2 – An example of a graph � = (+, �) with = = 4 and < = 4.
a

b

c d

Source: Elaborated by the author.
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2.1.2 Edge-Weighted Graphs

Edge-weighted graphs are graphs in which numerical values, i.e., weights, are as-

signed to the edges, representing attributes such as distance, cost, or capacity. This kind of

graph is widely used in applications like network routing, shortest path algorithms, and resource

optimization. We denote an edge-weighted graph as � = (+, �, F), where + is the set of nodes,

� is the set of edges, and F is a weight function F that maps each edge in � to a real number.

The set of nodes is defined as + = {E1, . . . , E=}, such as |+ | = =. The set of edges is defined

as � ⊆ + × + = {48, 9 , . . . , 4>,?}, where 48, 9 refers to an undirected edge between nodes E8 and

E 9 ∈ + (48, 9 ≡ 4 9 ,8), and |� | = <. The weight function F : � → R assigns a real number to each

edge in � , such that F8, 9 denotes the weight of the edge 48, 9 ∈ � .

Figure 3 presents an example of a graph � = (+, �, F) with 4 nodes (= = 4) and 4

edges (< = 4), and its corresponding sets of vertices and edges, composed of + = {E0, E1, E2, E3}

and � = {40,1, 41,2, 41,3 , 42,3}, respectively. Additionally, the edge weights are given by F0,1 =

4, F1,2 = 3, F1,3 = 4, and F2,3 = 1.

Figure 3 – An example of an edge-weighted graph � = (+, �, F) with = = 4 and < = 4, where
the numerical values near edges represent the edge weights.

a

b

c d

4

3 4

1
Source: Elaborated by the author.

2.1.3 Edge-Attributed Graphs

Edge-attributed graphs are a specific type of graph where non-numeric attributes

are assigned to the edges. These graphs can model various types of relationships between

nodes, where each edge belongs to a category. We denote an undirected edge-attributed graph as

� = (+, �, -), where + is the set of nodes, � is the set of edges, and - is the set of attributes

associated with each edge in � . The set of nodes is defined as + = {E1, . . . , E=}, such as |+ | = =.

The set of edge attributes is defined as - = {G1, . . . , GC}, and C is the number of possible edge

attributes. The set of edges is defined as � ⊆ + × + × - = {48, 9 ,: , . . . , 4>,?,@}, where 48, 9 ,:
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refers to an undirected edge between nodes E8 and E 9 ∈ + associated with the attribute G: ∈ -

(48, 9 ,: ≡ 4 9 ,8,: ), and |� | = <. Additionally, in this work, we consider that � holds the multigraph

property, meaning that for any nodes E8, E 9 ∈ + , there may exist multiple edges {48, 9 ,: , . . . 48, 9 ,;}

with G: , G; ∈ - , such that G: ≠ G; for any G: , G; ∈ - .

Figure 1 presents an example of an edge-attributed graph � = (+, �, -) composed

of 10 nodes (= = 10) and 13 edges (< = 13), where nodes represent users and edges are emails

exchanged among them. The topic of the emails represents the edge attribute. ‘‘AM’’ denotes

administrative matters, and ‘‘WR’’ depicts work-related topics.

2.1.4 Node-Attributed Graphs

On the other hand, node-attributed graphs are graphs in which attributes are associated

with the nodes. Nodes-attribute graphs have the capacity to characterize the nodes, being

extremely useful for prediction tasks, especially by the presence of the homophily property, i.e.,

similar nodes may be more likely to attach to each other based on their attributes (PEROZZI,

2016).

We denote an undirected node-attribute graph as � = (+, �, -), where + is the set

of nodes, � is the set of edges, and - is the set of attributes associated with each node in + .

The set of nodes is defined as + = {E1, . . . , E=}, such that |+ | = =. The set of edges is defined

as � ⊆ + × + = {48, 9 , . . . , 4>,?}, where 48, 9 refers to an undirected edge between nodes E8 and

E 9 ∈ + (48, 9 ≡ 4 9 ,8), and |� | = <. The set of node attributes defined as - = {G1, ..., G=} is the

set of F-dimensional node attribute vectors, where F is the number of attributes and the vector

G8 = (G8,1, ..., G8,F) contains the attributes associated with the node E8 ∈ + .

Figure 4 presents an example of a node-attributed graph � = (+, �, -) com-

posed of 7 nodes (= = 7) and 11 edges (< = 11), with 3 attributes (F = 3): gender, age,

and height, associated with the nodes (or users) and the edges representing the relationships

among users. For example, the attribute vectors of the users E0 and E1 are given by G0 =

{gender: M, age: 56, height: 175 cm} and G1 = {gender: F, age: 26, height: 158 cm}, respec-

tively.
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Figure 4 – An example of a node-attributed graph � = (+, �, -), where 3 attributes (gender,
age, and height) are associated with the nodes (i.e., users) and edges represent the

relationships among users.

Source: Elaborated by the author.

2.2 Graph Analytics

In the digital age, data has transformed into important assets for organizations, mainly

due to its high value and importance. Currently, large volumes of data of various kinds are

available and have become great strategic allies for companies in their decision-making processes

through the analyses performed. In short, data analysis consists of the process of inspecting,

treating, transforming, andmodeling data to discover useful information, insights, and conclusions

that assist in the decision-making of companies and organizations.

Commonly, data analyses occur on tabular data, represented through records, which

limits analyses on more complex structures, such as graphs. Unlike analyses on tabular data,

analyses on graphs prioritize the relationships between the nodes and their respective relationships

or connections. Due to the inherent characteristics of graphs, various statistics can be extracted

from analyses on them. The most common statistics include the degrees of nodes, along with their

respective degree distributions, centrality metrics, and other pertinent measures. Additionally,

subgraph counts, as well as various distance metrics, are also examples of metrics frequently

examined in graph analysis.

2.2.1 Subgraph Counts

Subgraph analysis plays a crucial role in understanding networks, providing insights

into the structure and underlying patterns of the interactions between nodes (RIBEIRO et al.,

2022). Among the different types of subgraphs, triangles, stars, and cliques stand out, each

providing relevant information about the connectivity and structure of the network. Figure 5
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exemplifies four different types of subgraphs that can be present in a graph: triangles, :-stars,

:-cliques, and :-triangles.

Figure 5 – Examples of subgraphs that can be present in a graph: triangles, 3-stars, 4-cliques,
and 2-triangles.

Source: Elaborated by the author.

Triangles are subgraphs composed of three interconnected nodes forming a triangular

structure. Counting triangles in a graph is important for identifying densely connected clusters

of three individuals. The occurrence of triangles indicates local proximity relationships, which

can suggest the existence of communities within the network.

On the other hand, a :-star consists of a central node connected to : peripheral

nodes, forming a star-like structure. This concept is particularly valuable for identifying and

characterizing the most influential nodes and interaction patterns within a network. Additionally,

the distribution of :-stars helps to understand the dynamics of graphs. In communication

networks, for example, a central node with many connections can act as a communication hub,

where information is aggregated and distributed.

A :-clique is a complete subgraph composed of : nodes, where each pair of nodes

is directly connected by an edge. Counting :-cliques is essential for identifying cohesive and

highly connected groups in the graph, such as close friend groups or collaborative work teams.

The existence of :-cliques suggests that the members of these subgraphs share common interests

or have a high frequency of communication.

Finally, :-triangles are an extension of the concept of triangles in graphs. Specifically,

this subgraph is formed by a set of : triangles that share a common vertex. This structure is used

to identify areas of high interconnectivity in a network where multiple relationships converge on

a single node. The analysis of :-triangles is particularly useful for identifying central or highly

influential nodes in the network. In scientific collaboration networks, for example, a central node

with many :-triangles may represent a researcher who collaborates with various distinct groups,

serving as an intersection point between different research communities.
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2.2.2 Histograms

Histograms are graphical representations that illustrate the distribution of a dataset.

Composed of rectangular bars, each bar represents the frequency of data within specific intervals,

called bins. The height of the bars corresponds to the number of occurrences of the data in each

interval. By visually representing the distribution of certain characteristics of a graph, histograms

allow a clear understanding of how connectivity is structured within the network. They help to

identify recurring patterns and trends that may be difficult to see (COOK; HOLDER, 2006). For

example, a histogram of the degree distribution of a graph reveals how connections are distributed

among the nodes, highlighting those that are highly connected (hubs) and indicating whether

the network follows a power-law distribution or is more homogeneous. Another example would

be a histogram of edge weights in edge-weighted graphs, where it is possible to identify which

edges carry greater relevance or influence in the network’s dynamics. In this scenario, edges with

consistently high weights, evidenced by peaks in the histogram, suggest critical connections or

robust relationships between nodes. Figure 6 illustrates two histograms, one of node degrees and

another of edge weights, from an edge-weighted graph.

Additionally, histograms are useful for examining the structural properties of graphs,

such as the distribution of clustering coefficients, which measure the tendency of nodes to form

clusters. A histogram of coefficients can show whether the network has well-defined communities

or if it is more dispersed. Another critical aspect of histograms is their ability to detect anomalies.

By comparing histograms from different periods or subsets of the network, it is possible to identify

sudden changes or unusual patterns that may indicate anomalous behaviors, such as cyberattacks,

system failures, or even the unexpected formation of new social groups. For example, a significant

change in the degree distribution might suggest the massive addition or removal of nodes or

edges, pointing to extraordinary events in the network.

2.2.3 Shortest Paths and Distances

A shortest path between two nodes in a graph is defined as the sequence of edges that

connects these two nodes with the smallest sum of edges or weights. If the graph is unweighted,

the shortest path is simply the path with the fewest number of edges. In edge-weighted graphs,

the shortest path is the one that minimizes the sum of the edge weights along the path (CORMEN

et al., 2022). The definition of a shortest path is presented below:
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Figure 6 – Histograms of node degrees and edge weights from a given edge-weighted graph.

Source: Elaborated by the author.

Definition 1. (Shortest Path (CORMEN et al., 2022)). Let � = (+, �) be a graph, where + is

the set of vertices and � is the set of edges, each edge (D, E) ∈ + having a weight F(D, E) ≥ 0.

Given a source vertex B ∈ + and a target vertex C ∈ + , the shortest path from B to C is a path

% = {B, E1, . . . , C} such that the sum of the weights of the edges in % is minimized. Formally, the

shortest path minimizes the function F(%) = ∑:−1
8=0 F(E8, E8+1), where % = {E0 = B, E1, . . . , E: =

C} is the sequence of vertices along the path and F(E8, E8+1) is the weight of the edge connecting

E8 and E8+1.

Figure 7 illustrates a network with the shortest path in an unweighted graph (Figure

7a) and in an edge-weighted graph (Figure 7b).

Another important metric involving distances in graphs is the average shortest path
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Figure 7 – Example of shortest paths between the nodes 0 and 5 .
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(a) Unweighted graph.
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(b) Edge-weighted graph.

Source: Elaborated by the author.

length. It is calculated as follows: for each shortest path between all pairs of nodes, all distances

are summed, and this value is divided by the total number of pairs of nodes. In networks, a low

average shortest path length suggests a more cohesive network where individuals are closer to

each other, facilitating the dissemination of information, influences, and interactions. On the other

hand, a high average shortest path length indicates a more dispersed network, where the distances

between individuals are greater. Therefore, this can make it difficult to spread information.

Finally, the diameter metric in a graph is another important measure used to charac-

terize the maximum distance between vertices. This metric measures the longest distance found

when traversing all pairs of vertices in the graph, representing the longest distance that must be

traveled to connect any pair of nodes in the network. Diameters in social networks are related to

the concept of ‘‘six degrees of separation’’ (SAMOYLENKO et al., 2023), which suggests that

any person in the world can be connected to any other person through at most six intermediaries.

2.3 Differential Privacy

Differential privacy (DP) (DWORK, 2006) is a robust privacy definition that has

become the standard for data release under strong privacy guarantees. Much is attributed to

the existing limitations in more traditional or synthetic privacy models, such as :-anonymity,

;-diversity, C-closeness, X-presence, among others, which are not robust enough to provide a

desirable level of privacy to the individuals (BRITO; MACHADO, 2017).

2.3.1 Intuition and Definition

In the original definition of differential privacy, private data is viewed as a collection

of records, where each record corresponds to an individual. Essentially, differential privacy

ensures individual privacy protection by injecting noise into the results of queries applied to
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individuals’ data, that is, by modifying the original data through the introduction of randomness

(DWORK et al., 2006). The fundamental premise of differential privacy is that the outcome

of any query is almost equally likely to occur, regardless of the presence or absence of any

individual in the dataset. It is important to mention that differential privacy is not a simple tool

but a paradigm capable of quantifying and managing the risks of privacy breaches. Therefore,

differential privacy can be applied from simple statistical estimates to machine learning.

Let& be a query to be performed on a dataset �, which contains sensitive information

about a group of individuals. DP is defined through a randomized algorithm ", also called a

mechanism, which is executed on �. DP ensures that the output of " (�) should be similar

to the output of &(�), i.e., the goal of DP is to make the output of " (�) as close as possible

to the output of &(�) to ensure data utility while simultaneously preserving the privacy of all

individuals in the dataset.

To preserve the privacy of all individuals through a mechanism " , DP establishes

the notion of neighboring datasets. Two datasets � and �′ are said to be neighbors if they differ

by at most one record, denoted as � ∼ �′. �′ can be obtained from � by adding or removing

a single record. Figure 8 presents an example of two neighboring datasets � and �′, initially

composed of 5 records, corresponding to users labeled from ‘‘�’’ to ‘‘�’’. Note that the dataset

�′ was obtained after removing the record of the user ‘‘�’’ from the dataset �. DP ensures that

regardless of whether the input is � or �′, the probability of a given output occurring from " (�)

or " (�′) is almost the same. This property is denoted as the indistinguishability of neighboring

datasets. In other words, DP states that any query response occurs with a similar probability,

regardless of the presence or absence of any individual in the dataset.

Figure 8 – Example of two neighboring datasets � and �′ after removing the record of user �
from �.

Source: Elaborated by the author.

Before presenting the definition of DP, consider that Range(") consists of all possible

outputs of " , that is, its output domain. For example, if " calculates the number of records in a
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dataset, then Range(") is equal to the set of non-negative integers. Finally, the definition of DP

is presented below:

Definition 2. (Y-Differential Privacy (DWORK, 2006)). A mechanism " satisfies Y-differential

privacy if, for any two neighboring datasets � and �′, and for any possible output$ ⊆ Range("),

Pr[" (�) = $] ≤ exp(Y) × Pr[" (�′) = $], (2.1)

where Pr[·] denotes the probability of the mechanismM to output $.

2.3.2 Privacy Budget

The parameter Y that appears in Definition 2 is called the privacy budget. This

parameter is responsible for controlling the differences between the probabilities of the outputs

of a mechanism that is executed on two neighboring datasets, i.e., the privacy budget ensures that

these differences are limited to at most Y.

The privacy budget consists of a positive real number that controls the level of

privacy that a mechanism " provides. A smaller Y offers stronger privacy guarantees, with more

indistinguishable probability distributions, but lower data utility since more noise must be added

to the result. Similarly, a larger Y provides weaker privacy guarantees but higher data utility.

Defining the appropriate value of Y for an application is a very challenging task. This

task requires the effort of various parties, such as privacy experts, stakeholders, and data owners

(i.e., individuals who share their data), to provide continuous feedback to ensure individuals’

privacy while also releasing meaningful information. However, the privacy budget typically

assumes small values, making the mechanism’s output probabilities almost the same, regardless

of whether the input to the mechanism is � or �′. Several studies have already addressed the

problem of determining a desirable value for Y (HSU et al., 2014; LI et al., 2016). Nonetheless,

it has been widely argued that 0.1 ≤ Y ≤ 1 provides strong privacy guarantees and acceptable

levels of utility, while Y ≥ 5 is acceptable only in some specific applications (BRITO, 2023).

