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“So the problem is not so much to see what no-

body has yet seen, as to think what nobody has

yet thought concerning that which everybody

sees.” (Arthur Schopenhauer)



ABSTRACT

Differentially private selection mechanisms offer strong privacy guarantees for queries whose

canonical outcome is the top-scoring element � within a finite set ℛ according to a dataset-

dependent utility function. While selection queries are pervasive throughout data science, there

are few mechanisms to ensure their privacy. Additionally, the vast majority focus on achieving

differential privacy (DP) through global sensitivity, possibly corrupting the query result with

excessive noise and maiming downstream inferences. We propose the Smooth Noisy Max (SNM)

algorithm to alleviate this issue. In particular, SNM algorithm leverages the notion of smooth

sensitivity to provably provide smaller (upper bounds on) expected errors compared to methods

based on global sensitivity under mild conditions. Empirical results show that our algorithm is

more accurate than state-of-the-art differentially private selection methods in three applications:

percentile selection, greedy decision trees, and random forest.

Keywords: differentially private selection; differential privacy.



RESUMO

Mecanismos de seleção diferencialmente privados oferecem garantias robustas de privacidade

para consultas cujo resultado canônico é o elemento de maior pontuação � dentro de um conjunto

finito ℛ de acordo com uma função de utilidade dependente do conjunto de dados. Embora as

consultas de seleção sejam bem difundidas em toda a ciência de dados, existem poucos mecanis-

mos que proveem garantias de sua privacidade. Além disso, a grande maioria foca em alcançar

privacidade diferencial (DP) por meio de sensibilidade global, possivelmente corrompendo o

resultado da consulta com excessivo ruído e prejudicando inferências subsequentes. Para mitigar

esse problema, propomos o algoritmo Smooth Noisy Max (SNM). Em particular, o algoritmo

SNM aproveita o conceito de sensibilidade suave para fornecer erros esperados menores (limites

superiores) quando comparados a métodos baseados em sensibilidade global sob leves condições.

Resultados empíricos mostram que nosso algoritmo é mais preciso do que os métodos estado-

da-arte de seleção diferencialmente privados em três diferentes aplicações: seleção de percentil,

árvores de decisão gulosas e floresta aleatória.

Palavras-chave: seleção diferencialmente privada; privacidade diferencial.
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1 INTRODUCTION

In the twenty-first century, companies increasingly strive to collect as much data as

possible from their customers. This trend has prompted organizations to assign the responsibility

of managing this data to a specific role, known as the data curator (STONEBRAKER et al.,

2013). This curator functions as a trusted intermediary, gathering data from individuals and

subsequently disseminating valuable information for public use or specialized analysis. The

curator might release aggregated data, statistics, or analytical results derived from data mining or

machine learning algorithms. Such dissemination is instrumental in enhancing service delivery,

optimizing marketing strategies, and publishing demographic statistics.

Because of this behavior, numerous significant data breaches have prompted govern-

ments, organizations, and companies to reevaluate their approaches to privacy (ALTMAN et al.,

2015). Concurrently, many advancements in Machine Learning have stemmed from learning

techniques that require substantial volumes of training data, such as deep learning. Additionally,

research institutions frequently utilize and exchange data that includes sensitive or confidential

information about individuals.

Data breaches extend beyondmere unauthorized disclosure of data and are susceptible

to linkage attacks. A linkage attack involves an attacker integrating various data sources to

re-identify individuals in anonymized databases by correlating shared information across these

sources. A notable instance of such an attack occurred with Netflix, where their released database

was cross-referenced with the IMDb database, leading to the re-identification of individuals

(NARAYANAN; SHMATIKOV, 2008).

A different form of privacy breach involves membership inference (SHOKRI et al.,

2017). This type of attack aims to ascertain whether a specific data record was included in a

model’s training database. Such attacks pose a significant threat to contemporary state-of-the-art

machine learning methods, which often operate as opaque black-boxes to practitioners. Even tra-

ditional machine learning techniques, such as random forests, are vulnerable to privacy breaches.

For instance, optimization-based reconstruction attacks have demonstrated the capability to

reconstruct entire training databases using only a trained random forest model (FERRY et al.,

2024).

Inappropriate disclosure of sensitive data can compromise the privacy of data subjects–

as previously mentioned–potentially leading to adverse effects, civil liabilities, or even physical

harm. Consequently, recent legislative measures, such as theGeneral Data Protection Regulation
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(GDPR) (EUROPE, 2018) and the Lei Geral de Proteção de Dados Pessoais (LGPD) (BRASIL,

2018), have been introduced to enforce data anonymity. These regulations mandate that personal

information must be anonymized to prevent the individual from being identifiable from the

released data. This process, commonly referred to in academia as data re-identification, aims to

enhance privacy protections.

To overcome these privacy problems differential privacy was stated by Dwork and

Roth (2014). The term differential means that the output of a task can not be “different” if a user

opt-in or opt-out your data from the task input.

1.1 Differential Privacy

Differential privacy (DWORK; ROTH, 2014; DWORK et al., 2006) represents the

leading formal paradigm for data release, providing robust privacy assurances. This framework

ensures that the information released is nearly indistinguishable, regardless of whether an in-

dividual’s data is included in the sensitive database. It operates under the assumption that an

attacker may have knowledge of all but one of the records in the database, the record they seek

to uncover.

The core concept underlying differential privacy is that an analyst’s query is addressed

by a randomized algorithm that interacts with the private database and generates a randomized

response from the output distribution. Such a randomized algorithm qualifies as a differentially

private mechanism (also termed simply as “mechanism” in this context) if the output’s probability

distribution remains largely unchanged, irrespective of any individual’s presence or absence in

the database. This method provides statistical safeguards against deducing private information,

even when auxiliary data is employed. An illustrative schema can be viewed in the Figure 1.

All mechanisms are designed to shape the output distribution so that both the true

answer and other high-utility answers are sampled with a high probability. Such mechanisms

furnish analysts with valuable information. The formal concept of utility is elaborated upon later

in this section.

Algorithms can secure differential privacy through the technique of output pertur-

bation, which involves disclosing the actual result of a non-private query � after the injection
of noise. The intensity of this noise must be sufficient to obscure the identities of individuals

within the input database �.
This work focuses on private selection (non-numeric queries), i.e., queries where the
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Figure 1 – Diagram illustrating how a randomized differentially private algorithm works. The
user’s choice to opt-out does not affect the algorithm’s output.
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range is discrete. For instance, a query that returns the most frequent name from a database of

people’s names is non-numeric.

Private selection, also known as non-numerical selection, plays a crucial role in data

analysis and selection tasks, such as classification (KOTSIANTIS et al., 2007), synthetic data

generation (CHEN et al., 2015; ZHANG et al., 2014), dimensionality reduction (CHAUDHURI

et al., 2013), and top-� queries (ILYAS et al., 2008). The main idea is to select an outcome
from a set of items that maximizes some objective function, also known as utility function

(MCSHERRY; TALWAR, 2007), i.e., an algorithm samples output from a set of outcomes

following an adapted probability function.

To the best of our knowledge, only a limited number of mechanisms exist for ensuring

private selection, including the exponential mechanism (MCSHERRY; TALWAR, 2007), the

report-noisy-max algorithm (DWORK; ROTH, 2014), permute-and-flip (MCKENNA; SHEL-

DON, 2020), and the local dampening mechanism (FARIAS et al., 2023).

The exponential mechanism achieves differential privacy by sampling from all

potential outcomes ℛ according to an exponential distribution. The likelihood of selecting a

particular outcome depends on its utility relative to the database x ∈ �. More specifically, the

utility function accepts a database x and a potential outcome � ∈ ℛ, assigning it a score that
reflects its appropriateness for the database. The higher the score, the more suitable the outcome.

The noise introduced by the exponential mechanism is characterized as sampling

noise rather than numeric noise. This mechanism may select an outcome, such as a name, that
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is not the most frequent one – that is, one that does not possess the highest utility score. The

quantity of noise injected is proportional to the measure known as global sensitivity. The concept

of global sensitivity, denoted as Δ�, quantifies the most significant change to the utility function� that could occur by adding or removing an individual across all potential databases � and for

all potential outcomes ℛ.
Example 1 (Approval voting). Consider an election that is conducted with an approval voting

format. Instead of selecting just one candidate, voters can choose as many candidates as they

support. The candidate with the most approvals wins the election. If there are � candidates,

we can consider each voter’s input as a vector of choices �� ⊆ [�] (the notation [�] stands for{0, 1,… ,�}). The utility of the candidate � is the number of votes that included � in their input
vector of choices, that is, �(x, �) = |{� ∶ � ∈ ��}|. The global sensitivity Δ� is the highest impact
of adding or removing some voters from the election. Since one voter can only vote once on each

candidate, its removal can impact at most by one vote. Thus, the global sensitivity is Δ� = 1 for
the above-mentioned utility function �.

In the same direction as the exponential mechanism, the report-noisy-max (RNM)

algorithm is a differentially private selection algorithm. It adds independent noise on each utility

value �(x, �) for all possible outcomes � ∈ ℛ in x, and the query result is the outcome of the

larger noisy utility value. The RNM could be used along with several different distributions,

such as exponential distribution, Laplace distribution, and Gumbel distribution. Each distribution

yields distinct results, characterized by differences in the tail behavior of the distribution and

expected error. The RNM works by adding tailored noise dependent on the notion of global

sensitivity.

The global sensitivity, used for numerical and selection queries, is guided by the

worst-case scenario, which usually adds high noise (ZHANG et al., 2015; GONEM; GILAD-

BACHRACH, 2018; SUN et al., 2020; BUN; STEINKE, 2019). To mitigate that, Nissim et al.

(2007) proposes an instance-based sensitivity for numerical queries, in other words, a sensitivity

that depends locally on the input database x, called smooth sensitivity. Note that the main

difference between global and local sensitivity is that the first is not dependent on the input

database x and the latter is.

We propose a novel differentially private selection algorithm termed Smooth Noisy

Max (SNM). Unlike traditional approaches that add noise based on global sensitivity, our algorithm

employs local sensitivity for this purpose. Specifically, SNM leverages various probability
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distributions, each scaled according to a factor proportional to the instance-based sensitivity to

introduce noise into the utility score of each potential outcome � ∈ ℛ. This method enhances the
adaptability and accuracy of privacy preservation in data analysis; our experimental results will

show that through data utility analysis.

1.2 Problem Statement

This thesis addresses the challenge of private data selection, ensuring that the selection

remains relevant in producing meaningful outcomes even after the privacy process. Let x ∈ � be

a sensitive database, � a data selection function to be evaluated on x. The function � ∶ � → ℛ
takes a database as input, producing an outcome � ∈ ℛ.

The challenge is to output �(x) without releasing much individual information. Thus,
we design a randomized algorithm that outputs � ∈ ℛ based on �(x) such that it satisfies the
differential privacy definition.

1.3 Hypothesis

Applying smooth sensitivity – an instance-based sensitivity measure – to the private

selectionmechanism guarantees (�, �)-differential privacy and yields superior outcomes compared
to methodologies that apply global sensitivity, especially higher accuracy or reduced expected

error. This assertion also extends to comparisons with competing approaches that employ

instance-based sensitivity, such as local dampening.

1.4 Applications

We illustrate the advantages of the Smooth Noisy Max algorithm by applying it to

three distinct problems:

Percentile Selection. Percentile selection is a common task to show the performance

of a differentially private algorithm. The task is to return the p-th percentile value from a set of

real numbers.

Greedy Decision Tree. We address the data mining challenge of constructing

decision trees for classification purposes. Our approach involves a privacy-enhanced adaptation

of the ID3 algorithm (QUINLAN, 1986), enabling the construction of decision trees from tabular

datasets. For automated tree induction, we employ the Max Operator as the splitting criterion to
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select attributes for branching.

Random Forest. We developed a novel random forest algorithm, building upon the

foundation set by prior state-of-the-art. Our version of the random forest algorithm integrates

Smooth Noisy Max as a private selection mechanism within the majority selection process of

each leaf node.

1.5 Contributions

The main contributions of this thesis are outlined as follows:

1. We extend the concept of smooth sensitivity, originally defined for numerical data, to the

data selection setting;

2. We prove that smooth sensitivity cannot be utilized along with the exponential mechanism;

3. We propose the Smooth Noisy Max (SNM), a differentially private data selection algorithm

that applies the notion of smooth sensitivity to reduce the amount of randomness in data

selection;

4. We provide differential privacy guarantees for Smooth Noisy Max, along with theoret-

ical strong utility guarantees showing that Smooth Noisy Max is never worse than the

competitors under mild conditions;

5. We conducted an empirical comparison1 of Smooth Noisy Max with competing methods

across three applications: percentile selection, greedy decision trees, and random forests.

Our findings indicate that SNM consistently outperforms state-of-the-art methods in terms

of accuracy and expected error.

Most of the contributions of this thesis were previously submitted in our paper

CHAVES, I. C.; FARIAS, V. A. E.; PEREZ, A.; MESQUITA, D.; MACHADO, J.Differentially

Private Selection using Smooth Sensitivity. 2024. Submitted for publication to SIGMOD

International Conference on Management of Data (2025).

Additionally, we highlight side contributions to machine learning issues, which were

developed and disseminated at various conferences throughout the course of this Ph.D. These

contributions significantly broadened the scope and impact of our research endeavors.

– SENA, L. B.; PRACIANO, F. D. B. S.; CHAVES, I. C.; BRITO, F. T.; NETO, E. R. D.;

MONTEIRO, J. M.; MACHADO, J. C. AUDIO-MC: A general framework for multi-

context audio classification. In: FILIPE, J.; SMIALEK, M.; BRODSKY, A.; HAM-
1 The source code and other artifacts have been made available at <https://github.com/iagocc/smooth-noisy-max>
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MOUDI, S. (Ed.). Proceedings of the 24th International Conference on Enterprise

Information Systems, ICEIS 2022, Online Streaming, April 25-27, 2022, Volume 1.

SCITEPRESS, 2022. p. 374–383. Available at: https://doi.org/10.5220/0011071500003179.

– CHAVES, I. C.; MARTINS, A. D. F.; PRACIANO, F. D. B. S.; BRITO, F. T.; MON-

TEIRO, J. M.; MACHADO, J. C. BPA: A multilingual sentiment analysis approach based

on bilstm. In: FILIPE, J.; SMIALEK, M.; BRODSKY, A.; HAMMOUDI, S. (Ed.). Pro-

ceedings of the 24th International Conference on Enterprise Information Systems,

ICEIS 2022, Online Streaming, April 25-27, 2022, Volume 1. SCITEPRESS, 2022. p.

553–560. Available at: https://doi.org/10.5220/0011071400003179.

