
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DAVI DE ANDRADE IÁCONO

(SUB)FALL COLORING OF GRAPHS

FORTALEZA

2024



DAVI DE ANDRADE IÁCONO

(SUB)FALL COLORING OF GRAPHS

Dissertation submitted to the Post-Graduation
Program in Computer Science of the Federal
University of Ceará, as a partial requirement
for obtaining the title of Master in Computer
Science. Concentration Area: Computer
Science.

Advisor: Prof. Dr. Júlio César Silva
Araújo.
Co-Advisor: Profa. Dra. Ana Shirley Ferreira da
Silva.

FORTALEZA

2024



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

I12( Iácono, Davi de Andrade.
    (Sub)Fall Coloring of Graphs / Davi de Andrade Iácono. – 2024.
    74 f. : il. color.

     Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Ciência da Computação, Fortaleza, 2024.
     Orientação: Prof. Dr. Júlio César Silva Araújo.
     Coorientação: Profa. Dra. Ana Shirley Ferreira da Silva.

    1. Algoritmos. 2. Coloração de grafos. 3. Subfall coloração. 4. Complexidade computacional. 5.
Complexidade parametrizada. I. Título.
                                                                                                                                         CDD 005



DAVI DE ANDRADE IÁCONO

(SUB)FALL COLORING OF GRAPHS

Dissertation submitted to the Post-Graduation
Program in Computer Science of the Federal
University of Ceará, as a partial requirement
for obtaining the title of Master in Computer
Science. Concentration Area: Computer
Science.

Approved on: 06/09/2024

EXAMINATION BOARD

Prof. Dr. Júlio César Silva Araújo (Advisor)
Universidade Federal do Ceará (UFC)

Profa. Dra. Ana Shirley Ferreira da
Silva (Co-Advisor)

Universidade Federal do Ceará (UFC)
Università degli Studi di Firenze (UniFI)

Profa. Dra. Ana Karolinna Maia de Oliveira
Universidade Federal do Ceará (UFC)

Profa. Dra. Diana Sasaki Nobrega
Universidade do Estado do Rio de Janeiro (UERJ)



ACKNOWLEDGEMENTS

Aos meus pais, Milena e Rafael, pelo amor infindo e por todos os preciosos ensi-

namentos, momentos de alegria, suporte incansável e, é claro, pela paciência infinita que têm

comigo em todas as minhas aventuras. Além de grandes amigos, vocês são também o meu

orgulho.

Ao meu orientador, Júlio Araújo, pelo apoio desde o início da minha jornada

acadêmica e, mais recentemente, pela presença, motivação, paciência, competência e dedi-

cação na orientação durante o mestrado. À minha coorientadora, Ana Shirley, pela paciência,

competência e cuidado com que me orienta desde a graduação, sempre se fazendo disponível. A

ambos, Julio e Ana, pela preocupação que transcende o âmbito acadêmico. Vocês são grandes

inspirações como pessoas e pesquisadores. Às professoras Ana Karolinna e Diana Sasaki por

terem aceitado o convite de integrar a banca examinadora, pelo tempo dedicado ao texto e pelas

valiosas sugestões. Agradeço também aos demais professores do grupo ParGO (o que inclui o já

pargeano Andrea) por todo o auxílio e conhecimento transmitido.

Aos meus amigos e companheiros do ParGO, Leonardo, João Lucas, João Luca,

Kennedy, Brito, Jonas, Felipe e Caio, pela companhia e por todas as conversas, acadêmicas ou

não, fazendo dessa jornada um momento divertido. Aos meus amigos de graduação Thiago,

Jackson, Jhonatan e Guilherme pelos diversos momentos e, especialmente, ao meu amigo

Matheus pela presença e pelas incontáveis conversas durante todos esses anos.

Ao meu amigo Marcos, pela amizade desde o colégio e por se fazer presente mesmo

tão distante, e aos meus amigos Camila e Vinícios, pela forte amizade, preocupação, conversas,

apoio e companheirismo durante esse período, em especial durante o tempo em que moramos

juntos. Aos amigos da comunidade cubista, principalmente Gustavo, pelos nossos mais de nove

anos de amizade, além de George, Gleiciano e Thales pelo incessante apoio e momentos de

alegria. Vocês são extremamente importantes na minha vida.

À minha querida companheira Gabriela, pela paciência, apoio, amor incondicional,

carinho, cuidado, respeito e por tornar minha vida mais feliz e mais leve, bem como sua família,

Salvador, Ana, Graziela e Geymisson pelo acolhimento e também suporte incessante.

À CAPES, pelo apoio financeiro.



“Não venha com a problemática, que eu tenho a

solucionática.”

(Dadá Maravilha)



RESUMO

Dado um grafo G, uma k-coloração (própria) de G é uma função f : V (G) → {1, . . . ,k} tal

que f (u) ̸= f (v), para toda aresta uv ∈ E(G). Dada uma k-coloração f de um grafo G, um

vértice u ∈ V (G) é dito b-vértice com respeito a f se, para toda cor i ∈ {1, . . . ,k}−{ f (u)}
existe pelo menos um vértice v ∈ V (G) tal que f (v) = i e uv ∈ E(G). Uma k-coloração f de

um grafo G é chamada de fall k-coloração se todo vértice u ∈ V (G) é b-vértice com respeito

a f . Se um grafo G admite uma fall k-coloração para algum k, o número fall acromático,

denotado por ψ f (G), é o maior inteiro positivo k tal que G admite uma fall k-coloração. Dado

um grafo G e um inteiro positivo k, uma subfall k-coloração de G é uma fall k-coloração de

algum subgrafo induzido H ¦ G; e o número subfall acromático, denotado por ψ f s(G), é o maior

inteiro positivo k tal que G admite uma subfall k-coloração. Nesta dissertação apresentamos

uma breve revisão dos resultados sobre fall k-coloração encontrados na literatura que são os

resultados mais relacionados à subfall coloração. Além disso, provamos que o problema de

decidir se um grafo G admite uma subfall k-coloração é NP-completo para todo inteiro k g 4,

respondendo a uma pergunta levantada em (Dunbar et al., 2000). Apresentamos também um

algoritmo FPT de programação dinâmica para decidir se um grafo G admite subfall k-coloração

quando parametrizado pela sua largura em árvore tw(G), com k g 3. Ademais, dado um grafo

G, estabelecemos a continuidade do parâmetro ψ f s(G) e a sua relação com alguns parâmetros,

sendo eles o número b-cromático b(G) e o número de Grundy Γ(G). Finalmente, definimos o

índice subfall acromático de um grafo G como sendo o parâmetro correspondente para coloração

de arestas e estabelecemos uma versão do Teorema de Vizing para o mesmo em grafos planares

e periplanares.

Palavras-chave: algoritmos; subfall coloração; coloração de grafos; complexidade computa-

cional; complexidade parametrizada.



ABSTRACT

Given a graph G, a (proper) k-coloring of G is a function f : V (G) → {1, . . . ,k} such that

f (u) ̸= f (v), for every edge uv ∈ E(G). Given a k-coloring f of a graph G, a vertex u ∈V (G)

is a b-vertex with respect to f if for every color i ∈ {1, . . . ,k}−{ f (u)} there exists at least

one vertex v ∈ V (G) such that f (v) = i and uv ∈ E(G). A k-coloring f of a graph G is a fall

k-coloring if every vertex u ∈ V (G) is a b-vertex with respect to f ; If a graph G admits a fall

k-coloring for some k, the fall achromatic number, denoted by ψ f (G), is the maximum positive

integer k such that G admits a fall k-coloring. Given a graph G and a positive integer k, a subfall

k-coloring of G is a fall k-coloring of some induced subgraph H ¦ G; and the subfall achromatic

number, denoted by ψ f s(G), is the maximum positive integer k such that G admits a subfall

k-coloring. In this preliminary work, we present a brief review of the results about fall k-coloring

found in the literature which are the closest related to the subfall coloring. Furthermore, we

prove that deciding whether a graph G admits a subfall k-coloring is an NP-complete problem

for every integer k g 4, answering a question raised in (Dunbar et al., 2000). We also give a

dynamic programming algorithm to decide whether a graph G admits a subfall k-coloring when

parameterized by its treewidth tw(G) in FPT time, when k g 3. In addition, given a graph G, we

establish the continuity of the parameter ψ f s(G) and its relations with some parameters, which

are the b-chromatic number b(G) and the Grundy number Γ(G). Finally, we define the subfall

achromatic index of a graph G as the corresponding parameter for edge coloring and prove a

Vizing-like theorem for it on planar and outerplanar graphs.

Keywords: algorithms; subfall coloring; graph coloring; computational complexity; parameter-

ized complexity.



LIST OF FIGURES

Figure 1 – Graph representation of the Kőnigsberg’s Bridges. . . . . . . . . . . . . . . 10

Figure 2 – A b-coloring of the graph cycle on 5 vertices, which is not fall colorable. . . 13

Figure 3 – A graph G that is fall 2-colorable and fall 4-colorable, but not fall 3-colorable. 14

Figure 4 – A subfall 3-coloring of the graph shown in Figure 3. . . . . . . . . . . . . . 15

Figure 5 – Examples of graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 6 – A graph G and its line graph L(G). . . . . . . . . . . . . . . . . . . . . . . 17

Figure 7 – A complete graph on 5 vertices and its complement. . . . . . . . . . . . . . 19

Figure 8 – A complete 3-partite graph with partite sets of sizes 3,2,2. . . . . . . . . . 19

Figure 9 – A 3-dimensional hypercube with A = (0,0,0), B = (0,1,0), C = (1,0,1),

D = (0,0,1), E = (0,1,0), F = (1,1,0), G = (1,1,1) and H = (0,1,1). . . 20

Figure 10 – A chordal outerplanar graph and its line graph. . . . . . . . . . . . . . . . . 20

Figure 11 – Cartesian product of the graphs C3 and P2. . . . . . . . . . . . . . . . . . . 21

Figure 12 – Categorical product of the graphs C3 and P2. . . . . . . . . . . . . . . . . . 21

Figure 13 – Lexicographic product of the graphs C3 and P2. . . . . . . . . . . . . . . . 22

Figure 14 – A graph G and a tree decomposition of G of width 3. . . . . . . . . . . . . . 22

Figure 15 – Example of fall 3-coloring of C6□Pj. . . . . . . . . . . . . . . . . . . . . . 32

Figure 16 – Categorical product of the graphs C3 and P2. . . . . . . . . . . . . . . . . . 34

Figure 17 – Lexicographic product of the graphs C3 and P2. . . . . . . . . . . . . . . . 34

Figure 18 – The graph GI obtained from a NOT-ALL-EQUAL-3SAT instance, where

c1 = x1 ( x2 ( x3, c2 = x1 ( x2 ( x4, c3 = x3 ( x4 ( x5 and c4 = x3 ( x4 ( x5. . 38

Figure 19 – Example of a 3-regular graph G with a (sub)fall 4-coloring. . . . . . . . . . 47

Figure 20 – Example of construction of G′ for k = 5, using G as in Figure 19. . . . . . . 48

Figure 21 – Graph G such that {3,5} ¦ Fall(G), but 4 /∈ Fall(G). . . . . . . . . . . . . . 60

Figure 22 – Subfall 5-coloring of the graph G2 constructed above, with k = 3. . . . . . . 61

Figure 23 – b-coloring using 5 colors of the graph G′
1 constructed above, with k = 3. . . 61

Figure 24 – Subfall 5-coloring of the graph G′
2 constructed above, with k = 3, where the

subgraph is induced by the colored vertices. . . . . . . . . . . . . . . . . . 62



LIST OF TABLES

Table 1 – Comparison on the complexity results of computing the fall and subfall achro-

matic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 STATE OF THE ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Fall spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Cartesian products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Categorical and Lexicographic products . . . . . . . . . . . . . . . . . . . 33

3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Subfall Colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 OUR CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Computational Complexity of subfall k-coloring . . . . . . . . . . . . . . 46

4.2 Parameterized complexity of subfall k-coloring . . . . . . . . . . . . . . 49

4.2.1 Fall Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 b-Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Continuity, relation to other parameters and other properties . . . . . . 59

4.4 Subfall achromatic index . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . 64

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



10

1 INTRODUCTION

The history of Graph Theory is considered to have begun with the Seven Bridges of

Königsberg problem, which asks whether it is possible to traverse all the bridges over the Pregel

River, without crossing the same bridge more than once, ending the traverse in the same place the

walk started. This problem was answered in the negative by the Swiss mathematician Leonhard

Euler in (Euler, 1741), when he figured out that the actual path taken by the passer-by did not

matter, but only the sequence of bridges crossed. This realization led him to ignore the shape

of each piece of land, as well as its size, and just represented each of them by a node, making

a connection between two nodes if the two corresponding pieces of land are the endpoints of

some bridge. Euler then realized that in order to exist a walk passing through all the connections

between the nodes and ending at the same node where it began, each node of the obtained object

must have an even number of connections. He also proved that this is a sufficient condition, thus

establishing what is believed to be the first theorem of Graph Theory. The object obtained by his

formulation of the problem, shown in Figure 1, is called a graph, with its nodes being called

vertices and the connections between two nodes being called edges.

Figure 1 – Graph representation of the Kőnigsberg’s Bridges.

Source: prepared by the author

If we consider that, instead of bridges connecting two pieces of land, the edges of a

graph represent land borders separating pieces of land, we then can use the structure of graphs to

represent maps, where the vertices can represent countries, states, provinces, cities or towns, and

then two vertices are connected by an edge if the two corresponding geographical areas share a

border. Furthermore, such a representation of a map generates a graph that can be embedded in

the plane and such that its edges intersect only at their endpoints, which we call planar. Indeed,

planar graphs have been used to represent maps for many years, and one of the most famous



11

theorems in Graph Theory derives from this type of representation: the Four Color Theorem.

The Four Color Theorem, first proposed as a conjecture by Francis Guthrie in 1852, states that

one needs at most 4 colors to color the vertices of a planar graph G in such a way that no two

vertices sharing an edge have the same color. This is called proper coloring. Equivalently, the

theorem states that χ(G)f 4 for any planar graph G, where χ(G), called the chromatic number

of G, is the minimum integer k such that V (G) has a proper coloring using k colors. After 124

years and many false proofs and false counterexamples, the conjecture was finally proved by

Wolfgang Haken and Kenneth Appel in (Appel; Haken, 1977). However, their proof initially

met with resistance from the scientific community, as they used computers to check over 1800

configurations one by one, taking more than 1000 hours. Later, in (Appel; Haken, 1989), the

same authors published a complete and detailed proof, with an appendix of over 400 pages. In

order to find a more efficient algorithm and to reduce the controversy over the use of computers

in Haken and Kenneth’s proof, many researchers tried to improve their methods, leading to the

quadratic time algorithm found by Neil Robertson, Paul Seymour, Daniel Sanders and Robin

Thomas in (Robertson et al., 1996).

As a result of the many applications that have arisen from the study of the Four

Color Theorem, many researchers began to study other properties of colorings of planar graphs

and other graph classes, as well as variations of the original problem of graph coloring, giving

start to the area today called Graph Theory. As example of variations of graph coloring, we

have: Fractional colorings (Larsen et al., 1995), Complete colorings (Harary et al., 1967), Exact

colorings (Brown, 1972), List colorings (Erdős et al., 1979), Weighted colorings (Guan; Xuding,

1997), Acyclic colorings (Grünbaum, 1973), Grundy colorings (Grundy, 1939) and b-colorings

(Irving; Manlove, 1999).

Formally, a k-coloring of a graph G is a labeling f : V (G) → X , where X has k

elements (often, X = {1, . . . ,k}). The labels are called colors and the vertices of one color forms

a color class. A k-coloring is proper if there are no adjacent vertices in a same colors class. A

graph is k-colorable if it has a proper k-coloring. The chromatic number of a graph G is the

minimum integer k such that G has a proper k-coloring and it is denoted by χ(G). A k-coloring of

a graph G is a complete k-coloring if, for every pair of colors i, j ∈ {1, . . . ,k}, i ̸= j, there exists

an edge in G whose endpoints are colored with i and j. This property induces a graph coloring

heuristic, called a-heuristic, which is an algorithm that receives as input a graph G and a coloring

f and searches for pairs of colors i and j such that there are no edges between vertices colored i



12

and j. If it finds a pair of colors i and j in such a way, it modifies the colors of the vertices colored

j to i, and repeats this process until when there are no such pair of colors. Note that, given a

graph G, every χ(G)-coloring is complete. To the contrary, suppose that f is a χ(G)-coloring of

a graph G that is not complete. If this is the case, there exists a pair of colors i and j such that

there are no edges between vertices colored i and j, and thus recoloring all vertices colored j to i

would create a (χ(G)−1)-coloring, which is not possible. In this sense, it is natural to study

how good (or bad) this heuristic can be in order to construct a χ(G) coloring. In this sense, while

χ(G) is the minimum number such that a graph admits a complete k-coloring, the achromatic

number is the maximum number such that a graph G admits a complete k-coloring; it is denoted

by ψ(G) and was first defined in (Harary; Hedetniemi, 1970).

In order to present another studied heuristic for coloring a graph, known as b-

heuristic, we give further definitions. Given a proper k-coloring f , we say that a vertex v ∈V (G)

is a b-vertex with respect to f if it is adjacent to at least one vertex in each color class but its own.

Again, this property induces a graph coloring heuristic, called b-heuristic, which is an algorithm

that has as input a graph G and a coloring f and searches for color that do not contain a b-vertex.

If it finds such a color i, then for each vertex v such that f (v) = i we know that there exists a color

j that no vertex in N(v) is colored j, and thus it modifies the color of v to j while maintaining

the coloring proper. Thus, the algorithm repeats this process until it obtains a coloring that

every color has a b-vertex. Note that in every proper χ(G)-coloring f of a graph G, there must

exist at least one b-vertex ui in each set f−1(c), for every c ∈ {1, . . . ,k}. Indeed, if there is a

color c ∈ {1, . . . ,k} such that f−1(c) contains no b-vertex, then for each vertex u ∈ f−1(c) there

exists a color i ∈ {1, . . . ,k}\ c such that no vertex adjacent to u is colored with i and thus we

can recolor u with color i; repeating such a process for each vertex u ∈ f−1(c) would give us

a proper (χ(G)− 1)-coloring, which cannot happen. From this observation, a strategy to try

to produce a proper χ(G)-coloring of a graph G emerges, known as the b-heuristic. Given a

k-coloring f , this heuristic involves changing the colors of the vertices in such a way that each

color class contains a b-vertex. It was first introduced in (Irving; Manlove, 1999) and, in this

sense, we say that a proper k-coloring f is a b-coloring if for each c ∈ {1, . . . ,k} the set f−1(c)

has at least one b-vertex. The b-chromatic number of G is then defined as the maximum integer

k such that G admits a b-coloring using k colors; it is denoted by b(G). In other words, a proper

k-coloring is a b-coloring if it can be obtained through the b-heuristic, and the parameter b(G)

indicates how bad the b-heuristic can perform.