2.3.3 Sensitivity

As previously mentioned, DP can be achieved by adding an appropriate amount of

noise to the query results. However, adding excessive noise can drastically reduce the data utility,

reducing the accuracy of analyses, while an insufficient amount of noise may not provide adequate
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privacy guarantees. Therefore, the noise added to a query & depends on the global sensitivity of

& (DWORK et al., 2006). The definition of global sensitivity is given below:

Definition 3. (Global Sensitivity (DWORK et al., 2006)). The global sensitivity of a query & is

the maximum ;1 distance between the outputs of & on any two neighboring datasets � and �′,

given by

Δ& = max
�,�′
| |&(�) −&(�′) | |1. (2.2)

The global sensitivity, also simply called sensitivity, measures the maximum impact

on the query results from adding or removing any record in the dataset. The sensitivity serves as

an essential parameter for determining the appropriate amount of noise to be added to the query.

It is important to mention that sensitivity is related only to the query function and is independent

of the dataset. For example, a query with low sensitivity requires only a small amount of noise to

be added to the query results to mask the impact of adding or removing a record. On the other

hand, when the sensitivity is high, a significant amount of noise must be added to the query

results to ensure the privacy of individuals, compromising the data utility.

For some queries, the sensitivity is straightforward to calculate. For example, the

sensitivity of counting queries is 1 since adding or removing a record in the dataset will affect

the query results by, at most, 1. On the other hand, the sensitivity of more complex queries, such

as maximum and sum queries, is not as simple to calculate as for counting queries.

For example, consider a query that calculates the sum of the weights of people in a

given dataset. The inclusion of a new record in the dataset will increase the query result by an

amount equivalent to the weight of the individual added. Therefore, the sensitivity will depend

on the weight value of the individual added to the dataset. Note that the same reasoning applies

to the removal of a record from the dataset. Then, we desire to assign a specific value to represent

the sensitivity of this query, as the query should be independent of the dataset. For the specific

domain of weights, there is a known rational upper bound for the maximum weight that an

individual can have. According to (ALLARDYCE, 2012), Jon Brower Minnoch was the heaviest

known person ever documented, weighing an impressive 635 kilograms. Thus, it is plausible to

assign a value of 635 to the sensitivity of this query. However, this does not serve as definitive

proof, as it is impossible to guarantee that another person will not weigh 635 kilograms or more in

the future. Therefore, in some domains, determining a reasonable sensitivity can be a challenging

task (NEAR; ABUAH, 2021).
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2.3.4 Differential Privacy Mechanisms

Mechanisms are algorithms capable of ensuring the properties of DP. For numeri-

cal queries, DP can be achieved through various mechanisms, such as the Laplace mechanism

(DWORK, 2006) and the geometric mechanism (GHOSH et al., 2009). Although both mech-

anisms are designed for numerical queries, they differ in the type of noise added to the query

result. The Laplace mechanism is recommended for queries that generate real values, as this

mechanism produces noise values ∈ R. In turn, the geometric mechanism is recommended for

queries that generate integer values, as this mechanism produces noise values ∈ Z. However, not

all queries generate numerical values. For such queries, also known as categorical queries, the

exponential mechanism (MCSHERRY; TALWAR, 2007) is more suitable.

2.3.4.1 Laplace Mechanism

As briefly mentioned earlier, the Laplace mechanism adds real-valued noise to the

query results. As the name suggests, the mechanism relies on the Laplace distribution to generate

random values, which will be added to the query result. Let G be the noise added to the result of

a query &, the Laplace distribution is defined as follows:

Definition 4. (Laplace Distribution). The Laplace distribution with mean 0 and scale 1 is the

distribution with probability density function

!0?(G |1) = 1
21
· exp(− |G |

1
). (2.3)

Consider !0?(1) as the Laplace distribution with scale 1, & as a query, and � as a

dataset. The Laplace mechanism works by calculating the result of &(�) and perturbing this

result by adding noise generated from the Laplace distribution. The scale 1 of the generated noise

is calibrated through the relation between the sensitivity of the query and the privacy budget,

such that 1 =
Δ&

Y
.

Theorem 1 (Laplace Mechanism (DWORK et al., 2006)). The Laplace mechanism that adds

noise drawn from !0?(Δ&
Y
) satisfies Y-DP.

2.3.4.2 Geometric Mechanism

The geometric mechanism (GHOSH et al., 2009) is the discrete version of the Laplace

mechanism, i.e., it adds integer noise to the query results according to the two-sided geometric
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distribution. This ensures that the final query result is an integer. Therefore, the geometric

mechanism is specialized in improving the performance of counting queries (GHOSH et al.,

2009). The two-sided geometric distribution is defined as follows:

Definition 5. (Two-sided Geometric Distribution). A random variable - distributed as a two-

sided geometric distribution, with mean 0 and U ∈ [0, 1], has a probability mass function

%(- = G) = 1 − U
1 + UU

|G | . (2.4)

We denote �4><( Y
Δ&
) the two-sided geometric distribution with mean 0 and U =

4
− n

Δ& .

Theorem 2 (Geometric Mechanism (GHOSH et al., 2009)). Given any query & : N|D| → Z: ,

the geometric mechanism defined as

M� (�,&, Y) = &(�) + (.1, . . . , .: ), (2.5)

where .8 are i.i.d. random variables draw from �4><( Y
Δ&
) and D is the set of all

possible datasets, satisfies n-DP with U = 4
− n

Δ& .

2.3.4.3 Exponential Mechanism

As mentioned earlier, the exponential mechanism arises as a solution for queries that

do not return numerical values. For this purpose, McSherry et al. (MCSHERRY; TALWAR,

2007) proposed the exponential mechanism, which ensures DP for categorical queries. Its main

idea consists of choosing an output $ from the output space O, according to a utility function

D. This utility function assigns exponentially higher probabilities to the outputs with higher

utilities. Moreover, the choice of D depends on the application. Thus, different applications lead

to different utility functions. Unlike the previous mechanisms, Laplace and geometric, which

generate their noise proportional to the sensitivity of the query &, the exponential mechanism

uses the concept of sensitivity of the utility function to provide the mechanism’s output. The

sensitivity of the utility function is defined below:

Definition 6. (Global Sensitivity of the Utility Function (MCSHERRY; TALWAR, 2007)). The

global sensitivity of a utility function D is given by

ΔD = max
$∈O

max
�,�′=486ℎ1>AB

|D(�,$) − D(�′, $) |. (2.6)
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Theorem 3 (Exponential Mechanism (MCSHERRY; TALWAR, 2007)). Given a utility function

D : (� × O → Z) for a dataset �, the mechanism " that samples an output $ ∈ O with

probability proportional to exp n ·D(�,$)2Δ* satisfies n-DP.

2.3.5 Differential Privacy Properties

Several useful properties are integrated into the DP mechanisms, such as post-

processing, sequential composition, and parallel composition. The post-processing property

assumes that any function applied to the output of a differentially private mechanism also satisfies

DP. In turn, the sequential composition property assumes that any sequence of differentially

private mechanisms that satisfies DP in isolation also provides DP in sequence. Finally, the

parallel composition assumes that the same differentially private mechanism, when applied to

disjoint datasets satisfying DP in isolation, also provides DP. These properties are formally stated

below:

Theorem 4 (Post-processing (DWORK; ROTH, 2014)). Let A be any randomized algorithm

such that A(�) is Y-differentially private, and let 5 be any function. Then, 5 (A(�)) also

satisfies Y-DP.

Theorem 5 (Sequential Composition (DWORK; ROTH, 2014)). Let A8 provide Y8-differential

privacy. A sequence of differentially private algorithms A8 (�) provides
∑
Y8-DP.

Theorem 6 (Parallel Composition (DWORK; ROTH, 2014)). Let each �8 be disjoint data and

A an algorithm that provides Y8-differential privacy for data �8. A sequence of differentially

private algorithm execution A(�8) provides max(Y8)-DP.

When combined, these properties provide the flexibility to devise a way to aggregate

several differentially private steps into a sole mechanism that satisfies DP.

2.4 Local Differential Privacy

Differential privacy, as previously presented, considers the existence of a trusted

curator (third-party) who is responsible for collecting the data, perturbing the query results

through a mechanism that satisfies DP, and providing noisy results. This setup of DP is generally

referred to as global DP, centralized DP, or simply DP. However, finding a trustworthy curator to

collect and process the data can be a challenging task in practical scenarios. Therefore, the lack
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of reliable curators limits the applicability of global DP. As a result, Local Differential Privacy

(LDP) (DUCHI et al., 2013) has been proposed as a differentially private approach that eliminates

the need for a trusted data curator. Instead of centralizing the data flow in a single, supposedly

trustworthy external entity, each individual is responsible for protecting their data by perturbing

it locally through a differentially private mechanism before sending it to the data curator. In LDP,

the data curator is also commonly referred to as an aggregator.

When compared to the global DP, LDP is a stronger notion of privacy, which keeps

individuals’ sensitive data private, even from untrusted data curators. However, as it is a stronger

notion of privacy, LDP is expected to introduce more noise to the results under the same cir-

cumstances, i.e., using the same privacy budget when compared to the global DP. The formal

definition of LDP is presented below:

Definition 7. (Y-Local Differential Privacy (DUCHI et al., 2013)). A mechanismM satisfies

n-local differential privacy if for any pair of values E, E′ ∈ � and for any possible output $ ⊆

Range(M),

Pr[" (E) = $] ≤ exp(Y) × Pr[" (E′) = $] . (2.7)

The main difference between DP and LDP lies in the input data that the mechanisms

receive. A global DP mechanism receives a dataset � as input, i.e., the data of all individuals,

and ensures that the output is indistinguishable. In contrast, LDP receives only the data of a

single individual E as input and independently generates noisy responses per individual.

2.4.1 Local Differential Privacy Protocols

As mentioned earlier, mechanisms are ways to ensure the properties of DP. In LDP,

these properties are achieved through the use of protocols. Therefore, in LDP, mechanisms are

referred to as protocols. In summary, protocols are techniques that modify an individual’s data to

ensure the properties of DP. The standard flow of an LDP protocol consists of (I) encoding the

individual’s data, (II) perturbing the individual’s data, and (III) sending the individual’s noisy

data to the data curator.

(I) Encoding: In this step, the individual’s data E is encoded into a bit vector � of

size 3 consisting of 0’s and 1’s, such that the value 1 is assigned to the positions in the vector

� that corresponds to E, and 0 to the remaining positions. Thus, the function Encode(E) = � is

defined such that �[E] = 1 e �[8] = 0 for all 8 ≠ E.



41

(II) Perturbation: In this step, the encoded bit vector � is perturbed according to

two main parameters: ? and @, resulting in a new bit vector �′, as shown in Equation 2.8. The

parameter ? is the probability that a bit 8 in � assigned with the value 1 remains 1 even after being

perturbed, i.e., �[8] = 1 → �′[8] = 1. On the other hand, @ is the probability that a bit 8 in �

assigned with the value 0 becomes 1 after being perturbed, i.e., �[8] = 0→ �′[8] = 1. Intuitively,

(1−?) and (1−@) represent the probabilities of �[8] = 1→ �′[8] = 0 and �[8] = 0→ �′[8] = 0,

respectively. This step is performed in a differentially private manner, using the privacy budget

parameter Y to determine the probability values ? and @. Additionally, the values of ? and @

depend not only on the value of Y but also on the chosen protocol. Once perturbed, the vector �′

is reported to the aggregator.

Pr[�′(8) = 1] =

?, if �[8] = 1

@, if �[8] = 0
(2.8)

(III) Aggregation: In this step, the aggregator collects all the perturbed bit vectors

�′ reported by the individuals and performs the analysis of these data based on the aggregated

information. The basis for performing the analyses consists of identifying the number of oc-

currences of each possible input value E from the vectors �′, using a Support function. For

example, a vector �′ supports an input value E if �′[E] = 1, i.e., Support(�′) = {E | �′[E] = 1}

is the set of values present in �′. Similarly, Support(E) is defined as the number of occurrences

of the value E in the reported vectors �′.

It is important to mention that the Encode and Support functions are directly de-

pendent on the LDP protocol used. Thus, different protocols may implement these functions

differently. Additionally, some relevant information is publicly known, i.e., known by the ag-

gregator. In summary, the number of responses =, the size of the encoded vector 3, the privacy

budget Y, and the LDP protocol used are known by the aggregator. Therefore, the aggregator

is able to understand from which LDP protocol the data was sanitized and then calculate the

respective probability values ? and @. Finally, the aggregator can perform an unbiased estimation

of the reported values according to Theorem 7. When each individual submits their data only

once, the number of responses = can be treated as the number of individuals equivalently.

Theorem 7 (Unbiased Estimation (WANG et al., 2017)). Given an LDP protocol, the number of

occurrences of a value E, given by 2̃(E) = Support(E)−=·@
?−@ , is unbiased, where Support(E) is the

number of responses containing the value E and = is the number of responses.
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The problem of frequency estimation, where the aggregator estimates the frequencies

of values in a pre-established domain, is one of the most fundamental problems that LDP aims to

solve. Problems of this nature are commonly known as Frequency Oracles (FO). Several studies

have already been conducted to develop FO protocols (FILHO; MACHADO, 2023; ACHARYA

et al., 2019; BASSILY; SMITH, 2015; YE; BARG, 2018), where the Randomized Response

(RR) protocol (DWORK et al., 2006) and the Unary Encoding (UE) (ERLINGSSON et al., 2014)

protocol are among the most disseminated in the literature.

2.4.1.1 Randomized Response Protocol (RR)

The RR protocol was one of the first FO protocols proposed in the literature. Among

its main characteristics, it allows a value E to be encoded into a bit vector � in such a way that �

has more than one representative bit assigned with 1. This representation can be quite useful in

various domains. For instance, consider the context of social networks, where an individual D

wants to report his connections with other individuals. In this case, the value E to be reported

consists of a list containing the other individuals connected to D. Therefore, one way to encode E

would be to transform it into a bit vector � so that �[8] = 1 indicates that there is a connection

between individuals D and 8, while �[8] = 0 indicates the absence of that connection.

To ensure the properties of LDP, it has been proven that the RR protocol satisfies

Y-LDP if the perturbation step is performed with specific values of ? and @, such that ? = 4Y

1+4Y

and @ = 1 − ? (ERLINGSSON et al., 2014).

2.4.1.2 Unary Encoding Protocol (UE)

The UE protocol differs from the RR protocol primarily in the way that the data is

encoded. As the name suggests, in the UE protocol, the encoding of any value is done through a

single representative bit. Thus, for a given value E, it will be encoded into a bit vector � such

that � has a single bit assigned with 1, while all other bits are set to 0. This representation is also

quite useful in various domains, especially in simpler domains with a smaller dimension 3.

As the RR protocol, it is also necessary to establish the values of ? and @ that allow the

UE protocol to satisfy Y-LDP and ensure the properties of LDP. Therefore, some protocols based

on the UE protocol with particular characteristics have emerged. Among them, the Symmetric

Unary Encoding (SUE) protocol (ERLINGSSON et al., 2014) and the Optimized Unary Encoding

(OUE) (WANG et al., 2017) protocol stand out. Both protocols are quite similar in terms of
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the executed steps. The main difference lies in the choice of the parameters ? and @ used in the

perturbation step of each protocol.

In the SUE protocol, the values of ? and @ are chosen to treat the bits 0 and 1

symmetrically. The values of ? and @ are given by ? = 4
Y
2

4
Y
2 +1

and @ = 1
4
Y
2 +1

, such that ? + @ = 1.

On the other hand, the OUE protocol is an improvement over the SUE protocol, which proposes

optimal values for ? and @. Assigning ? = 1
2 and @ = 1

4Y+1 improves the utility of the estimated

frequencies. Note that the value of ? + @ will never be equal to 1 since the value of Y is always

positive. In summary, the idea of the OUE protocol is to ensure that the bits reported as 1 are

indeed those that were originally 1, just as the bits reported as 0 are those that were originally 0.

Finally, it is worth mentioning that do not exist a protocol that is best for everything.

There are various protocols in the literature, each with different characteristics and purposes.