– ALVES, D.; FARIAS, V. A. E. de; CHAVES, I. C.; CHAO, R.; MADEIRO, J. P.;

GOMES, J. P. P.; MACHADO, J. C. Detecting customer induced damages in moth-

erboards with deep neural networks. In: International Joint Conference on Neural

Networks, IJCNN 2022, Padua, Italy, July 18-23, 2022. IEEE, 2022. p. 1–8. Available

at: https://doi.org/10.1109/IJCNN55064.2022.9892047.

– SILVA, M. de L. M.; CHAVES, I. C.; MACHADO, J. C. Private reverse top-k algorithms

applied on public data of COVID-19 in the state of ceará. J. Inf. Data Manag., v. 12, n. 5,

2021. Available at: https://sol.sbc.org.br/journals/index.php/jidm/article/view/1941.

– LIMA, F. D. S.; PEREIRA, F. L. F.; CHAVES, I. C.; MACHADO, J. C.; GOMES, J.

P. P. Predicting the health degree of hard disk drives with asymmetric and ordinal deep

neural models. IEEE Trans. Computers, v. 70, n. 2, p. 188–198, 2021. Available at:

https://doi.org/10.1109/TC.2020.2987018.

– PEREIRA, F. L. F.; CHAVES, I. C.; GOMES, J. P. P.; MACHADO, J. C. Using autoen-
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on Neural Networks, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020. IEEE,

2020. p. 1–7. Available at: https://doi.org/10.1109/IJCNN48605.2020.9206689.

– SILVA, M. de L. M.; CHAVES, I. C.; MACHADO, J. de C. Aplicação de top-k reverso
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ings of the 35th Brazilian Symposium on Databases, SBBD 2020, Online, September

28 - October 1, 2020. SBC, 2020. p. 193–198. Available at: https://doi.org/10.5753/s-

bbd.2020.13640.
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1.6 Organization

This thesis is organized as follows. In Chapter 2, we introduce the main concepts of

differential privacy, i.e., the definitions for the numerical setting.

Chapter 3 describes the concepts for the data selection setting and the related work.

The chapter details the data selection competitors, such as exponential mechanism, permute-and-

flip, report-noisy-max, and local dampening.

In Chapter 4, we show the core concepts of this work: Smooth Noisy Max algorithm

and its differential privacy and accuracy statements.

Chapters 5,6 and 7 describe the novel percentile selection, greedy decision tree, and

random forest algorithms, respectively, along with its experimental methodology and results.

Finally, in chapter 8, we conclude this thesis along with future work.
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2 DIFFERENTIAL PRIVACY

In this chapter, we describe the main concepts on Differential Privacy that compose

this thesis.

2.1 Probability and Random Variables

This section introduces fundamental statistical concepts essential for comprehending

differential privacy definitions. We begin by defining probability from two perspectives: the

frequentist and Bayesian approaches. From a frequentist standpoint, probability represents the

long-term relative frequency of an event occurring under random conditions. Conversely, the

Bayesian interpretation views probability as a measure of subjective belief in the likelihood of

an event’s occurrence.

The mathematical theory of probability, as formalized by Kolmogorov using set

theory, is founded on the concept of a sample space Ω. This sample space is a set comprising all
possible outcomes of the event or experiment under consideration. Within this framework, we

denote a specific set of outcomes as � ⊆ Ω, where � is a subset of Ω. The probability of this set
of outcomes occurring is then expressed as �[�].

A random variable is a function that assigns numerical values to the outcomes of a

random experiment or process. More formally, it is a measurable function from a sample spaceΩ to a relevant space of numbers, e.g., reals ℝ. Random variables can be discrete, taking on

a countable set of values, or continuous, potentially assuming any value within a given range.

They are fundamental to probability theory and statistics, providing a mathematical framework to

describe and analyze uncertain events. To describe a random variable �, we need a probabilistic
description, which turns out to be a function called the probability density function (PDF) of �.

The probability density function (PDF) characterizes the likelihood of a continuous

random variable � taking values within an infinitesimal interval [�, � + ��]. This relationship
is expressed as �[� ≤ � ≤ � + ��] = ∫�+��� ��(�)��, where ��(�) is the PDF. We denote a

random variable � distributed according to a PDF �� as � ∼ ��. The cumulative distribution
function (CDF), denoted by ��(�), is obtained by integrating the PDF: ��(�) = ∫�−∞ ��(�)��.
The CDF represents the probability that � takes on a value less than or equal to �.

The Laplace distribution is a widely used probability distribution in various fields,

including differential privacy. It is characterized by its probability density function (PDF):
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����(�|�, �) = 12� exp (− |�−�|� ) where � ∈ ℝ is the location parameter and � > 0 is the
scale parameter. In the context of differential privacy, we typically employ a centered Laplace

distribution with � = 0 and a scale parameter � proportional to the global sensitivity of the query
function. This specific parameterization allows for the calibration of noise addition to achieve

the desired privacy guarantees.

In the context of differential privacy, consider a query with a true answer � ∈ ℝ.

To protect privacy, we add noise drawn from a Laplace distribution to this query result: ̃� =� + � where � ∼ Lap(0, �) is a random variable following a Laplace distribution with location

parameter 0 and scale parameter �. The probability density of obtaining any specific perturbed
value ̃� is only determined by the probability density function of the Laplace noise.
Example 2. Consider a query with a true answer � = 5. We add Laplace noise to this value to

obtain a perturbed answer ̃�. The probability of obtaining a specific perturbed value, say ̃� = 5.1,
is equivalent to the probability of sampling a noise value of 0.1 from the Laplace distribution.

Formally, we have ̃� = � + �, where � ∼ Lap(0, �). For simplicity, let � = 1. The probability
density of obtaining ̃� = 5.1 is given by:

�( ̃� = 5.1|� = 5, � = 1) = �Lap(5.1 − 5|0, 1)= �Lap(0.1|0, 1)= 12 exp (−|0.1|1 )≈ 0.4524
Thus, the probability density of obtaining the perturbed value ̃� = 5.1 is approximately 0.4524.
Note that this is a probability density, not a probability, as we are dealing with a continuous

distribution, i.e., in our example, 0.4524 is not the probability of getting exactly 5.1, but it

represents the relative likelihood of values around 5.1 compared to other possible values.

2.2 Database concepts

The data setting we consider is where a trusted curator holds a database x about �
individuals, which we model as x ∈ �, for a data universe �. We formalize the database as

a multiset of records of �. However, in the literature, it is common to represent the database
as a histogram of the tuples in � or even an ordered �-tuple. Each specific definition is more
convenient for different contexts, but the multiset representation will often be much more concise.
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Definition 2.1 (Database). A database x is a multiset of records so that x = {�1, �2,… , ��},
where �� ∈ � is a element of the universe of records �.

Therefore, the distance between two databases can be determined by counting the

records that differ between them. More specifically, this distance is quantified using the symmetric

difference of two sets, denoted as �(x, y) = |x⊕ y|
Definition 2.2 (Distance between databases). Consider two databases x, y ∈ �, the distance
between them is defined as �(x, y) = |x⊕ y|,
where �⊕ � = (� ∪ �) − (� ∩ �).

A particular case of distance between databases is when they differ by at most one

record, i.e., �(x, y) ≤ 1. We refer to these databases as neighboring databases. The concept of

neighboring databases is crucial for the definition of differential privacy, as we will see in the

next section.

In our definition of databases, two neighboring databases may arise from the addition,

removal, or modification of a single tuple (KIFER; MACHANAVAJJHALA, 2011). In this

thesis, we classify two databases as neighboring if they differ by at most one record as a result of

the addition or deletion of a single tuple.

2.3 Formalizing differential privacy

A privacy mechanism is a randomized algorithm that takes the database as input and

outputs a differentially private answer. A randomized algorithm with domain � and a discrete

range � is associated with a probability simplex over �, denoted by Δ(�):
Definition 2.3 (Probability Simplex (DWORK; ROTH, 2014)). Given a discrete set �, the
probability simplex over �, denoted by Δ(�) is defined to be:

Δ(�) = {� ∈ ℝ|�| | �� ≥ 0 for all � and |�|∑�=1�� = 1}
Definition 2.4 (Randomized Algorithm (DWORK; ROTH, 2014)). A randomized algorithmℳ with domain � and discrete range � is associated with a mappingℳ ∶ � → Δ(�). On input� ∈ �, the algorithmℳ outputsℳ(�) = � with probability (ℳ(�))� for each � ∈ �.
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As previously discussed, the output of the query �, denoted as �(x), must be released
without revealing significant information about individuals. To achieve this, a privacy-preserving

mechanism should ensure that the output probability does not vary by more than a multiplicative

factor of �� with the presence or absence of a single tuple. Consequently, we need to develop a
randomized algorithmℳ(x) that introduces noise to �(x) in a way that adheres to the differential
privacy criteria outlined below.

Definition 2.5 ((�, �)-Differential privacy (DWORK; ROTH, 2014)). A randomized algorithmℳ satisfies (�, �)-differential privacy if, for any two neighboring databases x and y, and for any
possible output � of the algorithm

��[ℳ(x) ∈ �] ≤ ����[ℳ(y) ∈ �] + �
where ��[⋅] stands for probability of an event.

An alternative definition of differential privacy is provided in Remark 3.2 of Dwork

and Roth (2014), using the concept of �-approximate max divergence.
Definition 2.6 (�-Approximate Max Divergence (DWORK; ROTH, 2014)).

��∞(�||�) = max�⊆�∶��[�∈�]≥� [log (��[� ∈ �] − ���[� ∈ �] )]
Definition 2.7 (Approx. Differential Privacy). Note that a mechanismℳ is (�, �)-differentially
private if and only if on every two neighboring databases x, y ∶ ��∞(ℳ(x)||ℳ(y)) ≤ � and��∞(ℳ(y)||ℳ(x)) ≤ �.

When � = 0, the algorithm is �-differentially private. We refer to �-differential
privacy as pure differential privacy. Conversely, (�, �)-differential privacy, where � > 0, is
referred to as approximate differential privacy.

The parameter � dictates how close the distribution of the outputs differs between

databases x and y. Lower values of � ensure that these distributions are closely aligned, which
enhances privacy at the expense of accuracy. Conversely, higher values of � allow for greater

variation between the distributions, improving accuracy but harming privacy. The data holder

sets the value of �, thereby defining the level of privacy offered.
Additionally, � is referred to as the privacy budget. This concept is crucial when an

analyst submits multiple queries to the database, as each query expends a portion of this budget.
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The analyst must strategically allocate the privacy budget across different queries to balance the

trade-off between data utility and privacy.

Along with the privacy budget �, the parameter � is used to control the probability of
the algorithm deviating from the desired privacy guarantee. We can interpret � as the “failure
probability”. With a certain probability, any outcome could occur, including the potential release

of the entire sensitive dataset. For this reason, it’s typically essential to ensure that this probability

is kept very small. To help with understanding, we will introduce the concept of privacy loss

random variable.

Definition 2.8 (Privacy loss random variable (DWORK; ROTH, 2014)). Let � ∈ �, a randomized
algorithmℳ ∶ � → �, x, y ∈ � be a neighboring databases. Define the privacy loss random

variable as ℒ(�) = log (��[�(x) = �]��[�(y) = �])
Now, let us define the random variable � = ℒ(ℳ(x)), where � implicitly depends

on x, y, andℳ. This random variable measures the extent to which observing the output of the

algorithmℳ helps in distinguishing between the databases x and y. Now, we can describe the �
parameter in terms of the privacy loss random variable. Considerℳ being (�, �)-differentially
private, then ��[� > �] ≤ �, i.e., the algorithm ℳ will get the same privacy guarantees as�-differential privacy with probability at least 1 − �, and with probability � the algorithm may

fail to provide the desired privacy guarantees.

2.3.1 Composition

The analyst can pose several queries to the database to compose complex differentially

private algorithms. There are two types of composition: sequential and parallel.

The sequential composition happens when a set of mechanisms is executed against a

dataset. This implies that the privacy budget used on each computation sums up:

Theorem 2.9 (Sequential composition (DWORK; ROTH, 2014)). Let ℳ� ∶ � → � be an(��, ��)-differentially private algorithm for � ∈ [�]. Then ℳ(x) = (ℳ1(x),⋯ ,ℳ�(x)) is(∑��=1 ��,∑��=1 ��)-differentially private.
The Theorem 2.9 implies that if an analyst is given a privacy budget �, she can

execute any number of private queries as long as the sum of the budget used in each execution
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accumulates to �.
On the other hand, if queries are applied to disjoint subsets of the database, then we

can save privacy budget. This is the scenario for parallel composition. When the analyses are

carried out with many (��, ��)-differentially private mechanisms operating on disjoint subsets, it
composes a (max� ��,max� ��)-differentially private mechanism which has a lower privacy cost.

Theorem 2.10 (Parallel composition (DWORK; ROTH, 2014)). Letℳ� ∶ � → � be an (��, ��)-
differentially private algorithm for � ∈ [�]. Then ℳ(x) = (ℳ1(x),⋯ ,ℳ�(x)) is (max��=1 ��,
max��=1 ��)-differentially private.
2.3.2 Sensitivity

Several randomized algorithms may satisfy the definition of differential privacy.

Nevertheless, the applicability of these algorithms may only be suitable across some problem

domains (NISSIM et al., 2007). The Laplace mechanism is one of the most well-known mecha-

nisms for adding noise to a numerical query. It is a mechanism that draws noise from the Laplace

distribution and adds to the query result. The Laplace distribution is a continuous probability

distribution that, in this context, is centered at zero and has a single parameter, which is the

scale parameter that is proportional to the global sensitivity of the query �. Usually, not only the
Laplace mechanism, the quantity of noise introduced is proportional to the global sensitivity of

the query. Global sensitivity quantifies the maximum change in a function’s output when a single

individual’s data is modified, reflecting the largest difference between outputs for databases

differing by one record. Figure 2 illustrates the global sensitivity concept, in the figure the edges

represent the term |�(xi) − �(xj)| for two neighbors xi and xj, so the global sensitivity is the

maximum value among all red edges.

Definition 2.11 (Global sensitivity (DWORK; ROTH, 2014)). The global sensitivity of a function� ∶ � → ℝ is defined: Δ� = max
x,y∈��(x,y)≤1|�(x) − �(y)|

However, the global sensitivity practical utility is often limited due to excessive

noise generation, as the Laplace mechanism’s scale parameter is Δ�/� (DWORK; ROTH, 2014),

leading to high noise levels for functions like �-clique counting (ZHANG et al., 2015) and

median queries (NISSIM et al., 2007). Local sensitivity, which is database-specific, measures the
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Figure 2 – Global Sensitivity. The edges represent the term |�(xi) − �(xj)| for two neighbors xi
and xj. The global sensitivity is the maximum value among all red edges. The value

of � represents the distance from x0
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Source: adapted from Farias (2021)

maximal output change for individual data modifications, and using instance-based sensitivity

can reduce the introduced noise. Figure 3 illustrates the local sensitivity concept, where the edges

represent the term |�(xi) − �(xj)| for two neighbors xi and xj, so the local sensitivity ���(x0) is
the maximum value among all red edges incident on x0.

