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RESUMO

O objetivo deste trabalho é estudar variedades compactas com bordo a partir de duas

estruturas distintas. Na primeira parte, investigamos a geometria do espaço-tempo estático

com fluido perfeito em variedades compactas com bordo. Usamos a fórmula de Reilly

generalizada para estabelecer uma desigualdade geométrica para um espaço-tempo estático

com fluido perfeito envolvendo a área do bordo e seu volume. Além disso, obtemos

novas estimativas de bordo para este espaço. Uma das estimativas de bordo é obtida

em termos da massa de Brown-York. Ademais, fornecemos um novo contra-exemplo

(simplesmente conexo) para a conjectura Cosmic no-hair para dimensão arbitrária n g 4.

Na segunda parte deste trabalho, voltamos nossa atenção para a geometria de variedades

quasi-Einstein compactas com bordo. Estabelecemos os possíveis valores para a curvatura

escalar constante de uma variedade quasi-Einstein compacta com bordo. Mostramos que

uma variedade m-quasi-Einstein compacta simplesmente conexa de dimensão 3 com bordo

e curvatura escalar constante deve ser isométrica, a menos de scaling, ao hemisfério redondo

S
3
+, ou ao cilindro I ×S

2 com a métrica do produto, onde I é um intervalo fechado. Para

a dimensão n = 4, provamos que uma variedade m-quasi-Einstein de dimensão 4 compacta

simplesmente conexa M4 com bordo e curvatura escalar constante é isométrica, a menos

de scaling, ao hemisfério redondo S
4
+, ou ao cilindro I ×S

3 com a métrica do produto ou

ao espaço produto S
2
+ ×S

2 com a métrica produto warped duplo. Outros resultados para

dimensões maiores ou iguais a 5 também são discutidos.

Palavras-chave: variedades compactas com bordo; métricas estáticas; fluido perfeito;

estimativas de bordo; variedades quasi-Einstein; curvatura escalar constante; resultados de

rigidez.



ABSTRACT

The purpose of this work is to study compact manifolds with boundary from the point

of view of two distinct structures. In the first part, we investigate the geometry of static

perfect fluid space-time on compact manifolds with boundary. We use the generalized

Reilly’s formula to establish a geometric inequality for a static perfect fluid space-time

involving the area of the boundary and its volume. Moreover, we obtain new boundary

estimates for this space. One of the boundary estimates is obtained in terms of the

Brown-York mass. In addition, we provide a new (simply connected) counterexample

to the Cosmic no-hair conjecture for arbitrary dimension n g 4. At the second part of

this work, we turn our attention to the geometry of compact quasi-Einstein manifolds

with boundary. We establish the possible values for the constant scalar curvature of a

compact quasi-Einstein manifold with boundary. Moreover, we show that a 3-dimensional

simply connected compact m-quasi-Einstein manifold with boundary and constant scalar

curvature must be isometric, up to scaling, to either the standard hemisphere S
3
+, or the

cylinder I ×S
2 with the product metric, where I is a closed interval. For dimension n = 4,

we prove that a 4-dimensional simply connected compact m-quasi-Einstein manifold M4

with boundary and constant scalar curvature is isometric, up to scaling, to either the

standard hemisphere S
4
+, or the cylinder I ×S

3 with the product metric, or the product

space S
2
+ ×S

2 with the doubly warped product metric. Other results for dimension greater

than or equal to 5 are also discussed.

Keywords: compact manifolds with boundary; static metrics; perfect fluid; boundary

estimates; quasi-Einstein manifolds; constant scalar curvature; rigidity results.
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1 INTRODUCTION

The study of general relativity establishes a connection between physics and

differential geometry. In a most simplified way, the theory of general relativity developed

by Einstein presents the gravity as the curvature of the universe because of the matter,

we refer the reader to “On the Foundations of the General Theory of Relativity” in [104]

for a nice discussion on this topic. In this context, the Einstein field equation plays a

fundamental role as an interface for studies beyond pure mathematics. To be precise, given

a Riemannian manifold (Mn, g), n g 3, and a positive smooth function f on Mn, we say

that (M̂n+1, ĝ) = Mn ×f R endowed with the metric ĝ = g −f2dt2 is a static space-time.

Thus, the Einstein equation over (M̂n+1, ĝ) = Mn ×f R is given by

Ricĝ − Rĝ

2
ĝ +Λĝ = T, (1.1)

where Λ is the cosmological constant, T is the stress-energy-momentum tensor, Ricĝ and

Rĝ stand for the Ricci tensor and the scalar curvature for the metric ĝ, respectively. The

case T = 0 means that we are in vacuum. Notice that, in the vacuum, Ricĝ =
(

R
ĝ

2 −Λ
)

ĝ.

Manifolds satisfying such a relation, i.e., the Ricci tensor to be a multiple of the metric,

are called Einstein manifolds (or Einstein metrics) (see [16]) and constitute as special

solutions to the Einstein equation in the vacuum.

When the stress-energy-momentum tensor is given by T = µf2dt2 +Äg, we say

that it represents a perfect fluid. The smooth functions µ and Ä are mass-energy density

and pressure of the fluid (as measured in the rest frame). The fluid is called “perfect”

because of the absence of heat conduction terms and stress terms corresponding to viscosity.

For more details, see, e.g., [37],[38],[65],[66],[84] and [105]. If Λ = 0, solutions to equation

(1.1) with perfect fluid as a matter field are called static perfect fluid space-times.

The perfect fluid space-times are natural generalizations of the static vacuum

spaces and certain solutions of (1.1) provide models for galaxies, black holes and stars

(see [58], [84], [105]). In particular, they are used in developing realistic stellar models

(or models for fluid planets) and represent a homogeneous fluid filled universe that is

undergoing accelerated expansion. Astronomical evidences also indicate that the universe

can be modeled as a space-time containing a perfect fluid; see [37], [38], [72], [105] and the

references therein.

Since we are interested in the Riemannian part of the static perfect fluid
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space-times, let us fix some terminology (see [37], [66] and [101]): A Riemannian manifold

(Mn, g) is said to be a spatial factor of a static perfect fluid space-time if there exist

smooth functions f > 0 and Ä on Mn satisfying

fR̊ic = ∇̊2f (1.2)

and

∆f =

(
n−2

2(n−1)
R +

n

n−1
Ä

)
f, (1.3)

where R̊ic, ∇̊2f and R stand for the traceless Ricci, traceless Hessian of f and scalar

curvature of (Mn, g), respectively. When Mn has non-empty boundary ∂M, we assume

in addition that f−1(0) = ∂M. The function f is usually called lapse function or static

potential in the literature. In this case, (Mn, g, f, Ä) will be called static perfect fluid

space-time (SPFST).

One should be emphasized that the dominant energy condition is said to be

satisfied when µ g |Ä|, which means that the speed of the energy flow can not be equal

or greater than to the light. As was observed by Hawking and Ellis [58], the dominant

energy condition holds for all known matter; see also [85, p. 347] and [105, p. 219]. In

geometrical point of view, Eq. (1.2) is related to important special metrics, as for instance,

vacuum static spaces (see [1], [7], [37], [101]), Miao-Tam critical metrics or V -static spaces

(see [4], [5], [8], [34], [76], [116]) and Einstein-type manifolds ([16], [26], [42], [64], [59],

[60]). One easily verifies from (1.2) and (1.3) that

µ =
R

2
.

Moreover, Coutinho et al. [37, Proposition 2] provided a necessary and sufficient condition

for a static perfect fluid space-time to have constant scalar curvature which suggests that

Eqs. (1.2) and (1.3) alone do not implies that constancy of the scalar curvature. Indeed,

in contrast with static spaces and V -static spaces, there are examples of static perfect

fluid space-times with non-constant scalar curvature; see the examples in [9] and [73].

A classical example of SPFST with connected (non-empty) boundary is the

n-dimensional hemisphere S
n
+(r) of radius r endowed with the standard metric gSn(r)

and potential function f(h) = cos(h), where h f Ã
2 is the height function. In this case,

∂M = S
n−1(r). For the case of disconnected boundary, we have [0,Ã]×S

n−1 with product
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metric g = dt2 + (n − 2)gSn−1 and potential function f(t) = sin(t) (the boundary is the

union of two copies of Sn−1).

In this thesis, we deal with compact Riemannian manifolds with boundary.

Chapter 2 collects some fundamental concepts that will be used in the rest of the work.

Chapter 3 is devoted to discuss some results on static perfect fluid space-times obtained

in [35] by the author joint with R. Diógenes, N. Pinheiro and E. Ribeiro. Chapter 4,

presents some rigidity results on quasi-Einstein manifolds according to the article [36],

written by the author together with E. Ribeiro and D. Zhou. We conclude with Chapter 5

commenting about the importance of this thesis and further developments.

In Chapter 3, it will be discussed some geometric inequalities involving the

area of the boundary of a SPFST in order to obtain rigidity results concerning to the

hemisphere Sn
+ with round metric as well as new obstruction results. It has been conjectured

in 1984 by Boucher, Gibbons and Horowitz in [22], [23] that: the hemisphere S
n
+ is the

only possible n-dimensional (simply connected) positive static triple with single-horizon

(connected boundary) and positive scalar curvature. This conjecture is known as Cosmic

no-hair conjecture. It is closely related to Fischer-Marsden conjecture which asserts that

the standard unit round spheres (Sn, gSn) are the only closed Riemannian manifold with

scalar curvature n(n−1) admitting static potential (see [1] and [101]). In the last decades

some partial answers to the Cosmic no-hair conjecture were obtained. For instance,

by assuming that (Mn, g) is Einstein, it suffices to apply the Obata type theorem due

to Reilly [92] to conclude that the conjecture is true. Moreover, Kobayashi [65] and

Lafontaine [68] proved independently that such a conjecture is also true under conformally

flat condition. Qing and Yuan [89] proved the Cosmic no-hair conjecture by considering a

weaker hypothesis on the Cotton tensor. In the work [55], Gibbons, Hartnoll and Pope

constructed counterexamples to the Cosmic no-hair conjecture in the cases of dimension

4 f n f 8, but their counterexamples are not simply connected.

One of the contributions presented in Chapter 3 is a new (simply connected)

counterexample to the Cosmic no-hair conjecture for arbitrary dimension n g 4, which is

inspired by an example of quasi-Einstein manifold obtained in [45].

Example 1.1 (Counter example to the Cosmic no-hair conjecture for n g 4). Let Mn =

S
p+1
+ ×S

q, q > 1, with the product metric

g = dr2 +sin2(r)gSp +
q −1

p+1
gSq ,



14

where r(x,y) = r(x) is the height function of Sp+1. By considering the potential function

f(r) = cos(r) and r f Ã
2 , one obtains that (Mn, g) must satisfy the Eqs. (1.2) and (1.3)

with constant scalar curvature given by R = (n−1)(p+1).

The previous example has positive constant scalar curvature and hence, it is

clearly a positive static triple. Besides, as mentioned, it is simply connected.

Geometric inequalities are classical objects of study in geometry and physics.

They are useful in proving new classification results and put away some possible examples

of special metrics on a given manifold. In the recent years, the Reilly’s formula [92] have

been shown a promising tool to gain new geometric inequalities. In [97], Ros used the

Reilly’s formula to prove the Alexandrov’s rigidity theorem for high order mean curvatures.

Besides, Miao, Tam and Xie [77] used the Reilly’s formula to obtain a stability inequality

for Wang-Yau energy. A similar result was obtained by Kwong and Miao [67] to the

boundary of static spaces. More recently, Qiu and Xia [91] proved a generalized Reilly’s

formula that was used to give an alternative proof of the Alexandrov’s theorem and

prove a new Heintze-Karcher inequality for Riemannian manifolds with boundary and

sectional curvature bounded from below. Subsequently, Xia [113] used the generalized

Reilly’s formula to establish a Minkowski type inequality for weighted mixed volumes in

non-Euclidean space forms. Very recently, Diógenes, Pinheiro and Ribeiro [43] used the

generalized Reilly’s formula by Qiu and Xia to obtain a sharp integral estimates for critical

metrics of the volume functional that were used to obtain a sharp boundary estimate for

such metrics.

We used the generalized Reilly’s formula by Qiu and Xia (Proposition 3.1) to

establish a new boundary estimate for SPFST. More precisely, we get the following result.

Theorem 1.1. Let (Mn, g, f, Ä) be a compact oriented static perfect fluid space-time with

boundary ∂M and positive scalar curvature satisfying

n−2

2(n−1)
R +

n

n−1
Ä = −Ä, (1.4)

where Ä is a positive constant. Then we have:

V ol(M) g 1

Ä

√
Rmin +3Ä

2n
|∂M |. (1.5)

Moreover, if equality holds in (1.5), then (Mn, g) is isometric to the round hemisphere S
n
+.
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Remark 1. As was mentioned, the constant Ä in Theorem 1.1 is positive. Indeed, supposing

that Ä f 0, since ∆f = −Äf and f is a nonnegative function with f−1(0) = ∂M, we may

use the Maximum Principle to infer that f = 0 in M, which leads to a contradiction.

Remark 2. We highlight that by assuming the dominant energy condition in Theorem

1.1, one obtains that the scalar curvature of Mn must be positive. In fact, the dominant

energy condition asserts that R
2 g |Ä| and hence, if R(p) = 0 for some point p ∈ M, then

Ä(p) = 0, which contradicts the assumption that Ä is a positive constant. Moreover, by

[37, Proposition 2], we have Ä|∂M
= −1

2R|∂M
and consequently, Ä = 1

n−1R|∂M
. In particular,

(1.4) implies that the scalar curvature is constant along the boundary.

As a consequence of Theorem 1.1, we obtain the following corollary.

Corollary 1.1. Let (Mn, g, f, Ä) be a compact oriented static perfect fluid space-time with

boundary ∂M and constant positive scalar curvature R. Then we have:

V ol(M) g
√

(n−1)(n+2)

2nR
|∂M |. (1.6)

Moreover, if equality holds in (1.6), then (Mn, g) is isometric to the round hemisphere S
n
+.

Before proceeding, it is fundamental to recall the definition of Brown-York

mass. Let Σ be a connected hypersurface in (Mn, g) such that (Σ,g|Σ) can be embedded

in R
n as a convex hypersurface. Then, the Brown-York mass m

BY
of Σ with respect to g

is given by

m
BY

(Σ,g) =
∫

Σ
(H0 −Hg)dSg,

where H0 and Hg are the mean curvature of Σ as hypersurface of Rn and M, respectively,

and dSg is the volume element of on Σ induced by g. In [115], motivated by the Riemannian

Penrose inequality, Yuan obtained a boundary estimate for static spaces in terms of the

Brown-York mass. A similar result was established for quasi-Einstein manifolds by

Diógenes, Gadelha and Ribeiro [44]. In another direction, inspired by ideas outlined in

[37], Andrade and Melo [2] proved recently that, under suitable conditions, the Hawking

mass of Einstein-type manifolds is bounded from below by the area of the boundary.

The next result establishes a sharp boundary estimate for compact SPFST

with (possibly disconnected) boundary in terms of the Brown-York mass m
BY

.
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Theorem 1.2. Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid space-time with

(possibly disconnected) boundary and positive scalar curvature satisfying the dominant

energy condition. Suppose that each boundary component (∂Mi, g) can be isometrically

embedded in R
n as a convex hypersurface. Then we have

|∂Mi| f cm
BY

(∂Mi,g), (1.7)

where c is a positive constant. Moreover, equality occurs for some component ∂Mi if and

only if Mn is isometric to the standard hemisphere S
n
+.

A key ingredient in the proof of Theorem 1.2 is the positive mass theorem

for Brown-York mass by Shi-Tam [102], which is equivalent to the (higher dimensional)

positive mass theorem for ADM mass by Schoen and Yau [98], [99], [100] and Lohkamp

[70]. It should be mentioned that the isometric embedding condition in Theorem 1.2 was

needed to use the positive mass theorem. According to the solution of the Weyl problem,

the isometrical embedding assumption can be replaced by control on sectional curvatures,

as for instance, positive Gaussian curvature when n = 3, see, e.g., [46], [115].

As an application of Theorem 1.2 we have the following result.

Corollary 1.2. Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid space-time with

(possibly disconnected) boundary and positive scalar curvature. Assume the dominant

energy condition and that each boundary component (∂Mi,g) can be isometrically embedded

in R
n as a convex hypersurface. Then we have

|∂Mi| f c̃
∫

∂Mi

(R∂Mi + |h̊i|2)dSg

for some positive constant c̃, where h̊i is the traceless second fundamental form of ∂Mi

as a hypersurface of Rn. Moreover, equality occurs for some connected component of the

boundary if and only if (Mn, g) is isometric to the round hemisphere S
n
+.

In another direction, but also related to the Einstein metrics and static spaces,

we consider the quasi-Einstein manifolds. To be precise, a complete n-dimensional Rieman-

nian manifold (Mn, g), n g 2, possibly with boundary ∂M, is called an m-quasi-Einstein

manifold, or simply quasi-Einstein manifold, if there is a smooth potential function u on
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Mn satisfying the system




∇2u =
u

m
(Ric−¼g) in M,

u > 0 on int(M),

u = 0 on ∂M,

(1.8)

for some constants ¼ and 0 < m < ∞ (see [26], [59] and [60]). When m = 1, we assume in

addition that ∆u = −¼u in order to recover the static equation: −(∆u)g +∇2u−uRic = 0.

Moreover, an m-quasi-Einstein manifold will be called trivial if u is constant, otherwise it

will be nontrivial. We notice that the triviality implies that Mn is an Einstein manifold.

The study of quasi-Einstein manifolds is directly related to the existence of

warped product Einstein metrics on a given manifold. As discussed by Besse [16, pg. 267],

an m-quasi-Einstein manifold corresponds to a base of a warped product Einstein metric;

for more details, see, e.g., [16, Corollary 9.107, pg. 267] and [14], [16], [26], [29], [31], [74],

[95]. Choosing u = e− f
m in (1.8) when ∂M = ∅, an ∞-quasi-Einstein manifold is precisely

a gradient Ricci soliton (Mn, g, f), see [26], [31], [39] and [95]. Despite similarity, there

are examples of quasi-Einstein manifolds that are in stark contrast to the Ricci solitons.

Another interesting motivation to investigate quasi-Einstein manifolds derives from the

study of diffusion operators by Bakry and Émery [12], which is linked to the theory of

smooth metric measure spaces; see, e.g., [15], [27], [28], [74], [95], [106], [108], [109] and

the references therein. In particular, 1-quasi-Einstein manifolds are more commonly called

static spaces. Besides being interesting on their own, as already mentioned, static spaces

have connections to the positive mass theorem and general relativity (see [26, Remark 2.3]

and [1], [19], [20], [65], [68], [90], [89]). Additionally, quasi-Einstein metrics have attracted

interest in physics due to their relation with the geometry of a degenerate Killing horizon

and horizon limit; see, e.g., [10], [11] and [110].

Explicit examples of nontrivial compact and noncompact m-quasi-Einstein

manifolds can be found in, e.g., [16], [17], [18], [26], [27], [28], [60], [71], [94], [95] and

[107]. In “Besse’s book” [16, pg. 267-272], it was established the classification of 1 and

2-dimensional m-quasi-Einstein manifolds. Our focus is on nontrivial compact m-quasi-

Einstein manifolds with (non-empty) boundary ∂M. Hence, by the work [60, Theorem 4.1],

they have necessarily ¼ > 0. In this perspective, it is fundamental to recall some examples

of compact m-quasi-Einstein manifolds with boundary and constant scalar curvature:
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(i) The hemisphere S
n
+ with the standard metric g = dr2 + sin2 rgSn−1 and potential

function u(r) = cosr, where r is a height function with r f Ã
2 ;

(ii)
[
0,
√

m/¼Ã
]

× S
n−1, for ¼ > 0, endowed with the metric g = dt2 + n−2

¼ gSn−1 and

potential function u(t,x) = sin
(√

¼/mt
)

;

(iii) S
p+1
+ ×S

q, q > 1, with the doubly warped product metric

g = dr2 +sin2 rgSp +
q −1

p+m
gSq ,

where r(x,y) = h(x) and h is a height function on S
p+1
+ , potential function u = cosr

with r f Ã
2 and ¼ = p+m.

He, Petersen and Wylie [60, Proposition 2.4] showed that a nontrivial compact

quasi-Einstein manifold with boundary and constant Ricci curvature is isometric to

Example (i). It turns out that these three quoted examples have constant scalar curvature

and therefore, one question that naturally arises is to know whether a nontrivial compact

(simply connected) m-quasi-Einstein manifold with boundary and constant scalar curvature

must be necessarily one of them.

Remark 3. For dimension n g 5, it is possible to obtain another example with constant

scalar curvature, as it is presented in Chapter 4. We also highlight that Examples (ii)

and (iii) above can be presented in a more general setting by replacing the round spheres

S
n−1 and S

q, respectively, by an arbitrary compact Einstein manifold with positive scalar

curvature. Moreover, Example (iii) was obtained recently by Diógenes, Gadelha and Ribeiro

in [45] and we adapted it to obtain Example 1.1.

In Chapter 4, our aim is to investigate compact m-quasi-Einstein manifolds,

m > 1, (Mn,g,u,¼) with boundary and constant scalar curvature. Specifically, we classify

nontrivial compact quasi-Einstein metrics with boundary and constant scalar curvature in

dimension 3 and 4. Moreover, we obtain some related results for arbitrary dimensions.

A straightforward computation, by using the classical Reilly’s theorem [93,

Theorem B], guarantees that the hemisphere S
2
+ is the only nontrivial 2-dimensional

simply connected compact m-quasi-Einstein manifold with boundary and constant scalar

curvature. In [60], He, Petersen and Wylie investigated m-quasi-Einstein manifolds with

constant scalar curvature. In particular, for the specific dimension n = 3, they proved that

an m-quasi-Einstein manifold with constant scalar curvature is rigid, i.e., it is Einstein

or its universal cover is a product of Einstein manifolds (see [60, Theorem 1.3]). Other
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related results for compact m-quasi-Einstein manifold with boundary and constant scalar

curvature were discussed in [42], [45], [59]. Nevertheless, the explicit classification of

compact m-quasi-Einstein manifolds with (non-empty) boundary and constant scalar

curvature was not established yet. In another direction, Petersen and Wylie [87] studied

rigid gradient Ricci solitons. It is known by the works of Hamilton [56], Ivey [62], Perelman

[86], Naber [82], Ni-Wallach [83] and Cao-Chen-Zhu [24] that 2 and 3-dimensional gradient

shrinking Ricci solitons are rigid and, moreover, they are entirely classified. However,

for dimension 4 (or higher), this is no longer true according to the example of Feldman,

Ilmanen and Knopf [47]. A more recent result due to Cheng and Zhou [40], combined

with Fernández-Lopéz and García-Río [48], establishes the complete classification of 4-

dimensional gradient shrinking Ricci solitons with constant scalar curvature, which in turn

provides a partial solution for the next problem, raised by Huai-Dong Cao during the IX

Workshop on Differential Geometry (2019) in Maceió:

Conjecture 1. Let (Mn,g,f), n g 4, be a complete n-dimensional gradient shrinking

Ricci soliton. If (M,g) has constant scalar curvature, then it must be rigid, i.e., a finite

quotient of Nk ×R
n−k for some Einstein manifold N with positive scalar curvature.

The results obtained in [36] were also motivated by these results on Ricci solitons.

Inspired by the question mentioned earlier and by works due to Cheng and

Zhou [40], Fernández-Lopéz and García-Río [48] and He, Petersen and Wylie [60], we

will classified (explicitly) compact 3 and 4-dimensional m-quasi-Einstein manifolds with

boundary and constant scalar curvature. To that end, in the same spirit of [48], we first

establish the possible values for the constant scalar curvature of an n-dimensional compact

m-quasi-Einstein manifold with boundary. More precisely, we have the following result.