13

It is known that deciding whether a graph G admits a b-coloring using at least k

colors is a NP-complete problem. Hence, it is one of the most difficult problems to solve in terms

of computational complexity and no polynomial-time algorithm to decide whether b(G)g k for

a given graph G and integer k is expected to exist, unless P= NP. More recently, it is proved

in (Panolan et al., 2017) that deciding b(G)g k is W[1]-hard when parameterized by k. In fact

even an XP algorithm (algorithm that runs in time O(n f (k))) to decide whether b(G)g k holds is

not yet known. Before we introduce the coloring variation studied in this work, we first need to

present a variation that precedes it and it is closely related to b-coloring. Introduced by Dunbar

et al. in (Dunbar et al., 2000), fall colorings can be seen as a variation of b-colorings in the

sense that, while in b-colorings we ask for each color class to have at least one b-vertex, in fall

colorings each vertex has to be a b-vertex. Because it is very constrained, this property leads

to the existence of graphs that are not fall colorable, whereas this is not the case for b-coloring,

since a χ(G)-coloring is necessarily a b-coloring. Figure 2 gives a b-coloring of a graph G that

does not admit a fall coloring. Indeed, it holds that χ(G) = 3. Furthermore, because each vertex

has degree equal to 2, no 4-coloring can admit a b-vertex, since there would always be a missing

color for each vertex to be a b-vertex. Note now that G does not admit a fall 3-coloring: for a

and c being b-vertices, it is necessary that d is colored the same as a and that e is colored the

same as c. Hence, vertices d and e cannot be b-vertices.

Figure 2 – A b-coloring of the graph cycle on 5 vertices, which is not fall colorable.

e

a

b

c

d

Source: prepared by the
author

As in the case of b-colorings, it is natural to ask how bad this graph coloring heuristic

can be. We then define the fall achromatic number of a graph G to be the greatest integer k such

that G admits a fall k-coloring; this is denoted by ψ f (G). However, another peculiarity of fall

coloring is that, even if a graph G admits fall colorings, G may not admit a fall k-coloring for

some k ∈ {χ(G)+1, . . . ,ψ f (G)−1}. Figure 3 shows a graph G that is fall 2-colorable and fall

4-colorable, but not fall 3-colorable. Indeed, G does not admit a fall 3-coloring: since the graph

is bipartite with partitions A and B of 4 vertices each, we know that in a 3-coloring of G there



14

must exist two vertices in A with the same color, by the Pigeonhole principle. Let u,v ∈ A be the

two vertices such that f (u) = f (v) and note that every vertex of B is adjacent to u or v, which

gives us that no vertex w ∈ B can satisfy f (w) = f (u). Therefore, no vertex a ∈ A such that

f (a) ̸= f (u) can be a b-vertex.

Figure 3 – A graph G that is fall 2-colorable and fall 4-colorable, but not fall 3-colorable.

Source: prepared by the author

Dunbar et al. defined in (Dunbar et al., 2000) the subfall coloring, which is the

coloring variant studied in this work. Formally, given a graph G, a subfall k-coloring of G is a fall

k-coloring of some induced subgraph H ¦ G. Again, it is natural to define ψ f s(G), called subfall

achromatic number of G, as the largest integer k such that a graph G has a subfall k-coloring.

Note that every graph with at least one vertex always has at least a subfall 1-coloring,

since we can take the subgraph induced by only one vertex. Also, if a graph G has at least

one edge, then it is subfall 2-colorable as well. As a result, each graph has at least one subfall

coloring, which may not occur for fall colorings, as previously presented. Furthermore, in

Section 4.3, we prove that if a graph G admits a subfall k-coloring, then it admits a subfall

i-coloring for each i ∈ {1, . . . ,k}, unlike fall colorings, as previously said. In Figure 4, we exhibit

a subfall 3-coloring of the graph shown in Figure 3, in which we remove one vertex of each

partition set in order to obtain a fall 3-colorable subgraph of G. In (Dunbar et al., 2000), the

authors left it as an open problem to decide whether ψ f s(G)f b(G) holds for any graph G. In

this sense, in the third section of Chapter 4, we answer this question in the negative by showing,

for every integer k, a graph G such that ψ f s(G)−b(G) = k. We also extend the same study to

other related parameters.



15

Figure 4 – A subfall 3-coloring of the graph shown in Figure 3.

Source: prepared by the
author

In Section 4.1 we answer another open question from the seminal article, by settling

the complexity of deciding whether a graph G satisfies ψ f s(G) g k for some integer k, or

equivalently, deciding whether a graph G has a subfall k-coloring. In Section 4.2, we extend

such a study. Since the problem is NP-complete, we do not expect it to have a polynomial-time

algorithm and thus it is natural to try a different approach to solve it. We then give an algorithm

running in FPT time when parameterized by the treewidth of a graph G that decides whether G

admits a subfall k-coloring. In Section 4.4, we extend the study of subfall k-colorings of graphs

by defining its edge version, with maximization parameter defined as subfall achromatic index.

In summary, this work is divided as follows:

• We give an overview of the results for fall and subfall colorings found in the literature,

presenting proofs for a few of them in Chapter 3;

• We present our results for subfall k-coloring in Chapter 4: we prove that it is NP-complete

when k g 4 and give an algorithm running in FPT time when parameterized by the

treewidth of a graph G; we establish the continuity of the parameter ψ f s and its relation

with other related graph coloring parameters; we also define and give bounds for the

subfall achromatic index for graphs; finally, we show a Vizing-like Theorem for planar

and outerplanar graphs;

• We summarize the research developed in this work and point out present possible future

research in Chapter 5.

All the results found in the first and third sections of Chapter 4 were presented at VI

Encontro de Teoria da Computação (ETC) in 2021 (Andrade; Silva, 2021) and the results found

in the second section of Chapter 4 were presented at VII Encontro de Teoria da Computação

(ETC) in 2022 (Andrade; Silva, 2022).



16

2 PRELIMINARIES

In this chapter, we focus on providing basic definitions and concepts for the full

understanding of the content contained in this dissertation. We divide the concepts into two

sections: one dedicated to Graph Theory and other dedicated to Computational Complexity.

Each of the terms introduced in Section 2.1 can be found in more detail in (West, 2001) and the

ones in Section 2.2 are presented in (Cormen et al., 2009) and in (Cygan et al., 2015).

2.1 Graph Theory

A graph G is a triple consisting of a vertex set V (G), an edge set E(G) and a function

that associates with each edge two vertices called its endpoints; see Figure 5 for an example.

When two vertices u,v are the endpoints of an edge, they are adjacent or, equivalently, neighbors.

The neighborhood (adjacency) of a vertex v, denoted by NG(v), is the set of vertices adjacent to

v. A simple graph is a graph such that there is no edge whose endpoints are equal and there are

no edges sharing the same endpoints. For convenience, whenever we say "graph" in this text

we refer to simple graphs, unless explicitly stated. Therefore, we can specify a simple graph

simply by its vertex and edge sets, denoting each edge e with endpoints u and v by e = uv. A

vertex u and an edge e are incident if u is an endpoint of e, and the degree of a vertex u in a

graph is the number of incident edges. The minimum degree of a graph G is δ (G), the maximum

degree is ∆(G) and a graph G is k-regular if δ (G) = ∆(G) = k. The order of a graph G is the

number of vertices in G. A subgraph of a graph G is a graph H such that V (H) ¦ V (G) and

E(H)¦ E(G). We denote H being a subgraph of G by H ¦ G. We also denote by G−u or G−X

the subgraph obtained by removing the vertex u ∈V (G) and all the edges that u is endpoint of or

the set of vertices X and all the edges that a vertex of X is endpoint of. Furthermore, an induced

subgraph of a graph G is a graph H ¦ G obtained by deleting the set of vertices V (G)\V (H).

The subgraph of G induced by a set of vertices X is the graph G−X , where X =V (G)\X and it

is denoted by G[X ].



17

Figure 5 – Examples of graphs.

Source: prepared by the author

An isomorphism from a graph G to a graph H is a bijection f : V (G)→V (H) such

that uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). Two graphs G and H are isomorphic if there is

an isomorphism from G to H. The line graph of a graph G, denoted by L(G), is the graph whose

vertices are the edges of G, with e f ∈ E(L(G)) when e and f have a common endpoint in G. A

graph G is a line graph if G = L(H), for some graph H; see Figure 6 for an example.

Figure 6 – A graph G and its line graph L(G).

Source: prepared by the author

A k-coloring of a graph G is a labeling f : V (G)→ X , where X has k elements; often,

X = [k]. The labels are called colors and the vertices of one color form a color class. A k-coloring

is proper if there are no adjacent vertices in a same colors class. A graph is k-colorable if it

has a proper k-coloring. The chromatic number of a graph G is the minimum integer k such

that G has a proper k-coloring; it is denoted by χ(G). Given a proper k-coloring of a graph

G, a vertex v ∈V (G) is a b-vertex if it is adjacent to at least one vertex in each color class but

its own. A k-coloring f is a b-coloring if each color class has at least one b-vertex, and the

b-chromatic number b(G) is the greatest integer such that a graph G admits a b-coloring; they

were introduced in (Irving; Manlove, 1999). A k-coloring f of a graph G is a fall k-coloring if

every vertex v ∈V (G) is a b-vertex with respect to f . The fall achromatic number ψ f (G) is the

greatest integer k such that G admits a fall coloring and the fall chromatic number χ f (G) is the

least integer k such that G admits a fall coloring; they were introduced in (Dunbar et al., 2000).

The fall spectrum Fall(G) of a graph G is the set of integers k such that G has a fall k-coloring.

A graph G is fall perfect if Fall(G)¦ {χ(G)}; this concept was introduced in (Silva, 2019). A



18

graph G such that Fall(G) ̸= /0 is fall continuous if Fall(G) = {χ f (G), . . . ,ψ f (G)}. In order to

give an example of property of fall colorings, we present a result found in (Dunbar et al., 2000)

and that is used a large number of times through Chapters 3 and 4. The authors proved:

Proposition 2.1 (Dunbar et al., 2000). Let G be a graph with minimum degree δ (G). It holds

that:

ψ f (G)f δ (G)+1.

Proof. Let v ∈V (G) be a vertex of minimum degree. In any k-coloring of G with k > δ (G)+1,

v can not be a b-vertex, since v has δ (G) neighbors and, thus, at most δ (G) colors in its

neighborhood.

A subfall k-coloring of a graph G is a fall k-coloring of an induced subgraph H of

G, and the subfall achromatic number ψ f s is the greatest integer k such that G has a subfall

k-coloring. We also denote the fall achromatic index and subfall achromatic index of a graph G

by ψ ′
f (G) = ψ f (L(G)) and ψ ′

f s(G) = ψ f s(L(G)), respectively, where L(G) is the line graph of

G.

Let f be a proper coloring of G. We say that v is a Grundy vertex of color i with

respect to f if f (v) = i and v is adjacent to at least one vertex of color j for each color j < i.

Additionally, f is a Grundy k-coloring if it is a k-coloring and each vertex v ∈V (G) is a Grundy

vertex. The maximum value k such that G has a Grundy k-coloring is called Grundy number and

is denoted by Γ(G). Furthermore, a k-coloring f of a graph G is a partial Grundy coloring if

every color class contains at least one Grundy vertex; this concept was first introduced in (Erdős

et al., 2003).

A clique in a graph G is a set of pairwise adjacent vertices, and an independent set

is a set of pairwise non-adjacent vertices. Given a graph G, the maximum number of vertices

found in a clique in a graph G is denoted by ω(G). A complete graph on n vertices is the graph

Kn such that V (Kn) is a clique. The complement of a graph G is the graph G with vertex set

V (G) and uv ∈ E(G) if and only if uv /∈ E(G); see Figure 7 for an example. A walk is a list

v0,e1,v1, . . . ,ek,vk of vertices and edges such that, for 1 f i f k, the edge ei has endpoints vi−1

and vi. A u,v-walk has first vertex u and last vertex v, and these are its endpoints. A closed

walk is a walk whose endpoints are the same. A path on n vertices Pn is a graph whose vertices

can be ordered in a way that two vertices are adjacent if and only if they are consecutive in the

ordering. A u,v-path is a path whose vertices of degree one are u and v. A cycle on n vertices



19

Cn is a graph with the same number of vertices and edges whose vertices can be placed around

a circle such that two vertices are adjacent if and only if they are consecutive along the circle.

A cycle in a graph G is a subgraph C of G that is a cycle. The length of a path or a cycle is its

number of edges. A graph is connected if there exists a u,v-path for each pair of vertices u,v in

G; otherwise, G is disconnected. A component of a graph G is a maximal connected subgraph of

G. An isolated vertex is a vertex of degree 0 and a leaf is a vertex of degree 1.

Figure 7 – A complete graph on 5 vertices and its complement.

Source: prepared by the author

A graph G is k-partite if V (G) can be partitioned into at most k independent sets,

called partite sets. Furthermore, a graph G is bipartite if it is 2-partite. A graph G is complete

k-partite if every component of G is a complete graph; when k g 2, we denote the complete

k-partite graphs with partite sets of sizes n1,n2, . . . ,nk by Kn1,n2,...,nk
; see Figure 8 for an example.

Figure 8 – A complete 3-partite graph with partite sets of sizes 3,2,2.

Source: prepared by the author

A graph G is acyclic if G has no cycles. A forest is an acyclic graph. A tree is a

connected acyclic graph. A matching of a graph G is a set of edges with no shared endpoints.

The vertices incident to the edges of a matching are saturated. A perfect matching of a graph G

is a matching that saturates every vertex v ∈V (G).

The k-dimensional hypercube Qk is the graph whose vertices are the k-tuples with

entries in {0,1} and whose edges are the pairs of k-tuples that differ in exactly one coordinate;



20

see Figure 9 for an example. A cograph is a graph with no P4 as induced subgraph. A chord of a

cycle C is an edge not in C whose endpoints lie in C. A graph G is chordal if every cycle C in G

of length at least 4 has a chord. A family of graphs G is hereditary if every subgraph of a graph

in G is also in G . A perfect graph is a graph G such that χ(G) = ω(G). Given a graph G, its

coloring number is defined as col(G) := maxH¦G δ (H).

Figure 9 – A 3-dimensional hypercube with A = (0,0,0), B = (0,1,0), C = (1,0,1),
D = (0,0,1), E = (0,1,0), F = (1,1,0), G = (1,1,1) and H = (0,1,1).

A B

CD

E F

GH

Source: prepared by the
author

A polygonal u,v-curve is an image of a continuous map from [0,1] to R2 composed

of finitely many line segments that starts at u and finishes at v. A drawing of a graph G is a

function defined on V (G)∪E(G) that assigns to each vertex v a distinct point f (v) in the plane

and assigns to each edge with endpoints u,v a polygonal f (u), f (v)-curve. A point in f (e)∩ f (e′)

that is not a common endpoint is a crossing. A graph G is planar if it has a drawing without

crossings. A plane graph is a drawing of a planar graph without crossings. An open set in the

plane is a set U ¢ R2 such that for every p ∈ U there exists ε > 0 such that every point with

a distance from p smaller than ε is in U . A region is an open set U that contains a polygonal

u,v-curve for every pair u,v ∈ U . The faces of a plane graph are the maximal regions of the

plane that contains no point used in the drawing. A plane graph has one unbounded face, called

outer face. A graph is outerplanar if it has a drawing without any crossings such that every

vertex lies in the outer face; see Figure 10 for an example.

Figure 10 – A chordal outerplanar graph and its line graph.

Source: prepared by the author



21

The Cartesian product of two graphs G and H, denoted by G□H, is the graph with

vertex set V (G)×V (H) specified by putting (u,v) adjacent to (u′,v′) if and only if:

• u = u′ and vv′ ∈ E(H) or;

• v = v′ and uu′ ∈ E(G).

See Figure 11 for an example of the cartesian product of two graphs.

Figure 11 – Cartesian product of the graphs C3 and P2.

(a) K3 (b) K2 (c) K3□K2

Source: prepared by the author

The categorical product (also known as: direct product, tensor product, Kronecker

product and conjunction) of two graphs G and H is the graph G×H with vertex set V (G)×V (H)

specified by putting (u,v) adjacent to (u′,v′) if and only if uu′ ∈ E(G) and vv′ ∈ E(H). See

Figure 12 for an example of the categorical product of two graphs.

Figure 12 – Categorical product of the graphs C3 and P2.

(a) K3 (b) K2 (c) K3 ×K2

Source: prepared by the author

The lexicographic product of two graphs G and H is the graph G[H] with vertex set

V (G)×V (H) specified by putting (u,v) adjacent to (u′,v′) if and only if either uu′ ∈ E(G) or

u = u′ and vv′ ∈ E(H). See Figure 13 for an example of the lexicographic product of two graphs.



22

Figure 13 – Lexicographic product of the graphs C3 and P2.

(a) C3 (b) P2 (c) C3[P2]

Source: prepared by the author

Given a graph G, a tree decomposition of G is a pair T = (X ,T ), where X =

{Xt ¦V (G) | t ∈V (T )}, T is a tree, and the following holds:

•
⋃

X =V (G);

• If uv ∈ E(G), then there exists Xt ∈ X containing both u and v;

• For every v ∈V (G), {t ∈V (T ) | v ∈ Xt} induces a connected subgraph of T .

For an example, see Figure 14. The width of T equals the maximum size of some Xt

minus 1, and the treewidth of G equals the minimum possible width of a tree decomposition of G;

the latter is denoted by tw(G). Observe that forests have treewidth 1, as proved in (Bodlaender,

1988).

Figure 14 – A graph G and a tree decomposition of G of width 3.

a

b

c

d

e
f

g
h

i j

k l

a b c d

b c e c e f

b c g b g h

c g i j j k l

Source: prepared by the author

In addition, we say that a tree decomposition is nice if T is rooted at a node r with

Xr = /0, and each node t ∈V (T ) is of one of the following types:



23

• Leaf node: t is a leaf in T and |Xt |= 1;

• Forget node: t has exactly 1 child t ′ and Xt = Xt ′ \{u}, for some u ∈V (G);

• Introduce node: t has exactly 1 child t ′ and Xt = Xt ′ ∪{u}, for some u ∈V (G);

• Join node: t has two children t1, t2 and Xt = Xt1 = Xt2 .

Additionally, given a graph G, we say that M ¦V (G) is a module if M ̸= /0 and, for

every w ∈V (G)−M either w is adjacent to every vertex of M or either w is adjacent to no vertex

of M. A module M ¦V (G) is trivial if either M =V (G) or |M| ∈ {0,1}. Furthermore, a module

M is called parallel if G[M] is disconnected, series if G[M] is disconnected, or neighborhood

if both G[M] and G[M] are connected. We say that a module M is strong if, for every module

N ¦V (G), either M∩N = /0 or N ¦ M or M ¦ N. We also say that a module M is maximal if it

there is no module N ¦V (G) such that M ª N. A module M is a maximal submodule of M ª N

if there is no module O ª N such that M ª O.

We now define the modular decomposition tree T (G) recursively as follows, where

T (G) is rooted: the leaves of T (G) represent the singletons {u} with u ∈ V (G); its internal

nodes represent the strong modules of G, where the children of every internal node represent

its maximal strong submodules in a way that the set of vertices represented by an internal node

v ∈ T (G) is exactly the union of the descendant leaves. Thus, the root represents the set of all

vertices V (G). Finally, each internal node is labelled parallel, series or neighborhood according

to its type of module it represents. We comment that such a decomposition can be found in

linear time (McConnell; Spinrad, 1994; Cournier; Habib, 1994). Given a modular decomposition

MD of a graph G, the quotient graph of G with respect to MD, denoted by MD/G is the graph

obtained by mapping each module M of MD to a single vertex such that two vertices of MD/G

are adjacent if there is an edge between the corresponding modules in G.