Definition 2.12 (Local sensitivity (NISSIM et al., 2007)). For a query � ∶ � → ℝ and a

database x ∈ �, the local sensitivity of � at x is defined as:
���(x) = max

y∈��(x,y)≤1|�(x) − �(y)|
It is crucial to highlight that the global sensitivity is the maximum local sensitivity

over all databases, Δ� = maxx∈� ���(x). Nonetheless, using the local sensitivity, instead of
global, would reduce the amount of noise produced by the random algorithm so much that it

would not satisfy the differential privacy definition (NISSIM et al., 2007).

To address the problem of achieving differential privacy for numerical queries with

instance-based sensitivity, the work of Nissim et al. (2007) proposed the smooth sensitivity

framework, which smooths the local sensitivity at a distance �.
The local sensitivity at a distance � measures the maximum local sensitivity ���

over all databases up to the distance � from x, i.e., up to � modifications on the database x. It
is important to note that it is a generalization of the local sensitivity ���(x, 0) = ���(x), a
particular case when the distance is set to 0. Figure 4 illustrates the local sensitivity at a distance� = 1, where the edges represent the term |�(xi) − �(xj)| for two neighbors xi and xj, so the local
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Figure 3 – Local Sensitivity. The edges represent the term |�(xi) − �(xj)| for two neighbors
xi and xj. The local sensitivity ���(x0) is the maximum value among all red edges

incident on x0. The value of � represents the distance from x0.
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sensitivity at distance � = 1 ���(x0, 1) is the maximum value among all red edges incident on all

the database at most distance 1 from x0 (which includes itself).

Definition 2.13 (Local sensitivity at distance � (NISSIM et al., 2007)). For a query � ∶ � → ℝ�
and a database x ∈ �, the local sensitivity of � at x at distance � is defined as:

���(x, �) = max
y∈��(x,y)≤����(y)

Figure 4 – Local sensitivity at distance � = 1. The edges represent the term |�(xi) − �(xj)| for
two neighbors xi and xj. The local sensitivity at distance � = 1 ���(x0, 1) is the
maximum value among all red edges incident on all the database at most distance 1
from x0 (which includes itself). The value of � represents the distance from x0.
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The sensitivity must itself be insensitive. To determine the appropriate noise magni-

tude, the work by NISSIM et al. (NISSIM et al., 2007) utilizes a smooth upper bound on local

sensitivity. Specifically, they define a function � that not only provides an upper limit on ���
across all points but also ensures that ln(�(⋅)) maintains low sensitivity.

Definition 2.14 (Smooth bound (NISSIM et al., 2007)). For a parameter � > 0, a database
x ∈ �, a function � ∶ � → ℝ+ is a �-smooth upper bound on the local sensitivity of a function� if it satisfies the following requirements:∀x ∈ � ∶�(x) ≥ ���(x)∀x, y ∈ �, �(x, y) ≤ 1 ∶ �(x) ≤ ���(y)
Definition 2.15 (Smooth sensitivity (NISSIM et al., 2007)). For � > 0, a query �, a database
x ∈ �, the �-smooth sensitivity of � is:

��,�(x) = max�=0,1,…,|x| (�−�� ⋅ ���(x, �))
The smooth sensitivity ��,� is the smallest function to satisfy the smooth bound

requirements (Def. 2.14).

Lemma 2.16 (Lemma 2.3 from Nissim et al. (2007)). ��,� is a �-smooth upper bound on ���.
In addition, ��,�(x) ≤ �(x) for all x ∈ � for every �-smooth upper bound � on ���.

The smooth sensitivity decays the local sensitivity based on how far the neighboring

database is from x. The � parameter, which serves as a smoothing factor, is strategically chosen
to mitigate inadvertent data disclosure risks that may arise when employing local sensitivity

directly. The global sensitivity Δ� is also a smooth upper bound of local sensitivity, i.e., global
sensitivity satisfies the Definition 2.14.

Corollary 2.17 (Smooth sensitivity upper bound). For a query �, a database x, the global

sensitivity Δ� is an upper bound of smooth sensitivity ��,� i.e., ��,�(x) ≤ Δ�.
2.3.3 Calibrating noise according to a smooth upper bound

Mechanisms that the addition of noise is proportional to the smooth sensitivity

are contingent upon whether the noise distribution meets the criteria necessary for achieving

differential privacy, i.e., (�, �)-admissibility.
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Figure 5 – Example of sliding and dilation properties. The green curve represents the noise
distribution ℎ(�) = (1/2) ⋅ �−|�|, and the yellow dashed curve represent the transformed

version.
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(b) Dilation for � = 0.5. Plot of �0.5ℎ(��0.5)
Source: elaborated by the author.

Definition 2.18 (Admissible Noise Distribution (NISSIM et al., 2007)). A probability distribution

on ℝ�, given by a density function ℎ, is (�, �)-admissible if, for � = �(�, �), � = �(�, �), the
following two conditions hold for all ||Δ||1 ∈ ℝ� and � ∈ ℝ satisfying Δ ≤ � and |�| ≤ �, and
for all measurable subsets � ⊆ ℝ�.
(i) (Sliding) ���∼ℎ[� ∈ �] ≤ � �2 ���∼ℎ[� ∈ � + Δ] + �2
(ii) (Dilation) ���∼ℎ[� ∈ �] ≤ � �2 ���∼ℎ[� ∈ � ⋅ ��] + �2

The Definition 2.18 stipulates that the noise distribution should remain relatively

stable under translation (sliding) and scaling (dilation). Refer to Figure 5 for an illustration. A

distribution that adheres to these properties is suitable for adding noise proportional to a smooth

upper bound on local sensitivity.

Lemma 2.19 (Lemma 2.6 from Nissim et al. (2007)). Let ℎ be an (�, �)-admissible noise
distribution. Then, for a query � ∶ � → �, � ∶ � → ℝ be a �-smooth upper bound on the local
sensitivity of �, and a database x, the mechanismℳ(x) = �(x) + �(x)� � is (�, �)-differentially
private, where � ∼ ℎ.

We discuss three admissible distributions that are employed in this thesis. Our first

choice is the Laplace distribution, the second is the Laplace Log-Normal distribution, and finally,

the Student’s t-distribution.



33

Lemma 2.20 (Lemma 2.9 from Nissim et al. (2007)). For �, � > 0, the Laplace distributionℎ(�) = 12�−|�| is (�, �)-admissible with � = �2 , and � = �2 ln(2/�) .
Theorem 2.21 (Theorem 18 from Bun and Steinke (2019)). Let � and � be independent random

variables with � a standard Laplace and � a standard Gaussian. Let � > 0 and � = � ⋅ ���. The
distribution of � is denoted by LLN(�). � is (�, �)-admissible with � = �−3/2�2 (� − �/�).
Theorem 2.22 (Theorem 31 from Bun and Steinke (2019)). Let � be a random variable following

the Student’s t-distribution with � degrees of freedom. � is (�, �)-admissible with � = 2√��+1 .
Both the Laplace and Laplace Log-Normal distributions provide approximate differ-

ential privacy (� > 0). Nevertheless, the Student’s t-distribution yield pure differential privacy
(� = 0) under the setting of the Lemma 2.19.
2.4 Discussion

In this chapter, we have presented the fundamental concepts of differential privacy,

including the definition, composition, sensitivity, and noise calibration under �-smooth upper
bound setting. There are two points that are important to highlight:

Promises: Differential privacy ensures that individuals do not face additional risks

from their data being in a private database x that they would not encounter if their data were

absent from x. While the release of resultsℳ(x) from a differentially private mechanismℳ
may still lead to potential harm, differential privacy assures that the likelihood of harm has not

substantially increased due to an individual’s decision to contribute their data. This approach

to privacy is fundamentally utilitarian; it hinges on the difference in harm probabilities that an

individual evaluates when deciding whether to include their data in a database managed under

differential privacy principles—specifically, weighing the risk of participation against the risk of

non-participation.

Limitations: While differential privacy offers a robust guarantee, it does not provide

absolute immunity from harm or create privacy where none existed before. More importantly,

differential privacy does not ensure that personal secrets will remain undisclosed. Rather, it

ensures that the act of participating in a survey does not reveal one’s involvement or any specific

information contributed. It is entirely possible for survey results to reflect statistical data about

an individual. For instance, a health survey designed to identify early indicators of a disease

might yield significant, or even definitive, results. The applicability of these conclusions to a
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specific individual, however, does not constitute a breach of privacy. This holds true even if

the individual did not participate in the survey, as differential privacy guarantees that similar

conclusions would likely be reached regardless of individual participation.



35

3 PRIVATE SELECTION – RELATED WORK

This chapter reviews the literature on private selection, a central theme of this thesis,

which specifically tackles the private selection problem. It was challenging to separate this

chapter from the theoretical background, as several detailed methods discussed herein form the

cornerstone of differential privacy. Consequently, this chapter provides an in-depth exploration of

various differentially private selection methods, which will serve as benchmarks for our proposed

approach. These methods were identified through a snowballing process and a comprehensive

review of the relevant literature.

Private selection refers to selecting the best item, or outcome, option from a set of

possible outputs while ensuring the individual’s data privacy. Formally, we want to build a

private algorithm for a query � ∶ � → ℛ where all possible outcomes for � are discrete, e.g.,
categorical values. In the private selection setting is necessary a utility function � ∶ � ×ℛ → ℝ
that maps a database x and an output � ∈ ℛ to a utility score �(x, �). This utility function is
application-based, and the higher the utility values are, the better the outcome is for the database.

There are differentially private data selection algorithms directly related to this work,

for instance, the well-established exponential mechanism (MCSHERRY; TALWAR, 2007) and

the report-noisy-max algorithm (DWORK; ROTH, 2014). The recent ones include the permute-

and-flip (MCKENNA; SHELDON, 2020) and the local dampening mechanism (FARIAS et al.,

2023).

3.1 Private selection setting

In the private selection setting, it is necessary to design a utility function that measures

the quality of the database output. The utility function is application-based, and the higher the

utility values are, the better the outcome. In the sense of private selection, we want the randomized

algorithm to maximize the utility function approximately, i.e., the probability of selecting an

output with high utility is high.

Definition 3.1 (Utility function). Consider a database x ∈ �, an output set ℛ. A utility function� ∶ � × ℛ → ℝ maps a pair of a database and an outcome to a score.

In contrast to the standard differential privacy setup (numerical), we now want to

understand the sensitivity of the utility � instead of the query �. But, notice that the utility
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function � is directly related to the query �. The global sensitivity of the utility function is the
maximum change in the utility function when the database changes by one tuple for all possible

outcomes � ∈ ℛ.
Definition 3.2 (Global Sensitivity (MCSHERRY; TALWAR, 2007)). Let � ∶ � ×ℛ → ℝ be a

utility function that maps a pair of a database and an outcome to a score. The global sensitivity

of a function � is defined as:
Δ� = max�∈ℛ max

x,y∈��(x,y)≤1|�(x, �) − �(y, �)|
Observe that the key distinction between Definition 3.2 and the standard global

sensitivity definition (Definition 2.11) lies in the use of the max operator across all possible

outcomes. A similar distinction should also be noted in the definitions of local sensitivities.

Definition 3.3 (Local Sensitivity for private selection (FARIAS et al., 2023)). Let � ∶ � ×ℛ →ℝ be a utility function that maps a pair of a database and an outcome to a score. The local

sensitivity is defined as:

��ᵆ(x) = max�∈ℛ max
y∈��(x,y)≤1 |�(x, �) − �(y, �)|

Definition 3.4 (Local Sensitivity at distance � for private selection (FARIAS et al., 2023)). Let� ∶ � × ℛ → ℝ be a utility function that maps a pair of a database and an outcome to a score.

The local sensitivity of a function � for the database x at distance � is defined as:
��ᵆ(x, �) = max

y∈��(x,y)≤���ᵆ(y) = max
y,z∈��(x,y)≤��(y,z)≤1

max�∈ℛ |�(y, �) − �(z, �)|
The local sensitivity at distance � measures the maximum sensitivity of � across all

elements � in ℛ for a database x undergoing � modifications. This metric provides an overview
of how � varies between neighboring databases. However, if even a single element inℛ presents

high sensitivity (approachingΔ�), ��ᵆ(x, �)will be proportionately high. This can be problematic
when most elements exhibit low sensitivity while only a few have high sensitivity, leading to an

inflated ��ᵆ(x, �) and compromising accuracy. To tackle that problem, the work of Farias et al.
(2023) proposed a more specialized definition of local sensitivity named element local sensitivity,

which measures the sensitivity of � for a given � ∈ ℛ for an input database x at a distance �.



37

Definition 3.5 (Element Local Sensitivity at distance �). Let � ∶ �×ℛ → ℝ be a utility function

that maps a pair of a database and an outcome to a score. The local sensitivity of a function � for
the database x for specific outcome � ∈ ℛ at distance � is defined as:��ᵆ(x, �, �) = max

y,z∈��(x,y)≤��(y,z)≤1
|�(y, �) − �(z, r)|

3.2 Exponential Mechanism

The exponential mechanism in the private selection setting is the de facto standard.

It samples possible outputs from ℛ with a probability that grows exponentially with their utility

function �.
Definition 3.6 (Exponential Mechanism (MCSHERRY; TALWAR, 2007)). The exponential

mechanismℳexpᵆ,� (x, �) selects an outcome from � ∈ ℛ as follows:ℳexpᵆ,� (x, �) ∝ exp (��(x, �)2Δ� ) ,
where Δ� is the global sensitivity of the utility function �.

McSherry and Talwar (2007) showed that the exponential mechanism satisfies �-
differential privacy through global sensitivity. Therefore, the algorithm’s utility is regulated by

global sensitivity. We refer to algorithms’ utility as inversely proportional to the error.

It is essential to understand how well the private selection approach can perform, i.e.,

grasp how useful the exponential mechanism can be. However, the probability of choosing an

output with near-maximum utility depends on the problem structure.

Theorem 3.7 (Utility of the exponential mechanism). Fixing a database x ∈ �, for a given � > 0,
and � representing the error, set of all possible outcome ℛ, withℳexpᵆ,� exponential mechanism
we have:

(i) �� [�(ℳexpᵆ,� , x) ≥ 2Δᵆ (ln(|ℛ|)+�)� ] ≤ �−�
(ii) � (�(ℳexpᵆ,� , x)) ≤ 2Δᵆ (ln(|ℛ|)+1)�

The Theorem 3.7 shows that the utility bounds of the exponential mechanism depend

on the privacy budget, the global sensitivity, and the number of possible outcomes. For the sake

of simplicity, sometimes this work refers toℳexpᵆ,� (⋅) = ℳexp(⋅).
We conclude that the exponential mechanism is a powerful tool applicable across

various problems, providing robust differential privacy guarantees. However, calculating the
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probability of a specific outcome involves evaluating the probabilities of all potential outcomes,

resulting in high computational complexity. Another drawback is its dependence on global

sensitivity, which can negatively impact the utility-to-noise ratio.