Theorem 1.3. Let (Mn, g, u, ¼) be a nontrivial compact m-quasi-Einstein manifold with

boundary, m > 1 and constant scalar curvature R. Then we have:

R ∈
{

n(n−1)

m+n−1
¼,

m+n(n−2)

m+n−2
¼, . . . ,(n−1)¼

}
. (1.9)

In general, one has R = k(m−n)+n(n−1)
m+n−k−1 ¼, for some k ∈ {0,1, . . . ,n−1}.

We point out that the value of the scalar curvature in (1.9) may be regarded in

terms of the dimension k of the set of critical points (or equivalently, the maximum points);

see the proof of Theorem 1.3 in Chapter 4. In Example (i), we see that R = n(n−1)¼
m+n−1 and the
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only critical point is the north pole, i.e., k = 0. In Example (ii), we have R = (n−1)¼ and

the set of critical points for the potential function sin
( √

¼√
m

t
)

is precisely
{√

m√
¼

Ã
2

}
×S

n−1,

which has dimension n−1. While in Example (iii), it holds that R = q(m−n)+n(n−1)
m+n−q−1 ¼ and

the set of critical points for the potential function is {north pole}×S
q.

Remark 4. It follows from the proof of Theorem 1.3 that, under a mild modification, for

a (not necessarily compact with boundary) quasi-Einstein manifold with constant scalar

curvature R and m > 1, one has

R ∈
{

n(n−1)

m+n−1
¼,

m+n(n−2)

m+n−2
¼, . . . ,(n−1)¼,n¼

}
,

provided that the set of critical points of the potential function is non-empty.

Before discussing our next result, we recall that if an m-quasi-Einstein manifold

has constant scalar curvature R and m > 1, then

|R̊ic|2 = −m+n−1

n(m−1)
(R −n¼)

(
R − n(n−1)

m+n−1
¼

)
; (1.10)

for more details, see [59, Proposition 3.3] and [26, Lemma 3.2].

Remark 5. Observe that in considering R = n(n−1)
m+n−1¼ into (1.10), i.e., the lower value of

(1.9), one deduces that Mn is necessarily Einstein and therefore, it suffices to apply [60,

Proposition 2.4] to conclude that Mn is isometric to the standard hemisphere S
n
+.

The next result address the value R = m+n(n−2)
m+n−2 ¼ for the scalar curvature on

quasi-Einstein manifolds with boundary.

Proposition 1.1. There is no compact nontrivial quasi-Einstein manifold Mn with

boundary and constant scalar curvature R = m+n(n−2)
m+n−2 ¼.

In the sequel, we shall consider the extremal value case of (1.9), namely,

R = (n−1)¼. In this situation, we have the following result which can be compared with

[60, Theorem 1.9].

Theorem 1.4. Let (Mn, g, u, ¼), n g 3, be a nontrivial simply connected compact m-

quasi-Einstein manifold with boundary and m > 1. Then Mn has constant scalar curvature

R = (n−1)¼ if and only if it is isometric, up to scaling, to the cylinder I ×N with product

metric, where N is a compact ¼-Einstein manifold.
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As a consequence of Theorem 1.4 and Proposition 2.4 in [60], we shall obtain an

explicit classification for compact 3-dimensional m-quasi-Einstein manifolds with boundary

and constant scalar curvature. To be precise, we have the following result.

Theorem 1.5. Let (M3, g, u, ¼) be a nontrivial simply connected compact 3-dimensional m-

quasi-Einstein manifold with boundary and m > 1. Then M3 has constant scalar curvature

if and only if it is isometric, up to scaling, to either

(a) the standard hemisphere S
3
+, or

(b) the cylinder I ×S
2 with the product metric.

From now on, we focus on dimension n = 4. In this scenario, it is known from

Theorem 1.3 that the possible values for the constant scalar curvature R are
{

12

m+3
¼,

m+8

m+2
¼, 2

(m+2)

(m+1)
¼, 3¼

}
.

If R = 12
m+3¼, it then follows from Remark 5 that M4 is isometric, up to scaling, to the

standard hemisphere S
4
+. Besides, by Proposition 1.1, there is no compact 4-dimensional

quasi-Einstein manifold with boundary and constant scalar curvature R = m+8
m+2¼. In the

case R = 3¼, it suffices to invoke Theorem 1.4 to conclude that M4 is isometric to the

cylinder I × S
3 with product metric. Interestingly, Example (iii) has constant scalar

curvature R = 2 (m+2)
(m+1)¼. This fact has left open the question of whether S

2
+ ×S

2 is the

unique 4-dimensional compact quasi-Einstein manifold with boundary and constant scalar

curvature R = 2 (m+2)
(m+1)¼. To answer this question, we have established the following rigidity

result.

Theorem 1.6. Let (M4, g, u, ¼) be a nontrivial simply connected compact 4-dimensional m-

quasi-Einstein manifold with boundary and m > 1. Then M4 has constant scalar curvature

R = 2 (m+2)
(m+1)¼ if and only if it is isometric, up to scaling, to the product space S

2
+ ×S

2 with

the doubly warped product metric.

The proof of Theorem 1.6 is essentially inspired by the work of Cheng and

Zhou [40]. As a consequence of Theorem 1.3, Remark 5, Theorem 1.4 and Theorem 1.6,

we get the following classification result.

Corollary 1.3. Let (M4, g, u, ¼) be a nontrivial simply connected compact 4-dimensional

m-quasi-Einstein manifold with boundary and m > 1. Then M4 has constant scalar curva-

ture if and only if it is isometric, up to scaling, to either
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(i) the standard hemisphere S
4
+, or

(ii) the cylinder I ×S
3 with the product metric, or

(iii) the product space S
2
+ ×S

2 with the doubly warped product metric.
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2 PRELIMINARIES

The purpose of this chapter is to establish the fundamental concepts and

basic tools that will be used in the next chapters. Section 2.1 collects general features

on Riemannian geometry and other related results. In Sections 2.2 and 2.3, it will

be presented the general concepts of static perfect fluid space-time and quasi-Einstein

manifolds, respectively.

2.1 Basic notations and auxiliary results

Let Mn be a smooth manifold and g its Riemannian metric. We denote a

Riemannian manifold as (Mn,g). A Riemannian connection is an affine connection ∇ such

that, for all smooth vector fields X,Y,Z ∈ X(M),

X(g(Y,Z)) = g(∇XY,Z)+g(Y,∇XZ).

With these considerations, the Riemannian curvature tensor is the covariant 4-tensor

Rm : X4(M) → C∞(M) given by

Rm(X,Y,Z,V ) = g(R(X,Y )V,Z)

= g(∇X∇Y V −∇Y ∇XV −∇[X,Y ]V,Z),

for all X,Y,Z,V ∈ X(M), where the covariant 3-tensor R is usually known as curvature

tensor. Over a point p ∈ M , we consider a coordinate system {xi}n
i=1. Then, we may

express

Rijkl = Rm

(
∂

∂xi
,

∂

∂xj
,

∂

∂xk
,

∂

∂xl

)
.

Using this coordinates, we define the Ricci tensor as the trace of the Riemannian tensor

as follows

Ric

(
∂

∂xi
,

∂

∂xk

)
= Rik = gjlRijkl,

where we are adopting the Einstein summation convention. Similarly, the scalar curvature

R is given by

R = gikRik.
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Given two covariant 2-tensors S and T , we define the Kulkarni-Nomizu product

» between S and T as

(S »T )ijkl = SikTjl +SjlTik −SilTjk −SjkTil.

Now, we recall the Weyl tensor, denoted by W and defined by

Rijkl = Wijkl +
1

n−2
(Ric»g)ijkl − R

2(n−1)(n−2)
(g »g)ijkl. (2.1)

The Weyl tensor is the traceless part of the Riemannian curvature tensor and it has all

properties of that tensor with the addition that it is traceless with respect to any two

indices. Related to the Weyl tensor, we have the Cotton tensor C given by

Cijk = ∇iRjk −∇jRik − 1

2(n−1)
(∇iRgjk −∇jRgik). (2.2)

In dimension 3, it is well known that the Weyl tensor vanishes. Besides, for

n g 4, zero Weyl tensor is equivalent to locally conformally flatness. For n g 4, we can

obtain from (2.2) that

∇lWijkl = −n−3

n−2
Cijk.

The Cotton tensor is skew-symmetric with respect to the first two indices and it satisfies

the first Bianchi identity, i.e.,

Cijk = −Cjik and Cijk +Cjki +Ckij = 0.

Furthermore, similar to the Weyl tensor, the cotton tensor is trace-free with respect to

any two indices. For n = 3, C = 0 if and only if the manifold is locally conformally flat.

Now, given a function f ∈ C∞(M), the covariant symmetric 2-tensor Hessian

of f , denoted by ∇2f , is defined as

∇2f(X,Y ) = Y (X(f))−∇Y X(f) = g(∇X∇f,Y ).

In coordinates, we denote ∇2f( ∂
∂xi ,

∂
∂xj ) = ∇i∇jf . Taking the trace of the Hessian, we

obtain the Laplacian of f , i.e., gij∇i∇jf = ∆f .

Proceeding, we recall the concept of warped products.

Definition 2.1. Let (Bn,gB) and (F l,gF ) be Riemannian manifolds and φ ∈ C∞(B)

a positive smooth function. We say that the product B × F endowed with the metric
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g = gB + φ2gF is a warped product. We denote this product as B ×φ F , where B and F

are named base and fiber of the product, respectively, and the metric g is called warped

product metric.

We say that lifting of tangent vectors to B and F are called horizontal and

vertical tangent vector to the warped product, respectively.

One can obtains the Hessian of a smooth function f ∈ C∞(M) by the Lie

derivative as

∇2f =
1

2
L∇f g.

It turns out that the Lie derivative is an important tool to do calculations when we put it

together with the Cartan’s formula.

Lemma 2.1 (Cartan’s formula). Let É be a k-form and X ∈ X(M). Then, we have that

LX(É) = d(iXÉ)+ iX(dÉ),

where i and d stand for the interior product and the exterior derivative, respectively.

As an example of application of the Lie derivative, one can compute the

Hessian of a smooth function f defined on a warped product (I ×F,dt2 +φ2(t)gF ), with

f(t,x) = f(t). By linearity and product rule for the Lie derivative, one sees that

2∇2f = L∇f g = L∇f (dt2 +φ2(t)gF )

= L∇f (dt2)+(L∇f (φ2(t)))gN +φ2(t)L∇f (gN ).

By the properties of Lie derivative and the fact that f do not depends on the variables in

the fiber F , we have L∇f (dt2) = (L∇f dt)¹dt+dt¹(L∇f dt), L∇f (φ2(t)) = 2φ(t)g(∇f,∇φ)

and L∇f gF = 0. Since ∇f = f ′(t)∇t and dt is an exact 1-form, Lemma 2.1 allows us to

conclude that L∇f dt = f ′′(t)dt. Therefore,

∇2f = f ′′(t)dt2 +f ′(t)φ(t)φ′(t)gN . (2.3)

It is also interesting to present the computations of the curvature tensors of

a warped product in terms of the base and fiber metrics. The following proposition

corresponds to [85, Corollary 43].
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Proposition 2.1 ([85]). The Ricci curvature of a warped product manifold M = B ×φ F

with m = dim(F ), X,Y and Z,V any horizontal and vertical vectors, respectively, satisfies:

i. Ric(X,Y ) = RicB(X,Y )− m
φ ∇2

gB
φ(X,Y ),

ii. Ric(X,V ) = 0,

iii. Ric(Z,V ) = RicF (Z,V )− (φ∆gB
φ+(m−1)|∇φ|2gB

)gF (Z,V ).

We will make use of (2.3) and the expressions in Proposition 2.1 to make many

computations along this work. As a consequence of Proposition 2.1, we get the following

result.

Proposition 2.2. Let (Mn, g) be a warped product manifold with g = dt2 +φ2(t)g
N

, where

g
N

is an »-Einstein metric, i.e., RicN = »gN , with » > 0. Suppose that either φ(t) = ³t

or φ(t) = asinh(
√

´t) + bcosh(
√

´t), where ³ and ´ are positive constants and a, b ∈ R.

Then the scalar curvature R of Mn can not be a positive constant.

Proof. We shall divide the proof into two cases. First, we assume that φ(t) = ³t. Thus, by

Proposition 2.1, one obtains that

Ric(∂t,∂t) = 0 and Ric(V,W ) = (»− (n−2)³2)g
N

(V,W ).

From this, we have

R = (n−1)
»− (n−2)³2

³2t2
.

By assuming that R is a positive constant, one concludes that φ is constant, which leads

to a contradiction.

Secondly, we assume that φ(t) = asinh(
√

´t) + bcosh(
√

´t). Using Proposition

2.1 again yields

Ric(∂t,∂t) = −n−1

φ
φ′′ = −(n−1)´,

Ric(V,W ) = [»− (φφ′′ +(n−2)(φ′)2)]g
N

(V,W )

= [»−´φ2 − (n−2)(φ′)2]g
N

(V,W ),

where we have used that φ′′ = ´φ. By tracing, we then get

R = −2(n−1)´ +(n−1)
»− (n−2)(φ′)2

φ2
. (2.4)
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Now, by assuming that R is a positive constant, one obtains that »−(n−2)(φ′)2

φ2 is also a

constant. Therefore, taking the derivative, we see that

−2(n−2)φ′φ′′φ2 −2φφ′(»− (n−2)(φ′)2)

φ4
= 0, (2.5)

and since φ and φ′ can only vanish in a set of measure zero and the fact that φ′′ = ´φ,

one deduces that (2.5) is equivalent to

(n−2)((φ′)2 −´φ2)−» = 0.

Plugging this into (2.4), we arrive at R = −n(n−1)´ < 0, which also leads to a contradiction.

Before to conclude this subsection, we need to recall some useful facts on

distance function that are used in the proof of the main results in Chapter 4. Let M be a

complete Riemannian manifold and N a properly immersed submanifold of M. Assume

that Ã : ¿N → N is the normal bundle. There is an induced connection ∇¿ on ¿N and a

decomposition of tangent bundle T (¿N) as

T (¿N) = H ·V ,

where VÀ := ker(dÃ)À and HÀ consists of all tangent vectors to parallel sections passing

through À. If ³ : (−¶,¶) → ¿N is a smooth curve representing v ∈ T (¿N), then vH =

(Ã ◦³)′(0) and vV = (∇ν

∂s ³)(0) = v −VH. Thus, HÀ and VÀ are isomorphic to TÃ(À)N and

¿Ã(À)N, respectively. This decomposition induces a natural Riemannian metric on T (¿N)

such that Ã is a Riemannian submersion. With aid of this notation, we have the following

lemma.

Lemma 2.2 ([13]). Let ³ : (−¶,¶) → ¿N be a smooth curve representing v ∈ T (¿N).

Define

J(t) :=
∂

∂s

∣∣∣∣∣
s=0

expÃ◦³(s)(t³(s)).

Then J(t) is a Jacobi field along the geodesic µ(t) = exp(t³(0)) and

J(0) = vH, J(1) = (dexp)³(0)(v) and J ′(0) = vV +A³(0)v
H.

Here, A¸ stands for the shape operator with respect to normal vector ¸.
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Proceeding, let UN be the unit normal bundle of N equipped with volume

element d¹dp, where dp denotes the volume element of N and d¹ is the volume element

of unit sphere S
n−k−1
p in ¿pN. Thereby, we may define Φ : (0,+∞) × UN → M\N by

Φ(r,¹) = exp(r¹).

Along the normal geodesic µ¹(r) = exp(r¹), we can choose a parallel orthonormal

base {e1(r), . . . , en(r)} such that

A¹ei(0) = ¼i, for i = 1, . . . ,k −1, and en = ∂r = µ′
¹(r).

Hence, Ji(r) = (dΦ)(r,¹)(ei), i = 1,2, · · · ,n, must satisfy

J ′′
i (t)+R(µ′

¹(t),Ji(t))µ
′
¹(t) = 0, for i = 1, . . . ,k;

Ji(0) = ei(0), for i = 1, . . . ,k;

J ′
i(0) = ¼iei(0), for i = 1, . . . ,k;

Ji(0) = 0, for i = k +1, . . . ,n;

J ′
i(0) = ei(0), for i = k +1, . . . ,n.

Next, we consider the following notation

Jij = ïJi, ejð, for i = 1, . . . ,k;

Kij = ïR(µ¹, ei)µ¹, ejð, for i = 1, . . . ,k;

A = diag(¼1, . . . ,¼n).

Also consider J := (Jij)(k−1)×(k−1) and K := (Kij)(k−1)×(k−1). With these notations, one

obtains that




J ′′ +KJ = 0;

J (0) = diag
(
Ik×k,O(n−k−1)×(n−k−1)

)
;

J ′(0) = diag
(
A,I(n−k−1)×(n−k−1)

)
.

If µ¹|[0,r] does not contain focal points, then J is invertible on (0, r). Next, let Ã(x) be the

distance function from N. Therefore, Ã(µ¹(r)) = r, provided that r ∈ (0, r¹). Moreover, by

denoting Uij(r) := ∇2Ã(ei, ej)(µ¹(r)) and taking into account that ∇2Ã(Ji,Jj) = ïJ ′
i,Jjð,

we get the following lemma.

Lemma 2.3 ([13]). Let N be a proper submanifold in M . Then for any ¹ ∈ ¿N , along the

normal geodesic µ¹(r) = exp(r¹), the Hessian of the distance function Ã(x) = dist(x,N)
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satisfies 



U ′ +U2 +K = 0,

U =




A¹

1
r I


+ r




−A2
¹ −K11(0) V12

V21 V22


+O(r2),

where U = ∇2Ã|{µ′

θ
(r)}§, K = K¹ = R(µ′

¹, . . .)µ′
¹ and A¹ is the shape operator of N with

respect to ¹. In particular, the mean curvature H(¹,r) of the level sets of Ã at µ¹(r) satisfies

H(¹,r) = tr(A¹)+
n−k −1

r
+O(r) (2.6)

and

∇2 Ã2

2
(µ¹(r)) =




rA¹

I(n−k)×(n−k)


+O(r2). (2.7)

Moreover, at N , the function Ã2 has two eigenvalues 0 and 2 of multiplicities m and n−k,

respectively.

To conclude this subsection, we are going to present the proof of the following

algebraic inequality.

Lemma 2.4. Let a1 g . . . g an be n g 2 real numbers. Then

aiaj g b

2(n−1)
,

where b = (
∑n

i=1 ai)
2 − (n−1)

∑n
i=1 a2

i . In particular, if b g 0, then either all ai g 0 or all

ai f 0.

Proof. The case n = 2 is straightforward. Now, for n > 2, notice that

(
n∑

i=1

ai

)2

=




n−1∑

i=1

ai




2

+2an

n−1∑

i=1

ai +a2
n.

Hence, we see that

(n−1)
n∑

i=1

a2
i + b =




n−1∑

i=1

ai




2

+2an

n−1∑

i=1

ai +a2
n,

so that

(n−1)
n−1∑

i=1

a2
i +(n−2)a2

n + b =




n−1∑

i=1

ai




2

+2an

n−1∑

i=1

ai.
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In view of this, one obtains that

(n−2)
n−1∑

i=1

a2
i +(n−2)a2

n −2an

n−1∑

i=1

ai + b =




n−1∑

i=1

ai




2

−
n−1∑

i=1

a2
i ,

which implies that

2
∑

i<jfn−1

aiaj = (n−2)
n−1∑

i=1

a2
i +(n−2)a2

n −2an

n−1∑

i=1

ai + b.

Rearranging terms, one sees that

(n−2)a2
n −2




n−1∑

i=1

ai


an +


(n−2)

n−1∑

i=1

a2
i + b−2

∑

i<jfn−1

aiaj


= 0.

Of which, we have




n−1∑

i=1

ai




2

= (n−2)


(n−2)

n−1∑

i=1

a2
i + b−2

∑

i<jfn−1

aiaj


+(n−2)2


an − 1

n−2

n−1∑

i=1

ai




2

= (n−2)


(n−1)

n−1∑

i=1

a2
i −




n−1∑

i=1

ai




2

+ b


+(n−2)2


an − 1

n−2

n−1∑

i=1

ai




2

.

Consequently, 


n−1∑

i=1

ai




2

g (n−2)
n−1∑

i=1

a2
i +

n−2

n−1
b. (2.8)

Moreover, if equality holds in (2.8), then an = 1
n−2

∑n−1
i=1 ai. Now, it suffices to repeat an

analogous process n−2 times in order to obtain the asserted inequality.

Notice that the same conclusion is true if one assumes that b f (
∑n

i=1 ai)
2 −(n−

1)
∑n

i=1 a2
i . As an application of Lemma 2.4, one has that |R̊ic|2 f R2

n(n−1) implies that the

eigenvalues of the Ricci tensor have the same sign. Indeed, since |R̊ic|2 = |Ric|2 − R2

n , we

can take an orthonormal frame {ei}n
i=1 which diagonalizes tensor Ric, i.e., Ric(ei) = ¼iei,

in order to achieve at

n∑

i=1

¼2
i f 1

n−1

(
n∑

i=1

¼i

)2

.

Applying Lemma 2.4 with b = 0, one obtains that ¼i¼j g 0, which says that all eigenvalues

have the same sign.
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2.2 Static perfect fluid space-time

In this section, we are going to talk about static perfect fluid space-times

(SPFST). This class of manifolds arises as special solution to Einstein field equation

over a static space-time (M̂n+1, ĝ) = Mn ×f R, which is endowed with the static metric

ĝ = g −f2dt2, that is

Ric− R

2
g +Λg = »T, (2.9)

where the cosmological constant Λ is zero and stress-energy-momentum tensor T corres-

ponds to a perfect fluid, i.e.,

T = µf2dt2 +Äg,

where the smooth functions µ and Ä are, respectively, mass-energy density and pressure of

the fluid. The name “perfect” becomes from the absence of heat conduction terms and

stress terms corresponding to viscosity. Explicitly, SPFST is a semi-Riemannian manifold

(M̂n+1, ĝ) satisfying

Ricĝ − Rĝ

2
ĝ = µf2dt2 +Äg. (2.10)

Although the general concept refers to a Lorentzian manifold, we will consider

only the spatial factor M of M̂ as a static perfect fluid space-time. Formally, we have the

following definition (see also [101], [66]).

Definition 2.2. A Riemannian manifold (Mn,g) is said to be a spatial factor of a static

perfect fluid space-time if there exist smooth functions f > 0 and Ä on Mn satisfying the

perfect fluid equations:

fR̊ic = ∇̊2f (2.11)

and

∆f =

(
n−2

2(n−1)
R +

n

n−1
Ä

)
f, (2.12)

where R̊ic, ∇̊2 stand for the traceless Ricci and traceless Hessian tensor, respectively. When

M has non-empty boundary ∂M , it will be assumed in addition that f−1(0) = ∂M . In this

case, f will be called a potential function and we denote such a space as (Mn,g,f,Ä).
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The equation (2.11) is satisfied for a large class of manifolds, as for example,

Riemannian manifolds (Mn,g) satisfying

−∆fg +∇2f −fRic = ¶g

for some smooth function f on M and a constant ¶. If ¶ = 0, we obtain the fundamental

equation of a positive static triple [1]. When ¶ = 1, we obtain the expression of a critical

metric of the volume functional (or V-static space) [76].

The motivation for Definition 2.2 comes from the warped product curvature

expressions. Indeed, by items (i) and (iii) of Proposition 2.1 and taking into account that

the dimension of the fiber is one, we infer that

Rĝ = R − 1

f
∆f − 1

f
∆f = R − 2

f
∆f.

Evaluating the Einstein equation (2.10) on horizontal vectors and using the above equation,

we then obtain

RicM − ∇2f

f
− R

2
g +

∆f

f
g = Äg. (2.13)

Taking the trace, one sees that

∆f =

(
n−2

2(n−1)
R +

n

n−1
Ä

)
f, (2.14)

which corresponds to (2.12). Furthermore, rewriting (2.13), we see that
(

RicM − R

n
g
)

− 1

f

(
∇2f − ∆f

n
g

)
=

n−2

2n
Rg +Äg − n−1

n

∆f

f
g

and hence (2.14) implies that the right-hand member is zero and so, we obtain (2.11).

