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ABSTRACT

Multi-model architectures enable the querying of data from different sources through a unified

interface, providing interoperability among databases. However, support for blockchain is

still scarce. Inter-MOON is a new middleware approach that promotes the interoperability

of relational databases and blockchain through virtualizing blockchain assets in a relational

environment, allowing for the execution of SQL DML commands. Experimental results show

that compared to the blockchain, Inter-MOON provides minimal overhead in writing operations

or reading operations that retrieve many entries but significant overhead when querying a few

entries, trading high performance for powerful querying capabilities.

Keywords: databases; blockchain; database interoperability; data transformation; middleware.



RESUMO

Arquiteturas multi-modelos permitem a consulta de dados de diferentes fontes por meio de

uma interface unificada, fornecendo interoperabilidade entre bancos de dados. No entanto,

o suporte para blockchain ainda é escasso. Inter-MOON é uma nova abordagem que visa

promover a interoperabilidade de sistemas de banco de dados relacionais e blockchain por meio

da virtualização de objetos blockchain em um ambiente relacional, permitindo a execução de

comandos SQL DML. Resultados experimentais mostram que, em comparação com blockchain,

o Inter-MOON proporciona uma sobrecarga mínima em operações de escrita ou operações de

leitura que recuperam muitas entradas, mas uma sobrecarga significativa ao consultar poucas

entradas, trocando alto desempenho por capacidade de consulta poderosa.

Palavras-chave: bancos de dados; blockchain; interoperabilidade de bancos de dados; transfor-

mação de dados; middleware.
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1 INTRODUCTION

The blockchain, originally conceived as part of the Bitcoin electronic cash system

(NAKAMOTO, 2008), allows storing data without a trustworthy third party to create an im-

mutable, irrefutable, and tamper-proof distributed linked list. Blocks containing transactions are

linked, creating a chain of cryptographic trust that is replicated across all participating nodes.

Blockchains offer strong data integrity and security, crucial for applications requiring tamper-

proof records, such as financial transactions, supply chains, and medical records (GUO; YU,

2022). However, blockchains are characteristically slow at writing operations (ZHENG et al.,

2018). Additionally, due to the differing design philosophies and lack of standards (TASCA et al.,

2017), the data querying capabilities of blockchain are highly dependent on implementation. On

the other hand, relational databases excel in performance and offer complex and comprehensive

querying via Structured Query Language (SQL), making them ideal for applications that demand

fast and efficient data retrieval and manipulation. Therefore, both architectures have different

priorities and divergent data models, each presenting unique challenges.

Given the diverse characteristics of data, and the variety of available storage solutions

with distinct strengths and weaknesses, enhancing the interoperability of heterogeneous data

systems has become imperative (BABCOCK et al., 2002; STONEBRAKER; CETINTEMEL,

2018). Federated databases, multistores, and polystores exemplify this trend. Despite the

increasing adoption of blockchain technology (GADEKALLU et al., 2022), enhancing the

interoperability of blockchain with other solutions remains a challenge (BELCHIOR et al., 2021;

MEYER; MELLO, 2022; MACIEL et al., 2023). Most blockchains are not interoperable with

other systems (TASCA et al., 2017) and exhibit a distinct lack of standards, protocols, or drivers

that may allow for easier interoperability (YUAN; WANG, 2018; MEYER; MELLO, 2022;

MACIEL et al., 2023). (NATHAN et al., 2019).

Interoperability between these systems can harness the strengths of both technolo-

gies (NATHAN et al., 2019). In a supply chain scenario, for instance, a system that enables

SQL queries across both Blockchain (BC) and Relational Database (RDB) data stores can

facilitate comprehensive querying while maintaining consistency. This versatility extends to

other applications where interoperability between blockchain and existing relational databases

is desirable, including sectors such as healthcare and the Internet-of-Things (IoT) (GUO; YU,

2022). Consider a healthcare system where patient records are stored on a blockchain to ensure

integrity, while operational data, such as appointment schedules and billing information, are
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stored in a relational database. A doctor needs to access a patient’s medical history, verify recent

treatments, and schedule a follow-up appointment. Interoperability between the blockchain and

the relational database could allow an application to execute a single SQL query to retrieve the

patient’s complete medical history from the blockchain and the appointment details from the

database, ensuring a seamless workflow. If the underlying database or blockchain were to be

replaced later, rather than having to rework all the related code, one could simply unplug the old

drivers and plug in the newer ones.

The approach to data Management on relatiOnal database and blOckchaiN (MOON)

(MARINHO et al., 2020) aims to serve as a unified entry point for database queries in applications

utilizing both blockchain and relational databases. Queries are written in standard SQL, analyzed

and mapped by the MOON middleware, and executed in one or both data stores. While MOON

simplifies development by eliminating the need for clients to use different query languages and

frameworks for each data store, it has limitations. It does not support all Data Query Language

(DQL) and Data Manipulation Language (DML) operations, such as DELETE queries or queries

containing aggregation or subqueries. Additionally, MOON faces performance issues due to

the high latency of multiple database calls and a lack of support for changes to the schema of

blockchain entities, all of which heavily hampers interoperability.

This dissertation presents Interoperable approach to data Management on relatiOnal

database and blOckchaiN (Inter-MOON), a new approach based on MOON focused on enhancing

interoperability between blockchain and relational databases through virtualizing blockchain

assets within a relational environment. Inter-MOON supports non-distributed queries containing

single SQL statements, allowing for querying any blockchain or relational entity defined in

the Inter-MOON entity schema using SQL. Two indexing policies are proposed to enhance

interoperability, one table-based and another smart contract-based, depending on the available

blockchain features. In summary, the contributions are:

1. The proposal and development of Inter-MOON, a novel approach to interoperability be-

tween blockchain and relational databases via the virtualization of blockchain assets in a

relational environment, supporting comprehensive SQL DQL and DML grammar. The

approach is based on MOON and features extensive improvements and modifications

regarding interoperability, such as full support for SELECT queries, brand-new support

for DELETE queries, support for schema changes, an overhauled architecture, two in-

dexing policies, support for blockchains with smart contract functionality and improved
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performance.

2. An exploration of the interoperability challenges between relational and blockchain

databases, including querying, modifying, and deleting blockchain data using SQL queries.

3. The specification of the Inter-MOON smart contract approach, enabling optimized querying

of key-value blockchain assets via composite key range queries.
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2 THEORETICAL FOUNDATION

This chapter is dedicated to describing background information necessary to under-

stand the context of this work. Focus is given to blockchain and related concepts, as it is a more

recent technology and one of the central themes of this work. Interoperability, specifically within

the context of blockchain and associated systems, is also discussed, being another main theme of

the work.

2.1 Blockchain

In the Bitcoin whitepaper, Nakamoto (2008) describes an electronic payment system

based on cryptographic proof instead of trust, supported by a peer-to-peer distributed ledger.

Each node in the network contains a local copy of the distributed ledger, and if any single

blockchain node is compromised, its information remains available within other nodes. This

ledger essentially takes the form of a linked list of blocks that contain transactions validated

by the network members. Users create transactions, which are digitally signed and broadcast

to the network. They are collected by participating nodes and added to a pool of unconfirmed

transactions (the “mempool”). These transactions are selected and assembled into candidate

blocks. The blocks are connected by cryptographic hashes, calculated using a Proof-of-Work

(PoW) algorithm by the nodes participating in the network. Once a node solves the PoW puzzle

and builds a valid block, it is also broadcast to the network for verification and then added to the

blockchain once verified. According to Nakamoto, PoW makes it computationally unfeasible for

an attacker to tamper with a block without redoing the proof-of-work of the block, and all the

blocks after it, ensuring no single entity controls the network entirely and promoting security

and data integrity. This architecture eventually came to be called Blockchain.

Blockchain has seen continuous research, with many works attempting to apply the

technology to areas outside of digital currencies. These areas include, among others, healthcare,

supply chain, information systems, Internet-of-things, databases, security, privacy, and voting

(GAMAGE et al., 2020; JAVAID et al., 2021; KRICHEN et al., 2022; GUO; YU, 2022).

Other research tackles different approaches to consensus mechanisms, hashing functions, smart

contracts, and other properties of blockchain as a data model (GUO; YU, 2022). Some studies

also aim to explore mutability in blockchains (POLITOU et al., 2019). Scalability is still an open

issue in blockchain research (GAMAGE et al., 2020; ZHOU et al., 2020), as well as a lack of



21

standards or protocols (YUAN; WANG, 2018; MEYER; MELLO, 2022; MACIEL et al., 2023).

2.1.1 Terminology

The following is a general description of some of the more relevant technical terms

related to blockchain architecture and used throughout this work:

Ledger: In a blockchain context, the ledger is the replicated and immutable data structure that

tracks all blocks validated by network nodes, maintaining a global state of the system.

Encryption and consensus are essential to ensure ledger authenticity, integrity, consistency,

and availability (ANTONOPOULOS, 2017).

Asset: Refers to digital objects that represent various forms of data, including digital representa-

tions of physical objects or purely digital data such as text, files, tokens, and cryptocurrency.

They may be stored either on the blockchain (on-chain) or outside of it (off-chain), in

InterPlanetary File System (IPFS) networks or another data storage solution. If they are

stored off-chain, the blockchain will often store a hyperlink to these assets. Users may

register, transfer, and own assets, through transactions stored on the blockchain.

Transaction: At its core, a transaction represents an interaction between parties (YAGA et

al., 2019). It contains information regarding the state and ownership of assets. This

information is stored inside a transaction when a new asset is created or an existing asset

is transferred. Each transaction will have a unique ID (identifier), in the form of a hash.

Transactions are stored inside blocks after verification and confirmed after the block is

validated. The exact validation process is affected by the blockchain implementation and

consensus algorithm (eg. PoW blockchains validate blocks through mining).

Metadata: Represents contextual information regarding a transaction or block (ZHENG et al.,

2017). This information can include details such as the timestamp of the transaction, or

the version policy.

2.1.2 Architecture

Fig. 1 shows an example of a blockchain ledger, in which i represents the block

number and T xn a transaction. As mentioned, the ledger is composed of interconnected blocks,

housing a list of transactions each. The maximum number of transactions that a block can contain

depends on the block size and the size of each transaction (ZHENG et al., 2017). Each block

also includes a header, which connects them, and may also contain some metadata, such as a
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timestamp or version. The first block (i = 0) of a blockchain network is denominated the genesis

block. Consequently, it is the fixed common ancestor of all blocks and serves as a secure “root”

from which to start building the blockchain (ANTONOPOULOS, 2017).

Header

Metadata

Tx1 Tx2 Txn(...)

Header

Metadata

Tx1 Tx2 Txn(...)

Header

Metadata

Tx1 Tx2 Txn(...) (...)

Block i Block i + 1 Block i + 2

Figure 1 – Blockchain architecture example. Blocks pack transactions and are connected via
header.

While the exact structure of a block header depends on the blockchain implemen-

tation, there are some identifiable characteristics. The following is a technical description of

the elements that commonly make up the header, considering a PoW-based blockchain such as

Bitcoin, as per Zheng et al. (2017), Yaga et al. (2019) and Antonopoulos (2017):

Parent block hash: A 256-bit hash pointer to the previous (parent) block that establishes the

chain. The genesis block has no value for this property, being the first in the blockchain,

thus having no parent.

Merkle Root hash: A pointer to the root of the Merkle Tree built from hashed transactions. See

Sec. 2.1.3 for a description of the Merkle Tree.

Timestamp: The time the block was added to the Blockchain in universal time since epoch.

Nonce: In PoW, the nonce (a portmanteau of “number only used once”) is the answer to the

cryptographic puzzle that must be computed to achieve consensus. It is usually a 4-byte

field that starts with a value of 0 and is increased for every hash calculation made.

Target: Like the nonce, it is a particular property of the PoW model, and defines the difficulty

of the cryptographic puzzle that must be solved to mine a valid block. If the calculated

nonce adds up to a value of less than or equal to the network’s difficulty target, the miner’s

block is added to the blockchain.

The block itself is identified by the block header hash, which is calculated by hashing
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the whole block header structure twice using the SHA256 algorithm, also known as double-

SHA256 (ANTONOPOULOS, 2017). Note the block header hash is not included within the

block’s header, only on subsequent blocks or when calculated for verification. Because every

block post-genesis contains the hash of the previous block in the chain, if any of the data

contained inside of a block changes, the block header hash also changes, breaking the chain of

trust. This includes any of the transactions (since the block header also contains the merkle root

hash, calculated by hashing each transaction data), as well as other metadata such as the nonce

or header timestamp. This property empowers the integrity and immutability of the blockchain.

The structure of each transaction also varies according to the blockchain implemen-

tation and application domain. In a financial context such as in cryptocurrency, a transaction

is usually a transfer of assets between two users (nodes) in the network (YAGA et al., 2019).

Typically, it may include the sender’s address (or another relevant identifier) and public key, a

digital signature, transaction inputs, and transaction outputs (YAGA et al., 2019). Addresses

are strings of digits and characters that identify a user (ANTONOPOULOS, 2017). Transaction

inputs represent the assets being transferred. Each input contains the data of the asset as well

as the hash of the transaction it originated from. Outputs represent the recipients (YAGA et al.,

2019). Transactions must fulfill Atomicity, Consistency, Isolation, Durability (ACID) properties

(RAMAKRISHNAN; GEHRKE, 2002).

2.1.3 Cryptography

Regarding cryptography, blockchain employs hash functions, public key cryptog-

raphy, and merkle trees to realize various tasks and enhance the security and integrity of the

network (YAGA et al., 2019).

Hash functions are used to create unique digests (values outputted from hash func-

tions). When hashed using the same hash function, the same input always returns the same result.

Any change to the input (e.g., changing a single bit) will result in a completely different output,

making them hard to invert and collision-resistant (ROGAWAY; SHRIMPTON, 2004; YAGA et

al., 2019). Consequently, blockchain uses hash functions to calculate information such as the

block header hash, transaction identifiers, and user addresses (YAGA et al., 2019). The SHA256

algorithm is blockchain’s most commonly used hashing function (ANTONOPOULOS, 2017).

Blockchain also uses public key cryptography for verification and authentication

(ANTONOPOULOS, 2017; YAGA et al., 2019). Each user owns a pair of private and derived
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public keys, which are mathematically connected. The private key must remain secret while the

public key can be shared, as the public key alone is not enough to determine the private key. One

can encrypt with a private key and then decrypt with the public key and vice versa, enabling trust

between unknown parties (YAGA et al., 2019). The private keys are used to generate digital

signatures for transactions, which anyone can verify using the respective public key (ZHAI et al.,

2019; ANTONOPOULOS, 2017). This ensures that a third party has not tampered with the data

of a transaction. The typical digital signature algorithm used in blockchains is the Elliptic Curve

Digital Signature Algorithm (ECDSA) (ANTONOPOULOS, 2017).

Additionally, blockchain commonly employs merkle trees to verify the integrity of

large-scale data (ANTONOPOULOS, 2017; ZHAI et al., 2019). It is used to summarize all

the transactions in a block and produce a digital fingerprint of the transaction set, providing an

efficient process for verification of whether a transaction is present in a block. A merkle tree is

constructed by recursively hashing pairs of nodes until there is only one hash, called the root, or

merkle root (ANTONOPOULOS, 2017). See Fig. 2 for an example of this construction process.

The data of each transaction (T x) is hashed to construct the leaf nodes. Because it is a binary tree,

if there are an odd number of transactions to summarize, the last transaction hash is duplicated

to create an even number of leaf nodes. To verify if a transaction is included in a block, a node

only needs to produce log2(N) 32-byte hashes, constituting an authentication path or merkle

path connecting said transaction hash to the root of the tree (ANTONOPOULOS, 2017). The

cryptographic hash algorithm used in Bitcoin’s merkle trees is also a double-SHA256, same as

the block header hash (ZHAI et al., 2019).

2.1.4 Consensus

Because they are distributed and decentralized, blockchain networks use consensus

protocols (also called consensus algorithms or mechanisms) such as PoW to agree on what

actions should be performed. For example, whether a mined block or transaction is valid and

can be added. According to Xiao et al. (2020), a consensus protocol is said to be Crash Fault

Tolerance (CFT) or Byzantine Fault Tolerance (BFT) if it can tolerate a certain amount of crash

or Byzantine faults while remaining functional. Common causes of crash failure include power

shutdown, software errors, and denial-of-service attacks. A Byzantine failure, however, is more

severe in that the process can act arbitrarily while appearing normal, send contradicting messages

to other processes, and sabotage consensus. A BFT protocol is by definition also CFT, and
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H1 = Hash(Tx1) H2 = Hash(Tx2) H3 = Hash(Tx3) H4 = Hash(Tx4)

Tx1 Tx2 Tx3 Tx4

H1,2 = Hash(H1 + H2) H3,4 = Hash(H3 + H4)

H1,2,3,4 = Hash(H1,2 + H3,4)

Merkle Root

Figure 2 – Representation of the Merkle Tree construction.

additionally abides by four requirements:

Termination: Every non-faulty process eventually decides on an output.