Therefore, determining which protocol is most recommended for a particular task becomes quite

challenging (WANG et al., 2017).

2.5 Differential Privacy for Graphs

The fundamental concept of DP relies on the definition of neighboring datasets. In

previous definitions, a neighboring dataset is defined as a dataset obtained by adding or removing

a single record. However, regarding graph data, which mainly focuses on the relationship between

individuals, the association between private data and dataset records becomes less clear. Therefore,

to apply DP to graphs, it is necessary to establish a new definition for neighboring graphs that

considers the graph structure and the privacy semantics associated with the graph.

2.5.1 Differential Privacy Models for Graphs

In the context of LDP, the literature focuses on attacks where an adversary attempts

to infer the presence or absence of nodes or edges in graphs. In this sense, there are two main

settings of LDP for graphs: Edge Local Differential Privacy (edge-LDP) (HAY et al., 2009) and

Node Local Differential Privacy (node-LDP) (KASIVISWANATHAN et al., 2013). Given an

undirected graph � = (+, �), for each node E8 ∈ + , let �8 = {11, 12, . . . , 1=} be the adjacency

bit vector of E8, where 1 9 = 1 if and only if 48, 9 ∈ � , otherwise 1 9 = 0. Then, both definitions are

stated as:

Definition 8. (n-Edge Local Differential Privacy (HAY et al., 2009)). A mechanismM satisfies
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n-edge local differential privacy if and only if for any two adjacency bit vectors �, �′ that differ

only in one bit, and for any output $ ⊆ Range(M),

Pr[M(�) = $] ≤ exp(n) × Pr[M(�′) = $] . (2.9)

Definition 9. (n-Node Local Differential Privacy (KASIVISWANATHAN et al., 2013)). A mecha-

nismM satisfies n-node local differential privacy if for any two adjacency bit vectors �, �′ and

for any output $ ⊆ Range(M),

Pr[M(�) = $] ≤ exp(n) × Pr[M(�′) = $] . (2.10)

Both edge-LDP and node-LDP satisfy the DP properties stated in Section 2.3.5.

Achieving privacy under node-LDP is much harder than it is in edge-LDP since it requires

protecting the privacy of the entire node’s data, including all its connections. Therefore, designing

algorithms that ensure node-LDP and simultaneously provide accurate graph analytics may not

be feasible. Nonetheless, edge-LDP can still achieve strong privacy protection regarding the

existence of edges, which is sufficient for most graph applications, such as community search

(LI et al., 2023), and anomaly detection (SHAH et al., 2016) while preserving high data utility.

Therefore, this thesis focuses on the edge-LDP setting.

2.5.2 Release of Graph Information Under Differential Privacy

Graphs are a powerful representation used to represent complex relationships and

interactions in various domains such as social networks, biological networks, transportation

systems, and more. Analyzing these graphs can reveal significant insights, from community

structures and influential nodes to patterns of connectivity and paths of interaction. However, these

analyses often involve sensitive information, necessitating robust privacy-preserving techniques.

In this sense, DP provides strong privacy guarantees for such analyses. This section discusses the

differences between the main approaches for applying DP to graphs: Entire Graph Release and

Graph Statistics Release.
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Figure 9 – An example of an input graph � and its respective private version �′, generated after
applying a hypothetical DP mechanism on �.

Source: Elaborated by the author.

2.5.2.1 Entire Graph Release

The entire graph release approach involves applying a DP mechanism to the input

graph and releasing its private version. This method aims to preserve the privacy of individuals

within the graph while allowing comprehensive analyses in the private graph.

Generally, the process consists of perturbing the graph, which may involve adding

or removing nodes and edges or modifying edge and node attributes. This approach has several

advantages, such as allowing researchers to perform a wide range of analyses on the perturbed

graph, such as community detection, centrality measures, and pathfinding, providing flexibility

in the types of studies conducted. However, it is quite challenging to balance utility and privacy

while keeping valuable analysis in the perturbed graph.

Figure 9 presents an example of an input graph � and its respective private version

�′, generated after applying a hypothetical DP mechanism on �. In this example, it is possible

to observe that the nodes remained unchanged while some edges were modified.

2.5.2.2 Graph Statistics Release

Differently from the previous approach, the graph statistics release approach focuses

on releasing specific statistical information about the graph rather than the entire graph structure.

This method applies DP mechanisms to individual statistics derived from the input graph.

Specific graph statistics, such as number of edges and nodes, degree distributions,

clustering coefficients, shortest paths, or subgraph counts, are computed with added noise to

ensure the DP guarantees. The sensitivity of the graph metrics plays a crucial role in the amount

of noise that needs to be added. This approach can achieve a good balance between utility

and privacy in some scenarios, especially in those where the metrics under interest present low
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Figure 10 – An example of an input graph � and two statistics @1 and @2 queried on � under the
edge-DP model.

Source: Elaborated by the author.

sensitivities, potentially providing good-quality analyses.

On the other hand, metrics with inherently high sensitivity, such as certain centrality

measures, require substantial noise addition to achieve DP guarantees. This significant perturba-

tion can make the results less useful or even meaningless. Additionally, for some complex metrics,

calculating their sensitivity can be a non-trivial and computationally demanding task. This com-

plexity can make it challenging to apply DP accurately, leading to either over or under-estimation

of the required noise.

Figure 10 presents an example of an input graph � and two statistics queried on �.

The first query (@1) consists of the number of triangles in �, while the latter (@2) consists of the

number of edges in �. For this example, consider that edge-DP is the graph DP model under

interest. @1 is a high-sensitivity query, being proportional to =, i.e., the number of nodes of the

graph, with Δ@1 = = − 2, which leads to an excessive amount of noise added to the outcome.

Differently, @2 is a low-sensitivity query, with Δ@2 = 1, requiring only a small amount of noise

to ensure DP.

The choice between releasing the entire graph or specific statistics involves a trade-off

between flexibility, utility, privacy, and computational efficiency. Understanding these trade-offs

is crucial for researchers and practitioners to apply DP mechanisms to graph data in a manner

that aligns with their specific analytical goals and privacy requirements.

2.6 Summary

In this chapter, we provided an essential foundation for understanding this thesis by

delving into crucial concepts and definitions. We began with an introduction to graph theory,
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explaining the various graph analyses and the different types of graphs such as edge-weighted,

edge-attributed, and node-attributed graphs, and their structural properties. In the following, we

explored the principles of differential privacy, presenting its core definitions and properties, and

significant mechanisms like the Laplace, geometric, and exponential. Additionally, we discussed

the concept of local differential privacy, detailing various protocols that ensure privacy at the data

collection level. Finally, we introduced the notion of differential privacy for graphs, addressing

the challenges and presenting the main notions of neighboring graphs to adopt differential privacy

on graph data, as well as the different analysis purposes on graphs.
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3 RELATED WORK

In this chapter, we review the studies made in the last years towards the differentially

private release of graph data. Various algorithms that satisfy the definition of DP have been

developed to release the entire graph. However, since we do not consider the existing works

related to node-DP, we focus only on the edge-DP-based approaches and present them in Section

3.1. Additionally, global DP techniques are more frequent in the literature than local DP settings.

Additionally, we review the general studies on global DP for graphs in Section 3.1.1 and on LDP

for graphs in Section 3.1.2. Finally, we present the studies in the field of DP applied to attributed

graphs. These works are detailed in Section 3.2, where we cover recent works regarding weighted,

node, and edge-attributed graphs. We summarize the entire section within a comparative table

and position ourselves in relation to the presented studies in Section 3.3.

3.1 Approaches for Edge-DP

Several studies have already been conducted to release differentially private graph

statistics. This problem focuses on releasing specific subgraph statistics, such as :-triangles,

:-stars, and :-cliques (KARWA et al., 2011; ZHANG et al., 2015). However, it appears to be

more limited when compared to the studies that aim to release the entire graph. Releasing the

entire graph allows a huge variety of analyses, not limited to some specific subgraph statistics. Yet,

simultaneously releasing entire graphs that provide high-fidelity analysis for different statistics

may become challenging. We describe these works below, dividing them into sections according

to the DP setting: global DP and local DP.

3.1.1 Global DP Approaches

The differentially private release of entire graphs within global DP has been exten-

sively studied for over a decade. As mentioned, the main advantage of these approaches is that

they are agnostic to the kind of analysis performed on the released graph since they allow the

computation of any statistics.

Sala et al. (SALA et al., 2011) proposed a differentially private graph model called

Pygmalion. The purpose of Pygmalion consists of discovering the graph topology under edge-DP

by transforming the provided graph structure into a private 3 -graph and subsequently generating

a synthetic graph. Later, Wang et al. (WANG; WU, 2013) proposed an improvement in the
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accuracy of the 3 -graph model by adjusting the noise levels according to the smooth sensitivity

(NISSIM et al., 2007). The smooth sensitivity consists of a new definition of sensitivity that

considers the smoothness of the query function being computed, resulting in mechanisms that

could achieve the same level of privacy with less noise added. The authors first extracted various

parameters from the original graph, such as the degree correlations, and used them in the 3 -

graph model. This process ensures edge-DP for the learned parameters and, consequently, for the

graph generation.

Xiao et al. (XIAO et al., 2014) proposed an approach that adopts the Hierarchical

Random Graph (HRG) model (CLAUSET et al., 2006). A hierarchical network is naturally

divided into groups and these groups themselves divide into subgroups, and so on until reaching

the level of individual nodes. This structure is commonly represented as a dendrogram. The

authors noted that estimating the connection probabilities between nodes reduced the noise scale

imposed by DP. Then, while classical graph models are built based on the observed edges, the

HRG uses the connection probabilities between nodes to create dendrograms.

Differently, some approaches focus on perturbing the original adjacency matrix

of the graph through matrix perturbation strategies. An adjacency matrix is a type of graph

representation in a tabular form, in which each cell (8, 9) denotes the existence of an edge

between nodes 8 and 9 . For this purpose, Chen et al. (CHEN et al., 2014) designed a Density-

based Exploration and Reconstruction (DER) mechanism to release the perturbed version of

the adjacency matrix of the original graph. However, HRG and DER approaches are harmed

regarding time complexity since they present quadratic time according to the number of nodes.

Subsequently, Nguyen et al. (NGUYEN et al., 2015) proposed the top-< filter (TmF) to overcome

the scalability problems faced by the previous approaches. Its approach adds Laplace noise to

each cell of the adjacency matrix and leverages the high-pass filtering technique (CORMODE et

al., 2012) to avoid the whole adjacency matrix manipulation. The authors proved that releasing a

graph under DP using this approach has a time complexity upper bound of $ (log =).

More recently, Iftikhar et al. (IFTIKHAR et al., 2020) developed a microaggregation-

based framework that perturbs the graph by adding noise to the distributions of the original

graph. The framework works through a distance-constrained algorithm that approximates the

3 -distributions of the graph via microaggregation. The authors demonstrated that the approach

is robust enough to preserve the original graph’s topological structures under different granularity

levels and significantly reduce the amount of noise added to the released graph. Finally, Huang
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et al. (HUANG et al., 2020) proposed the Privacy Preserving Approach Based on Clustering

and Noise (PBCN) method, which combines various algorithms to release noisy graphs under

edge-DP. The algorithms that compose the PBCN method include pre-processing, clustering,

degree sequence disturbing, reconstruction of nodes, post-processing, and more.

3.1.2 Local DP Approaches

Unlike the global DP, studies regarding the differentially private release of entire

graphs within the local DP have only been deepened in recent years. For this purpose, we

encounter a huge difference in the number of strategies that use the local DP compared to the

ones that use the global DP.

Qin et al. proposed the (QIN et al., 2017) LDPGen, a multi-phase technique for

privately generating synthetic graphs. Its main idea consists of capturing the original graph’s

structure within an incremental process that clusters the users, based on their connections, to

different partitions of the whole population. This process ensures that users with similar structures

are clustered together. The method works by iteratively partitioning the nodes into groups and

collecting information related to the node-to-group connectivity under LDP guarantees. Then,

it clusters the nodes according to this information. Finally, once the clusters are defined, the

LDPGen applies a graph generation model that uses these clusters to generate a private synthetic

graph.

Gao et al. (GAO et al., 2018) proposed a technique that generates a synthetic graph

under LDP, which also adopted the Hierarchical Random Graph (HRG) model (CLAUSET et

al., 2006) to extract some graph features. The authors grouped the nodes with similar features

by designing two heuristic methods. They also defined a novel notion of group-based local

differential privacy according to the notion of 1-neighborhood local graphs that reduce the noise

scale. Finally, the authors show that the grouping strategy ensures that each user within the

same group is indistinguishable while the privacy level is enhanced without losing too much

information.

3.2 Approaches for Attributed Graphs

When graphs have attributes attached to their edges or nodes, the aforementioned

edge-DP and node-DP models may offer inappropriate privacy guarantees. Alternatively, a more
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suitable setting consists of adapting the DP definition for the context of attributed graphs. In

general, several types of attributes can be considered, such as boolean, categorical, or numerical

(BENDIMERAD, 2019). Graphs with numerical attributes are commonly referred to as weighted

graphs, while graphs with categorical attributes are referred to as attributed graphs. This section

provides a detailed review of the latest techniques to ensure DP for edge-weighted, node-attributed,

and edge-attribute graphs.

3.2.1 Edge-Weighted Graphs

The concept of differential privacy for weighted graphs was formally introduced

by Sealfon (SEALFON, 2016). In this model, the graph topology is public, and only the edge

weights are private. This approach is particularly relevant in scenarios like road networks, where

the structure of the graph is fixed, and the sensitive information lies in the edge weights. Several

recent works (SEALFON, 2016; FAN; LI, 2022; LI et al., 2017; WANG; LONG, 2019; PINOT

et al., 2018; CHEN et al., 2022) have considered this model to perform differentially private

analysis over weighted graphs. These works are summarized below.

Sealfon (SEALFON, 2016) aimed to release weighted shortest paths and approximate

distances between node pairs without revealing sensitive edge weights. He introduced theoretical

foundations for weight differential privacy, assuming individuals influence edge weights. Two

weight functions are considered neighbors if their ;1 distance is one or less, as stated in Definition

10.

Definition 10. (Neighboring Weight Functions (SEALFON, 2016)). Two weight functions l,

l′ : +2 → R+ are neighboring, denoted l ∼ l′, if:

| |l − l′| |1 =
∑
D,E∈+

|l(D, E) − l′(D, E) | ≤ 1. (3.1)

For privately releasing shortest paths, Sealfon established a lower bound, showing it

is impossible to release a path with less than Ω( |+ |) additive error under differential privacy. He

demonstrated that using the Laplace mechanism, an algorithm could approach this bound, with

the released path’s weight exceeding the optimal by at most $ ( |+ | ;>6 |+ |)/Y.

For releasing the all-pair shortest paths under DP, standard techniques yield an error

of $ ( |+ | ;>6 |+ |)/Y per query. Yet, Sealfon developed improved algorithms for special graph
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Figure 11 – An example of a tree partitioned into three heavy paths. A unique color is assigned
to every heavy path.

Source: (FAN; LI, 2022).

classes. For trees, he proposed a recursive algorithm with an error of $ (;>62.5 |+ |)/Y. For

bounded-weighted graphs, he showed that selecting a subset of vertices allows for estimating

all-pair distances with relatively small errors.

Fan and Li (FAN; LI, 2022) revisited the problem of privately releasing approximate

distances between all pairs of nodes and improved Sealfon’s results. They divided a tree into

disjoint heavy paths, where each non-leaf node selects the edge to its deepest child. This method

decomposes the tree into several paths, as illustrated in Figure 11.

The authors showed that the unique path between any pair of vertices intersects at

most ;>E |+ | heavy paths. They proved that releasing approximate all-pair distances is equivalent

to handling multiple heavy path subqueries. For instance, in Figure 11, the shortest path between

B and C is decomposed into sub-paths within disjoint heavy paths. For trees with depth ℎ, they

proposed a new algorithm that releases all-pair distances with an error of$ ((;>61.5ℎ) · (;>61.5 |+ |),

improving upon the previous error of $ (;>62.5 |+ |) (SEALFON, 2016).