The warped product curvature expressions also allows us to obtain an expression

for the mass-energy density µ. In fact, evaluating (2.10) in vertical vectors and using item

(iii) of Proposition 2.1, we deduce

f∆f +
R

2
f2 −f∆f = µf2,

i.e.,

µ =
R

2
.

Thus, the dominant energy condition is equivalent to R
2 g |Ä|. Notice that we have

used in this calculations that the fiber of the warped product M̂ is endowed with a

semi-Riemannian metric.
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Static perfect fluid space-times with boundary constitutes as a natural extension

of static spaces. The following proposition corresponds to Proposition 2 of [37] and

establishes the connection between these classes of manifolds.

Proposition 2.3 ([37]). Let (Mn,g,f,Ä) be a static perfect fluid space-time. Then the

scalar curvature R of M is constant if and only if (1
2R +Ä)f is constant.

Proof. First of all, by using the well known formula div(∇2f) = Ric(∇f)+∇∆f , one sees

that

div(∇̊2f) = ∇∆f +Ric(∇f)− 1

n
∇∆f =

n−1

n
∇∆f +Ric(∇f). (2.15)

On the other hand, it is easy to check that

div(fR̊ic) = fdiv(Ric)+Ric(∇f)− R

n
∇f − f

n
∇R.

By the twice contracted second Bianchi identity, i.e., div(Ric) = 1
2∇R, we infer that

div(fR̊ic) =
n−2

2n
f∇R +Ric(∇f)− R

n
∇f. (2.16)

Now, taking into account (2.11) combined with (2.15) and (2.16), one deduces that

n−2

2n
f∇R − R

n
=

n−1

n
∇∆f. (2.17)

This jointly with the Laplacian equation (2.12) yields

n−3

2n
f∇R =

1

2
R∇f +Ä∇f +

n−2

2n
f∇R +f∇Ä,

which can be rewritten as

1

2
R∇f +Ä∇f +f∇Ä = 0.

Of which, one deduces that

1

2
f∇R = ∇

[(
1

2
R +Ä

)
f
]
, (2.18)

and the result follows.

Notice that this result suggests that the static perfect fluid space-time alone

does not implies the constancy of the scalar curvature, which occurs in the case of vacuum

static and V -static spaces. Indeed, the works [9] and [73] present examples of non-compact
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static perfect fluid space-times with non-constant scalar curvature. Moreover, if the

manifold has non-empty boundary, then R is constant if and only if Ä = −R
2 , in virtue of

f|∂M
= 0, and so the potential function must satisfy

−∆fg +∇2f −fRic = 0,

which is precisely the equation of a static manifold. In addition, if we have R = 0, then it

holds Ä = 0 and we achieve at

fRic = ∇2f and ∆f = 0,

which is the vacuum static equation with null cosmological constant. This is a special case

for the physics studies because one of the most important solutions of the above equation

is the Schwarzschild metric [16], [103], which models black holes.

We are now able to present some examples of compact static perfect fluid

space-times with boundary.

Example 2.1. Let Sn
+ with the metric g = dr2 +sin2(r)gSn−1 be the standard hemisphere,

when r f Ã
2 is the height function. Thus S

n
+ with potential function f(r) = cos(r) is a static

perfect fluid space-time.

First of all, we know that Sn
+ with the standard metric is an Einstein manifold,

i.e., R̊ic = 0. From the Lie derivative, Lemma 2.1 and using that

∇f(r) = −sin(r)∇r,

one deduces that

∇2f(r) = −cos(r)(dr2 +sin2(r)gSn−1) = −f(r)g,

then ∇̊2f = 0 and ∆f = − R
n−1f , since R = n(n−1). Moreover, it is clear that f−1(0) = ∂M .

This shows that this space is in fact a static perfect fluid space-time.

The example above corresponds to the case of connected boundary. But, it is

also interesting to present an example with disconnected boundary, as follows.

Example 2.2. Let M = [0,Ã]×S
n−1 be a Riemannian product with metric g = dt2 + (n−

2)gSn−1 and potential function f(t) = sin(t). Thus M is a compact oriented static perfect

fluid space-time with disconnected boundary (the boundary is the union of two copies of

S
n−1).
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In fact, notice that f(p) = 0 if and only if p ∈ {0}×S
n−1 ∪{Ã}×S

n−1, that is

a disjoint union. Next, again by the Lie derivative, Lemma 2.1 and

∇f(t) = cos(t)∇t,

one obtains that

∇2f(t) = −sin(t)dt2 = −f(t)dt2.

Noticing that Ric = (n−2)gSn−1, we arrive at

fRic−f
R

n
g = −n−1

n
fdt2 +f

n−2

n
gSn−1 = ∇2f − ∆f

n
g,

which concludes the argument. Finally, observe that R = (n−1) implies ∆f = − R
n−1f .

Since the scalar curvature, in both examples, is constant, one concludes that

they are static spaces. They receive particular terminology in this theory: the hemisphere

in Example 2.1 is called de Sitter solution and the cylinder in Example 2.2 is named Nariai

solution of the static equation.

An interesting property of manifolds satisfying equations similar to (2.11) and

(2.12) is the analyticity of their metric and potential function in harmonic coordinates. The

proof is quite similar to [33, Proposition 2.8] for static metrics (see also [41, Proposition

2.3] for V-static metrics).

Proceeding, it follows from [69, Lemma 1] that |∇f | does not vanish on the

boundary. The next lemma is an alternative proof of this fact.

Proposition 2.4. Let (Mn, g, f, Ä) be a compact static perfect fluid space-time with

boundary ∂M. Then |∇f | is a nonzero constant along ∂M.

Proof. Since f vanishes on ∂M, one sees from Eqs. (2.11) and (2.12) that

X(|∇f |2) = 2∇2f(∇f,X) = 0,

for any X ∈ C∞(∂M). Hence, |∇f | is constant along ∂M. Now, we need to show that

|∇f ||∂M
̸= 0. Indeed, let p be a point in ∂M and µ : [0, ε) → M be a geodesic parametrized

by arc length with µ(0) = p and µ′(0) § ∂M. Choosing u(t) = (f ◦µ)(t), one has

u′′(t) = ∇2f(µ′(t),µ′(t)).
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Then, it follows from (2.11) and (2.12) that there exists a smooth function F (t) so that

u′′(t) = F (t)u(t).

Consequently,




u′′(t) = F (t)u(t),

u′(0) = g(∇f(p),µ′(0)),

u(0) = f(p) = 0.

So, by assuming that ∇f(p) = 0, one deduces that u′(0) = 0 and then, by using the

existence and uniqueness theorem for ODE, we infer that u = 0 over a neighborhood of

t = 0 in [0, ε), which leads to a contradiction with the fact that f > 0 in the interior of

M and µ(t) lies in the interior of M for all t ∈ (0, ε0) with sufficient small ε0 > 0. This

concludes the proof of the proposition.

A direct consequence of this proposition and equation (2.18) is that

Ä |∂M= −R |∂M

2
.

Proceeding, since f is nonnegative, one sees that ¿ = − ∇f
|∇f | is the unit outward

normal vector field of ∂M. In particular, the divergence theorem implies that the integral

of ∆f is not identically zero. In fact, observe that

∫

M
∆fdVg =

∫

∂M
g(∇f,¿)dSg = −|∇f ||∂M

|∂M | ≠ 0. (2.19)

This together with the dominant energy condition R
2 g |Ä| also implies that R g 0, but

not identically zero.

From now on, consider an orthonormal frame {ei}n
i=1 with en = − ∇f

|∇f | . Thus,

from the second fundamental formula, for 1 f a,b,c,d f n−1, one obtains that

hab = −ï∇ea¿,ebð =
1

|∇f |∇a∇bf = 0

and hence, ∂M is totally geodesic. Thus, by the Gauss equation, i.e.,

R∂M
abcd = Rabcd −hadhbc +hachbd, (2.20)

we then obtain

R∂M
abcd = Rabcd.
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Moreover, we infer

R∂M
ac = Rac −Rancn

and

R∂M = R −2Rnn. (2.21)

We recall that Proposition 2 in [37] asserts that the scalar curvature R of a static

perfect fluid space-time (Mn, g, f,Ä) is constant if and only if (1
2R+Ä)f is constant. Thus,

since M is a compact Riemannian manifold with (non-empty) boundary and f|∂M
= 0,

one concludes that R is constant if and only if (1
2R + Ä)f ≡ 0. Therefore, by using that

f > 0 in the interior of M, we infer that the scalar curvature is constant if and only if

Ä = −R

2
on M. (2.22)

Notice furthermore that if Ä = −R
2 over M, then the scalar curvature must be constant

even in the empty boundary case.

The following divergence formula was established in [37]. For sake of complete-

ness, we present here its proof.

Lemma 2.5 ([37]). Let (Mn, g) be a Riemannian manifold and f is a smooth function

satisfying (2.11). Then, in the interior of M, one has

div

[
1

f

(
∇|∇f |2 −2

∆f

n
∇f

)]
= 2f |R̊ic|2 +

n−2

n
ï∇R,∇fð . (2.23)

Proof. Given a (0,2)-tensor T on a Riemannian manifold (Mn,g), it is well known that

div(T (φX)) = φdiv(T )(X)+φï∇X,T ð+T (∇φ,X),

for all φ ∈ C∞(M) and X ∈ X(M). Taking T = R̊ic, X = ∇f and φ = 1 in the last identity,

one obtains

div(R̊ic(∇f)) = div(R̊ic)(∇f)+ ïR̊ic,∇2fð.

Using the static perfect fluid space-time equation (3.5) and the twice contracted second

Bianchi identity, that is, the identity div(Ric) = 1
2∇R, ones consequently get

div(R̊ic(∇f)) = f |R̊ic|2 +
n−2

2n
ï∇R,∇fð. (2.24)
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On the other hand, observe that

fR̊ic(∇f) = ∇̊2f(∇f)− ∆f

n
∇f

=
1

2
∇|∇f |2 − ∆f

n
∇f, (2.25)

and so

2R̊ic(∇f) =
1

f

(
∇|∇f |2 − 2∆f

n
∇f

)
. (2.26)

Finally, comparing (2.24) and (2.26), one concludes that

div

[
1

f

(
∇|∇f |2 − 2∆f

n
∇f

)]
= 2f |R̊ic|2 +

n−2

n
ï∇R,∇fð, (2.27)

which finishes the proof.

Lemma 2.5 can be seen as a Robinson-Shen type identity [101] for manifolds

satisfying Equation (2.11), which includes a large class of spaces; see also [1], [20] and [21].

In the case of constant scalar curvature, for example, static space or V -static space, we

deduce that the expression in the left hand side of (2.23) is necessarily nonnegative.

Next, recall the following integral formula that relates the norm of the traceless

Ricci tensor and the scalar curvature of the boundary; for more details, see Lemma 3 of

[37]. This formula will be used in the proof of the boundary estimates.

Lemma 2.6 ([37]). Let (Mn, g,f, Ä) be a compact oriented static perfect fluid space-time

with boundary ∂M. Then one has

∫

∂M
|∇f |R∂MdSg = 2

∫

M
f |R̊ic|2dVg − n−2

n

∫

M
R∆fdVg.

Proof. Upon integrating (2.24), we use Stokes’ theorem to infer

∫

M
div(R̊ic(∇f))dVg =

∫

M
f |R̊ic|2dVg +

n−2

2n

∫

M
ï∇R,∇fðdVg

=
∫

M
f |R̊ic|2 +

n−2

2n

(∫

∂M
Rï∇f,¿ðdSg −

∫

M
R∆fdVg

)
.

(2.28)

Using again Stokes’ theorem, one sees that

∫

M
div(R̊ic(∇f))dVg =

∫

∂M
ïR̊ic(∇f),¿ðdSg

= −
∫

∂M
|∇f |R̊ic(¿,¿)dSg. (2.29)
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Combining (2.28) and (2.29), one obtains that

−
∫

∂M
|∇f |

(
Rnn − R

n

)
dSg =

∫

M
f |R̊ic|2dVg − n−2

2n

∫

∂M
R|∇f |

−n−2

2n

∫

M
R∆fdVg.

Therefore, it suffices to use (2.21) to infer

∫

M
f |R̊ic|2dVg − n−2

2n

∫

M
R∆fdVg = −

∫

∂M

(
R −R∂M

2
− R

2

)
|∇f |dSg

+
n−2

2n

∫

∂M
R|∇f |dSg

= −
∫

∂M

(
n−2

2n
R − R∂M

2
− n−2

2n
R

)
|∇f |dSg

=
1

2

∫

∂M
|∇f |R∂MdSg, (2.30)

which concludes the proof of the lemma.

It is very interesting to classify manifolds satisfying certain structural equation.

In this direction, Coutinho et al. classified in [37, Proposition 1] all possible Einstein

Riemannian manifolds (Mn,g), n g 3, with empty or connected boundary satisfying

fR̊ic = ∇̊2f for some f ∈ C∞(M). Since their result will be useful in this work, their

proof will be present next.

Proposition 2.5 ([37]). Let (Mn,g,f), n g 3, be a compact Einstein manifold with positive

scalar curvature and f ∈ C∞(M) satisfying fR̊ic = ∇̊2f . Then:

(a) If ∂M is empty, then Mn is isometric to a round sphere S
n;

(b) If ∂M is connected non-empty and f |∂M is constant, then Mn is isometric to a

geodesic ball on a sphere S
n.

Proof. Since Mn is an Einstein manifold, it is immediate that R̊ic ≡ 0 and so the equality

fR̊ic = ∇̊2f immediately implies

∇2f =
∆f

n
g. (2.31)

Thus, ∇f is a conformal vector field. Moreover, it was calculated an expression for the

gradient of the Laplacian of f in (2.17), that is,

∇∆f =
n−2

2(n−1)
f∇R − R

n−1
∇f.
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Since n g 3 and the manifold is Einstein, one knows that the scalar curvature is constant

and the last expression implies

∇2∆f = − R

n−1
∇2f = − R

n(n−1)
∆fg,

where it was used (2.31).

Supposing now that the boundary is empty, one can makes use of [Theorem

4.1, [114]] to conclude that (Mn,g) is isometric to a round sphere, which is the conclusion

of item (a). On the other hand, (2.31) and the fact that M has constant scalar curvature,

one deduces that ∆f + R
n−1f is constant. Thus, if ∂M ̸= ∅ and f |∂M is constant, one

infers that ∆f is constant along ∂M . The result then follows from an Obata type theorem

[93, Theorem B] due to Reilly. This finishes the proof of the proposition.

2.3 Quasi-Einstein manifolds

In this section, we recall basic facts on m-quasi-Einstein manifolds. First of all,

we remember that the fundamental equation of an m-quasi-Einstein manifold (Mn, g, u,¼),

possibly with boundary, is given by

∇2u =
u

m
(Ric−¼g), (2.32)

where u > 0 in the interior of M and u = 0 on the boundary ∂M. By tracing (2.32), one

sees that

∆u =
u

m
(R −n¼). (2.33)

This implies that ∆u = 0 along ∂M. Besides, Propositions 2.2 and 2.3 of [59] guarantee

that |∇u| does not vanish on the boundary and it is constant on each component of ∂M.

From this, we infer that ¿ = − ∇u
|∇u| is the unit outward normal vector field over ∂M. In

particular, by the Stokes’ formula, ∆u is not identically zero. Actually, observe that
∫

M
∆udMg =

∫

∂M
ï∇u,¿ðdSg = −|∇u||∂M

|∂M | < 0. (2.34)

Remark 6. It follows from (2.33) and (2.34) that if the scalar curvature R is constant,

then R < n¼ (cf. [59, Corollary 4.3]).

From now on, we consider an orthonormal frame {ei}n
i=1 with e1 = ¿ = − ∇u

|∇u| .

Under this coordinates, since u = 0 on ∂M, the second fundamental form satisfies

hab = −ï∇ea¿,ebð =
1

|∇u|∇a∇bu = 0,
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for any 2 f a,b,c,d f n. Hence, ∂M is totally geodesic. Also, by the Gauss equation (2.20),

one obtains that

R∂M = R −2R11. (2.35)

We further recall some important features of m-quasi-Einstein manifolds (cf.

[26], [42], [59]).

Lemma 2.7. Let (Mn, g, u, ¼) be an m-quasi-Einstein manifold with m > 1. Then we

have:

1.
1

2
u∇R = −(m−1)Ric(∇u)− (R − (n−1)¼)∇u;

2.
u2

m
(R −¼n)+(m−1)|∇u|2 = −¼u2 +µ,

where µ is a constant;

3.

1

2
∆R = −m+2

2u
ï∇u, ∇Rð− m−1

m

∣∣∣∣Ric− R

n
g

∣∣∣∣
2

−(n+m−1)

mn
(R −n¼)

(
R − n(n−1)

n+m−1
¼

)
;

4.

u
(
∇iRjk −∇jRik

)
= mRijkl∇lu+¼

(
∇iugjk −∇jugik

)
−
(
∇iuRjk −∇juRik

)
.

We highlight that Eq. (2) of Lemma 2.7 determines a type of “integrability

condition”. Besides, Equation (4) of Lemma 2.7 was obtained by Diógenes and Gadelha in

[42, Lemma 1].

From assertion (1) of Lemma 2.7, if an m-quasi-Einstein manifold Mn has

constant scalar curvature and m > 1, then

Ric(∇u) =
(n−1)¼−R

m−1
∇u. (2.36)

Consequently, the traceless Ricci tensor R̊ic must satisfy

R̊ic(∇u) =
n(n−1)¼− (m+n−1)R

n(m−1)
∇u. (2.37)
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Furthermore, Eq. (3) of Lemma 2.7 together with the assumption that the scalar curvature

R is constant imply that

|R̊ic|2 = −m+n−1

n(m−1)
(R −n¼)

(
R − n(n−1)¼

m+n−1

)
. (2.38)

We now set the covariant 2-tensor P by

P = Ric− (n−1)¼−R

m−1
g. (2.39)

In this perspective, by assuming that M has constant scalar curvature, we have from (2.36)

that P (∇u) = 0. Furthermore, by using the orthonormal frame {ei}n
i=1 that diagonalizes

the Ricci tensor, one observes that P (ei) = µiei. In [59], it was introduced the 4-tensor Q

related to P as follows

Q = Rm+
1

m
P »g +

(n−m)¼−R

2m(m−1)
g »g, (2.40)

where » stands for the Kulkarni-Nomizu product1 and Rm is the Riemann tensor. For

covariant 2-tensors S and T, the Kulkarni-Nomizu product is given by

(S »T )ijkl = SikTjl +SjlTik −SilTjk −SjkTil. (2.41)

With these tools, one deduces the following result.

Proposition 2.6. Let (Mn, g, u, ¼) be an m-quasi-Einstein manifold. Then we have:

u(∇iPjk −∇jPik) = mQijkl∇lu+
1

2
(g »g)ijklPsl∇su.

Proof. We start by rewriting the expression (4) of Lemma 2.7 in terms of the tensor

P = Ric− (n−1)¼−R
m−1 g in order to obtain

u
(
∇iPjk −∇jPik

)
+ u

(
∇iÄgjk −∇jÄgik

)

= mRijkl∇lu+(¼−ϱ)
(
∇iugjk −∇jugik

)
−
(
∇iuPjk −∇juPik

)
,

where

ϱ =
(n−1)¼−R

m−1
. (2.42)

1 Our definition of Kulkarni-Nomizu product differs from [59] by a constant 1/2 and sign.
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Moreover, by assertion (1) of Lemma 2.7, one sees that u
2 ∇ϱ = P (∇u) (see also [59,

Proposition 5.2]) and hence,

u
(
∇iPjk −∇jPik

)
+ 2

(
Pil∇lugjk −Pjl∇lugik

)

= mRijkl∇lu+(¼−ϱ)
(
∇iugjk −∇jugik

)
−
(
∇iuPjk −∇juPik

)
.

(2.43)

On the other hand, it follows from (2.41) that

(g »g)ijkl∇lu = 2(gik∇ju−gjk∇iu),

(g »g)ijklPsl∇su = 2(Pjs∇sugik −Pis∇sugjk)

and

(P »g)ijkl∇lu = (Pik∇ju−Pjk∇iu)+(Pjl∇lugik −Pil∇lugjk).

Substituting these expressions into (2.43) yields

u(∇iPjk −∇jPik) = mRijkl∇lu+(ϱ−¼)(gik∇ju−gjk∇iu)+(Pik∇ju−Pjk∇iu)

+2(Pjl∇lugik −Pil∇lugjk)

= mRijkl∇lu+
(ϱ−¼)

2
(g »g)ijkl∇lu+(P »g)ijkl∇lu

+
1

2
(g »g)ijklPsl∇su

= mQijkl∇lu+
1

2
(g »g)ijklPsl∇su,

where the last equality follows from (2.40).

As a consequence of Proposition 2.6, we deduce the following identities that were

first proved by He, Petersen and Wylie in [60, Proposition 3.7]. Taking into account that

our convention for the Kulkarni-Nomizu product (2.41) and Ric(X,Y ) = trRm(X, ·,Y, ·)
differ from [60], for the reader’s convenience, we are going to present a proof here.

Proposition 2.7 ([60]). Let (Mn, g, u, ¼) be an m-quasi-Einstein manifold with constant

scalar curvature and m > 1. Then we have:

1.
u

m
(∇iPjk −∇jPik) =

u

m
(∇iRjk −∇jRik) = Qijkl∇lu,
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2.
u

m
∇iPjk∇iu =

(
u

m

)2 (
(¼−ϱ)Pjk −PikPij

)
+Qijkl∇lu∇iu,

where ϱ = (n−1)¼−R
m−1 .

Proof. Initially, since Mn has constant scalar curvature and P = Ric − (n−1)¼−R
m−1 g, ones

sees that P (∇u) = 0 and therefore, the first assertion follows directly from Proposition 2.6.

We now deal with the second one. By using again that P (∇u) = 0, one observes

that

0 = ∇j (Pik∇iu) = (∇jPik)∇iu+Pik∇j∇iu.

This jointly with (2.32) yields

∇jPik∇iu = −Pik∇j∇iu = −Pik

(
u

m
(Pji − (¼−ϱ)gji)

)
= − u

m

(
PikPji − (¼−ϱ)Pjk

)
.

Thereby, it suffices to use the first assertion in order to infer

u

m
∇iPjk∇iu =

(
u

m

)2 (
(¼−ϱ)Pjk −PikPij

)
+Qijkl∇lu∇iu,

as desired.

On an m-quasi-Einstein manifold, we may express the Cotton tensor in terms

of the Weyl tensor and an auxiliary 3-tensor Tijk as follows (see [42, Lemma 2]).

Lemma 2.8 ([42]). Let (Mn, g, u, ¼) be an m-quasi-Einstein manifold. Then it holds

uCijk = mWijkl∇lu+Tijk, (2.44)

where the 3-tensor Tijk is given by

Tijk =
m+n−2

n−2
(Rik∇ju−Rjk∇iu)+

m

n−2
(Rjl∇lugik −Ril∇lugjk)

+
(n−1)(n−2)¼+mR

(n−1)(n−2)
(∇iugjk −∇jugik)− u

2(n−1)
(∇iRgjk −∇jRgik).

We highlight that the tensor Tijk has the same symmetric properties of the

Cotton tensor and it is motivated by ideas outlined by Cao and Chen in [25]; see also [32]

and [89]. Besides, it is convenient to express the tensor Tijk in terms of the traceless Ricci
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tensor

Tijk =
m+n−2

n−2
(R̊ik∇ju− R̊jk∇iu)+

m

n−2
(R̊jl∇lugik − R̊il∇lugjk)

+
n(n−1)¼− (m+n−1)R

n(n−1)
(∇iugjk −∇jugik)

− u

2(n−1)
(∇iRgjk −∇jRgik). (2.45)

Now, it is convenient to recall the following terminology (see [60]).