Agreement: Every non-faulty process eventually decides on the same output, say y.

Validity: If every process begins with the same input, say x, then y = x.

Integrity: The defined output y must have been one that was proposed by a non-faulty process.

For a BFT protocol to work, the number of processes N in the network must satisfy

N ≥ 3 f +1, where f is the maximum number of Byzantine faulty processes. This means that

to tolerate f Byzantine faults, there must be at least 3 f +1, processes in total. Specifically for

blockchain, BFT or CFT consensus protocols are often used with modifications, such as the

separation of consensus and execution, due to the extra cryptographic computations present in

blockchain (XIAO et al., 2020). Blockchain networks may also have other particular needs that

influence the protocol choice. For example, networks may prioritize either speed or security or

prefer a mechanism that allows for staking tokens. Consequently, various types of consensus

protocols have been proposed and developed, both for distributed systems and specifically for

blockchain use. They can be classified using a variety of attributes, such as finality, scalability,

accessibility, and agreement (LASHKARI; MUSILEK, 2021). The following subsections

describe some of blockchain’s more commonly seen consensus algorithms.
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2.1.4.1 Proof-of-Work

PoW is the consensus algorithm used by Bitcoin (NAKAMOTO, 2008). In PoW,

nodes compete to solve a complex mathematical puzzle, and the first to solve it broadcasts the

solution to the network to verify it (YAGA et al., 2019). The puzzle is simply designed to be a

complex computation, so solving it is difficult but validation is easy. The solution arrived at by

the first solver is the “proof” they have performed “work”. The puzzle-solving process is called

mining, while the nodes solving the puzzle are called miners.

In Bitcoin, the puzzle is to repeatedly calculate the hash digest of the candidate block

header by changing the nonce property until the resulting digest is less than a specific target

value. Because each attempt hashes the entire block header, it is an overall intensive computation.

Over time, the target value is automatically modified so that the network block publication

rate remains at around 10 minutes and the puzzle’s difficulty remains appropriate, given the

network computing power. The complexity of the computation is also purposeful in making it

harder for malicious actors to solve the puzzle and take control of the network — considering a

large enough network, it would be prohibitively expensive for an attacker to take over, as the

required processing power to alter a block and re-mine all subsequent blocks would be sky-high,

preventing Sybil attacks (NAKAMOTO, 2008; YAGA et al., 2019). The miner who successfully

mines a block is rewarded with newly minted cryptocurrency (block reward) and transaction fees

from the transactions included in the block to incentivize further contribution to the network

processing power.

Two or more valid blocks may be generated at nearly the same time, leading to the

existence of branches, or forks (ZHENG et al., 2018; YAGA et al., 2019). However, it is unlikely

that the next block or any thereafter will also be generated simultaneously. Consequently, PoW

awaits the next block generation while the forks exist and then considers the longest fork to be

the authentic one. The remaining fork is orphaned and its transactions, if not present in the

now valid blockchain, return to the mempool. Consider Fig. 3 depicting two forks created by

simultaneously validated blocks B11 and G11. Miners work on both forks and add the newly

generated blocks to one of them. When a new block, say B12, is added after B11, the miners

working on fork G11-G12 will switch to B12. The fork G11-G12 is orphaned as B11-B16

becomes the authentic blockchain.

By design, PoW is energy-intensive contentiously. This property has raised concerns

about exorbitant energy consumption, environmental impact, and related topics in blockchain
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Figure 3 – Example of a scenario where two branches of the replicated ledger exist. Ownership
of Zheng et al. (2018).

research (VRANKEN, 2017). Moreover, the reward given to successful miners promotes

competition. This may lead to decentralization as miners form mining pools, coalitions of allied

miners who split rewards (YAGA et al., 2019). Additionally, there is a socioeconomic and

environmental impact as miners seek more powerful hardware to keep up with the competition

(O’DWYER; MALONE, 2014).

2.1.4.2 Proof-of-Stake

In Proof-of-Stake (PoS), a special group of users of a given blockchain network,

often called validators, are responsible for creating new blocks based on the amount of cryp-

tocurrency they hold and are willing to “stake” (YAGA et al., 2019). Validators are incentivized

to act honestly, as their stakes within the system are at risk. The stake is often an amount of

cryptocurrency that the network user has invested into the system. This investment can be done

through a variety of means, such as by locking it via a special transaction type, by sending it

to a specific address, or holding it within special wallet software (YAGA et al., 2019). PoS is

considered a more energy-efficient alternative to PoW — because the validators are few, there

is no need for computationally intensive operations (XIAO et al., 2020). In such systems, the

reward for block publication is usually the earning of user provided transaction fees (YAGA et

al., 2019).

Once staked, currency cannot be spent, and the likelihood of that validator being

chosen is tied to the ratio of their stake to the overall blockchain network amount of staked

currency. Given this, Xiao et al. (2020) identifies four classes of PoS protocols: chain-based PoS,

committee-based PoS, BFT-based PoS, and Delegated Proof of Stake (DPoS).

Chain-based PoS inherit many attributes of PoW, with a different block generation

algorithm. In chain-based PoS, the validator is chosen at random, based on their stake in the

system. So, if a user had 42% of the entire blockchain network stake they would be chosen 42%
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of the time; those with 1% would be chosen 1% of the time (YAGA et al., 2019). Because of

the inherent unfairness of validators being chosen based solely on investment, there are often

other factors at play (ZHENG et al., 2018; YAGA et al., 2019). For example, Peercoin (KING;

NADAL, 2012) uses a coin age metric for stake valuation, which allows the value of a stake to

increase linearly with time since staking. Once it is chosen, the “age” property of a stake is reset,

allowing older stakes and larger stakes to both contribute towards the likelihood of a validator

being chosen.

In committee-based PoS, a pseudo-randomly organized committee of stakeholders is

selected based on their stakes and generate blocks in turns (XIAO et al., 2020). The selected

sequence is broadcast so that it is the same for all stakeholders, and those with higher stakes may

take up more spots in the sequence. There are variations, such as in Ouroboros (KIAYIAS et al.,

2017), where time is divided into fixed periods called epochs, which are further divided into slots.

Stakeholders with enough stake can become electors, who collectively elect slot leaders (i.e. the

committee) for the next epoch. Slot leaders are responsible for generating the block in that slot.

BFT-based PoS essentially incorporates BFT consensus to provide fast and deter-

ministic block finalization (XIAO et al., 2020). There are multiple consensus rounds, and each

involves a committee of validators, where one is designated as the proposer to suggest a new

block. Validators then engage in pre-voting and pre-commit phases to signal their agreement with

proposed blocks. Final block confirmation requires a majority consensus, typically two-thirds

or more, ensuring Byzantine fault tolerance and preventing forks. This kind of PoS protocol is

based on Practical Byzantine Fault Tolerance (PBFT). See also Sec. 2.1.4.3.

As for DPoS, it is a democratic form of committee-based PoS in that the committee

is chosen via public stake delegation (SCHUH; LARIMER, 2017; XIAO et al., 2020). Small

stakeholders vote on delegates, who are responsible for creating blocks. Unwanted delegates

can also be voted out (YAGA et al., 2019; ZHENG et al., 2018). Votes are weighed, so the

more stake a stakeholder has, the higher the value of their vote (YAGA et al., 2019). Because it

is a fully democratic election, there are external socioeconomic factors involved in voting, as

delegates receive daily vote-reward proportional to the votes received (XIAO et al., 2020). The

threat of being voted out motivates delegates to act honestly (YAGA et al., 2019).

Naturally, many PoS protocols run the risk of centralization, due to often tying

wealth within the system with staking power (XIAO et al., 2020).



29

2.1.4.3 Practical Byzantine Fault Tolerance

To conclude, PBFT by Castro et al. (1999) is one of the first distributed BFT

protocols. Tendermint (KWON, 2014) and Hyperledger Fabric (ANDROULAKI et al., 2018)

use PBFT as the basis for their consensus mechanisms. PBFT is capable of achieving consensus

in the presence of up to 1/3 malicious replicas with a few rounds of exchanging messages

(ZHENG et al., 2018). In PBFT blockchains, nodes take turns proposing and validating blocks

of transactions. In each round, one node is designated as the primary (leader) to propose a block.

The remaining nodes act as backups and validate the proposed block through a series of phases:

pre-prepare, prepare, commit, and checkpoint (MONRAT et al., 2019). During the pre-prepare

phase, the primary proposes a block and broadcasts it to all backups. Upon validation, backups

send prepared messages to indicate acceptance of the block. Once a backup receives prepared

messages from a majority, it sends a commit message, signaling agreement. After receiving

commit messages from a threshold number of nodes, the block is considered committed and

added to the blockchain.

Tendermint is very similar to PBFT, but also takes on the staking characteristic of

PoS: nodes have to stake to become validators, and only validators can propose a block (ZHENG

et al., 2018). However, the “weight” of the stake does not influence the “weight” of the vote

during the prepare phase, only the likelihood of being chosen as the leader during a round

(XIAO et al., 2020). Additionally, there is an equal-sharing-style incentive mechanism instead

of winner-takes-all. For every block height, the block reward is distributed among the block

proposer and validators from whom the proposer received Commit votes (XIAO et al., 2020).

Hyperledger Fabric is also based on PBFT. See Sec. 2.2.

2.1.5 Taxonomy

Blockchain systems are often roughly categorized into three types: public blockchain,

private blockchain and consortium blockchain (ZHENG et al., 2017; ANDONI et al., 2019).

See Table 1 for an overview of the characteristics of each type. In public blockchains, anyone

can join as a new user or node, and all participants can perform all available actions. In

private and consortium blockchains, only specific nodes participate in consensus, creating

a partially decentralized design. Additionally, in private blockchains, only certain users or

organizations are allowed to join the network at all. Generally speaking, the difference between
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a private and consortium blockchain is the number or participating organizations — if only one

is present, it is private, otherwise, it is a consortium. As such, blockchains can also simply be

categorized as permissioned (for private and consortium chains) or permissionless (for public

chains) (CASINO et al., 2019). Consensus models in permissioned blockchains are usually faster

and less computationally expensive, due to the fewer number of participants with consensus

determination rights (YAGA et al., 2019; ANDONI et al., 2019). However, this characteristic

may also result in a less tamper-proof system (ZHENG et al., 2017). If a single entity controls

who can publish blocks, the users of the blockchain will need to have trust in that entity, leading

to a more centralized design (ZHENG et al., 2017; YAGA et al., 2019).

Property Public Blockchain Consortium
Blockchain

Private Blockchain

Visibility Public Public or restricted Public or restricted
Consensus process Permissionless Permissioned Permissioned
Consensus determination All nodes Selected set of

nodes
One organization

Decentralization Full Partial Low
Immutability Nearly impossible

to tamper
Could be tampered Could be tampered

Transaction Output Low High High
Table 1 – Blockchain properties per permission model. Adapted from Zheng et al. (2017).

2.1.6 Smart Contracts

Szabo (1996) originally defines smart contracts as computerized transaction protocols

that execute the terms of a contract. It is a digital agreement between multiple parties written

in code, without a liaison (DELMOLINO et al., 2016). Code in the blockchain comprises the

transaction conditions, so a contract is distributed across the network as part of the blockchain,

in which peers may join (TOLMACH et al., 2021). Consequently, smart contract code is stored,

verified, and executed on a blockchain. They can read or write data to the blockchain ledger

automatically, depending on the terms and conditions of the contract or when invoked via client

messages or API (WOOD et al., 2014; ANDROULAKI et al., 2018). Besides functions for

writing or reading states, the contract may also store contract-scoped constants or generic data.

A smart contract may even invoke a function from another if the blockchain allows it. See Fig. 4

for an example of how a smart contract might be written, considering a supposed Car entity that

may be queried, transferred or updated by external applications via smart contract.
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Figure 4 – Example of a smart contract of a supposed Car entity 1.

There is no standard specification for smart contracts (TOLMACH et al., 2021),

so each blockchain may implement the concept differently. Conceptually, smart contracts are

language agnostic. Ethereum (WOOD et al., 2014), for instance, implements smart contracts

written in Solidity, a language dedicated to smart contract development. It also associates

each contract with a balance and an address within the blockchain. In Hyperledger Fabric

(ANDROULAKI et al., 2018), smart contracts are called “chaincodes”, can be written in

standard programming languages like Go, Java, and JavaScript, and have no such association as

in Ethereum.

Smart contracts are associated with the application domain of the blockchain. In a

supply chain scenario, smart contracts can be used to keep track of products, automate delivery

checks, track sales targets and limits, and verify transportation conditions such as humidity and

temperature (MOHANTA et al., 2018; GADEKALLU et al., 2022). In cryptocurrency and

finances, such as in Ethereum, they are often implemented to handle transactions between peers,

balance checking, or Decentralized Application (DApp) development (BUTERIN et al., 2014;

MOHANTA et al., 2018).

2.2 Hyperledger Fabric

Fabric is a modular and extensible open-source system for deploying and operating

permissioned blockchains and one of the Hyperledger projects hosted by the Linux Foundation

(ANDROULAKI et al., 2018). Unlike most blockchains, it supports the configuration of

consensus protocols and runs distributed applications written in general-purpose programming

1 https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html. Accessed: May, 22, 2024.
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languages, without systemic dependency on a native cryptocurrency. These characteristics make

Fabric suitable for general-purpose blockchain development and research, such as in this work.

See Fig. 5 for a depiction of the Fabric concept of ledger. While most blockchains

feature the ledger as a distributed sequential log, fabric incorporates the idea of the world state,

determined by the blockchain component of the ledger. The world state is by default a Key-Value

Store (KVS) database that holds the current values of ledger states. The ledger (ie. the world

state and the blockchain) is distributed across the network.

Figure 5 – Fabric divides the concept of the ledger into the world state and blockchain 2.

The blockchain, depicted in Fig. 6, is extremely similar to any standard blockchain

implementation. Transactions are immutable, collected inside blocks appended to the blockchain

upon validation. Each block’s header includes the merkle tree root (Sec. 2.1.3), as well as a

hash pointer of the previous block header. The transactions represent world state changes and

are collected into blocks by the ordering service. The ordering service will be explained further

below. Transactions contain some metadata, the before and after values of the updated world

state as a read-write set, the digital signature of the user who proposed that transaction, the

parameters supplied by the user for the world state update, and the list of endorsing organizations

who validated that transaction, according to the endorsement policy.

Nodes in a Fabric network can be peers or orderers. Peers belong to organizations,

execute transaction proposals, and contribute towards validating transactions. An endorsement

policy dictates which and how many organizations must sign a transaction for it to be considered

valid. The rights of each peer (eg. which peers can validate transactions) are defined by a separate

2 https://hyperledger-fabric.readthedocs.io/en/release-2.5/ledger/ledger.html. Accessed: May, 22, 2024.
3 See footnote 2
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Figure 6 – Fabric architecture example 3.

organization policy. This is the basis of the permissible model of Fabric: nodes must belong to

a trusted organization and have their rights decided upon by it, and only trusted organizations

validate transactions.

Orderers collectively form the ordering service, which manages consensus. It es-

tablishes the order of all transactions in Fabric. Orderers are unaware of the application state

and do not participate in the execution nor the validation of transactions. This approach is

based on PBFT, but further divides consensus into separate ordering and validation services for

better modularity (XIAO et al., 2020). Consensus has three phases: Proposal and Endorsement,

Submission and Ordering, and Validation and Commitment. The following is a step-by-step

summary of how consensus is achieved in Fabric:

1. Proposal and Endorsement

1.1 A client application creates a transaction proposal and sends it to one or more

endorsing peers.

1.2 Each endorsing peer simulates the transaction using its current state and the proposed

changes. The peer then generates an endorsement, which includes the read/write set

of the transaction (what was read from and written to the ledger) and a signature.

2. Submission and Ordering

2.1 The client collects the endorsements from the endorsing peers. Once it has enough

endorsements to satisfy the endorsement policy, the client assembles the transaction

and sends it to the ordering service.

2.2 The ordering service receives transactions from multiple clients, orders them, and
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collects them into blocks. The ordering service does not process the content of

transactions but focuses on ensuring a deterministic order.

3. Validation and Commitment

3.1 The ordered blocks are then distributed to all committing peers (Committers). Each

peer validates the transactions in the block by checking the endorsements against the

endorsement policy and ensuring there are no conflicts (e.g., double-spending). Valid

transactions are committed to the ledger.