3.3 Permute-and-flip

Another private selection algorithm, called Permute-and-Flip, was proposed by

McKenna and Sheldon (2020). The work proves that the expected error of permute-and-flip is

never worse than that of the exponential mechanism. Moreover, it shows that the exponential

mechanism can be viewed as a rejection sampling algorithm that samples uniformly from the out-

come setℛ with replacement. On the other hand, the permute-and-flip works like an exponential

mechanism but sampling without replacement from ℛ.
Algorithm 1: Permute-and-Flip Mechanism
1 �∗(�) ← ����∈ℛ�(x, �);
2 repeat
3 � ∼ Uniform[ℛ];
4 �x,� = exp ( �⋅(ᵆ(x,�)−ᵆ∗(x))2Δᵆ );
5 ℛ = ℛ\� ; /* Without replacement */
6 until Bernoulli(�x,�);
7 return �

The permute-and-flip algorithm (Algorithm 1) works by iterating over the set of

outcomes ℛ in a random order, and for each element �, it flips a biased coin with a certain
probability. If the flipped coin lands tails, then � is removed from all possible outcomes. Otherwise

(if it lands heads), � is the returned outcome for the mechanism. The likelihood of obtaining heads
follows an exponential pattern concerning the quality score, thereby boosting the mechanism

to produce results with superior quality scores. While the permute-and-flip algorithm achieves�-differential privacy, this guarantee only applies under the global sensitivity Δ�.
The paper by McKenna and Sheldon (2020) demonstrates that the permute-and-flip

mechanism consistently maintains an expected error that does not exceed that of the exponential

mechanism. Additionally, the likelihood of the error variable surpassing any given threshold � is
always equal to or lower for permute-and-flip compared to the exponential mechanism. As a

result, permute-and-flip inherits the robust theoretical guarantees associated with the exponential

mechanism.
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Definition 3.8 (Never worse). An algorithm� is said to be never worse than some other algorithmℬ when, given a dataset x, and � > 0:
(i) �� [� (�, x) ≥ �] ≤ �� [� (ℬ, x) ≥ �] for all � ≥ 0;
(ii) �[� (�, x)] ≤ �[� (ℬ, x)].

Theorem 3.9 (Theorem 2 of McKenna and Sheldon (2020)). ℳpfᵆ,� is never worse thanℳexp.

That is, for any utility function �, and � > 0.
(i) ��[�(ℳpfᵆ,�) ≥ �] ≤ ��[�(ℳexpᵆ,� ) ≥ �] for all � ≥ 0;
(ii) �[�(ℳpfᵆ,�, x)] ≤ �[�(ℳexpᵆ,� , x)].

Theorem 3.10 (Utility of Permute-and-flip). Fixing a database x ∈ �, for a given � > 0, and �
representing the error, set of all possible outcome ℛ, withℳpfᵆ,� permute-and-flip have:
(i) �� [�(ℳpfᵆ,�, x) ≥ 2Δᵆ (ln(|ℛ|)+�)� ] ≤ �−�
(ii) � (�(ℳpfᵆ,�, x)) ≤ 2Δᵆ (ln(|ℛ|)+1)�

McKenna and Sheldon (2020) introduce a novel approach for differentially private

selection that demonstrates improved error rates compared to the exponential mechanism. How-

ever, it falls short of establishing tighter utility bounds beyond those offered by the exponential

mechanism. While Permute-and-flip addresses the computational complexity issues associated

with the exponential mechanism, it remains dependent on global sensitivity.

3.4 Report-noisy-max

The report-noisy-max algorithm adds independent noise to each outcome utility

score and returns the outcome with the highest noisy score. Dwork and Roth (2014) proposes

the algorithm with noise sampled by the Laplace distribution. However, the algorithm can be

generalized to other noise distributions, such as the Gumbel and Exponential distributions.

The algorithm, initially proposed by Dwork and Roth (2014), represents a com-

prehensive method for private selection that is adaptable across a wide range of probability

distributions. It can be effectively compared to the permute-and-flip technique, which serves as

a specific instance of this broader method Ding et al. (2021). Additionally, in certain scenarios,

the report-noisy-max algorithm mirrors the behavior of the exponential mechanism, as outlined

by Durfee and Rogers (2019). Algorithm 2 illustrates the application of the report-noisy-max

using the exponential distribution.
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Algorithm 2: Report-noisy-max algorithm - Exponential noise
1 for � ∈ ℛ do
2 ̃�(x, �) ← �(x, �) + Expo ( �2Δᵆ);
3 end
4 return argmax�∈ℛ ̃�(x, �)

Specifically, the report-noisy-max with the Exponential distribution, denoted by�exp, samples noise from Expo (�/2Δ�), and this version also has strong utility guarantees
shown by the Theorem 3.11. It is identical to permute-and-flip (DING et al., 2021).

Moreover, the report-noisy-max with the Gumbel distribution Gumbel (2Δ�/�) is
identical to the exponential mechanism (DURFEE; ROGERS, 2019). Nevertheless, the report-

noisy-max only holds the differential privacy requirements under the global sensitivity of the

utility function, which might lead to poor accuracy under certain scenarios (ZHANG et al., 2015;

GONEM; GILAD-BACHRACH, 2018; SUN et al., 2020; BUN; STEINKE, 2019).

It is vital to notice that the report-noisy-max algorithm reports only the outcome

with the highest noisy utility, nothing concerning the noisy utility value, nor something related

to the other outcomes, i.e., the method returns strictly what is wanted. The report-noisy-max

inadvertently discards information (DING et al., 2023). More precisely, without incurring any

supplementary privacy costs, it can disclose an estimation of the difference between the largest

and second-largest noisy utility values.

Besides all those strengths, it is also possible to grasp the utility bounds of the

report-noisy-max.

Theorem 3.11. Consider the report-noisy-max with exponential distribution�exp algorithm.

Let x ∈ � be a fixed database, � be the error, and ℛ be the set of all possible outcomes. Then,

for a given � > 0, the following inequalities hold:
(i) �� [�(�exp, x) ≥ 2Δᵆ (ln(|ℛ|)+�)� ] ≤ �−�;
(ii) � (�(�exp, x)) ≤ 2Δᵆ (ln(|ℛ|)+1)� .

The Report-Noisy-Max algorithm serves as a foundational component for differen-

tially private selection methods, capable of being adapted to various noise distributions. Each

type of noise uniquely affects the algorithm’s performance, enabling it to achieve specific utility

bounds. This adaptability makes it a powerful tool for tackling a diverse range of problems.

Additionally, unlike the exponential mechanism, the Report-Noisy-Max algorithm does not

encounter issues with time complexity, enhancing its practicality for real-world applications.
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3.5 Local Dampening Mechanism

In specific scenarios, the global sensitivity may not be suitable because the global

sensitivity may increase the signal-to-sensitivity ratio, implying inaccurate results. To address

this issue, the local dampening mechanism (FARIAS et al., 2023) designs an instance-based

sensitivity to work along with a novel mechanism based on the exponential one. It also proposes

new adapted versions of the local sensitivity at a distance � to the private selection setup.
3.5.1 Sensitivity functions

Whereas the local sensitivity at distance � provides an overview of the utility �
variation in its neighborhood, it lacks in granting more information about the utility function �
with a specific outcome � in its neighborhood. Therefore, Farias et al. (2023) proposes a novel
generalization of local sensitivity called the element local sensitivity. It measures the sensitivity

of a utility function � for a specific outcome � at a distance �, as defined in Definition 3.5.
The computation of the element’s local sensitivity is only sometimes feasible because

it could be NP-hard. Therefore, the paper proposes a heuristic to compute an upper bound to

the element’s local sensitivity, referred to as admissible function �ᵆ ∶ � × ℕ × ℛ → ℝ. As�ᵆ works like a upper bound on local sensitivity �ᵆ(x, �, �) = Δ�, �ᵆ(x, �, �) = ��ᵆ(x), and�ᵆ(x, �, �) = ��ᵆ(x, �, �) are possible sensitive functions �ᵆ.
The paper outlines four desired behaviors for the sensitivity functions: admissibility,

boundedness, monotonicity, and stability.

Definition 3.12 (Admissibility). Consider a x ∈ �, � ∈ ℛ. A sensitivity function �ᵆ(x, �, �) is
admissible if:

1. �ᵆ(x, 0, �) ≥ ��ᵆ(x, 0, �), for all x ∈ � and all � ∈ ℛ
2. �ᵆ(x, � + 1, �) ≥ �ᵆ(y, �, �), for all x, y such that �(x, y) ≤ 1 and all � ≥ 0

Lemma 3.13. The element local sensitivity ��ᵆ(x, �, �) is admissible.
Definition 3.14 (Boundedness). A sensitivity function �ᵆ(x, �, �) is said to be bounded if �ᵆ(x, �, �) =Δ� for all � ≥ �.
Lemma 3.15. If �ᵆ(x, �, �) is admissable, then���(�ᵆ(x, �, �), Δ�) is admissable and bounded.
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Definition 3.16 (Non-decreasing Monotonicity). Let �(x, �) be an utility function and �ᵆ(x, �, �)
be a sensitivity function. �ᵆ(x, �, �) is said to be monotonically non-decreasing if �ᵆ(x, �, �) ≥�ᵆ(x, �, �′) for all x ∈ �, �, �′ ∈ ℛ, � ≥ 0 such that �(x, �) ≥ �(x, �′).
Definition 3.17 (Non-increasing Monotonicity). Let �(x, �) be an utility function and �ᵆ(x, �, �)
be a sensitivity function. �ᵆ(x, �, �) is said to be monotonically non-increasing if �ᵆ(x, �, �) ≥�ᵆ(x, �, �′) for all x ∈ �, �, �′ ∈ ℛ, � ≥ 0 such that �(x, �) ≤ �(x, �′).
Definition 3.18 (Flat Monotonicity). Let �(x, �) be an utility function and �ᵆ(x, �, �) be a sen-
sitivity function. �ᵆ(x, �, �) is said to be flat if �ᵆ(x, �, �) = �ᵆ(x, �, �′) for all x ∈ �, �, �′ ∈ ℛ,� ≥ 0.

The paper refers to amonotonic function as a function that is either flat, monotonically

non-decreasing or monotonically non-increasing.

Definition 3.19 (Stability). A sensitivity function �ᵆ(x, �, �) is stable if �ᵆ is admissible, bounded
and monotonic.

The stability classification is employed in the accuracy analysis and it might seem

quite restrictive at first glance.

3.5.2 Dampening

The local dampening attenuates the utility function in a specific way to make the

signal-to-sensitivity ratio larger. This function is called�ᵆ,�� and uses an admissible function �_�
that provides a dampened and scaled version of the original utility function. Figure 6 illustrates

how the dampening function behaves.

Definition 3.20 (Dampening function). Given a utility function �(x, �) and an admissible function�ᵆ(x, �, �), the dampening function �ᵆ,��(x, �) is defined as a piecewise linear interpolation over
the points: < … , (�(x, −1, �), −1), (�(x, 0, �), 0), (�(x, 1, �), 1),… >
where �(x, �, �) is given by:
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Figure 6 – Dampening function �ᵆ,��
1
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-2
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-3

∑0�=0 �(x, �, �)∑1�=0 �(x, �, �) ∑2�=0 �(x, �, �)−∑0�=0 �(x, �, �)−∑1�=0 �(x, �, �)−∑2�=0 �(x, �, �)

�ᵆ,��
�

Source: adapted from Farias (2021)

�(�, �, �) ∶= ⎧⎪⎨⎪⎩
∑�−1�=0 �(x, �, �) if � > 00 if � = 0−�(�, −�, �) otherwise

Therefore, �ᵆ,��(x, �) = �(x, �) − �(x, �, �)�(x, � + 1, �) − �(x, �, �) + �
where � is defined as the smallest integer such that �(x, �) ∈ [�(x, �, �), �(x, � + 1, �)).

A crucial property of�ᵆ,�� is that it scales � so that the sensitivity of�ᵆ,�� is bounded
to 1.
Lemma 3.21. |�ᵆ,��(x, �) − �ᵆ,��(y, �)| ≤ 1 for all x, y such that �(x, y) ≤ 1 and all � ∈ ℛ if �ᵆ
is admissible.

And finally, the local dampening mechanismℳdamᵆ,�,�� selects an element � ∈ ℛ with

probability proportional to exp (�⋅��,��(x,�)/2).
ℳdamᵆ,�,��(x, �) ∝ exp (� ⋅ �ᵆ,��(x, �)2 )

The local dampening mechanism satisfies �-differential privacy if �ᵆ is admissible.
Theorem 3.22. ℳdam satisfies �-differential privacy if �ᵆ is admissible.
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The local dampening mechanism is especially effective when the sensitivity function

is flat. To deal with non-flat sensitivity functions, the paper proposed the shifted local dampening

mechanism. However, all the variants of local dampening suffer from the inversion problem.

Consider a situation in which we apply dampening to the utility scores of elements � ∈ ℛ using

a non-monotonic sensitivity function, �ᵆ. This occurs, for example, when �ᵆ(x, �, �) is used as
the local sensitivity of an element, defined as �ᵆ(x, �, �) = ��ᵆ(x, �, �).

In the inversion problem example, we have two elements, �1 and �2, with respective
sensitivity and utility values. Initially, �2 is more valuable than �1 based on utility scores. However,
after applying a dampening function �ᵆ,��, which adjusts utility scores based on their sensitivity,
the utility ranking of the elements is reversed: �1 becomes more favored than �2. This dampening
leads to a selection bias towards �1, despite its originally lower utility, potentially compromising
the accuracy of decisions based on these adjusted scores.

Corollary 3.23. Let �ᵆ be a stable function. The shifted local dampening mechanismℳdam(x, �,�, �ᵆ, ℛ) is never worse than the exponential mechanismℳexp, that is:

1. ��[�(ℳdam, x) ≥ �] ≤ ��[�(ℳexp, x) ≥ �] for all � ≥ 0,
2. �[�(ℳdam, x)] ≤ �[�(ℳexp, x)].

The paper does not provide explicit utility bounds or comparative analysis with the

permute-and-flip and report-noisy-max methods. Although the inversion problem is clearly

presented, it could present challenges for data analysts to detect when the inversion problem

occur. The local dampening mechanism experiences the same algorithmic complexity as the

exponential mechanism. Additionally, the work hinges on a very specific type of sensitivity

(element local sensitivity) which could be challenging to accurately determine.