Definition 2.3. An m-quasi-Einstein manifold (Mn, g, u, ¼) is said to be rigid if it is

Einstein or its universal cover is a product of Einstein manifolds.

In [60], it was established the following result for m-quasi-Einstein manifolds.

Proposition 2.8 ([60]). Suppose (Mn,g,u,¼) is a nontrivial m-quasi-Einstein manifold

which is also Einstein, then up to multiples of the potential function u or the metric g, it

is isometric to one of the examples in Table 1.

M g u ¼ ϱ µ

[−Ã
2 , Ã

2 ] dr2 u(r) = cos(r) m 0 m−1
[0,∞) dr2 u(r) = r 0 0 m−1
[0,∞) dr2 u(r) = sinh(r) −m 0 m−1

(−∞,∞) dr2 u(r) = er −m 0 0
(−∞,∞) dr2 u(r) = cosh(r) −m 0 1−m

S
n
+ dr2 +sin2(r)gSn−1 u(r) = cos(r) m+n−1 n−1 m−1

[0,∞)×F dr2 +gF u(r) = r 0 0 m−1

[0,∞)×N dr2 +cosh2(r)gN u(r) = sinh(r) −(m+n−1) −(n−1) m−1
(−∞,∞)×F dr2 + e2r(r)gN u(r) = er −(m+n−1) −(n−1) 0

H
n dr2 +sinh2(r)gN u(r) = cosh(r) −(m+n−1) −(n−1) 1−m

TABLE 1: Nontrivial m-quasi-Einstein manifolds that are also Einstein. Here, ϱ is given
as in (2.42), F is Ricci flat and N has Ricci curvature −(n−2).

Using Proposition 2.8, He, Petersen and Wylie proved the following result for

rigid quasi-Einstein manifolds.

Proposition 2.9 ([60]). A non-trivial complete rigid m-quasi-Einstein manifold (Mn, g, u, ¼)

is one of the examples in Table 1, or its universal cover splits off as

M̃ = (M1,g1)× (M2,g2) with u(x,y) = u(y),

where (M1,g1, ¼) is a trivial quasi-Einstein manifold and (M2, g2, u) is one of the examples

in Table 1.
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Remark 7. It is known that the universal covering of a quasi-Einstein manifold with

¼ > 0 is compact and hence, its fundamental group Ã1(M) is finite. The proof of this fact

is quite similar to [49], [111] and it can be carry out by combining the arguments in the

proof of [59, Theorem 4.1] (see also [88]) and [96, Remark 6.9].

Before proceeding, we recall that a non-constant function f : M → R of class

at least C2 is said to be transnormal if

|∇f |2 = b(f) (2.46)

for some C2 function b on the range of f in R. In addition, f is said to be isoparametric if

there exists a continuous function a on the range of f in R such that

∆f = a(f). (2.47)

In particular, (2.46) implies that the level set hypersurfaces of f (i.e., Mt = f−1(t), where

t is a regular value of f) are parallel, and the integral curves of ∇f are the shortest

geodesics connecting the level sets. Besides, (2.47) guarantees that such hypersurfaces

have constant mean curvatures. The preimage of the maximum (respectively, minimum)

of an isoparametric (or transnormal) function f is called the focal variety of f. We refer

the reader to [53], [54], [79] and [107] for more details.

By considering that (Mn, g, u, ¼) is an m-quasi-Einstein manifold with constant

scalar curvature, one deduces from (2.33) that the potential function u is isoparametric.

In view of this, one easily verifies from assertion (2) of Lemma 2.7, for m > 1, that

|∇u|2 =
µ

m−1
− R +(m−n)¼

m(m−1)
u2. (2.48)

Consequently, the potential function u is transnormal, namely,

b(u) =
µ

m−1
− R +(m−n)¼

m(m−1)
u2. (2.49)

Concerning the regularity of the potential function, for an m-quasi-Einstein

manifold (Mn, g, u, ¼), it is known that u and g are real analytic in harmonic coordinates

(cf. Proposition 2.4 in [59]). In particular, the critical level sets of u have zero measure.

A central object in our approach is the set of maximum points of u given by

MAX(u) = {p ∈ M : u(p) = umax}.
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Remark 8. In the compact case with m > 1, notice that every point in MAX(u), which

clearly is an interior point, must be a critical point. Moreover, the fact that u is a

transnormal function and (2.48) allow us to deduce that the critical points of u have

the same value. Thereby, MAX(u) = Crit(u) for nontrivial compact m-quasi-Einstein

manifolds.

To conclude this section, we are going to describe an example of m-quasi-

Einstein manifold for dimension n g 5, on
[
0,

√
m√
¼

Ã
]
×S

p ×S
q (see also [51]).

Example 2.3. Let ¼ > 0 be an arbitrary constant and consider Mn =
[
0,

√
m√
¼

Ã
]
×S

p ×S
q,

p, q > 1, endowed with the metric

g = dt2 +
p−1

¼
gSp +

q −1

¼
gSq .

This space is an m-quasi-Einstein manifold with potential function u(t) = sin
( √

¼√
m

t
)

and

constant scalar curvature R = (n−1)¼. Indeed, we first notice that

Ric = (p−1)gSp +(q −1)gSq and ∇u = u′∇t =

√
¼√
m

cos

( √
¼√
m

t

)
∇t.

Thereby, since u = u(t) and the warping function is constant, we deduce from (2.3) that

∇2u = − ¼

m
sin

( √
¼√
m

t

)
dt2. (2.50)

On the other hand, one observes that

u

m
(Ric−¼g) =

1

m
sin

( √
¼√
m

t

)[
(p−1)gSp +(q −1)gSq − (¼dt2 +(p−1)gSp +(q −1)gSq)

]

=− ¼

m
sin

( √
¼√
m

t

)
dt2.

Plugging this into (2.50) gives (2.32).

In conclusion, u = 0 if and only if either t = 0 or t =
√

m√
¼

Ã and consequently,

the boundary consists of two disjoint copies of Sp ×S
q.
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3 GEOMETRY OF STATIC PERFECT FLUID SPACE-TIME

In this chapter, we discuss the results obtained in Geometry of static perfect

fluid space-time, a joint work with R. Diógenes, N. Pinheiro and E. Ribeiro Jr. [35].

The central discussion of the aforementioned paper is to obtain geometric inequalities for

compact static perfect fluid space-times (SPFST) with boundary ∂M . Furthermore, we

present a new example of SPFST with connected boundary which is counter-example to the

cosmic no-hair conjecture for arbitrary dimension n g 4. This chapter is divided in three

sections: In Sections 3.1 and 3.2, we state Theorems 1 and 2 of the article aforementioned

and their corollaries, respectively; Section 3.3 discuss a counter-example for the cosmic

no-hair conjecture, moreover we present an examples of a static perfect fluid space-time

with non-constant scalar curvature obtained in [9].

In [35], it was established new geometric inequalities in order to estimate

the area of the boundary of a compact SPFST. Moreover, the case of equality was also

discussed. In this sense, our first section presents Theorem 1 of [35] and its corollary, which

is related to the isoperimetric inequality. To do so, we make use of the generalized Reilly’s

formula by Qiu and Xia [91] in order to obtain a new boundary estimate for SPFST. More

precisely, we have the following result.

Theorem 3.1. Let (Mn, g, f, Ä) be a compact oriented static perfect fluid space-time with

boundary ∂M and positive scalar curvature satisfying

n−2

2(n−1)
R +

n

n−1
Ä = −Ä, (3.1)

where Ä is a positive constant. Then we have:

V ol(M) g 1

Ä

√
Rmin +3Ä

2n
|∂M |. (3.2)

Moreover, if equality holds in (3.2), then (Mn, g) is isometric to the round hemisphere S
n
+.

As was mentioned in the statement of Theorem 3.1, the constant Ä is positive.

Indeed, supposing that Ä f 0, since ∆f = −Äf and f is a nonnegative function with

f−1(0) = ∂M, we may use the Maximum Principle to infer that f = 0 in M, which leads

to a contradiction.

We highlight that, by assuming the dominant energy condition in Theorem 3.1,

one obtains that the scalar curvature of Mn must be positive. In fact, the dominant energy
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condition asserts R
2 g |Ä| and hence, if R(p) = 0 for some point p ∈ M, then Ä(p) = 0,

which contradicts the assumption that Ä is a positive constant. Moreover, from equation

(2.18) and Proposition 2.4, we have Ä |∂M = −1
2R |∂M and consequently, Ä = 1

n−1R |∂M . In

particular, (3.1) implies that the scalar curvature is constant along the boundary.

As a consequence of Theorem 3.1, we obtain the following corollary.

Corollary 3.1. Let (Mn, g, f, Ä) be a compact oriented static perfect fluid space-time with

boundary ∂M and constant positive scalar curvature R. Then we have:

V ol(M) g
√

(n−1)(n+2)

2nR
|∂M |. (3.3)

Moreover, if equality holds in (3.3), then (Mn, g) is isometric to the round hemisphere S
n
+.

At the second part of this chapter, we deal with the Brown-York mass. The

study of static spaces are related with the mass concept, as, for instance, ADM (Arnowitt-

Deser-Misner) mass [20]. So, it is interesting to find a result over SPFST involving some

mass concept. The next result establishes a sharp boundary estimate for compact static

perfect fluid space-time with (possibly disconnected) boundary in terms of the Brown-York

mass m
BY

. Now, let us recall the definition of Brown-York mass.

Definition 3.1. Let Σ be a connected hypersurface in (Mn, g) such that (Σ,g |Σ) can be

embedded in R
n as a convex hypersurface. Then, the Brown-York mass m

BY
of Σ with

respect to g is given by

m
BY

(Σ,g) =
∫

Σ
(H0 −Hg)dSg,

where H0 and Hg are the mean curvature of Σ as hypersurface of Rn and M, respectively,

and dSg is the volume element of on Σ induced by g.

In [115], motivated by the Riemannian Penrose inequality, Yuan obtained a

boundary estimate for static spaces in terms of the Brown-York mass. A similar result

was established for quasi-Einstein manifolds by Diógenes, Gadelha and Ribeiro [44]. In

another direction, inspired by ideas outlined in [37], Andrade and Melo [2] proved recently

that, under suitable conditions, the Hawking mass of Einstein-type manifolds is bounded

from below by the area of the boundary. Then, we have the following result.

Theorem 3.2. Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid space-time with

(possibly disconnected) boundary and positive scalar curvature satisfying the dominant
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energy condition. Suppose that each boundary component (∂Mi, g) can be isometrically

embedded in R
n as a convex hypersurface. Then we have

|∂Mi| f cm
BY

(∂Mi,g), (3.4)

where c is a positive constant. Moreover, equality occurs for some component ∂Mi if and

only if Mn is isometric to the standard hemisphere S
n
+.

A key ingredient in the proof of Theorem 3.2 is the positive mass theorem

for Brown-York mass by Shi-Tam [102], which is equivalent to the (higher dimensional)

positive mass theorem for ADM mass by Schoen and Yau [98], [99], [100], and Lohkamp

[70]. It should be mentioned that the isometric embedding condition in Theorem 3.2 was

needed to use the positive mass theorem. According to the solution of the Weyl problem,

the isometrical embedding assumption can be replaced by control on sectional curvatures,

as for instance, positive Gaussian curvature when n = 3, see, e.g., [46], [115].

As an application of Theorem 3.2, we also obtain an integral estimate for the

area of each connected component ∂Mi of the boundary in terms of its scalar curvature

R∂Mi and the norm of its second fundamental form as a hypersurface of Rn. The result is

stated as follows.

Corollary 3.2. Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid space-time with

(possibly disconnected) boundary and positive scalar curvature. Assume the dominant

energy condition and that each boundary component (∂Mi,g) can be isometrically embedded

in R
n as a convex hypersurface. Then we have

|∂Mi| f c̃
∫

∂Mi

(R∂Mi + |̊hi|2)dSg

for some positive constant c̃, where h̊i is the traceless second fundamental form of ∂Mi

as a hypersurface of Rn. Moreover, equality occurs for some connected component of the

boundary if and only if (Mn, g) is isometric to the round hemisphere S
n
+.

In Section 3.3, we are going to present some examples, one of them with

non-constant scalar curvature, which corresponds to [9, Example 2]. These examples are

relevant in the theory due to their properties. The principal result in such a section is

the new example developed in [35], which is a new counter-example to the cosmic no-hair

conjecture for arbitrary dimension n g 4. Such a conjecture was proposed in 1984 by
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Boucher, Gibbons and Horowitz in [22], [23] and can be state as: the hemisphere S
n
+ is the

only possible n-dimensional (simply connected) positive static triple with single-horizon

(connected boundary) and positive scalar curvature. More precisely, we have the following

example.

Example 3.1. Let Mn = S
p+1
+ ×S

q, q > 1, with the product metric

g = dr2 +sin2(r)gSp +
q −1

p+1
gSq ,

where r(x,y) = r(x) is the height function of Sp+1. Moreover, we consider the potential

function f(r) = cos(r) with r f Ã
2 . Thus, (Mn, g) satisfies (2.11) and (2.12). In particular,

since it has constant scalar curvature, then it is a static space.

3.1 Volume comparison estimate using the generalized Reilly’s formula

First of all, let us recall the definition of a static perfect fluid space-time.

Definition 3.2. A Riemannian manifold (Mn,g) is said to be a spatial factor of a static

perfect fluid space-time (SPFST) if there exist smooth functions f > 0 and Ä on Mn

satisfying the perfect fluid equations:

fR̊ic = ∇̊2f (3.5)

and

∆f =

(
n−2

2(n−1)
R +

n

n−1
Ä

)
f, (3.6)

where R̊ic, ∇̊2 stand for the traceless Ricci and traceless Hessian tensor, respectively.

When M has non-empty boundary ∂M , it will be assumed in addition that f−1(0) = ∂M .

f will be called a potential function and denote a such space as (Mn,g,f,Ä).

As it was mentioned in Chapter 1, Definition 3.2 approaches a SPFST as a spatial factor,

i.e., the base of a Lorentzian warped product with a static metric.

Before present our first theorem, we need to discuss some key results. We recall

the following useful generalized Reilly’s formula, obtained previously by Qiu and Xia [91].
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Proposition 3.1 ([91]). Let (Mn, g) be a compact Riemannian manifold with boundary

∂M. Given two functions f and u on Mn and a constant », we have
∫

M
f
(
(∆u+»nu)2 −|∇2u+»ug|2

)
dVg = (n−1)»

∫

M
(∆f +n»f)u2 dVg

+
∫

M

(
∇2f − (∆f)g −2(n−1)»fg +fRic

)
(∇u,∇u)dVg

+
∫

∂M
f


2

(
∂u

∂¿

)
∆

∂M
u+H

(
∂u

∂¿

)2

+h(∇
∂M

u,∇
∂M

u)+2(n−1)»

(
∂u

∂¿

)
u


dSg

+
∫

∂M

∂f

∂¿

(
|∇

∂M
u|2 − (n−1)»u2

)
dSg,

where H and h stand for the mean curvature and second fundamental form of ∂M,

respectively.

We point out that, by considering » = 0 and f = 1 in Proposition 3.1, we

recover the classical Reilly’s formula. For sake of completeness, we present the proof of

Proposition 3.1 here.

Proof. To begin with, observe that

1

2
∆(f |∇u|2) =

1

2
(∆f)|∇u|2 +

1

2
f∆|∇u|2 + ï∇f,∇|∇u|2ð (3.7)

Moreover, using the Stokes’ theorem, one has

−1

2

∫

M
(∆f)|∇u|2 dVg +

1

2

∫

∂M
|∇u|2 ∂f

∂¿
dSg −

∫

∂M
ï∇u,∇fð∂u

∂¿
dSg

+
∫

M
∇2f(∇u,∇u) dVg +

∫

M
ï∇u,∇fð∆u dVg

−
∫

M
ï∇ï∇f,∇uð,∇uð dVg

= 0, (3.8)

where we have used that ï∇f,∇|∇u|2ð = 2∇2u(∇u,∇f). Integrating (3.7) over M and

using again the Stokes’ theorem, one obtains that
∫

M
ï∇f,∇|∇u|2ð dVg =

1

2

∫

M
∆(f |∇u|2) dVg − 1

2

∫

M
(∆f)|∇u|2 dVg − 1

2

∫

M
f∆|∇u|2dVg

=
1

2

∫

∂M
|∇u|2 ∂f

∂¿
dSg − 1

2

∫

M

[
(∆f)|∇u|2 −ï∇f,∇|∇u|2ð

]
dVg.

Of which, we may use (3.8) to deduce
∫

M
ï∇f,∇|∇u|2ð dVg = −3

2

∫

M
(∆f)|∇u|2 dVg +

3

2

∫

∂M

∂f

∂¿
|∇u|2 dSg

−
∫

∂M
ï∇f,∇uð∂u

∂¿
dSg +

∫

M
∇2f(∇u,∇u) dVg

+
∫

M
ï∇f,∇uð∆u dVg. (3.9)
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Now, by using the Böchner’s formula, i.e.,

1

2
∆|∇u|2 = ï∇∆u,∇uð+Ric(∇u,∇u)+ |∇2u|2,

together with

1

2
∆(f |∇u|2) =

f

2
∆|∇u|2 + ï∇f,∇|∇u|2ð+

1

2
|∇u|2∆f,

we then get

∫

M
ï∇f,∇|∇u|2ð dVg = −

∫

M
f
[
Ric(∇u,∇u)+ ï∇∆u,∇uð+ |∇2u|2

]
dVg

+
1

2

∫

M

∂

∂¿
(f |∇u|2) dVg − 1

2

∫

M
|∇u|2∆f dVg.

Comparing the last expression with (3.9), one sees

1

2

∫

∂M

∂

∂¿
(f |∇u|2) dSg −

∫

M
f
(
|∇2u|2 +Ric(∇u,∇u)+ ï∇∆u,∇uð

)
dVg

= −
∫

M
(∆f)|∇u|2 dVg +

3

2

∫

∂M

∂f

∂¿
|∇u|2 dSg −

∫

∂M
ï∇f,∇uð∂u

∂¿
dSg

+
∫

M
∇2f(∇u,∇u) dVg +

∫

M
ï∇f,∇uð∆u dVg. (3.10)

In another direction, upon integrating by parts, we achieve

∫

M
fï∇∆u,∇uð dVg = −

∫

M
f(∆u)2 dVg −

∫

M
ï∇f,∇uð∆u dVg +

∫

∂M
f(∆u)

∂u

∂¿
dSg.

On the other hand, on the boundary, we have

1

2

∂

∂¿
|∇u|2 =

〈
∇

∂M
u,∇

∂M

(
∂u

∂¿

)〉
− II(∇

∂M
u,∇

∂M
u)+

∂u

∂¿

(
∆u−∆

∂M
u−H

∂u

∂¿

)
.

Also, notice that

∂f

∂¿
|∇u|2 −ï∇f,∇uð∂u

∂¿
=

∂f

∂¿
|∇∂Mu|2 +

∂f

∂¿

(
∂u

∂¿

)2

− ∂f

∂¿

(
∂u

∂¿

)2

−ï∇∂Mf,∇∂Muð∂u

∂¿

=
∂f

∂¿
|∇∂Mu|2 −ï∇∂Mf,∇∂Muð∂u

∂¿

and

div
∂M

(
f∇∂Mu

∂u

∂¿

)
= ï∇∂Mf,∇∂M uð∂u

∂¿
+f∆∂M u

∂u

∂¿
+f

〈
∇∂Mu,∇∂M

(
∂u

∂¿

)〉
.

Integrating the last equality on the boundary of M , one obtains that

−
∫

∂M
ï∇∂Mf,∇∂M uð∂u

∂¿
dSg =

∫

∂M
f∆∂Mu

∂u

∂¿
dSg +

∫

∂M
f

〈
∇∂Mu,∇∂M

(
∂u

∂¿

)〉
dSg.
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Putting together all of this conclusions into (3.10), one sees that
∫

∂M
f

[
−II(∇

∂M
u,∇

∂M
u)+

∂u

∂¿

(
−2∆

∂M
u−H

∂u

∂¿

)]
dSg −

∫

∂M

∂f

∂¿
|∇

∂M
u|2 dSg

=
∫

M
f
(
|∇2u|2 − (∆u)2

)
dVg +

∫

M

(
−(∆f)g +∇2f +fRic

)
(∇u,∇u) dVg.

To conclude, it suffices to use the fact that
∫

M
f
(
|∇2u|2 − (∆u)2

)
dVg =

∫

M
f
[
|∇2u+»ug|2 − (∆u+n»u)2

]
dVg

+(n−1)»

[∫

∂M

(
2fu

∂u

∂¿
−u2 ∂f

∂¿

)
dSg +

∫

M

(
(∆f)u2 −2f |∇u|2

)
dVg

]

+n(n−1)»2
∫

M
u2f dVg.

So, the proof is finished.

As an application, we are going to establish a key lemma that will be funda-

mental in the proof of the main result of this section.

Lemma 3.1. Let (Mn, g) be a compact manifold with boundary ∂M . We assume that f

is a smooth function on Mn satisfying

fR̊ic = ∇̊2f and f |∂M= 0.

Then we have:

∫

∂M

∂f

∂¿

(
|∇

∂M
¸|2 − (n−1)»¸2

)
dSg =

1

n

∫

M
[(n−1)∆f +Rf ]g(∇u,∇u)dVg

−(n−1)»
∫

M
(∆f +n»f)u2dVg

−
∫

M
f |∇2u+»ug|2dVg

−2
∫

M
f [Ric− (n−1)»g](∇u,∇u)dVg,(3.11)

where ¸ is any function on ∂M and u is a solution of




∆u+n»u = 0 in M,

u = ¸ on ∂M.
(3.12)

Proof. By Proposition 3.1, equation (3.12) and the fact that f = 0 on ∂M, one sees that
∫

∂M

∂f

∂¿

(
|∇

∂M
¸|2 − (n−1)»¸2

)
dSg = −

∫

M
f |∇2u+»ug|2dVg

−(n−1)»
∫

M
(∆f +n»f)u2dVg

−
∫

M

(
∇2f − (∆f)g +fRic

)
(∇u,∇u)dVg

+2(n−1)»
∫

M
f |∇u|2 dVg.
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Now, using fR̊ic = ∇̊2f, we get

∫

∂M

∂f

∂¿

(
|∇

∂M
¸|2 − (n−1)»¸2

)
dSg = −

∫

M
f |∇2u+»ug|2dVg

−(n−1)»
∫

M
(∆f +n»f)u2dVg

−
∫

M

(
2fRic− R

n
fg − n−1

n
∆fg

)
(∇u,∇u)dVg

+2(n−1)»
∫

M
f |∇u|2 dVg

=
1

n

∫

M
[(n−1)∆f +Rf ]g(∇u,∇u)dVg

−(n−1)»
∫

M
(∆f +n»f)u2dVg

−
∫

M
f |∇2u+»ug|2dVg

−2
∫

M
f [Ric− (n−1)»g](∇u,∇u)dVg,

as we wanted to prove.

We are now ready to discuss our first theorem of this chapter.

Theorem 3.3 (Theorem 3.1). Let (Mn, g, f, Ä) be a compact oriented static perfect fluid

space-time with boundary ∂M and positive scalar curvature satisfying

n−2

2(n−1)
R +

n

n−1
Ä = −Ä, (3.13)

where Ä is a positive constant. Then we have:

V ol(M) g 1

Ä

√
Rmin +3Ä

2n
|∂M |. (3.14)

Moreover, if equality holds in (3.14), then (Mn, g) is isometric to the round hemisphere

S
n
+.