Fan and Li also outperformed Sealfon’s results for bounded-weighted graphs. They

noted that some graphs, like those representing Manhattan’s grid layout, can be divided into

blocks. This division helps to separate the distances into three categories: within-block distances,

boundary distances, and other distances. Then, the authors presented a method to release all-pair

distances on general grid graphs with low error.
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Figure 12 – An example of segmentation in a social network with 34 nodes and 78 edges.

Source: (WANG; LONG, 2019).

Li et al. (LI et al., 2017) proposed the Merging Barrels and Consistency Inference

(MBCI) approach for releasing weighted graphs under differential privacy guarantees. They

proposed creating a histogram of edge weights, called merging barrels, to minimize the noise

added to the weights. Instead of applying the Laplace mechanism directly to the weights, it is

applied to groups of edges within the histogram.

The authors noted that merging all barrels with the same count into one group might

violate differential privacy. Thus, to address this issue, they introduced a technique to achieve

:-indistinguishability, ensuring that each group requires the same amount of noise. The groups

satisfy :-indistinguishability for an integer ≥ 1 if there are at least : groups with the same number

of barrels.

Finally, the authors also proposed an algorithm to preserve most of the shortest paths

based on the original order of the edge-weight sequence. It is worth mentioning that this process

is only based on the known order without accessing the private dataset, and, therefore, does not

harm privacy.

Wang and Long (WANG; LONG, 2019) proposed the Lifted Merging Barrels and

Consistency Inference (LMBCI) algorithm to reduce the error introduced by the MBCI (LI et

al., 2017) strategy. They segmented the original weighted graph into several sub-graphs without

altering any edge weights. The segmentation process involves four main steps: (I) clustering

nodes based on the number of common neighbors; (II) grouping nodes based on clustering results;

(III) creating sub-graphs from the groups; and (IV) completing the sub-graph segmentation. An

example of this process is shown in Figure 12, resulting in five sub-graphs.

Finally, the authors applied the MBCI algorithm to each sub-graph. Theoretical
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analyses and experimental results indicated that LMBCI preserved most shortest paths and

improved the accuracy of the published graph. However, both MBCI and LMBCI techniques

introduce significant errors, achieving low errors only for Y > 20, which limits the efficiency of

these approaches.

Pinot et al. (PINOT et al., 2018) proposed PTClust, a differentially private method

for node clustering in weighted graphs based on the Minimum Spanning Tree (MST) algorithm.

The authors argued that the MST is an effective and intuitive way to summarize a graph and is

useful for clustering non-convex shapes (GRYGORASH et al., 2006). Also, they adapted the

existing MST-based clustering algorithm, DBMSTClu (MORVAN et al., 2017), to meet privacy

requirements.

However, since the DBMSTClu algorithm takes weights only in the range of (0,1],

the authors introduced the normalizing parameters g and ? to set lower and upper bounds for the

weights. They developed a weight-release mechanism that normalizes the weights, transforms

them to a new scale B, and adds noise from Lap(0, B), proving it to be Y-differentially private.

Finally, the PTClust solution involves generating a differentially private spanning tree

topology, which releases randomized edge weights using the authors’ weight-release mechanism.

These weights are then input into the DBMSTClu algorithm to perform the clustering. The

evaluations demonstrated that PTClust is robust enough to preserve the accuracy of the final

clustering partition.

Chen et al. (CHEN et al., 2022) also continued investigating privacy in weighted

graph clustering, focusing on the k-median and k-center problems with weight-differential privacy.

Their goal was to partition the vertices into k clusters to minimize the average and maximum

distances between vertices and cluster centers.

For the :-median problem, the authors reformulated it as a submodular maximization

problem (KRAUSE; GOLOVIN, 2014) and proposed a greedy differentially private algorithm

with optimal approximation. They calculated the true shortest path distances and applied the

exponential mechanism to the objective functions, which are indirectly determined by the edge

weights. Additionally, the authors applied a sampling technique (MIRZASOLEIMAN et al.,

2015) to reduce the time complexity in large graphs.

For the :-center problem, the authors applied a similar approach and provided the

best approximation guarantees with a greedy differentially private algorithm, improving the

number of evaluations of the objective functions and adopting the same sampling technique.
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Figure 13 – A running example of the proposed global approach.

Source: (BRITO et al., 2023).

Differently from previous works, Brito et al. (BRITO et al., 2023) assume that

graph topology is not known. For some real-world applications, the assumption that the graph

topology is public is misleading, and the existing works may not be effective in providing the

desired privacy guarantees. To address this limitation, the authors propose a novel definition for

neighboring weighted graphs with unknown topology, as stated in Definition 11.

Definition 11. (Neighboring Weight Functions with Unknown Topology (BRITO et al., 2023)).

Two weight functions l, l′ : +2 → Z≥0 are neighboring, denoted l ∼ l′, if:

| |l − l′| |1 :=
∑
D,E∈+

|l(D, E) − l′(D, E) | = 1. (3.2)

Therefore, the authors proposed a global and local approach to release weighted

graphs via DP while keeping the graph topology and edge weights private. Several techniques,

such as priority sampling and post-processing methods, were applied along the process to preserve

the original node degrees and the sum of all edge weights as much as possible. An extensive

experimental analysis demonstrated that the proposed approaches outperform the state-of-the-art

in terms of utility and performance. Figure 13 depicts a running example of the proposed global

approach.

3.2.2 Node-Attributed Graphs

Jorgensen et al. (JORGENSEN et al., 2016) proposed the TriCycLe model for

releasing synthetic node-attributed graphs, i.e., graphs with attributes in the nodes, under DP

guarantees. TriCycLe is an extension of the Attributed Graph Model (AGM) (III et al., 2014). In

summary, the AGMmodels a graph using three sets of parameters that describe (I) the distribution
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of the attributes over the nodes, (II) the correlations between node attributes and edges, and (III)

the modeling parameters for an underlying generative structural model. These set of parameters

are denoted as Θ- , Θ� , and Θ" , respectively. The third parameter Θ" contains the structural

information, such as the degree sequence, the number of triangles, etc, of the graph that will

be generated according to the generative random graph model. The generative random graph

model could be any, including the existing in the literature like Chung-Lu (III et al., 2012)

and Erdős-Rényi (SESHADHRI et al., 2012). It is important to note that the standard AGM

does not provide any privacy guarantee. Then, TriCycLe appears by introducing privacy in its

graph-generating process. However, since DP graph models were formerly proposed for graphs

without attributes in the edges and nodes, a novel definition of neighboring graphs had to be

established to attend DP for this kind of graph. The authors defined the notion of Edge-Adjacent

Attributed Graphs, which is formally stated below:

Definition 12. (Edge-Adjacent Attributed Graphs (JORGENSEN et al., 2016)). Two attributed

graphs �,�′ are said to be edge-adjacent (or neighboring) if they differ in the presence of a

single edge or in the attribute vector associated with a single node.

An attribute vector consists of a vector that holds the attribute values of each user.

Then, the authors could design TriCycLe within a differentially private mechanism according

to this neighboring definition. In summary, TriCycLe collects information about the original

graphs through various differentially private processes. First, it adds Laplace noise to the Θ- and

Θ� parameters. It is important to mention that the Θ� parameter is obtained after performing

a projection in the original graph to reduce the sensitivity and, hence, the noise scale factor.

Then, the Θ" parameters are composed of the degree sequence and the number of triangles. The

degree sequence is obtained by adding Laplace noise. However, since the number of triangles is

a much more complex query, leading to extremely high sensitivity, the author applied the Ladder

mechanism (ZHANG et al., 2015), which is based on the local sensitivity, providing a perturbed

version of the number of triangles with elevated accuracy. Finally, once these parameters are

retrieved through DP mechanisms, TriCycLe generates a synthetic graph according to these

parameters, rewiring the graph connections until the graph structure reaches a disposition similar

to the expected by Θ- ,Θ� , and Θ" according to an acceptance probability. The whole process

performed by TriCycLe ensures n-DP. Although the approach is robust enough to provide highly

accurate synthetic graphs for some metrics, it focuses on performing better in the metrics related
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to the attributes that form theΘ" parameter, i.e., the degree sequence and the number of triangles.

Then, it may not perform very well for metrics of different nature.

Figure 14 presents the overview of the TriCycLemodel. On the left side, we encounter

the steps for computing the AGM-DP, which consists of computing the Θ- , Θ� , and Θ" in a

differentially private manner through a DPmechanism. Then, these parameters are used to sample

a private synthetic graph. The steps of sampling a synthetic graph are presented on the right side.

Figure 14 – Workflow of the TriCycLe model.

Source: (JORGENSEN et al., 2016).

In the same context, Chen et al. (CHEN et al., 2020) proposed the Community-

Preserving Attributed Graph Model (C-AGM), also based on the AGM and in the same neigh-

boring definition proposed in (JORGENSEN et al., 2016). Since this approach uses the same

neighboring definition, it also lies on node-attributed graphs. The main objective of the C-AGM

model consists of preserving as much information as possible about the communities of the

original graph in the released synthetic graph. The main idea of the C-AGM model is to capture

the properties of the communities of the node-attributed graph. Each existing community in

the original graph is denoted as a community partition C. Then, the C-AGM model captures a

variety of properties regarding the community partitions. These properties include:

1. The number and the size of the communities;

2. The number of intra-community edges in every community;

3. The number of inter-community edges;

4. The distributions of the attribute vectors in every community;

5. The distribution of the attribute-edge correlations (the same as (JORGENSEN et al.,

2016)) for the set of inter-community edges and the set of intra-community edges in every

community.

Then the authors computes the AGM parameters Θ- , Θ� , and Θ" for every commu-
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nity partition C. The rest of the approach works similarly to the TriCycLe model. The recently

computed parameters are used to generate a private synthetic graph. Also, similarly to the TriCy-

cLe model, the results obtained by the C-AGM model are better for a specific variety of metrics.

In this case, the method was mainly proposed to maintain as much information as possible about

the communities and the clustering coefficients. Then, it also suffers from accuracy problems for

some metrics. It is important to mention that the C-AGM model ensures n-DP since all its steps

are made through differentially private mechanisms.

Differently from the previous approaches, Wei et al. (WEI et al., 2020) proposed a

local approach for releasing synthetic node-attributed graphs called AsgLDP. To the best of our

knowledge, it is the first and unique approach that tackles the problem of releasing node-attributed

graphs under LDP guarantees. AsgLDP is a two-phase framework based on the edge LDP setting.

In the first phase, the users report some properties related to their local graphs, while in the

second phase, the data collector performs an unbiased estimation of the reported data to sample a

private synthetic graph.

The properties that each user reports are the degree and the Randomized Attribute

List (RAL). The RNL is similar to the Randomized Neighbor List (RNL) proposed in (QIN et al.,

2017). The RNL was defined in the context of general graphs, where given a graph � = (+, �),

the edges � wire nodes from the same set + . The RNL consists of a =-length bit vector, where

= is the number of nodes (users) in + , i.e. = = |+ |. In summary, the RNL of a user 8 is given

by RNL8 = [G8, 9 , ..., G8,|+ |], where G8, 9 ∈ {0, 1} denotes whether exists the edge 48, 9 ∈ � , i.e., if

exists a connection between users E8 and E 9 . Then, the RAL structure is an adaptation of the

RNL structure, which is adequate for the problem of releasing node-attributed graphs. The RAL

consists of a F-length bit vector, where F is the number of attributes. In summary, the RAL

of a user 8 is given by RAL8 = [G8,1, ..., G8,F], where G8, 9 ∈ {0, 1} denotes the value of the 9-th

attribute of the user 8.

Both properties are reported through LDP mechanisms. However, the degree suffers

from the dimensionality problem, i.e., the bit vector that reports the degree is defined according

to the number of nodes, which leads to excessive noise addition. To solve this problem, the author

proposed the Random Jump (RJ) method to perturb the degree in a decentralized manner to

reduce the noise while still satisfying the LDP properties. The main idea of the RJ algorithm is

that it considers that not all users agreed to report their data, so the number of users that agreed to

report their data, denoted as =E , is smaller than the initial number of users. Then, the RJ uses this
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number of users =E combined with the Generalized Randomized Response (GRR) (WARNER,

1965) to perturb the user degree.

Finally, the data collector performs an unbiased estimation of the reported data to

estimate the degree distribution and the attribute joint distribution. With this distribution, the

collector samples an initial synthetic graph, called a seed graph, that respects these distributions

using the accept-reject sampling method (LIANG et al., 2011). Yet, the collector clusters the seed

graph to detect edge and attribute anomalies to optimize the graph further. The optimization step

consists of keeping the nodes more closely related in the same community than those outside the

community. The author demonstrated that the approach presents good results for some metrics,

especially the ones related to the communities and the clustering coefficients of the graph.

Figure 15 – Workflow of the AsgLDP framework.

(a) Initial node-
attributed graph.

(b) Unbiased informa-
tion collection.

(c) Seed graph creation. (d) Seeg graph opti-
mization.

Source: (WEI et al., 2020).

Figure 15 presents the overview of the AsgLDP framework model from the original

graph until the release of the differentially private graph after being optimized.

3.2.3 Edge-Attributed Graphs

Differently from all the previously presented approaches, Liu et al. (LIU et al., 2020)

presented the PrivAG, a framework that tackles the problem of DP in edge-attributed graphs,

i.e., the attributes belong to the edge instead of the node. Also, the authors release only a set of

statistics instead of an entire synthetic graph. Additionally, to the best of our knowledge, this is

the first and unique work that investigates the privacy concerns in edge-attribute graphs. Similarly

to the TriCycLe approach (JORGENSEN et al., 2016), the authors designed a novel neighboring

definition for the LDP model to address the problem of edge-attributed graphs. The authors

defined the Attribute-wise Local Differential Privacy, which is formally stated below:

Definition 13. (Attribute-wise Local Differential Privacy (LIU et al., 2020)). A randomized algo-
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rithmA satisfies n-attribute-wise local differential privacy, if and only if for any two neighboring

attributed local graph data �,�′ differing in one attribute and related edges and for any output

$ ∈ Range(A),

%A [A(�) = $] ≤ 4Y%A [A(�′) = $] . (3.3)

The authors ensure this notion of DP by reporting the properties of the local graph

under LDP guarantees. The properties consist of the edge attributes in the local graph and the

degree of each edge attribute, i.e., the number of edges with a given attribute. These properties

are denoted as attribute vectors and attribute-degree vectors, respectively. Both properties are

encoded into a bit vector. However, the LDP mechanism applied to each property is different.

Given an 3-length attribute vector and a value : ≤ <, where < is the number of attributes, only

a :-length attribute vector is considered. Then, the exponential mechanism is applied to sample

a perturbed version of the :-length initial attribute vector according to a utility function. With

respect to the edge-degree vectors, the degree of each attribute present in the :-length attribute

vector is reported through a \-length vector, where \ is a truncation parameter over the graph

� that limits the attribute degrees. This whole process ensures (n1 + n2)-LDP, where n1 is the

privacy budget used to report the attribute vector and n2 is the privacy budget used to report each

attribute-degree vector.

Once the data collector receives the data, it estimates the properties: the attributes and

their degrees. However, after estimating the counts and the frequencies, the aggregator may face

some inconsistencies between the attribute counts and the reported degree counts, which is fixed

through an optimization step. Finally, data analyses are performed. However, the scope of the

analyses is very limited since the approach does not release an entire graph for general-purpose

analysis. Instead, only two analyses are performed: the attribute frequency estimation and the

attribute-degree distribution estimation.

Figure 16 presents a local graph � of a supposed user ‘‘u’’, composed of 8 neighbor

nodes and 8 edges with their corresponding attributes. On its side, we encounter the graph

properties reported to the data collector, i.e., the attribute vector and the attribute-degree vectors,

both already exhibited in the encoded form.
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Figure 16 – An example of a local graph followed by its encoded information in the form of
attribute vector and attribute-degree vectors.

Source: Adapted from (LIU et al., 2020).