3.6 Discussion

In this chapter, we provided the background needed to understand the field of private

selection and its key definitions. We also explored the private selection mechanisms, including

the exponential mechanism, permute-and-flip, report-noisy-max, and local dampening.

We examined algorithms that employ global sensitivity, and we gave particular

attention to the local dampening mechanism. This mechanism utilizes instance-based sensitivity

in conjunction with a differentially private algorithm, a methodological approach also adopted in

this thesis. However, the local dampening mechanism lacks extensibility across various noise
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distributions, i.e., it is not possible to change the noise distribution for local dapening. Along

with the lack of extensability, the local dapening has high time complexity. To elucidate this for

the reader, we include Table 1, which compares all the private selection mechanisms discussed

in this thesis in five different attributes. In the next chapter, we will present our proposed method

that employs local sensitivity and has low algorithm complexity.

Table 1 – Comparative table of private selection methods.
Sensitivity

Algorithm Global Local Element Extensibility Complexity

Exponential High

Permute-and-flip Low

Report-noisy-max Low

Local dampening High
Source: elaborated by the author.
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4 SMOOTH NOISY MAX

This chapter introduces Smooth Noisy Max (SNM), an algorithm that tackles the

differentially private selection problem. The report-noisy-max inspires the proposed algorithm.

SNM offers significant advantages over the existing methods, such as simplicity, ease of im-

plementation, low algorithm complexity, and explicit accuracy performance. In particular, our

novel approach adopts an instance-based sensitivity rather than global sensitivity since the global

one may increase the signal-to-sensitivity ratio, implying inaccurate results. More precisely,

SNM applies the smooth sensitivity.

Definition 4.1 (Smooth sensitivity, adapted from Nissim et al. (2007)). For � > 0, the �-smooth
sensitivity of the utility function � is:�ᵆ,�(x) = max�=0,1,…,|x| (�−�� ⋅ ��ᵆ(x, �))

The smooth sensitivity attenuates the local sensitivity (Definition 3.4) based on the

distance from x. Applying an instance-based sensitivity, such as smooth sensitivity, within

a private selection algorithm is not always feasible for differential privacy. For instance, the

exponential mechanism can not be used directly with the smooth sensitivity (see Theorem 7.2).

On the other hand, the proposed Smooth Noisy Max algorithm can take advantage of the smooth

framework and consequently decrease the signal-to-sensitivity ratio of the method. Additionally,

it can keep the same differentially private guarantees of the standard report-noisy-max and

ensures better accuracy.

SNM adds noise proportional to a smooth upper bound on the local sensitivity (e.g.

smooth sensitivity �ᵆ,�) to its utility value for each possible outcome � for the query � at database
x, i.e., �(x, �). The noise, expressed by a random variable �, is drawn from an (�, �)-admissible
probability density function (Definition 2.18). For the sake of simplicity, we refer to �ᵆ,� as �.
This procedure is explained in Algorithm 3.

Algorithm 3: Smooth Noisy Max Algorithm
1 for � ∈ ℛ do
2 ̃�(x, �) ← �(x, �) + 2�(x)� ⋅ �;
3 end
4 return argmax�∈ℛ ̃�(x, �)
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4.1 Privacy Guarantees

In Theorem 4.2, we prove that the Smooth Noisy Max algorithm ensures (�, �)-
differential privacy.

Theorem 4.2. The Smooth Noisy Max �ᵆ,� algorithm is (�, �)-differentially private if ℎ is an(�, �)-admissible noise probability density function, and � a random variable sampled according

to ℎ.
Proof. Consider two neighbor databases x and y. Fix any � ∈ ℛ and let ⃗�� = {�1,… , �|ℛ|}\{��}
be the fixed noises for all outputs except the ith output. We will argue for each ⃗�� independently,
similarly to what was done by Dwork and Roth (2014) (Claim 3.9). For simplicity of notation,

denote �(x) = 2��,�(x)/�, and the Smooth Noisy Max as �. Then, the probability of � ∈ ℛ being

the output of the algorithm is given by

��[�(x) = �| ⃗�] = �� [�(x, �) + �(x) ⋅ � ≥ max�∈ℛ;�≠� {�(x, �) + ��}] .
Let ̃�∗ = max�∈ℛ;�≠�{�(x, �) + ��} and ̃�′∗ = max�∈ℛ;�≠�{�(y, �) + ��}. Then:

��[�(x) = �| ⃗��] = �� [� ≥ ̃�∗ − �(x, �)�(x) ] ,
For the sake of simplicity let define �(�) = ̃ᴂ∗−ᵆ(x,�)�(x) and �′(�) = ̃ᴂ∗−ᵆ(y,�)�(x) .

��[�(x) = �| ⃗��] = �� [� ≥ �(�)] ,
Using the definition 2.6 for neighboring databases x, y, and �� ∼ �(x), �� ∼ �(y):

��∞(��||��) = max�⊆ℛ∶��[��∈�]≥� [log (��[�� ∈ �] − ���[�� ∈ �] )]
As our algorithms draws results from the discrete set of outputs, we can:

��∞(��||��) = max�⊆ℛ∶��[��∈�]≥� [log(
∑�∈���[�� = �] − �∑�∈���[�� = �] )]

= max�⊆ℛ∶��[��∈�]≥�[log(
∑�∈�∫��[�� = �| ⃗��]��[ ⃗��]� ⃗�� − �∑�∈�∫��[�� = �| ⃗��]��[ ⃗��]� ⃗�� )]
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Since � ∼ ℎ and ℎ is admissible, we can use the sliding property:
��∞(��||��) = max�⊆ℛ∶��[��∈�]≥�[log(

∑�∈�∫��[�� = �| ⃗��]��[ ⃗��]� ⃗�� − �∑�∈�∫��[�� = �| ⃗��]��[ ⃗��]� ⃗�� )] ,
= max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
∑�∈�∫�� [�� ≥ ̃ᴂ∗−ᵆ(x,�)�(x) ] ��[ ⃗��]� ⃗�� − �∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦ ,
= max�⊆ℛ∶��[��∈�]≥�[log(

∑�∈�∫�� [�� ≥ �(�)] ��[ ⃗��]� ⃗�� − �∑�∈�∫�� [�� ≥ �′(�)] ��[ ⃗��]� ⃗�� )] ,
≤ max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
∑�∈�∫�� [�� ≥ �(�) − �(�) + ̃ᴂ′∗−ᵆ(y,�)�(x) ] ⋅ � �2��[ ⃗��]� ⃗�� + �2 − �∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦ ,
≤ max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(x) ] ⋅ � �2��[ ⃗��]� ⃗�� + �2 − �∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦
The first inequality results from the sliding property since ℎ is admissible. Notice that this

property can be applied because, by the properties of smooth and local sensitivities, and since x

and y are neighbors:

�(�) − ̃�′∗ − �(y, �)�(x) = �(x, �) − �(y, �) − �̃∗ + �̃′∗�(x) = ��(x, �) − �(y, �) − �̃∗ + �̃′∗2�ᵆ,�(x) ,
≤ �2��(x) (�(x, �) − �(y, �)⏟⎵⎵⎵⏟⎵⎵⎵⏟≤��(x) + �̃′∗ − �̃∗⏟⎵⏟⎵⏟≤��(x) ) ,≤ �2��(x)2��(x) = �.

Further we can apply the dilation property since ℎ satisfies the dilation property and ln �(x)�(y) =
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ln
��,�(x)��,�(y) ≤ � (see Definition 2.14):
��∞(��||��) ≤ max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(x) ] ⋅ � �2��[ ⃗��]� ⃗�� + �2 − �∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦ ,
≤ max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(x) ⋅ �(x)�(y)] ⋅ ����[ ⃗��]� ⃗�� + � − �∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦ ,
= max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ⋅ ����[ ⃗��]� ⃗�� + � − �∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦ ,
= max�⊆ℛ∶��[��∈�]≥�

⎡⎢⎢⎣log
⎛⎜⎜⎝
�� ⋅ ∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗��∑�∈�∫�� [�� ≥ ̃ᴂ′∗−ᵆ(y,�)�(y) ] ��[ ⃗��]� ⃗�� ⎞⎟⎟⎠

⎤⎥⎥⎦ ,= �.
By symmetry, we can also prove that ��∞(��‖��) ≤ �. Then, by Definition 2.7, we

conclude that SNM is (�, �)-differentially private.
Corollary 4.3. The Smooth Noisy Max �ᵆ,� algorithm with sampled noise from the Student’s T

distribution is �-differentially private. By scaling the Student’s T distribution under the smooth

sensitivity, pure differential privacy is assured (BUN; STEINKE, 2019).

Corollary 4.4. The Smooth Noisy Max �ᵆ,� algorithm with sampled noise from the Laplace

distribution is (�, �)-differentially private, when � parameter is defined by �/2 log(2/�) (NISSIM et

al., 2007).

Corollary 4.5. The Smooth Noisy Max �ᵆ,� algorithm with sampled noise from the Laplace

Log-Normal ( LLN(�) ) distribution is (�, �)-differentially private (BUN; STEINKE, 2019), when� parameter is defined as �−3/2�2 (� − �/�).
We can also improve the noise addition under the monotonicity property. The utility

function � is monotonic in the database if adding an element to the database cannot cause the
value of the function to decrease, e.g., counting queries.

Corollary 4.6. When the utility function � is monotonic in the database, then the Smooth Noisy
Max �ᵆ,� scales the noise only by a factor of �(x)� .
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4.2 Utility Analysis

A significant characteristic of the Smooth Noisy Max algorithm is that it provides

strong utility guarantees. Given a database x, we bound the error of the private algorithm

by a specific parameter �. The algorithm’s accuracy is assessed based on the largest utility
score �∗ = max�∈ℛ �(x, �). It will be highly unlikely that the returned element � has a utility
score significantly less than � (�∗ − (��,�(x)/�) ln |ℛ|) when the noise distribution is Laplace. All
subsequent proofs refer to the admissible Laplace distribution version of the Smooth Noisy Max

algorithm.

Lemma 4.7. Given a fixed database x ∈ �, for the Smooth Noisy Max � algorithm with a

standard Laplace distribution as noise function and any � > 0, the error �(�, x) satisfies
��[�(�, x) ≥ �] ≤ |ℛ| exp (− ��4�ᵆ,�(x)) .

Proof. Define �∗(x) = max�∈ℛ �(x, �), so for each possible outcome � ∈ ℛ, the error can be
written as �(�, x) = �∗(x) − �(x, �). Thus, for � > 0:

��[�(�, x) ≥ �] = ��[�(x, �(x)) ≤ �∗(x) − �].
For simplicity of notation, define the following subsets of ℛ:
(i) ℛ� = {� ∈ ℛ ∶ �(x, �) ≤ �∗(x) − �};
(ii) ℛ∗ = {� ∈ ℛ ∶ �(x, �) = �∗(x)}.

Also, consider the noisy utility ̃�(x, �) = �(x, �) + (2��,�(x)/�) ⋅ ��, where �� ∼ Lap (0, 1), and its
maximal value ̃�∗(x) = max�∈ℛ ̃�(x, �). Notice that the probability of the output being in ℛ� is
the same probability of existing some element in ℛ� with the greatest noisy utility. This way,��[�(�, x) ≥ �] is equivalent to the probability of existing some � ∈ ℛ� such that ̃�(x, �) = �̃∗(x).
In other words, ∃� ∈ ℛ� ∶ �̃(x, �) = �̃∗(x). Then:

��[�(�, x) ≥ �] = ��[∃� ∈ ℛ� ∶ �̃(x, �) = �̃∗(x)],= ��[∪�∈ℛ�[ ̃�(x, �) = �̃∗(x)]],≤ ∑�∈ℛ� ��[ ̃�(x, �) = �̃∗(x)].
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Let �′ be the most probable output in ℛ�. In this case, we can write:��[�(�, x) ≥ �] ≤ |ℛ�| ��[ ̃�(x, �′) = �̃∗(x)],= |ℛ�| ��[ ̃�(x, �′) ≥ �̃∗(x)],= |ℛ�| ��[(2��,�(x)/�) ⋅ ��′ ≥ �̃∗(x) − �(x, �′)],≤ |ℛ�| ��[��′ ≥ (�̃∗(x) − �(x, �′)) ⋅ (�/2��,�(x))]��[�(x) ∈ ℛ∗] .
Notice that ��[ ̃�(x, �′) = �̃∗(x)] = ��[�̃(x, �′) ≥ �̃∗(x)], since ̃�∗(x) is the maximal noisy utility.
Now, consider �∗ = argmax�∈ℛ �(x, �) and �∗ as the error associated with �∗. Thus, we can
write: ��[�(x) ∈ ℛ∗] = ��[∪�∈ℛ∗[�(x) = �]],= ∑�∈ℛ∗ ��[�(x) = �],

= |ℛ∗| ��[�(x) = �∗],= |ℛ∗| ��[�∗ ≥ (�̃∗(x) − �(x, �∗)) ⋅ (�/2��,�(x))].
The equality above is valid because �(x, �) = �(x, �) ∀� ∈ ℛ∗, so the chance of any of them
being the output depends only on the noise, resulting in independent events with equal probability.

As a consequence:��[�(�, x) ≥ �] ≤ |ℛ�| ��[��′ ≥ (�̃∗(x) − �(x, �′)) ⋅ (�/2��,�(x))]|ℛ∗| ��[�∗ ≥ (�̃∗(x) − �(x, �∗)) ⋅ (�/2��,�(x))] .
However, as ��′, �∗ ∼ Lap(0, 1), �(x, �∗) = �∗(x) and �(x, �′) ≤ �∗(x) − �:|ℛ�| ��[��′ ≥ (�̃∗(x) − �(x, �′)) ⋅ (�/2��,�(x))]|ℛ∗| ��[�∗ ≥ (�̃∗(x) − �(x, �∗)) ⋅ (�/2��,�(x))]

= |ℛ�|2 exp (−�( ̃ᴂ∗(x)−ᵆ(x,�′))2��,�(x) )|ℛ∗|2 exp (−�( ̃ᴂ∗(x)−ᵆ(x,�∗))2��,�(x) ),
≤ |ℛ�||ℛ∗| exp (−�( ̃ᴂ∗(x)−ᵆ∗(x)+�)2��,�(x) )

exp (−�( ̃ᴂ∗(x)−ᵆ∗(x))2��,�(x) ) ,
= |ℛ||ℛ∗| exp (− ��2�ᵆ,�(x)) .

We know that � = �2 (see NISSIM et al., Lemma 2.9 (NISSIM et al., 2007)). Then, from the

result above, we can finally conclude that:��[�(�, x) ≥ �] ≤ |ℛ| exp (− ��4�ᵆ,�(x)) .
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Theorem 4.8. Let x ∈ � be a fixed database. Then, for a given � > 0, the Smooth Noisy Max �
algorithm with standard Laplace noise distribution will have the following properties:

(i) �� [�(�, x) ≥ 4��,�(x) (ln(|ℛ|)+�)� ] ≤ �−�;
(ii) � (�(�, x)) ≤ 4��,�(x) (ln(|ℛ|)+1)� .