Proof. To begin with, we have from (3.6) that

∆f = −Äf,

where Ä = − (n−2)
2(n−1)R− n

n−1Ä. In particular, it follows from equation (2.19) that Ä > 0. Now,

choosing u = f and » = Ä
n , one obtains that





∆u+n»u = 0 in M,

u = 0 on ∂M.
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Hence, by using Lemma 3.1, one sees that

∫

M
f
∣∣∣∣∇2f +

Ä

n
fg
∣∣∣∣
2

dVg − 1

n

∫

M
Rf |∇f |2dVg −

(
n−1

n

)∫

M
(∆f)|∇f |2dVg

+ 2
∫

M
f
[
Ric−

(
n−1

n

)
Äg
]
(∇f,∇f)dVg = 0. (3.15)

In another direction, by the classical Bochner’s formula

1

2
∆|∇f |2 = Ric(∇f,∇f)+ |∇2f |2 + ï∇f, ∇∆fð,

one deduces that

2fRic(∇f,∇f) = f∆|∇f |2 −2f |∇2f |2 +2Äf |∇f |2.

Upon integrating, one sees that

2
∫

M
f
[
Ric−

(
n−1

n

)
Äg
]
(∇f,∇f)dVg =

∫

M
f∆|∇f |2dVg −2

∫

M
f |∇2f |2dVg

+
2Ä

n

∫

M
f |∇f |2dVg. (3.16)

Also, by Green’s identity and the fact that f−1(0) = ∂M and, by Proposition 2.4, |∇f ||∂M

is a nonzero constant along the boundary, it is easy to check that

∫

M
f∆|∇f |2dVg =

∫

M
|∇f |2∆fdVg + |∇f |3|∂M

|∂M |. (3.17)

Substituting (3.17) into (3.16) yields

2
∫

M
f
[
Ric−

(
n−1

n

)
Äg
]
(∇f,∇f)dVg =

∫

M
|∇f |2∆fdVg + |∇f |3|∂M

|∂M |

−2
∫

M
f |∇̊2f |2 dVg − 2

n

∫

M
f(∆f)2 dVg

+
2Ä

n

∫

M
f |∇f |2 dVg,

where we have used that |∇2f |2 = |∇̊2f |2 + (∆f)2

n . Using (3.15), we then obtain

∫

M
f |∇̊2f |2dVg = − 1

n

∫

M
Rf |∇f |2dVg +

1

n

∫

M
(∆f)|∇f |2dVg

+|∇f |3|∂M
|∂M |− 2

n

∫

M
f(∆f)2dVg +

2Ä

n

∫

M
f |∇f |2dVg. (3.18)

Proceeding, on integrating by parts, one deduces that

∫

M
f(∆f)2 dVg = −Ä

∫

M
f2∆f dVg = 2Ä

∫

M
f |∇f |2 dVg. (3.19)
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Plugging (3.19) together with (3.6) and the value of Ä into (3.18) gives

∫

M
f |∇̊2f |2dVg = − 1

n

∫

M
fR|∇f |2dVg + |∇f |3|∂M

|∂M |

−3Ä

n

∫

M
f |∇f |2dVg. (3.20)

Since −∆f > 0 (in the interior of M), by Hölder’s inequality, one sees that

(∫

M
f∆f dVg

)2

f
∫

M
f2 (−∆f) dVg

∫

M
(−∆f) dVg

=
∫

M
f2 (−∆f) dVg |∇f ||∂M

|∂M |,

where we used the Stokes’ formula. With aid of (3.19), we infer

|∇f ||∂M
|∂M |

∫

M
f |∇f |2dVg =

1

2
|∇f ||∂M

|∂M |
∫

M
f2(−∆f)dVg

g 1

2

(∫

M
f∆fdVg

)2

. (3.21)

Again, by Hölder’s inequality, we get

(∫

M
∆fdVg

)2

f
(∫

M
ÄdVg

) (∫

M
f
(

−∆f
)
dVg

)

= ÄV ol(M)
(∫

M
f
(

−∆f
)
dVg

)
,

so that

Ä2V ol(M)2
(∫

M
f∆fdVg

)2

g
(∫

M
∆fdVg

)4

= |∇f |4|∂M
|∂M |4. (3.22)

Combining (3.22) and (3.21), one obtains that

2Ä2V ol(M)2
∫

M
f |∇f |2dVg g |∇f |3|∂M

|∂M |3.

Substituting this into (3.20), one sees that

0 f
∫

M
f |∇̊2f |2dVg

= − 1

n

∫

M
Rf |∇f |2dVg + |∇f |3|∂M

|∂M |− 3Ä

n

∫

M
f |∇f |2dVg

f −Rmin +3Ä

n

∫

M
f |∇f |2dVg + |∇f |3|∂M

|∂M |

f −
(Rmin +3Ä)|∇f |3|∂M

|∂M |3

2nÄ2V ol(M)2
+ |∇f |3|∂M

|∂M |.

From this, it follows that

V ol(M) g 1

Ä

√
Rmin +3Ä

2n
|∂M |, (3.23)
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as asserted.

To conclude, if equality holds in (3.23), then

∇2f = −Ä

n
fg.

Moreover, since f = 0 on the boundary ∂M (and f is constant on ∂M), we may use

Theorem B (II) of [93] to deduce that (Mn, g) has constant sectional curvature Ä
n and

this forces (Mn, g) to be an Einstein manifold. Thus, it suffices to invoke Proposition 1

of [37] together with the fact that the boundary is totally geodesic in order to conclude

that (Mn, g) is isometric to the round hemisphere S
n
+. This finishes the proof of the

theorem.

As it was pointed out, static perfect fluid space-times generalize vacuum static

spaces. It is already know that, in the context of compact SPFST with boundary, constant

scalar curvature implies that the manifold must satisfy the static equation; see Proposition

2.3. Thus, we have a direct corollary of Theorem 3.3 for the case of positive static triple.

Corollary 3.3 (Corollary 3.1). Let (Mn, g, f, Ä) be a compact oriented static perfect fluid

space-time with boundary ∂M and constant positive scalar curvature R. Then we have:

V ol(M) g
√

(n−1)(n+2)

2nR
|∂M |. (3.24)

Moreover, if equality holds in (3.24), then (Mn, g) is isometric to the round hemisphere

S
n
+.

Proof. The condition that (Mn, g, f, Ä) has positive constant scalar curvature R implies

from Proposition 2.3 that Ä = −R
2 and so, Ä = R

n−1 is constant. Therefore, Corollary 3.1

follows from Theorem 3.1.

3.2 Boundary area estimate in terms of the Brown-York mass

Before to present our estimate for the area of the boundary in terms of the

Brown-York mass, we shall establish a lemma that will be fundamental in the proof of the

result. To do so, similar to [44] and [115], we set the conformal metric g = v
4

n−2 g with

v = (1+³f)− n−2
2 and ³−1 = max

M

(
f2 +

n(n−1)

Rg
|∇f |2

) 1
2

. (3.25)

With aid of these notations, we have the following lemma.
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Lemma 3.2. Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid space-time with

positive scalar curvature and satisfying the dominant energy condition. Then the scalar

curvature Rg with respect to the conformal metric g is nonnegative. Moreover, Rg = 0 if

and only if ∆gf = − Rg

n−1f and f2 + n(n−1)
Rg

|∇f |2 is constant on Mn.

Proof. Initially, by using the conformal metric defined above, a direct computations yields

∆gv = ∆[(1+³f)− n−2
2 ]

= div
[
−n−2

2
(1+³f)− n

2 ³∇f
]

= −n−2

2
³(1+³f)− n

2 ∆f +
n(n−2)

4
³2(1+³f)− n+2

2 |∇f |2. (3.26)

On the other hand, it follows from Eq. (3.6) and the dominant energy condition

that

∆f =

(
n−2

2(n−1)
Rg +

n

n−1
Ä

)
f

g
(

n−2

2(n−1)
Rg − n

2(n−1)
Rg

)
f

= − Rg

n−1
f.

This combined with (3.26) gives

∆gv f n−2

2(n−1)
³(1+³f)− n

2 Rgf

+
n(n−2)

4
³2(1+³f)− n+2

2 |∇f |2.

Rearranging the terms, one sees that

∆gv f n(n−2)

4
³(1+³f)− n+2

2

[
2Rg

n(n−1)
(1+³f)f +³|∇f |2

]
. (3.27)

In another direction, it is well known, by the formulae for conformal metric,

that

Rg = v− n+2
n−2

(
Rgv −4

n−1

n−2
∆gv

)
,

where Rg is the scalar curvature with respect to the conformal metric g. From this, one
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obtains that

∆gv =
n−2

4(n−1)
Rgv − n−2

4(n−1)
v

n+2
n−2 Rg

=
n−2

4(n−1)
Rg(1+³f)− n−2

2 − n−2

4(n−1)
((1+³f)− n−2

2 )
n+2
n−2 Rg

=
n−2

4(n−1)
Rg(1+³f)− n−2

2 − n−2

4(n−1)
(1+³f)− n+2

2 Rg

=
n−2

4(n−1)
(1+³f)− n+2

2

[
(1+³f)2Rg −Rg

]
.

Substituting this into (3.27) and rearranging terms, one deduces that

Rg(1+³f)2 −Rg f n(n−1)³

[
2Rg

n(n−1)
(1+³f)f +³|∇f |2

]
.

Of which, we obtain

Rg g Rg(1+³f)2 −n(n−1)³

[
2Rg

n(n−1)
(1+³f)f +³|∇f |2

]

= Rg

[
(1+³f)2 −2³(1+³f)f − n(n−1)

Rg
³2|∇f |2

]

= Rg

[
1−³2

(
f2 +

n(n−1)

Rg
|∇f |2

)]
. (3.28)

Therefore, by using (3.28) and the value chosen for ³ in (3.25), one concludes that Rg g 0,

as asserted.

Finally, it follows from (3.28) that Rg = 0 if and only if ∆f = − Rg

n−1f and

f2 + n(n−1)
Rg

|∇f |2 is constant over M , which in particular implies Ä = −Rg

2 and consequently,

Rg is constant. So, the proof is finished.

We are now ready to discuss the central result of this section.

Theorem 3.4 (Theorem 3.2). Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid

space-time with (possibly disconnected) boundary and positive scalar curvature satisfying

the dominant energy condition. Suppose that each boundary component (∂Mi, g) can be

isometrically embedded in R
n as a convex hypersurface. Then we have

|∂Mi| f cm
BY

(∂Mi,g), (3.29)

where c is a positive constant. Moreover, equality occurs for some component ∂Mi if and

only if Mn is isometric to the standard hemisphere S
n
+.
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Proof. In the first part of the proof, we shall follow the arguments of [44, 46, 115]. First

of all, we have from (3.25) that

v = (1+³f)− n−2
2 and ³−1 = max

M

(
f2 +

n(n−1)

Rg
|∇f |2

) 1
2

. (3.30)

We now claim that the mean curvature Hi
g of ∂Mi with respect to the conformal metric

g = v
4

n−2 g is strictly positive. Indeed, since f |∂M = 0, it follows from (3.30) that v |∂M = 1.

Hence, g = g over the boundary and (∂Mi,g) is isometric to (∂Mi, g), which by assumption

can be isometrically embedded in R
n as a convex hypersurface with mean curvature Hi

0,

induced by the Euclidian metric. Besides, taking into account that mean curvature of ∂Mi

with respect to the conformal metric g is given by

Hi
g = v− 2

n−2

(
Hi

g +2
n−1

n−2
∂¿(log(v))

)
, (3.31)

one obtains that

Hi
g =

2(n−1)

n−2

〈
∇(1+³f)− n−2

2 , ¿
〉

= (n−1)³|∇f ||∂Mi
, (3.32)

where we have used that Hi
g = 0 and ¿ = − ∇f

|∇f | . This proves that Hi
g > 0, as claimed.

Proceeding, from (3.32) we get that

mBY (∂Mi,g) =
∫

∂Mi

(Hi
0 −Hi

g)dSg

= mBY (∂Mi,g)− (n−1)³|∇f ||∂Mi
|∂Mi|. (3.33)

Hence, by Lemma 3.2, we deduce that Rg g 0. Moreover, since Hi
g > 0, we may

invoke the Positive Mass Theorem for the Brown-York mass (see, e.g., [102] and [115]) to

conclude that mBY (∂Mi,g) g 0. Consequently,

|∂Mi| f 1

(n−1)³|∇f ||∂Mi

mBY (∂Mi,g)

=
1

(n−1)³|∇f ||∂Mi

∫

∂Mi

Hi
0dSg, (3.34)

which proves (3.29).

Next, if equality holds in (3.34) for some component ∂Mi0
, then we necessarily

have

mBY (∂Mi0
,g) = 0.
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Hence, by invoking the equality case in the Positive Mass Theorem for the Brown-York

mass, one deduces that the conformal metric g is flat and therefore, (Mn, g) is isometric

to a bounded domain in R
n. Besides, Rg = 0 and then it follows from Lemma 3.2 that

∆gf = − Rg

n−1f and n(n−1)
Rg

|∇f |2 +f2 is constant. In particular, Ä = −Rg

2 . But, in this case,

Rg must be constant over M. Thus, one obtains that

0 = ∇
[

n(n−1)

Rg
|∇f |2 +f2

]
=

2n(n−1)

Rg
∇2f(∇f)+2f∇f

so that

∇|∇f |2 − 2∆gf

n
∇f = 0.

Now, it suffices to apply Lemma 2.5 to conclude that |R̊ic|2 = 0 in M. Hence, we may use

Proposition 1 of [37] and the fact that ∂M is totally geodesic in order to conclude that

(Mn, g) is isometric to S
n
+.

On the other hand, if (Mn, g) is isometric to S
n
+, one deduces that ∂M = S

n−1.

Thereby, the Brown-York mass of Sn−1 is given by

mBY (Sn−1) =
∫

Sn−1
(n−1)dSg

Sn−1
= (n−1)Én−1,

where Én−1 is the volume of the round (n−1)-dimensional sphere. At the same time, since

S
n
+ has constant scalar curvature Rg = n(n−1), it follows from (3.6) that ∆gf = − Rg

n−1f =

−nf and consequently, f2 + n(n−1)
Rg

|∇f |2 is constant on M. Indeed, a direct computation

using (3.5) yields

∇
(

f2 +
n(n−1)

Rg
|∇f |2

)
= 2f∇f +2∇2f(∇f)

= −2∆f

n
∇f +2∇2f(∇f)

= 2∇̊2f(∇f) = 2fR̊ic(∇f) = 0.

Hence, one obtains that

³−2 =

(
f2 +

n(n−1)

Rg
|∇f |2

)∣∣∣∣∣
∂M

= |∇f |2|∂M ,

so that

³ =
1

|∇f ||∂M

.

Of which, we arrive at

mBY (∂M,g)

³(n−1)|∇f ||∂M

= Én−1 = |∂M |,

which is the equality in (3.34). So, the proof is completed.
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As a consequence of the ideas used in the proof of Theorem 3.4, we have the

following corollary.

Corollary 3.4 (Corollary 3.2). Let (Mn, g, f, Ä), n g 3, be a compact static perfect fluid

space-time with (possibly disconnected) boundary and positive scalar curvature. Assume the

dominant energy condition and that each boundary component (∂Mi,g) can be isometrically

embedded in R
n as a convex hypersurface. Then we have

|∂Mi| f c̃
∫

∂Mi

(R∂Mi + |̊hi|2)dSg

for some positive constant c̃, where h̊i is the traceless second fundamental form of ∂Mi

as a hypersurface of Rn. Moreover, equality occurs for some connected component of the

boundary if and only if (Mn, g) is isometric to the round hemisphere S
n
+.

Proof. Initially, we assume that (∂Mi,g) and (∂Mi,g) are isometric. In this case, one has

R∂Mi
g = R∂Mi

g . By using the Gauss’ equation for ∂Mi as an embedded hypersurface of Rn,

one obtains that

R∂Mi
g = (Hi

0)2 −|hi|2 =
n−2

n−1
(Hi

0)2 − |̊hi|2, (3.35)

where hi and h̊i stand for the second fundamental form and traceless second fundamental

form of ∂Mi, respectively. Now, we use (3.34) and the Hölder’s inequality in order to infer

|∂Mi| f 1

(n−1)2³2|∇f |2|∂Mi

∫

∂Mi

(Hi
0)2dSg

=
1

(n−1)(n−2)³2|∇f |2|∂Mi

∫

∂Mi

(R∂Mi
g + |̊hi|2)dSg. (3.36)

Clearly, if equality holds in (3.36), then (3.34) also becomes an equality. Hence,

one concludes that (Mn, g) is isometric to the round hemisphere S
n
+.

On the other hand, if M is isometric to S
n
+ with standard metric, then R∂M

g =

(n−2)(n−1) and h̊i = 0. Furthermore, one has

(
f2 +

n(n−1)

Rg
|∇f |2

)
|
∂M

= |∇f |2|∂M

and consequently, we obtain

1

(n−1)(n−2)³2|∇f |2|∂Mi

∫

∂Mi

(R∂Mi
g + |̊hi|2)dSg = Én−1 = |∂M |,

which gives the equality in (3.36). This concludes the proof of the corollary.
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3.3 New examples of SPFST

As was mentioned in Chapter 2, the classical examples of SPFST are the

standard hemisphere S
n
+ (connected boundary) with standard metric and the product

[0,Ã]×S
n−1 (disconnected boundary) with metric g = dt2 +(n−2)g

Sn−1
. In what follows,

we will discuss the new example of simply connected SPFST with boundary and constant

scalar curvature stated in Example 1.1, see also [45, Example 2] for more details.

Example 3.2 (Example 3.1). Let Mn = S
p+1
+ ×S

q, q > 1, with the product metric

g = dr2 +sin2(r)gSp +
q −1

p+1
gSq ,

where r(x,y) = r(x) is the height function of Sp+1. Moreover, we consider the potential

function f(r) = cos(r) with r f Ã
2 . Thus, (Mn, g) satisfies (2.11) and (2.12). In particular,

since it has constant scalar curvature, then it is a static space.

To check such an example, we first observe that

∇f = −sin(r)∇r.

From this, one can make use of Cartan’s formula (Lemma 2.1) to deduces that

∇2f =
1

2
L∇f g = −cos(r)dr2 − cos(r)sin2(r)gSp = −f(dr2 +sin2(r)gSp).

Consequently,

∇2f = −fg
S

p+1

+

.

In particular, one sees that

∆f = gij∇i∇jf = −(p+1)f.

Next, since g = g
S

p+1

+

+ q−1
p+1gSq is a product metric, we may write

Ric = pg
S

p+1

+

+(q −1)gSq .

Thereby, the scalar curvature is constant and given by

R = (p+ q)(p+1) = (n−1)(p+1).

Of which, we arrive at

−(∆f)g +∇2f −fRic = (p+1)fg −fg
S

p+1

+

−f(pg
S

p+1

+

+(q −1)gSq) = 0,
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which proves that Sp+1
+ ×S

q is a static manifold with connected boundary ∂M = S
p ×S

q and

f(r) = cos(r) vanishes on the boundary. Furthermore, one easily verifies that Sp+1
+ ×S

q is

simply connected.

Remark 9. As previously mentioned, Example 3.2 is a simply connected static space with

positive scalar curvature and connected boundary. Therefore, it is a counterexample to the

Cosmic no-hair conjecture for arbitrary dimension n g 4. Remember that such a conjecture

says that: the hemisphere S
n
+ is the only possible n-dimensional (simply connected) positive

static triple with single-horizon (connected boundary) and positive scalar curvature (see

[22], [23]).

Reasoning as in Example 3.2, we also obtain the following example of positive

static triple.

Example 3.3. We consider M = [0,Ã]×S
p ×S

q endowed with the metric

g = dt2 +(p−1)gSp +(q −1)gSq .

Suppose that f(t) = sin(t). Hence, we deduce that (M, g, f) is a positive static triple with

disconnected boundary consisting of two copies of Sp ×S
q, i.e.,

∂M = ({0}×S
p ×S

q)∪ ({Ã}×S
p ×S

q).

From Proposition 2.5 (cf. [37, Proposition 2]), we know that Eqs. (3.5) and

(3.6) do not guarantee that a SPFST has constant scalar curvature. All of the examples

presented in Chapter 2 are compact with constant scalar curvature, so it is interesting

to seek for examples of SPFST with non-constant scalar curvature. In [73], Massod-ul-

Alam discuss an spherically symmetric example of non-trivial non-compact SPFST due to

Wyman [112]. In [9], Barboza, Leandro and Pina obtained a complete characterization of

semi-Riemannian non-compact conformally flat static perfect fluid space-time symmetric

with respect to a given group of translations. Explicitly, given a pseudo-Euclidian metric

¶ =
n∑

i=1

εidx2
i ,

considering canonical coordinates x = (x1, . . . ,xn) of Rn, n g 3, and coefficients εi = ±1

with εj = 1 for some j, i, j ∈ {1, . . . ,n}. Take a linear map À : Rn → R given by

À(x1, . . . ,xn) = ³1x1 + . . .+³nxn,



66

where ³ = (³1, . . . ,³n) ∈ R
n \{0} was chosen arbitrarily. In the case we are deal now, the

static metric with R
n as their spatial factor is given by

ĝ =
1

φ2(x)
¶ −f2(x)dt2,

in which one sees that (Rn, 1
φ2(x)

¶) is locally conformally flat, where φ,f : (a,b) ¢ R → R+

such that we adopt φ = φ◦ À, f = f ◦ À : M ¢ R
n → R+, where M = {x ∈ R

n : a < À(x) <

b} = À−1(a,b) is open in R
n, satisfying (3.5) and (3.6). Such a manifold is a SPFST

symmetric with respect to the additive group G = {x ∈ R
n : À(x) = 0} of translations in

R
n.

The next example corresponds to [9, Example 2] and it is a non-compact

non-trivial SPFST with non-constant scalar curvature.

Example 3.4 ([9], Example 2). Taking φ(À) = eÀ, we may take f(À) = e(−1+
√

n−1)À.

Therefore, since φ is always positive, M̂ = R
n ×R with metric tensor

ĝ =
¶

e2À
− e2(−1+

√
n−1)Àdt2.

Then, the mass-energy density and pressure of a metric with this expression are given by

µ(À) = −|³|2(n−1)(n−2)

2
e2À

and

Ä(À) = |³|2
(

n−1

n

)[
(n−2)2

2
− (−1−

√
n−1)(n−1−

√
n−1)

]
e2À,

respectively.
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4 RIGIDITY OF COMPACT QUASI-EINSTEIN MANIFOLDS WITH

BOUNDARY

This chapter is based in the paper Rigidity of compact quasi-Einstein manifolds

with boundary, written by the author together with Ernani Ribeiro Jr. and Detang Zhou

[36]. It is divided into four sections, each one corresponding to the main results of the

aforementioned paper.

For the convenience of the reader, we will recall here the definition of quasi-

Einstein manifolds.

Definition 4.1. A complete n-dimensional Riemannian manifold (Mn, g), n g 2, possibly

with boundary ∂M, is called an m-quasi-Einstein manifold, or simply quasi-Einstein

manifold, if there is a smooth potential function u on Mn satisfying the system

∇2u =
u

m
(Ric−¼g), (4.1)

where u > 0 in the interior of M and u = 0 on the boundary ∂M. By tracing (4.1), one

sees that

∆u =
u

m
(R −n¼). (4.2)

for some constants ¼ and 0 < m < ∞ (see [26], [59] and [60]).

This chapter is mainly motivated by the uniqueness problem for compact quasi-

Einstein manifolds with boundary and constant scalar curvature. In 2014, He, Petersen

and Wylie [60, Proposition 2.4] (see Proposition 2.8) proved that the only example of a

compact quasi-Einstein manifold with boundary of dimension n g 2 with constant Ricci

curvature is the round hemisphere S
n
+. In other words, they classified such manifolds under

constant Ricci curvature condition. One problem that naturally arises is to classify all

nontrivial compact (simply connected) quasi-Einstein manifolds with boundary and constant

scalar curvature.