3.3 Summary

Once detailing a variety of studies of DP in the field of edge-DP and attributed graphs,

we finish this section by presenting Table 1, which summarizes these existing works. It compares

the purpose of release, the differentially private graph model, the DP setting, and the graph type

under analysis.

Table 1 – Summary of the existing works.
Work Purpose of Release Graph DP Model DP Setting Graph Type

(SALA et al., 2011) Entire graph Edge-DP Global Normal
(WANG; WU, 2013) Entire graph Edge-DP Global Normal
(XIAO et al., 2014) Entire graph Edge-DP Global Normal
(CHEN et al., 2014) Entire graph Edge-DP Global Normal

(NGUYEN et al., 2015) Entire graph Edge-DP Global Normal
(IFTIKHAR et al., 2020) Entire graph Edge-DP Global Normal
(HUANG et al., 2020) Entire graph Edge-DP Global Normal
(QIN et al., 2017) Entire graph Edge-DP Local Normal
(GAO et al., 2018) Entire graph Edge-DP Local Normal
(SEALFON, 2016) Graph statistics Edge-Weight-DP Global Edge-Weighted
(LI et al., 2017) Graph statistics Edge-Weight-DP Global Edge-Weighted

(PINOT et al., 2018) Graph statistics Edge-Weight-DP Global Edge-Weighted
(WANG; LONG, 2019) Graph statistics Edge-Weight-DP Global Edge-Weighted

(FAN; LI, 2022) Graph statistics Edge-Weight-DP Global Edge-Weighted
(CHEN et al., 2022) Graph statistics Edge-Weight-DP Global Edge-Weighted
(BRITO et al., 2023) Entire graph Edge-Weight-DP Global/Local Edge-Weighted
(WEI et al., 2020) Entire graph Edge-DP Local Node-Attributed

(JORGENSEN et al., 2016) Entire graph Edge-Adjacent-DP Global Node-Attributed
(CHEN et al., 2020) Entire graph Edge-Adjacent-DP Global Node-Attributed
(LIU et al., 2020) Graph statistics Attribute-wise-DP Local Edge-Attributed

This thesis Entire graph Edge-DP Local Edge-Attributed

Several studies (SALA et al., 2011; WANG; WU, 2013; XIAO et al., 2014; CHEN

et al., 2014; NGUYEN et al., 2015; IFTIKHAR et al., 2020; HUANG et al., 2020; QIN et al.,
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2017; GAO et al., 2018) have been made with either global DP or local DP to release a synthetic

graph under edge-DP guarantees. However, none of them consider the existence of attributes in

the graph structure.

In the context of graphs with attributes in its structure, (SEALFON, 2016; LI et

al., 2017; PINOT et al., 2018; WANG; LONG, 2019; FAN; LI, 2022; CHEN et al., 2022;

BRITO et al., 2023) proposed approaches for releasing either graph statistics or the entire graph

for weighted graphs under multiple scenarios, through global and local DP settings, and for

known and unknown graph topologies. Yet, Wei et al. (WEI et al., 2020) proposed the AsgLDP

framework to privately release node-attributed graphs under the LDP model, which may not

provide the desirable level of privacy to attributed graphs. Jorgensen et al. (JORGENSEN et al.,

2016) and Chen et al. (CHEN et al., 2020) proposed the TriCycLe and the C-AGM frameworks,

respectively, for releasing attribute graphs under a novel neighboring notion called Edge-Adjacent

Graphs within the global DP model. This neighboring definition considers that two graphs are

neighbors if they differ in the presence of a single edge or the attribute vector associated with a

single node. However, the privacy subject under this notion is the nodes’ edges and attributes,

which do not apply to edge-attributed graphs.

Finally, Liu et al. (LIU et al., 2020) proposed the PrivAG framework under a novel

neighboring definition for the LDP model. The authors defined the Attribute-wise Differential

Privacy notion, which considers that two graphs are neighbors if they differ in one attribute and

all related edges associated with this attribute. Although the privacy subject is the attributed

edges, this approach may cause severe data distortion since, in the worst case, it will be equivalent

to a node-DP notion. Additionally, PrivAG suffers from a limited range of analysis since the

framework does not release an entire synthetic graph. Instead, it releases only specific graph

statistics.

Differently, our work proposes PEG, a decentralized dynamic degree-based clustering

approach designed for privately releasing edge-attributed graphs under the notion of edge-LDP.

Our approach combines the characteristics of a novel encoding structure, called RANL, and the

clustering to improve the utility of the released edge-attributed graphs.
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4 THE PEG APPROACH

In this chapter, we present PEG (Privacy for Edge-attributed Graphs), our approach

for releasing edge-attributed graphs under local differential privacy guarantees while maintaining

the private graph useful for several analytics tasks. PEG is a multiphase approach in which each

user is responsible for privatizing their data locally using local differential privacy before sharing

it with the data curator. PEG is divided into four main phases: (i) Partitioning & Clustering; (ii)

Partition-Cluster Mapping; (iii) RANL Reporting; and (iv) Graph Post-Processing.

However, before explaining each phase, we introduce the Randomized Attribute

Neighbor List (RANL), a novel data structure for encoding edge-attribute graphs in the LDP

setting. The RANL is one of the main contributions of this thesis and is crucial for a complete

understanding of PEG.

Figure 17 presents an overview of the pipeline of the PEG approach. PEG receives

the users’ local graph as input and outputs a perturbed version of the original graph containing

all the users. Note that only the three initial phases consume the privacy budget since the graph

post-processing phase only modifies the private data, which does not compromise the users’

privacy. Detailed information regarding the RANL and each phase of PEG will be presented

below.

Figure 17 – An overview of the pipeline of the PEG approach.

Source: Elaborated by the author.
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4.1 Randomized Attribute Neighbor List

Some approaches have already been proposed to encode graph information under

the local DP setting, such as the Randomized Neighbor List (RNL) (QIN et al., 2017) and the

Randomized Attribute List (RAL) (WEI et al., 2020). In summary, the RNL is applied to encode

the users’ local neighborhoods in general graphs, i.e., composed only of nodes and edges, without

any additional information, like numerical or categorical, in either nodes or edges. In turn, the

RAL is applied to encode users’ attributes in the context of node-attributed graphs. However,

none of these strategies are suitable for encoding the users’ information, i.e., the relationships

along with their attributes, in the context of edge-attributed graphs. For this purpose, we propose

the Randomized Attribute Neighbor List (RANL).

The Randomized Attribute Neighbor List (RANL) consists of an encoding structure

through which each user can report its neighborhood locally, i.e., all the edges and their attributes

that form the user’s local graph. The RANL combines the key features of the Randomized

Neighbor List (RNL) and the Randomized Attribute List (RAL) encoding methods to suit our

context of edge-attributed graphs. The RNL consists of a =-length bit vector, where = is the

number of users in + , i.e. = = |+ |. The RNL of a user E8 is given by RNLE8 = [48,1, . . . , 48,=],

where 48, 9 ∈ {0, 1} denotes whether exists the edge 48, 9 ∈ � , i.e., if exists a connection between

users E8 and E 9 . Note that only the connection is considered, disregarding the existence of any

property on the edge. Consequently, the RAL is adequate for the context of node-attributed

graphs. It consists of a F-length bit vector, where F is the number of possible attributes. Then,

the RAL of a user E8 is given by RALE8 = [G8,1, . . . , G8,F], where G8, 9 ∈ {0, 1} denotes whether

exists the 9-th attribute of the user E8. It has been proven (QIN et al., 2017; WEI et al., 2020)

that given a privacy budget n , each user can perturb its RNL or RAL through the RR protocol

and send the perturbed data to the data collector through an LDP mechanism while satisfying

n-edge-LDP. Thus, the RANL definition is formally stated as:

Definition 14. (Randomized Attribute Neighbor List (RANL)). Given an edge-attributed graph

� = (+, �, -) and an user E8, the RANL of an user E8 is given by a ℎ-length bit vector in the

form of RANLE8 = [48,1,1, . . . , 48,1,C , . . . , 48,=,1, . . . , 48,=,C], where = = |+ | is the number of users

in + , C = |- | is the edge attribute domain size, ℎ = = · C, and 48, 9 ,: ∈ {0, 1} denotes whether exists

or not the edge between nodes E8, E 9 ∈ + associated with the attribute G: ∈ - .

Given a privacy budget Y within the RR protocol, the process of perturbing and
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Figure 18 – An example of the RANLs of the users E3 and E4 in the edge-attributed graph �
depicted in Figure 1.

Source: Elaborated by the author.

reporting the users’ RANLs with probabilities ? and @ satisfies n-edge-LDP since adding or

removing a single attributed edge will make two neighboring RANLs differ in only one bit. The

probabilities are given by ? = 4Y

1+4Y and @ = 1− ?, where ? denotes the probability of not flipping

a bit and @ is the probability of flipping a bit, respectively.

Another aspect is that the size of the RANL is proportional to the number of users

=. Also, graphs usually have a long-tailed degree distribution, meaning that users have low

degrees, i.e., few connections. In this scenario, the length of the RANL is long, and the list

contains significantly more zero values than values equal to one. Consequently, reporting the

RANL through the RR protocol may significantly increase the number of ones. To overcome this

issue, we have to devise a way to shorten the length of the RANL. The primary solution involves

reducing the user population to limit the number of connections each user can have. Then, we

propose a partitioning and clustering strategy where each user within a partition reports their

RANL with a length ℎ equal to =∗ · C, where =∗ is the number of users among the clusters in their

partition, rather than = · C. This approach enables more effective noise distribution among similar

nodes and consequently preserves the inherent structure and relationships within the released

graph.

Figure 18 presents an example of the RANLs of the users E3 and E4 in the edge-

attributed graph � depicted in Figure 1. Note that this graph has 10 nodes (= = 10) and two

possible edge attributes (C = 2), given by ‘‘AM’’ and ‘‘WR’’. Therefore, the length ℎ of the

presented RANLs is given by ℎ = = · C = 20. Only the array positions that correspond to a user’s

existing edges in � are assigned to 1, while the remaining positions are assigned to 0.
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4.2 Partitioning & Clustering

In this phase, the untrusted data curator first splits all users + = {E1, . . . , E=} into ?

random disjoint sets P = {%1, . . . , %?} of the same size, such that each user E8 ∈ + belongs to

one, and only one, partition % 9 ∈ P, and |% 9 | = b =? c ∀% 9∈P . Let |% 9 | be the size of the partition

% 9 . It is important to mention that, in this work, we assume the data curator has information

on the number of users (=) but does not know about any user, except that each user is identified

by a random identifier. In the cases where disjoint sets could not be of the same size (due to

particularities of the values of = and ?), consider |% 9 | = b =: c ∀% 9∈P , except for one of the partitions

that will be chosen to accommodate the remaining users, given by (= mod ?).

The next step performed by the data curator is the degree-based clustering. The main

idea behind this step is that users with high degrees, meaning many connections, tend to connect

with other users who also have high degrees. In short, consider a node E8. The degree of E8

consists of the number of connections involving E8. In the context of edge-attributed graphs, it

may be desirable to know not only the degree of E8 but also the degree of E8 considering only the

connections with a specific attribute. We detail these different notions of degree as follows.

Edge Property Degree. Let . :
8
= (H:

8,1, . . . , H
:
8,=
) be the relationship vector of a node E8 ∈ +

regarding the attribute G: ∈ - in an edge-attributed graph � = (+, �, -). If a node E8 is con-

nected to a node E 9 and an attribute G: is associated to this connection, i.e., 48, 9 ,: ∈ � , then

H:
8, 9

= 1, otherwise H:
8, 9

= 0. We define 3G:E8 as the edge property degree of a node E8 with property

given by
∑=
9=1 H

:
8, 9
. In summary, in an undirected graph, the edge property degree represents the

number of edges associated with a specific attribute connected to a given node. Then, we denote

XE8 = (3
G1
E8 , . . . , 3

GC
E8 ) as the edge property degree vector of a node E8.

Node Degree. Given an edge-attributed graph � = (+, �, -), We define 3E8 as the node degree

of a node E8 ∈ + given by
∑
G:∈- 3

G:
E8 . In summary, in an undirected graph, the node degree

represents the number of edges connected to a given node.

Releasing users’ degrees without privacy concerns can compromise their privacy.

The geometric mechanism (GHOSH et al., 2009) is an effective technique for perturbing discrete

function values. Then, to ensure edge-LDP, each user E8 ∈ + adds to their degree 3E8 a random

noise drawn from the two-sided geometric distribution�4><( Y1
2 ), where Y1 is the privacy budget
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allocated to this phase and 2 is the sensitivity of the degree function (YE et al., 2022).

To prove that the sensitivity of the degree function is 2, consider that the data curator

desires the degrees of two nodes E8, E 9 that report their degrees independently, such that E8, E 9 ∈ + ,

E8 ≠ E 9 , but E8 and E 9 share the same edge. Given that sharing the existence or absence of that

edge will contribute to both 3E8 and 3E 9 . In the most extreme case, where there are only nodes E8

and E 9 , and only one edge that connects them in �, 3E8 = 1 and 3E 9 = 1 indicate the existence of

this edge. If this edge is removed, both 3E8 and 3E 9 will decrease by 1, causing the sensitivity

of the node degree function to be 2. As DP and LDP consider that an adversary may possess

any background knowledge, we must consider the extreme case in which the data curator already

knows all edges except this one.

However, instead of requesting users to report only their degrees, our approach

captures their edge property degree vectors. The edge property degree vector holds much more

relevant information than merely the node degree. It holds information about the node degree per

edge property while also allowing us to derive the original node degree by summing up the edge

property degrees.

Instead of sharing the degrees with the data curator, each user E8 ∈ + shares a per-

turbed version of their edge property degree vectors XE8 , given by X̃E8 = (3
G1
E8 +�4><(

Y1
2 ), . . . , 3

GC
E8 +

�4><( Y1
2 )). Since the edges related to each edge property degree are non-overlapping, adding

or removing one edge from a user would change one, and only one, edge property degree of XE8
by 1. Therefore, by the DP parallel composition property, sharing the perturbed edge property

degree vector X̃E8 still satisfies Y1-edge-LDP.

Once the data curator collects all X̃E8 , he can derive the node degree of each user E8

by calculating 3̃E8 =
∑
G:∈- X̃E8 [G: ]. However, once every edge degree property has been queried

through the geometric mechanism, where the noise sample can assume positive or negative

values, the original edge property degree may be converted to a value lower than zero, which

is not plausible in practical scenarios. In this work, we consider that every user has at least

one connection, which leads to a node degree of at least one. For this purpose, the data curator

has to prior post-process the collected data before deriving the users’ degrees. Note that the

post-processing property of DP (DWORK; ROTH, 2014) ensures that any function can further

modify any data perturbed through a DP or LDP mechanism without harming the users’ privacy.

To prevent cases where a user’s node degree could be estimated as a value lower

than zero, the data curator adjusts the perturbed edge property degrees. This process consists of
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calculating the expected edge property degrees sum of each edge property and, then, using this

information to adjust the edge property degrees such that each edge property degree will have a

value higher than zero and the sum of the adjusted edge property degrees will be the same as the

expected edge property degrees sum. For instance, consider B̃: as the expected edge property

degrees sum of the edges attributed with G: ∈ - , given by B̃: =
∑
E8∈+ X̃E8 [G: ]. Then, for a user

E8 ∈ + , the adjusted edge property degree vector is given by X̄E8 , such that X̄E8 [G: ] ≥ 0 ∀G:∈- .

Additionally, the adjusted edge property degrees sum is given by B̄: = B̃: ∀G:∈- . Finally, the data

curator can derive the perturbed degree sequence q̄, where the perturbed degree of a user E8 is

given by q̄E8 = max(1, 3̄E8 ).

Finally, after collecting and adjusting the users’ node degrees, the data curator sorts

these degrees in descending order and groups the users into 2 clusters according to their corre-

sponding degrees. This approach ensures that users with similar degrees are grouped in the same

cluster. However, the users are not grouped into clusters of the same size. Instead, the criteria for

determining the size of each cluster is to ensure that each cluster has a similar degree mass. The

degree mass of a cluster consists of the sum of the node degrees of its belonging users.