Given two graphs G and H such that V (G)∩V (H) = /0, we say that the join G+H

is the graph whose set of vertices is V (G+H) = V (G)∪V (H) and whose set of edges is

E(G+H) = E(G)∪E(H)∪{uv | u ∈V (G)'v ∈V (H)}. The union G∪H of two graphs G and

H such that V (G)∩V (H) = /0 is the graph whose set of vertices is V (G∪H) =V (G)∪V (H) and

whose set of edges is E(G∪H) = E(G)∪E(H). A rooted branch decomposition of a graph G is

a pair (T,L ) consisting of a rooted tree T of degree at most 3 and a bijection L : V (G)→ L(T ),

where L(T ) is the set of leaves of T . Furthermore, for t ∈V (T ), we denote by Tt the subtree of

T rooted at t and we define Vt := {v ∈V (G) | L (³) ∈ L (T⊔)}, Vt :=V (G)\Vt and Gt as the

subgraph of G induced by the vertices of Vt . Given a graph G, a rooted branch decomposition



24

(T,L ) of G and t ∈V (T ), let ∼t be the equivalence relation on Vt such that, for every u,v ∈Vt ,

u∼t v if and only if NG(u)∩Vt =NG(v)∩Vt . The module-width of a rooted branch decomposition

(T,L ) is equal to maxt∈V (T ) |Vt/∼t |. The module-width of a graph G is the minimum module-

width over all rooted branch decompositions of G and it is denoted by mw(G); it was introduced

in (Rao, 2006).

2.2 Computational complexity

An algorithm is a computational procedure that takes a set of values as input and

produces a set of values as output. An algorithm is correct if it halts with the correct output for

every given input. Given an algorithm A and an input x, we denote by A(x) the output produced

by A over x.

An abstract problem Q is a binary relation on a set I of problem instances and a

set S of problem solutions. The decision problems are those having a yes/no solution, and

the optimization problems are those which require some function to be maximize/minimized.

Problems whose instance set is the set of binary strings are concrete problems. An algorithm

solves a concrete problem in time O(T (n)) if, when it is provided a problem instance i of length

n, the algorithm can produce the solution in O(T (n)) steps. A polynomial-time algorithm is an

algorithm that, given an input x, outputs A(x) in O(|x|k), where |x| is the number of elements of

the input x. A concrete problem is polynomial-time solvable if there exists an algorithm to solve

it in O(nk) steps, for some constant k. The complexity class P is the set of concrete decision

problems that are polynomial-time solvable.

An alphabet Σ is a finite set of symbols and Σ∗ is the language of all strings over Σ; by

simplification, we use Σ = {0,1}. A language L over Σ is any set of strings made up of symbols

from Σ. An algorithm A accepts a string x ∈ {0,1}∗ if, given input x, the algorithm outputs 1.

The language accepted by an algorithm A is the set of strings L = {x ∈ {0,1}∗ | A(x) = 1}. An

algorithm rejects a string x if A(x) = 0. The language L is decided by an algorithm A if every

binary string in L is accepted by A and every binary string not in L is rejected by A. Furthermore,

a decision problem is a language and the elements of the language are the "yes" instances. As an

example, consider the problem of deciding whether a given graph G has a clique of size k. This

problem has the corresponding language:

CLIQUE = {ïG,kð : G is a graph containing a clique of size k}.



25

A deciding algorithm for this language receives as input a graph G and, for every

subset V ′ ¢V (G) with size |V ′|= k, checks whether V ′ is a clique. If this is the case, then the

algorithm outputs 1 and halts. If the algorithm finds no subset of V (G) that is a clique of size k,

then it outputs 0 and halts.

A verification algorithm to a problem/language is a two-argument algorithm A,

where one argument is an ordinary input string x and the other is a binary string y called a

certificate. A two-argument algorithm verifies an input string x if there exists a certificate y

such that A(x,y) = 1. The languages verified by a verification algorithm A is L = {x ∈ {0,1}∗ |
there exists y∈ {0,1}∗ such that A(x,y) = 1}. The complexity class NP is the class of languages

that can be verified by a polynomial-time algorithm.

A function f : {0,1}∗ → {0,1}∗ is polynomial-time computable if there exists a

polynomial-time algorithm A that, given any input x∈{0,1}∗ produces as output f (x).A language

L1 is polynomial-time reducible to a language L2, written L1 fp L2, if there exists a polynomial-

time computable function f : {0,1}∗ →{0,1}∗ such that for all x ∈ {0,1}∗, x ∈ L1 if and only

if f (x) ∈ L2; the function f is called reduction function and the algorithm A that computes f is

called reduction algorithm. A language L ¦ {0,1}∗ is NP-hard if L′ fp L for every L′ ∈ NP. A

language is NP-complete if it is in NP and is NP-hard. Given a boolean formula with variables

x1, . . . ,xn, a literal is an occurrence of a variable xi or its negation xi. A clause is the OR of one

or more literals, such as x1 ( x2 ( x3. A boolean formula ϕ with boolean variables x1, . . . ,xn is in

conjunctive normal form (CNF) if it is expressed as an AND of clauses, and it is in 3-conjunctive

normal form (3-CNF) if each clause contains exactly three distinct literals. A truth assignment of

a boolean formula ϕ of variables X = {x1, . . . ,xn} is an assignment of values TRUE and FALSE

such that ϕ is true.

Proposition 2.2. If any NP-complete problem is polynomial-time solvable, then NP= P.

Proof. Suppose that an NP-complete problem Q is in P and let A1 be the polynomial-time

algorithm that decides Q and L be any problem in NP. Since Q is an NP-complete problem,

we know that L fp Q. In this sense, let A2 the reduction algorithm that computes f . We then

construct an algorithm B that decides L′ in polynomial time. For a given input x ∈ {0,1}∗,

algorithm B runs A2 in order to transform x into f (x) and then uses A1 to decide whether

f (x)∈ Q, taking the output from A1 as its output. Furthermore, B is a polynomial-time algorithm,

since both A1 and A2 are.



26

A parameterized problem is a language L ¢ Σ∗×N, where Σ is a fixed and finite

alphabet. For an instance (x,k) ∈ Σ∗×N, k is called the parameter, and its size is defined as

|(x,k)|= |x|+ k, where |x| is the number of elements in x. For example, an instance of CLIQUE

parameterized by the solution size is a pair (G,k), where G is an undirected graph and k is a

positive integer. A kernel for a parameterized problem Q is an algorithm A that, given an instance

(I,k) of Q, outputs an equivalent instance (I′,k′) of Q; moreover, we require the existence of a

computable function g such that whenever (I′,k′) is the output for an instance (I,k) it holds that

|I′|+ k′ f g(k). If the upper bound given by g is polynomial, we say that Q admits a polynomial

kernel.

A parameterized problem L ¢ Σ∗×N is called fixed-parameter tractable (FPT) if

there exists an algorithm A, called a fixed-parameter algorithm, a computable function f : N→N

and a constant c such that, given (x,k) ∈ Σ∗×N, the algorithm A correctly decides whether

(x,k) ∈ L in time bounded by O( f (k)|(x,k)|c). The complexity class containing all fixed-

parameter tractable problems is called FPT. A parameterized problem L ¢ Σ∗×N is called slice-

wise polynomial (XP) if there exists an algorithm A and two computable functions f ,g : N→ N

such that given (x,k) ∈ Σ∗×N, the algorithm A correctly decides whether (x,k) ∈ L in time

bounded by f (k)|(x,k)|g(k). The complexity class containing all slice-wise polynomial problems

is called XP.

Let A,B ¦ Σ∗×N be two parameterized problems. A parameterized reduction from

A to B is an algorithm that, given an instance (x,k) of A, outputs an instance (x′,k′) of B such

that

• (x,k) is an yes-instance of A if and only if (x′,k′) is an yes-instance of B;

• k′ f g(k) for some computable function g, and

• the running time is f (k)|x|O(1) for some computable function f .

We now define the parameterized problem INDEPENDENT SET as follows:

INDEPENDENT SET

Input: A graph G.

Parameter: A positive integer k..

Question: There is an induced subgraph X ¦ G such that |X | f k and E(X) = /0?

By simplification, in order to prove that a parameterized problem Q is W[1]-hard,

one constructs a parameterized reduction from INDEPENDENT SET to Q. We now define the



27

following (not parameterized) problem:

3-SAT

Input: A boolean formula ϕ in 3-CNF.

Question: There is an truth assignment for ϕ?

The current status of research on satisfiability problems suggest that is hard to obtain

an algorithm for 3-SAT running in time 2o(n). In this sense, let δ3 be the infimum of the set of

constants c for which there exists an algorithm solving 3-SAT in O∗(2cn) steps. In this sense,

the Exponential Time Hypothesis (ETH) is a conjecture that states that δ3 > 0. Intuitively, ETH

states that any algorithm for 3-SAT must search through an exponential number of alternatives.



28

3 STATE OF THE ART

Subfall coloring has not been studied in other works apart from the paper (Dunbar

et al., 2000), that introduces fall colorings. In this chapter, we do a literature review of fall

colorings and present the existing results on subfall colorings. Some authors in the literature have

also used the name independent and dominating vertex partition instead of fall coloring, calling

the colors classes disjoint and dominating sets, as in (Heggernes; Telle, 1998). We separate

the works into 3 sections. In Section 3.1, we present results about fall spectrum of some graph

classes. In Section 3.2, we present the computational complexity results about fall colorings and

the parameter ψ f . In Section 3.3, we present further interesting results related to the fall coloring

problem that do not fit in the first two sections. Finally, in Section 3.4, we show the results on

subfall colorings presented in (Dunbar et al., 2000).

3.1 Fall spectrum

In order to present the results found in the literature, we need to establish some

definitions. We say that a graph G is uniquely k-colorable if V (G) has only one partition into k

independent sets. We say that a graph G is a k-tree if it is a complete graph with k+1 vertices or

there exists a vertex u ∈V (G) such that N(u) is a clique with exactly k vertices and G−u is a

k-tree.

In (Cockayne; Hedetniemi, 1976), the authors established the fall spectrum of some

graphs, which we compile in the following proposition:

Proposition 3.1 (Cockayne; Hedetniemi, 1976). The following holds:

1. The complete graph on n vertices satisfies Fall(Kn) = {n}, for every positive integer n;

2. 2 ∈ Fall(G) whenever G is a connected bipartite graph;

3. Fall(G) = {k} for complete k-partite graphs;

4. Fall(G)¦ {2,3} for cycles of length multiple of 3;

5. k ∈ Fall(G) for uniquely k-colorable G;

6. k+1 ∈ Fall(G) for k-trees;

7. Fall(G) = {2,k} whenever G is obtained from a complete bipartite graph Kk,k by removing

the edges of a perfect matching, for every integer k g 2;

8. k+ ℓ ∈ Fall(G+H) if G has fall k-coloring and H has fall ℓ-coloring.



29

In order to give an example on proofs about fall colorings, we now prove items 3, 5

and 7 separately. For item 3, we have:

Proof of Proposition 3.1 - 3. Being G1 a complete k-partite graph and v ∈ V (G1), we know

that v is adjacent to all vertices belonging to other parts than its own part. Therefore, letting

P = {V1,V2, . . . ,Vk} be the k-partition, we take the coloring f of V (G) such that all vertices of

the set Vi are colored with the color i, where i ∈ {1, . . . ,k}. Clearly f is a fall coloring of V (G),

since each vertex colored with color i is adjacent to all vertices colored with color i, j ̸= i, where

j ∈ {1, . . . ,n}.

Proof of Proposition 3.1 - 5. Let G2 be a uniquely k-colorable graph. If this happens, we know

that for each k-coloring f of V (G), the sets of vertices X1, . . . ,Xk such that x ∈ Xi if and only

if f (x) = i produce the same partitioning of V (G) into k independent sets. Indeed, being

P = {V1,V2, . . . ,Vk} such partition of V (G), we know that if v ∈Vi, i ∈ {1, . . . ,k}, then it must

happen, for every j ∈ {1, . . . ,k} \ i, that N(v)∩Vj ̸= /0. In fact, if there are v ∈ Vi and ℓ ̸= i

such that N(v)∩Vℓ = /0, then P′ = {V1, . . . ,Vi \{v}, . . . ,Vℓ∪{v}, . . . ,Vk} is a partition of V (G)

different from P, where we suppose without loss of generality that ℓ > i. Thus, every vertex v is

adjacent to at least one vertex colored with a color different from f (v).

Before showing a proof for Item 7, we define the following concept: given a function

f : X → Y and a subset S ¦ X , we denote the image of S by f (S). Formally, f (S) = {d ∈ D |
∃x ∈ S( f (x) = d)}.

Proof of Proposition 3.1 - 7. First, denote by K′
n,n the graph obtained from a complete bipartite

graph Kk,k by removing the edges of a perfect matching. We prove this item by induction. As

basis, take K′
2,2. Hence, without loss of generality, we may assume that V (K′

2,2) = {v1,v2,v3,v4}
and E(K′

2,2) = {v1v3,v2v4}. Clearly, any 2-coloring f of V (K′
2,2) is a fall coloring. In addition,

there is no fall k-coloring with k ̸= 2, since every vertex has only one neighbor and any 1-coloring

is not proper. Now we prove that n ∈ Fall(K′
n,n) for every positive integer n. Let A and B be

its partitions, a1,a2, . . . ,an ∈ A and b1,b2, . . . ,bn ∈ B be its vertices such that aibi /∈ E(K′
n,n) for

each 1 f i f n. Let f be a n-coloring of G such that f (ai) = f (bi) = i for every 1 f i f n and

note that aib j ∈ E(K′
n,n) for every 1 f i, j f n with i ̸= j, thus every ai is a b-vertex. Analogously,

every bi is a b-vertex. Therefore, f is a fall n-coloring of K′
n,n.

It remains to show that there is no fall k-coloring for 2 < k < n. Indeed, for there

to exist such a fall k-coloring h of K′
n,n, there must exist at least two distinct vertices a1,a2 ∈ A



30

colored with the same color ℓ ∈ {1, . . . ,k}, since the number of vertices in each partition is

greater than the number of colors. Moreover, since we must have h(B) = {1, . . . ,k} for the

vertices of A to be b-vertices, there exists a vertex b ∈ B such that h(b) = ℓ. Since K′
n,n is the

graph Kn,n minus a perfect matching, at least one among a1,a2 is neighbor of b, so h cannot be

proper. This being so, we have Fall(K′
n,n) = {2,n} for any natural n.

In (Balakrishnan; Kavaskar, 2010), the authors proved the following:

Theorem 3.1 (Balakrishnan; Kavaskar, 2010). Let G be a graph with δ (G)g |V (G)|−2. Then

Fall(G) is nonempty.

In (Lauri; Mitillos, 2020), the authors establish the following property for maximal

outerplanar graphs:

Theorem 3.2 (Lauri; Mitillos, 2020). Let G be a maximal outerplanar graph with at least 3

vertices. Then Fall(G) = {3}.

Before we present the next theorem, we need a new definition. Given a graph G, the

Mycielskian of G, denoted by M(G), is the graph M(G) obtained by the following construction.

Starting with G, take C as a copy of V (G) and let V (M(G)) =V (G)∪C∪{u∗}. Given a vertex

v ∈ V (G), denote by v′ its copy in C. Add all the edges between v′ and each neighbor of v in

V (G) and add the edges u∗v′ for each v′ ∈C. In (Shaebani, 2009), the author demonstrates the

following result for Mycieslkian of graphs:

Theorem 3.3 (Shaebani, 2009). Fall(M(G)) = /0, for every graph G.

The Kneser graph K(k,n) is the graph whose vertices correspond to the subsets of

k elements of a set of n elements, with two vertices u and v being adjacent if and only if the

corresponding subsets are disjoint. In (Shaebani, 2019), the author continues the study of the fall

spectrum, this time for the Kneser graph K(n,2), for all n g 2:

Theorem 3.4 (Shaebani, 2019). For every natural n g 2, it holds that:

Fall(KG(n,2)) =























































{1}, if n ∈ {2,3};

{2}, if n = 4;

{n(n−1)
6 }, if n g 5, n = 1 or 3 (mod 6);

{ (n−1)(n−2)
6 +1}, if n g 5, n = 2 or 4 (mod 6);

/0, if n g 5, n = 0 or 5 (mod 6).



31

In the next two subsections, we show some results found in the literature on the fall

spectrum of cartesian, categorical and lexicographic product of graphs.

3.1.1 Cartesian products

With respect to fall coloring results for the Cartesian products of graphs, in (Dunbar

et al., 2000) the authors established properties for Fall(G) when G is a product of specific classes

of graphs, such as product of paths (i.e., Pi□Pj), product of paths with cycles (Ci□Pj) and

product of cycles (Ci□C j). We present them in the following proposition:

Proposition 3.2 (Dunbar et al., 2000). Let Pi and Pj be paths on i and j vertices, respectively,

and let Ck and Cℓ be cycles on k and ℓ vertices, with i, j g 2 being positive integers and k, ℓg 3.

Then:

1. Fall(Pi□Pj) = {2};

2. We have that 2 ∈ Fall(Ck□Pj) if and only if k g 4 is even;

3. If k = 3m for some m, it holds that 3 ∈ Fall(C3m□Pj);

4. If k = 4m and j = 2n, for some m and n, we have that 4 ∈ Fall(C4m□P2n);

5. 2 ∈ Fall(Ck□Cℓ) if and only if both k g 4 and ℓg 4 are even;

6. 3 ∈ Fall(Ck□Cℓ) if and only if at least one between k and ℓ is multiple of 3;

7. If k = 4m and ℓ= 2n for some m and n, then 4 ∈ Fall(C4m□C2n);

8. 5 ∈ Fall(Ck□Cℓ) if and only if both k and ℓ are multiple of 5.

In order to present the reader we now prove items 1, 3 and 5.

Proof of Proposition 3.2 - 1. Let G be the Cartesian product Pi□Pj and label the vertices of G

as an,m = (vn,um), being Pi = {v1, . . . ,vi} , Pj = {u1, . . . ,u j}, n ∈ {1, . . . , i} and m ∈ {1, . . . , j}.

Since G is bipartite and has no isolated vertex, we have 2∈ Fall(G) and 1 /∈ Fall(G). Furthermore,

let us prove that G has no fall k-coloring for k > 2. By contradiction, let f be a fall k-coloring

of G, for some k g 3. Since dG(a1,1) = 2, and a1,1 is a b-vertex with respect to f , then k = 3

and colors 1,2,3 occur in a1,1,a1,2 and a2,1. Without loss of generality, suppose that the vertices

a1,1,a1,2 and a2,2 are colored with the colors 1,2 and 3, respectively. Then a2,2 must be given

the color 1 for the coloring to be proper. If i f 2, then a2,1 cannot be a b-vertex, since its two

neighbors would receive color 1, thus i g 3. Then, a3,1 must receive the color 2 so that a2,1

is b-vertex. Similarly, a3,2 must receive color 3 for it to be a proper coloring. Again, if i f 3,

then a3,1 cannot be a b-vertex, since its two neighbors would receive color 3, thus suppose i g 4.



32

Then a4,1 must receive color 1 for a3,1 to be b-vertex. Continuing this process, we have that the

color of ai−1,2 is different from the color of ai,1 and therefore ai,2 must receive the same color as

ai−1,1 for the coloring to be proper. But that being the case, ai,1 cannot be b-vertex.

Proof of Proposition 3.2 - 3. First note that there exists fall 3-coloring of C3m. Let V (C3m =

{v1,v2, . . . ,v3m} such that v1v3m ∈E(C3m) and vivi+1 ∈E(C3m) for each 1f if 3m. It suffices to

take the coloring f such that f (vi) = i (mod 3) if i ≡ 1 (mod 3) or i ≡ 2 (mod 3) and f (vi) = 3

if i ≡ 0 (mod 3)., which is fall 3-coloring of C3m, because, for every positive integer i, it holds

that i ̸= i+1 (mod 3) and i ̸= i+2 (mod 3), so every vertex vi with 1 < i < 3m is b-vertex. For

vertex v1, notice that f (v1) = 1, f (v2) = 2 and f (v3m) = 3. Therefore, since v1 is adjacent to v2

and v3m, v1 is b-vertex. On the other hand, v3m is b-vertex since it is neighboring v3m−1, which is

colored with the color 2. Therefore, 3 ∈ Fall(C3m). Figure 15 shows how to extend such a fall

3-coloring of C3m to a fall 3-coloring of (C3m□Pj) when m = 2.