In this chapter, we address the above problem. Our approach is inspired in

some results on gradient Ricci solitons. To be precise, Fernández-Lopéz and García-Río

[48, Theorem 1] proved that the possible values for the constant scalar curvature R of an

n-dimensional complete gradient Ricci soliton are

{0,¼, . . . ,(n−1)¼,n¼}.
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In particular, they proved in [48, Theorem 10] that does not exist a complete gradient

shrinking (¼ > 0) Ricci soliton with scalar curvature R = ¼ and they stated that every four-

dimensional complete gradient shrinking Ricci soliton with R ≠ 2¼ is rigid [48, Theorem

4], i.e., it is isometric to a quotient of Nn−k ×R
k, where N is an Einstein manifold and

f = ¼
2 |x|2 in the Euclidian factor. Very recently, Cheng and Zhou [40] proved that four-

dimensional complete noncompact gradient shrinking Ricci solitons with constant scalar

curvature R = 2¼ are isometric to a quotient of S2 ×R
2, which completes the classification

of noncompact complete gradient shrinking Ricci solitons with constant scalar curvature in

dimension 4. It is important to point out that the concept of rigid quasi-Einstein metrics

was investigated by He, Petersen and Wylie in [60]. Furthermore, Case, Shu and Wei [26]

proved that compact quasi-Einstein manifolds with constant scalar curvature must satisfy
n(n−1)¼
m+n−1 f R f n¼.

These above results inspired our first theorem in this chapter, which it will be

proved in Section 4.1.

Theorem 4.1. Let (Mn, g, u, ¼) be a nontrivial compact m-quasi-Einstein manifold with

boundary, m > 1 and constant scalar curvature R. Then we have:

R ∈
{

n(n−1)

m+n−1
¼,

m+n(n−2)

m+n−2
¼, . . . ,(n−1)¼

}
. (4.3)

In general, one has R = k(m−n)+n(n−1)
m+n−k−1 ¼, for some k ∈ {0,1, . . . ,n−1}.

As we will see in the proof of Theorem 4.1, the integer k ∈ {0,1, . . . ,n−1} is the

dimension of the set of critical points Crit(u) of the potential function u, or equivalently,

the dimension of the set MAX(u) of points in M which attains the maximum value. The

reason why the value n¼ do not appears in (4.3) follows from Remark 6.

Proceeding, taking into account the possible values for the constant scalar

curvature, a natural way to proceed is to seek for examples of compact quasi-Einstein

manifolds with these scalar curvature values. It is well known that substituting the value

R = n(n−1)
m+n−1¼ into Eq. (2.38), one sees that such a quasi-Einstein manifold is Einstein and

thus, we may apply [60, Proposition 2.4] (see Proposition 2.8) to infer that it is isometric,

up to scaling, to the round hemisphere S
n
+. So, the first value in (4.3) is classified.

In the same spirit, Section 4.2 explores the extremal value assumed by R in

Theorem 4.1, namely, R = (n−1)¼. More precisely, we have the following result.
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Theorem 4.2. Let (Mn, g, u, ¼), n g 3, be a nontrivial simply connected compact m-

quasi-Einstein manifold with boundary and m > 1. Then Mn has constant scalar curvature

R = (n−1)¼ if and only if it is isometric, up to scaling, to the cylinder I ×N with product

metric, where N is a compact ¼-Einstein manifold.

As a consequence of Theorem 4.1, Theorem 4.2 and Proposition 4.1, we obtain

a classification result for dimension 3 that will be proved in Section 4.3. To be precise, we

have the following theorem.

Theorem 4.3. Let (M3, g, u, ¼) be a nontrivial simply connected compact 3-dimensional m-

quasi-Einstein manifold with boundary and m > 1. Then M3 has constant scalar curvature

if and only if it is isometric, up to scaling, to either

(a) the standard hemisphere S
3
+, or

(b) the cylinder I ×S
2 with the product metric.

To finish this chapter, Section 4.4 deal with rigidity results in dimension 4,

similarly to the case of gradient shrinking Ricci solitons in [40]. Notice that, from Theorem

4.1, the possible values for the scalar curvature in dimension 4 are
{

12

m+3
¼,

m+8

m+2
¼,

2(m+2)

m+1
¼,3¼

}
. (4.4)

As we commented before, the value R = 12
m+3¼ implies that the manifold is isometric to

the round hemisphere S
4
+. From Proposition 4.1, does not exist a compact quasi-Einstein

manifold with boundary with scalar curvature given by R = m+8
m+2¼. Furthermore, from

Theorem 4.3, R = 3¼ gives us that (M4,g) is isometric to I ×S
3, where we may use that

Einstein manifolds in dimension 3 have constant sectional curvature to infer that the fiber

is isometric, up to scaling, to S
3. Interestingly, the example of S2

+ ×S
2 with metric

g = dr2 +sin2(r)gS1 +
1

¼
gS2

and potential function u = cos(r), r f Ã
2 , has constant scalar curvature R = 2(m+2)

m+1 ¼. The

only value in (4.4) which remains to study to complete the classification in dimension 4 is

R = 2(m+2)
m+1 ¼. The next result deals with this remaining case.

Theorem 4.4. Let (M4, g, u, ¼) be a nontrivial simply connected compact 4-dimensional m-

quasi-Einstein manifold with boundary and m > 1. Then M4 has constant scalar curvature

R = 2 (m+2)
(m+1)¼ if and only if it is isometric, up to scaling, to the product space S

2
+ ×S

2 with

the doubly warped product metric.
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As a consequence, we get the classification in dimension 4.

Corollary 4.1. Let (M4, g, u, ¼) be a nontrivial simply connected compact 4-dimensional

m-quasi-Einstein manifold with boundary and m > 1. Then M4 has constant scalar curva-

ture if and only if it is isometric, up to scaling, to either

(i) the standard hemisphere S
4
+, or

(ii) the cylinder I ×S
3 with the product metric, or

(iii) the product space S
2
+ ×S

2 with the doubly warped product metric.

4.1 Possible values for the constant scalar curvature

In this section, we prove the possible values for the constant scalar curvature

depending on ¼ on a compact quasi-Einstein manifold with boundary.

Before to proceed, we remark that each connected component of the maximum

point set MAX(u) = {p ∈ M : u(p) = umax} of a potential function on a compact quasi-

Einstein manifold with boundary and constant scalar curvature is a smooth manifold.

This fact follows from [107, Theorem A, item (a)] on transnormal functions. Originally,

this result was established by Wang for transnormal functions over complete Riemannian

manifolds, i.e., without boundary, but his result holds analogously for compact manifolds

with boundary making a minor adaptation.

We are now ready to prove Theorem 4.1.

Theorem 4.5 (Theorem 4.1). Let (Mn, g, u, ¼) be a nontrivial compact m-quasi-Einstein

manifold with boundary, m > 1 and constant scalar curvature R. Then we have:

R ∈
{

n(n−1)

m+n−1
¼,

m+n(n−2)

m+n−2
¼, . . . ,(n−1)¼

}
. (4.5)

In general, one has R = k(m−n)+n(n−1)
m+n−k−1 ¼, for some k ∈ {0,1, . . . ,n−1}.

Proof. In the first part of the proof, we shall follow Proposition 3.13 of [60]. To begin

with, denoting ³ = R+(m−n)¼
m(m−1) and µ̃ = µ

m−1 , one sees from (2.48) that

|∇u|2
µ̃−³u2

= 1 (4.6)

defines a distance function r = 1√
³

arccos
(

u√
µ̃³−1

)
. Notice that µ̃−³u2 g 0 and it is zero

only over Crit(u), but Eq. (4.6) holds over M by continuity. In particular, we can recover
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the potential function by taking u(r) =
√

µ̃³−1 cos(
√

³r). From Remark 8, the set of critical

points for u coincides with the set of maximum values, namely, Crit(u) = MAX(u). Hence,

we may correspond MAX(u) = r−1(0). So, following the argument in [107, Lemma 7] with

the appropriate adaptation and using that u is zero on each boundary component, we

deduce that each connected component of MAX(u) is a smooth submanifold. Thereby, it

follows from Lemma 2.3 that

∆r = tr(A¹)+
n−k −1

r
+O(r), (4.7)

where k is the dimension of a connected component N of MAX(u) and A¹ stands for the

second fundamental form with respect to ¹. By (4.1), without loss of generality, we may

multiply the potential function u by a constant ´ so that ´ u is a potential function for

the same metric and constant ¼ as u. In view of this, we can assume that u(r) = cos(
√

³r)

and consequently, we deduce

∇i∇ju = −√
³ sin(

√
³r)∇i∇jr −³cos(

√
³r)∇ir∇jr

and

∆u = −√
³ sin(

√
³r)∆r −³cos(

√
³r)|∇r|2. (4.8)

Taking into account the Taylor expansions, around r = 0,

sin(
√

³r) =
√

³r +O(r3) and cos(
√

³r) = 1+O(r2),

we obtain from (4.7) and (4.8) that

∆u = (−³r +O(r3))

(
Tr(A¹)+

n−k −1

r
+O(r)

)
+(−³ +O(r2))

= −³(n−k)+O(r). (4.9)

It is known from (2.39) that P = Ric − (n−1)¼−R
m−1 g. In particular, by setting

ϱ = (n−1)¼−R
m−1 , we may write the trace ∆u = u

m(R −n¼) of the fundamental equation (4.1)

in terms of P and ϱ, at the connected component N of MAX(u), as

∆u =
1

m
(Tr(P )−n(¼−ϱ)), (4.10)

where we have used that u |N = 1. Then, since ³ = ¼−ϱ
m , we combine (4.9), restricted to N,

and (4.10) in order to infer

Tr(P ) = k(¼−ϱ).
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In particular, the last equation implies that the dimension of each connected component

of MAX(u) is the same because Tr(P ) is constant in M and ¼−ϱ > 0.

We now claim that tangent and normal vector fields to N are the eigenvectors

corresponding to ¼−ϱ and 0, respectively. Indeed, given a point p ∈ N and X ∈ X(N) a

tangent vector at p, since ∇u |N= 0, we have

∇2u(X)(p) = ∇X∇u(p) = 0,

where we have used the fact that ∇X∇u(p) only hinges upon on the value of X(p) and

∇u along of a curve through p with X as a tangent vector at p. Hence, by using (4.1), we

obtain

0 = ∇X∇u(p) =
u

m
(P (X)− (¼−ϱ)X) .

Consequently, P (X) = (¼−ϱ)X, for all X ∈ X(N) and therefore, the tangent vectors to

N corresponds to the eigenvalue ¼ − ϱ for P. Besides, it follows from assertion (2) of

Proposition 2.7 that, at Crit(u),

P ◦ (P − (¼−ϱ)I) = 0.

Thus, the only possible eigenvalues for P at N are ¼−ϱ and 0. Moreover, since Tr(P ) =

k(¼ − ϱ) and k = dim(N), one concludes that normal vectors to N correspond to the

eigenvalue 0.

Proceeding, one concludes that

P |N=




(¼−ϱ)Ik 0

0 [0]n−k




is the n ×n matrix of the tensor P at the manifold N . In terms of the Ricci tensor, we

have

Ric |N=




¼Ik 0

0 (n−1)¼−R
m−1 In−k


 . (4.11)

In particular, taking the trace in (4.11), we see that

R =
k(m−n)+n(n−1)

m+n−k −1
¼,

for some k ∈ {0,1 . . . ,n − 1}, where we also have used that R < n¼ (see Remark 6). So,

the proof is finished.
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As we discussed briefly in the beginning of this chapter, the lower value for the

scalar curvature in (4.5) is classified. Indeed, recall that if an m-quasi-Einstein manifold

has constant scalar curvature R and m > 1, then

|R̊ic|2 = −m+n−1

n(m−1)
(R −n¼)

(
R − n(n−1)

m+n−1
¼

)
; (4.12)

for more details, see [59, Proposition 3.3] and [26, Lemma 3.2] (see also Lemma 2.7).

Considering R = n(n−1)
m+n−1¼ into (4.12), i.e., the lower value of (4.5), one deduces that Mn is

necessarily Einstein and therefore, it suffices to apply Proposition 2.8 to conclude that

Mn is isometric to the standard hemisphere S
n
+.

Remark 10. It is known that the universal covering of a quasi-Einstein manifold with

¼ > 0 is compact and hence, its fundamental group Ã1(M) is finite. The proof of this fact

is quite similar to [49] and [111], and it can be carry out by combining the arguments in

the proof of [59, Theorem 4.1] (see also [88]) and [96, Remark 6.9].

Next, we deal with the value R = m+n(n−2)
m+n−2 ¼. To do so, we follow essentially

the idea of [48, Theorem 10] on the nonexistence of complete gradient shrinking Ricci

solitons with R = ¼ making use of [54, Theorem 2.2] on the connectedness of MAX(u) if

Codim(MAX(u)) g 2. To be precise, we have the following proposition.

Proposition 4.1. There is no compact nontrivial quasi-Einstein manifold Mn, n g 3,

with boundary and constant scalar curvature R = m+n(n−2)
m+n−2 ¼.

Proof. We argue by contradiction, assuming that a compact nontrivial quasi-Einstein

manifold Mn with boundary has constant scalar curvature R = m+n(n−2)
m+n−2 ¼, which corres-

ponds to the case k = 1 in Theorem 4.5. Hence, by the work of Wang [107] (see also [53,

Theorem 1.1] and [75, Theorem 6.1]), one obtains that MAX(u) is a focal variety of the

isoparametric function u of dimension one and connected. So MAX(u) is totally geodesic.

This therefore implies that MAX(u) = S
1 and consequently, M is homotopic to S

1 (see

[79]), which leads to a contradiction with the fact that Mn has finite fundamental group

(see Remark 10). Thus, the proof is completed.

4.2 Rigidity for the extremal value case of the scalar curvature

In this section, our purpose is to present the proof of Theorem 4.3, that is the

rigidity result for the case R = (n−1)¼. To do so, we need to prove some auxiliary lemmas.
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The first lemma uses the tensor T defined in equation (2.45).

Lemma 4.1. Let (Mn,g,u,¼) be an m-quasi-Einstein manifold with constant scalar

curvature. Then we have:

R̊ikTijk∇ju =
m+n−2

n−2
|R̊ic|2|∇u|2 − 2m+n−2

n−2
R̊ic

2
(∇u,∇u)

+
(n(n−1)¼− (m+n−1)R)2

n2(n−1)(m−1)
|∇u|2

=
n−2

2(m+n−2)
|T |2, (4.13)

where R̊ic
2
ij = R̊ikR̊kj.

Proof. By using that the scalar curvature R is constant and Eq. (2.45), one obtains that

R̊ikTijk =
m+n−2

n−2
(|R̊ic|2∇ju− R̊ikR̊jk∇iu)− m

n−2
R̊ikR̊il∇lugjk

+
n(n−1)¼− (m+n−1)R

n(n−1)
R̊ik∇iugjk

=
m+n−2

n−2
(|R̊ic|2∇ju− R̊ikR̊jk∇iu)− m

n−2
R̊ijR̊il∇lu

+
n(n−1)¼− (m+n−1)R

n(n−1)
R̊ij∇iu.

Applying this for ∇ju, we see that

R̊ikTijk∇ju =
m+n−2

n−2
|R̊ic|2|∇u|2 − m+n−2

n−2
∇juR̊ikR̊jk∇iu

− m

n−2
∇juR̊ijR̊il∇lu+

n(n−1)¼− (m+n−1)R

n(n−1)
R̊ic(∇u,∇u)

=
m+n−2

n−2
|R̊ic|2|∇u|2 − 2m+n−2

n−2
R̊ic

2
(∇u,∇u)

+
n(n−1)¼− (m+n−1)R

n(n−1)
R̊ic(∇u,∇u).

So, it suffices to use (2.37) in the last term of the above equality in order to infer the first

equality in (4.13).

Finally, since T is trace-free in any two indices and skew-symmetric in their

first two indices, we get

R̊ikTijk∇ju =
1

2
(R̊ikTijk∇ju− R̊ikTjik∇ju)

=
1

2
Tijk(R̊ik∇ju− R̊jk∇iu)

=
n−2

2(m+n−2)
|T |2,

where in the last equality we have used (2.45). This finishes the proof of the lemma.
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As a consequence of Lemma 4.1, by considering the orthonormal frame {ei}n
i=1

with e1 = − ∇u
|∇u| so that R̊ic(ei) = Àiei, we obtain the following result.

Corollary 4.2. Let (Mn, g, u, ¼) be an m-quasi-Einstein manifold with constant scalar

curvature and m > 1. Then T is identically zero if and only if the Ricci tensor has at most

two different eigenvalues, one of them has multiplicity at least n − 1 and its eigenspace

corresponds to the orthogonal complement of ∇u.

Proof. Taking into account that À1 = n(n−1)¼−(m+n−1)R
n(m−1) , one deduces from (4.13) that

n−2

2(m+n−2)
|T |2 =

[
m+n−2

n−2

n∑

i=1

À2
i +

m−1

n−1
À2

1

]
|∇u|2 − 2m+n−2

n−2
À2

1 |∇u|2

=
m+n−2

n−2

[
n∑

i=1

À2
i − n

n−1
À2

1

]
|∇u|2

on the regular points of the potential function u. Moreover, since Tr(R̊ic) =
∑n

i=1 Ài = 0,

we infer

n−2

2(m+n−2)
|T |2 =

m+n−2

n−2




n∑

i=2

À2
i − 1

n−1

(
n∑

i=2

Ài

)2

 |∇u|2.

By the Cauchy-Schwarz inequality, we conclude that T ≡ 0 if and only if the Ricci tensor has

at most two different eigenvalues with ¼2 = . . . = ¼n at regular points of u, for eigenvalues

of the Ricci given by ¼i = Ài + R
n . To conclude the proof, it suffices to recall that u is real

analytical in harmonic coordinates and consequently, the set of critical points of u has

zero measure in M.

In the sequel, we shall consider the extremal value case of (4.5), namely,

R = (n−1)¼. In this situation, we have the following result which can be compared with

[60, Theorem 1.9].

Theorem 4.6 (Theorem 4.2). Let
(
Mn, g, u, ¼

)
, n g 3, be a nontrivial simply connected

compact m-quasi-Einstein manifold with boundary and m > 1. Then Mn has constant

scalar curvature R = (n−1)¼ if and only if it is isometric, up to scaling, to the cylinder
[
0,

√
m√
¼

Ã
]
×N with product metric, where N is a compact ¼-Einstein manifold.

Proof. First of all, since R = (n − 1)¼, it follows from (2.36) that the eigenvalue ¼1

associated to the eigenvector ∇u for the Ricci tensor is zero. We now need to show that
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all non-zero eigenvalues of the Ricci tensor are equals to ¼. Before to do so, we first claim

that

|R̊ic|2 =
R2

n(n−1)
. (4.14)

Indeed, since R is constant, one deduces from assertion (3) in Lemma 2.7 (see also [26,

Lemma 3.2]) that

(m−1)|R̊ic|2 = −m+n−1

n
(R −n¼)

(
R − n(n−1)

m+n−1
¼

)
.

Whence, for R = (n−1)¼, we see that

(m−1)|R̊ic|2 = −R2 (m+n−1)

n

(
1− n

n−1

)(
1− n

m+n−1

)
, (4.15)

and consequently,

|R̊ic|2 =
R2

n(n−1)
,

as claimed.

Letting ¼i, i ̸= 1, the possible non-zero eigenvalues of the Ricci tensor, one

deduces that

n∑

i=2

(¼i −¼)2 = |Ric|2 −2¼R +(n−1)¼2 = |R̊ic|2 − R2

n(n−1)
,

where we have used that |R̊ic|2 = |Ric|2 − R2

n and R = (n−1)¼. Therefore, one obtains from

(4.14) that ¼i = ¼, for i = 2, . . . ,n, i.e., the eigenvalues of the Ricci are all constants with

¼2 = . . . = ¼n = ¼. Thereby, Corollary 4.2 guarantees that T ≡ 0. In particular, since the

Ricci tensor is parallel, then the Cotton tensor (2.2) also vanishes and then, by Lemma 2.8,

we have Wijkl∇lu = 0. Now, we are in the position to invoke Theorem 1.2 of [59] to infer

that the metric splits off as g = dt2 +φ2(t)g̃
N

, where g̃N is »-Einstein with nonnegative

Ricci curvature and u = u(t).

In view of (2.36), we get

Ric(∇u,∇u) =
(n−1)¼−R

m−1
(u′)2 = 0

and hence, we may apply Proposition 2.1 to infer

0 = Ric(∇u,∇u) = (u′)2Ric(∂t,∂t) = −(u′)2 (n−1)

φ
φ′′.
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Since u is analytical in harmonic coordinates (and u is not constant), we conclude that

φ′′(t)/φ(t) = 0, which implies that φ(t) = c or φ(t) = ct, for some positive constant c.

However, according to Proposition 2.2, the second case can not hold.

Proceeding, since g = dt2 + c2g̃
N

and g̃
N

is a »-Einstein metric, we may use

again Proposition 2.1 to deduce

Ric(Z,V ) = »g̃
N

(Z,V ), for all Z,V ∈ X(N).

Consequently, the scalar curvature is R = »
c2 (n−1) and moreover, ¼ = »

c2 and (Nn−1, g
N

)

is ¼-Einstein manifold, where g
N

= c2 g̃
N

.

Finally, observe that, by (2.3) and the fact that Ric = ¼g
N

, the potential

function u = u(t) satisfies

u′′(t)dt2 = ∇2u =
u

m
(Ric−¼g) = −¼

u

m
dt2

and u |∂M= 0. Hence, without loss of generality, we can consider the solution u(t) =

sin
( √

¼√
m

t
)

. Thereby, we conclude that Mn is isometric, up to scaling, to the cylinder
[
0,

√
m√
¼

Ã
]
×N, where N is a compact ¼-Einstein manifold. So, the proof of Theorem 4.6 is

finished.

To conclude this section, we are going to describe the example of m-quasi-

Einstein manifold on
[
0,

√
m√
¼

Ã
]
×S

p ×S
q (see also [51]).

Example 4.1. Let ¼ > 0 be an arbitrary constant and consider Mn =
[
0,

√
m√
¼

Ã
]
×S

p ×S
q,

p, q > 1, endowed with the metric

g = dt2 +
p−1

¼
gSp +

q −1

¼
gSq .

This space is an m-quasi-Einstein manifold with potential function u(t) = sin
( √

¼√
m

t
)

and

constant scalar curvature R = (n−1)¼. Indeed, we first notice that

Ric = (p−1)gSp +(q −1)gSq and ∇u = u′∇t =

√
¼√
m

cos

( √
¼√
m

t

)
∇t.

Thereby, since u = u(t) and the warping function is constant, we deduce from (2.3) that

∇2u = − ¼

m
sin

( √
¼√
m

t

)
dt2. (4.16)
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On the other hand, one observes that

u

m
(Ric−¼g) =

1

m
sin

( √
¼√
m

t

)[
(p−1)gSp +(q −1)gSq − (¼dt2 +(p−1)gSp +(q −1)gSq)

]

=− ¼

m
sin

( √
¼√
m

t

)
dt2.

Plugging this into (4.16) gives (4.1).

In conclusion, u = 0 if and only if either t = 0 or t =
√

m√
¼

Ã and consequently,

the boundary consists of two disjoint copies of Sp ×S
q.

4.3 Classification in dimension 3

We now present the proof of Theorem 4.3, which establishes the explicit

classification of compact 3-dimensional m-quasi-Einstein manifolds with boundary and

constant scalar curvature. To be precise, we have the following result.

Theorem 4.7 (Theorem 4.3). Let (M3, g, u, ¼) be a nontrivial simply connected compact

3-dimensional m-quasi-Einstein manifold with boundary and m > 1. Then M3 has constant

scalar curvature if and only if it is isometric, up to scaling, to either

(a) the standard hemisphere S
3
+, or

(b) the cylinder
[
0,

√
m√
¼

Ã
]
×S

2 with the product metric.