Let Bq̄ =
∑
E8∈+ q̄E8 be the degree mass of the perturbed degrees, i.e., the sum of the

degrees. We define the maximum degree mass of each cluster B<0G by dividing the Bq̄ by the

number of desired clusters 2, such that B<0G =
B q̄
2
. Finally, we form the clusters by allocating the

users according to the descending degree order until the cluster’s mass constraint is not violated.

When the degree mass of a cluster reaches B<0G , or it is not possible to add the next available

user with the highest degree into the cluster without exceeding the B<0G limitation, the current

cluster stops receiving new users, and the next cluster starts being populated. Then, we define the

set of clusters C = {�1, . . . , �2}, such that each user E8 ∈ + belongs to one, and only one, cluster

� 9 ∈ C, and B� 9
≤ B<0G ∀� 9∈C, where B� 9

is the degree mass of the cluster � 9 . However, in

some cases, it may occur that some clusters could not reach the exact degree mass of B<0G . As a

consequence, the last cluster may have to accommodate more users than expected to compensate

for the underutilized degree mass by the other clusters, causing its degree mass to surpass the

B<0G . Example 1 illustrates the Partitioning & Clustering phase.

Example 1. Initially, consider the edge-attributed graph � in Figure 1 with = = 10, where

+ = {E0, . . . , E 9 }. Figure 19 presents how the partitioning and clustering procedures are

performed over the original graph. Suppose that the data curator desires to partition the users

into ? = 2 groups. In this example, all partitions have a size equal to =
?
= 5, meaning that
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Figure 19 – Partitioning & Clustering phase.

Source: Elaborated by the author.

all users were perfectly allocated into partitions of the same size. Since the users of each

partition are selected randomly, a possible partition set P is given by P = {%1, %2}, where

%1 = {E0, E1, E6, Eℎ, E 9 } and %2 = {E2, E3 , E4, E 5 , E8}, such that users of partition %1 were marked

with blue nodes, while users of partition %2 were marked with orange nodes. Now, consider that

the data curator desires to cluster the users into 2 = 3 groups. First, each user reports its edge

property degrees through the geometric mechanism. Then, the data curator estimates the users’

degrees. Note that the users E 5 and E 9 have reported all their edge property degrees as zero.

In these cases, the user degree is assigned to 1 since it is supposed that each user has at least

one connection. Thus, the data curator calculates the B<0G =
B q̄
2
= 24

3 = 8, to get the maximum

degree mass that each cluster may have. Finally, the clusters �1 = {E0, E1}, �2 = {E2, E3} and

�3 = {E4, E 5 , E6, Eℎ, E8, E 9 } are formed according to the descending order of the noisy degrees

and the B<0G constraint.
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4.3 Partition-Cluster Mapping

In this phase, the untrusted data curator aims to determine the cluster each partition

belongs to. The users within the partitions and clusters are already known. Each participant

within a partition is asked to indicate the cluster they are most likely to belong to based on their

connections. After collecting responses, a count is performed to determine the most suitable

cluster for the partition based on the majority vote. Instead of assigning clusters to individual

nodes, which would introduce excessive noise and destroy information, we consider the majority

cluster for the entire partition. This approach allows us to perform an unbiased estimation of

noisy counts, enabling us to infer the majority clusters with high fidelity and assign consistent

clusters to the partition.

The process of choosing the partitions’ clusters is done privately through an LDP

mechanism. In this case, the OUE is a suitable protocol since it is based on the unary encoding

principle, where each user’s 3-length bit vector will contain only one bit signed with one. Also,

the OUE parameters ? and @ are optimized to maintain as much information as possible in the

transferred information. Since only one bit is set to one and the remaining 3 − 1 bits are set to

zero, the OUE utilizes probability values of ? and @ that maximize the number of bits reported

as zero that were initially zero.

For each partition % 9 ∈ P, each user E8 ∈ % 9 sends a bit vector �E8 of length 2 (the

number of clusters), indicating the cluster �: to which they are most likely to belong. The :-th

bit vector position denotes whether E8 belongs or not to the cluster �: . Then, �E8 [:] = 1 when E8

states that belongs to �: , and �E8 [:] = 0 otherwise. Finally, the bit vector is perturbed and sent

to the data curator through the OUE protocol, ensuring Y2-edge-LDP.

After that, the data curator calculates the counts of each cluster by summing up the

bits of each vector cluster-wise. We denote ˜2>D=C
�:

% 9
=
∑
E8∈? 9

�E8 [�: ] the perturbed count of

the cluster �: in partition % 9 , where �E8 [�: ] is the bit in the vector of the user E8 that states the

presence, or absence, of E8 in �: . However, simply summing the perturbed bits does not reflect

the real counts since the perturbed bit vectors may contain more than one bit marked as one after

being randomized. Then, an unbiased estimation is applied to eliminate bias and obtain counts

that are closer to the actual values. We denote ¯2>D=C
�:

% 9
=

˜2>D=C
�:
%9
−(@ · |% 9 |)
?·@ the estimated count of

the cluster �: in partition % 9 , where |% 9 | is the number of users in the partition % 9 . Similarly

to the previous phase, some of the ¯2>D=C�:
? 9

may present negative values. In those situations,
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we adjust the overall counts such the negative values become ≥ 0, but the sum of the estimated

counts remains unchanged.

Once the counts are estimated, the data curator can assign the partition to a cluster.

Choosing the cluster with the highest count may not be suitable for long-tailed degree distribution

datasets, as this often results in selecting the least dense cluster formed by many users with the

lowest degrees. Such clusters do not adequately reflect the graph’s dominant relationships. To

overcome this issue, we propose a weighting function to adjust the estimated counts based on

the density of each cluster, combined with a percentile selection method. In Equation 4.1, we

present the weighting function, where F�:

% 9
is the weighted count of the cluster �: in partition % 9 ,

B�:
is the degree mass of �: , and |�: | is the number of elements in �: . Choosing the square root

prevents clusters from gaining additional advantages based on their size, ensuring that a slightly

larger cluster with a significantly higher estimated count still achieves a higher weighted count.

F
�:

% 9
= ¯2>D=C

�:

% 9
·
√
B�:

|�: |
(4.1)

Finally, after weighting the counts, the clusters for the partition are determined

by selecting those where the weighted count reaches the H-th percentile. This method allows

the assignment of more than one cluster to a partition, addressing the uncertainty associated

with clusters that have similar counts. This process ensures a more accurate and representative

clustering. The procedure is repeated until the clusters for all partitions are properly defined.

Example 2 shows how this phase is executed.

Example 2. Consider the edge-attributed graph � in Figure 1 and the partitions P and clusters

C in Figure 19, respectively. Suppose that the data curator desires to define the clusters of each

partition according to the 50th percentile. Figure 20 presents how the partition-clustering phase

is performed. First, for each partition, each user reports to which cluster it has more connections

through the OUE protocol. Then, the data curator estimates and weights the counts according

to Equation 4.1. Finally, the data curator selects the clusters with a weighted count at least

equal to the 50th percentile of all weighted counts. For partition %1, we set %12;DB = {�1, �2},

since the 50th percentile of the weighted counts F%1 = [17, 02, 11, 34, 0] = 11, 34. Similarly,

for partition %2, we set %22;DB = {�1, �2}, since the 50th percentile of the weighted counts

F%2 = [11, 34, 11, 34, 3, 26] = 11, 34. Cluster �3 was not allocated to represent any partition

since its count did not meet the minimum value stated by the 50th percentile.
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Figure 20 – Partition-Cluster Mapping phase.

Source: Elaborated by the author.

4.4 RANL Reporting

In this phase, the untrusted data curator aims to gather each user’s connections within

the graph. Each user reports their neighborhood locally, including all edges and their attributes

that form the user’s local graph. The local graph of a user comprises only the user node and

its adjacent nodes and edges. This approach allows the data curator to use the user reports to

reconstruct a graph that closely resembles the original one.

Once the users are partitioned and clustered, each user is supposed to encode its

RANL according only to the users present in the clusters of the user’s partition. Now, the new

size of a user’s RANL will be proportional to the size of the clusters of the user’s partition.

This solution avoids the addition of excessive bits flipped to one. Then, each user encodes its

RANL according to their respective partition’s clusters, randomizes it, and sends it to the data
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Figure 21 – RANL Reporting phase.

Source: Elaborated by the author.

curator, which gathers all the users’ RANLs to form a perturbed graph �′. The running example

3 illustrates this RANL reporting phase.

Example 3. Consider the edge-attributed graph � in Figure 1, the partitions P and clusters C

in Figure 19, and their respective partition-cluster mapping in Figure 20. Figure 21 presents

how the users of each partition build and report their RANLs through the RR protocol according

to the clusters of the partitions where they belong. For example, consider the user E0 ∈ + that

belongs to the partition %1. As the clusters of %1 are �1 ∪ �2 = {E0, E1, E2, E3}, the '�#!E0 is

formed only by regarding the connections between E0 and the elements of �1 ∪ �2.

4.5 Graph Post-Processing

In this last phase, the data curator performs post-processing techniques over the

perturbed graph �′ to fix users’ connection inconsistencies. The post-processing techniques are

enumerated as follows: (i) Edges Consistency Agreement; (ii) Edge Property Degrees Adjustment;

and (iii) Disconnected Nodes Rewiring.
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4.5.1 Edges Consistency Agreement.

We initiate this stage by removing the self-edges from �′ that may have arisen in the

users’ perturbed RANLs. In this work, we assume that edge-attributed graphs do not have edges

that connect a node to itself. The next step consists of validating whether an edge truly exists

or not. For instance, consider two users E8, E 9 and an edge property G: . The edge 48, 9 ,: is only

considered to exist if '�#!E8 [48, 9 ,: ] = '�#!E 9 [4 9 ,8,: ] = 1. Otherwise, if the edge is present

only in one of these RANLs, the edge is removed from the released private graph �′.

This double-check is essential for maintaining the graph’s consistency and improving

the data utility since we are dealing with undirected graphs. Then, we have to ensure that both

related nodes report the existence of the same edge. Also, since the probability of keeping a truly

bit one is higher than flipping a bit from zero to one, it is much more plausible that an edge only

exists when it appears in the RANLs of both involved nodes.

4.5.2 Edge Property Degrees Adjustment.

In this stage, we use the noisy edge property degrees obtained in the first phase of

PEG (Section 4.2) to adjust the users’ edge property degrees according to the noisy information

by randomly adding and removing edges as necessary. This adjustment is necessary because the

RR protocol tends to add extra edges to the users’ RANLs and, consequently, to the perturbed

graph �′.

4.5.3 Disconnected Nodes Rewiring.

It is worth mentioning that some users may present all edge property degrees equal

to zero after reporting it to the data curator. This is expected to happen especially when facing

datasets with long-tailed degree distribution, where an expressive percentage of the users have

degrees closer to zero. In these cases, some users may have their degrees estimated as zero after

sending it to the data curator.

However, in practical scenarios, there are no disconnected nodes, i.e., each user is

expected to have at least one connection. Thus, for each user E8 ∈ + with all edge property

degrees equal to zero, a random edge 48, 9 ,: is added to �′, ensuring that E8 ≠ E 9 and the edge

property G: is sampled proportionally to the edge properties present in �′.

Example 4 illustrates this post-processing step.
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Figure 22 – Post-Processing phase.

Source: Elaborated by the author.

Example 4. Consider the users RANLs reported in Figure 21. Figure 22 presents how the

graph is created through the RANLs as well as how the post-processing step is applied. We

exemplify the application of the post-processing steps from the edges consistency agreement until

the disconnected nodes rewiring, when the perturbed edge-attributed graph �′ = (+, �′, -) is

released.

4.6 The PEG Algorithm

The PEG algorithm1, detailed in Algorithm 1, expects as input an edge-attributed

graph � = (+, �, -), the number of partitions ?, the number of clusters 2, the y-th percentile

value ?_E0;D4, and the privacy budget Y. The output of PEG is a private version of �, given by

�′ = (+, �′, -).

In line 1, the privacy budget Y is split into Y1 (clustering), Y2 (partition-cluster

mapping) and Y3 (RANL reporting), such that Y1 + Y2 + Y3 = Y. In line 3, the set of partitions P

are created, such that |P | = ?. Next, each user begins to report its edge property degrees through

the geometric mechanism, with U =
Y1
2 . In lines 4-10, the data curator aggregates and estimates

the users’ noisy edge property degrees to build the set of clusters C, such that |C| = 2. Afterward,

the data curator adopts the partition and cluster information to perform the partition-cluster

mapping. For each partition, each user reports its preferred cluster through the OUE protocol
1 The source code and other artifacts are available at https://github.com/andreluiscm/peg-ldp
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Algorithm 1: PEG (Privacy for Edge-attributed Graphs)
Input: Edge-attributed graph � = (+, �, -), # partitions ?, # clusters 2, H-th percentile

?_E0;D4, privacy budget Y
Output: Perturbed edge-attributed graph �′ = (+, � ′, -)

1 Y1, Y2, Y3 ← SplitPrivacyBudget(Y);
2 =← |+ |; C ← |- |;

// Partitioning & Clustering phase
3 P ← BuildPartitions(+, ?);
4 for E8 ∈ + do
5 for G: ∈ - do
6 3̃

G:
E8 ← 3

G:
E8 + �4><(

Y1
2 );

7 for G: ∈ - do
8 3̄G: ← AggregateEdgePropertyDegrees(3̃G:E8 , . . . , 3̃

G:
E= );

9 q̄← EstimateNodeDegrees(3̄G1 , . . . , 3̄GC );
10 C ← BuildClusters(q̄, 2);

// Partition-Cluster Mapping phase
11 for % 9 ∈ P do
12 for E8 ∈ % 9 4;4<B

do
13 ˜2;DB%9

E8
← OUE_Protocol(E8 , C, Y2);

14 ˜2;DB%9 ← AggregateClusters( ˜2;DB%9

E8
for E8 ∈ % 9 4;4<B

);
15 ¯2;DB%9 ← EstimateClusters( ˜2;DB%9 );
16 ¯2;DB%9 ← WeighClusters( ¯2;DB%9 );
17 ¯2;DB%9 ← GetTopPercentile( ¯2;DB%9

, ?_E0;D4);
18 % 9 2;DB

← ¯2;DB%9 ;

// RANL Reporting phase
19 for % 9 ∈ P do
20 for E8 ∈ % 9 4;4<B

do
21 '�#!E8 ← BuildRANL(E8 , % 9 2;DB

);
22 ˜'�#!E8 ← RR_Protocol('�#!E8 , Y3);

// Post-Processing phase
23 � ′ ← AggregateRANLs( ˜'�#!E8 , . . . ,

˜'�#!E=);
24 � ′ ← AdjustEdgesConsistency(� ′);
25 � ′ ← AdjustEdgePropertyDegrees(� ′, 3̄G1 , . . . , 3̄GC );
26 � ′ ← AdjustDisconnectedNodes(� ′, 3̄G1 , . . . , 3̄GC );
27 return �′ = (+, � ′, -);

with Y2 in lines 11-13. Subsequently, the data curator aggregates and estimates the cluster counts

using a weighting function and percentile selection, as described in lines 14-18, to determine the

partition’s clusters. Then, in lines 19-22, each user builds its RANL according to the partition

clusters to which it belongs and reports the RANL through the RR protocol with Y3. Additionally,

in lines 23-26, the data curator aggregates the users’ RANLs to construct the edges of the DP

graph. Additionally, it performs all the post-processing steps on these edges. Finally, the DP

edge-attributed graph �′ = (+, �′, -) is released in line 27.
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4.7 Computational Cost

The computational cost of the Partitioning & Clustering phase (Algorithm 1 – lines

3-10) consists of the time to partition the users + in the original graph � into a set of partitions

P, report and estimate the users’ degrees, and build the set of clusters C according to their sorted

node degrees, which implies in an expected time $ ( |+ | · ;>6 |+ |), which is the worst time spent

in the sorting procedure. The running time complexity of the Partition-Cluster Mapping phase

(Algorithm 1 – lines 11-18) is $ ( |+ | · |C|) since each user has to indicate to which cluster it is

more connected within the existing clusters. The RANL Reporting phase (Algorithm 1 – lines

19-22) runs in $ ( |+ | · |C∗ | · |- |) where |C∗ | is the size of the largest cluster and |- | is the number

of possible attributes. Finally, the Post-Processing phase (Algorithm 1 – lines 23-26) complexity

is given by $ ( |+ | · |C∗ | · |- |). Therefore, the overall complexity of PEG is $ ( |+ | · |C∗ | · |- |).