Figure 15 – Example of fall 3-coloring of C6□Pj.

1 2 3 1 . . .
2 3 1 2 . . .
3 1 2 3 . . .
1 2 3 1 . . .
2 3 1 2 . . .
3 1 2 3 . . .

Source: prepared by the author.

Proof of Proposition 3.2 - 5. For Item 5, notice that 2 ∈ Fall(Ck□Cℓ) if and only if Ck□Cℓ is

bipartite. However, for Ck□Cℓ to be bipartite, it is necessary that k, ℓg 4 and that neither is an

odd cycle, that is, it is necessary that k and ℓ are even.

In the same paper, the authors settled the following result for the fall spectrum of

products of fall colorable graphs, which generalizes Items 1, 2, 3 and 4 of Proposition 3.2:



33

Theorem 3.5 (Dunbar et al., 2000). Let G and H be fall k-colorable and fall ℓ-colorable graphs,

respectively, with k g ℓ. Then, k ∈ Fall(G□H).

In (Laskar; Lyle, 2009), the authors proved some additional properties for the fall

spectrum of other specific classes of graphs, such as the cartesian product of trees, cartesian

product of complete graphs, and hypercubes (which are cartesian products of K2) and cartesian

products of hypercubes with a fall colorable graph. We state the results in the following

proposition:

Proposition 3.3 (Laskar; Lyle, 2009). Let Kn and Km be complete graphs on n and m vertices,

with n f m and T1, T2 be trees. Then, it holds that:

1. Fall(T1□T2) = {2};

2. m ∈ Fall(Kn□Km);

3. 3 ∈ Fall(K2□G) if and only if 3 ∈ Fall(G).

Notice that Item 3 gives us, as a corollary, the following important result:

Corollary 3.1 (Laskar; Lyle, 2009). Let G be any graph and Qn = □
n
i=1K2 the hypercube of

dimension n g 2. Then, 3 ∈ Fall(Qn□G) if, and only if, 3 ∈ Fall(G). Moreover, 3 /∈ Fall(Qn)

for any natural n.

Such corollary is interesting because, still in (Laskar; Lyle, 2009), the authors

partially answered the fifth question raised in the seminal article (Dunbar et al., 2000): "What

fall colorings do n-cubes have?" by means of the following theorem:

Theorem 3.6 (Laskar; Lyle, 2009). For every positive integer n, the hypercube Qn has no fall

3-coloring. However, for every 3 ̸= k g 2, there exists n such that k ∈ Fall(Qn).

3.1.2 Categorical and Lexicographic products

Before showing the following results, we first recall the definitions of both categorical

and lexicographic products presented in Chapter 2. The categorical product (also known as:

direct product, tensor product, Kronecker product and conjunction) of two graphs G and H is the

graph G×H with vertex set V (G)×V (H) specified by putting (u,v) adjacent to (u′,v′) if and

only if u′ ∈ E(G) and vv′ ∈ E(H). Figure 16 shows an example.



34

Figure 16 – Categorical product of the graphs C3 and P2.

(a) K3 (b) K2 (c) K3 ×K2

Source: prepared by the author

The lexicographic product of two graphs G and H is the graph G[H] with vertex set

V (G)×V (H) specified by putting (u,v) adjacent to (u′,v′) if and only if either uu′ ∈ E(G) or

u = u′ and vv′ ∈ E(H). Figure 17 shows an example.

Figure 17 – Lexicographic product of the graphs C3 and P2.

(a) C3 (b) P2 (c) C3[P2]

Source: prepared by the author

In (Dunbar et al., 2000) the authors proved the following result for categorical

product of two complete graphs:

Theorem 3.7 (Dunbar et al., 2000). If r g 2 and s g 2 are distinct and positive integers, then

Fall(Kr ×Ks) = {r,s}.

Proof. Let V (Kr) = {a1,a2, . . . ,ar} and V (Ks) = {b1,b2, . . . ,bs} and notice that vertices u =

(ai,b j) and y = (an,bm) are adjacent if and only if i ̸= n and j ̸= m, by definition. Moreover, for

each 1f if r, let Ai = {(ai,b j) | 1f j f s} and, for each 1f j f s, let B j = {(ai,b j) | 1f if r}.

Finally, let I be a maximal independent set of Kr ×Ks such that, for some 1 f i f r, we have

that |I ∩Ai| g 2 and assume that n ̸= m and that (ai,bn),(ai,bm) ∈ I. This being so, the set

{(ai,bn),(ai,bm)} dominates the set V (Kr ×Ks)\Ai and, since I is independent, it follows that

I ¦ Ai. On the other hand, we have that Ai is independent on Kr ×Ks and, since I is dominant



35

and a maximal independent set, we have that Ai ¦ I. Hence, we have I = Ai. Similarly, we have

that if I is a maximal independent set of Kr ×Ks with |I ∩B j| g 2, then I = B j. Since we have

that γ(Kr ×Ks)g 2, we know that |I| g 2 and therefore let u,v ∈ I. Since I is independent, u and

v are not adjacent, so we must have u,v ∈ Ai for some i ∈ [r] or u,v ∈ B j for some j ∈ [s], which

would give us I = Ai and I = B j, respectively. Therefore, the only way to partition Kr ×Ks into

maximal independent sets is by partitions with sets of type {A1,A2, . . . ,Ar} of partitions with

sets of type {B1,B2, . . . ,Bs}, i.e., Kr ×Ks can have only fall r-colorings or fall s-colorings.

Note, however, that this result cannot be extended to the categorical product of more

than two complete graphs, given that the graph K2 ×K3 ×K4 has the colors 2,3 and 4 in its fall

spectrum, but also has a fall 6-coloring. Indeed, the following partition of K2×K3×K4 into 6 sets

is a partition such that each set is independent and dominant: {(1,1,1),(1,2,2),(2,1,2),(2,2,1)},

{(1,2,1),(1,3,2),(2,2,2),(2,3,1)}, {(1,1,2),(1,3,1),(2,1,1),(2,3,2)}, {(1,1,3),(1,2,4),
(2,1,4),(2,2,3)}, {(1,2,3),(1,3,4),(2,1,4),(2,3,3)} and {(1,1,4),(1,3,3),(2,1,3),(2,3,4)}.

However, it holds that for categorical product of complete graphs Ki, for any i, the value i belongs

to the fall achromatic spectrum of the product. Moreover, in (Shaebani, 2009), the author contin-

ues his studies on fall colorings of the categorical product of graphs, initially by generalizing the

property presented earlier via the following theorem:

Theorem 3.8 (Shaebani, 2009). Let n be any natural and G1, . . . ,Gn be arbitrary graphs. Then,

for each 1 f i f n, it holds that Fall(Gi)¦ Fall(×n
i=1Gi).

Which gives us, directly, the following:

Corollary 3.2 (Valencia-Pabon, 2010). Let t g 3 and n1,n2, . . . ,nt+1 be such that ni g 2, for all

i ∈ [t +1], and let S ¦ [t +1]. If k ∈ Fall(×i∈SKni
), then k ∈ Fall(×t+1

i=1Kni
).

Having established such a generalization, the author presented another interesting

result, answering the following question in (Dunbar et al., 2000): "Under what conditions does

the categorical product of a set of complete graphs Kr, for every integer r in some specified set S,

have a fall k-coloring for some integer k not in S?".

Theorem 3.9 (Shaebani, 2009). Let n g 3, S = {k1, . . . ,kn} ¦ N, with 1 < k1 < k2 < .. . < kn

and at least one ki even. Then it holds that S ª Fall(×n
i=1Kki

) and, furthermore, Fall(×n
i=1Kki

)

contains a natural greater than kn.



36

Finally, for the lexicographic product of graphs, in (Shaebani, 2009) it is established

the first fall spectrum results in the literature, as well as establishing some inequalities for the fall

achromatic number of lexicographic products and for which graphs the inequalities are strictly

satisfied. For the results on chromatic fall spectrum, we have:

Theorem 3.10 (Shaebani, 2009). Let G and H be any graphs, k ∈ Fall(G[H]) and f be a fall

k-coloring of G[H]. Then, for every x ∈ V (G), f restricted to V (Hx) is a fall coloring of Hx,

where Hx is the subgraph of G[H] induced by {x}×V (H).

Proof. Let x ∈ V (G) and (x,y) be an arbitrary vertex of Hx colored with the color i and Sx =

f (V (Hx)). Then, for every j ∈ Sx \ {i}, there exists a vertex (u,v) of G[H] adjacent to (x,y)

colored with color j. Notice that we must have u = x, otherwise, since j ∈ Sx, there would exist

a vertex (x,z) ∈ V (Hx) colored with color j. But this cannot occur, since (x,y) is adjacent to

(u,v) and x ̸= a, so we would have the edge xu ∈ E(G); this being true, (u,v) and (x,z) would

be vertices of color j adjacent in G[H]. Thus, we have that u = x and (u,v) ∈V (Hx). Hence, Sx

forms a fall |Sx|-coloring of Hx.

Finally, the author proved the following result for lexicographic product of fall

colorable graphs G and H:

Theorem 3.11 (Shaebani, 2009). Let G and H be graphs such that Fall(G) ̸= /0 and Fall(H) ̸= /0.

Then, it holds that {∑
s
i=1 ki | ∃s ∈ Fall(G) ∀1 f i f s (ki ∈ Fall(H))} ¦ Fall(G[H]).

3.2 Computational Complexity

In this section, we present results found in the literature on the computational

complexity of the following decision problem:

FALL k-COLORING

Input: A graph G = (V (G),E(G)) and a positive integer k.

Question: k ∈ Fall(G)?

We also show the results found on the computational complexity of the following

optimization problem:



37

FALL ACHROMATIC NUMBER

Input: A graph G = (V (G),E(G)) such that Fall(G) ̸= /0.

Question: What is the value of ψ f (G)?

In (Dunbar et al., 2000) and (Heggernes; Telle, 1998), independently, the authors

have established the complexity of FALL k-COLORING, for every fixed k g 3. In order to present

the reduction, we define the following concepts. Given a set of variables X = {x1,x2, . . . ,xn}
and a set of clauses C = {C1,C2, . . . ,Cm} such that each clause has exactly three literals from the

variables in X , a Not-All-Equal (NAE) assignment is an assignment of TRUE and FALSE values

to the variables such that for every clause Ci there is at least one literal assigned TRUE and one

literal assigned FALSE. We have the following problem, which NP-completeness is proved in

(Schaefer, 1978):

NOT-ALL-EQUAL-3SAT

Input: A boolean formula φ in 3-CNF.

Question: Does there exist a Not-All-Equal assignment of X?

For the complexity of FALL k-COLORING, we have:

Theorem 3.12 (Dunbar et al., 2000; Heggernes; Telle, 1998). Let G be any graph and k g 3 an

integer. It is NP-Complete to decide whether k ∈ Fall(G).

Proof. First, note that if the problem of, given a graph G, deciding whether k ∈ Fall(G) is

NP-complete, then the problem of deciding whether a graph G has a fall (k+1)-coloring is also

NP-complete. Indeed, given a graph G, let G′ be the graph obtained from G by the addition of

a universal vertex u, i.e. such that V (G′) = V (G)∪{u} and E(G′) = E(G)∪{uv | v ∈ V (G)}.

Thus, G′ has a fall (k+1)-coloring if and only if G has a fall k-coloring.

Note that we can check whether a k-coloring f of a graph G is a fall k-coloring

in polynomial time by checking, for each vertex v ∈ V (G) if, for every color 1 f i f k such

that f (v) ̸= i, v is adjacent to at least one vertex colored i. Thus, FALL k-COLORING is in

NP. We now establish now a polynomial reduction from the NP-complete problem NOT-ALL-

EQUAL-3SAT. We transform I to an instance (GI,3) of FALL 3-COLORING problem. For a

representation of the construction of the graph GI described in the sequel, see Figure 18.



38

Figure 18 – The graph GI obtained from a NOT-ALL-EQUAL-3SAT instance, where
c1 = x1 ( x2 ( x3, c2 = x1 ( x2 ( x4, c3 = x3 ( x4 ( x5 and c4 = x3 ( x4 ( x5.

a

b c

y3

x3 x3

y2

x2 x2

y1

x1 x1

y4

x4 x4

y5

x5 x5

c1 c2 c3 c4

Source: prepared by the author

Initialize GI with k disjoint copies of the graph K3 and label the vertices of each copy

as {yi,xi,xi}. Label the vertices of another copy of K3 with {a,b,c} and add edges byi and cyi

for every i = 1,2, . . . ,k. Corresponding to each clause Ci ∈C, add a single vertex ci to the graph

GI . Finally, join each vertex ci to the three vertices corresponding to the literals in the clause

Ci. The construction can be accomplished in polynomial time, since |V (GI)| = m+ 3(n+ 1).

All that remains to show is that I is satisfiable by a NAE assignment if and only if GI has a fall

3-coloring. Assume first that I has a satisfying truth NAE assignment f : X →{T,F}. Color the

vertices {a,b,c} in GI with the colors {1,2,3} respectively. Next color every vertex yi and every

vertex ci with color 1. Finally, for i = 1,2, . . . ,k, if f (xi) = T , color the associated vertex xi with

color 2. Otherwise, color xi with color 2. Color all remaining vertices with color 3. We argue

that this is a proper coloring, and every vertex in a triangle is a b-vertex: note that vertices a, b

and c are colored with distinct colors, thus they are b-vertices. Vertices yi are colored with the

same color of a and are adjacent to vertices b and c. In addition, f (xi) ̸= f (xi) and xi and xi are

colored with colors 2 and 3 and are adjacent to yi. It remains to prove that each vertex ci is a

b-vertex. Since f is a satisfying truth NAE assignment, every clause Ci has at least one TRUE

literal and at least one FALSE literal. Thus every vertex ci is a b-vertex.

Assume next that GI has a fall 3-coloring f . Then, without loss of generality, we

may assume the vertex a is colored 1. Since a is a b-vertex, b and c must have colors 2 and 3,

which forces yi to have color 1, for every i ∈ {1, . . . ,n}. Since each color class is an independent

set, this means the vertices xi and xi, for i ∈ {1, . . . ,n}, must have distinct colors in {2,3}. Thus,

each ci must have color 1, for i ∈ {1, . . . ,n}. We define a function f : X → {T,F} by letting



39

f (Xi) = T if and only if xi has color 2. Since the coloring of GI is a fall 3-coloring, each vertex

ci is adjacent to at least one vertex with color 2 and one vertex with color 3. Thus the function f

is a satisfying truth NAE assignment for the instance I of NOT-ALL-EQUAL-3SAT.

While in (Dunbar et al., 2000) the authors use a reduction from NOT-ALL-EQUAL-

3-SAT, in (Heggernes; Telle, 1998) they made a reduction from the known problem k-EDGE-

COLORING on k-regular graphs. Having established the complexity of the problem for general

graphs, it is natural to try to establish the complexity for specific classes of graphs.

Note that 2 ∈ Fall(G) if and only if G is bipartite without isolated vertices, which

can be verified in O(n+m) time, where n = |V (G)| and m = |E(G)|. In (Laskar; Lyle, 2009),

the authors showed, also with a reduction from NOT-ALL-EQUAL-3SAT, the following result

for bipartite graphs:

Theorem 3.13 (Laskar; Lyle, 2009). Let G be a bipartite graph. Deciding whether 3 ∈ Fall(G)

is NP-complete.

Complementing this result, in (Lauri; Mitillos, 2020), the authors proved the follow-

ing:

Theorem 3.14 (Lauri; Mitillos, 2020). For every k g 3, it is NP-complete to decide whether

k ∈ Fall(G), where G is a bipartite graph.

Continuing the study of problem complexity for bipartite graphs, in (Silva, 2019)

the author demonstrated the following theorem, making a reduction from EDGE COLORING of

3-regular graphs:

Theorem 3.15 (Silva, 2019). Let G be a bipartite graph with |E(G)| g 1. It is NP-complete to

decide if |Fall(G)|> 1.

Notice that the assumption that G has at least one edge is relevant because, otherwise,

G would be an independent set, so we would have Fall(G) = {1}, and therefore Fall(G) always

has size 1. For even more restrictive cases of bipartite graphs, in (Campos et al., 2021) the

authors proved:

Theorem 3.16 (Campos et al., 2021). Let G be a bipartite graph with diameter less than or equal

to 4. Deciding whether 3 ∈ Fall(G) is NP-complete.



40

Another interesting case is the class of complement of bipartite graphs, since for

graphs belonging to this class the cardinality of each color class is at most two, for every proper

k-coloring. As such, in (Shaebani, 2009) the following result was proved:

Theorem 3.17 (Shaebani, 2009). Let G be a bipartite graph. Then Fall(G)¦ {χ(G)} and it is

possible to decide in polynomial time whether Fall(G) ̸= /0.

For bipartite planar graphs, in (Lauri; Mitillos, 2020) the authors showed the follow-

ing:

Theorem 3.18 (Lauri; Mitillos, 2020). Let G be a bipartite planar graph such that ∆(G) = 6.

Then it is NP-complete to decide whether 3 ∈ Fall(G).

Also in (Silva, 2019), the author established more properties for the fall spectrum of

some relevant classes of graphs. For chordal graphs, the author made a reduction from the EDGE

COLORING of 3-regular graphs to prove the following result:

Theorem 3.19 (Silva, 2019). Let G be a chordal graph such that χ(G) = δ (G) + 1. It is

NP-complete to decide whether Fall(G) ̸= /0.

We say that a graph G is P4-sparse if every 5 vertices of V (G) induce at most one P4

and this concept was firstly introduced in (Jamison; Olariu, 1992). Furthermore, we say that a

graph G is a spider if its vertex set can be partitioned into disjoint sets S,K and R such that:

1. |S|= |K| g 2. S is an independent set and K is a clique;

2. Every vertex in R is adjacent to all the vertices in K and no vertex in S;

3. There exists a bijection f : S → K such that either:

NG(s)∩K =K−{ f (s)}, for all vertices s∈ S, in which case we the spider is called fat, or

NG(s)∩K = { f (s)}, for all vertices s ∈ S, in which case it is called thin.

It is proved in (Giakoumakis; Vanherpe, 1997) that a graph G is P4 sparse if and only

if the quotient graph of each neighborhood node of its modular decomposition tree is isomorphic

to a spider H.

Finally, for the class of P4-sparse graphs, which contains the class of cographs, (Silva,

2019) established the following:



41

Theorem 3.20 (Silva, 2019). Let G be a P4-sparse graph. If G is not a cograph and Fall(G) ̸= /0,

then Fall(G) = {χ(G)}. If G is a cograph, then Fall(G)¦ {χ(G)} and it is possible to decide in

polynomial time whether Fall(G) ̸= /0.

Proof. First, we prove that if G is a P4-sparse graph such that Fall(G) ̸= /0, then G is either a

cograph or a fat spider with empty head. Let G be the spider (C,S,R). If G is not a fat spider, we

know that |C| g 3 and that d(u) = 1 for every u ∈ S. This contradicts the fact that Fall(G) ̸= /0,

since χ(G) g ω(G) g 3, but δ (G)+ 1 = 2 and ψ f (G) f δ (G)+ 1. Also, if G is a fat spider,

then R must be empty since the colors in R cannot appear in C, i.e., the vertices of S could not

be b-vertices, as S is an independent set. Finally, note that for every fall coloring f of G, and

every u ∈ S with non-neighbor u′ in C, we must have f (u) = f (u′) as otherwise u would not be a

b-vertex. Therefore, every fall coloring is also an χ(G)-coloring, and clearly an χ(G)-coloring

is a fall coloring, i.e., we get that Fall(G) = {χ(G)}.