The utility bounds presented by Theorem 4.8 provide tools to compare and show

that the Smooth Noisy Max outperforms our related work, i.e., report-noisy-max, exponential

mechanism, and permute-and-flip. Firstly, we analyze the utility of the Smooth Noisy Max in

contrast to the report-noisy-max with exponential noise, shown by Theorem 4.9.

Theorem 4.9. The Smooth Noisy Max � with Laplace noise distribution is never worse than�exp report-noisy-max algorithm with exponential noise when �ᵆ,�(x) ≤ Δ2ᴂ .
Proof. Using the lemma 4.7, we can obtain

�� [� (�, �) ≥ �] ≤ |ℛ||ℛ∗| exp (− ��4�ᵆ,�(x)) .
We observe that when �ᵆ,�(x) ≤ Δ2ᴂ , then|ℛ||ℛ∗| exp (− ��4�ᵆ,�(x)) ≤ |ℛ||ℛ∗| exp (− ��2Δ�) ,�� [� (�, �) ≥ �] ≤ �� [� (�exp, �) ≥ �] .
Furthermore, by the Theorem 3.11, the first statement (i) holds. We want to prove the second

statement (ii). The expected error can be expressed in terms of complementary cumulative

distribution function:

�(�(�, �)) = ∫∞
0 ��[�(�, �) ≥ �]��.

We shown that �� [� (�, �) ≥ �] ≤ �� [� (�exp, �) ≥ �], thus:
�(�(�, �)) − �(�(�exp, �)) =∫∞

0 �� [� (�, �) ≥ �] − �� [� (�exp, �) ≥ �] �� ≤ 0.
Thus, the Smooth Noisy Max with Laplace noise distribution is never worse than the report-

noisy-max algorithm with exponential noise when �ᵆ,�(x) ≤ Δ2ᴂ .
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DING et al. (DING et al., 2021) shows that the report-noisy-max with exponential

noise is identical to the permute-and-flip, so as we know, by Theorem 4.9 the Smooth Noisy

Max is never worse than report-noisy-max algorithm with exponential noise when �ᵆ,�(x) ≤ Δ2ᴂ ,
and consequently never worse than permute-and-flip mechanism under the same constraint.

The utility of our proposed method also outperforms the exponential mechanism and

report-noisy-max with Gumbel noise when �ᵆ,�(x) ≤ Δ2ᴂ . Since, by transitivity, SNM surpass

the permute-and-flip that exceeds the exponential mechanism (MCKENNA; SHELDON, 2020).

Additionally, the exponential mechanism is identical to report-noisy-max with Gumbel noise

(DURFEE; ROGERS, 2019); therefore, the Smooth Noisy Max is never worse than report-noisy-

max with Gumbel noise. All these results are expressed by Corollary 4.10.

Corollary 4.10. When �ᵆ,�(x) ≤ Δ2ᴂ , SNM � algorithm is never worse than ℳpf permute-

and-flip, ℳexp exponential mechanism, and �gum report-noisy-max algorithm with Gumbel

noise.

The lack of utility bounds for the Local Dampening mechanism (FARIAS et al.,

2023) hampers a comparative assessment with our Smooth Noisy Max. Nevertheless, the paper

conducts an exhaustive empirical analysis in the subsequent sections.

4.3 Discussion

In this chapter, we introduced the Smooth Noisy Max, a private selection algorithm

that capitalizes on key strengths of the report-noisy-max, such as extensibility and low complexity.

The SNM utilizes a type of local sensitivity known as smooth sensitivity, adapted specifically for

private selection scenarios. We prove that SNM satisfies (�, �)-differential privacy and provided
specific utility bounds. We prove that our proposed method is nerver worse than the exponential

mechanism, permute-and-flip, and report-noisy-max when SNM applied the Laplace distribution.

However, this adapted version of smooth sensitivity does not leverage the element-

specific sensitivity, such as the element local sensitivity used by Local Dampening. While

there are preliminary indications that the SNM algorithm could potentially guarantee differential

privacy with element sensitivity, fully exploring this possibility remains a subject for future

research. The Table 2 summarizes all key points of the Smooth Noisy Max in comparison with

the related work.



54

Table 2 – Comparative table of private selection methods.
Sensitivity

Algorithm Global Local Element Extensibility Alg. Complexity

Exponential High

Permute-and-flip Low

Report-noisy-max Low

Local dampening High

Smooth Noisy Max Low
Source: elaborated by the author.

Remark (Smooth Noisy Max with element local sensitivity). We draft potential proof of the

Smooth Noisy Max by incorporating element local sensitivity. In Theorem 4.2, we initially

define �(x) = 2�(x)� . However, to target element local sensitivity more effectively, we propose

defining a smooth element local sensitivity and accordingly adjusting �(x).
Definition 4.11 (Smooth Element Sensitivity). For � > 0, the �-smooth element sensitivity of
the utility function � is:

�ᵆ,�(x, �) = max�=0,1,…,|x| (�−�� ⋅ ��ᵆ(x, �, �))
Thus, the adapted �(x, �) = 2��,�(x,�)� implies that for � ∈ ℛ be the output the ith noisy score

should be the larger. Hence,

��[�ᵆ,�(x) = �| ⃗�] = �� [�(x, �) + �(x, �) ≥ max�∈ℛ;�≠� {�(x, �) + ��}] ,
moving forward, to establish (�, �)-differential privacy, it is crucial to meticulously address the
dilation property–the second inequality in Theorem 4.2. Fully analysis of this proof will be

pursued in future research.



55

5 APPLICATION — PERCENTILE SELECTION

In this chapter, we address the percentile selection problem. The task is to return the

p-th percentile value from a set of real numbers.

Nissim et al. (2007) and McKenna and Sheldon (2020) have dealt with similar

problems. The Nissim et al. (2007) work addressed the challenge of privately releasing the

numerical median of a dataset while preserving individual privacy. McKenna and Sheldon (2020)

work attacks a similar problem, also for the data median, returning the bin value where it belongs.

5.1 Problem Statement

Given a dataset x represented as a vector {�1,… , ��}. For simplicity’s sake, assume
that every database x is ordered such that �1 ≤ … ≤ ��. Suppose that all the values lies in [0, Λ],0 ≤ �1 ≤ … ≤ �� ≤ Λ. The task is to return the percentile value where its element �� is as close
as possible to the �-th percentile element.
5.2 Private Mechanism and Sensitivity Analysis

Following the problem statement, various private selection algorithms are applicable,

including the exponential mechanism, permute-and-flip, local dampening, and our proposed

Smooth Noisy Max variants. The algorithms select any value from a discrete subset of [0, Λ], i.e.,ℛ ⊆ [0, Λ]. We designed a utility function �� that assigns a maximum score of 1 when element �
matches the �-th element’s value and a minimum score of 0 in all other cases, see Definition 5.1.

Definition 5.1 (Utility function for percentile selection problem). Consider a database x ∈ �,� = |x|, and � ∈ ℤ0+ a non-negative integer. The utility is defined as follows:

��(x, �) = ⎧⎨⎩1 if �� = ��,where � = ⌊�⋅�100⌋0 otherwise

Recall that the exponential mechanism and the permute-and-flip require the global

sensitivity Δᵆ�, the local dampening requires the element local sensitivity and the Smooth Noisy
Max expects the smooth sensitivity �ᵆ�.
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Global Sensitivity

The following example can show a worst-case scenario. For instance, let � = 50
implying that � = ⌊�2 ⌋. Let x be a dataset with � > 2 and even, where �<� = 0 and �≥� = Λ.
Let y be a neighboring dataset of x, where one element �≥� has been removed. Thus we have�(x, �) = 1, and �(y, �) = 0which implies that �(x, �)−�(y, �) = 1. Thus, |�(x, �)−�(y, �)| ≤ 1
for all � ∈ ℛ, and any two neighboring datasets �, �.
Lemma 5.2 (Percentile selection global sensitivity).

Δᵆ� = 1
Local Sensitivity

One must first compute the local sensitivity at a distance � to compute the smooth
sensitivity. Let x ∈ � be a dataset, and � = min (∑�−1�=0 �(x, ��),∑��=�+1 �(x, ��)) the smallest
sequence of �-th value repetition length at left or right of position �. Thus, the �-th percentile
value will remain the same until 2� + 1 insertions and deletions from x because of the floor

function in the � definition (Definition 5.1).
Lemma 5.3 (Percentile selection local sensitivity at distance �).

��ᵆ�(x, �) = ⎧⎨⎩1 if � ≥ 2� + 10 otherwise

Now, it is possible to calculate the smooth sensitivity of the percentile selection

problem using the smooth sensitivity defined by Definition 4.1. The local sensitivity remains

zero until � < 2� + 1 and changes to one when � ≥ 2� + 1. Since the ��ᵆ� is constant when� ≥ 2� + 1, the smooth sensitivity will be max when � = 2� + 1.
Lemma 5.4 (Percentile selection smooth sensitivity).

�ᵆ�(x) = exp(−(2� + 1) ⋅ �)
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5.3 Experimental Evaluation

5.3.1 Datasets

We evaluated PATENT, HEPTH, and INCOME datasets from Hay et al. (2016).

The PATENT dataset contains 32,558 tuples with a high percentage of zero-valued entries at

97.80%. In contrast, the HEPTH dataset comprises 347,414 tuples but only 21.17% zero-valued

entries, indicating more varied data. Lastly, the INCOME dataset is the largest, with 20,787,122

tuples and 44.97% zero-valued entries, reflecting moderate homogeneity in its data. An essential

attribute for those datasets is the amount of �-th value repetitions because of the utility function.
Table 3 illustrates the datasets with their information.

Table 3 – Overview of the datasets
Dataset Name # Tuples % Zero valued

Patent 32,558 97.80%
Hepth 347,414 21.17%
Income 20,787,122 44.97%

Source: elaborated by the author.

5.3.2 Methods

We consider six approaches to the private percentile selection problem:

1. exponential mechanism (EM) using global sensitivity;

2. permute-and-flip (PF) using global sensitivity;

3. local dampening (LD) using the element local sensitivity ̂�(x, �, �) = ��ᵆ�(x, �) = max�′∈ℛ��ᵆ�(x, �, �) from utility function (Definition 5.1);

4. local dampening (LD2) utilizing the utility presented in FARIAS et al.’s work;

5. Smooth Noisy Max via Laplace distribution (SNM-LAP) with the smooth sensitivity �ᵆ�;
6. Smooth Noisy Max via Student’s T distribution (SNM-T) with the smooth sensitivity �ᵆ�.

5.3.3 Evaluation

We measured the absolute expected error (AEE) of each method for every specific

scenario: |�(�, x)| = |�� − �(�, x)|. Understanding each outcome’s associated probability is
needed to find the expected value. Meanwhile, for the exponential mechanism, permute-and-flip,
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and local dampening, the probabilities of each outcome are straightforward to identify through

the probability mass function of each mechanism. However, finding the probability of each

outcome of the SNM algorithm is not straightforward. Reasoning about the output probability of

other candidates is a condition for finding the probability of the output of a particular candidate.

The specific candidate utility random variable should be greater than all others. This intricate

probability function leads us to solve the following integral to find those probabilities numerically.

��[�(x) = �] = ∫∞
−∞ �(�)∏�≠� � (�(x, �) − �(x, �)�(x) + �) ��,

where �(x) = 2��,�(x)/�, � and � represent the probability density function and the cumulative
density function of the distribution used, respectively. Figure 7 shows the result varying the

privacy budget � ∈ [10−1, 102] and � = 50, 90, 99. For the Student’s T distribution, the degree

of freedom was set to 3. Each dataset has a ground-truth percentile value (GT) for each percentile.

The desired behavior is that with a small privacy budget, the method outputs a value near the

ground-truth value.

All versions of Smooth Noisy Max (SNM-T, SNM-LAP) have better accuracy when

the dataset has several repetitions of the �-th value, i.e., a significant � value. For instance, the
median perspective (� = 50) in the PATENT dataset has � = 0, HEPTH has � = 2, and INCOME

has � = 10. The datasets show different scenarios to assess the SNM algorithms compared to

the competitors. The EM and PF methods have similar expected values in all scenarios. For the

HEPTH dataset with � = 50, SNM-T method achieves a similar expected value, the difference

in absolute values of a maximum of 5, with 69% and 85% less privacy budget than LD and LD2

methods, respectively. For � = 90, the SNM-T needs less than 51% and 76% privacy budget

than the LD and LD2 methods, respectively. For � = 99, the behavior is similar when SNM-T

requires less than 51% and 76% budget compared with LD and LD2. For the PATENT dataset,

we observe up to 51%, 70%, and 70%, for � ∈ {50, 90, 99} respectively, in privacy budget saving
when compared to LD. In the PATENT dataset with � = 50, the LD2 method quickly reaches
the desired value. And for � ∈ {90, 99}, we observe up to 70% of privacy budget saving when

compared to LD2. For the INCOME dataset, when � = 50, the difference is more evident due to
the high � value, but for � ∈ {90, 99}, the performance is quite the same in the other datasets.

In the LD2 experiments on the HEPTH and PATENT datasets with � = 50, we
observed a peculiar trend: the absolute expected error initially drops to low levels swiftly.

However, as the privacy budget increases, the error, counterintuitively, increases. This rapid
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Figure 7 – Comparison of private selection methods for percentile selection. Plots show the
absolute expected error (AEE) as a function of the privacy budget of � ∈ [10−1, 102].
The x-axis uses a log scale. Overall, SNM-LAP and SNM-T achieve lower expected

errors than other methods for any �.
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Figure 8 – Local Dampening (LD2) probabilities on the HEPTH dataset with � = 50. The first
plot demonstrates that the probability of selecting element 41 (median) is low when
the privacy budget is minimal. The second graph depicts a scenario with very low
expected error, suggesting that the observed low expected error occurs by chance. The
last plot illustrates that with an increased privacy budget, LD2 converges effectively.
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convergence appears to be coincidental, with the algorithm still in the process of converging.

Figure 8 visually captures this behavior.
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6 APPLICATION — GREEDY DECISION TREE

Decision trees are compelling methods for classification and regression tasks (KOT-

SIANTIS et al., 2007). A decision tree is a graphical representation of a set of rules, where each

node represents a decision based on attributes from the training dataset.

The tree topology is settled by the training algorithm that receives, as input, a dataset

and outputs a decision tree. The ID3 algorithm (QUINLAN, 1986) is one of the most known

decision tree algorithms. It recursively selects the best attribute, according to some measure, to

split the data until a stopping criterion is met. In this work, the split criterion is based on the Max

Operator (FRIEDMAN; SCHUSTER, 2010), which is the summation of each attribute value of

the class with the highest frequency.