3.2 After validation, the ledger state is updated with the results of the valid transactions,

and the new state is reflected across the network.

Note that the ordering service is pluggable in Fabric. By default, three options are

available: a centralized, single-node implementation, used in development and testing; A CFT

ordering service running on a cluster, based on Apache Kafka, and another based on Raft.

Finally, Fabric also offers support for smart contracts (See Sec. 2.1.6), called

“chaincodes”. Chaincodes are agreed upon by organizations to be installed within the blockchain.

They are invoked by clients to query the world state and create transaction proposals. Every

transaction must be created via chaincode.

2.3 Interoperability

In computing, interoperability can be defined as the ability of two or more software

components to cooperate despite differences in language, interface, and execution platform

(WEGNER, 1996). Research regarding interoperability often tackles the concept within specific

domains or discusses theoretical contributions. Additionally, it is commonly described using

contextual layers, or levels (HASSELBRING, 2000; MACIEL et al., 2023). In truth, there are

various interoperability models or frameworks, such as Levels of Information Systems Inter-

operability (LISI) (KASUNIC; ANDERSON, 2004) and Levels of Conceptual Interoperability

Model (LCIM) (TOLK et al., 2007). Maciel et al. (2023) breaks down different understandings

of interoperability over the years as essentially three “levels”: technical (referring to the stan-

dardization of the interfaces between hardware and software), syntactic (interoperable systems

sharing a common understanding of the structure and syntax of transmitted messages), and

semantic (sharing an understanding of the meaning of the exchanged messages, enabling the

combination of data for meaningful processing). This definition is corroborated by Mello et al.

(2022), detailing semantic interoperability as using domain concepts, context knowledge, and
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formal data representation to enable meaningful exchange of information.

Specifically relating to blockchain and blockchain-based solutions, according to Xu

et al. (2020), the problem of interoperability is commonly tackled in one of three contexts: inter-

operability between different blockchains, interoperability between Decentralized Applications

(DApps) using the same blockchains, and interoperability between blockchain and other systems,

such as is the case in this work, with Relational Database Management System (RDBMS). Tasca

et al. (2017) identifies three layouts for interoperability within a blockchain system:

Implicit Interoperability: when the smart contracts that specify conditions under which a

particular transaction (or event) is to take place can be written in a Turing complete

blockchain script language. In this context, implicitly any kind of condition can be

specified, even those involving specific status in other systems, theoretically allowing

interaction from a blockchain solution to any Application Programming Interface (API)

tool or interface.

Explicit Interoperability: when the script language is not Turing complete or the system has

specific tools implemented that enable interoperability with the real world. The given

example is Bitcoin with Counterparty4, a platform built on top of Bitcoin that extends its

ecosystem with smart contract support.

No Interoperability: A blockchain without any kind of possibility to interact with other sys-

tems. The given example is Bitcoin in the absence of external solutions, which has no

interoperability implemented. According to Tasca et al. (2017), this is the case for most

existing blockchain-based systems whose script language is not Turing complete.

The interoperability challenge between blockchains is commonly manifested in the

lack of proper standardization (YUAN; WANG, 2018; MEYER; MELLO, 2022; MACIEL et

al., 2023). Most blockchains are not interoperable and are built according to differing design

philosophies (TASCA et al., 2017). Without standards, protocols, or specifications, different

ledgers cannot directly communicate with each other or outside systems, requiring specialized

solutions and compromise between participating parties (MISTRY et al., 2020). Ontologies

and conceptual models can be helpful tools in enhancing semantic interoperability (TASCA et

al., 2017). Standards and protocols have also been employed to tackle syntactic and technical

interoperability (MEYER; MELLO, 2022). For technical interoperability in cross-blockchain

scenarios, adapters are also often employed to enable communication (MEYER; MELLO, 2022).

4 https://www.counterparty.io/. Accessed: June 25, 2024.
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The approach presented in this work is a middleware, thus consisting of a tool

primarily geared towards enhancing the technical interoperability of blockchain and relational

databases. By decreasing the dependence of applications on a particular system, middleware

increases the ease of moving applications to new systems and decreases dependence on systems

that might fall out of favor (KASUNIC; ANDERSON, 2004). There are also certain aspects

relating to syntactic and semantic interoperability. For example, the presented approach applies a

pseudo-relational schema (Sec. 4.2.1) to blockchain entities, a characteristic of both semantic and

syntactic interoperability. Additionally, the mapper (Sec. 4.1.2) also plays a role in enhancing

communication between the blockchain and relational data stores via data transformations, relat-

ing to syntactic interoperability. The smart contract specification in Sec. 4.2.2.2 also constitutes

efforts toward enhancing technical interoperability. Sec. 4.1.9 describes the requirements a

blockchain must fulfill to be supported by the presented approach.
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3 RELATED WORK

This chapter explores how this work relates to the state of the art. Related works are

within the context of Interoperability of blockchain or blockchain-based data storage solutions

to relational database systems; The usage of SQL in blockchain data exploration or querying;

Blockchain-based database systems; Database-based blockchain systems. The search for papers

from 2019 to 2023 was carried out in the following repositories: ACM Digital Library, IEEE

Xplore Digital Library, Proceedings of the Brazilian Symposium on Databases, and Google

Scholar. The main keywords used were “blockchain database”, “blockchain relational interoper-

ability”, “blockchain sql”, and “blockchain database middleware”. To conclude, Sec. 3.8 shows

a comparison overview between this work and related works.

3.1 Yue et al. (2019)

Yue et al. (2019) discusses the authors’ experience using SQL databases for blockchain

analysis, elaborates upon the characteristics of the Bitcoin blockchain that make it an interesting

database case, and examines the relative merits of three different methods for storing and query-

ing Bitcoin data through relational databases: (1) a local SQL database, (2) the cloud, and (3)

third-party web-based interfaces.

In (1), a tool called Abe1 is used to generate a PostgreSQL database from a local

Bitcoin blockchain node. The tool directly reads the block files from the file system and generates

a series of tables and views on a SQL database according to the data. The work does not describe

the exact structure of each generated table but explains that the database stores information

related to blocks and transactions using 17 tables and 4 views (Table 2).

(1) Abe (2) BigQuery (3) bcsql
Tables 17 2 13
Views 4 0 0
Stored Derived Columns 5 0 15

Table 2 – Overview of generated databases of each technique. Adapted from Yue et al. (2019).

The second approach (2) uses Google BigQuery2, a cloud-based enterprise data

warehouse platform for real-time data analysis using SQL. BigQuery’s extensions to SQL allow

columns to store records and structures. Structures can be expanded into tables by using the

1 https://github.com/bitcoin-abe/bitcoin-abe. Accessed: June 25, 2024.
2 https://cloud.google.com/bigquery/. Accessed: June 25, 2024.
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UNNEST function, which can then be used like derived tables in JOIN and SELECT clauses.

BigQuery also offers a public Bitcoin dataset which, due to the BigQuery characteristics described

above, contains only two tables: blocks and transactions (See Table 2). Internal structures are

stored in columns. For example, the many TXIn (transaction inputs) and TXOut (transaction

outputs) of a transaction are stored in the ‘inputs’ and ‘outputs’ columns of the transactions table,

respectively.

The third approach (3) uses another tool, bcsql (blockchainsql.io)3. This tool presents

a web interface that allows the submission of SQL statements to query its proprietary SQL Bitcoin

database. It uses Microsoft SQL Server and has 13 tables (Table 2), with many stored derived

columns to improve performance.

To conclude, the paper discusses the merits of each solution regarding database

education and design, using derived columns as an example. Stored derived columns have to

be recomputed whenever there are changes. For write-intensive databases, this can degrade

the performance significantly. Thus, most DBMS compute the values at query runtime rather

than physically store them in derived columns by default. However, the authors argue that

append-only scenarios, such as with the Bitcoin blockchain, do not have this problem, as stored

derived columns will never be recomputed.

While the full discussion is irrelevant to this work, the paper highlights a desire to

use a database to store and query blockchain data. Using SQL, it is possible to execute extensible

and complex querying operations with a familiar language, a point both this work and Yue et al.

(2019) agree upon. Conceptually, approaches (1) and (2), which store blockchain data in a local

database and cloud-based platform respectively, are applicable within the context of Inter-MOON.

However, the scenarios presented in both works are different. Yue et al. (2019) assumes a fixed

scenario of data analysis and exploration of Bitcoin transactions. On the other hand, this work

tackles a generalist scenario of blockchain as a data store. The structure of a Bitcoin transaction

is always the same, as it is always within the context of Bitcoin as a cryptocurrency. However, in

this work, we cannot assume that every transaction will have the same structure (schema), as it

will depend on the specific use case, such as supply chain, e-health, or provenance.

3 https://blockchainsql.io. Accessed: June 25, 2024.
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3.2 Nathan et al. (2019)

Nathan et al. (2019) proposes a “blockchain relational database” by developing a

blockchain layer on top of the PostgreSQL relational database. This blockchain layer represents

a permissioned blockchain system, whereupon each participating organization can contribute

clients, database peers, and ordering service nodes to the network. The key components of the

system are described:

Clients: Each organization has an administrator responsible for onboarding users. Clients and

administrators possess digitally signed certificates for authentication and access control.

They can submit transactions and receive updates through a secure communication channel.

Database Peer Nodes: Organizations can run database nodes in the network. These nodes

communicate securely using Transport Layer Security (TLS) and maintain individual

ledger replicas. They also independently execute smart contracts as stored procedures and

validate/commit transaction blocks.

Ordering Service: To ensure agreement on transaction ordering among potentially untrusted

nodes, a pluggable consensus service is implemented. This allows leveraging existing CFT

or BFT consensus algorithms. The ordering service consists of consensus nodes owned by

different organizations, each with its digital certificate. Consensus generates a block of

transactions that is broadcast atomically to all database nodes.

To achieve this, two approaches are studied: The first approach, denominated order-

then-execute (Fig. 7), orders all the transactions through a consensus service, and then nodes

execute them concurrently. In the second approach, execute-order-in-parallel (Fig. 8), execution

happens on nodes without prior knowledge of ordering, which occurs in parallel through a

consensus service.

Both proposed approaches are implemented on top of PostgreSQL. The implementa-

tion comprises the addition of several new components to the PostgreSQL architecture, and the

modification of some existing components. Additions include a communication middleware to

handle communication with other nodes and the orderer and a block processor responsible for

executing the commit phase of a block. A pgLedger system catalog table maintains information

about each transaction and aids recovery and provenance queries; Another table denominated

pgCerts stores the cryptographic credentials of blockchain users. The implementation also adds

support to a new type of read-only provenance query, that can access all committed rows in

tables for audit.
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Figure 7 – Proposed transaction flow of order-then-execute. Ownership of Nathan et al. (2019).

Figure 8 – Proposed transaction flow of execute-order-in-parallel. Ownership of Nathan et al.

(2019).

The application interface and PL/SQL procedures were modified to support blockchain

transactions and provenance queries, enforce deterministic behavior, and restrict certain functions

and statements to ensure consistent transaction processing. The row visibility logic was modified

to use block height, preventing transactions from seeing rows affected by concurrent transactions

and enforcing index-based read access to avoid phantom or stale reads. Finally, the Serializable

Snapshot Isolation (SSI) mechanism was modified to incorporate block-aware abort rules during

commit and manage write-write dependencies, ensuring that only one transaction can write to a

row to prevent lost updates.

Given these modifications, the approach supports the execution of a custom SQL
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CREATE FUNCTION statement to create a new smart contract, CREATE OR REPLACE

FUNCTION to update an existing smart contract, or DROP FUNCTION to delete an existing

smart contract. In a table, each row has two additional header elements, “xmin” and “xmax”,

which are the IDs of the transactions that created and deleted the row, respectively. Every update

to a row is a DELETE followed by an INSERT (both in the table and index). Deleted rows are

flagged by setting “xmax” instead of being truly deleted.

In summary, Nathan et al. (2019) details extensive modifications to the PostgreSQL

architecture to add a blockchain layer on top of the relational database, which naturally sets

it apart from Inter-MOON. Inter-MOON does not interfere with the architecture of either

system but instead creates a multi-modal architecture by acting as a middleware, enabling

independent systems to work in tandem via SQL. One similarity to Inter-MOON is the support

for SQL DELETE. While the specifics are different, conceptually, both implement a “soft-delete”

mechanism to delete blockchain data. On the other hand, Nathan et al. (2019) supports the

manipulation of smart contracts via stored procedures within the modified PostgreSQL, while

Inter-MOON details a specification for the development of smart contracts in a language-agnostic

manner.

3.3 Zhu et al. (2020)

Zhu et al. (2020) proposes SEBDB (Semantics Empowered BlockChain DataBase),

a permissioned blockchain database that aims to incorporate relational data semantics into the

blockchain. It achieves this by associating each transaction with a tuple representing a table

in a relational database schema. Additionally, SEBDB employs a language similar to SQL for

communication, making it familiar to users with database experience. To optimize data storage

and retrieval, SEBDB utilizes a separate off-chain RDB for storing data not directly residing on

the blockchain network. The approach enables joins between on-chain (blockchain) data and

off-chain (RDB) data, a capability the authors named “on-off join.” The system architecture is

depicted in Fig. 9, and consists of five layers:

API Layer: Provides APIs, access control, and smart contracts. Access control verifies user

permissions and smart contracts use an SQL-like language to define applications and

access data.

Query Engine Layer: Parses, optimizes, and executes SQL-like queries.

Storage Layer: Manages data storage and indexing (indexes, Merkle tree, cache). It also
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handles searching, scanning, and inserting block data.

Consensus Layer: Uses a “plug-in” approach to allow users to choose different consensus

protocols (in the paper, Kafka4 and PBFT are specified) based on their needs.

Network Layer: Leverages the Gossip protocol for communication, commonly used for failure

detection, membership management, and block propagation in distributed systems and

blockchains.

Figure 9 – SEBDB architecture. Ownership of Zhu et al. (2020).

SEBDB uses file-based indexing for blockchain data, acknowledging the inefficiency

of sequentially scanning individual blocks within a chain that may contain multiple tables. The

indexing approach is meant to optimize three key operations: The first uses a Block-level B+-tree

Index to facilitate rapid retrieval of a specific block based on its block ID, transaction ID, or

timestamp. The second uses a Table-level Bitmap Index to expedite finding tuples belonging

to the same transaction type. The third is a Layered Index for efficient retrieval of transactions

satisfying certain conditions. Finally, SEBDB allows the execution of CREATE, INSERT, and

SELECT commands to create a table, send a new transaction, and get query results respectively.

Additionally, it proposes the TRACE command to track provenance within its network.

There are several differences between SEBDB and Inter-MOON. The most important

one is the distinct goal of each approach: SEBDB presents a SQL interface for blockchain

operations, and Inter-MOON aims to execute SQL operations on blockchain data. Inter-MOON

adopts a middleware approach to support existing blockchain and relational solutions, while

4 https://kafka.apache.org/. Accessed: June 25, 2024.
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SEBDB is, itself, a blockchain database — it proposes a new blockchain that is integrated

alongside a relational database, using Kafka and Tendermint5 for consensus and a SQL-like

language for querying.

In both approaches, each table represents an entity. However, in SEBDB rows

represent blockchain transactions, while in Inter-MOON they represent assets. One similarity

is that they both allow join of blockchain and relational data. However, SEBDB does not

support operations such as SQL UPDATE or DELETE to blockchain entities, unlike Inter-

MOON. SEBDB allows the creation of the schema for a new blockchain entity through the SQL

CREATE TABLE command, while Inter-MOON allows this through a schema configuration

file (Sec. 4.1.7). However, in Inter-MOON the schema can be modified, while in SEBDB it is

immutable. In summary, querying in SEBDB is limited by the constraints of blockchain as a data

model, while Inter-MOON offers an alternative approach that bypasses some of the limitations

of immutability by defining a mutable Asset meta-object, composed of a series of immutable

transactions. For more information, see Sec. 4.2.1.

3.4 Marinho et al. (2020)

Marinho et al. (2020) introduces MOON. It is a middleware approach for enabling

the execution of SQL queries to both blockchain and relational entities. The proposed architecture

of MOON is depicted in Fig. 10 and consists of:

MOON Client: Stores the blockchain and database credentials.

Communication: Receives queries from the MOON Client and forwards them to the Scheduler.

Scheduler: Manages an ordered list of incoming transactions and forwards them to the SQL

Client or Blockchain Client.

SQL Analyzer: Uses pattern matching to extract information from received SQL, such as the

operation type and list of involved entities.

Mapper: Maps blockchain data to and from tuples, to be manipulated via the Temp Data

Manager. The Schema Manager is also used in this task.