Now, suppose that G is a cograph. We prove that Fall(G) ¦ {χ(G)} by induction

on n = |V (G)|. If n = 1, then trivially we have that Fall(G) = {χ(G)}. Suppose, hence, that

Fall(G′) ¦ {χ(G′)} for every cograph G′ with k < n vertices. Recall that, as presented in

Chapter 2, for every cograph G there exist two cographs G1 and G2 such that G is either the

union or join of G1 and G2. Therefore, let G be a cograph with |V (G)|= n and let G1 and G2 be

the cographs such that G is either the union or join of G1 and G2. We prove now that:

Fall(G) =











{k+ l | k ∈ Fall(G1)' l ∈ Fall(G2)}, if G is the join of G1 and G2;

{Fall(G1)∩Fall(G2)}, if G is the union of G1 and G2.

In the former case, if f1 and f2 are fall colorings of G1 and G2 with k1 and k2 colors,

respectively, then a fall coloring of G with k1 +k2 colors can be obtained by using distinct colors

in f1 and f2. On the other hand, if f is a fall coloring of G, then the colors used in G1 and

G2 must be distinct, what implies that each vertex in Gi must be a b-vertex in f restricted to

V (Gi), for i = 1 and i = 2. Now, if G is the union of G1, G2 and f is a b-coloring of G with k

colors, then f restricted to V (Gi) is a b-coloring of Gi with k colors, for i = 1 and i = 2. Also

Fall(G1)∩Fall(G2)¦ Fall(G) clearly holds.

Now, when G is the join of G1 and G2, then the equation above gives us that

Fall(G) = {k+ l|k ∈ Fall(G1)' l ∈ Fall(G2)}, which by induction hypothesis is contained in

{χ(G1)+ χ(G2)}, which equals {χ(G)}. If G is the union of G1 and G2, then by induction

hypothesis Fall(G)¦ {χ(G1)}∩{χ(G2)} which is non-empty if and only if χ(G1) = χ(G2), in



42

which case we know that χ(G) also equals χ(G1). Observe that the proof gives a polynomial

algorithm to decide whether Fall(G) ̸= /0.

For 3-regular graphs, in (Lauri; Mitillos, 2020), the authors showed the following:

Theorem 3.21 (Lauri; Mitillos, 2020). Let G be a 3-regular graph. It is NP-complete to decide

whether 4 ∈ Fall(G).

Following the study of the complexity problem for regular graphs, still in (Lauri;

Mitillos, 2020), the authors established:

Theorem 3.22 (Lauri; Mitillos, 2020). Let G be a p-regular graph, with p ∈ {2k−2,2k−1}
for some positive integer k g 3. Then it is NP-complete to decide whether p ∈ Fall(G).

Furthermore, in (Barth et al., 2009), the authors proved that, given a graph G with

n vertices, there is no polynomial-time n1−ε -approximation algorithm for any real number

ε > 0 to compute ψ f (G), unless P = NP. Recall that a graph G such that Fall(G) ̸= /0 is fall

continuous if, being ℓ the least positive integer such that G admits a fall ℓ-coloring, it holds that

Fall(G) = {ℓ, . . . ,ψ f (G)}. The authors also proved the following result:

Theorem 3.23 (Barth et al., 2009). Let G be a graph such that Fall(G) ̸= /0. It is NP-complete to

decide whether G is fall continuous.

Again in (Lauri; Mitillos, 2020), the authors settled the following theorem for

bounded treewidth graphs:

Theorem 3.24 (Lauri; Mitillos, 2020). Let G be a graph of bounded treewidth. Then, computing

Fall(G) can be done in polynomial time.

In the same paper, the authors further showed the following property for kerneliza-

tion:

Theorem 3.25 (Lauri; Mitillos, 2020). Let G be a graph. Decide whether k ∈ Fall(G) parameter-

ized by treewidth does not admit a polynomial kernel unless NP¦ coNP/poly.

In addition, we have the following:

Theorem 3.26 (Lauri; Mitillos, 2020). Deciding whether 3 ∈ Fall(G), where G is planar can be

done in 2O(
√

|V (G)|) time and this is the best possible, unless ETH fails.



43

3.3 Further results

Previously, we grouped similar results for which one can find several related contri-

butions in the literature. In this section, we present results on fall colorings of graphs which did

not fit in the previous sections, but are important contributions to the state of the art regarding

this problem. Recall that, as defined in Chapter 2, the minimum positive integer such a graph G

admits a fall k-coloring is denoted by χ f (G). In (Balakrishnan; Kavaskar, 2010), the authors

answered positively the following question raised in (Dunbar et al., 2000): "Can the difference

between χ(G) and χ f (G) be arbitrarily large?". Later, in (Kaul; Mitillos, 2019), the authors also

answered the same question. They proved:

Theorem 3.27 (Balakrishnan; Kavaskar, 2010; Kaul; Mitillos, 2019). For any positive integers

3 f a f b there exists an infinite family of graphs {Gi}i∈Z+ such that χ(Gi) = a and χ f (Gi) = b.

Again, recall that ψ(G) is the maximum positive integer k such that a graph G admits

a complete k-coloring, as defined in Chapter 1. In addition, as defined in Chapter 2, b(G) is the

maximum positive integer k such that the graph G admits a b-coloring using k colors, Γ is the

maximum positive integer k such that the graph G admits a first-fit coloring using k colors and

∂Γ(G) is the maximum positive integer k such that the graph G admits a partial Grundy coloring

using k colors. Moreover, in (Balakrishnan; Kavaskar, 2011), the authors have provided another

answer to the following question, also raised in (Dunbar et al., 2000): "Does there exist a graph

G such that χ(G)< χ f (G)< ψ f (G)< b(G)< Γ(G)< ψ(G)?"

Theorem 3.28 (Balakrishnan; Kavaskar, 2011). There exists an infinite family of graphs G such

that χ(G)< χ f (G)< ψ f (G)< b(G)< ∂Γ(G)< ψ(G).

Further, in (Balakrishnan et al., 2012), the authors observe the following result

regarding the cardinality of the set of graphs with empty and non-empty fall spectrum:

Proposition 3.4 (Balakrishnan et al., 2012). The set of connected graphs G such that Fall(G) ̸= /0

and the set of connected graphs G′ with Fall(G′) = /0 are infinite.

For the next result, we need further definitions. A wheel of order n is a graph obtained

by adding to a cycle on n−1 vertices a central vertex that is adjacent to each vertex on the cycle;

it is denoted by Wn. A helm of order n is a graph obtained from a wheel by adding a leaf to each

vertex in the cycle. A Flower graph Fln is a graph obtained from a helm by adding, for each leaf,



44

an edge between the leaf and the central vertex. A Sunflower graph SFln is a graph obtained by

replacing each edge of the rim of a wheel graph Wn by a triangle such that two triangles share a

common vertex if and only if the corresponding edges in Wn are adjacent in Wn. In (Kalpana;

Vijayalakshmi, 2018), the authors proved the following properties for the complement of Flower

and Sunflower graphs.

Theorem 3.29 (Kalpana; Vijayalakshmi, 2018). Let Fln and SFln be the flower and sunflower

graphs, respectively. Let χ f (Fln) = ψ f (Fln) = n and χ f (SFln) = ψ f (SFln) = 2n.

A graph G is minimal k-fall-imperfect if ψ f (G) > χ(G) = k and every proper

subgraph of G is fall perfect. This concept was firstly introduced in (Silva, 2019). The following

holds:

Proposition 3.5 (Silva, 2019). Let G be a minimal k-fall imperfect graph. Then ψ f (G) = k+1

and ψ f (G−u) = k for all u ∈V (G).

In the same work, the author showed the following characterization for bipartite, fall

perfect graphs:

Theorem 3.30 (Silva, 2019). Let G be a bipartite graph. Then G is fall perfect if and only if G

has no C6k as an induced subgraph, for all k > 0.

In (Kaul; Mitillos, 2019), the authors demonstrated a number of results about the

existence of fall colorings, one of them being:

Theorem 3.31 (Kaul; Mitillos, 2019). Let G be a k-colorable graph with δ (G)> k−2
k−1 |V (G)|, for

2 f k f |V (G)|. Then every k-coloring of G is also a fall k-coloring of G.

Furthermore, in the same paper, we have the following result that shows that the

lower bound on the minimum degree cannot be improved:

Theorem 3.32 (Kaul; Mitillos, 2019). Let G be a k-colorable graph, k−2
k−1 |V (G)|-regular, with

2 f k f |V (G)|. Then every k-color of G is either a fall k-coloring or can be converted to a fall

(k−1)-coloring by merging two color classes. Moreover, there always exists G as described

such that k−1 ∈ Fall(G) and k /∈ Fall(G).

In (Jaffke et al., 2023), the authors prove the following result for fall coloring using

as parameter the module-width:



45

Theorem 3.33 (Jaffke et al., 2023). There is an algorithm that decides if a graph G has a fall

k-coloring in time n2O(w)
, where n denotes the number of vertices of the input graph, and w

denotes the module-width of a given rooted branch decomposition of the input graph.

Finally, in the same paper, the authors prove the following result:

Proposition 3.6 (Jaffke et al., 2023). Deciding whether a graph on n vertices has a fall k-coloring

parameterized by the module-width w of the input graph is W[1]-hard and cannot be solved in

time n2o(w)
, unless ETH fails.

Note that the last result gives a lower bound based on the Exponential Time Hipothe-

sis (ETH), and therefore it proves that the algorithm running in time n2O(w)
is optimal, unless

ETH fails.

3.4 Subfall Colorings

In this section, we present the results on subfall colorings presented in (Dunbar et al.,

2000). We emphasize that, apart from this work, there are no other works on subfall colorings

present in the literature. In the seminal paper, it is first proved the following:

Proposition 3.7 (Dunbar et al., 2000). The difference between ψ f (G) and ψ f s(G) can be

arbitrarily large.

Proof. Consider the graph G which consists of a complete bipartite graph Kn,n minus the

edges in a perfect matching, with an additional vertex adjacent to one vertex of Kn,n. Since

ψ f (G)f δ (G)+1, it holds that ψ f (G) = 2, while ψ f s(G) = n.

Finally, the authors showed:

Theorem 3.34 (Dunbar et al., 2000). For every tree T , ψ f s(T ) = 2.

While few results on the problem have been proven, the authors raised two questions

about the subfall achromatic number of graphs. The first one, with respect to the NP-completeness

of the problem of deciding whether a graph G admits a subfall k-coloring, is partially answered

in Theorem 4.1. The second question, asking whether ψ f s(G)f b(G) for every graph G, was

answered in the negative in Theorem 4.3.



46

4 OUR CONTRIBUTIONS

Recall that, given a graph G, a subfall k-coloring of G is a fall k-coloring of some

induced subgraph H ¦ G; and ψ f s(G) is the maximum integer k such that a graph G has a

subfall k-coloring. In this chapter, we present our results on subfall coloring and its optimization

parameter ψ f s. In Section 4.1, we show that deciding whether a graph G has a subfall k-coloring

is an NP-complete problem for every fixed k g 4, and provide a characterization for graphs that

are subfall 3-colorable. In Section 4.2, we provide an FPT algorithm to compute ψ f s when

parameterized by the treewidth of the input graph. We also show how to adapt this algorithm in

order to decide whether a graph has a fall k-coloring when parameterized by the treewidth; and

b-coloring using k colors when parameterized by the treewidth plus the number of colors. In

Section 4.3, we show some properties of the optimization parameter ψ f s, such as its continuity

and its relationship to similar parameters. In Section 4.4, we introduce the subfall achromatic

index of graphs and provide some results. All the results found in Sections 4.1 and 4.3 were

presented in VI Encontro de Teoria da Computação (ETC) in 2021 and the results found in

Section 4.2 were presented in VII Encontro de Teoria da Computação (ETC) in 2022.

4.1 Computational Complexity of subfall k-coloring

In this section, we present our complexity results. Note that every graph with non-

empty edge set has a subfall coloring with 2 colors. Moreover, every graph with a subfall

2-coloring has non-empty edge set, since its subgraph that admits a fall 2-coloring must have an

edge, otherwise the vertices would have no neighbors and, therefore, would not be b-vertices. So,

we study the complexity of subfall k-coloring for k g 3. By applying a result in (Lauri; Mitillos,

2019), we first obtain:

Theorem 4.1. Deciding whether a connected graph G has a subfall k-coloring is NP-complete

for every fixed k g 4.

Proof. To see that the problem is in NP, just observe that, given a coloring f : V (H) →
{1,2,3, . . . ,k} of a subgraph H ¦ G, one can verify in polynomial time whether f defines

a fall k-coloring of H. We split the proof into two cases: k = 4 and k g 5.

For k = 4, we make a reduction from fall 4-coloring of 3-regular graphs, which is

known to be NP-complete (Lauri; Mitillos, 2019), in which we use the same instance. Clearly,



47

if G has a fall 4-coloring, then G has a subfall 4-coloring. On the other hand, suppose H is an

induced subgraph of G that has a fall 4-coloring, f . Because f uses 4 colors and each vertex

of H is a b-vertex in f , it follows that dH(u) g 3 for every u ∈ V (H). But now, since G is

connected, if V (H) ̸= V (G), it means that some u ∈ V (H) has a neighbor in V (G−H). This

is a contradiction since G is 3-regular, and this would imply that dH(u)< 3. Therefore we get

V (H) = V (G) as we wanted to prove. Figure 19 shows an example of a 3-regular graph that

admits a fall 4-coloring. Note that deleting any vertex reduces the minimum degree of the graph,

and thus ψ f by Proposition 2.1.

Figure 19 – Example of a 3-regular graph G with a (sub)fall 4-coloring.

Source: prepared by the au-
thor

For k g 5, we construct the following graph G′: take a 3-regular graph G and a

complete graph C on k−4 vertices, and add all edges joining V (G) and V (C). We show that G′

has a subfall k-coloring if and only if G has a subfall 4-coloring. If G has a subfall 4-coloring,

we can obtain a subfall k-coloring of G′ just by coloring C with (k−4) new colors. Conversely,

let H ′ ¦ G′ be an induced subgraph that has a fall k-coloring. Let H ¦ G be equal to H ′

restricted to G, i.e. H = G[V (H ′)∩V (G)], and Hc ¦ H ′ be equal to H ′ restricted to C. Because

|V (Hc)| f k− 4 and no color in Hc can be used in H and vice-versa, we get that H must be

fall (k− k′)-colorable, where k′ = |{ f (v) | v ∈ V (C)∩V (H ′)}|. Note that k′ f k− 4 implies

k− k′ g 4, while H being a subgraph of a 3-regular graph implies that ∆(H) f 3, giving us

k− k′ f 4, and hence k− k′ = 4. Thus, we have that H must be fall 4-colorable and G has a

subfall 4-coloring. Figure 19 shows an example of a 3-regular graph that admits a fall 4-coloring;

note that deleting any vertex reduces the minimum degree of the graph.



48

Figure 20 – Example of construction of G′ for k = 5, using G as in Figure 19.

Source: prepared by the au-
thor

From Theorem 3.21 and Theorem 4.1, we obtain the following corollary:

Corollary 4.1. It is NP-complete to decide whether p1 = p2, where p1 ∈ {ψ f (G),ψ f s(G)} and

p2 ∈ {δ (G)+1,col(G)+1}.

Note that, for k = 3, we could not settle the complexity of the problem, which seems

challenging. Instead, we present the following characterization of subfall 3-colorable graphs,

that might help in its solution:

Theorem 4.2. A graph G has subfall 3-coloring if and only if it contains a cycle C3k as induced

subgraph, for some positive integer k.

Proof. Note that, if G contains an induced cycle C isomorphic to C3k, for some k ∈ N, then

a 3-coloring of the vertices of C, in consecutive order, with 1,2,3 is a fall 3-coloring of C.

Conversely, let f be a subfall 3-coloring of G, and let H ¦ G be the subgraph of G colored by

f . We will construct a cycle of length multiple of 3 from H by these steps: let v ∈V (H) be a

vertex with f (v) = 1. Because every vertex of H is a b-vertex, we get that v is adjacent to at

least one vertex u colored with 2. Now, we construct a path (v1, ..., vℓ), with v1 = v and v2 = u,

by taking next a neighbor of vℓ colored with the least possible color distinct from f (vℓ−1) and

f (vℓ−2). Mote that it exists because every vertex in H is a b-vertex with respect to f , and f

uses 3 colors. Since H is finite, eventually these steps will lead us to an already iterated vertex,

at which point we stop before adding a repeated vertex. Let P = (v1, ...,vq) be the constructed

path and let v j ∈V (P) be the neighbor of vq in P of color distinct from vq−1.

We first prove that f restricted to C = (v j, ...,vq), which we denote by f ′, is a fall

3-coloring of C. Note that, by the choices in the construction of P, we have that all vertices

are b-vertices in f ′, with the exception of possibly v j. Hence, we only need to prove that



49

f (vq) ̸= f (v j+1). To see this, denote the colors alternating in C starting from v j by a,b,c. We

know that the immediately subsequent vertices in the cyclic order of vertices of color b are of

color c. Therefore, since the successor of vq in the cyclic order is v j and f (v j) = a, we must have

c = f (vq) ̸= b = f (v j+1). It remains to argue that C is an induced cycle. In fact, we argue that if

C is any cycle such that f restricted to C is a fall 3-coloring of C, then either C has no chords,

or C contains a smaller cycle with the same property. Indeed, write C = (v1, . . . ,vq), suppose

f (v1) = 1, and let v1v j be a chord in C. One can verify that either f (v j) = 2 and f restricted to

(v1,v j,v j+1, . . . ,vq) is a fall 3-coloring, or f (v j) = 3 and f restricted to (v1,v2, . . . ,v j) is a fall

3-coloring.

Given the NP-completeness of deciding whether ψ f s(G)g k for general graphs G, it

is natural to investigate the complexity of the problem restricted to specific graph classes. We

investigate now two of the most studied graph classes: chordal graphs and cographs. In (Silva,

2019), the author proves that chordal graphs and cographs are fall perfect. Furthermore, chordal

graphs and cographs are both hereditary classes of perfect graphs. The aforementioned result

and the following one give us that computing ψ f s(G) can be done in polynomial time on chordal

graphs and cographs, since computing ω(G) in these classes can be done in polynomial time.

Theorem 4.3. Let G be a hereditary class of graphs which are perfect and fall perfect. Then

ψ f s(G) = ω(G), for every G ∈ G .

Proof. Let G ∈ G . We know that ψ f s(G)g ω(G) for every graph G since any proper coloring of

the maximum clique is a subfall coloring of G. In addition, because G is fall perfect, we get that

Fall(H)¦ {χ(H)} for every H ¦ G. In other words, ψ f s(G)f maxH¦G χ(H)f χ(G) = ω(G),

where the last equality holds because G is a perfect graph.

4.2 Parameterized complexity of subfall k-coloring

In this section, we present our parameterized complexity results. We give an explicit

dynamic-programming algorithm that, given a graph G and an integer k g 3, decides whether G

admits a subfall k-coloring. The algorithm runs in FPT time when parameterized by the treewidth

of G, for a fixed constant k g 3. Later, we show how to adapt our algorithm to an algorithm

that decides whether a graph G has a fall k-coloring in FPT time when parameterized by the

treewidth of G. We also show how to adapt our algorithm to an algorithm that decides whether a

graph G admits a b-coloring using k colors. For this problem, the algorithm runs in FPT time



50

when parameterized by the treewidth of G plus the number of colors. We mention that there

already exist some results on these problems in the literature. In (Telle; Proskurowski, 1997),

the authors give a general algorithm for solving locally checkable vertex partitioning problems,

category in which both fall coloring and subfall coloring problems fall in; the algorithm runs in

FPT time when parameterized by the treewidth of the graph. In (Jaffke et al., 2023), the authors

show an algorithm that decides whether a graph G has a b-coloring using k colors running in

FPT time when parameterized by clique-width, and in (Jaffke et al., 2022) the authors prove that

deciding whether a graph G admits a b-coloring with k colors with tw(G) as unique parameter is

W[t]-hard for every t g 1.