4.8 Privacy Analysis

The threat model for PEG considers that the adversary may possess background

information about the edges and their attributes and may use this information to infer private

details from the released graph �′. PEG aims to ensure that the adversary cannot determine with

high confidence whether a specific edge (with its attribute) is present or absent. We accomplish

this by employing local differential privacy and implementing adjustment steps. The adjustments

made by the untrusted curator are considered post-processing steps, which still maintain the

formal guarantees of LDP (Theorem 4) and consequently do not leak information.

As previously mentioned, PEG is divided into four main phases. However, not all of

these phases (such as partitioning and post-processing steps) consume a privacy budget. The

partitioning step utilizes the known number of users = (public information). On the other hand,

the post-processing steps modify the private graph �′ and do not compromise privacy.

The remaining steps of PEG require privacy protection since they require that users

send their data privately through LDP mechanisms. The clustering step uses Y1 to locally report

the user’s edge property degrees through the geometric mechanism. Although each user is

supposed to send multiple reports, one for each edge property, these reports are performed in

parallel since the degree of one edge property is independent of the degree of the remaining

edge properties. Then, by the parallel composition of DP, the clustering step satisfies Y1-edge-

LDP. In the partition-cluster mapping, the users of each partition report to which cluster they
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belong through the OUE protocol. Reporting data through the OUE protocol requires a privacy

budget Y2. Since each user sends this information just once, this step consumes only Y2 and

satisfies Y2-edge-LDP. Finally, the RANL reporting step is performed similarly to the previous

one. Each user sends its RANL through the RR protocol, which also requires a privacy budget

Y3. As the RANL of each user is reported just once, this step consumes only Y3 and satisfies

Y3-edge-LDP. Finally, by the DP sequential composition (Theorem 5), we can state that PEG

satisfies Y-edge-LDP, where Y = Y1 + Y2 + Y3.

4.9 Summary

In this chapter, we presented the PEG approach, an innovative method for releasing

edge-attributed graphs under LDP guarantees. PEG was structured into four main phases: Parti-

tioning & Clustering, Partition-Cluster Mapping, RANL Reporting, and Graph Post-Processing.

We began the chapter by introducing RANL, a novel data structure for effectively

encoding edge-attribute graphs. Following this, we detailed the partitioning & clustering phase,

where nodes were grouped into partitions and clusters. In the partition-cluster mapping phase,

we assigned partitions to clusters in a differentially private manner. This was followed by the

RANL reporting phase, where users privately reported their local graphs using the RANL data

structure. The final phase, graph post-processing, ensured consistency and improved the utility

of the released graph through several techniques. Finally, we also outlined the PEG algorithm,

highlighting its computational cost and privacy guarantees.
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5 EXPERIMENTAL EVALUATION

In this chapter, we empirically evaluate the effectiveness of PEG on four real-world

edge-attributed graphs. The experiments were carried out in Linux 64-bit, Intel(R) Core(TM)

i7-7820X CPU @ 3.60GHz CPU and 128GB RAM. We implemented our approach in Python

with the graph-tool (PEIXOTO, 2014) and Gurobi (Gurobi Optimization, LLC, 2024) packages.

We repeated each experiment 10 times for each dataset and reported the average results. The

number of partitions ? and the number of clusters 2 were set according to the dataset structure,

such that ? = b =
1,000c and 2 = b

3√=c, where = is the number of nodes in the dataset. It is worth

mentioning that there does not exist an immediate solution for determining the optional values

for ? and 2, respectively. For instance, we adopt some known heuristics to aid the choice of

these parameters. We set ? = b =
1,000c since we need a reasonable amount of users to perform a

good estimation of the reported values (ERLINGSSON et al., 2014). Then, 1, 000 seems to be

a great choice. In turn, we used a similar heuristic presented in (JORGENSEN et al., 2016) to

set 2 = b 3√=c, which states that in most scenarios, the degrees of a user within a graph will not

exceed b 3√=c. Then, we assume that in our clustering scenario, the extreme case consists of a

user that has one connection with users of every other cluster.

We varied the privacy budget Y in the experiments according to Y ∈ {0.1, 0.5, 1.0},

aligning with the range commonly used in other studies in this field, which assures a significant

level of privacy. We argue that choosing the most adequate Y for an application is a challenging

task that demands efforts from several experts (BUREAU, 2021) and is out of the scope of this

work. Furthermore, as PEG is a multiphase algorithm, we had to split the privacy budget among

the phases that use private mechanisms to ensure that the overall privacy constraint is not violated.

The allocation of the privacy budget Y for the clustering (Y1), partition-cluster mapping (Y2), and

RANL reporting (Y3) phases, and the choice of the H-th percentile, are is explained in Section 5.3.

5.1 Datasets

We conducted experiments over four real-world undirected edge-attribute network

datasets from different domains and characteristics. The DBLP1 (PANDHRE et al., 2016; LI et

al., 2023) and Netscience2 are co-authorship datasets, while Yeast Landscape2 and Pierre Auger2

are genetic datasets. Table 2 summarizes their characteristics. ‘‘EPP’’ is the abbreviation for
1 https://github.com/supriya-gdptl/HCODA/tree/master/data
2 https://manliodedomenico.com/data.php
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edge property proportions, detailed in Section 5.4.2.

Table 2 – Characteristics of the edge-attributed graph datasets.
DBLP Netscience Yeast Landscape Pierre Auger

# Nodes 41,427 14,065 4,458 514
# Edges 124,214 59,026 8,450,408 7,153
# Edge Properties 4 13 4 16
Degree0E6 5.99 8.39 3,791.12 27.83
Degree<0G 358 361 5,044 123
St. Deviation�%% 0.13 0.07 0.24 0.18
Domain Co-Authorship Co-Authorship Genetic Genetic

- DBLP: This is a sparse network that is widely used in scientific research for analyzing

co-authorship networks. It comprises bibliographic information on major computer science

journals and proceedings. The nodes in this dataset represent authors, while the edges

denote co-authorship relationships between them. Each edge is attributed to the research

area of the published work. The research areas are restricted to Data Mining (DM),

Databases (DB), Information Retrieval (IR), and Machine Learning (ML). This dataset

is particularly valuable for studying collaboration patterns and the structure of academic

communities.

- Netscience: This dataset consists of a comprehensive network that maps the co-authorship

relationships between scientists working in the field of network theory. The network is

undirected, unweighted, and mostly sparse, where nodes are individual scientists and

edges represent co-authorship of scientific papers. This dataset is valuable for studying

collaboration patterns, community detection, and the overall structure and dynamics of

scientific collaboration networks.

- Yeast Landscape: This is a dense network that provides a comprehensive view of the

genetic and protein interactions within the yeast species Saccharomyces Cerevisiae. The

dataset is structured as a multiplex network, where each layer represents different types of

interactions, such as physical association, direct interaction, and genetic interaction. This

dataset is essential for studying the network biology of yeast and can be used for various

analyses, including network structure, dynamics, and functional module identification.

- Pierre Auger: This network occupies a mid-term position between sparse and dense

networks. The dataset represents a multiplex network derived from the Pierre Auger Obser-

vatory, which is used to study ultra-high-energy cosmic rays. The dataset captures various
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types of interactions, such as collaboration networks between scientists and the complex

network of scientific contributions linked to the observatory’s research. This dataset is

particularly valuable for analyzing the collaborative structure within large-scale scientific

experiments and the dissemination of knowledge within the astrophysics community.

The purpose of selecting datasets from different domains and sparsities is to evaluate

how our proposed approach, PEG, behaves under different scenarios.

5.2 Baselines

To the best of our knowledge, no prior work exists on the DP release of entire edge-

attributed graphs. Therefore, we compare our approach with three other methods based on

PEG. We propose the following baselines: (i) RANL-random, (ii) RANL-consensus, and (iii)

PEG-random. We did not compare PEG with PrivAG (LIU et al., 2020) as this approach is based

on another privacy definition, denoted attribute-wise LDP, and also does not release the entire

graph, only a few graph statistics.

5.2.1 RANL-random

In this approach, only the RANL reporting and post-processing phases are considered.

The RANL-random approach builds a perturbed graph based only on the reported users’ RANLs.

In this approach, the whole privacy budget is used to report the RANL of each user, with a

length ℎ = |+ | · |- |. Also, the edges consistency agreement post-processing step is performed

randomly, i.e., this approach chooses randomly from which RANL the edge information is true.

For example, consider two users E8, E 9 ∈ + and an edge property G: ∈ - . The edge 48, 9 ,: is

considered to exist if '�#!E8 [48, 9 ,: ] = 1 or '�#!E 9 [4 9 ,8,: ] = 1. Then, in the RANL-random

approach, we consider that the true connections information between E8 and E 9 has come from

any of their RANLs.

5.2.2 RANL-consensus

RANL-consensus and RANL-random are similar approaches. They differ only in the

edges consistency agreement post-processing step. Differently from the RANL-random, which

chooses randomly from which RANL the edge information is true, the RANL-consensus uses

the same idea as PEG. For example, consider two users E8, E 9 ∈ + and an edge property G: ∈ - .
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The edge 48, 9 ,: is only considered to exist if '�#!E8 [48, 9 ,: ] = '�#!E 9 [4 9 ,8,: ] = 1. Then, in the

RANL-consensus approach, we consider that the true connections information between E8 and E 9

is only considered to exist if they are present in both RANLs simultaneously.

5.2.3 PEG-random

The PEG-random approach is quite similar to PEG, but the difference is that it does

not consider any degree information. Thus, the clustering is made randomly, the same way as in

the partitioning. Also, only the cluster with the highest count (top-1) is chosen to be the cluster

of the partition, disregarding the use of the weighting function. Finally, since there are only two

private phases in PEG-random, the privacy budget allocation is split equally, 50% of the privacy

budget Y for both the partition-cluster mapping and RANL reporting phases. Note that there are

no degree adjustments in any of the baselines.

5.3 Privacy Budget Allocation

The use of the total privacy budget Y needs to be carefully allocated in each phase

of PEG. Recall that our proposed approach divides the entire budget into three parts: Y1 to the

Partitioning & Clustering phase, Y2 to the Partition-Cluster Mapping phase, and Y3 to the RANL

Reporting phase, such that Y1 + Y2 + Y3 = Y. However, the PEG approach is not only dependent

on the privacy budget allocation. The H-th percentile, which is required to determine the clusters

of the partitions in the Partition-Cluster Mapping phase, also impacts the quality of the released

graph. For this matter, the H-th percentile needs to be carefully established.

In order to determine which is the best privacy budget allocation and the H-th per-

centile, this experiment empirically measures how the original graph � and the perturbed one

�′ are similar for different privacy budget and percentile value combinations, according to the

Jaccard Similarity (JS), which is presented in detail in Chapter 5. This analysis is shown in

Figures 23, 24, 25, and 26. In this experiment, we set Y = 1.

For the DBLP, Netscience, and Pierre Auger datasets, the similarity values are higher

when Y1 ≈ 0.5, Y2 ≈ 0.1, Y3 ≈ 0.4, and H ≈ 90. It makes sense to use this combination of

parameters for datasets of these characteristics, which are not very dense. The highest amounts

of budget are allocated to Y1 and Y3, which are responsible for the most sensitive phases. The

node degrees used to post-process the perturbed graph are queried with Y1, while the RANL
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is reported with Y3. Note that the length of the reported RANL impacts the data quality and

depends on the cluster selection, which depends on the H-th percentile. As H ≈ 90, the length of

the reported RANL tends to be shortened, improving the data utility in non-dense graphs. In

turn, the Y2 is used for identifying which clusters have more connections with the nodes within

a partition, and since this acts as a voting composed by many users, it does not require a high

budget.

In counterpart, for the Yeast Landscape dataset, the similarity values are higher

when Y1 ≈ 0.1, Y2 ≈ 0.1, Y8 ≈ 0.8, and H ≈ 10. It is also expected and makes sense to use

this combination of parameters for very dense datasets. Since the Yeast Landscape is a very

dense dataset, assigning a low budget to Y1 to query the node degrees will not harm the degree

information since the node degrees tend to be much higher than the noise magnitude. Therefore,

as each user has many edges, it is desirable to allocate more budget to Y3 to maintain as much

information as possible across the user’s RANL. Additionally, as H ≈ 10, it means that almost

all possible clusters are relevant to represent the partitions. In other words, since the graph is

very connected, every cluster is considered relevant for having many connections with the users

within a partition.

5.4 Utility Analysis

In this section, we conduct various analyses to evaluate the effectiveness of the graphs

released by PEG in terms of utility.

5.4.1 Degree Distribution

To evaluate how well �′ (the released graph) captures the degree distribution of the

original edge-attributed graph �, we applied the Kolmogorov-Smirnov (KS) statistic, which

quantifies the maximum distance between two-degree distributions. Then, let�D<(� and�D< ˜(�

denote the cumulative distribution functions estimated from the sorted degrees of the � and �′,

respectively. Then, the KS((�, ˜(�) can be calculated according to Equation 5.1. The lower the

KS statistic, the higher the data utility.

KS((�, ˜(�) = <0G3 |�D<(� (3) − �D< ˜(� (3) | (5.1)

Figure 27 shows the results for the degree distribution. We can observe that PEG

outperforms all baselines in almost all datasets. This behavior is comprehensive since PEG is
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Figure 23 – Jaccard Similarity (JS) between the original and the perturbed graphs, � and �′,
with different privacy budget allocations and percentile values for the DBLP dataset.
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Source: Elaborated by the author.

the only approach with an additional degree correction step. The exception occurs in the DBLP,

Netscience, and Pierre Auger datasets for Y = 0.1, where PEG-random slightly surpasses PEG.

This occurs because these datasets are more sparse than dense graphs. Thus, many edge property

degrees that are originally zero are estimated to different values after being perturbed, harming

the graph’s degree distribution. Also, many non-zero edge property degrees are too small, which

can make them become zero after being perturbed. Although the Pierre Auger dataset also has

many edge properties (16 in total), this graph is much denser than DBLP and Netscience, which

makes this graph less sensitive to the estimation of the noisy degrees.

5.4.2 Edge Property Proportions

To evaluate how well the edge property proportions (EPP) of � are being maintained

in �′, we measured the Mean Absolute Error (MAE) of the edge property proportions between �
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Figure 24 – Jaccard Similarity (JS) between the original and the perturbed graphs, � and �′,
with different privacy budget allocations and percentile values for the Netscience

dataset.
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Source: Elaborated by the author.

and�′. Let ?A>?�E8 = (?A>?
G1
E8 , . . . , ?A>?

G:
E8 ) be the edge property proportions of the node E8 ∈ + ,

such that ?A>?G:E8 denotes the proportion of adjacent edges of E8 associated with the property

G: ∈ - . The proportion is calculated by dividing the number of adjacent edges associated with

G: by the degree of E8. Then, we calculate the EPP"�� (�,�′) according to Equation 5.2. The

lower the EPP"�� , the higher the data utility.