Index Manager: Retrieves and stores blockchain index entries.

Temp Data Manager: Manages the creation and population of temporary tables used to house

blockchain data.

Schema Manager: Manages the blockchain entity schema information.

5 https://tendermint.com/. Accessed: June 25, 2024.
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Figure 10 – MOON architecture. Ownership of Marinho et al. (2020).

At its core, MOON is similar to the approach proposed in this work, denominated

Inter-MOON. Both works take a middleware approach and propose a similar core architecture.

Both works also use temporary tables to store blockchain data. However, MOON shows

limitations regarding interoperability, which are tackled in this work with a new proposal.

First, there is a limitation in query syntax. MOON lacks support for DELETE and

multi-valued INSERT operations, as well as only offering limited capabilities for subqueries,

aggregations, and sorting operations. In SELECT queries, for the sake of optimization, MOON

will only create temporary tables if the received SELECT contains a JOIN clause including a

blockchain and relational entity. Otherwise, the operation is processed with data in memory

and other keywords are ignored. Consequently, queries such as SELECT * FROM X ORDER

BY X.date, where X is a blockchain entity with a date attribute, will ignore the ORDER BY

clause, as the data is not virtualized. Other examples include keywords such as LIMIT and

OFFSET, GROUP BY, and HAVING, none of which need a JOIN clause to be present. In

contrast, Inter-MOON supports all of the previously mentioned operations, including providing

comprehensive support for subqueries, joins, and aggregations in SELECT operations, by always

virtualizing blockchain data.

Second, regarding blockchain asset retrieval. Both MOON and Inter-MOON retrieve

assets from the blockchain to insert into virtual tables. However, MOON does not optimize this

retrieval, opting instead for a naive sequential search that retrieves all assets of a given entity

one by one. Consequently, every request involving blockchain entities will retrieve potentially

thousands of blockchain assets, even if the query predicate limits the search to a select few assets.

Inter-MOON optimizes this by analyzing the query predicates to look for conditionals regarding

the defined Primary Key (PK) of a blockchain entity, and only fetching the assets referenced in
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the conditional if so (See Sec. 4.2.2). Otherwise, all assets are retrieved to complete the query.

Additionally, rather than a sequential search, Inter-MOON retrieves them in bulk.

There is a limitation concerning the schema of blockchain entities. MOON does not

consider the scenario of an evolving schema, and the impact of such an event in querying and the

construction of temporary tables. The approach proposed in this work (Sec. 4.2.1) allows for the

application of a mutable schema for blockchain entities, and accounts for missing attributes of

old data.

The proposed architecture itself is also different. First, Inter-MOON has no equiva-

lent to the MOON Client module, and the information stored within (blockchain and database

credentials) is instead kept in a configuration file inside the middleware. Applications are

expected to simply send queries to the middleware via Hyper Text Transfer Protocol Secure

(HTTPS), and the middleware will take care of the proper authentication of an application. There

is also no equivalent to the Scheduler module either — The blockchain and RDB contain their

concurrency managers, and there is no need to add a third ordering service on top. Queries are

executed as they are received, and Inter-MOON creates different tasks to asynchronously execute

each request from a client. Additionally, connection pools are now used to preserve resources.

New in the architecture is also a logging mechanism to aid in recovery in case of failure, the

Logger (Sec. 4.1.6). To conclude, this work extends support to blockchains with smart contract

functionality and includes a specification to aid in the development of smart contract functions

to query blockchain data (Sec. 4.2.2.2) within the constraints of Inter-MOON.

Finally, regarding the indexing of blockchain entities. MOON proposes indexing

blockchain assets using a simplified version of the table-based indexing policy proposed in

this work (Sec. 4.2.2.1). Unlike Inter-MOON, index retrievals in MOON are not optimized.

Given the indexing functions proposed in this work (See Sec. 5), it is the equivalent of MOON

always using the worst-case scenario considered by this work. This work also introduces a

smart contract-based indexing policy with optimized querying functions based on composite-key

blockchain asset keys (Sec. 4.2.2.2), extending the scope of supported blockchains and taking

advantage of more modern blockchain capabilities.

3.5 Schuhknecht et al. (2021)

Schuhknecht et al. (2021) proposes to “chainify” existing DBMSs by installing a

lightweight permissioned blockchain layer on top, coined chainifyDB. To deal with potentially
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contrasting black-box DBMSs that users may have in operation, chainifyDB introduces Whatever-

Voting (WV), a new processing model centered around blockchain technology that can be

integrated into existing heterogeneous database setups. The architecture of chainifyDB is

depicted in Fig. 11. A pluggable ordering service connects each node. Every node is composed

of the DBMS, the local ledger and 3 main components that make up the chainifyDB layer:

Chainify Server: This component handles the initial reception of SQL transaction proposals

from clients. It is responsible for early abort checks and authenticating the client based on

predefined policies.

Execution Server: This server takes the ordered transactions and executes them in parallel,

generating a digest in the form of a LedgerBlock.

Commit Server: This component performs the agreement round for the LedgerBlocks accord-

ing to the agreement policy, ensuring consistency across the distributed ledgers of all

participating organizations.

Figure 11 – Architecture of chainifyDB. Ownership of Schuhknecht et al. (2021).

ChainifyDB treats SQL transactions as proposals that need to be agreed upon by

all participating organizations. A client sends a transaction proposal to the Chainify Server,

which includes the original SQL transaction string and metadata. The server performs an early
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abort check by authenticating the client and verifying the proposal against predefined policies.

After the proposal passes the early abort checks, it is forwarded to other organizations’ Chainify

Servers for agreement. Once all organizations agree, the proposal is sent to the ordering service

that queues the transactions. The ordered transactions are then grouped into transaction blocks,

which are sent to the execution server.

The Execution Server constructs a dependency graph to identify and handle conflicts

between transactions. It performs a semantic analysis of each SQL transaction to determine the

read and write sets, allowing for conflict-free parallel execution. Transactions are executed in

stages, where each stage contains mini-batches of transactions that can be executed in parallel

without conflicts. The Execution Server generates a LedgerBlock as a digest of the executed

transactions and forwards it to the Commit Server. Commit Servers across organizations perform

an agreement round to finalize the LedgerBlock. Upon agreement, the LedgerBlock is appended

to the local ledgers of all organizations, emulating an immutable, replicated blockchain ledger.

This approach denominated the Whatever-Voting model, allows chainifyDB to categorically

handle both DML and DDL transactions.

Like some of the other works described in this section, Schuhknecht et al. (2021)

proposes a blockchain layer on top of existing Database Management System (DBMS). This

layer, denominated chainifyDB, executes SQL queries as blockchain operations. Inter-MOON

virtualizes blockchain entities, enabling SQL queries to be run directly on blockchain data by

treating blockchain entities as relational tables. Also, chainifyDB does not specifically mention

indexing policies, although one can hypothesize from the described approach that DBMS indexes

may be created via SQL much like other operations, and will be independently created within

each DBMS in the network upon agreement. However, because each node may have an unknown

black box DBMS, all of which may be different from one another, there is an unaddressed

limitation regarding accepted SQL syntax. Inter-MOON proposes both table-based and smart

contract-based indexing to improve query performance, and the accepted SQL keywords are

described at length. Finally, the blockchain ledger present in each node is meant for audit and

record-keeping. Therefore, it will not be queried, simply written to. In Inter-MOON, the ledger

is queried to prevent desynchronization.
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3.6 Han et al. (2023)

Han et al. (2023) proposes a system that addresses the challenge of efficient data

retrieval in Ethereum, a permissionless blockchain platform, by adding a relational database

within the blockchain node, thus allowing SQL SELECT queries to fetch Ethereum smart contract

data.

Fig. 12 shows the architecture of the proposal. The Service Interface Layer forwards

transactions to the Transaction Layer, which classifies them as either smart contract transactions

or regular transactions. Smart contract transactions are processed and validated by the Ethereum

Virtual Machine (EVM) through the Smart Contract Manager. Regular transactions are verified

by the Transaction Manager by checking the sender’s balance. Valid transactions of either kind

are stored in the mempool as pending — the mempool is an Ethereum node’s mechanism for

storing information on unconfirmed transactions.

Figure 12 – Architecture of the system proposed by Han et al. (2023). Ownership of Han et al.

(2023).

The Register Manager registers smart contracts and wallet addresses, allowing them

to be tracked and stored in the embedded RDB. This process involves activating APIs such as

registerContractAddress and registerWalletAddress, which store the addresses in SQLite. Once

registered, the results of transactions associated with these smart contracts and wallet addresses

are stored in the RDB (SQLite) by the Block Layer. During block generation, the Block Layer
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aggregates pending transactions from the mempool, performing a two-level check to determine

whether transactions are part of the registered smart contracts or wallet addresses. Transactions

not associated with registered entities are stored solely in LevelDB. Undesired registrations

can also be removed via APIs like removeContractAddress and removeWalletAddress. When a

registered entity is removed, all associated data is deleted from SQLite.

The Query Manager handles SQL queries on the embedded RDB. It supports APIs

like getData, which fetch data from both smart contracts and regular transactions stored in

SQLite. To ensure data integrity, the Query Manager permits only SELECT queries, filtering out

any write queries (INSERT, UPDATE, DELETE). The proposed system uses quorum6 to enable

the retrieval of range and conditional data in both smart contracts and regular transactions. See

Fig. 13. When a user initiates the registration of a smart contract address via the registerContrac-

tAddress API, the register manager creates a corresponding table in SQLite to store transaction

outcomes and records the address in the database. For regular transactions, the wallet address is

stored in a predefined table in SQLite without creating a new table.

Figure 13 – Overview of the process for registration (a) and querying (b). Ownership of Han et

al. (2023).

Upon processing transactions initiated by sendTransaction and sendRawTransaction,

the block layer checks if each transaction should be stored in SQLite for range queries, based

on their registration status. Transactions that need to be tracked are stored in both SQLite

6 https://github.com/Consensys/quorum. Accessed: June 25, 2024.
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and LevelDB, while others are stored only in LevelDB. For smart contract transactions, data

processed through the EVM is inserted into SQLite, while for regular transactions, details

are stored using the source and destination addresses and the amount. For retrieving regular

transactions over a specific period or between specific users, the user can initiate queries with

the relevant wallet addresses and conditions. The query manager checks the transaction type and

searches the regular transaction table in SQLite to respond to the queries.

The system proposed by Han et al. (2023) contains certain limitations, some of

which are a result of design choices. First, it only supports read queries (SQL SELECT) to

registered smart contracts or wallet addresses. Secondly, it only supports Ethereum. Thirdly,

registration is done via API, meaning there are two interfaces for interaction, API and SQL.

These limitations mean that the system is only applicable in cryptocurrency scenarios using

Ethereum, unlike Inter-MOON, which aims to be generally applicable in permissible blockchain

scenarios. Therefore, there is no concept of schema or entity — Transaction data is replicated

into relational tables for querying, but there is no differentiation beyond either a registration or

transfer of crypto assets. Inter-MOON differentiates assets by defining a relational schema to

blockchain entities, allowing the execution of complex SQL predicates based on asset properties.

In the proposed system, query predicates are either based on the timestamp, addresses, or transfer

amount.

3.7 Wang et al. (2023)

Wang et al. (2023) proposes aChain, a blockchain framework that integrates SQL-

based Online Analytical Processing (OLAP) capabilities directly into its architecture. The

system is designed to handle complex SQL queries, including SELECT, INSERT, UPDATE, and

DELETE operations, on blockchain data.

The architecture of aChain, depicted in Fig. 14, includes a transaction processing

mechanism that supports SQL commands. When a SQL query is issued, it is parsed and validated

before being simulated on a local database instance to generate a transaction proposal. This

proposal includes a readset, which records the data read during the transaction, and a writeset,

which captures the data to be written. The transaction is then ordered using an Execute-Order-

Validate (EOV) consensus mechanism, ensuring that all nodes agree on the transaction sequence

before it is executed and validated across the network.

The block structure is adapted to accommodate SQL-based transactions. Each block
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Figure 14 – Architecture of aChain. Ownership of Wang et al. (2023).

contains a header with standard blockchain components such as the block hash, previous block

hash, Merkle root, timestamp, nonce, and block number. The block body includes a list of

transactions, each encapsulating a SQL operation along with metadata. This design allows

aChain to maintain the history of all transactions. Blocks and transactions are also stored within

tables, for querying.

The framework handles the entity schema by organizing on-chain data into a rela-

tional init table. SQL CREATE, ALTER, and DROP are used to add, update, and delete entries

from this table, respectively. Consequently, this model supports schema evolution, allowing

changes to the database schema to be recorded as transactions on the blockchain. Each row in

the init table represents a schema modification transaction. One limitation is that this init table

cannot be queried using SELECT, only modified using the above commands.

SELECT commands are converted into a query that retrieves the necessary data

from the relational database and generates readsets. INSERT statements are transformed into

DQL statements that query the table to find any existing rows with attributes matching those

specified in the INSERT’s VALUES clause. The entire INSERT statement is also recorded in an

operational log (Ops). During the simulation phase, the converted DQL statements are executed

to obtain query results, which are then used to generate writesets and ensure that new data rows

are correctly added to the blockchain’s state.

An UPDATE statement is handled by converting it into a DQL statement that selects
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all attributes from the table specified in the UPDATE’s WHERE clause. The SET clause of the

UPDATE statement is recorded in Ops. The query results from these DQL statements are used

to apply the updates, with the updated attributes being recorded in the writeset. This process

ensures that all changes are tracked and versioned within the blockchain. DELETE commands

are similarly converted into DQL statements that query the table for rows matching the conditions

specified in the DELETE’s WHERE clause. The operation is recorded in Ops with an empty

value (null) to signify the deletion. The results of the DQL queries are used to identify the rows

to be deleted, and these deletions are then recorded in the writeset. This method ensures that

deletions are processed in a way that maintains the integrity and versioning of the blockchain

data.

aChain shows similar characteristics to this work. Once again, the biggest difference

is in approach — it is a proposal for a new blockchain integrating a RDB, rather than a middleware

that avoids directly interfering with the consensus and architecture of existing blockchains like

Inter-MOON. This is an important distinction, as aChain will replace an existing blockchain

setup rather than work with it like Inter-MOON. Consequently, aChain also uses a custom block

and transaction structure. Like Inter-MOON, aChain contains an entity schema. However, unlike

Inter-MOON, schema changes are recorded in the blockchain alongside the assets themselves.

The approach for UPDATE and DELETE are essentially the same as in this work: add a new

version of the asset with updated attributes, and mark the asset as deleted, respectively.

3.8 Comparison Review

Table 3 shows a summarized comparison of the approach proposed in this work and

related works. The type of approach is categorized as either “BC-based” (works that propose

blockchain features on top of a database), “DB-based” (works that propose database features on

top of a blockchain), and “Middleware” (works that propose a middleware allowing interaction

between existing blockchains and databases). Each work is also categorized based on which SQL

DQL and DML commands are supported, namely SELECT for DQL and INSERT, UPDATE,

and DELETE for DML. Partial support means the syntax is limited in a significant way. Data

partitioning and schema manipulation are also considered, and whether each work allows SQL

JOIN operations with on-chain and off-chain data via the proposed interface.

Nathan et al. (2019) adds a blockchain layer on top of PostgreSQL, meaning there

is no data partitioning nor replication — all data becomes blockchain-relational data. Zhu et
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Work Approach DQL DML Schema
manipula-
tion

Data parti-
tioning

JOIN on &
off-chain
data

Nathan et al. (2019) BC-based Yes Yes Yes No No
Zhu et al. (2020) DB-based Yes Partial Partial No Yes
Marinho et al. (2020) Middleware Partial Partial Partial Yes Yes
Schuhknecht et al. (2021) BC-based Yes Yes Yes No No
Han et al. (2023) BC-based Partial No No No No
Wang et al. (2023) DB-based Yes Yes Yes No No
Inter-MOON (This work) Middleware Yes Yes Yes Yes Yes

Table 3 – Comparison table of related works.

al. (2020), which introduces SEBDB, only partially supports DML. It allows INSERT, but not

UPDATE or DELETE. Additionally, while it explicitly supports joining with off-chain data, there

is no partitioning within the proposed API. There is also no way to modify an existing schema (ie.

No support for the ALTER command or any alternatives). Schuhknecht et al. (2021) proposes

chainifyDB, which allows for DQL, DML, and DDL. However, there is no data partitioning

or off-chain join: relational data is replicated into a blockchain ledger for audit. In aChain,

proposed by Wang et al. (2023), there is no partitioning or off-chain join either. The underlying

relational store is transformed into a blockchain.