Before we construct our explicit FPT algorithms found in this section, we present

the following observation stating that the treewidth of a graph G is an upper bound for both fall

and subfall achromatic numbers of G. This observation is very important throughout the section,

since it allows us to use only the treewidth of the graph as a parameter for the algorithms for

(sub)fall k-coloring, instead of using as tw(G)+ k as a parameter.

Proposition 4.1. For every graph G, ψ f (G)f tw(G)+1 and ψ f s(G)f tw(G)+1.

Proof. Since it holds that ψ f (G) f δ (G)+ 1, by 2.1, and that δ (G) f tw(G), it follows that

ψ f (G) f tw(G)+ 1. Furthermore, we have that tw(H) f tw(G) for every subgraph H ¦ G.

Thus, it holds that col(G)f tw(G) and, therefore, ψ f s(G)f tw(G)+1, again by 2.1.

In order to be able to present our explicit FPT algorithms found in this section, we

provide some further definitions. Let (X ,T ) be a nice tree decomposition of a graph G. For a

node t of T , we denote by Gt the subgraph of G induced by the vertices
⋃

t ′∈V (Tt)Xt ′ , where Tt is

the subtree of T rooted at t. Also, given a k-coloring f of Xt , we say that a k-coloring f ′ of Gt

extends f to Gt if f ′(u) = f (u) for every u ∈ Xt .

We are now able to present our dynamic-programming algorithm. The general idea

for our table is that, for a node t ∈ V (T ), we compute whether there exists a subset S of Xt

such that there exists a k-coloring f and a subgraph H of Gt such that f can be extended to

a partial fall k-coloring of H, where by partial we mean that every vertex of H is a b-vertex,

with the exception of possibly some vertices of S. For this, we need to keep track of which

colors are being used and which colors are missing in the neighborhood of each vertex of the

bag Xt . Formally, given a node t ∈V (T ), where Xt = {v1,v2, . . . ,vq}, we define the table related

to t as follows: for each subset S = {v1, . . . ,vp} ¦ Xt , each proper k-coloring f of Xt , and each



51

M = {M0,M1,M2, . . . ,Mp}, with Mi ¦ [k] for every i, we say that ct(S, f ,M ) = 1 if and only if

there exist H ¦ Gt and a k-coloring f ′ that extends f to H that satisfy:

1. Every u ∈V (H)\Xt is a b-vertex in f ′;

2. For every vi ∈ S, we have f ′(NH [vi]) = [k]\Mi (i.e., Mi are the missing colors for vi);

3. f ′(V (H)) = [k]\M0; and

4. V (H)∩Xt = S.

Otherwise, ct(S, f M ) = 0. The correctness of such a procedure can be expressed in

the following lemma:

Lemma 4.1. Let r be the root of a nice tree decomposition of G, with M /0 = {M0} where M0 = /0.

Then G has a subfall k-coloring if and only if cr( /0, /0,M /0) = 1.

Proof. Since r is the root node of a nice tree decomposition, we know that Xr = /0, thus we have

S = /0. If cr( /0, /0,M /0) = 1, then there exist a subgraph H ¦ G and a k-coloring f such that every

vertex u ∈V (H) is a b-vertex in f and f (V (H)) = [k], i.e., f is a fall k-coloring of H. Thus, G

has a subfall k-coloring.

On the other hand, if G has a subfall k-coloring, then there exist a subgraph H ¦ G

such that H has a fall k-coloring f . Therefore, f extends the (empty) coloring of Xr to H and

trivially satisfies all the four conditions.

We now show how to compute ct( f ,S,M ) based on each type of node of a given

nice tree decomposition. For leaf nodes, we have:

Lemma 4.2. Let t be a leaf node (and hence Xt = {v1} for some v1 ∈V (G)). Also, let S ¦ Xt

and f : S → [k]. Then,

ct(S, f ,M ) = 1 if and only if v1 /∈ S,M = {M0} and M0 = [k],

or v1 ∈ S,M = {M0,M1} and M0 = M1 = [k]\{ f (v1)}.

Clearly, deciding ct(S, f ,M ) can be done in time O(1). Before showing how to

compute ct(S, f ,M) for join nodes, we need a new definition. Given a join node t, where

Xt = {v1, . . . ,vp}, with children t1, t2, and given M = {M0, . . . ,Mp}, M ′ = {M′
0, . . . ,M

′
p} and

M ′′ = {M′′
0 , . . . ,M

′′
p}, we say that M ′,M ′′ combine into M if M′

i ∩M′′
i = Mi, for every i. For

join nodes, we have:



52

Lemma 4.3. Let t be a join node with children t1, t2, and S = {v1, . . . ,vp} ¦ Xt . Also, let

f : S → [k] and M = {M0, . . . ,Mp}. Then,

ct(S, f ,M ) = 1 if and only if there exist M ′,M ′′ that combine into M

such that ct1(S, f ,M ′) = ct2(S, f ,M ′′) = 1.

Proof. Suppose ct(S, f ,M ) = 1 and then take the subgraph H ¦ Gt and a k-coloring f ′ of H

as given in the definition of the table. Let H1 = Gt1 [V (H)] and f1 be equal to f ′ restricted

to V (H1). Since for every u ∈ V (H1) \Xt1 we have NH [u] ¦ V (H1), Condition 1 gives us that

u is a b-vertex in f1. Furthermore, for every vi ∈ S, by letting M′
i = [k] \ f1(NH [vi]) we get

that f1(NH1 [vi]) = [k]\M′
i ; and letting M′

0 = [k]\ f1(V (H1)) gives us that f1(V (H1)) = [k]\M′
0.

Since Xt = Xt1 , we have V (H)∩Xt = V (H1)∩Xt1 and, thus, f1 also satisfies Conditions 2-4.

Therefore, by letting M ′ = {M′
0, . . . ,M

′
p}, we get that ct1(S, f ,M ′) = 1. We define M ′′, f2

and H2 analogously with relation to Xt2 and also get ct2(S, f ,M ′′) = 1. It remains to show that

M′
i ∩M′′

i = Mi, for every i ∈ {0, . . . , p}. For this, first consider d ∈ Mi. By Condition 2, we

get that d is not a color in f ′(NH [vi]), which implies that d is not a color in both f1(NH1 [vi])

and f2(NH2 [vi]); it follows that Mi ¦ M′
i ∩M′′

i by the definition of M′
i and M′′

i . Observe that the

reverse argument also applies, and hence M′
i ∩M′′

i ¦ Mi. A similar argument can be applied

when i = 0 by using Condition 3.

Now, suppose that there exist M ′,M ′′ that combine into M such that ct1(S, f ,M ′)=

ct2(S, f ,M ′′) = 1. By definition, there exist subgraphs H1 ¦ Gt1 and H2 ¦ Gt2 , as well as

k-colorings f1, f2 of V (H1) and V (H2), respectively, that extend f and satisfy Conditions 1-

4. Note that if a vertex vi ∈ V (H) is an element of V (H1) and V (H2), we have vi ∈ S and

f1(vi) = f2(vi) = f (vi), since both f1 and f2 extend the same coloring f . Thus, by letting

H = Gt [V (H1)∪V (H2)], we construct the following coloring f ′ : V (H)→ [k]:

f ′(u) =



























f1(u), if u ∈V (H1) and u /∈V (H2)

f2(u), if u ∈V (H2) and u /∈V (H1)

f (u), if u ∈V (H1)∩V (H2) = S.

We already argued that f ′ extends f . We need now to prove that f ′ satisfies Con-

ditions 1-4 with relation to the entry ct(S, f ,M ). Since Xt = Xt1 = Xt2 , if u ∈ V (H)\Xt , then

u∈V (H1)\Xt1 or u∈V (H2)\Xt2 . If u∈V (H1)\Xt1 , we know that f ′(u) = f1(u) and, since u is a

b-vertex in f1, it is also a b-vertex in f ′. An analogous argument applies if u ∈V (H2)\Xt2 , hence

f ′ satisfies Condition 1. By construction, if vi ∈ S, we have f ′(NH [vi]) = f1(NH1 [vi])∪ f2(NH2 [vi]).



53

Because f1 and f2 satisfy Condition 2 with relation to entries ct1(S, f ,M ′) and ct2(S, f ,M ′′),

we have

f ′(NH [vi]) = ([k]\M′
i)∪ ([k]\M′′

i ) = [k]\ (M′
i ∩M′′

i ).

Because M′
i ∩M′′

i = Mi, f ′ satisfies Condition 2. Again, a similar argument can be

applied to conclude Condition 3 as f ′(H) = f1(V (H1))∪ f2(V (H2)). Finally, since V (H1)∩Xt1 =

V (H2)∩Xt2 = S and Xt1 = Xt2 = Xt , Condition 4 follows immediately.

Note that the above computation can be done in time O(3k·tw(G)). Indeed, for each

vi ∈ S ¦ Xt and each color c ∈ [k]\Mi, we can either put c in M′
i \M′′

i , or we can put c in M′′
i \M′

i ,

or we can leave c out of both sets. Now we treat forget nodes.

Lemma 4.4. Let t be a forget node with child t ′, and let S = {v1, . . . ,vp} ¦ Xt . Also, denote

by vp+1 the forgotten vertex (i.e., the vertex in Xt ′ \Xt), and consider f : S → [k] and M =

{M0, . . . ,Mp}. Then,

ct(S, f ,M ) = 1 if and only if either ct ′(S, f ,M ) = 1, or

there exists c ∈ [k] such that

ct ′(S∪{vp+1}, fc,M
′) = 1.

where fc(vi) = f (vi) for every i ∈ [p], fc(vp+1) = c, and M ′ = {M0, . . . ,Mp, /0}.

Proof. Suppose ct(S, f ,M ) = 1. Then, by definition, there exists a k-coloring f ′ of H that

extends f and satisfies Conditions 1-4. We have two cases:

• If vp+1 /∈ V (H), then v j is not colored by f ′, since S = V (H)∩Xt , which gives us that

S =V (H)∩ (Xt ∪{vp+1) =V (H)∩Xt ′ , and thus ct ′(S, f ,M ) = 1.

• If vp+1 ∈ V (H), then let c = f ′(vp+1) and note that, since S = V (H)∩Xt , we have that

V (H)∩Xt ′ = S∪{vp+1}. Now, let fc be equal to f ′ restricted to S∪{vp+1} and M ′ =

{M0, . . . ,Mp, /0}. It thus remains to prove that Conditions 1-4 hold for S, f ′ on t ′ and

M ′. Because f ′ satisfies Condition 1 for t, and since V (H) \Xt ′ ¢ V (H) \Xt , we get

that f ′ also satisfies Condition 1 for t ′. Additionally, Condition 2 still holds for every

vi ∈ S∪{vp+1} since M′
i = Mi, i ∈ [p]. As for vp+1, since f ′ satisfies Condition 1 and

vp+1 ∈V (H)\Xt , we know that vp+1 is a b-vertex in f ′; hence f ′(NH ′ [vp+1]) = [k] = [k]\ /0

and Condition 2 also holds for vp+1. Finally, Condition 3 holds since H ¦ Gt = Gt ′ and,

thus, f (V (H)∩V (Gt ′)) = f (V (H)) = [k]\M0, and Condition 4 holds because V (H)∩Xt =

S and vp+1 ∈ H, we have that V (H)∩Xt ′ =V (H)∩ (Xt ∪{vp+1}) = S∪{vp+1}.



54

Now, suppose that either ct ′(S, f ,M ) = 1 or ct ′(S∪{vp+1}, fc,M
′) = 1. Again, we

split the proof in cases:

• If ct ′(S, f ,M ) = 1, then vp+1 is not colored by f ′, where f ′ extends f to H ¦ Gt ′ , which

implies that vp+1 /∈ V (H). In that case, H is a subset of Gt such that f ′ satisfies Condi-

tions 1-3 immediately. For Condition 4, note that because vp+1 /∈ V (H), we have that

V (H)∩Xt =V (H)∩Xt ′ = S.

• If ct ′(S∪{vp+1}, fc,M
′) = 1, then vp+1 is colored by fc and we have fc(vp+1) = c and

M′
p+1 = /0 by hypothesis. Then, let M = {M0, . . . ,Mp} and we will prove that f ′ satisfies

Conditions 1-3 for S, t and M . Because every vertex in V (H) \Xt ′ is a b-vertex in f ′

and, since M′
p+1 = /0, vp+1 is also a b-vertex in f ′ and, then, Condition 1 is satisfied for t.

Conditions 2 and 3 are trivially satisfied since they hold for f ′ because S ¢ S∪{vp+1} and

by the definition of M ′. Finally, Condition 4 holds since we know that

V (H)∩Xt = (V (H)∩Xt ′)\{vp+1}=
(

S∪{vp+1}
)

\{vp+1}= S.

This can be computed in time O(k), because we simply need to construct M ′ (which

takes constant time), and fc for each c (which takes O(k) time). Before we present the next table,

we need a new definition. Let t be an introduce node t, t ′ be its child such that Xt = Xt ′ ∪{v j}.

Given M = (M0, . . . ,Mp), S = {v1, . . . ,vp and f : S → [k], we say that M ′ = {M′
0, . . . ,M

′
p−1}

agrees with M if either v j /∈ S and M ′ = M , or v j = vp and M′
i = Mi for every i such that

vi /∈ N(v j) and M′
i ∈ {Mi,Mi \ { f (vp)}} for every i such that vi ∈ N(vp) or i = 0. Finally, for

introduce nodes, we have:

Lemma 4.5. Let t be an introduce node with Xt = {v1, . . . ,v j}, t ′ be its child, with Xt =Xt ′∪{v j},

and S = {v1, . . . ,vp} ¦ Xt . Also, let f : S → [k], M = {M0, . . . ,Mp}. Then,

ct(S, f ,M ) = 1 if and only if (1) Either v j /∈ S and ct ′(S, f ,M ) = 1; or

(2) v j ∈ S and M j = [k]\ f (NS[v j]),

there exists M ′ that agrees with M and

f such that ct ′(S
′,g,M ′) = 1, where

g equals f restricted to S′ = Xt ′ ∩S.

Proof. First, suppose ct(S, f ,M ) = 1 and note that, if v j /∈ S, we have S ¢ Xt ′ and, then,

ct ′(S, f ,M ) = 1 holds immediately. If v j ∈ S, then we get M j = [k]\ f (NS[v j]) by Condition 2,



55

and the fact that NGt
¦ Xt . Now, let H ′ = H −{v j} and S′ = Xt ′ ∩S = S \{v j}. By definition,

we have a k-coloring f ∗ of H that extends f and satisfies Conditions 1-3. Let f ′ be equal to f ∗

restricted to V (H ′) and let g be equal to f restricted to S′. Because f ∗ extends f , we know that

f ′ also extends g. Now let M′
0 = [k]\ f ′(V (H ′)) and, for each vi ∈ S′, let M′

i = [k]\ f ′(NH ′ [vi]);

also let M ′ = {M′
0, . . . ,M

′
p−1}. Since S′ = S\{v j} and by the construction of H ′, we have that

V (H ′)∩Xt ′ = S′, i.e., Condition 4 is satisfied for t ′. It follows directly from the definition of

M ′ and the fact that f ∗ satisfies Condition 1 that ct ′(S
′,g,M ′) = 1; so it remains to prove that

M ′ agrees with M and f . Observe first that if vi /∈ N(v j), then NH ′ [vi] = NH [vi], and since

Condition 2 holds for f ∗, we get that M′
i = Mi. Additionally, if vi ∈ N(v j), we know that the

only color that appears in f ∗(NH [vi]) but might not appear in f ′(NH ′ [vi]) is exactly the color of

v j, i.e., M′
i ∈ {Mi,Mi \{ f (v j)}}. A similar argument holds when i = 0, and hence we get that

M ′ agrees with f and M , as we wanted to prove.

For the converse, again, we can suppose that v j ∈ S, since otherwise we have

ct ′(S, f ,M ) = 1 and, hence, ct(S, f ,M ) = 1. As in the hypothesis, let M j = [k] \ f (NS[v j])

and M ′ be such that M ′ agrees with M and ct ′(S
′,g,M ′) = 1, where S′ = S ∩ Xt ′ and g

equals f restricted to S′. From ct ′(S
′,g,M ′) = 1, let H ′ ¦ Gt ′ together with f ∗ a k-coloring

of V (H ′) that extends g and satisfies Conditions 1-3. We prove that f ′ obtained from f ∗

by coloring v j with f (v j) satisfies Conditions 1-4 with respect to t and M ; it thus follows

that ct(S, f ,M ) = 1. First note that Condition 1 clearly holds since V (H ′) \Xt ′ = V (H) \Xt

and f ′ is equal to f ∗ when restricted to V (H ′) \Xt ′ . Now let i ∈ {0, . . . , p}. If i = j, then

NH [v j] = NS[v j] and Condition 2 follows since M j = [k]\ f (NS[v j]) by hypothesis. If i /∈ {0, j},

then Condition 2 on f ∗ tells us that f ∗(NH ′ [vi]) = [k]\M′
i . If vi /∈ N(v j), then NH [vi] = NH ′ [vi]

and, since M ′ agrees with M and f , we have M′
i = Mi and Condition 2 also holds for f ′

on H and M′
i . And if vi ∈ N(v j), then f ′(NH [vi]) = f ∗(NH ′ [vi])∪{ f (v j)}. Since f ∗ satisfies

Condition 2, we get that f ′(NH [vi]) = [k] \ (M′
i ∪{ f (v j)}) = [k] \Mi, as we wanted. Finally,

if i = 0, then Condition 3 on f ∗ and the fact that M ′ agrees with M and f give us that

f ′(V (H)) = f ∗(V (H ′))∪{ f (v j)}= ([k]\M′
0)∪{ f (v j)}= [k]\ (M′

0 ∪{ f (v j)}) = [k]\M0.

By the above lemma, in order to compute an entry ct(S, f ,M ), we need to investigate

all the possibles M ′ that agree with M . Since there are 2 choices for M′
i for every i, this gives

us a total of O∗(2tw) possible choices for M ′.

The lemmas above define an algorithm running in FPT time when parameterized by

the treewidth of G, which is summarized by the following theorem:



56

Theorem 4.4. Deciding whether a graph G has a subfall k-coloring can be done in FPT time

when parameterized by tw(G), with complexity O∗((6tw(G) ·2tw(G))tw(G)).

Proof. By (Bodlaender, 1993), we know that construct a tree decomposition of width tw can be

done in FPT time when parameterized by the treewidth. Furthermore, given a tree decomposition

of width w, one can compute a nice tree decomposition of width at most w in FPT time as well

(see (Cygan et al., 2015)).

Now, given a graph G, we first compute a tree decomposition of width tw(G) and

then we construct a nice tree decomposition (T,X ) of width tw(G). Then, for each node

starting from the leaves, compute the table’s values. By the previous lemmas, the time to

compute the table ct(S, f ,M ) at each node is dominated by the time to compute the table

ct(S, f ,M ) for when t is a join node, which is O∗(3k·tw(G)), as said. The algorithm returns

the value cr( /0, /0,M ), where r is the root of the nice tree decomposition. Correctness follows

from Lemmas 4.1 to 4.5, where G has subfall k-coloring if cr( /0, /0,M ) = 1 and G is not subfall

k-colorable otherwise. By letting x be the number of subsets S, y be the number of k colorings of

a subset S and z be the number of sets M , we have that the complexity of the algorithm is equal to

O∗(x ·y · z ·3k·tw(G)) = O∗(2tw(G) ·ktw(G) ·2k·tw(G) ·3k·tw(G)) . Since k f col(G)+1 f tw(G)+1,

we have that the complexity of the algorithm is O∗((6tw(G) ·2tw(G))tw(G)).