6.1 Problem Statement

Table 4 – Notation table for private decision tree induction
Variable Definition����� Max Operator� Dataset� Attribute set�� i-th attribute� Class attribute� Cardinality of a dataset �: � = |�|�� Values of an attribute � in a record ��� Values of the class attribute � in a record ���� Set of records � ∈ � where attribute �

takes value �: ��� = {� ∈ � ∶ �� = �}��� Cardinality of ��� : ��� = |��� |��� Number of records � ∈ � where class
attribute � takes value �:��� = |� ∈ � ∶ �� = �|���,� Number of records � ∈ � where attribute �
takes value � and class attribute � takes
value �: ���,� = |� ∈ � ∶ �� = � ∧ �� = �|
Source: elaborated by the author.

A decision tree induction algorithm takes as input a dataset � with attributes � ={�1,… , ��} and a class attribute � and produces a decision tree. The task is to build a decision

tree in a differentially private manner. Specifically, we base our approach on one of the most

known tree induction algorithms, the ID3 algorithm. Table 4 shows all the notation used in this
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chapter.

6.2 Private Mechanism and Sensitivity Analysis

Blum et al. (2005) introduced the SuLQ framework, where they designed a differ-

entially private version of ID3 as an application. The adapted application of the ID3 algorithm

takes advantage of two SuLQ operators:

i) NoisyCount: a Laplace mechanism operator to provide a private estimate for a count

query and

ii) Partition: an operator that splits the dataset into disjoint subsets.

The primary disadvantage of the ID3 algorithm proposed by Blum et al. (2005) is

its inefficient use of the privacy budget when evaluating the information gain for each attribute

separately. The work presented by Friedman and Schuster (2010), described by Algorithm 4,

offers a more effective alternative using the exponential mechanism to evaluate each attribute

independently, assessing all attributes simultaneously in a single query, resulting in the selection

of an appropriate attribute for splitting. Line 13 is the exponential mechanism call that selects an

attribute based on its information gain, which is the utility function. The function BuildDiffID3

Algorithm 4: Differentially Private ID3 (from Friedman and Schuster (2010))
1 Function GlobalDiffPID3( dataset �, attribute set �, class attribute �, depth �,
privacy budget � ) do

2 �′ ← �/2⋅(�+1);
3 return BuildDiffPID3(�, �, �, �, �′)
4 end
5 Function BuildDiffPID3( dataset �, attribute set �, class attribute �, depth �,
privacy budget � ) do

6 � ← max�∈� |�|;
7 �� ← NoisyCount�(�);
8 if � = ∅ or � = 0 or ��/�|�| < √2/2 then
9 �� ← Partition(�, ∀� ∈ � ∶ �� = �);

10 ∀� ∈ � ∶ �� ← NoisyCount�(��);
11 return a leaf labeled with argmax���
12 end
13 ̄� ← ℳexp(�, �, �) ; /* Exp. mechanism call */
14 �� ← Partition(�, ∀� ∈ ̄� ∶ ��̄ = �);
15 ∀� ∈ ̄� ∶ Subtree� ← BuildDiffPID3(��, �\ ̄�, �, � − 1, �);
16 return a tree with a root node labeled ̄� and edges labeled 1 to ̄� each going to

Subtree�
17 end
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in algorithm 4 starts by checking properties like the number of attributes and the number of

instances that are used as termination criteria to construct the leaves (lines 5-8). In lines 9-10,

the algorithm partitions the dataset based on class labels and counts the instances for each class

label. It also employs the Laplace mechanism for each class label count to select the class label

for the leaf. Lines 13-16 build new decision rules recursively by privately choosing the attribute

with the largest information gain value using the exponential mechanism. Moreover, it splits the

dataset according to the selected attribute value and produces recursively new sub-trees for each

dataset partition.

Several works address the private construction of decision trees and random forest

(FLETCHER; ISLAM, 2015; FLETCHER; ISLAM, 2017; FLETCHER; ISLAM, 2019; JAGAN-

NATHAN et al., 2009; PATIL; SINGH, 2014; RANA et al., 2015). However, only Farias et al.

(2023) addresses the greedy decision tree construction algorithm applying local sensitivity. The

approach proposed by Fletcher and Islam (2017) uses smooth sensitivity in the random forest

algorithm through random decision trees. In this section, we focus on the greedy decision tree

process. The following section will address the random forest application with random decision

trees.

Our differentially private greedy decision tree application is similar to Algorithm 4.

We simply replace the exponential mechanism on line 13 with our Smooth Noisy Max, applying

a utility function based on the max operator (FRIEDMAN; SCHUSTER, 2010) that represents

the summation of each attribute value of the class with the highest frequency.

Definition 6.1 (Max Operator). Consider a dataset �, and an attribute ��, the Max operator is

defined as follows: �����(�, ��) = ∑�∈�� max� ����,� , where ����,� counts the records in � with

attribute �� = � and class � = �.
In our experiments, we observed that we should design a utility function representing

a good split criterion and take advantage of smooth sensitivity definition to benefit from local

sensitivity. Therefore, we define a utility function based on the max operator ���. That function
outputs 1 only for the attribute �� ∈ �, which is the highest value of����� among all others�� ∈ �, and 0 otherwise.
Definition 6.2 (Greedy decision tree utility). Consider a dataset �, and an attribute ��, the utility
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is defined as follows:

���(�, ��) = ⎧⎨⎩1 if �� = argmax��∈������(�, ��)0 otherwise

Global Sensitivity

The global sensitivity for ��� is 1 (FRIEDMAN; SCHUSTER, 2010).

Local Sensitivity

To compute the smooth sensitivity, it is crucial to have a clear understanding of the

local sensitivity at a distance of �. Additionally, it is worth noting that the utility value will remain
unchanged until � additions or deletions occur in the training dataset �. Here, � refers to the
difference between the highest����� attribute and the second-highest attribute in the dataset.
Lemma 6.3 (Greedy decision tree local sensitivity at distance �). Let � be a dataset, and �� an
attribute. The utility is defined as follows:

��ᵆ��(�, �) = ⎧⎨⎩1 if � ≥ �0 otherwise

The local sensitivity remains zero until � < � and changes to one when � ≥ �. Since
the ��ᵆ�� is constant when � < �, the smooth sensitivity will be max when � = �.
Lemma 6.4 (Greedy decision tree smooth sensitivity).�ᵆ��(�) = exp(−� ⋅ �).
6.3 Experimental Evaluation

6.3.1 Datasets

We make use of three tabular datasets:

i) The National Long Term Care Survey (NLTCS) (MANTON, 1999), comprising 16 binary
attributes of 21, 574 surveyed individuals;

ii) the American Community Surveys (ACS) dataset (SERIES, 2015), which includes informa-

tion from 47, 461 rows with 23 binary attributes, sourced from the 2013 and 2014 ACS

sample sets in IPUMS-USA; and
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iii) the Adult dataset (BLAKE; MERZ, 1998), containing 45, 222 records (excluding those
with missing values), featuring 12 attributes, where 8 are discrete and 4 are continuous.

6.3.2 Methods

We experimented with several mechanisms, changing the default selection algorithm

described in line 13 of the Algorithm 4.

i) Exponential mechanism (EM) with information gain using global sensitivity;

ii) Permute-and-flip (PF) with information gain using global sensitivity;

iii) Shifted Local dampening (SLD) with information gain using the element local sensitivity

(FARIAS et al., 2023);

iv) Smooth Noisy Max using the Laplace Log-Normal distribution (SNM-LLN);

v) Smooth Noisy Max using the Student’s T distribution (SNM-T);

vi) Smooth Noisy Max using the Laplace distribution (SNM-LAP).

All variants of the Smooth Noisy Max algorithm use a utility function based on the

Max Operator as the split criterion, leveraging smooth sensitivity �ᵆ��. Notably, SNM-LLN and

SNM-LAP ensure approximate differential privacy (� > 0) rather than �-differential privacy.
6.3.3 Evaluation

We measured the accuracy of each method by varying the privacy budget � ∈{0.01, 0.05, 0.1, 0.5, 1.0, 2.0} and the max tree depth � ∈ {2, 5}. Each trial was measured using10-fold validation, and each scenario ran 5 times. Figure 9 shows the average accuracy of those
scenarios.

We observed that SNM algorithm with Student’s T and Laplace Log-Normal outper-

formed the adversaries in almost all scenarios. In the Adult dataset with � = 2, SNM-LLN and

SNM-T perform better with low � values in comparison to the others. However, when the budget
is higher, all the competitors have better accuracy, indicating that with the Adult dataset with

shallow trees (� = 2), the information gain split criteria works better than the max operator even
with a higher signal-to-sensitivity ratio when compared with the max operator. Nevertheless,

with � = 5, SNM-LLN and SNM-T perform better for all � values. When the dataset is NLTCS,

SNM-T has up to 8.58% of improvement in accuracy when compared with the competitors.

SNM-T improves up to 1.15% with the ACS dataset compared to the other methods.
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Figure 9 – Comparison of private selection methods for the greedy decision tree application.
The plots show the mean accuracy of greedy decision tree experiments - 5 runs of
10-fold cross-validation, where � ∈ {2, 5} and � ∈ {0.01, 0.05, 0.1, 0.5, 1, 2}. X axis is
in log scale. All SNM variants consistently achieve superior accuracy compared to
competing methods. Notably, the performance of SNM-T is especially significant, as

it ensures �-dp.
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7 APPLICATION — RANDOM FOREST

Classification based on decision tree algorithms are remarkable tools for data mining

(FRIEDMAN; SCHUSTER, 2010). They also serve as core building blocks for random forests

(BREIMAN, 2001). The random forest algorithm is a supervised learning algorithm that combines

the predictions of several decision trees, an ensemble of predictors. The algorithm starts by

building a set of decision trees and then applies a majority voting to the outcomes of those trees.

The decision tree is a supervised learning algorithm based on a tree structure, where

each intermediate node represents a decision based on a feature, and each leaf node represents a

label. The algorithm starts from the root node and, based on comparing the feature value with

a threshold on numerical features, it splits the tree. The algorithm goes to the right child node

if the feature value exceeds the threshold. Otherwise, it goes to the left child node. When the

feature selected is categorical, the node has one child for each possible categorical value, and the

comparison is made by checking the equality of attribute value. The algorithm continues until it

reaches a leaf node when the node’s majority label is the tree’s outcome.

This section presents an application of a differentially private random forest algorithm

using the Smooth Noisy Max as a selection mechanism. The method is a random decision tree

designed to save privacy budget in the splitting process. We describe and test the random forest

algorithm with several selection mechanisms, including our Smooth Noisy Max, under different

scenarios and datasets to compare its results against our competitors.

7.1 Problem Statement

A random forest algorithm takes as input a dataset x with attributes � = {�1,… , ��},
a max depth parameter ℎ, and a parameter � that represents the forest size. The task is to build a
forest with � trees � = {�1,… , ��} in a differential private manner.
7.2 Random Decision Trees

The most common approaches to building a decision tree are ID3 (QUINLAN,

1986), CART (BREIMAN et al., 1984), and C4.5 (QUINLAN, 1993). They are based on some

purity measures as splitting criteria. However, they have a lower generalization performance

(BREIMAN, 2001). To overcome this problem, the random decision tree algorithm applies

random splitting criteria. The generalization helps ensemble methods like the random forest to
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add diversity to the ensemble and, therefore, improve the performance (FLETCHER; ISLAM,

2019).

In a greedy decision tree algorithm, the splitting process of a node depends on the

input data in the same way that the leaf node class counts dictated by the data, which may leak

some information. Considering information leakage, we should prevent these privacy breaches

using differential privacy. We must spend some privacy budget whenever data needs to be

queried. So, seeking to save privacy budget, the random decision trees apply random split

criteria to avoid the usage of privacy budget and save it for the leaf node class counts queries

(FLETCHER; ISLAM, 2019).

Fletcher and Islam (2017) propose a random forest algorithm based on random

decision trees that satisfies differential privacy. The algorithm applies the exponential mechanism

in the leaves to select the majority label.

The work of Fletcher and Islam (2017) is shown by the Algorithm 5. The algorithm

starts by splitting the dataset into � chunks. Then, each chunk �� builds a random tree ��. Finally,
the algorithm applies the exponential mechanism to select the majority label of the forest and

adds the tree to the forest �.
In lines 2 and 3, the dataset is partitioned into � chunks and iterated over it. The build

tree function is called in line 4. The build tree function is a conventional recursive approach

in that the features are randomly chosen for each node and the split point using only the data’s

domains, regardless of the data itself. The novel part of the proposed algorithm is the set majority

function in line 5. The set majority function applies the exponential mechanism to select the

majority label of the leaf node through a specifically designed utility function. The proposed

utility function, shown by Definition 7.1, outputs 1 for the label with the highest count in the leaf
node and 0 otherwise.
Definition 7.1 (Utility Function (FLETCHER; ISLAM, 2017)). The utility function � is defined
as: �(x, �) = ⎧⎨⎩1 if � = argmax�∈ℛ ��0 otherwise

(7.1)

where �� is the number of samples in the leaf node with label �.
The global sensitivity of the utility function (Definition 7.1) is 1. The work of

Fletcher and Islam (2017) applies the smooth sensitivity instead of global sensitivity to reach a
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Algorithm 5: Random Forest Algorithm (FLETCHER; ISLAM, 2017)
1 Function buildForest(Dataset x, Forest Size �, Features �, Depth ℎ) do
2 for � ∈ split(x, �) do
3 � ← setMajority(buildTree(��, �, ℎ, 0));
4 � ← � ∪ � ;
5 end
6 end
7 Function buildTree(Dataset x, Features �, Max Depth ℎ, Depth �) do
8 � ← {};
9 if d < h then

10 Uniformly select attribute � from � to split current node;
11 if � is continuous then
12 Uniformly select split point � from the �’s domain;
13 x�, x� ← split(x, �, �) ;
14 � ∪ buildTree(x�, �, ℎ, � + 1) ∪ buildTree(x�, �, ℎ, � + 1);
15 end
16 end
17 else
18 � ← �\� ;
19 forall � ∈ � do
20 x� ← getData(x, �, �) ;
21 � ∪ buildTree(x�, �, ℎ, � + 1);
22 end
23 end
24 return �
25 end

better signal-to-noise ratio. However, as proven in the Theorem 7.2 below, it does not satisfy

differential privacy.

Theorem 7.2. The exponential mechanism settingℳexpᵆ,� (x, �) ∝ exp ( �ᵆ(x,�)2��,�(x)) does not satisfy�-differential privacy with smooth sensitivity instead of global sensitivity.
Proof. Assuming that the exponential mechanism with smooth sensitivity satisfies �-differential
privacy, consider an approval voting example. Here, voters can endorse multiple candidates

instead of choosing just one. In this scenario, the utility function assigns a value of 1 to the
candidate with the highest votes and 0 to all others.