Marinho et al. (2020) and Han et al. (2023) offer only partial support for DQL

queries, as discussed in sections 3.4 and 3.6 respectively. Marinho et al. (2020) also offers

no support for DELETE, and while new entities can be added to the schema, they cannot be

modified. For example, adding a column to an entity after the schema definition is impossible.

Han et al. (2023) neither approaches the schema concept nor supports any blockchain other than

Ethereum. An API is used to register data, not SQL, so an SQL-like DML query language is

unavailable.

Inter-MOON finds a niche in the scenario of an application wishing to partition data

into an existing blockchain solution as well as a relational database. Other referenced works

either propose a new blockchain-based or database-based solution, in which all data has to be

fully moved, rather than partitioned. In the case of most BC-based solutions, they wholeheartedly

change the basic functionality of a database. Consequently, existing relational data becomes

blockchain data, without partitioning, only full replication. Additionally, they do not consider

interoperability with off-chain data.
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4 METHODOLOGY

This chapter details the Inter-MOON proposal, including an overview of the proposed

architecture (Sec. 4.1) and a detailed description of the approach.

Blockchains have no standard query language, and directly mapping SQL queries to

equivalent API calls would depend highly on the quality and grammatical completeness of the

underlying querying API of each blockchain. Consequently, the approach proposed in this work

called Inter-MOON, was conceptualized as a middleware that enables the execution of SQL DQL

and DML queries to blockchain and relational entities simultaneously by mapping blockchain

entities to the relational data model, inside of tables. Once mapped, blockchain entities will

exist in the relational space alongside other relational entities and may be queried via SQL. This

mapping is supported by an indexing mechanism (Sec. 4.2.2) which allows the middleware to

track assets. To implement this mechanism, two policies are proposed: a table-based policy (Sec.

4.2.2.1) and a smart contract-based policy (Sec. 4.2.2.2). While the smart contract-based policy

is the most optimal, not every blockchain offers smart contract functionality. In such scenarios,

the table-based policy is still applicable.

Read operations, such as SELECT, can be organically executed once this mapping

technique, called virtualization (Sec. 4.2), is finished. Write operations, however, warrant a

more intricate approach, since there is also the need to persist the data into the blockchain (Sec.

4.3). INSERT is executed by skipping virtualization, mapping the given SQL to a blockchain

Put operation and activating the indexing mechanism (Sec. 4.3.2). A versioning strategy (Sec.

4.2.1) is utilized to support the execution of UPDATE (Sec. 4.3.3). Updates are simulated

via virtualization and mapped to a blockchain Put using the newer version of each asset. The

indexing mechanism is then activated to update the indexes. DELETE is executed similarly

to UPDATE. A soft-delete mechanism is applied to prevent the retrieval of deleted data in

exchange for maintaining immutability (Sec. 4.3.4). This approach allows for any blockchain

implementation that fulfills some basic requirements to be used (See Sec. 4.1.9 for more details).

4.1 Middleware Architecture

The Inter-MOON architecture (Fig. 15) is composed of three major components: the

Inter-MOON middleware, the RDB, and the BC. Any RDB or BC that fulfills the requirements

specified in Sec. 4.1.9 can be supported.
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Figure 15 – Overview of the Inter-MOON architecture.

In the proposed architecture, the Communicator demonstrates interoperability at

the application level, allowing Inter-MOON to receive and answer requests from clients. For

the middleware level, the SQL and Blockchain Clients allow the interaction with data stores.

The Mapper, Schema, SQL Analyzer, and Index Manager modules work in tandem to extract

information, join data, and map SQL requests to the blockchain data model. Three different users

are considered: The Developer, who develops an application that sends requests to Inter-MOON

over a network; The End User, who uses said application; And the Admin, who has internal

access to the middleware. Note that the Developer and Admin belong to the same organization.

The middleware is not meant to be a centralized platform, but instead a middleware placed

between an individual application and its data stores.

The middleware is further divided into several modules with separate functions,

explained further below.

4.1.1 Communicator

The Communicator is the front-facing service that may receive Hypertext Transfer

Protocol (HTTP) requests sent to Inter-MOON. Once received, they are queued and forwarded to

a worker pool to be executed. The middleware asynchronously executes every received request.

4.1.2 SQL Analyzer and Mapper

The SQL Analyzer extracts information, such as the operation type, entities, and

predicates from requests using a tokenizer mechanism. Each SQL statement is divided into

groups of tokens, wherein each token is classified based on its purpose and role within the syntax

of standard SQL. The token types include Keyword, Identifier, Function, Clause, Operator,
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and Wildcard. If any subqueries are found, the mechanism will use recursion to analyze them

separately. This mechanism ensures that Inter-MOON can extract the information it needs in a

semantically aware manner, even when subqueries or aggregation are present.

Consider the SQL example depicted in Fig. 16. We can extract the operation type

by observing the first keyword in the query, and the list of involved entities by fetching any

identifiers after a FROM or JOIN keyword that is not a subquery. If a subquery is found, recursion

is employed to analyze the subquery in a similar fashion.

DML Select
Wildcard

Keyword FROM
Identifier lab_results

Clause WHERE
Identifier lab_name

Operator =
Identifier "ASOIF"

Keyword Limit
Identifier 1
Semicolon

SELECT * FROM lab_results WHERE lab_name = "ASOIF" LIMIT 1;

Figure 16 – Inter-MOON SQL Analyzer tokenizer example.

Conversely, the Mapper component will hold functions that can map SQL data to and

from blockchain-readable formats using data transformations. Relational tuples are converted

into common data structures such as dictionaries, lists or arrays. See Fig. 17 for an example.

{
  key: 'contracts.4529',

  value: {
    user_id: 758,

    date: '2026-01-15',
    file: '4529.pdf'
  }

}

contracts

id user_id date file

4529 758 '2026-01-15' '4529.pdf'

... ... ...

contracts
Table

contracts
Dictionary

Figure 17 – Example of a mapping operation converting a SQL tuple into a dictionary.

4.1.3 Index Manager

The Index Manager is used by the table-based indexing policy to store and track

blockchain asset keys for querying. See Section 4.2 for more information regarding this strategy.



57

4.1.4 SQL and Blockchain Clients

The SQL and blockchain clients simply represent services meant to communicate

with the relational and blockchain stores, respectively. Each client has a generic driver that

implements adapters, allowing for generalized support as long as adapters are developed (Sec.

4.1.9). Smart contract support is possible using the same strategy, by having the driver invoke

smart contract functions via API. The granularity level of each store is left untouched: For the

relational store, it is of tuple level, for blockchain it is, usually, database or collection level,

depending on implementation. Connection pools are used to save resources.

4.1.5 Inter-MOON Smart Contract

The Inter-MOON smart contract represents a smart contract developed for usage

within the Inter-MOON environment and allows optimal querying of data via function invocations

when used alongside the smart contract indexing policy. See Sec. 4.2.2 for details regarding

indexing and Sec. 4.2.2.2 for the smart contract indexing policy.

4.1.6 Logger

The Logger is another component used by the table-based indexing policy. It uses

the relational database’s own continuous archiving and recovery features to create regular logs of

lookup table data after the execution of write operations. Consequently, in the event of failure

in the relational database, data loss is minimized, and restoration to any desired point in time

is facilitated, empowering data integrity. This design avoids introducing additional logging

overhead while harnessing the data protection and recovery features inherent to the underlying

relational database system.

4.1.7 Schema and Environmental Configuration Files

The schema is a configuration file that defines the relational schema applied to

blockchain entities by Inter-MOON during virtualization (Sec. 4.2.1). The environment config-

uration is a simple file where information like ports, database access, and other environment

variables used by Inter-MOON can be configured.
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4.1.8 Technical Details

This architecture aims not to interfere with consensus or the inner workings of the

blockchain component and to maintain integrity and compatibility. Inter-MOON preserves the

autonomy of each Database (DB). The middleware will mainly receive, process, and send or

reroute requests to each data store as necessary to fulfill queries.

While the blockchain-relational mapping processes result in some CPU-bound opera-

tions, the middleware is still mainly I/O bound, and the bulk of the CPU work will be handled by

the blockchain network itself or the relational database. Consequently, performance, scalability,

and concurrency are ultimately dependent on the data stores’ capabilities.

4.1.9 Supported Databases

Inter-MOON can support any relational database through adapters that implement

a common interface with exposed functions for establishing connections, creating and using

cursors, and fetching rows of data. A generic database driver object is used instead of any specific

driver, and different databases can be supported by switching the internal adapter accessed by

this generic driver (Fig. 18).

PostgreSQLAdapter

MySQLAdapter

One of... ...
GenericDatabaseDriver

+ adapter: GenericAdapter

Figure 18 – Simple rendition of the generic database driver.

Listing 1 illustrates a basic pseudo-code implementation of this approach. Connec-

tion settings can be obtained from the configuration file, as explained in Section 4.1.7. This

structure promotes maintainability, decoupling, and database support.

Código-fonte 1 – The Generic Database Driver basic structure. It holds an adapter object which

represents the driver of a database engine.

1 import psycopg2 # PostgreSQL

2
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3 class GenericDatabaseDriver:

4 def __init__(self , adapter):

5 self.adapter = adapter

6

7 def connect(self , *args , ** kwargs):

8 return self.adapter.connect (*args , ** kwargs)

9

10 driver = GenericDatabaseDriver(psycopg2)

11 with driver.connect("config.cfg") as conn:

12 conn.execute("SELECT * FROM users;")

As for blockchain, a similar approach can be used, with a Generic Blockchain

Driver and corresponding adapters to connect to the blockchain and execute API commands.

Consequently, the blockchain must offer some API for reading and sending data to the network.

At a minimum, functions equivalent to Get(key), GetList(keys), and Put(key,value) are required

to, respectively, fetch an asset, fetch a list of assets, and store an asset.

Provided the outlined requirements are met and an appropriate indexing policy

(table-based or smart contract-based) is applied, blockchains with and without smart contract

functionality are supported by Inter-MOON. Considering not every blockchain implements

the same features, each policy has particular characteristics, detailed in the dedicated sections

within this work (sections 4.2.2.1 and 4.2.2.2 respectively for each policy). With the previous

considerations in mind, despite the lack of a unified data model for blockchains being a current

research issue (MEYER; MELLO, 2022; YUAN; WANG, 2018), some degree of general support

is still feasible.

4.2 Virtualization of Blockchain entities

The core of the Inter-MOON approach is the virtualization of blockchain entities

in the relational model. Essentially, a modified relational schema is defined and applied to

blockchain entities (Sec. 4.2.1). Entities are tracked by an indexing mechanism, of which two

different policies are proposed for interoperability: one based on lookup tables, and another

based on smart contracts (Sec. 4.2.2). When Inter-MOON receives a SQL query, the blockchain

entities needed to complete the query are fetched from the blockchain and inserted into temporary
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tables inside the relational database. Finally, the query can be executed (Sec. 4.3). Consequently,

indexing is necessary to allow the middleware to track, read, and write entities to the blockchain

network. Without indexing, the middleware will have no way of knowing which entities need to

be retrieved to execute the virtualization. Conversely, it also means that Inter-MOON will only

track indexed entities (See Sec. 6.1 for details regarding this limitation).

4.2.1 Blockchain-relational Mapping

First, it is necessary to describe how Inter-MOON perceives blockchain entities.

Blockchain entities are considered generic business objects. Each instance of an entity, denom-

inated asset, is a key-value tuple < key,value >. key is a composite key string following the

format entityName.id. entityName is the entity identifier — in the relational model, this would

be the table name. id will uniquely identify the asset within the entityName namespace, and

together entityName.id will uniquely identify the asset in the world state. value is the asset data

in bytecode.

Consider the asset key equivalent to the relational PK. Both will uniquely identify a

piece of data. Note that this key differs from the cryptographic hash generated via consensus and

assigned to the transaction. The transaction ID identifies the transaction itself, and the asset key

identifies the asset, which is stored inside of a transaction.

To account for immutability, assets are considered historical records connected by

key. Every version of an asset will share the same key but exist in different transactions. The

latest version is tracked by Inter-MOON by one of the proposed indexing policies (Sec. 4.2.2).

This notion enables Inter-MOON to execute UPDATE (Sec. 4.3.3) and DELETE (Sec. 4.3.4)

operations to BC entities. UPDATE creates a new version of the asset, and DELETE marks the

asset as deleted — consider it a soft delete. Earlier versions will still exist and may be accessed

externally using tools provided by the blockchain itself. This approach helps align the contrasting

structure of blockchain architecture, in which assets are immutable, to historical records where

each record by itself is immutable but the historical series as a whole represents a mutable meta

asset.

See Fig. 19 for an example of this strategy. Suppose there is an asset of composite

key contracts.758, whose property value is updated. A second version of the asset will be

generated, say asset v2, connected to the original asset, now denominated asset v1, via key. Each

version of the asset is contained inside different transactions, but the common key historically
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connects them.

Transaction 1 Transaction 2

Asset
v1

{
  tx_id: 9f86....0a08,
  owner: 1BUR....Ynpq,
  asset: {
    key: 'contracts.758',
    value: {
      user_id: 4529,
      date: '2026-01-15',
      file: "4529.pdf"
    }
  },
  metadata: {
    [, ...]
  }
}

Asset
v2

{
  tx_id: 3hc1....0bn1,
  owner: 1BUR....Ynpq,
  asset: {
    key: 'contracts.758',
    value: {
      user_id: 4529,
      date: '2026-01-15',
      file: "updated_file.pdf"
    }
  },
  metadata: {
    [, ...]
  }
}

Figure 19 – Example of the asset versioning strategy. Asset v1 and v2 are connected via key, but
have different transaction IDs.

Given this definition, a relational schema is applied to instruct the RDB on how each

blockchain entity’s relational mapping shall be executed. Fig. 20 illustrates an example for a

supposed Contracts entity. The entity property defines the entityName identifier. primary_key

defines the name of the attribute whose value will be used for the blockchain id. Together,

they form the blockchain composite key described earlier (entityName.id). Additionally, other

attributes, as well as any foreign keys, will also be defined here. Attributes other than the primary

key become properties of the value component of the key-value structure.

During virtualization, the mapper (Sec. 4.1.2) checks the schema when building ta-

bles, and creates each attribute column as defined. For the sake of efficiency in table creation, PK

and Foreign Key (FK) constraints will not be created, only the columns themselves. Temporary

tables are used to avoid potential concurrency or synchronization issues arising from the mixed

usage of read and write operations in queries. If blockchain data were to simply be replicated

in the RDB, it would be liable to third-party tampering or modification, given the middleware

approach. However, performance is undeniably a concern if tables are constantly being created

and populated with every request. The viability of this approach is measured in Sec. 5.2, and Fig.

21 below shows an overview of this technique.
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{
 entity: 'contracts',

 attributes: [
  {name: 'id', type: 'integer'},

  {name: 'user_id', type: 'integer'},
  {name: 'date', type: 'datetime'},
  {name: 'file', type: 'string'},

 ],
 primary_key: ['id'],

 foreign_key: [{
  name: 'user_id',
  ref: {name: 'users', attr: 'id'}

 }],
 source: 'blockchain'
}

<Contracts>
Entity Schema

catalog.json

Figure 20 – Blockchain relational schema example for a Contract entity.

The schema is mutable. Over time, attributes can be added or removed. To preserve

blockchain immutability, existing assets of that entity will not be affected by changes, but newly

added ones will use the updated schema. If desired, older assets can be updated with an UPDATE

operation (Sec. 4.3.3) to use the latest version of the schema. Consequently, attributes are

considered NULLABLE by default, as there is a need to account for missing attributes from

older assets.

For example, suppose a schema change introduces a new address string attribute

to the Contracts schema. Older contracts, created before this addition, will use a NULL value

instead for the address column when virtualized.

Considering the proposed architecture (Fig. 15), this schema must be defined by the

Admin user before virtualization can occur, as Inter-MOON will only track indexed entities, and

indexing can only occur if the schema is defined. Consider this schema the cornerstone of the

virtualization approach presented in this work.

4.2.2 Blockchain Indexing and Data Fetching

As mentioned, virtualization is supported by a key concept, the indexing mechanism.

It enables the Inter-MOON middleware to track blockchain assets by indexing asset keys using

a policy. The mechanism is activated after a successful INSERT operation on a blockchain

entity. Assets are indexed using composite keys matching the entityName.id definition proposed

earlier (Sec. 4.2.1) for blockchain asset key-value tuples. During virtualization, it is used so
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Insert Into TableCreate Table

{
 entity: 'contracts',

 attributes: [
  {name: 'id', type: 'integer'},

  {name: 'user_id', type: 'integer'},
  {name: 'date', type: 'datetime'},
  {name: 'file', type: 'string'},

 ],
 primary_key: ['id'],

 foreign_key: [{
  name: 'user_id',
  ref: {name: 'users', attr: 'id'}

 }],
 source: 'blockchain'
}

<Contracts>
Entity Schema

catalog.json

<Contracts>
List of Blockchain Assets

[{
 ...,

 key: 'contracts.4529',
 value: {

   user_id: '758',
   date: '2026-01-15',
   file: "4529.pdf"

 }
},

...]