Because the complexity of computing the tables for the join nodes is worse than the

complexity of computing a nice tree decomposition of a graph G, the latter complexity is already

included in O∗((6tw(G) ·2tw(G))tw(G)).

Due to the similarity between subfall coloring with fall coloring and b-coloring,

it is natural to think of how to adapt the table to a node t of the decomposition tree for each

of these colorings. Indeed, such an modification can be done, which gives an FPT algorithm

with parameter tw(G) for the fall coloring and an FPT algorithm with parameter tw(G)+ k for

b-coloring. We explain how to make such changes in the two following subsections.

4.2.1 Fall Coloring

In this subsection, we show how to convert the FPT algorithm for deciding whether

a graph G has a subfall k-coloring shown above to an algorithm that decides if G has a fall

k-coloring in FPT time. Firstly, for a node t ∈V (T ), where Xt = {v1,v2, . . . ,vp}, we define the

table related to t as follows: for each proper k-coloring f of Xt , and for each M = {M0, . . . ,Mp},



57

with Mi ¦ [k] for every i, we say that ct( f ,M ) = 1 if and only if there exists a coloring f ′ that

extends f to Gt and satisfies:

1. Every u ∈V (Gt)\Xt is a b-vertex in f ′;

2. For every vi ∈ Xt , we have f ′(NGt
[vi]) = [k]\Mi; and

3. f ′(V (Gt)) = [k]\M0.

Below, we present the analogous of Lemmas 4.1-4.5. We refrain from presenting the

formal proofs as they are quite similar to the previous ones.

Lemma 4.6. Let r be the root of a nice tree decomposition of G, with M /0 = {M0} where M0 = /0.

Then G has a fall k-coloring if and only if cr( /0,M /0) = 1.

Furthermore, the four following lemmas show the adaptation of the tables related to

each type of node:

Lemma 4.7. Let t be a leaf node (and hence Xt = {v1} for some v1 ∈V (G)). Also, let f : {v1}→
[k], and M = {M0,M1}. Then,

ct( f ,M ) = 1 if and only if M0 = [k] and M1 = [k]\{ f (v1)}.

Lemma 4.8. Let t be a join node with children t1, t2, and Xt = {v1, . . . ,vp}. Also, let f : Xt → [k]

and M = {M0, . . . ,Mp}. Then,

ct( f ,M ) = 1 if and only if there exist M ′,M ′′ that combine into M

such that ct1( f ,M ′) = ct2( f ,M ′′) = 1.

Lemma 4.9. Let t be a forget node with child t ′, and let Xt = {v1, . . . ,vp}. Also, denote by vp+1

the forgotten vertex (i.e., the vertex in Xt ′ \Xt), and consider f : Xt → [k] and M = {M0, . . . ,Mp}.

Then,

ct( f ,M ) = 1 if and only if there exists c ∈ [k] such that ct ′( fc,M
′) = 1, where

M′
p+1 = /0, fc(vp+1) = c, and M′

i = Mi for all

i ∈ {1, . . . , p}, and fc(vi) = f (vi), for all i ∈ [p].

Before we present the table for an introduce node, we need to modify a previous

definition. Let t be an introduce node such that Xt = {v1, . . . ,vp} and t ′ be its child such

that Xt = Xt ′ ∪ {vp}. Given M = (M0, . . . ,Mp) and f : Xt → [k], we say that We say that

M ′ = {M′
0, . . . ,M

′
p−1} agrees with M and f if M′

i = Mi for every vi /∈ N(vp), and M′
i ∈ {Mi,Mi\

{ f (vp)}} for every i such that vi ∈ N(vp) or i = 0.



58

Lemma 4.10. Let t be an introduce node with Xt = {v1, . . . ,vp}, t ′ be its child, with Xt =

Xt ′ ∪{vp}. Also, let f : Xt → [k] and M = {M0, . . . ,Mp}. Then,

ct( f ,M ) = 1 if and only if there exists M ′ that agrees with M and

ct ′(g,M
′) = 1, where g equals f restricted to Xt ′ .

Theorem 4.5. Deciding whether a graph G has a fall k-coloring can be done in FPT time when

parameterized by tw(G), with complexity O∗((6tw(G) · twtw(G)).

4.2.2 b-Coloring

Now, we present an algorithm that decides whether a graph G has a b-coloring using

exactly k colors. This algorithm runs in FPT time when parameterized by tw(G)+ k. Note that

the parameter is not the same as it is for the previous algorithms, since we use only tw(G) for the

previous ones. Furthermore, since it is proved in (Jaffke et al., 2023) that the problem of deciding

whether a graph G admits a b-coloring using exactly k colors is W[1]-hard when parameterized

by tw(G). For a node t ∈ V (T ), where Xt = {v1,v2, . . . ,vp}, we define the table related to t

as follows: for each proper k-coloring f of Xt , and for each M = {M0,M1,M2, . . . ,Mp}, with

Mi ¦ [k] for every i, we say that ct( f ,M ) = 1 if and only if there exists k-coloring f ′ of Gt that

extends f and satisfies:

1. For every c ∈ [k]\M0, there exists u ∈V (Gt)\Xt such that u is a b-vertex of color c in f ′;

and

2. For every vi ∈ Xt , we have f ′(NGt
[vi]) = [k]\Mi.

Note that now, even with the same definition for the sets in M , the set M0 has a

slightly different meaning, since instead of tracking the colors that did not appear in the graph,

it tracks the colors that do not have a b-vertex. Again, we present the appropriate lemmas and

refrain from proving them, as the arguments are very similar to the ones in Section 4.2.

Lemma 4.11. Let r be the root of a nice tree decomposition of G, with M /0 = {M0} where

M0 = /0. Then G has a b-coloring using k colors if and only if cr( /0,M /0) = 1.

Lemma 4.12. Let t be a leaf node (and hence Xt = {v1} for some v1 ∈ V (G)). Also, let

f : {v1}→ [k], and M = {M0,M1}. Then,

ct( f ,M ) = 1 if and only if M0 = [k] and M1 = [k]\{ f (v1)}.



59

Lemma 4.13. Let t be a join node with children t1, t2, and Xt = {v1, . . . ,vp}. Also, let f : Xt → [k]

and M = {M0, . . . ,Mp}. Then,

ct( f ,M ) = 1 if and only if there exist M ′,M ′′ that combine into M

such that ct1( f ,M ′) = ct2( f ,M ′′) = 1.

The first item below covers the possibility of vp+1 not being a b-vertex, while the

second item covers the case when vp+1 is a b-vertex of its color.

Lemma 4.14. Let t be a forget node with Xt = {v1, . . . ,vp}, and t ′ be its child, with Xt =

Xt ′ \{vp+1}. Also, let f : Xt → [k] and M = {M0, . . . ,Mp}. Then, ct( f ,M ) = 1 if and only if

one of the following holds:

• There exists c ∈ [k] and there exists M′
p+1 ¦ [k] such that M′

p+1 ̸= /0 and ct ′( fc,M
′) = 1,

where M ′ = {M′
0, . . . ,M

′
p+1}. M′

i = Mi for each i ∈ {0, . . . , p}, fc(u) = f (u) if u ∈ Xt and

fc(vp) = c;

• There exists c ∈ [k] \M0 such that ct ′( fc,M
′) = 1, where M′

i = Mi for every i ∈ [p],

M′
0 = M0 \{c}, M′

p+1 = /0, M ′ = {M′
0, . . . ,M

′
p+1}, and fc(vi) = f (vi), for all i ∈ [p].

For the following lemma, we use the same definition as the one for Lemma 4.10.

Lemma 4.15. Let t be an introduce node with Xt = {v1, . . . ,vp}, t ′ be its child, with Xt =

Xt ′ ∪{vp}. Also, let f : Xt → [k], M = {M0, . . . ,Mp}. Then,

ct( f ,M ) = 1 if and only if there exists M ′ = {M′
0, . . . ,M

′
p−1} that agrees with M and

is such that ct ′( f ,M ′) = 1, where M′
0 = M0 if vp is not

a b-vertex of its color and M′
0 = M0 \ f (vp) otherwise.

Theorem 4.6. Deciding whether a graph G has a b-coloring using k colors can be done in FPT

time when parameterized by tw(G)+ k, with complexity O∗((6k · ktw(G)).

4.3 Continuity, relation to other parameters and other properties

In this section, we show some properties of subfall coloring. Among them, one of

the most important differences between fall coloring and subfall coloring: the continuity of the

latter. In fact, there are graphs that do not even admit a fall coloring, which does not happen for

subfall colorings. Moreover, there are graphs, for positive integers k, m and n, with k < m < n,

that admit fall k-coloring and fall n-coloring, but do not admit fall m-coloring, which shows



60

the discontinuity of the fall spectrum of graphs. See Figure 21 for a graph obtained from the

graph shown in Figure 3 by adding a new vertex adjacent to all other vertices. This modification

changes the fall spectrum of the graph in a way that if the graph shown in Figure 3 admits a fall

k-coloring, G admits a fall (k+ 1)-coloring, because the new vertex is adjacent to each other

vertex and thus will always be a b-vertex.

Figure 21 – Graph G such that {3,5} ¦ Fall(G), but 4 /∈ Fall(G).

Source: prepared by the author

Proposition 4.2. Let G be a graph. Then G has a subfall k-coloring, for every k ∈ [ψ f s(G)].

Proof. Since any vertex with color 1 define a subfall 1-coloring, we have 1 ∈ [ψ f s(G)]. So,

letting k = ψ f s(G), consider an induced subgraph H ¦ G with a fall k-coloring f of H. Observe

that, to obtain a subfall (k−1)-coloring of G, we can just take the induced subgraph H ′ ¦ H

whose set of vertices equals V (H)− f−1(k) and the coloring f ′ : V (H ′)→ {1, . . . ,k−1} such

that f ′ equals f restricted to V (H ′). Indeed, observe that f ′ is a fall coloring of H ′ ¦ G. We can

repeat the steps inductively to obtain a subfall j-coloring, for every j ∈ [k−1].

A natural concept of graph theory is to investigate possible relations between graph

parameters. In (Dunbar et al., 2000), the authors established that ψ f (G)f b(G), that ψ f (G)f
Γ(G) and that ψ f (G)f ψ f s(G). Moreover, in (Zaker, 2020), the author proved that b(G) and

Γ(G) are not related. Below, we analyze the relation between each of the aforementioned

parameters and ψ f s(G), as well as between χ(G) and ψ f s(G).

Proposition 4.3. The following statements are true:

a. There exists G1 such that ψ f s(G1) < χ(G1). Additionally, for every positive integer k,

there exists G2 such that ψ f s(G2)−χ(G2) = k;

b. For each positive integer k, there exist graphs G1 and G2 such that: b(G1)−ψ f s(G1) =

ψ f s(G2)−b(G2) = k;

c. For every graph G, we have ψ f s(G)f Γ(G).



61

Proof. a. Let G1 be the cycle on five vertices. We know that χ(G1) = 3, while ψ f s(G1) = 2

by Proposition 3.1 and Theorem 4.2, giving us χ(G1)> ψ f s(G1). For the other inequality, let

G2 be obtained from the complete bipartite graph Kk+2,k+2 by removing a perfect matching.

Then, we have χ(G2) = 2. Also, by giving colors 1 through k+2 to the vertices within the same

part, making sure to give the same color to the endpoints of the removed perfect matching, we

get a fall coloring of G2 with k+2 colors, i.e., ψ f s(G2)g k+2. But since ∆(G2) = k+1 and

ψ f s(G)f ∆(G)+1 for every G, we also get ψ f s(G2)f k+2, thus giving ψ f s(G2)−χ(G2) = k.

Figure 22 – Subfall 5-coloring of the graph G2 constructed above, with k = 3.

Source: prepared by the author

b. First, let G′
1 be obtained from the path (v1,v2, . . . ,vk,vk+1,vk+2) by adding k

pendant vertices to the vertices v1 and vk+2 and k− 1 pendant vertices to each vertex vi with

i ∈ {2,3, . . . ,k+ 1} (in total we add k · (k+ 1) new vertices). By (Dunbar et al., 2000), we

know that every tree T is such that ψ f s(T ) = 2, giving us ψ f s(G
′
1) = 2. We can get a b-coloring

f : V (G)→ [k+2] just by coloring the vertices vi with the color i, i ∈ [k+2], then coloring the

pendant vertices of each vi with the colors [k+2]\ f (N(vi)), with every two pendant vertices of

vi colored with distinct colors. Again, since ∆(G′
1) = k+1 and b(G)f ∆(G)+1 for every G,

we get that b(G1) = k+2, and hence b(G′
1)−ψ f s(G

′
1) = k.

Figure 23 – b-coloring using 5 colors of the graph G′
1 constructed above, with k = 3.

Source: prepared by the author

Now, let G′
2 be the complete bipartite graph Kk+3,k+3 minus a matching of size k+2.

Since G′
2 is bipartite, any proper 2-coloring of G2 is also a b-coloring. In order to show that



62

b(G′
2) = 2, we will show that no proper coloring f of G′

2 using more than two colors can be a

b-coloring. Let u,v ∈V (G′
2) be the vertices with k+3 neighbors and w ∈V (G′

2) a neighbor of v,

w ̸= u. Since f must be proper, we have that f (x) ̸= f (u) for every x ∈ N(u). Since N(w)¦ N(u),

if f (w) ̸= f (u), w cannot be a b-vertex, since it would not be adjacent to any vertex of color

f (u). For the neighbors of u it is analogous. Then, G′
2 cannot have more than one b-vertex when

f uses more than 2 colors; it follows that b(G′
2) = 2. On the other hand, the graph G2 from the

previous item is a subgraph of G′
2, thus giving ψ f s(G

′
2) = k+2.

Figure 24 – Subfall 5-coloring of the graph G′
2 constructed above, with k = 3, where the

subgraph is induced by the colored vertices.

Source: prepared by the author

c. Let G be any graph and H a subgraph of G such that ψ f (H) = ψ f s(G). Note

that every b-vertex is also a Grundy vertex, immediately implying ψ f (H) f Γ(H). But since

any Grundy k-coloring of H can be extended to a Grundy coloring of G with at least k colors

(it suffices to greedily color the uncolored vertices), we get that Γ(H) f Γ(G), giving us the

inequality ψ f s(G) = ψ f (H)f Γ(G), as wanted.

4.4 Subfall achromatic index

In this section, we introduce the edge version of subfall k-coloring and establish some

bounds and results for it for general graphs and some subclasses of graphs. Firstly, we denote

the fall achromatic index and subfall achromatic index of a graph G by ψ ′
f (G) = ψ f (L(G)) and

ψ ′
f s(G) = ψ f s(L(G)), respectively, where L(G) is the line graph of G. It is well known that every

planar graph has minimum degree at most 5 and every outerplanar graph has minimum degree at

most 2 (see (West, 2001)). These two observations combined imply that every planar graph G is

such that col(G)f 5 and every outerplanar graph G is such that col(G)f 2.

Proposition 2.1, which states that ψ f (G)f δ (G)+1, immediately gives us that the

subfall achromatic number of G cannot be higher than its coloring number plus one, as stated in



63

the following proposition.

Proposition 4.4. For every graph G, we have that ψ f s(G)f col(G)+1.

Proof. For any subgraph H ¦ G, we have that ψ f (H)f δ (H)+1. By definition, col(G) equals

the maximum δ (H) among all subgraphs H ¦ G, thus ψ f s(G)f col(G)+1.

Therefore we get the following as a corollary of Proposition 4.4:

Corollary 4.2. For every planar graph G, ψ f s(G) f 6. Furthermore, if G is also outerplanar,

then ψ f s(G)f 3.

Note that δ (L(G))f δ (G)+∆(G)−2 holds, since any edge incident to a vertex of

degree δ (G) can have at most ∆(G)−1 adjacent edges that are incident at its other endpoint.

With this fact, together with Proposition 2.1, we obtain the following inequality for the fall

achromatic index of G:

Proposition 4.5. For every graph G, ψ ′
f (G)f δ (G)+∆(G)−1.

Which implies the following proposition:

Proposition 4.6. For every graph G, we have:

∆(G)f ψ ′
f s(G)f max

H¦G
(δ (H)+∆(H)−1)f ∆(G)+ col(G)−1.

Proof. Note that L(G) always has a clique of size ∆(G). Indeed, let v ∈V (G) be a vertex such

that dG(v) = ∆(G). Since every two distinct edges e1,e2 such that e1 and e2 share an endpoint

are adjacent in L(G) and v is an endpoint of exactly ∆(G) edges, all the edges incident to v are

pairwise adjacent, which forms a clique of size ∆(G) in L(G). Thus, ∆(G)f ψ ′
f s(G).

For the other inequality, by definition, we have that ψ f s(G) = max
H¦G

ψ f (H). Since

ψ ′
f (H)f δ (H)+∆(H)−1 holds for every graph H. Then, we have that ψ ′

f s(G) = max
H¦G

ψ ′
f (H)f

max
H¦G

(δ (H)+∆(H)−1). Finally, since max
H¦G

∆(H) = ∆(G) and max
H¦G

δ (H) = col(G), we have that

ψ ′
f s(G)f ∆(G)+ col(G)−1, as we wanted to prove.

Again, since col(G)f 5 if G is planar, and col(G)f 2 if G is outerplanar, combined

with the above proposition, we obtain a Vizing-like theorem for the subfall achromatic index of

planar and outerplanar graphs, as stated below.

Corollary 4.3. For every planar graph G, ∆(G)f ψ ′
f s(G)f ∆(G)+4. Furthermore, if G is also

outerplanar, then ∆(G)f ψ ′
f s(G)f ∆(G)+1.



64

5 CONCLUDING REMARKS

Subfall colorings were introduced almost 25 years ago, in (Dunbar et al., 2000),

being a variation of fall colorings. However, there was no other work on subfall colorings in the

literature, while there are some papers on fall colorings. In this sense, in Chapter 3 we present a

literature review of the work done on fall colorings, as it is the coloring most related to subfall

coloring. In Chapter 4, we present our contributions to the state of art in the study of subfall

colorings. Results found in Section 4.1 and Section 4.3 were presented in (Andrade; Silva, 2021)

at VI Encontro de Teoria da Computação (ETC) in 2021. Results found in Section 4.2 were

presented in (Andrade; Silva, 2022) at VII Encontro de Teoria da Computação (ETC) in 2022.

In Section 4.1, we answer the sixth questions raised in (Dunbar et al., 2000), settling

the NP-completeness of deciding whether a graph G has a subfall coloring. In Section 4.2, we

give an explicit algorithm for deciding whether a graph G has a subfall k-coloring that runs in

FPT with tw(G) as parameter. We also show explicitly how to adapt such algorithm to decide

whether a graph G has a fall k-coloring with parameter tw(G) and how to adapt the algorithm

to decide whether a graph G has a b-coloring using k colors with parameter k + tw(G). In

Section 4.3, we answer the seventh question raised in (Dunbar et al., 2000) in the negative,

proving that the parameters ψ f s(G) and b(G) are incomparable. We also give relations between

ψ f s and other related parameters, as well as proving basic properties of the parameter ψ f s(G).

Finally, in Section 4.4, we define the subfall chromatic index and prove upper and lower bounds

for general graphs, planar and outerplanar graphs. In the table below, we summarize the state

of the art of the results found on the complexity of computing the fall achromatic number in

some graph classes, while comparing it to the results on the complexity of computing the subfall

achromatic number established in this dissertation.