EPP"�� (�,�′) =
∑
E8∈+

| |?A>?�E8−?A>?
�′
E8
| |1

|- |
|+ | (5.2)

Figure 28 shows the results for the edge property proportions. We observe that PEG

outperforms all baselines. Similarly to the degree distribution analysis, the exception occurs

in the Netscience dataset for similar reasons. According to Table 2, the standard deviation of

the edge property proportions in the Netscience dataset is considerably low. It means that this
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Figure 25 – Jaccard Similarity (JS) between the original and the perturbed graphs,� and�′, with
different privacy budget allocations and percentile values for the Yeast Landscape

dataset.
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Source: Elaborated by the author.

dataset does not have a dominant edge property, i.e., the edge property proportions within the

dataset are too close. Additionally, the graph’s sparsity makes preserving the true edge property

degrees significantly more challenging. For the remaining datasets, we have much more available

information to improve the EPP. Although the DBLP dataset is also very sparse, it only has 4 edge

properties, with a dominant edge property and a considerable number of nodes, which makes the

estimation more accurate. The Yeast Landscape and Pierre Auger datasets benefit from being

denser graphs, having a clear dominant edge property and an average degree expressively higher

than the number of edge properties.
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Figure 26 – Jaccard Similarity (JS) between the original and the perturbed graphs, � and �′,
with different privacy budget allocations and percentile values for the Pierre Auger

dataset.
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Source: Elaborated by the author.

5.4.3 Number of Edges

This analysis is extremely useful for evaluating whether the released graph �′ main-

tains the magnitude of the edges of the input graph �. For this purpose, we measured the Mean

Relative Error (MRE) of the number of edges (NE) between � and �′. Then, we can define

NE"'� (�,�′) according to Equation 5.3, where |� (�) | and |� (�′) | denote the number of

edges in � and �′, respectively. The lower the NE"'� , the higher the data utility.

NE"'� (�,�′) =
| |� (�) | − |� (�′) | |

|� (�) | (5.3)

Figure 29 shows the results for the number of edges. We can observe that PEG

outperforms all baselines for almost all scenarios. The exception occurs only in the Pierre Auger
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Figure 27 – Comparison of PEG and the baselines for the Degree Distribution analysis. The
plots show the average Kolmogorov-Smirnov (KS) statistic after 10 runs, where
Y ∈ {0.1, 0.5, 1.0}. The x-axis is the Y, while the y-axis is the KS statistic. Notably,
the performance of PEG achieves better results in almost all scenarios, except for

sparse networks when Y is too low.
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dataset for Y = 1.0. Note that the noisy node degrees are estimated based on the noisy edge

property degrees of each user. Since the Pierre Auger dataset has a high number of edge properties

with a dominant one, many users’ edge property degrees are expected to be strongly harmed by

the noise introduced. Small edge property degrees may suffer from the noise magnitude and

can flip to zero or a considerably high value. Then, in these cases, the edge property degrees

post-processing step may perform inaccurately. In counterpart, although the PEG-random does

not have an edge property degree adjustment step, it outperforms PEG in these datasets with many

edge properties due to the benefits of the clustering step. Even though the clustering is performed

randomly, the length of the RANL is expressively reduced compared with the RANL-random and

RANL-consensus baselines. Then, the perturbed graph tends to have much fewer noisy edges

added, which compensates for the reduced length to build a perturbed graph with a number of
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Figure 28 – Comparison of PEG and the baselines for the Edge Property Proportions (EPP)
analysis. The plots show the Mean Absolute Error (MAE) after 10 runs, where
Y ∈ {0.1, 0.5, 1.0}. The x-axis is the Y, while the y-axis is the MAE. Notably, the
performance of PEG achieves better results in almost all scenarios, except for sparse

networks with many edge properties when Y is too low.
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edges more similar to the original one. Finally, RANL-random and RANL-consensus baselines

suffer from the length of the '�#!. In these approaches, the length of the RANL is equal to

|+ | · |- |, which leads to extremely noisy RANLs.

5.4.4 Graph Similarity

This analysis consists of a general metric that compares two graphs with different

edges and properties. We applied the Jaccard Similarity (JS), which quantifies how similar two

graphs are in terms of their original connections. We define JS(�,�′) according to Equation

5.4, where � (�) and � (�′) denote the set of edges in � and �′, respectively. The higher the JS,

the higher the similarity and, consequently, the data utility.

JS(�,�′) = |� (�) ∩ � (�
′) |

|� (�) ∪ � (�′) | (5.4)
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Figure 29 – Comparison of PEG and the baselines for the Number of Edges analysis. The plots
show the Mean Relative Error (MRE) after 10 runs, where Y ∈ {0.1, 0.5, 1.0}. The
x-axis is the Y, while the y-axis is the MRE. Notably, the performance of PEG
achieves better results in almost all scenarios, except for networks with a dominant

edge property among a few edge properties when Y is too low.
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Figure 30 shows the results for the graph similarity. Note that PEG outperforms

all baselines in almost all datasets. The exception occurs in the Yeast Landscape graph, where

PEG starts to lose for the RANL-random and RANL-consensus after reaching an Y = 1.0. This

behavior can be attributed to the specific characteristics of the Yeast Landscape dataset, which

is very dense and has a high average degree. When applying PEG, the clustering phase takes

only the clusters with weighted counts above the H-th percentile to be the clusters of the partition.

This clustering criterion may lose many existing edges between the partition’s nodes and nodes

from other clusters that have not been chosen. For this purpose, the RANL-random and RANL-

consensus baselines perform better when Y starts to grow. Since the dataset is very dense and

these approaches only use perturbed RANLs to build the private graph, a large portion of the

RANLs already consists of true edges, leaving little room for adding false edges. For less dense
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Figure 30 – Comparison of PEG and the baselines for the Graph Similarity analysis. The plots
show the Jaccard Similarity (JS) after 10 runs, where Y ∈ {0.1, 0.5, 1.0}. The x-axis
is the Y, while the y-axis is the JS. Notably, the performance of PEG achieves better
results in almost all scenarios, except for dense networks, when Y becomes higher.
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datasets, PEG outperforms by shortening the length of the RANL during the clustering phase.

By reducing the length, fewer false edges are introduced into the perturbed RANL, allowing PEG

to preserve more original edges compared to the baselines.

5.4.5 Community Similarity

In graph analytics, communities are extremely relevant since they help us understand

network complexities. Then, to evaluate the community similarity between � and �′, we define

an optimization function that maximizes the number of nodes in � and �′ that belong to the

same communities. The motivation for using an optimization function relies on the fact that: (i)

� and �′ may have a different number of communities and (ii) let �"�
E8

and �"�′
E8

denote the

label of the community assigned to the user E8 in � and �′, respectively, there are no guarantees

that E8 remained in the same community, even though the labels �"�
E8
= �"�′

E8
. It may happen
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since the communities in � and �′ may be labeled differently.

However, community detection algorithms were not formerly designed for edge-

attributed multigraphs, i.e., more than one edge connecting the same two nodes but with different

attributes. These algorithms expect a graph with node attributes or one attributed edge. We then

redesigned our graphs so that each edge has a weight. Let ?A>?� = (?A>?G1 , . . . , ?A>?G: ) |- |

be the edge property proportions of �, such that ?A>?G: denotes the proportion of edges asso-

ciated with the property G: ∈ - in �. Also, let 2>==�E8 ,E 9 = (2>==
G1
E8 ,E 9 , . . . , 2>==

G:
E8 ,E 9 ) |- | be the

connection intentions of E8, E 9 ∈ + in �, such that 2>==G:E8 ,E 9 = 1 if the edge 48, 9 ,: ∈ � in �, and

0 otherwise. Therefore, we can define F486ℎC�48, 9 =
∑(?A>?� � 2>==�E8 ,E 9 ) to assign a weight to

each edge 48, 9 , where 48, 9 refers to the connection between nodes E8 and E 9 .

Once each pair 48, 9 has been assigned with their corresponding weights, we apply the

stochastic block model (ABBE, 2018) to find graph communities. This process of weighting and

discovering the communities is repeated for the graph � and its private version �′. However, as

mentioned above, there are no guarantees that the number of communities of � and �′ is the

same. For this purpose, we model an optimization function to maximize the number of nodes

that belong to the same community in � and �′ simultaneously.

maximize / =

I∑
8=1

Ĩ∑
9=1

B2>A48, 9 · G8, 9

s.t.
I∑
8=1

G8, 9 = 1 ∀ 9≤Ĩ

Ĩ∑
9=1
G8, 9 = 1 ∀8≤I

G8, 9 ≥ 0 ∀8≤I;∀ 9≤Ĩ

(5.5)

Due to the constraints of our problem, we modeled it as a variant of the assignment

problem (KUHN, 1955), where the goal is to find the best worker for each task, such that each

worker can only execute one task, and each task is executed by one worker, while the objective

function is minimized or maximized. In our problem, we can consider that the communities of �

are the workers, while the communities of �′ are the tasks. Our goal is to determine which pair

of communities of � and �′ maximize the objective function / in Equation 5.5. We denote I

and Ĩ as the number of communities of � and �′, respectively. In addition, B2>A48, 9 refers to

the number of nodes that belong to the i-th and 9-th communities of � and �′, simultaneously,
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given by �"�
B8

and �"�′
B 9

, respectively. Since �"�
B8

and �"�′
B 9

are subsets of + , we applied an

adapted Jaccard Similarity (JS) to calculate the B2>A48, 9 = |�"�
B8
∩ �"�′

B 9
|.

Figure 31 shows the results for the community similarity. We can observe that PEG

does not dominate the baselines in all datasets. It happens due to the particularities of some

datasets. For the Netscience dataset, PEG slightly loses for the RANL-consensus when Y = 0.1

since this dataset is very sparse and also has an average degree smaller than the number of

edge properties. This characteristic leads PEG to query the edge property degrees inaccurately,

which can harm the edge property degree adjustment step and, consequently, form unexpected

communities. Differently, PEG is drastically affected in the Yeast Landscape. However, it is

already expected since this dataset is very dense. Although the edge property degrees are queried

accurately, the clustering phase may cause the loss of many original connections, which are

further randomly rewired according to the degrees, leading to inaccurate communities. For the

remaining datasets, whose average degree is higher than the number of edge properties and which

are not too dense, PEG outperforms due to the clustering phase’s improvements by shortening

the length of the RANL. By reducing the length, the number of false edges introduced into the

perturbed RANL is significantly smaller. Therefore, PEG can maintain many more original edges

when compared to the baselines.

5.5 Summary

In this chapter, we conducted an extensive experimental evaluation of our proposed

approach, PEG, using four real-world edge-attributed graph datasets, DBLP, Netscience, Yeast

Landscape, and Pierre Auger, of different domains. Our experiments aimed to assess the utility

and effectiveness of PEG in maintaining the structural properties of the original graphs while

providing strong privacy guarantees under LDP.

Throughout the experiments, we analyzed several aspects, including the degree dis-

tribution, edge property proportions, the number of edges, and graph and community similarities.

Our findings demonstrated that PEG generally outperforms baseline methods in most scenarios,

mainly in non-extreme datasets, i.e., too sparse or too dense, where PEG surpasses the baselines

in all scenarios.

However, in highly dense datasets, PEG’s performance was slightly compromised

due to the inherent complexities and the high average degrees, which affected the accuracy of the

discovered communities. Despite this, PEG is still competitive when compared to the baselines
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Figure 31 – Comparison of PEG and the baselines for the Community Similarity analysis. The
plots show the score according to an optimization function, i.e., the number of nodes
that remained in the same communities in the original graphs and in their perturbed
versions after 10 runs, where Y ∈ {0.1, 0.5, 1.0}. The x-axis is the Y, while the y-axis
is the score. Notably, the performance of PEG achieves better results in almost all

scenarios except for dense networks.
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and outperforms them in the major scenarios.

Overall, the experimental results confirmed that PEG is a robust approach for privately

releasing edge-attributed graphs, achieving a good balance between privacy and data utility across

various graph analyses. Our evaluation highlights the potential of PEG in real-world applications,

providing directions for future enhancements and broader applications.
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6 CONCLUSION

In this chapter, we present a summary of the results of this thesis, provide future

work directions, and discuss how the performed study can impact other research fields.

6.1 Summary of Results

In this work, we addressed the problem of releasing edge-attributed graphs under

LDP guarantees. We have done an extensive review of the literature about releasing graph data

under differential privacy, including applying it to social network analysis, which gave rise to the

works listed in Section 1.3, including a submitted paper that is actually under revision.

Then, we revisit the thesis hypothesis:

Hypothesis: ‘‘Given an edge-attribute graph, there is an LDP approach that is able to publish a

perturbed version of this graph without adding an amount of noise that makes the published data

useless. Moreover, there are protocols associated with this DP setting that have low variance,

i.e., achieve better data utility levels.’’

To prove the hypothesis, we developed PEG, a novel decentralized dynamic degree-

based clustering approach designed for privately releasing edge-attribute graphs under the notion

of edge-LDP, which improves the data utility by reducing the dimensionality of the reported data.

The novel favors our approach to the proposed Randomized Attribute Neighbor List (RANL)

data structure, which complies with edge-LDP, to report the users’ local edge-attributed graphs.

Additionally, PEG combines optimized LDP protocols which provide better data utility. We have

improved the accuracy of the proposed approach by adopting several post-processing techniques

to tune the released graph structure according to heuristics present in real-world applications. Our

experiments demonstrated through an extensive evaluation that our approach achieves high utility

for various graph analysis metrics on the released graph, including applications in community

detection. It outperforms the baselines in almost all presented scenarios, except for some analyses

performed within extremely dense datasets.

6.2 Future Work

Immediately, the evaluation of PEG’s performance will be done through other LDP

protocols. For instance, the Generalized Randomized Response (GRR) and other optimized proto-

cols, like Optimized Local Hashing (OLH) (WANG et al., 2017), could be tested to compare their
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performance with the current approach. These evaluations would provide a broader understanding

of how different LDP protocols impact the quality and utility of the released graphs.

Additionally, exploring other DP applications for edge-attributed graphs is a valuable

next step. The proposed solution has potential applications in fields such as anomaly detection

and mobility analysis. For anomaly detection, future research could focus on developing specific

algorithms that leverage the private edge-attributed graphs to identify unusual patterns and

deviations more accurately. In mobility analysis, researchers could investigate how private

edge-attributed graphs can be used to optimize traffic management and urban planning without

compromising individual privacy.

Another significant direction for future research is extending the notion of node-LDP

to edge-attributed graphs. This task presents an increased challenge since it is a stronger notion

of privacy in the graph context. This extension would involve developing new techniques to

handle the increased complexity and ensure that the released graphs remain useful for analyses.

Moreover, the scalability of PEG to handle larger datasets is another area for inves-

tigation. As data grows in volume and complexity, ensuring that PEG can efficiently process

and release large-scale edge-attributed graphs without compromising privacy or utility will be

essential. Research could focus on optimizing the algorithm for parallel processing and distributed

computing environments.

Lastly, conducting extensive experimental evaluations on diverse real-world datasets

beyond those used in the current work would provide deeper insights into the robustness and

applicability of PEG.

6.3 Broader Impact

The broader impact of the research presented in this thesis extends beyond data

privacy, offering significant contributions across various fields. The innovative approach to

release edge-attributed graphs while preserving data utility opens up new possibilities in multiple

domains.

In anomaly detection, the solution enhances the accuracy and reliability of systems

that identify unusual patterns and deviations within network data, which is crucial for cyber-

security and network management. In mobility analysis, our approach helps urban planners

and transportation engineers optimize routes, improve traffic management, and enhance public

transportation systems, leading to more efficient urban mobility solutions.
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The methodology also benefits social network analysis, marketing, and organizational

behavior studies by facilitating the identification and exploration of connected groups or com-

munities within larger networks. This deeper understanding of graph structures and interactions

informs marketing, community building, and organizational development strategies.

In genetic and biological research, the approach improves the representation of

interactions between genes or proteins, aiding in the discovery of new biological insights and the

development of medical treatments. Additionally, analyzing network communication patterns,

such as email or social interactions, becomes more accurate and insightful, informing strategies

for effective information dissemination and organizational efficiency.

By preserving data utility while ensuring privacy, this solution enhances the applica-

bility and reliability of edge-attributed graph analysis across these diverse domains, advancing

both privacy-preserving data analysis and the understanding of complex networks in various

scientific and practical applications.
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