Linked

CREATE TEMP TABLE contracts (
    id BIGINT,
    user_id BIGINT,
    date DATETIME,
    file VARCHAR(255)
);

<Contracts>
Virtualized Entity

Temporary Table

contracts

id user_id date file

4529 758 '2026-01-15' '4529.pdf'

... ... ...

INSERT INTO 
    contracts (id, user_id, date, file)
VALUES 
    (4529, 758, '2026-01-15', '4529.pdf');

1 2

Figure 21 – Inter-MOON proposal for the virtualization of a Contracts blockchain entity.

that the middleware can know which assets need to be retrieved from the blockchain. Naturally,

a limitation of this mechanism is that blockchain entities will not be tracked by Inter-MOON

unless the key is also indexed using Inter-MOON.

Regardless of policy, the indexing mechanism comprises write and read functions.

Table 4 below describes each function. Write (W ) functions to create or update indexed asset

keys. W1 creates the index, W2 updates it, and W3 marks it as deleted. Read (R) functions

optimally retrieve keys based on predicates concerning the blockchain entityName and id.

The worst-case scenario is represented by R2, in which all keys of X are returned. It

is used for SQL queries that do not contain predicates, or whose predicates do not reference id.

R1 optimizes for scenarios where a single key is given. R3 is for membership operations over a
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Function Description
W1 Insert key with entityName = X and id = Y

W2 Update key where entityName = X and id = Y

W3 Mark one key as deleted where entityName = X and id = Y

R1 Select one index where entityName = X and id = Y

R2 Select all keys where entityName = X

R3 Select all keys where entityName = X and id ∈ {Y1,Y2...Yn}
R4 Select all keys where entityName = X and Yi ≥ id ≥ Yj

Table 4 – Functions executed by the indexing mechanism.

set of keys. R4 optimizes for range comparisons.

To implement this mechanism, two policies are proposed: a table-based policy

(Sec. 4.2.2.1) and a smart contract-based policy (Sec. 4.2.2.2). The table-based policy uses

the relational database to implement indexing and the smart contract-based policy uses a smart

contract instead. The proposed policies will implement each function described in Table 4 within

their platform. As is the case for the schema (Sec. 4.2.1), the Admin user must preemptively

choose a policy and either create the relational table or write the smart contract to enable

virtualization.

4.2.2.1 Table-based Indexing

The table-based indexing policy tracks blockchain entities by storing every blockchain

asset key in a lookup table in the relational database. The lookup table stores the entityName

and id components that make up the blockchain asset composite key. The transaction ID (tx_id)

and a version parameter are also stored for record-keeping. The transaction ID denotes which

transaction holds the latest version of an asset. An is_deleted flag is used to mark deletion. A

composite index on the tuple < entity, id > provides optimized lookup times, allowing the table

to efficiently index the asset key. Table 5 illustrates an example.

entity id tx_id version is_deleted
’contracts’ 1 ’a23c...f137’ 0 FALSE
’contracts’ 2 ’taa4...vd19’ 0 FALSE

’files’ 1 ’cs3c...fd3c’ 1 FALSE
... ... ... ... ...

Table 5 – Example of a lookup table for use with the table-based indexing policy.

As for implementation requirements, this policy assumes that the blockchain API

may only expose the functions nominated in Sec. 4.1.9. These are: Get, Put and GetList.

In the proposed architecture, the Index Manager (Sec. 4.1.3) is responsible for
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interacting with this table. When indexed, the keys can be retrieved and then used to query

the blockchain for the asset data. For example, suppose X is defined within the schema as a

blockchain entity with id as the primary key. Then, Inter-MOON receives the following query:

SELECT * FROM X WHERE X.id > 5000. The Index Manager queries the lookup table for

the keys matching the predicate. Then, the resulting collection of keys is used by the blockchain

client to fetch the data of the matching assets. Finally, they are virtualized according to the

schema.

Naturally, in this policy, the functions described in Table 4 become SQL queries (See

Table 6). The read (R) functions query the lookup table to return a collection of matching keys,

which are fed into a GetList call during data fetching to optimally fetch only the assets matching

the predicate. Of note is that R1 and R3 do not need to be implemented in this policy. R1 would

be used to retrieve a single key from the lookup table. However, this operation can be easily

translated into a simple Get blockchain API call using the given key. The same is true of R3: It

is essentially a GetList call using the provided list of keys. If the blockchain API only allows

querying via transaction ID, then tx_id can be returned instead of the key in all R queries and

used as parameters for Get and GetList.

Function SQL

W1 INSERT INTO blockchain_index (entity, id, tx_id)

VALUES (X, Y, Z)

W2 UPDATE blockchain_index

SET version = version + 1, tx_id = Z

WHERE entity = X AND id = Y

W3 UPDATE blockchain_index

SET is_deleted = TRUE

WHERE entity = X AND id = Y

R2 SELECT entity, id FROM blockchain_index

WHERE entity = X

AND is_deleted = FALSE

R4 SELECT entity, id FROM blockchain_index

WHERE entity = X AND id >= Yi AND id <= Y j

AND is_deleted = FALSE

Table 6 – Table-based policy implementation of each indexing function.

If the SQL received by Inter-MOON also contains pagination parameters (ie. LIMIT

and OFFSET), they are used to further optimize asset querying by limiting the number of keys
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returned by the R functions. For example, in the following query: SELECT * FROM X LIMIT

10. R2 would be used, as the SQL contains no predicates on id. If hundreds of thousands of keys

are indexed, this would be highly inefficient. However, the pagination parameters are inherited

by R2, allowing it to return only the first 10 keys.

4.2.2.2 Smart Contract-based Indexing

The smart contract-based indexing policy uses a smart contract to store and track

blockchain entities by directly reading and writing assets into the state database with custom

smart contract functions. Given the proposed Inter-MOON architecture (Fig. 15), the blockchain

driver interfaces with the smart contract to execute commands, and smart contract functions

execute the querying and indexing operations as written.

Usually, smart contracts are modeled after business objects. This means that separate

smart contracts would be created for every blockchain entity. However, this policy assumes a

generic Inter-MOON smart contract that can interact with any blockchain entity recorded in

the Inter-MOON schema (Sec. 4.2.1). This approach helps prevent redundancy — with several

smart contracts, any functions in this specification will have to be rewritten in each contract. The

approach is based on the Fabric (ANDROULAKI et al., 2018) implementation of smart contracts

(See also Sec. 2.2) due to its open-source nature and non-dependency on cryptocurrency, and

assumes that:

• The smart contract offers functions that can write (Put(key,value)), read (Get(key)) and

delete (Del(key)) state to the underlying state database.

• The smart contract allows the creation and querying of composite keys and the state

database has its indexing mechanism for keys.

• Get returns the value of a key. The ledger state can be iterated using Get range queries.

• Put updates an existing state using a key or writes a new state if the key doesn’t exist.

• Del deletes a state, preventing retrieval. The deleted data still exists inside of the blockchain.

The blockchain has its record-keeping mechanism to preserve the history of a key, and the

smart contract API has its interface to retrieve historical data.

These assumptions cover the extent of the Inter-MOON approach to blockchain

entity life-cycle, as described in Sec. 4.2.1. The scalability of this approach depends on the smart

contract implementation and its underlying state database.

Each function defined in Table 4 of Sec. 4.2.2 describing the indexing mechanism
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becomes a smart contract function in this policy. The algorithms for each function will be

described in the following subsections using pseudo-code.

4.2.2.2.1 W1 — PutState

See Algorithm 1 for PutState(k,v), which implements W1. entityName is the name

of the blockchain entity, id is the identifier (the attribute defined as the PK in the schema, see

Sec. 4.2.1) and v is the value in bytecode. The function will build the composite key and then

call the state database Put(key,value) to write the state to the ledger.

Algoritmo 1: PutState

Data: entityName, id, v

Result: asset A if successful, nil otherwise.
1 k← entityName+ id

2 A← Put(k,v)

4.2.2.2.2 W2 — U pdateState

The smart contract algorithm for W2 is the same as W1, since Put(k,v) updates the

value of a key if the key already exists in the state database. The older value associated with the

key remains inside the blockchain but is inaccessible within the Inter-MOON interface.

4.2.2.2.3 W3 — DeleteState

See Algorithm 2 for DeleteState(k), which implements W3. The function will build

the composite key and then call the state database Get(k) function to query the ledger using the

key. If the asset exists, it is marked as deleted and the key is returned.

Algoritmo 2: DeleteState

Data: entityName, id

Result: k of the deleted asset if successful, nil otherwise.
1 k← entityName+ id

2 a← Get(k)
3 if a exists then
4 Del(a.key)
5 end
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4.2.2.2.4 R1 — GetStateByKey

GetStateByKey(entityName, id) implements R1. See Algorithm 3. It simply builds

the composite key and then calls the state database Get(k) function to retrieve the state from the

ledger.

Algoritmo 3: GetStateByKey

Data: entityName, id

Result: < key,value > tuple.
1 k← entityName+ id

2 A← Get(k)

4.2.2.2.5 R2 — GetStateByEntityName

The GetStateByEntityName(entityName,N,kb) function implements R2. See Algo-

rithm 4 below. N is maximum number of items, and kb is a bookmark. These parameters are

used for pagination, similar to LIMIT and OFFSET in SQL. It begins by fetching the state of

the bookmark if given, to denote the starting position for the iteration. If not, iterate through

the ledger. In each state, it checks whether each key matches the requirement. If so, the asset

(a) is added to the return set. The returning set is limited by N. Note that the efficiency of

this procedure will depend on the blockchain state database. For example, KVS using indexed

composite keys in sorted order will allow efficient iteration.
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Algoritmo 4: GetStateByEntityName

Data: entityName, N, kb

Result: set of assets A = {a1,a2...an}

1 if kb = /0 then

2 L← ledger

3 else

4 L← Get(kb) // If a bookmark is given

5 end

6 A = {}

7 n← N

8 while L has next do

9 a← next

10 ak← a.key

11 if ak.entityName = entityName then

12 if n > 0 then

13 A← A∪a

14 n← n−1

15 end

16 end

17 end

4.2.2.2.6 R3 — GetStateByKeyList

GetStateByKeyList(entityName,Sid,N,kb) implements R3. It retrieves a set of states

using a set of keys (Sid). See Algorithm 5. It uses the same algorithm as GetStateByEntityName

(Algorithm 4) but with an additional set membership comparison (line 12).

4.2.2.2.7 R4 — GetStateByKeyRange

GetStateByKeyRange(entityName, idi, id j,N,kb) implements R4, which retrieves as-

sets based on a range comparison. See Algorithm 6. Just like GetStateByKeyList (Algorithm

5) proposed for R3, it also uses the same base algorithm as GetStateByEntityName but with the

addition of the range comparison on top. The two parameters idi and id j comprise the range

limits and are inclusive.
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Algoritmo 5: GetStateByKeyList

Data: entityName, Sid , N, kb

Result: set of assets A = {a1,a2...an}
1 if kb = /0 then
2 L← ledger

3 else
4 L← Get(kb) // If a bookmark is given

5 end
6 A = {}
7 n← N

8 while L has next do
9 a← next

10 ak← a.key

11 if ak.entityName = entityName then
12 if n > 0 and ak.id ∈ Sid then
13 A← A∪a

14 n← n−1
15 end
16 end
17 end

Algoritmo 6: GetStateByKeyRange

Data: entityName, idi, id j, N, kb

Result: set of assets A = {a1,a2...an}

1 if kb = /0 then

2 L← ledger

3 else

4 L← Get(kb) // If a bookmark is given

5 end

6 A = {}

7 n← N

8 while L has next do

9 a← next

10 ak← a.key

11 if ak.entityName = entityName then

12 if n > 0 then

13 if ak.id ≥ idi and ak.id ≤ id j then

14 A← A∪a

15 n← n−1

16 end

17 end

18 end
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4.3 Query Mapping

This section describes the approach taken to execute each type of SQL operation

supported by Inter-MOON, including the supported syntax.

Inter-MOON supports queries written in standard SQL that exclusively contain a

single DML or DQL statement, such as SELECT, INSERT, UPDATE, or DELETE. The query

must start with one of these keywords. Support for Data Definition Language (DDL) commands,

distributed queries, and SQL transactions is beyond the scope of this work.

See the flowchart in Fig. 22 for a general overview of how Inter-MOON executes

queries. Assuming a valid query is received, the SQL Analyzer (Sec. 4.1.2) extracts the type

of operation and the list of involved entities from the query (step 1 in Fig. 22). Then, the list

of entities is checked against the blockchain schema (Sec. 4.2.1) to reveal which, if any, are

blockchain entities (step 2 in Fig. 22).

YesNo

Query
contains BC

entities?

Start

End

Fetch BC Data

Extract
Operation & 
Entities

Execute SQL on
RDB store

Execute
Operation

Check schema
for BC entities

4.a

5.b

1 2

3

4.b

Figure 22 – Flowchart showing a simplified view of the Inter-MOON querying mechanism. The
“Execute Operation” bubble will result in a different set of actions depending on the
operation type.

Queries are expected to fall into one of the following scenarios: (1) SELECT,
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INSERT, UPDATE, or DELETE with only relational entities, (2) SELECT, INSERT, UPDATE,

or DELETE with only blockchain entities and (3) SELECT with JOIN using both blockchain

and relational entities.

For scenario (1), Inter-MOON simply forwards the query to the RDB and sends

back the response. For scenario (2), there are separate approaches depending on the type of

SQL statement, explained further below. The approach for scenario (3) is the same as (2) for

SELECT. In Fig. 22, step 4.a represents scenario (1), and step 5.b represents scenarios (2) and (3).

Note that for scenarios (2) and (3), before the query can be executed, the indexing mechanism

uses one of the policies to fetch blockchain data in step 4.b of Fig. 22 to enable virtualization.

Virtualization is then executed in step 5.b, except for INSERT operations. Inter-MOON does not

virtualize assets during INSERT, as it is unnecessary to conclude the operation.

In the following subsections, each type of statement in scenario (2) will be described

in detail.

4.3.1 SELECT

In SQL, SELECT queries are read operations that return tuples matching the query

criteria. They can be quite complex and involve numerous operations, like aggregations, joins,

and sub-selects, among others.

Inter-MOON completes SELECT queries by simply executing the proposed virtual-

ization technique (Sec. 4.2) and then executing the received SQL query. After virtualization,

blockchain entities will exist inside temporary tables alongside other relational entities, categori-

cally allowing the execution of any kind of SQL SELECT query.

Code 2 is a Backus–Naur form (BNF)-like representation of the syntax supported by

Inter-MOON in SELECT operations:

Código-fonte 2 – Supported syntax for SQL SELECT.

1 SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]

2 [ * | expression [ [ AS ] output_name ] [, ...] ]

3 [ FROM from_item [, ...] ]

4 [ WHERE condition ]

5 [ GROUP BY [ ALL | DISTINCT ] grouping_element [, ...]

]
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6 [ HAVING condition ]

7 [ { UNION | INTERSECT | EXCEPT } [ ALL | DISTINCT ]

select ]

8 [ ORDER BY expression [ ASC | DESC | USING operator ] [

NULLS { FIRST | LAST } ] [, ...] ]

9 [ LIMIT { count | ALL } ]

10 [ OFFSET start [ ROW | ROWS ] ]

11 [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } {

ONLY | WITH TIES } ]

Where from_item can be one of (Code 3):

Código-fonte 3 – Supported syntax for from_item element.

1 [ ONLY ] table_name [ * ] [ [ AS ] alias [ (

column_alias [, ...] ) ] ]

2 [ TABLESAMPLE sampling_method ( argument [,

...] ) [ REPEATABLE ( seed ) ] ]

3 [ LATERAL ] ( select ) [ AS ] alias [ ( column_alias [,

...] ) ]

4 with_query_name [ [ AS ] alias [ ( column_alias [, ...]