Proof. To begin with, since (M3,g) has constant scalar curvature and, by assertion (1)

of Lemma 2.7 (see also Eq. (2.36)), ∇u is an eigenvector of Ric in this case, consider an

orthonormal frame {ei}3
i=1 that diagonalizes the Ricci curvature Ric so that e1 = − ∇u

|∇u|

and ¼i are the eigenvalues associated to ei, for i = 1,2,3. Thus, under this coordinates,

one obtains that

R̊ic =




À1 0 0

0 À2 0

0 0 À3




,

where




À1 + À2 + À3 = 0,

À2
1 + À2

2 + À2
3 = |R̊ic|2,

(4.17)
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and Ài = ¼i − R
3 are the eigenvalues of the traceless Ricci tensor R̊ic. A straightforward

computation using (2.37) yields

À1 =
6¼− (m+2)R

3(m−1)
. (4.18)

In another direction, since R is constant, it follows from (3) of Lemma 2.7 that

|R̊ic|2 = − 1

3(m−1)
(R −3¼)((m+2)R −6¼) .

This combined with (4.17) gives

À2
1 + À2

2 + À2
3 = − 1

3(m−1)
(R −3¼)((m+2)R −6¼).

By using (4.18), one sees that

À2
2 + À2

3 = − 1

3(m−1)
(R −3¼)((m+2)R −6¼)−

(
(m+2)R −6¼

3(m−1)

)2

= − 1

3(m−1)
((m+2)R −6¼)

(
(R −3¼)+

(m+2)R −6¼

3(m−1)

)

= − 1

3(m−1)
((m+2)R −6¼)

(
(4m−1)R

3(m−1)
− 3(3m−1)¼

3(m−1)

)

= − 1

(3(m−1))2
((m+2)R −6¼)((4m−1)R −3(3m−1)¼).

Next, since (À2 + À3)2 = À2
1 , which in turn implies À2

2 + À2
3 +2À2À3 = À2

1 , one obtains that

2À2À3 = À2
1 − (À2

2 + À2
3)

=

(
(m+2)R −6¼

3(m−1)

)2

+
1

(3(m−1))2
((m+2)R −6¼)((4m−1)R −3(3m−1)¼)

=
1

(3(m−1))2
((m+2)R −6¼)[(4m−1)R −3(3m−1)¼+(m+2)R −6¼]

=
1

9(m−1)2
((m+2)R −6¼)((5m+1)R −3(3m+1)¼), (4.19)

which guarantees that À2À3 is constant.

We now assume that À2À3 = 0. Thereby, by the analyticity of g, one observes

that À2 = 0 or À3 = 0. Considering À3 = 0, one deduces from (4.17) that À2 = −À1. Hence,

by (4.18), the eigenvalues of Ricci curvature are constant. This then implies that the Ricci

tensor is parallel. In particular, the Cotton tensor Cijk also vanishes. Now, since W = 0

in dimension 3, one obtains from Lemma 2.8 that T ≡ 0. Besides, it follows from Corollary

4.2 that at least two eigenvalues of the Ricci tensor are equals. This forces R̊ic = 0 and



80

then, (M3, g) is Einstein. So, it suffices to apply Proposition 2.4 of [60] to conclude that

(M3, g) is isometric to the standard hemisphere S
3
+.

On the other hand, by assuming that À2À3 ̸= 0, one deduces that

À2 =
1

2À3

[
1

9(m−1)2
((m+2)R −6¼)((5m+1)R −3(3m+1)¼)

]
=

·

2À3
.

In particular, by (4.17), one has −À1 = À2 +À3 = ·
2À3

+À3 and hence, (4.18) guarantees that

2À2
3 + · = 2À3

(m+2)R −6¼

3(m−1)
. (4.20)

Computing the discriminant for À3, we infer

∆ = −
(

6

3(m−1)

)2

m((m+2)R −6¼)(R −2¼).

Then, solving the polynomial (4.20), one sees that

À3 =
((m+2)R −6¼)±3

√
m((m+2)R −6¼)(2¼−R)

6(m−1)
.

Notice that the eigenvalue À2 satisfies an expression equivalent to (4.20) and by (4.17),

one deduces that

À2 =
((m+2)R −6¼)∓3

√
m((m+2)R −6¼)(2¼−R)

6(m−1)
.

Therefore, À2 and À3 are constants.

Analogous to the previous case, we observe that the Ricci tensor is parallel and

hence, the Cotton tensor vanishes. Thereby, it follows from Corollary 4.2 that À2 = À3 ≠ 0,

but it holds if and only if R = 2¼. At this point, it suffices to invoke Theorem 4.6 to

conclude that (M3, g) is isometric, up to scaling, to the cylinder [0,
√

m√
¼

Ã]×N. Moreover,

we deduce from (2.21) and Killing-Hopf theorem that N = S
2. Thus, the proof of Theorem

3.4 is concluded.

4.4 Classification in dimension 4

We divide this section into two subsections: the first one establishes some key

lemmas, for arbitrary dimension n g 3, that will play a crucial role in the proof of Theorem

4.4, while the second subsection collects the proofs of the classification results.
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4.4.1 Some key lemmas

To begin with, we shall prove the following lemma, which provides a useful

expression for u∆(Ric).

Lemma 4.2. Let (Mn, g) be an n-dimensional Riemannian manifold satisfying (4.1).

Then we have:

u(∆Rik) = ∇iRsk∇su+m∇kRis∇su+
u

2
∇i∇kR +

1

2
∇iu∇kR

+
(m+1)

m
uRisRsk +2uRjiksRjs − (m+2)∇sRik∇su

− u

m
(R − (m+n−2)¼)Rik +

¼u

m
(R − (n−1)¼)gik.

Proof. Firstly, it follows from assertion (4) of Lemma 2.7 that

u∇jRik = u∇iRjk +mRjikl∇lu+¼
(
∇jugik −∇iugjk

)
−
(
∇juRik −∇iuRjk

)
.

This jointly with the fact that ∇j (u∇jRik) = ∇ju∇jRik +u∆Rik gives

u∆Rik = ∇j (u∇jRik)−∇ju∇jRik

= ∇j

(
u∇iRjk +mRjikl∇lu+¼

(
∇jugik −∇iugjk

)
−
(
∇juRik −∇iuRjk

))

−∇ju∇jRik

= ∇ju∇iRjk +u∇j∇iRjk +m∇jRjikl∇lu+mRjikl∇j∇lu+¼∆ugik

−¼∇k∇iu−∆uRik −∇ju∇jRik +∇j∇iuRjk +∇iu∇jRjk −∇ju∇jRik.

Next, by using the twice contracted second Bianchi identity (∇jRjk = 1
2∇kR) and the

first contracted second Bianchi identity (∇jRjikl = ∇kRil −∇lRik), one sees that

u∆Rik = −∇ju∇jRik +∇ju∇iRjk +u∇j∇iRjk +m(∇kRil −∇lRik)∇lu

+mRjikl∇j∇lu+¼∆ugik −¼∇k∇iu−∆uRik −∇ju∇jRik

+∇j∇iuRjk +
1

2
∇iu∇kR

= −∇ju∇jRik +∇ju∇iRjk +
u

2
∇i∇kR +uRisRsk +uRjiksRjs

+m(∇kRil −∇lRik)∇lu+mRjikl∇j∇lu+¼∆ugik −¼∇k∇iu

−∆uRik −∇ju∇jRik +∇j∇iuRjk +
1

2
∇iu∇kR, (4.21)

where in the last equality we have used the Ricci identity, i.e.,

∇j∇iRjk = ∇i∇jRjk +RjijsRsk +RjiksRjs.
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Plugging (4.1) and (2.12) into (4.21) yields

u∆Rik = −∇ju∇jRik +∇ju∇iRjk +
u

2
∇i∇kR +uRisRsk +uRjiksRjs

+m(∇kRil −∇lRik)∇lu+uRjikl

(
Rjl −¼gjl

)
+

¼u

m
(R −¼n)gik

−¼u

m
(Rki −¼gki)− u

m
(R −¼n)Rik −∇ju∇jRik

+
u

m
(Rji −¼gji)Rjk +

1

2
∇iu∇kR

= ∇iRjk∇ju+m∇kRil∇lu+
u

2
∇i∇kR +

1

2
∇iu∇kR +

(m+1)

m
uRisRsk

+2uRjiksRjs − (m+2)∇jRik∇ju+

(
¼u− ¼u

m
− u

m
(R −¼n)− ¼u

m

)
Rik

+
¼u

m
(R − (n−1)¼)gik.

Rearranging terms, one concludes that

u∆Rik = ∇iRsk∇su+m∇kRis∇su+
u

2
∇i∇kR +

1

2
∇iu∇kR

+
(m+1)

m
uRisRsk +2uRjiksRjs − (m+2)∇sRik∇su

− u

m
(R − (m+n−2)¼)Rik +

¼u

m
(R − (n−1)¼)gik,

as we wanted to prove.

As an application of Lemma 4.2, we are able to obtain a key expression for

∆(Ric3)ik = ∆
(
RijRjlRlk

)
.

Lemma 4.3. Let (Mn, g) be an n-dimensional Riemannian manifold satisfying (4.1).

Then we have:

u∆(Ric3)ik + (m+2)∇su∇s(Ric3)ik

= ∇iRsj∇suRjlRlk +∇jRsl∇suRijRlk +∇lRsk∇suRijRjl

+2u
(
∇sRij∇sRjlRlk +∇sRijRjl∇sRlk +Rij∇sRjl∇sRlk

)

+m
(
∇jRis∇suRjlRlk +∇lRjs∇suRijRlk +∇kRls∇suRijRjl

)

+
u

2

(
∇i∇jRRjlRlk +∇j∇lRRijRlk +∇l∇kRRijRjl

)

+
1

2

(
∇iu∇jRRjlRlk +∇ju∇lRRijRlk +∇lu∇kRRijRjl

)

+
(m+1)

m
u
(
RisRsjRjlRlk +RjsRslRijRlk +RlsRskRijRjl

)

+2u
(
RdijsRdsRjlRlk +RdjlsRdsRijRlk +RdlksRdsRijRjl

)

−3
u

m
(R − (m+n−2)¼)(Ric3)ik +3

¼u

m
(R − (n−1)¼)RilRlk.
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Proof. One easily verifies that

u∆(Ric3)ik = u∆(RijRjlRlk)

= (u∆Rij)RjlRlk +Rij(u∆Rjl)Rlk +RijRjl(u∆Rlk)

+2u
(
∇sRij∇sRjlRlk +∇sRijRjl∇sRlk +Rij∇sRjl∇sRlk

)
. (4.22)

Next, it follows from Lemma 4.2 that

u(∆Rij)RjlRlk = ∇iRsj∇suRjlRlk +m∇jRis∇suRjlRlk +
u

2
∇i∇jRRjlRlk

+
1

2
∇iu∇jRRjlRlk +

(m+1)

m
uRisRsjRjlRlk +2uRdijsRdsRjlRlk

−(m+2)∇sRij∇suRjlRlk − u

m
(R − (m+n−2)¼)RijRjlRlk

+
¼u

m
(R − (n−1)¼)RilRlk, (4.23)

Rij

(
u∆Rjl

)
Rlk = ∇jRsl∇suRijRlk +m∇lRjs∇suRijRlk +

u

2
∇j∇lRRijRlk

+
1

2
∇ju∇lRRijRlk +

(m+1)

m
uRjsRslRijRlk +2uRdjlsRdsRijRlk

−(m+2)∇sRjl∇suRijRlk − u

m
(R − (m+n−2)¼)RjlRijRlk

+
¼u

m
(R − (n−1)¼)RilRlk (4.24)

and

RijRjl (u∆Rlk) = ∇lRsk∇suRijRjl +m∇kRls∇suRijRjl +
u

2
∇l∇kRRijRjl

+
1

2
∇lu∇kRRijRjl +

(m+1)

m
uRlsRskRijRjl +2uRdlksRdsRijRjl

−(m+2)∇sRlk∇suRijRjl − u

m
(R − (m+n−2)¼)RijRjlRlk

+
¼u

m
(R − (n−1)¼)RijRjk. (4.25)

Therefore, inserting (4.23), (4.24) and (4.25) into (4.22) yields the asserted result.

As a consequence of Lemma 4.3, we deduce the following corollary.

Corollary 4.3. Let (Mn, g) be an n-dimensional Riemannian manifold satisfying (4.1)

with constant scalar curvature. Then we have:

u∆
(
Tr(Ric3)

)
+ (m+2)∇su∇s(Tr(Ric3))

= 3(m+1)∇iRsjRjlRil∇su+
3(m+1)u

m
Ric2

ijRic2
ij +6uRdsRdijsRjlRil

−3u

m
(R − (m+n−2)¼)Tr(Ric3)

+
3¼u

m
(R − (n−1)¼) |Ric|2 +6u∇sRij∇sRjlRil,
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where Tr(Ric3) = RijRjlRli and Ric2
ij = RikRkj .

Proof. By using that Mn has constant scalar curvature into Lemma 4.3, one deduces that

u∆Ric3
ik =

(
∇iRsjRjlRlk +∇jRslRijRlk +∇lRskRijRjl

)
∇su

+m
(
∇jRisRjlRlk +∇lRjsRijRlk +∇kRlsRijRjl

)
∇su

+
m+1

m
u
(
Ric2

ijRjlRlk +Ric2
jlRijRlk +Ric2

lkRijRjl

)

+2uRds

(
RdijsRjlRlk +RdjlsRijRlk +RdlksRijRjl

)

−(m+2)∇s

(
RijRjlRlk

)
∇su− 3u

m
[R − (m+n−2)¼]RijRjlRlk

+2u(∇sRij∇sRjlRlk +∇sRijRjl∇sRlk +Rij∇sRjl∇sRlk)

+
3¼u

m
[R − (n−1)¼]RisRsk.

Besides, tracing the above expression, one sees that

u∆Tr(Ric3) =
(
∇iRsjRjlRli +∇jRslRijRli +∇lRsiRijRjl

)
∇su

+m[∇jRisRjlRli +∇lRjsRijRli +∇iRlsRijRjl]∇su

+
m+1

m
u[Ric2

ijRjlRli +Ric2
jlRijRli +Ric2

liRijRjl]

+2uRds[RdijsRjlRli +RdjlsRijRli +RdlisRijRjl]

−(m+2)∇s[RijRjlRli]∇su− 3u

m
[R − (m+n−2)¼]RijRjlRli

+2u(∇sRij∇sRjlRli +∇sRijRjl∇sRli +Rij∇sRjl∇sRli)

+
3¼u

m
[R − (n−1)¼]RisRsi

= (m+1)[∇iRsjRjlRli +∇jRslRijRil +∇lRisRijRjl]∇su

+
3(m+1)u

m
Ric2

ijRic2
ij +6uRdsRdijsRjlRil

−(m+2)∇s(Tr(Ric3))∇su− 3u

m
(R − (m+n−2)¼)Tr(Ric3)

+
3¼u

m
(R − (n−1)¼) |Ric|2 +6u∇sRij∇sRjlRil.

The result then follows from the fact that ∇iRsjRjlRli = ∇jRslRijRil = ∇lRisRijRjl.

To proceed, it is essential to ensure an expression for u∆
(
Tr(P 3)

)
.
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Lemma 4.4. Let (Mn, g) be an n-dimensional Riemannian manifold satisfying (4.1) with

constant scalar curvature and m > 1. Then we have:

u∆Tr(P 3) = 3(m+1)
(
∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su

)

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij

)
− (m+2)∇s(Tr(P 3))∇su

+
3(m+1)u

m
Tr(P 4)+

3u

m
(3(m+1)ϱ+(m−1)¼)Tr(P 3)

+
3ϱu

m
((m+3)ϱ+2(m−1)¼) |P |2

+
3ϱ2u

m
((m+1)ϱ+(m−1)¼)Tr(P )

+6ϱ3u((m+n−1)ϱ− (n−1)¼) ,

Proof. Initially, we compute Ric3
ik in terms of P = Ric−ϱg, where ϱ = (n−1)¼−R

m−1 . Indeed,

it is easy to check that

Ric3
ik = RijRjlRlk

= (Pij +ϱgij)(Pjl +ϱgjl)(Plk +ϱglk)

= PijPjlPlk +PijPjlϱglk +PijϱgjlPlk +Pijϱgjlϱglk

+ϱgijPjlPlk +ϱgijPjlϱglk +ϱgijϱgjlPlk +ϱgijϱgjlϱglk

= P 3
ik +3ϱP 2

ik +3ϱ2Pik +ϱ3gik.

Whence, it follows that

Tr(Ric3) = Ric3
ii = Tr(P 3)+3ϱ|P |2 +3ϱ2Tr(P )+nϱ3. (4.26)

Next, notice that

Tr(P ) =
R(m+n−1)−n(n−1)¼

m−1

and moreover, by Proposition 3.3 in [60] (see also (3) in Lemma 2.7), since Mn has constant

scalar curvature, one sees that |P |2 = (¼ − ϱ)Tr(P ). Besides, Tr(P ) and |P |2 are also

constants. Thereby, we have

u∆(Tr(Ric3)) = u∆(Tr(P 3)). (4.27)
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We now need to obtain an expression for ∇iRsjRjlRil∇su in terms of P. Indeed,

one observes that

∇iRsjRjlRil∇su = [∇i(Psj +ϱgsj)](Pjl +ϱgjl)(Pil +ϱgil)∇su

= ∇iPsjPjlPil∇su+∇iPsjPjlϱgil∇su+∇iPsjϱgjlPil∇su

+∇iPsjϱgjlϱgil∇su

= ∇iPsjPjlPil∇su+ϱ∇iPsjPji∇su+ϱ∇iPsjPij∇su

+ϱ2∇iPsi∇su

= ∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su, (4.28)

where we have used that ∇iPsi = 0, which follows from the fact that M has constant scalar

curvature and the twice contracted second Bianchi identity. Next, we compute

Ric2
ijRic2

ij = RikRkjRjlRli

=
(
PikPkj +2ϱPij +ϱ2gij

)(
PilPlj +2ϱPij +ϱ2gij

)

= PikPkjPilPlj +4ϱPikPkjPji +6ϱ2PijPij +4ϱ3Tr(P )+ϱ4n

= Tr(P 4)+4ϱTr(P 3)+6ϱ2|P |2 +4ϱ3Tr(P )+nϱ4 (4.29)

and

RdsRdijsRjlRil = (Pds +ϱgds)Rdijs(Pjl +ϱgjl)(Pil +ϱgil)

= (PdsPjlPil +2ϱPdsPij +ϱ2Pdsgij +ϱgdsPjlPil

+2ϱ2gdsPij +ϱ3gdsgij)Rdijs

= PdsRdijsPjlPil +2ϱPdsPjiRdijs −ϱ2Pds(Pds +ϱgds)

−ϱ(Pij +ϱgij)PjlPil −2ϱ2Pij(Pij +ϱgij)−ϱ3R

= PdsRdijsPjlPil +2ϱPdsRdijsPij −4ϱ2|P |2 −3ϱ3Tr(P )

−ϱTr(P 3)−ϱ3R. (4.30)

At the same time, observe that

∇sRij∇sRjlRil = ∇s(Pij +ϱgij)∇s(Pjl +ϱgjl)(Pil +ϱgil)

= ∇sPij∇sPjlPil +ϱ∇sPij∇sPij . (4.31)

Moreover, as already mentioned, constant scalar curvature implies that |P | and Tr(P ) are

also constants. Therefore, one deduces that

∇s(Tr(Ric3))∇su = ∇s(Tr(P 3))∇su. (4.32)
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Thereby, using (4.27), jointly with (4.26), (4.28), (4.29), (4.30), (4.31) and (4.32) into

Corollary 4.3, one obtains that

u∆Tr(P 3) = u∆Tr(Ric3)

= 3(m+1)
(
∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su

)

+
3(m+1)u

m

(
Tr(P 4)+4ϱTr(P 3)+6ϱ2|P |2 +4ϱ3Tr(P )+nϱ4

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij −4ϱ2|P |2 −3ϱ3Tr(P )−ϱTr(P 3)−ϱ3R

)

−(m+2)∇s(Tr(P 3))∇su

−3u

m
(R − (m+n−2)¼)

(
Tr(P 3)+3ϱ|P |2 +3ϱ2Tr(P )+nϱ3

)

+
3¼u

m
(R − (n−1)¼)

(
|P |2 +2ϱTr(P )+nϱ2

)

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)
,

where we also used that |Ric|2 = |P +ϱg|2 = |P |2 +2ϱTr(P )+nϱ2. Consequently, taking

into account that ϱ3R = −(m−1)ϱ4 +ϱ3(n−1)¼ and R− (m+n−2)¼ = −(m−1)(ϱ+¼),

we have

u∆Tr(P 3) = 3(m+1)
(
∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su

)

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij

)
− (m+2)∇s(Tr(P 3))∇su

+
3(m+1)u

m
Tr(P 4)+

(
12(m+1)ϱu

m
−6ϱu+

3u

m
(m−1)(ϱ+¼)

)
Tr(P 3)

+

(
18(m+1)ϱ2u

m
−24ϱ2u+

9ϱu

m
(m−1)(ϱ+¼)− 3(m−1)¼ϱu

m

)
|P |2

+

(
12(m+1)ϱ3u

m
−18ϱ3u+

9ϱ2u

m
(m−1)(ϱ+¼)− 6(m−1)¼ϱ2u

m

)
Tr(P )

+

(
3(m+1)nϱ4u

m
−6uϱ3(−(m−1)ϱ+(n−1)¼)+

3nϱ3u

m
(m−1)(ϱ+¼)

−3(m−1)n¼ϱ3u

m

)
.
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Simplifying the last four terms in the right hand side of the above expression, we achieve

u∆Tr(P 3) = 3(m+1)
(
∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su

)

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij

)
− (m+2)∇s(Tr(P 3))∇su

+
3(m+1)u

m
Tr(P 4)+

3u

m
(3(m+1)ϱ+(m−1)¼)Tr(P 3)

+
3ϱu

m
((m+3)ϱ+2(m−1)¼) |P |2

+
3ϱ2u

m
((m+1)ϱ+(m−1)¼)Tr(P )

+6ϱ3u((m+n−1)ϱ− (n−1)¼) ,

which finishes the proof of the lemma.

4.4.2 Rigidity results

From now on, we shall adapt the approach outlined by Cheng and Zhou in [40].

To do so, we first establish the following proposition.