A natural recommendation for future research is to study the behavior of both subfall

chromatic number and the existence of subfall k-colorings with respect to graph products,

specially Cartesian, Categorical and Lexicographic products, thus making a comparison with

the results obtained until then for fall coloring in these same graph products, listed in Chapter 3.

Moreover, as Table 1 shows, the complexity of deciding the subfall achromatic number for

bipartite graphs, co-bipartite graphs and planar graphs would be a natural future research.

Another natural recommendation is to establish the complexity of deciding whether a graph G

admits a subfall k-coloring when parameterized by other parameters than the treewidth of the

input graph.



65

Table 1 – Comparison on the complexity
results of computing the fall

and subfall achromatic numbers

Class ψ f ψ f s

General graphs NP-complete (Dunbar et al., 2000) NP-complete when k g 4 by Theorem 4.1
even if k = 3

Bipartite NP-complete (Laskar; Lyle, 2009) ?
Chordal NP-complete (Silva, 2019) P by Theorem 4.3

Co-bipartite P (Shaebani, 2009) ?
Cograph P (Silva, 2019) P by Theorem 4.3
k-regular NP-complete (Lauri; Mitillos, 2020) NP-complete when k g 4 by Theorem 4.1

? when k = 3
Planar NP-complete (Lauri; Mitillos, 2020) ?

General graphs FPT param. by tw (Telle; Proskurowski, 1997) FPT param. by tw by Theorem 4.4
W[1]-hard param. by mw (Jaffke et al., 2023) ? param. by mw

Source: prepared by the author.

Note that, in Proposition 4.3, we show the existence of a graph G such that χ(G)>

ψ f s(G) and that the subfall-achromatic number can be arbitrarily larger than the chromatic

number, even if the graph is not fall colorable. This naturally leads to another open question:

given integer k, does there exist any graph G such that χ(G)−ψ f s(G) = k? In other words, does

there there exist of a graph G such that the chromatic number is arbitrarily larger than the subfall

chromatic number? By Theorem 4.2, such a graph must be C3n-free for every n. This seems to

be very challenging since C3-free graphs with arbitrarily large chromatic numbers were not know

until 1954, when the first construction was given by Tutte, under pseudonym (Descartes, 1954),

and constructions forcing high girth appeared only around 10 years after Paul Erdős presented

his groundbreaking probabilistic proof in (Erdős, 1959). Furthermore, the iterated Mycielskian

of a C3-free graph, which is a well-known construction of graphs with large chromatic number

preserving the property of being a C3-free graph, is not C3n-free for every n. In this sense, even

studying the behavior of subfall colorings in iterated Mycielskian is interesting, since they are

not fall colorable by Theorem 3.3.

Moreover, recall that deciding whether a graph has a subfall 2-coloring can be done

in linear time, since it is enough that the graph has at least one edge. Note that Theorem 4.1

shows that deciding whether a graph has a subfall k-coloring is NP-complete for each k g 4.

We could not settle the complexity of deciding whether a graph G has a subfall 3-coloring,

but we characterize all such graphs as the graphs that have a C3n as induced subgraph for any

integer n, in Theorem 4.2. In order to decide the existence of subfall 3-colorings for graphs, this

characterization shows that it is enough to search for induced cycles of the form C3n in the graph.



66

We mention two similar works in the literature, (Chudnovsky et al., 2005; Chudnovsky et al.,

2020), where the authors show algorithms that run in polynomial time for detecting induced

cycles of even and odd length, respectively. Finally, another natural direction is to investigate the

complexity of deciding if ψ ′
f s(G) = ∆(G) when G is a planar or outerplanar graph.



67

BIBLIOGRAPHY

ANDRADE, D.; SILVA, A. On the Complexity of Subfall Coloring of Graphs. In: Anais do VI
Encontro de Teoria da Computação. Porto Alegre, RS, Brasil: SBC, 2021. p. 70–73. ISSN
2595-6116.

ANDRADE, D.; SILVA, A. (Sub)Fall Coloring and B-Coloring Parameterized by Treewidth. In:
Anais do VII Encontro de Teoria da Computação. Porto Alegre, RS, Brasil: SBC, 2022. p.
69–72. ISSN 2595-6116.

APPEL, K.; HAKEN, W. Every planar map is four colorable. Part I: Discharging. Illinois
Journal of Mathematics, Duke University Press, [S.l.], v. 21, n. 3, p. 429 – 490, 1977.

APPEL, K.; HAKEN, W. Every planar map is four colorable. [S.l.]: American Mathematical
Society, 1989. v. 98.

BALAKRISHNAN, R.; KAVASKAR, T. Fall coloring of graphs I. Discussiones Mathematicae
Graph Theory, [S.l.], v. 30, n. 3, p. 385–391, 2010. ISSN 2083-5892.

BALAKRISHNAN, R.; KAVASKAR, T. Color Chain of a Graph. Graphs and Combinatorics,
Springer, [S.l.], v. 27, p. 487–493, 2011.

BALAKRISHNAN, R.; KAVASKAR, T.; SO, W. The energy of the Mycielskian of a regular
graph. The Australasian Journal of Combinatorics, Citeseer, [S.l.], v. 52, p. 163–172, 2012.

BARTH, D.; COHEN, J.; FAIK, T. Non approximability and non-continuity of the fall
coloring graph problem. [S.l.]: [S. n.], 2009.

BODLAENDER, H. L. Dynamic programming on graphs with bounded treewidth. In: . Berlin,
Heidelberg: Springer Berlin Heidelberg, 1988. p. 105–118. ISBN 978-3-540-39291-0.

BODLAENDER, H. L. A linear time algorithm for finding tree-decompositions of small
treewidth. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing. New York, NY, USA: Association for Computing Machinery, 1993. (STOC ’93), p.
226–234. ISBN 0897915917.

BROWN, J. R. Chromatic Scheduling and the Chromatic Number Problem. Management
Science, INFORMS, [S.l.], v. 19, n. 4, p. 456–463, 1972. ISSN 00251909, 15265501.

CAMPOS, V. A.; GOMES, G. C.; IBIAPINA, A.; LOPES, R.; SAU, I.; SILVA, A. Coloring
Problems on Bipartite Graphs of Small Diameter. The Electronic Journal of Combinatorics,
The Electronic Journal of Combinatorics, [S.l.], v. 28, n. 2, p. P2–14, 2021.

CHUDNOVSKY, M.; KAWARABAYASHI, K.-i.; SEYMOUR, P. Detecting even holes. Journal
of Graph Theory, Wiley Online Library, [S.l.], v. 48, n. 2, p. 85–111, 2005.

CHUDNOVSKY, M.; SCOTT, A.; SEYMOUR, P.; SPIRKL, S. Detecting an odd hole. Journal
of the ACM (JACM), Association for Computing Machinery, [S.l.], v. 67, n. 1, p. 1–12, 2020.
ISSN 0004-5411.

COCKAYNE, E.; HEDETNIEMI, S. Disjoint independent dominating sets in graphs. Discrete
Mathematics, Elsevier, [S.l.], v. 15, n. 3, p. 213–222, 1976.



68

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to Algorithms,
Third Edition. 3rd. ed. [S.l.]: The MIT Press, 2009. ISBN 0262033844.

COURNIER, A.; HABIB, M. A new linear algorithm for Modular Decomposition. In: TISON,
S. (Ed.). Trees in Algebra and Programming — CAAP’94. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994. p. 68–84. ISBN 978-3-540-48373-1.

CYGAN, M.; FOMIN, F. V.; KOWALIK, L.; LOKSHTANOV, D.; MARX, D.; PILIPCZUK,
M.; PILIPCZUK, M.; SAURABH, S. Parameterized Algorithms. 1st. ed. [S.l.]: Springer
Publishing Company, Incorporated, 2015. ISBN 3319212745.

DESCARTES, B. Solution to advanced problem No. 4526. American Mathematical Monthly,
[S.l.], v. 61, p. 352, 1954.

DUNBAR, J.; HEDETNIEMI, S.; HEDETNIEMI, S.; JACOBS, D.; KNISELY, J.; LASKAR,
R.; RALL, D. Fall Colorings of Graphs. Journal of Combinatorial Mathematics and
Combinatorial Computing, [S.l.], v. 33, p. 257–273, 2000.

ERDŐS, P. Graph Theory and Probability. Canadian Journal of Mathematics, Cambridge
University Press, [S.l.], v. 11, p. 34–38, 1959.

ERDŐS, P.; HEDETNIEMI, S. T.; LASKAR, R. C.; PRINS, G. C. On the equality of the partial
grundy and upper ochromatic numbers of graphs. Discrete Mathematics, Elsevier, [S.l.], v. 272,
n. 1, p. 53–64, 2003. ISSN 0012-365X. In Honor of Frank Harary.

ERDŐS, P.; RUBIN, A. L.; TAYLOR, H. Choosability in graphs. Congressus numerantium,
[S.l.], v. 26, n. 4, p. 125–157, 1979.

EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae
scientiarum Petropolitanae, [S.l.], p. 128–140, 1741.

GIAKOUMAKIS, V.; VANHERPE, J.-M. On extended P4-reducible and extended P4-sparse
graphs. Theoretical Computer Science, Elsevier, [S.l.], v. 180, n. 1, p. 269–286, 1997. ISSN
0304-3975.

GRÜNBAUM, B. Acyclic colorings of planar graphs. Israel Journal of Mathematics, Springer,
[S.l.], v. 14, n. 4, p. 390–408, 1973.

GRUNDY, P. M. Mathematics and games. Eureka, [S.l.], v. 2, p. 6–8, 1939.

GUAN, D.; XUDING, Z. A coloring problem for weighted graphs. Information Processing
Letters, Elsevier, [S.l.], v. 61, n. 2, p. 77–81, 1997.

HARARY, F.; HEDETNIEMI, S. The achromatic number of a graph. Journal of Combinatorial
Theory, Elsevier, [S.l.], v. 8, n. 2, p. 154–161, 1970. ISSN 0021-9800.

HARARY, F.; HEDETNIEMI, S.; PRINS, G. An interpolation theorem for graphical
homomorphisms. Portugaliae mathematica, Sociedade Portuguesa de Matemática, [S.l.], v. 26,
n. 4, p. 453–462, 1967.

HEGGERNES, P.; TELLE, J. A. Partitioning graphs into generalized dominating sets. Nordic
Journal of Computing, [S.l.], v. 5, n. 2, p. 128–142, 1998. ISSN 1236-6064.



69

IRVING, R. W.; MANLOVE, D. F. The b-chromatic number of a graph. Discrete Applied
Mathematics, Elsevier, [S.l.], v. 91, n. 1, p. 127–141, 1999.

JAFFKE, L.; LIMA, P. T.; LOKSHTANOV, D. b-coloring parameterized by clique-width.
Theory of Computing Systems, Springer, [S.l.], p. 1–33, 2023.

JAFFKE, L.; LIMA, P. T.; SHARMA, R. b-Coloring Parameterized by Pathwidth
is XNLP-complete. arXiv preprint arXiv:2209.07772, [S.l.], 2022. Disponível em:
https://doi.org/10.48550/arXiv.2209.07772. Acesso em 05 set. 2024.

JAMISON, B.; OLARIU, S. A tree representation for P4-sparse graphs. Discrete Applied
Mathematics, Elsevier, [S.l.], v. 35, n. 2, p. 115–129, 1992. ISSN 0166-218X.

KALPANA, M.; VIJAYALAKSHMI, D. Fall coloring and b-coloring of graphs. Journal of
Physics: Conference Series, IOP Publishing, [S.l.], v. 1139, n. 1, p. 012045, 2018.

KAUL, H.; MITILLOS, C. On Graph Fall-Coloring: Existence and Constructions. Graphs and
Combinatorics, Springer, [S.l.], v. 35, n. 6, p. 1633–1646, 2019.

LARSEN, M.; PROPP, J.; ULLMAN, D. The fractional chromatic number of Mycielski’s graphs.
Journal of Graph Theory, Wiley Online Library, [S.l.], v. 19, n. 3, p. 411–416, 1995.

LASKAR, R.; LYLE, J. Fall colouring of bipartite graphs and cartesian products of graphs.
Discrete Applied Mathematics, Elsevier, [S.l.], v. 157, n. 2, p. 330–338, 2009.

LAURI, J.; MITILLOS, C. Complexity of Fall Coloring for Restricted Graph Classes. Theory
of Computing Systems, Springer, [S.l.], v. 11638, p. 352–364, 2019.

LAURI, J.; MITILLOS, C. Complexity of Fall Coloring for Restricted Graph Classes. Theory
of Computing Systems, Springer, [S.l.], v. 64, n. 7, p. 1183–1196, 2020. ISSN 1432-4350.

MCCONNELL, R. M.; SPINRAD, J. P. Linear-time Modular Decomposition and Efficient
Transitive Orientation of Comparability Graphs. In: Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms. Arlington, Virginia, USA: Society for
Industrial and Applied Mathematics, 1994. (SODA ’94), p. 536–545. ISBN 0898713293.

PANOLAN, F.; PHILIP, G.; SAURABH, S. On the Parameterized Complexity of B-Chromatic
Number. Journal of Computer and System Sciences, Elsevier, [S.l.], v. 84, p. 120–131, 2017.

RAO, M. Décompositions de graphes et algorithmes efficaces. Tese (Doutorado) – Université
Paul Verlaine - Metz, [S.l.], 2006.

ROBERTSON, N.; SANDERS, D. P.; SEYMOUR, P.; THOMAS, R. Efficiently Four-Coloring
Planar Graphs. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing. New York, NY, USA: Association for Computing Machinery, 1996. (STOC ’96),
p. 571–575. ISBN 0897917855.

SCHAEFER, T. J. The complexity of satisfiability problems. In: Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing. New York, NY, USA: Association for
Computing Machinery, 1978. (STOC ’78), p. 216–226. ISBN 9781450374378.

SHAEBANI, S. On Fall Colorings of Graphs. arXiv preprint arXiv:0909.2769, [S.l.], 2009.
Disponível em: https://doi.org/10.48550/arXiv.0909.2769. Acesso em 05 set. 2024.



70

SHAEBANI, S. A note on fall colorings of Kneser graphs. Transactions on Combinatorics,
University of Isfahan, [S.l.], v. 8, n. 3, p. 13–15, 2019. ISSN 2251-8657.

SILVA, A. Graphs with small fall-spectrum. Discrete Applied Mathematics, Elsevier, [S.l.],
v. 254, p. 183–188, 2019. ISSN 0166-218X.

TELLE, J. A.; PROSKUROWSKI, A. Algorithms for Vertex Partitioning Problems on Partial
k-Trees. SIAM Journal on Discrete Mathematics, SIAM, [S.l.], v. 10, n. 4, p. 529–550, 1997.

VALENCIA-PABON, M. Idomatic partitions of direct products of complete graphs. Discrete
Mathematics, Elsevier, [S.l.], v. 310, n. 5, p. 1118–1122, 2010. ISSN 0012-365X.

WEST, D. Introduction to Graph Theory. [S.l.]: Prentice Hall, 2001. (Featured Titles for
Graph Theory). ISBN 9780130144003.

ZAKER, M. A note concerning the Grundy and b-chromatic number of graphs. arXiv preprint
arXiv:2003.14233, [S.l.], 2020. Disponível em: https://doi.org/10.48550/arXiv.2003.14233.
Acesso em 05 set. 2024.



71

INDEX

P4-sparse, 40

FPT (complexity class), 26

NP

complete, 25

hard, 25

NP (complexity class), 25

P (complexity class), 24

XP (complexity class), 26

k-colorable, 17

k-coloring, 17

k-dimensional hypercube, 19

k-partite, 19

complete, 19

k-regular, 16

k-tree, 28

Acyclic, 19

Adjacency, 16

Adjacent, 16

Agrees, 54

Algorithm, 24

accepts, 24

correct, 24

fixed-parameter, 26

rejects, 24

verification, 25

verifies, 25

Alphabet, 24

b-chromatic number, 17

b-coloring, 17

b-vertex, 17

Bipartite, 19

Boolean formula

clause, 25

CNF, 25

literal, 25

Categorical product, 33

Certificate, 25

Chord, 20

Chordal, 20

Chromatic

number, 17

Clique, 18

Cograph, 20

Color, 17

class, 17

Coloring

complete, 11

partial Grundy coloring, 18

Coloring number, 20

Combines, 51

Complement, 18

Component, 19

Connected, 19

Crossing, 20

Cycle, 18

in a graph, 19

Degree, 16

maximum, 16

minimum, 16

Disconnected, 19



72

Drawing, 20

Edge set, 16

Endpoint, 16

Exponential Time Hypothesis, 27

Extends, 50

Face, 20

outer, 20

Fall

k-coloring, 17

achromatic index, 18, 62

achromatic number, 17

chromatic number, 17

continuous, 18, 42

perfect, 17

spectrum, 17

Flower graph, 43

Forest, 19

Graph, 16

complete, 18

isomorphism, 17

perfect, 20

simple, 16

Graphs

isomorphic, 17

Grundy

k-coloring, 18

number, 18

vertex, 18

Helm, 43

Hereditary, 20

Heuristic

a, 11

b, 12

Incident, 16

Independent set, 18

Input, 24

Instances, 24

Isolated vertex, 19

Join of graphs, 23

Kneser graph, 30

Language, 24

accepted, 24

decided, 24

Polynomial-time reducible, 25

verified, 25

Leaf, 19

Length, 19

Lexicographic product, 34

Line graph, 17

Matching, 19

perfect, 19

Maximal submodule, 23

Minimal k-fall-imperfect, 44

Modular decomposition tree, 23

Module, 23

maximal, 23

neighborhood, 23

parallel, 23

series, 23

strong, 23

trivial, 23



73

Module-width

of a graph, 24

of a rooted branch decomposition, 24

Mycielskian, 30

Neighborhood, 16

Neighbors, 16

Node

forget, 23

introduce, 23

join, 23

leaf, 23

Open set, 20

Order, 16

Outerplanar graph, 20

Output, 24

Parameter, 26

Partite sets, 19

Path, 18

u,v-path, 18

Planar graph, 20

Plane graph, 20

Polygonal u,v-curve, 20

Polynomial-time

algorithm, 24

computable, 25

Problem

abstract, 24

concrete, 24

decision, 24

optimization, 24

parameterized, 26

W[1]-hard, 26

fixed-parameter tractable, 26

kernel, 26

slice-wise polynomial, 26

Polynomial-time solvable, 24

Product

cartesian, 21

categorical, 21

lexicographic, 21

Proper, 17

Quotient graph, 23

Reduction

algorithm, 25

function, 25

parameterized, 26

Region, 20

Rooted branch decomposition of graphs, 23

Saturated, 19

Solutions, 24

Solve, 24

Spider, 40

fat, 40

thin, 40

Subfall

k-coloring, 18

achromatic index, 18, 62

achromatic number, 18

Subgraph, 16

induced by, 16

Sugraph

induced, 16



74

Sunflower graph, 44

Tree, 19

Tree decomposition, 22

nice, 22

Treewidth, 22

Union of graphs, 23

uniquely k-colorable, 28

Vertex set, 16

Walk, 18

u,v-walk, 18

closed, 18

Wheel, 43

width, 22


	Title page
	Acknowledgements
	Resumo
	Abstract
	Contents
	Introduction
	Preliminaries
	Graph Theory
	Computational complexity

	State of the Art
	Fall spectrum
	Cartesian products
	Categorical and Lexicographic products

	Computational Complexity
	Further results
	Subfall Colorings

	Our Contributions
	Computational Complexity of subfall k-coloring
	Parameterized complexity of subfall k-coloring
	Fall Coloring
	b-Coloring

	Continuity, relation to other parameters and other properties
	Subfall achromatic index

	Concluding remarks
	Bibliography
	INDEX