) ] ]

5 [ LATERAL ] function_name ( [ argument [, ...] ] )

6 [ WITH ORDINALITY ] [ [ AS ] alias [ (

column_alias [, ...] ) ] ]

7 [ LATERAL ] function_name ( [ argument [, ...] ] ) [ AS

] alias ( column_definition [, ...] )

8 [ LATERAL ] function_name ( [ argument [, ...] ] ) AS (

column_definition [, ...] )

9 [ LATERAL ] ROWS FROM( function_name ( [ argument [,

...] ] ) [ AS ( column_definition [, ...] ) ] [,

...] )

10 [ WITH ORDINALITY ] [ [ AS ] alias [ (
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column_alias [, ...] ) ] ]

11 from_item join_type from_item { ON join_condition |

USING ( join_column [, ...] ) [ AS join_using_alias

] }

12 from_item NATURAL join_type from_item

13 from_item CROSS JOIN from_item

And grouping_element can be one of (Code 4):

Código-fonte 4 – Supported syntax for the grouping_element element.

1 ( )

2 expression

3 ( expression [, ...] )

4 ROLLUP ( { expression | ( expression [, ...] ) } [,

...] )

The flowchart depicted in Fig. 23 illustrates the proposal for SELECT. (1) The

necessary assets are fetched from the blockchain and virtualized. Virtualization incurs the

activation of the indexing mechanism to fetch the relevant assets. In the flowchart, this step is

omitted for clarity. (2) Then, the SELECT query is executed.

4.3.2 INSERT

On SQL, INSERT statements add one or more tuples into a table. The target

table, column names, and attribute values for each given column can be defined in the query.

For example, the query INSERT INTO users (id, name, email) VALUES (57, ’John’,

’john@mail.com’) will add a new tuple to the users table and assign it the combination of

values 57, ’John’ and ’john@example.com’ to the id, name, and email columns, respectively.

To execute INSERT on blockchain entities, Inter-MOON considers the relational

INSERT to be functionally equivalent to the blockchain Put(key,value) function (See also Sec.

4.1.9), with multi-valued INSERT equivalent to multiple consecutive Put calls. Fig. 24 shows the

proposed mapping. The entity name is extracted from the table name identifier. The blockchain
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Start

End

Virtualize BC
assets

Execute SQL

SELECT

1

2

rdb.execute_sql(
 "CREATE TEMP TABLE contracts [...];

  INSERT INTO contracts [...];"
)

rdb.execute_sql(
  "SELECT *
   FROM contracts

   WHERE user_id = 758;"
)

SELECT *

FROM contracts

WHERE user_id = 758;

Figure 23 – Blockchain SELECT in Inter-MOON

key is constructed from the primary key and table name identifier (the entityName). The columns

and values are extracted and transformed into tuples, except for the primary key, and comprise

the value. The final result is a blockchain < key,value > tuple.

Put('table_name.id', {
  [column: value]

  [, ...]
})

Blockchain
Put Operation

INSERT INTO
  table_name (column [, ...])

VALUES
  (value [, ...]) [, ...]

SQL
INSERT Operation Maps to

Figure 24 – SQL INSERT to Blockchain mapping.

As an aside, whenever an asset needs to be added to a blockchain, there is a need for

extra information in the form of the asset owner’s public and private keys to assign ownership

and verify the transaction. There are two common scenarios for asset ownership: The asset

owner is the application (or organization), and the asset owner is the application client. In this

work, the approach is based on the first scenario. This is handled by the blockchain itself, in

which the Inter-MOON middleware will be configured as part of the organization.

Inter-MOON supports INSERT statements written in the following format (Code 5):
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Código-fonte 5 – Supported syntax for SQL INSERT.

1 INSERT INTO table_name [ AS alias ] [ ( column_name [, ...]

) ]

2 { VALUES ( { expression | DEFAULT } [, ...] ) [, ...] }

Fig. 25 shows an overview of the whole INSERT procedure with a Contracts entity.

Note that virtualization is unnecessary in INSERT operations. If the blockchain Put is successful

(step 2), the generated key is indexed according to the specified policy (step 3).

Start

End

Map
SQL -> BC

Execute Put

asset = {

  key: contracts.4529,

  value: {

    [column: value] [, ...]

  }

}

bc.Put(asset.key, asset.value)

INSERT

1

2

INSERT INTO 
    contracts (id, user_id, date, file)

VALUES 
    (4529, 758, '2026-01-15', '4529.pdf');

Store Index3

Figure 25 – Blockchain INSERT in Inter-MOON.

4.3.3 UPDATE

In SQL, the UPDATE statement is used to modify existing records in a table. One

must specify the target table, and then the SET clause can be used to define the new values for

the desired columns. Additionally, a WHERE clause can be used to specify which rows should

be updated based on certain conditions.

In blockchain, each asset is unique, immutable, and may hold some arbitrary data.
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Therefore, updating an asset is not normally allowed. Inter-MOON allows assets to be updated

by viewing them as historical records, where each version of an asset represents a specific state of

the asset meta-object. Inter-MOON creates a new version of the asset with an updated value. The

mapping operation (Fig. 26) itself is another Put(key,value), similar to INSERT. Both versions

of the asset exist inside the blockchain within different transactions linked by their key.

UPDATE table_name 
SET column = value [, ...]

[...]

SQL
UPDATE Operation Maps to

Put('table_name.id', {
  [column: value]

  [, ...]
})

Blockchain
Put Operation

Figure 26 – SQL UPDATE to Blockchain mapping.
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With this mapping in mind, Inter-MOON supports UPDATE statements written in

this syntax (Code 6):

Código-fonte 6 – Supported syntax for SQL UPDATE.

1 UPDATE table_name [ * ] [ [ AS ] alias ]

2 SET { column_name = { expression | DEFAULT } } [, ...]

3 [ FROM from_item [, ...] ]

4 [ WHERE condition ]

Fig. 27 shows an overview of the Inter-MOON UPDATE procedure. (1) The relevant

assets are virtualized. Then, (2) the PK of each asset that must be updated is selected. This is done

by executing a SELECT operation that inherits the original UPDATE operation’s predicates. (3)

The UPDATE operation is executed, which updates the values of the virtualized assets. Finally,

(4) the virtualized assets are extracted from the temporary table, packed into < key,value >

tuples, and stored on the blockchain using Put. If the operation is successful, the indexing

mechanism is activated to update the asset versions.
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rdb.execute_sql(
 "CREATE TEMP TABLE contracts [...];

  INSERT INTO contracts [...];"
)
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UPDATE contracts
SET file = 'updated_contract.pdf'

WHERE file = 'test.pdf';

rdb.execute_sql(
 "SELECT id
  FROM contracts

  WHERE file = 'test.pdf'"
)

assets = rdb.execute_sql(
 "UPDATE contracts
  SET file = 'updated_contract.pdf'

  WHERE file = 'test.pdf'"
)

for each asset:

  asset = mapper.to_bc(asset) 
  bc.Put(asset.key, asset.value)

5 Update Index

Figure 27 – Blockchain UPDATE in Inter-MOON

4.3.4 DELETE

A DELETE operation on SQL will delete tuples from a table. Predicates and other

keywords can be used to specify which tuples should be deleted, as well as how related objects

and constraints should behave, for example, in the presence of FKs referencing the deleted tuple.

Once deleted, the tuples cease to exist and cannot be retrieved or referenced.

In blockchain, data cannot be deleted without affecting the integrity of the whole

chain. Deleting a transaction will change the cryptographic hash of the block containing it

and all subsequent blocks, breaking consensus. The same goes for the assets stored inside the

transactions. Consequently, blockchain does not provide any means to delete or alter data from
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mined blocks without interfering with the inner workings of the consensus algorithm.

However, due to the indexing mechanism (Sec. 4.2.2) proposed in this work, Inter-

MOON offers a viable alternative. The approach is a soft-delete mechanism in which the

asset is marked as deleted. This approach ensures that the blockchain consensus and integrity

are maintained while replicating the result of a DELETE SQL operation within the Inter-

MOON interface: preventing data retrieval and referencing of the deleted data. When viewed

as a historical record, the asset is considered deleted because its latest version is unreachable.

However, previous versions are still accessible from outside the Inter-MOON interface, and exist

within the blockchain, as previously established. The mapping follows the structure depicted in

Fig. 28. In blockchain, it is a Del operation that marks the specified asset and key as deleted.

DELETE FROM table_name 

[...]

SQL
DELETE Operation Maps to Blockchain

Del Operation

Del('table_name.id')

Figure 28 – SQL DELETE to Blockchain mapping.

Inter-MOON supports DELETE statements written in the following format (Code

7):

Código-fonte 7 – Supported syntax for SQL DELETE.

1 DELETE FROM table_name [ [ AS ] alias ]

2 [ WHERE condition ]

Fig. 29 shows a general flowchart of the Inter-MOON DELETE procedure. Steps (1)

and (2) are the same as in the UPDATE procedure (Sec. 4.3.3). The assets are virtualized and a

SELECT operation that inherits the predicates from the original query is executed to extract the

PK of the soon-to-be-deleted assets. In (3), the Del operation is executed to mark the matching

assets as deleted. Then, the index is updated.
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Figure 29 – Blockchain DELETE in Inter-MOON
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5 EVALUATION AND RESULTS DISCUSSION

This chapter details the experimental methodology for Inter-MOON. Throughout

this research, two prototypical versions of the Inter-MOON middleware were developed, one

using the table-based indexing policy for the first experiment (Sec. 5.1) and another using the

smart contract-based policy for the second (Sec. 5.2).

5.1 Comparing the performance of MOON & Inter-MOON

Among the differences between Inter-MOON and MOON, there are performance

improvements. Therefore, an experiment was conducted to illustrate how effective these improve-

ments have been. The Inter-MOON middleware prototype used for comparison was developed

with Python 3.6.9 and the same blockchain network as MOON, BigchainDB. Since BigchainDB

offers no support for smart contracts, the indexing policy was table-based, detailed in Sec.

4.2.2.2.

To keep comparisons fair, this experiment mirrored the experiment executed in the

MOON paper (MARINHO et al., 2020). Response speed was the metric, calculated using the

full round-trip time taken from the moment the client sends the request to when it receives a

response, same as in the MOON experiment. The data consisted of a synthetic dataset containing

two entities, Patients (stored on the RDB) and Lab Results (stored on the blockchain), as per

Fig. 30. The testing environment was built using a series of Ubuntu 18.04.6 Virtual Machine

(VM)s running on a local network (Fig. 31). Table 7 describes each VM in detail. VM-1

contained instances of both MOON and Inter-MOON, only one of which was running at any

time. PostgreSQL 9.6 was used for the SQL database in VM-2, while BigchainDB 2.2 was used

for the blockchain nodes in the network. Lastly, a machine running Ubuntu 22.04, 4 GB of RAM,

and an Intel i5-4300 2.60 GHz CPU was used to simulate the client.

Lab Results (100 rows)

varchar uid
integer patient_id
varchar content_base64
date datetime
varchar lab_name
integer lab_site
integer expired

Patients (100 rows)

integer id
varchar name
varchar email
varchar phone
date birth_date

Figure 30 – Entity schema used for the first experiment.
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Figure 31 – Testing environment.

Name Role RAM Disk Read & Write Speed
VM-1 Middleware host 4 GB 7.5 GB/sec & 0.8 GB/sec
VM-2 SQL database host 2 GB 6 GB/sec & 0.8 GB/sec
VM-3 . . . VM-8 Blockchain network nodes 1 GB/each 5 GB/sec & 0.4 GB/sec

Table 7 – Summary of the virtual machines used in the first experiment.

A set of four queries (Table 8) was executed on each tool. Inter-MOON was expected

to provide significantly improved response speeds in queries involving many entities (Q2 and

Q3) while maintaining similar, but still slightly faster speeds, in other kinds.

Query SQL
Q1 INSERT INTO lab_results (<...columns>) VALUES (<...values>);

Q2 SELECT * FROM lab_results;

Q3 SELECT * FROM lab_results JOIN patients ON lab_results.patient_id =

patients.id;

Q4 UPDATE lab_results SET expired = 1 WHERE uid = <uid>;

Table 8 – Set of queries used in the first experiment.

Results (Fig. 32) show that Inter-MOON was generally much faster. In Q1, the

results were in the same ballpark. In Q2 and Q3, they were about 10 times higher. In Q4, there

was an improvement of about 5.5 times, instead. UPDATE operations, which is the case for Q4,

are more computationally expensive and latency-inducing, as they involve several trips to both

database and blockchain systems to read, update, and write the updated information. Regardless,

Inter-MOON managed to maintain sub-second response speeds, while MOON demonstrated

very high latency (more than two seconds) on Q4.
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Figure 32 – Graphical comparison of the Avg. Response Speed of 100 query executions between
MOON and Inter-MOON.

5.2 Evaluating the overhead introduced by Inter-MOON over a Blockchain-only approach

The purpose of this experiment is to evaluate the performance overhead introduced by

the Inter-MOON middleware when compared to the base performance produced by an approach

using only blockchain.

Hyperledger Fabric was chosen as the baseline blockchain, as it is a commonly used

open-source blockchain solution and offers adequate smart contract functionality. Consequently,

a second version of the Inter-MOON middleware was developed, using Python 3.10.12, as well as

a Fabric smart contract, written in Go under the specifications laid out in Sec. 4.2.2.2. Naturally,

the Inter-MOON and Fabric-only approaches used the same smart contract.

The experiment was conducted on a host machine running Ubuntu 22.04 with an 8-

core 3.60GHz Intel i3-10100F CPU and 16 GB of RAM. The environment used docker containers

for the Inter-MOON middleware, PostgreSQL 9.6, and a container each for a Hyperledger Fabric

network of five peers and one orderer, for a total of six nodes. Fabric allows the choice of

LevelDB or CouchDB as the state database, and LevelDB was chosen, as it is a KVS matching

the specification. Solo was used for the ordering service plugin, as it is recommended for

development and when the network only has one orderer node. This configuration represents the

default settings for a Fabric network.

The data used in the experiment was synthetic. Three entities were created: a
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relational entity Users to represent user data, and two blockchain entities, Contracts and User

Files, to represent data related to users stored in the blockchain for record-keeping purposes.

The methodology was as follows: queries were continuously sent over a five minute

(300 seconds) runtime. Query duration and the timestamp were recorded. The chosen metric

was throughput, calculated as the total number of transaction requests (the workload) completed

over the runtime, measured in Transactions per Second (TPS). Note that, in Fabric, each query

is a smart contract function invocation sent via API, while in Inter-MOON, queries are written

using SQL. Comparisons made in this experiment between the Inter-MOON and Fabric-only

approach are limited to only the querying functions specified in Sec. 4.2.2.2, as Fabric is only

capable of executing queries that are defined within smart contract functions.

The experiment was divided into three scenarios. With N being the number of

records being retrieved or inserted by a query: (1) queries where N = 1, (2) queries where

N = 1 featuring concurrent connections, (3) queries where N ∈ {1000,5000,10000}. (1) and (3)

represent common use cases of a database and (2) a stress test scenario. For completeness, an

extra fourth scenario was considered: (4) in which Inter-MOON executes a series of common

SQL select operations unachievable by the Fabric alone, such as aggregation and join.

5.2.1 Scenario 1

To start, the first experimental scenario uses simple write and read queries where

N = 1. Table 9 shows each query in the Fabric smart contract invocation and SQL syntax.

Query Fabric SQL

Q1: Select invoke("GetStateByKey",

"user_files", "$key")

SELECT * FROM user_files

WHERE id = $key

Q2: Insert invoke("PutState",

"user_files", "$key",

’"user_id": 1000, "file":

"file_user_$key.pdf"’)

INSERT INTO user_files (id,

user_id, file) VALUES ($key,

1000, ’file_user_$key.pdf’)

Q3: Update invoke("UpdateState",

"user_files", "$key",

’"user_id": 1000, "file":

"updated_file.pdf"’)

UPDATE user_files SET file =

’updated_file.pdf’ WHERE id =

$key

Q4: Delete invoke("DeleteState",

"user_files", "$key")

DELETE FROM user_files WHERE

id = $key

Table 9 – Queries used in the first scenario.
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Table 10 presents the performance results for each approach. The Fabric-only

approach exhibits considerably higher throughput across all queries, particularly for Q1. For

Q2, Q3, and Q4, which are write operations, Fabric demonstrates consistent performance, while

Inter-MOON shows slower execution for Q3 and Q4. Specifically, Inter-MOON is approximately

2.5 times slower for Q1, 1.7 times slower for Q2, 2.3 times slower for Q3, and 2.8 times slower

for Q4 compared to Fabric.

In Inter-MOON, each update or deletion operation to blockchain entities involves

multiple rounds of reads and writes, as well as DDL operations to set up and populate virtual ta-

bles, making these operations significantly more costly than inserts. Consequently, for operations

that involve the creation or retrieval of a single asset, the overhead introduced by Inter-MOON in

a Fabric-only approach is generally high. This performance is considered reasonable given the

virtualization approach employed by Inter-MOON. In Q2, which represents a single INSERT

operation, despite the lack of virtualization by Inter-MOON, there is still quite a difference in

performance. This is due to the combined network latency of the indexing operations executed

by Inter-MOON for each asset.