The utility function exhibits a smooth sensitivity of �ᵆ,�(x) = exp (−��), where �
is the vote disparity between the top candidate and the runner-up in dataset x (Theorem 7.3).

The local sensitivity of the utility function � remains zero until the vote gap � is large enough to
affect the comparison, at which point it jumps to 1. The smooth sensitivity peaks when � = �,
yielding �ᵆ,�(x) = exp (−��).
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For example, consider the output set ℛ = [C1,C2,C3,C4,C5] with the vote count
vector v = [22, 8, 17, 4, 0] from dataset x. Here, candidate C1 leads with 22 votes, followed by

others, with C2 receiving 8 votes, and so forth. The utility function (Definition 7.1) assigns a

score of 1 solely to candidate C1. The vote difference between the leading candidate and the
second-most voted, denoted as �, is 5.

To ensure the differential privacy definition is necessary to address all possible

neighboring datasets from x, for instance, the dataset y by adding one more vote for the second-

most voted candidate (C3). Therefore, the � parameter reduces to the value for 4, implying a
smooth sensitivity value of 0.135. Using the privacy budget as 0.5, we have ��[ℳexpᵆ,0.5(x,C3)] =0.04 and ��[ℳexpᵆ,0.5(y,C3)] = 0.10, following the Definition 2.5:

��[ℳexpᵆ,0.5(x,C3)] ≤ �0.5��[ℳexpᵆ,0.5(y,C3)] ⇒ 0.04 ≤ 0.16 ⇒ ⊤��[ℳexpᵆ,0.5(y,C3)] ≤ �0.5��[ℳexpᵆ,0.5(x,C3)] ⇒ 0.10 ≤ 0.07 ⇒ ⊥
Therefore, by contradiction, the exponential mechanism setting does not hold �-

differential privacy with smooth sensitivity instead of global sensitivity.

To address that issue, we replace the exponential mechanism with our SNM at the

Fletcher and Islam (2017)’s random forest algorithm to provide a differentially private selection

approach.

Algorithm 6: Set Majority Labels with Smooth Noisy Max
1 Function setMajority(Tree �) do
2 for � ∈ ℓ do
3 ����������� ← �.������ ;
4 �.��� ← SNM(�����������);
5 end
6 end

Algorithm 6 details our set majority function, which implements the Smooth Noisy

Max algorithm. It begins by traversing all leaves of the tree � (line 2). For each leaf �, the
algorithm retrieves the label counts of the leaf node in line 3. Subsequently, the Smooth Noisy

Max algorithm is applied to select the majority label of the leaf node in line 4. It is important

to note that to execute the Smooth Noisy Max algorithm, the smooth sensitivity of the utility

function is required, as demonstrated in Theorem 7.3.
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Theorem 7.3 (Smooth sensitivity of Def. 7.1 (FLETCHER; ISLAM, 2019)). The smooth

sensitivity of the utility function � (definition 7.1) is: �ᵆ,�(x) = exp (−��), where � is the
difference between the most frequent and the second-most frequent labels in x.

7.3 Experimental Evaluation

This section presents the datasets, methods, and experimental evaluation results. We

selected six datasets to evaluate the performance of our proposed method compared with other

baselines.

7.3.1 Methods

Our evaluation employs the standard random forest algorithm (Algorithm 5). We

term the non-private implementation of Algorithm 5 as WDP. The experiment employs various

selection mechanisms, including the exponential mechanism (EM), permute-and-flip (PF), local

dampening mechanism (LD), Smooth Noisy Max with Laplace Log-Normal distribution (SNM-

LLN), Smooth Noisy Max with Student’s T distribution (SNM-T), and Smooth Noisy Max with

Laplace distribution (SNM-LAP). We configure all privacy-preserving mechanisms, excluding

the non-private method, with the utility function defined in Definition 7.1. EM and PF utilize

a global sensitivity of 1.0. We empirically determine the element local sensitivity across each

dataset for local dampening. We follow Theorem 7.3 to find the smooth sensitivity within our

Smooth Noisy Max. We aim to measure the accuracy impact of choosing the Smooth Noisy Max

as a private selection method.

7.3.2 Evaluation

We measured the accuracy of those methods over ten executions using the accuracy

metric. The process split the dataset in 80% for the training step and 20% for evaluation purposes.

The privacy budget varies by {0.01, 0.05, 0.1, 1, 2}. We also set each random forest with 32 trees.

The max tree depth was set for each dataset using Theorem 2 from Fletcher and Islam (2019)’s

work.
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7.3.3 Results

Our experimental procedure compares our method using the accuracy metric in 6

datasets. The datasets were selected based on their size, number of features, and number of

classes. The Adult dataset comprises 48,842 instances with 6 continuous and 8 discrete features,

a maximum tree depth of 9, and 2 classes. Compas contains 4,732 entries, 9 continuous and 4

discrete features, a depth of 5, and 11 classes. The Wine dataset involves 4,898 samples, all 11

continuous features, a depth of 10, and 7 classes. Mushroom includes 8,124 entries, 22 discrete

features, a maximum depth of 11, and 2 classes. The Pen-digits dataset, one of the largest with

109,092 instances, features 17 continuous attributes, a depth of 12, and 10 classes. Finally,

Wall-sensor offers 5,456 samples, 4 continuous features, a depth of 4, and 4 classes. Figure 10

shows the result of our proposed random forest algorithm using the Smooth Noisy Max with

the other selection algorithms varying the budget parameter. Table 5 shows a characteristics

comparison of the datasets.

Table 5 – Dataset characteristics comparison.
Adult Compas Wine Mushroom Pen-digits Wall-sensor

Size large small small small large small
Mostly discrete continuous continuous discrete continuous continuous

Class amount small large large small large small

Source: elaborated by the author.

Firstly, we focus on the experiments using the Mushroom (REPOSITORY, 1987)

and Adult (BECKER; KOHAVI, 1996) datasets. Both datasets have mostly discrete attributes

and few classes but differ in size. The Adult dataset has more than 48 thousand tuples compared

to almost 8 thousand in the Mushroom dataset. The max depth was set to 9 and 11 for Adult and

Mushroom datasets. Looking at the results of our experiment in the Adult dataset, we can observe

that even with a small privacy budget, we can deliver excellent accuracy results, achieving the

version without private guarantees. Using the Mushroom dataset, when the budget is 0.1, all the
versions of Smooth Noisy Max surpass the standard random forest, i.e., our private method is

better than the privateless version. By our method, the randomness input can improve the power

of the tree generalization (BREIMAN, 2001), leading to better accuracy. Fixing with a privacy

budget of 1, our method is similar to permute-and-flip’s accuracy performance, but using the
privacy budget of 0.01, we can deliver the same accuracy performance as the permute-and-flip
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Figure 10 – Comparison of private selection methods for the random forest problem. The plots
show mean accuracy for WDP, EM, PF, LD, and SNM random forest variants
with 32 random trees varying � ∈ {0.01, 0.05, 0.1, 1, 2}. X is in the log scale. The
SNM flavors constantly reach the standard non-private random forest accuracy level.
When compared with other private selection methods, the variants of SNM surpass

in almost all � values.
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with 100 times more budget (showed by Figure 10).
The Wine Quality dataset (CORTEZ et al., 2009) has almost 5 thousand records with

11 continuous features and zero discrete features. The Pen-Based Recognition of Handwritten

Digits (Pen-digits) dataset (ALPAYDIN, 1996) has more than 109 thousand records with 17

continuous features and zero discrete features. The maximum depth was set to 10 and 12 for the

wine and pen-digit datasets. The random forest results with all the versions of SNM reach almost

the non-private version in the wine dataset, outperforming all the adversaries even with very

low privacy budget values. All the private methods underperform in the experiments using the

pen-digits dataset, mainly because of the dataset’s � (Theorem 7.3) value. The difference between

the highest class count and the second highest is narrow in the pen-digits dataset, implying a

smooth sensitivity almost equal to global sensitivity.

The Compas and the Wall-sensor datasets have similar sizes but differ in the number

of classes. The Compas (Correctional Offender Management Profiling for Alternative Sanctions)

dataset (PROPUBLICA, 2016) has 11 classes, and the Wall-Following Robot Navigation Dataset

(Wall-sensor) (FREIRE; BARRETO, 2009) has only four classes. Figure 10 shows that our

proposed SNM versions outperform the private selection adversaries using the Compas and wall-

sensor datasets. Even with many classes, the proposed random forest algorithm employing SNM

with a small privacy budget reaches the standard random forest without any privacy concerns.
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8 CONCLUSION

This chapter presents a comprehensive overview of the findings obtained through

our research. We faced the problem of differentially private selection using smooth sensitivity

—a instance-based sensitivity— implying lower error rates when compared with using the global

sensitivity. We formally describe our approach, its privacy attributes, and its utility. Section 8.1

summarizes the achieved results compared with our hypothesis.

8.1 Summary of Results

We revisit the thesis hypothesis in this section:

Hypothesis: “Applying smooth sensitivity – an instance-based sensitivity measure – to the

private selection mechanism guarantees (�, �)-differential privacy and yields superior outcomes
compared to methodologies that apply global sensitivity, especially higher accuracy or reduced

expected error. This assertion also extends to comparisons with competing approaches that

employ instance-based sensitivity, such as local dampening.”

We prove that our proposed method, Smooth Noisy Max, is (�, �)-differentially
private. We also demonstrated that our algorithm’s theoretical utility bounds, leveraging the

Laplace distribution, consistently match or exceed that of competing methods under mild condi-

tions. Additionally, we empirically compare Smooth Noisy Max with the competitors, e.g., local

dampening, across various private selection scenarios:

i) Percentile selection: The percentile selection application utilized the Smooth Noisy Max

algorithm to determine the �-th percentile in a dataset under the constraints of differential
privacy. The Smooth Noisy Max algorithm demonstrated superior performance in preserv-

ing privacy while accurately estimating the �-th percentile. Compared to competitors, the
use of smooth sensitivity provided a more nuanced approach, reducing the error rates and

enhancing the reliability of percentile calculations under privacy constraints.

ii) Greedy decision trees: In the greedy decision tree application, the focus was on con-

structing decision trees using a privacy-preserving version of the ID3 algorithm. Decision

trees are a fundamental component of many machine learning tasks, and ensuring their

construction while adhering to privacy standards is essential for applications in sensitive

domains. Implementing the Smooth Noisy Max within this context allowed for the effec-

tive selection of attributes while maintaining differential privacy. The trees generated using
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this approach were found to be nearly as accurate as non-private counterparts, showcasing

the algorithm’s efficacy in maintaining utility despite the privacy enhancements.

iii) Random forest: Extending the privacy-preserving techniques to ensemble methods, this

application developed a novel approach for constructing random forests. Each decision tree

within the forest was built using the Smooth Noisy Max algorithm to ensure the privacy of

the underlying data. Our random forests achieved competitive accuracy with traditional

random forests and beat the competitors while ensuring that each decision within the forest

complied with differential privacy standards.

In conclusion, each application we experimented with in the research underscores

the versatility and effectiveness of the Smooth Noisy Max algorithm in various data science and

machine learning contexts. From basic statistical measures like percentiles to more complex

models like decision trees and random forests, the algorithm preserves privacy and retains a high

level of data utility.

In the experimental evaluation, a limitation of our proposed algorithm emerged,

linked to the concept of local sensitivity at a distance �, which tends to converge rapidly to
global sensitivity. This convergence is attributed to the max operator iterating over all possible

outcomes, as specified in Definition 3.4. To mitigate this issue, it was imperative to devise

specialized utility functions where, for instance, only the optimal response carries non-zero utility.

Another challenge associated with smooth sensitivity is its computational complexity, which

necessitates computationally intensive algorithms. To circumvent this, we employed simplified

utility functions for which smooth sensitivity could be analytically determined, thus enhancing

the computational efficiency of our approach.

8.2 Future Work

Future research emerging from this dissertation will focus on developing useful utility

bounds for different noise distributions, particularly the Student’s T and Laplace Log-Normal

distributions. This direction is critical as it promises to broaden the applicability and effectiveness

of Smooth Noisy Max under various data characteristics. By establishing rigorous utility bounds

for these distributions, we aim to provide tools for the data analyst to enhance the adaptability and

accuracy of privacy-preserving algorithms. Such advancements will provide deeper theoretical

insights and facilitate more nuanced implementations that can be tailored to specific real-world

datasets and privacy scenarios, thereby improving the trade-off between privacy protection and



77

data utility in sensitive applications.

The incorporation of the concept of element local sensitivity presents a promising

avenue for refining the Smooth Noisy Max. We believe that this approach could significantly

enhance the method’s ability to balance utility and privacy by providing more granular control

over sensitivity adjustments based on each specific output. Future work will focus on extensively

validating the application of element local sensitivity within the Smooth Noisy Max, proving

differential privacy property, and exploring its potential to improve utility performance across

various datasets and applications.

Additionally, formulating problems as single functions can be problematic due to the

complexity and multifaceted nature of real-world scenarios. While grouping various objectives

into a single function via weighting or ranking is theoretically feasible, this approach may not

fully encapsulate the subtleties of certain issues. Therefore, investigating differentially private

multi-objective selection represents a forthcoming area of research for us.

8.3 Broader Impact

The broader impacts of the research presented in this dissertation extend significantly

beyond the technical contributions of enhancing privacy-preserving algorithms. Firstly, the

advancement in differentially private selection mechanisms has profound implications for safe-

guarding individual privacy in an increasingly data-driven world. By refining and enhancing the

effectiveness of algorithms using Smooth Noisy Max, this work not only improves the practical

implementation of differential privacy but also broadens its applicability across various indus-

tries, including healthcare, finance, and social networking. These sectors often handle sensitive

personal information where privacy is paramount, and improved algorithms help ensure that this

data can be utilized for analytics without compromising individual privacy rights.

Moreover, the societal implications of these developments cannot be overstated. As

organizations and governmental bodies increasingly rely on big data to make decisions that

affect daily life, ensuring the privacy of individuals within these datasets becomes crucial. This

research contributes to foundational technology and tools that can prevent misuse of personal data

and mitigate risks associated with data breaches and unauthorized surveillance. The proposed

algorithm allows for secure data analysis, providing insights that can drive policy-making,

medical research, and personalized services, all while maintaining the confidentiality of the data

subjects.



78

In an educational and policy-making context, the findings of this dissertation provide

tools that can encourage a shift towards more responsible data practices. Demonstrating the

viability of sophisticated privacy-preserving techniques provides a strong argument for regulators

and policymakers to require or encourage the use of differential privacy in data analytics opera-

tions. This could lead to enhanced data protection regulations and standards that more effectively

balance the utility of data analytics with the privacy expectations of individuals, fostering trust

in digital services and technologies.
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