Approach
Throughput (tps)

Q1 Q2 Q3 Q4
Fabric 371.540000 156.763333 158.963333 153.650000
Inter-MOON 141.983333 89.970000 67.033333 53.253333

Table 10 – Table of the results of the first scenario.

5.2.2 Scenario 2

The next scenario deals with how each approach tackles concurrent connections. See

Fig. 33. Two parameters were present: the query and the number of concurrent connections.

Consider the queries to be the same as shown in Table 9 for Select (Q1) and Insert (Q2).

Both approaches manage to maintain consistent throughput. The Fabric-only ap-

proach demonstrates much higher throughput than Inter-MOON when selecting a single record.

Inter-MOON struggles to keep up, once again for the same reason as in the first scenario. How-

ever, both are comparable when inserting a record with concurrent connections. On insertion, the

blockchain network must achieve consensus between peers to pack data into a transaction and

commit it to the ledger, a more complex process than a simple query. Given this, and considering

the higher processing load required to handle a flood of requests from concurrent connections, it
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Figure 33 – Graph of the results of the second scenario.

is understandable that the concurrency manager of the blockchain will struggle. This prevents

Fabric-only from reaching the same throughput in Q2 as in Q1 in this scenario, diminishing the

gap between Fabric-only and Inter-MOON approaches.

5.2.3 Scenario 3

This scenario evaluates how each approach behaves when dealing with queries that

retrieve multiple records. See Table 11 for the description of each query.

Query Fabric SQL
Q5 invoke("GetStateByEntityName",

"user_files", "N", "")

SELECT * FROM user_files

Table 11 – Query used in the third scenario. The number of assets present in the ledger is always
N, hence why the SQL query fetches all N even without predicates.

It is clear (See Fig. 34) that throughput is heavily impacted when compared to the

first scenario (Sec. 5.2.1), from 150-370 TPS to less than 50 even when N = 1000, a relatively

small amount of data. While there is still an initial gap in throughput between Fabric-only

and Inter-MOON, it quickly diminishes as N increases. With N ≥ 5000, the processing power

required to iterate the ledger and pack every necessary asset into a response heavily impacts the

blockchain throughput, rendering the overhead introduced by Inter-MOON minimal.
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Figure 34 – Graph of the results of the third scenario.

5.2.4 Scenario 4

This scenario tackles Inter-MOON’s performance when handling queries that Fabric

alone cannot fulfill. There are many such queries, but four were chosen, described in Table 12.

They are common SQL querying operations, such as subqueries, join, and aggregation. In this

scenario, consider N = 1000. While the overhead cannot be fairly measured, given that there is

no equivalent Fabric-only query, throughput can still be compared by using the values given in

the third scenario (Sec. 5.2.3) for N = 1000 as a baseline, since each operation will still retrieve

1000 records. However, note that in Q7, Q8, and Q9, which deal with multiple entities, N is split

evenly between each entity. In other words, in Q7 and Q9, N = 500 for Users and User Files

respectively. And in Q8, N = 500 for User Files and Contracts.

It can be observed (Fig. 35) that throughput is comparable in all queries, except

for Q7 and Q9. In them, throughput is higher because only 500 records were fetched from

the blockchain, while the remaining 500 originated from the RDB, which is faster. It can be

surmised that while the SQL query itself can have an impact on throughput, the biggest factor in

this experiment is still the amount of data being fetched from the BC.
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Query SQL

Q6: Aggregation SELECT COUNT(*) FROM contracts GROUP BY

expiration_date

Q7: Join (BC + RDB) SELECT users.id, user_files.file, users.name,

users.email FROM user_files JOIN users ON

user_files.user_id = users.id

Q8: Join (BC + BC) SELECT contracts.id, contracts.contract,

contracts.expiration_date, user_files.user_id,

user_files.file FROM contracts JOIN user_files ON

contracts.file_id = user_files.id

Q9: Subquery SELECT * FROM user_files WHERE user_files.user_id

IN (SELECT id FROM users WHERE EXTRACT(YEAR FROM

users.birthdate) > 1990)

Table 12 – Queries used in the fourth scenario.
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Figure 35 – Graph of the results of the fourth scenario.

In summary, this experiment demonstrates that, based on the testing methodology

employed, the overhead produced by Inter-MOON is substantial for read queries involving a

low volume of data (N < 1000), but becomes minimal otherwise. The overhead is especially

pronounced for operations dealing with a single data point (N = 1). Conversely, write operations

exhibit a significantly smaller performance gap, and in concurrent scenarios, Inter-MOON was

able to scale throughput similarly to Hyperledger Fabric.

The analysis indicates that the volume of data retrieved from the blockchain is
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the primary determinant of throughput. Inter-MOON’s performance is constrained by its re-

liance on the underlying data stores’ performance and scalability. Notably, blockchains can

be slower compared to relational databases, particularly in write scenarios. Also note that, in

Hyperledger Fabric, the blockchain’s performance improves with an increasing number of nodes

(ANDROULAKI et al., 2018). This experiment used six nodes (five peers and one orderer),

and as such the showcased throughput for both Inter-MOON and Fabric are likely to change in

environments possessing better hardware and with a higher node count.

If the blockchain throughput is high, then Inter-MOON is limited mainly by the

virtualization approach, which entails the RBD creating and populating temporary tables with

blockchain data, a costly process, indicating a likely avenue for optimization. Therefore, when

used to query blockchain assets, Inter-MOON might not be the best approach for very simple

or light read operations when compared to using the native Fabric smart contract invocations,

but shows promise in other scenarios, trading lowered throughput for better generality and more

powerful querying capabilities offered by SQL.

When the blockchain throughput is high, Inter-MOON’s performance is mainly

limited by its virtualization approach. This involves creating and populating temporary tables

with blockchain data, a process that is resource-intensive. Potential optimizations are discussed

briefly in the limitations (Sec. 6.1) and future works (Sec. 6.2) sections of this dissertation.

Therefore, while Inter-MOON may not be the most efficient for very simple or lightweight read

operations compared to native Fabric smart contract invocations, it shows considerable promise

in other scenarios. It offers a trade-off between reduced throughput in the described scenarios

and enhanced generality and querying capabilities through the usage of SQL.
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6 CONCLUSION AND FUTURE WORK

This work showcased Inter-MOON, an approach to enhancing interoperability be-

tween relational databases and blockchains.

Inter-MOON’s approach to interoperability is achieved by virtualizing blockchain en-

tities in the relational data model. Virtualization is characterized as the temporary materialization

of blockchain assets into the relational environment (Sec. 4.2). A relational schema is defined

and attributed to blockchain entities, enabling the differentiation and specification of blockchain

data as if they were a relational object (Sec. 4.2.1). This schema is mutable and may change over

time. While virtualization is computationally expensive, some measures were taken to optimize

data retrieval and improve throughput, namely indexing and bulk data fetching (Sec. 4.2.2).

Virtualization is powered by an indexing mechanism that tracks blockchain assets, of which

two policies are proposed: a table-based policy (Sec. 4.2.2.1) and a smart contract-based policy

(Sec. 4.2.2.2). The first saves asset keys in relational tables and can be used even by blockchains

without smart contract support. The second stores asset keys into a state database via custom

smart contract functions and offers optimized querying, but necessitates the development of a

smart contract. A specification is described to expedite and facilitate smart contract development.

Virtualization enables the organic execution of SQL SELECT queries (Sec. 4.3.1).

INSERT is executed by simply mapping the received query into blockchain data, sending it

through the blockchain driver for appending and storing the key and generated transaction

ID (Sec. 4.3.2). UPDATE is completed by virtualizing the necessary entities, translating the

UPDATE query into a SELECT query, executing the UPDATE, and then extracting and sending

the updated data for appending (Sec. 4.3.3). Updated assets represent an updated version

of an existing asset. Both versions will exist within the blockchain, connected via key, and

Inter-MOON will always use the latest version. DELETE queries are executed by “soft-deleting”

the asset, marking the key as deleted to prevent retrieval (Sec. 4.3.4). In this manner, all SQL

DQL and DML queries can be executed by Inter-MOON.

Two experiments were executed: one using the table-based policy to compare Inter-

MOON against MOON (Sec. 5.1), and another using the smart contract-based policy to observe

the overhead introduced by Inter-MOON in a Hyperledger Fabric blockchain setup (Sec. 5.2).

For the first experiment, results demonstrated that Inter-MOON provides significantly better

response times than MOON in common SQL operations. Improvements in this category ranged

from slightly faster up to 10 times as fast. Along with increased performance, more kinds of SQL
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operations, such as subqueries, aggregations, and SQL functions are now fully supported. The

second experiment shows that the overhead introduced by Inter-MOON compared to a baseline

Fabric-only approach can be large in scenarios with low data volumes, but much less significant

otherwise. In write queries or queries retrieving large volumes of data (N >= 5000, where N is

the number of records being retrieved), overhead was considered negligible.

To conclude, Inter-MOON is a novel application that explores a middleware approach

to the problem of interoperability of blockchain and relational databases, an area with ongoing

research. Inter-MOON enables the execution of SQL queries to blockchain data as if they were

natively relational data, using mapping techniques to emulate the effects of these queries in the

blockchain domain. Inter-MOON was observed to show significant improvements over MOON,

regarding performance, accepted SQL grammar, and blockchain interoperability. Additionally,

overhead is minimal in large data volume scenarios and write queries.

The following list of contributions, described in the introduction (Sec. 1), are present

throughout this work:

1. Proposal and development of Inter-MOON, a novel approach to interoperability between

blockchain and relational databases via virtualization of blockchain assets in a relational

environment, allowing for natively comprehensive SQL DQL and DML grammar support.

2. Exploration of interoperability of relational and blockchain databases, and challenges like

how to query, modify, or delete blockchain data using SQL queries.

3. Specification of the Inter-MOON smart contract approach, enabling optimized querying of

key-value blockchain assets via composite key range queries.

Considering item 1, Sec. 4 describes the Inter-MOON proposal and Sec. 4.1 the

architecture. Regarding item 2, discussions related to interoperability are explored in sections 2.3

and 4.2, while the challenges in querying, modifying, and deleting blockchain data are explored

in section 4.3. Item 3, regarding the smart contract specification, is discussed in Sec. 4.2.2.2, as

part of the proposed indexing policies.

6.1 Limitations

The Inter-MOON approach presents several limitations, discussed in this section.
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6.1.1 Scalability

The scalability challenges still plaguing blockchain technology present obstacles.

These scalability issues affect the overall performance and interoperability of the system. While

they can be circumvented by using high-throughput scalable blockchains such as Hyperledger

Fabric, if a less performant blockchain is used with Inter-MOON, the scalability and throughput

of the whole system will be impacted. Some measures are taken to improve throughput, such as

optimized indexing and querying, but the system is still limited by the scalability and concurrency

mechanisms of the underlying data stores, especially the blockchain.

If the blockchain throughput is high, the main limitation in this regard becomes

virtualization. Relational databases are very efficient, however, the proposed virtualization

technique is expensive. Continuously fetching volumes of blockchain data and creating and

populating tables with them can be quite costly for the relational database. This is why the

overhead introduced by Inter-MOON is significant when dealing with queries that retrieve low

volumes of data (See Sec. 5.2). In such queries, the main bottleneck is virtualization, rather than

the actual data fetching procedure. As the number of fetched records increases, the bottleneck

moves from virtualization to data fetching.

6.1.2 Amount of supported data stores

The Inter-MOON architecture was proposed with two data stores in mind: a relational

database and a blockchain network. However, certain use cases may require data to be partitioned

into multiple stores. For instance, a more secure RDB for critical user data (eg. payment methods,

personal information), a less secure RDB for miscellaneous user data (eg. user preferences),

and a blockchain for purchases. In such a scenario, Inter-MOON cannot be used fully, as the

proposed architecture does not take into account additional data stores.

However, using multiple data stores is not unfeasible. The schema (Sec. 4.2.1)

may be used to also denote the physical location of where each entity shall be stored, and this

information can be referenced during data fetching.

6.1.3 Unsupported SQL commands

Inter-MOON does not support SQL DDL, Data Control Language (DCL) or Data

Transaction Language (DTL) commands. Queries are expected to contain a single DQL or DML
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statement such as SELECT, INSERT, UPDATE, or DELETE.

6.1.4 Schema Evolution

Inter-MOON allows for a mutable schema and the table creation algorithm accounts

for missing attributes and attributes with changed data types. However, renaming attributes

is not supported, and schema changes are not tracked. Sec. 6.2 shows a possible avenue for

overcoming this limitation, inspired by the work of Wang et al. (2023).

6.1.5 Blockchain Asset Awareness

Inter-MOON is only aware of blockchain assets tracked by its indexing mechanism.

If using the table-based policy, only assets created within the Inter-MOON interface will be

tracked (Sec. 4.2.2.1). Assets created externally, or previous to the adoption of the approach, will

be ignored unless manually indexed. If using the smart contract-based policy, they are indexed

as long as the smart contract is still developed per the specifications (Sec. 4.2.2.2) and invoked

to generate each asset, as the smart contract itself will be responsible for indexing.

6.2 Future Works

There are still many possibilities for future works regarding the interoperability

of relational and blockchain systems. The approach presented in this work contains certain

limitations, detailed in Sec. 6.1, which could be addressed. But beyond these limitations, there

are still other unaddressed challenges.

This work does not support SQL DDL statements, such as CREATE/ALTER/DROP

TABLE made to blockchain entities. Some of the cited related works, namely Zhu et al. (2020)

and Wang et al. (2023), include support for these statements in a limited fashion. Among them,

Wang et al. (2023) shows the greatest support, as it allows the usage of all three commands

(CREATE, ALTER, and DROP) to define the structure (schema) of blockchain entities. Fur-

thermore, schema changes are recorded in the blockchain, a plus for interoperability. A similar

approach could be adopted by future works to track the schema evolution of blockchain entities

over time. Assets can be associated with the current version of the schema upon generation, and

those versions may be fetched and referenced by the algorithm to make older assets compatible

with newer schema.
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Additionally, Nathan et al. (2019) allows the creation of smart contracts via stored

procedure syntax. CREATE OR REPLACE FUNCTION is used to create or update a smart

contract, and DROP FUNCTION to delete it. Future works could research a similar approach

in the context of middleware. For a middleware, there is a unique challenge in translating

the PL/SQL or PL/pgSQL stored procedure syntax into each supported blockchain platform’s

respective smart contract language (eg. Solidity for Ethereum, or Java/JavaScript/Go for Fabric).

However, there are still features of SQL not covered by any of the mentioned works,

such as DTL and DCL, that could become topics of future research. DTL encapsulates commands

such as BEGIN TRANSACTION, COMMIT, and ROLLBACK, representing atomic transactions

in SQL. To enable such commands within the context of blockchain, for example, a transaction

could be initiated and kept in memory after a BEGIN TRANSACTION command while the

consensus mechanism is accessed to verify and simulate the operations in order. Once verified, a

COMMIT command could execute the list of operations. ROLLBACK could be used to discard

the transaction altogether. Once committed, the list of operations executed by the transaction

could also be stored in the blockchain to enhance integrity. However, it would be necessary first

to establish a framework that allows the execution of these commands without hurting consensus.

As for DCL, it describes data access control commands within SQL, such as GRANT,

REVOKE, and DENY. Permissioned blockchains often aggregate peers into organizations and

use policies to define network rules. For instance, a blockchain may use a policy to define

the amount of peers needed to verify a transaction, or which organizations can interact with

which smart contracts. Therefore, future works could define a framework that maps SQL DCL

operations into blockchain policy updates, possibly via extending the SQL grammar with policy-

specific commands. For example, a custom CREATE POLICY keyword to add a new policy,

and UPDATE POLICY to update it.

Future works may also tackle the challenge of compliance, standardization, and

integration of blockchain and relational databases. For example, the definition of formal specifi-

cations or protocols detailing interactions between both data models. A formal API specification

could be a step forward to interoperability, establishing a common framework of blockchain

functionality and allowing any blockchain API developed using it to follow similar conventions,

facilitating interoperability.

As for future works considering the proposed Inter-MOON architecture, the virtu-

alization approach used in this work implements temporary tables, which significantly impact
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performance, as noted in Sec. 5.2. Consequently, future works wishing to explore the idea

further could look into optimizing virtualization, possibly via caching or a recycling algorithm.

Alternatively, a synchronization algorithm could allow for full data replication with conflict

resolution and improved throughput. However, Inter-MOON assumes that the RDB will also

store other natively relational data, so storage and scalability would be undoubtedly affected by

an endlessly growing blockchain ledger fully and consistently replicated in the RDB.
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