Proposition 4.2. Let (M4, g, u, ¼) be an m-quasi-Einstein manifold with m > 1 and

constant scalar curvature R = 2(m+2)¼
m+1 . Then we have

u∆Tr(P 3)+(m+2)ï∇(Tr(P 3)), ∇uð = 6u¼Tr(P 3)+6
¼2

m+1
u|P |2

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij

)

+12ϱ4m2(m+1)u. (4.33)

Proof. Initially, let µi be the eigenvalues of P defined in (2.39) with respect to the adopted

orthonormal frame {ei}4
i=1 so that e1 = − ∇u

|∇u| . In particular, it follows from (2.36) that

µ1 = 0. Consequently,

Tr(P ) = µ2 +µ3 +µ4 and |P |2 = µ2
2 +µ2

3 +µ2
4,

where P = Ric− 3¼−R
m−1 g. Thus, for R = 2(m+2)

m+1 ¼, it follows from (2.39) that

Tr(P ) =
(m+n−1)R −n(n−1)¼

m−1
=

(m+3)R −12¼

m−1
=

2m

m+1
¼, (4.34)

which implies that Tr(P ) is a positive constant.
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Next, by Proposition 3.3 in [60], one sees that |P |2 = (¼−ϱ)Tr(P ), where

ϱ = 3¼−R
m−1 . This combined with (4.34) yields

|P |2 =
(m−4)¼+R

m−1
Tr(P ) =

m

m+1
¼Tr(P ) =

1

2
(Tr(P ))2. (4.35)

On the other hand, by simplifying the last three terms in the right hand side

of Lemma 4.4, taking into account that ϱ = ¼
m+1 , T r (P ) = 2m

m+1¼, 2|P |2 = (Tr (P ))2 and

n = 4, one deduces that

u∆Tr(P 3) = 3(m+1)
(
∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su

)

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij

)
− (m+2)∇s(Tr(P 3))∇su

+
3(m+1)u

m
Tr(P 4)+

3u

m
(3(m+1)ϱ+(m−1)¼)Tr(P 3)

+12ϱ4m2(m+1)u. (4.36)

At the same time, since Psj∇su = P (∇u) = 0, we have from (4.1) that

0 = ∇i(Psj∇su)

= ∇iPsj∇su+
u

m
Psj(Ris −¼gis)

= ∇iPsj∇su+
u

m
P 2

ij − (¼−ϱ)

m
uPij

so that

∇iPsj∇su = − u

m
P 2

ij +
(¼−ϱ)

m
uPij . (4.37)

Hence, the first term in the right hand side of (4.36) becomes

I = 3(m+1)
(
∇iPsjPjlPil∇su+2ϱ∇iPsjPij∇su

)

= 3(m+1)

(
− u

m
P 2

ij +
(¼−ϱ)

m
uPij

)(
PjlPil +2ϱPij

)

= 3(m+1)

(
− u

m
(Tr(P 4))+

(¼−3ϱ)

m
uTr(P 3)+2

ϱ(¼−ϱ)

m
u|P |2

)
. (4.38)

Substituting this into (4.36) and rearranging terms, one concludes that

u∆Tr(P 3)+(m+2)ï∇(Tr(P 3)), ∇uð = 6u¼Tr(P 3)+6
¼2

m+1
u|P |2

+6u
(
∇sPij∇sPjlPil +ϱ∇sPij∇sPij

)

+6u
(
PdsRdijsPjlPil +2ϱPdsRdijsPij

)

+12ϱ4m2(m+1)u. (4.39)
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This concludes the proof of the proposition.

In order to proceed, we need to prove the following result.

Proposition 4.3. Let (M4, g, u, ¼) be an m-quasi-Einstein manifold with m > 1 and

constant scalar curvature R = 2(m+2)¼
m+1 . Then we have:

uLm+2(Tr(P 3)) = 8(m+1)ϱuTr(P 3)+6u∇sPij∇sPjlPil −3mϱu|∇P |2

−16m3(m+1)ϱ4u (4.40)

and

uLm+2(Tr(P 3)) g 8(m+1)ϱuTr(P 3)−3mϱu|∇P |2

−16m3(m+1)ϱ4u, (4.41)

where uLm+2(f) = u∆f +(m+2)ï∇f,∇uð and ϱ = ¼
m+1 .

Proof. First of all, observe that our assumption is equivalent to R = 2(m + 2)ϱ, where

ϱ = ¼
m+1 . Moreover, one sees that

Tr(P ) = 2mϱ and |P |2 = 2m2ϱ2 =
1

2
(Tr(P ))2. (4.42)

Now, we need to compute uLm+2(|P |2). To do so, since Ric = P + ϱg, we notice from

Lemma 4.2 that

u(∆Pik) = ∇iPsk∇su+m∇kPis∇su+
m+1

m
u(Pis +ϱgis)(Psk +ϱgsk)

+2uRjiks(Pjs +ϱgjs)− (m+2)∇sPik∇su

+
u

m
(m−1)(m+2)ϱ(Pik +ϱgik)− u

m
(m−1)(m+1)ϱ2gik,

where we have used that n = 4, R−(m+n−2)¼ = −(m−1)(m+2)ϱ and ¼(R−(n−1)¼) =

−(m−1)(m+1)ϱ2. Next, expanding the expression in the right hand side and rearranging

terms, we have

uLm+2(Pik) = ∇iPsk∇su+m∇kPis∇su+
m+1

m
uP 2

ik +
2(m+1)ϱu

m
Pik

+
(m+1)ϱ2u

m
gik +2uRjiksPjs −2ϱuPik −2ϱ2ugik

+
(m−1)(m+2)ϱu

m
Pik +

(m−1)ϱ2u

m
gik

= ∇iPsk∇su+m∇kPis∇su+
m+1

m
uP 2

ik +(m+1)ϱuPik +2uRjiksPjs.

(4.43)



91

Proceeding, we use that ¼ = (m+1)ϱ and Eq. (4.37) to infer

∇iPsk∇su = − u

m
(P 2

ik −mϱPik).

Consequently,

∇iPsk∇su+m∇kPis∇su = −(m+1)u

m
(P 2

ik −mϱPik).

This allow us to rewrite (4.43) as

uLm+2(Pik) = −(m+1)u

m
P 2

ik +(m+1)ϱuPik +
(m+1)u

m
P 2

ik +(m+1)ϱuPik +2uRjiksPjs

= 2(m+1)ϱuPik +2uRjiksPjs.

At the same time, by using that uLm+2(Pik) = u∆Pik +(m+2)ï∇Pik,∇uð, we

infer

uLm+2(|P |2) = uLm+2(PikPik)

= u∆(PikPik)+(m+2)ï∇(PikPik),∇uð

= u(2Pik∆Pik +2|∇P |2)+2(m+2)Pikï∇Pik,∇uð

= 2u|∇P |2 +2uPikLm+2(Pik)

= 2u|∇P |2 +4(m+1)ϱu|P |2 +4uPikRjiksPjs.

Besides, since |P |2 is constant, then uLm+2(|P |2) = 0 and hence, we have

uPikRjiksPjs = −u

2
|∇P |2 − (m+1)ϱu|P |2. (4.44)

On the other hand, it follows from (4.33) that

uLm+2(Tr(P 3)) = 6(m+1)ϱuTr(P 3)+6(m+1)ϱ2u|P |2

+6u(∇sPij∇sPjlPil +ϱ∇sPij∇sPij)

+6u(PdsRdijsPjlPil +2ϱPdsRdijsPij)

+12m2(m+1)ϱ4u. (4.45)

To proceed, we need to deal with the terms that depend of the Riemannian curvature.

Thereby, fix a point p ∈ M and assume Pij = µi¶ij at p, that is, µi, i = 1,2,3,4 are the

eigenvalues of the tensor P at p and recall that µ1 = 0. Hence, one easily verifies that

PdsRdijsPjlPil =
4∑

j=2

4∑

d=2

µdRdjjdµ2
j .
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Denoting Kdj = Rdjdj , it follows that

PdsRdijsPjlPil = −µ2K23µ2
3 −µ2K24µ2

4 −µ3K32µ2
2 −µ3K34µ2

4 −µ4K42µ2
2 −µ4K43µ2

3

= −K23µ2µ3(µ3 +µ2)−K24µ2µ4(µ2 +µ4)−K34µ3µ4(µ3 +µ4)

= −K23µ2µ3(Tr(P )−µ4)−K24µ2µ4(Tr(P )−µ3)−K43µ4µ3(Tr(P )−µ2)

= −Tr(P )(K23µ2µ3 +K34µ3µ4 +K24µ2µ4)+(K23 +K34 +K24)µ2µ3µ4.

(4.46)

Moreover, notice that

R22 +R33 +R44 = R −R11 = R −ϱ = Tr(P )+3ϱ

and

K12 +K13 +K14 = R11 = ϱ,

which therefore implies that

Tr(P )+3ϱ = R −R11 = R22 +R33 +R44 = 2(K23 +K34 +K24)+R11.

Besides, K23 + K34 + K24 = 1
2(Tr(P ) + 2ϱ) = (m + 1)ϱ. In view of this, we may rewrite

(4.46) as

PdsRdijsPjlPil = −2mϱ(K23µ2µ3 +K34µ3µ4 +K24µ2µ4)+(m+1)ϱµ2µ3µ4.

Similarly, one easily verifies that

PdsRdijsPij =
4∑

d=2

4∑

j=2

µdRdjjdµj = −2(K23µ2µ3 +K24µ2µ4 +K34µ3µ4). (4.47)

Hence, Eq. (4.45) becomes

uLm+2(Tr(P 3)) = 6(m+1)ϱuTr(P 3)+6(m+1)ϱ2u|P |2 +6u(∇sPij∇sPjlPil +ϱ|∇P |2)

−12(m+2)ϱu(K23µ2µ3 +K24µ2µ4 +K34µ3µ4)+6(m+1)ϱuµ2µ3µ4

+12m2(m+1)ϱ4u

= 6(m+1)ϱuTr(P 3)+12m2(m+1)ϱ4u+6u(∇sPij∇sPjlPil +ϱ|∇P |2)

−12(m+2)ϱu(K23µ2µ3 +K24µ2µ4 +K34µ3µ4)+6(m+1)ϱuµ2µ3µ4

+12m2(m+1)ϱ4u

= 6(m+1)ϱuTr(P 3)+6u(∇sPij∇sPjlPil +ϱ|∇P |2)

−12(m+2)ϱu(K23µ2µ3 +K24µ2µ4 +K34µ3µ4)

+6(m+1)ϱuµ2µ3µ4 +24m2(m+1)ϱ4u,
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where we used that |P |2 = 2m2ϱ2. Besides, by combining (4.44) and (4.47), we arrive at

u(K23µ2µ3 +K24µ2µ4 +K34µ3µ4) =
u|∇P |2

4
+m2(m+1)ϱ3u.

Consequently,

uLm+2(Tr(P 3)) = 6(m+1)ϱuTr(P 3)+6u(∇sPij∇sPjlPil +ϱ|∇P |2)

−3(m+2)ϱu|∇P |2 −12m2(m+2)(m+1)ϱ4u

+6(m+1)ϱuµ2µ3µ4 +24m2(m+1)ϱ4u

= 6(m+1)ϱuTr(P 3)+6u∇sPij∇sPjlPil −3mϱu|∇P |2

+6(m+1)ϱuµ2µ3µ4 −12m3(m+1)ϱ4u. (4.48)

At the same time, similar to [40, pg. 11], by letting ³ = µ2, ´ = µ3 and » = µ4

in the following algebraic identity

(³ +´ +»)3 = 3(³ +´ +»)(³2 +´2 +»2)−2(³3 +´3 +»3)+6³´»,

we obtain

(Tr(P ))3 = 3|P |2Tr(P )−2Tr(P 3)+6µ2µ3µ4.

Of which,

3µ2µ3µ4 = Tr(P 3)−2m3ϱ3. (4.49)

This substituted into (4.48) yields

uLm+2(Tr(P 3)) = 8(m+1)ϱuTr(P 3)+6u∇sPij∇sPjlPil −3mϱu|∇P |2

−16m3(m+1)ϱ4u,

which proves (4.40).

Finally, for the fixed orthonormal frame, by using (4.42) and Lemma 2.4, one

deduces that µi g 0, for all i. Hence, ∇sPij∇sPjlPil = |∇Pii|2µi g 0 and this proves the

second assertion (4.41).

Now, we establish the following essential lemma.

Lemma 4.5. Let (M4, g, u, ¼) be an m-quasi-Einstein manifold with m > 1 and constant

scalar curvature R = 2(m+2)¼
m+1 . Then the following inequality holds

Lm+2

[
|∇u|2

(
Tr(P 3)−2m3ϱ3

)]
g 2(9m+7)ϱ|∇u|2

(
Tr(P 3)−2m3ϱ3

)
,

where ϱ = ¼
m+1 .
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Proof. Initially, we consider the level set Σ = Σ(t) = u−1(t), 0 f t < umax, and an ortho-

normal frame {e1, e2, e3, e4} for M4 that diagonalizes the tensor P so that e1 = − ∇u
|∇u|

and {e2, e3, e4} is a frame over Σ(t). Moreover, we assume ³,´,µ,¸ ∈ {2,3,4} and i, j,k ∈
{1,2,3,4}. Thereby, it follows from the Gauss-equation that

RΣ
³´µ¸ = R³´µ¸ +h³µh´¸ −h³¸h´µ ,

which implies that

RΣ
³µ = R³µ −R³1µ1 +Hh³µ −h³´h´µ , (4.50)

where h and H stand for the second fundamental form and the mean curvature, respectively.

Besides, taking into account that ϱ = ¼
m+1 as well as

Ric(∇u) = ϱ∇u, P = Ric−ϱg, R = 2(m+2)ϱ, Tr(P ) = 2mϱ and |P |2 = 2m2ϱ2,

one deduces that

RΣ = R −2ϱ+H2 −|A|2 = 2(m+1)ϱ+H2 −|A|2, (4.51)

where |A|2 is the norm of the second fundamental form.

Next, we are going to compute h³´ and H. Indeed, by using (4.1) in terms of

P, i.e., ∇2u = u
m(P −mϱg), the second fundamental form is given by

h³´ =
∇³∇´u

|∇u| =
(P³´ −mϱg³´)

m
√

b(u)
u, (4.52)

where b(u) = |∇u|2. Furthermore, our assumption on the scalar curvature implies that

P11 = 0 and hence,

H =
Tr(P )−3mϱ

m
√

b(u)
u = − ϱu√

b(u)
. (4.53)

In particular, we have from (4.52) that

|A|2 =
|P |2 −2mϱTr(P )+3m2ϱ2

m2b(u)
u2 =

ϱ2u2

b(u)
. (4.54)

Substituting (4.53) and (4.54) into (4.51) yields RΣ = 2(m+1)ϱ.

Proceeding, we are going to deal with the Riemannian curvature tensor of Σ.

In fact, since Σ has dimension 3, its curvature tensor can be expressed as

RΣ
³´µ¸ = (RΣ

³µg´¸ +RΣ
´¸g³µ −RΣ

³¸g´µ −RΣ
´µg³¸)− RΣ

2
(g³µg´¸ −g³¸g´µ).
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This jointly with (4.50) gives

RΣ
³´³´ = RΣ

³³ +RΣ
´´ − RΣ

2

= R³³ −R³1³1 +Hh³³ −h2
³³ +R´´ −R´1´1 +Hh´´ −h2

´´ − (m+1)ϱ

= µ³ +µ´ +2ϱ−R³1³1 −R´1´1 +H(h³³ +h´´)−h2
³³ −h2

´´ − (m+1)ϱ,

where µ³ = P (e³) and h³´ = 0 for ³ ≠ ´. Consequently, for fixed ³ ̸= ´ again, by using

the Gauss equation, Eqs. (4.52) and (4.53), we then obtain

R³´³´ = RΣ
³´³´ −h³³h´´ +h2

³´

= µ³ +µ´ +2ϱ−R³1³1 −R´1´1 +H(h³³ +h´´)−h2
³³

−h2
´´ − (m+1)ϱ−h³³h´´

= µ³ +µ´ +2ϱ−R³1³1 −R´1´1 − ϱ(µ³ −mϱ+µ´ −mϱ)u2

mb(u)

−(µ³ −mϱ)2u2

m2b(u)
− (µ´ −mϱ)2u2

m2b(u)
− (m+1)ϱ− (µ´ −mϱ)(µ³ −mϱ)u2

m2b(u)

= µ³ +µ´ +2ϱ−R³1³1 −R´1´1 − (m+1)ϱ− mϱ(µ³ +µ´ −2mϱ)u2

m2b(u)

−
[µ2

³ −2mϱ(µ³ +µ´)+µ2
´ +2m2ϱ2]u2

m2b(u)
− [µ´µ³ −mϱ(µ³ +µ´)+m2ϱ2]u2

m2b(u)
,

which can be simplifying as

R³´³´ = µ³ +µ´ − ϱ(µ³ +µ´)u2

mb(u)
+

2ϱ(µ³ +µ´)u2

mb(u)
+

ϱ(µ³ +µ´)u2

mb(u)

+
2ϱ2u2

b(u)
− 2ϱ2u2

b(u)
− ϱ2u2

b(u)
+2ϱ−

(µ2
³ +µ2

´)u2

m2b(u)

−µ³µ´u2

m2b(u)
−R³1³1 −R´1´1 − (m+1)ϱ

=
(µ³ +µ´)(mb(u)+2ϱu2)

mb(u)
+

ϱ(2b(u)−ϱu2)

b(u)

−
(µ2

³ +µ2
´)u2

m2b(u)
− µ³µ´u2

m2b(u)
−R³1³1 −R´1´1 − (m+1)ϱ.

Next, multiplying the previous expression by µ³µ´ and summing over ³ and ´, ³ ̸= ´, we

deduce that
4∑

³ ̸=´

R³´³´µ³µ´ =
mb(u)+2ϱu2

mb(u)

4∑

³ ̸=´

(µ³ +µ´)µ³µ´ +
ϱ(2b(u)−ϱu2)

b(u)

4∑

³ ̸=´

µ³µ´

− 2u2

m2b(u)

4∑

³ ̸=´

µ3
³µ´ − u2

m2b(u)

4∑

³ ̸=´

µ2
³µ2

´

−2
4∑

³ ̸=´

R³1³1µ³µ´ − (m+1)ϱ
4∑

³ ̸=´

µ³µ´. (4.55)
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At the same time, we have to obtain expressions for each sum in (4.55). To do so, we first

observe that

4∑

³ ̸=´

µ³ = Tr(P ) = 2mϱ and
4∑

³ ̸=´

µ2
³ = |P |2 = 2m2ϱ2, (4.56)

which implies that

4∑

³ ̸=´

µ³µ´ =
4∑

³=2

∑

´ ̸=³

µ³µ´ =
4∑

³=2

µ³(Tr(P )−µ³) = (Tr(P ))2 −|P |2 = 2m2ϱ2,

4∑

³ ̸=´

(µ³ +µ´)µ³µ´ = 2
4∑

³=2

∑

´ ̸=³

µ2
³µ´ = 2

4∑

³=2

µ2
³(Tr(P )−µ³)

= 2(Tr(P ))|P |2 −2
4∑

³=2

µ3
³ = 8m3ϱ3 −2

4∑

³=2

µ3
³,

4∑

³ ̸=´

µ3
³µ´ =

4∑

³=2

∑

´ ̸=³

µ3
³µ´ =

4∑

³=2

µ3
³(Tr(P )−µ³) =

4∑

³=2

2mϱµ3
³ −

4∑

³=2

µ4
³

and

4∑

³ ̸=´

µ2
³µ2

´ =
4∑

³=2

∑

´ ̸=³

µ2
³µ2

´ =
4∑

³=2

µ2
³(|P |2 −µ2

³) = 4m4ϱ4 −
4∑

³=2

µ4
³.

We also need to obtain an expression for R³1³1. From Eq. (4) of Lemma 2.7, one deduces

that

u(∇iPjk −∇jPik)∇ju = mRijkl∇lu∇ju+mϱ(∇iugjk −∇jugik)∇ju

−(∇iuPjk −∇juPik)∇ju,

where we have used that ¼ = (m+1)ϱ. This combined with the fact that Pjk∇ju = 0 and

∇iPjk∇ju = ∇i(Pjk∇ju)−Pjk∇i∇ju = − u

m
Pjk(Pij −mϱgij)

allow us to infer

Rijkl∇lu∇ju = −ϱ(∇iu∇ku−|∇u|2gik)− |∇u|2
m

Pik

− u2

m2
Pjk(Pij −mϱgij)− u

m
∇jPik∇ju.

By taking i = k = ³ and multiplying the last expression by |∇u|2
|∇u|2 , we obtain

R³1³1|∇u|2 = ϱ|∇u|2 − |∇u|2
m

µ³ − u2

m2
Pj³(P³j −mϱg³j)− u

m
∇∇uP³³

=
(mϱ−µ³)|∇u|2

m
− u2

m2
µ2

³ +
ϱu2

m
µ³ − u

m
∇∇uP³³.
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Consequently,

4∑

³ ̸=´

R³1³1µ³µ´ =
4∑

³=2

∑

´ ̸=³

R³1³1µ³µ´ =
4∑

³=2

R³1³1µ³(Tr(P )−µ³)

=
1

|∇u|2
4∑

³=2

[
(mϱ−µ³)b(u)+ϱµ³u2

m
− u2

m2
µ2

³

− u

m
∇∇uP³³

]
µ³(2mϱ−µ³)

=
1

|∇u|2
4∑

³=2

(2m2ϱ2µ³ −3mϱµ2
³ +µ3

³)b(u)

m

+
1

|∇u|2
4∑

³=2

(2mϱ2µ2
³ −ϱµ3

³)u2

m
− u2

m2|∇u|2
4∑

³=2

(2mϱµ3
³ −µ4

³)

− u

m|∇u|2
4∑

³=2

∇∇uP³³

(
2mϱµ³ −µ2

³

)
.

In order to conclude this step, observe that

∇∇uTr(P 3) = 3
4∑

³=2

(∇∇uP³³)µ2
³ and 0 = ∇∇u|P |2 = 2

4∑

³=2

(∇∇uP³³)µ³,

which combined with (4.56) gives

4∑

³ ̸=´

R³1³1µ³µ´ =
4m3ϱ3 −6m3ϱ3

m
+

1

m

4∑

³=2

µ3
³ +

4m3ϱ4u2

mb(u)
− ϱu2

mb(u)

4∑

³=2

µ3
³

− u2

m2b(u)

4∑

³=2

(2mϱµ3
³ −µ4

³)+
∇u(Tr(P 3))u

3mb(u)

= −2m2ϱ3 +
4m2ϱ4u2

b(u)
+

∇u(Tr(P 3))u

3mb(u)
+

b(u)−3ϱu2

mb(u)

4∑

³=2

µ3
³

+
u2

m2b(u)

4∑

³=2

µ4
³.

Returning to Eq. (4.55), we then have

4∑

³ ̸=´

R³´³´µ³µ´ =
mb(u)+2ϱu2

mb(u)


8m3ϱ3 −2

4∑

³=2

µ3
³


+

ϱ(2b(u)−ϱu2)

b(u)
·2m2ϱ2

− 2u2

m2b(u)




4∑

³=2

2mϱµ3
³ −

4∑

³=2

µ4
³


− u2

m2b(u)


4m4ϱ4 −

4∑

³=2

µ4
³




−2m2(m+1)ϱ3 +4m2ϱ3 − 8m2ϱ4u2

b(u)
− 2∇u(Tr(P 3))u

3mb(u)

−2b(u)−6ϱu2

mb(u)

4∑

³=2

µ3
³ − 2u2

m2b(u)

4∑

³=2

µ4
³.
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Simplifying terms, we infer
4∑

³ ̸=´

R³´³´µ³µ´ =
8m3ϱ3b(u)+16m2ϱ4u2 +4m2ϱ3b(u)−2m2ϱ4u2 −2m2(m−1)ϱ3b(u)

b(u)

−4m2ϱ4u2

b(u)
− 8m2ϱ4u2

b(u)
− 2∇u(Tr(P 3))u

3mb(u)

−2mb(u)+4ϱu2 +4ϱu2 +2b(u)−6ϱu2

mb(u)

4∑

³=2

µ3
³ +

2u2 +u2 −2u2

m2b(u)

4∑

³=2

µ4
³

=
6m2(m+1)ϱ3b(u)+2m2ϱ4u2

b(u)
− 2∇u(Tr(P 3))u

3mb(u)

−2(m+1)b(u)+2ϱu2

mb(u)
Tr(P 3)+

u2

m2b(u)

4∑

³=2

µ4
³

=
2m2ϱ3[3(m+1)b(u)+ϱu2]

b(u)
− 2∇u(Tr(P 3))u

3mb(u)

−2[(m+1)b(u)+ϱu2]

mb(u)
Tr(P 3)+

u2

m2b(u)

4∑

³=2

µ4
³.

On the other hand, it follows from (4.44) that

2u|∇P |2 +4(m+1)ϱu|P |2 +4uPikRjiklPjl = 0

and hence,

u|∇P |2 = −2(m+1)ϱu|P |2 +2uPikRijklPjl.

Plugging this fact into (4.41) yields

uLm+2(Tr(P 3)) g 8(m+1)ϱuTr(P 3)−3mϱu|∇P |2 −16m3(m+1)ϱ4u

= 8(m+1)ϱuTr(P 3)+6m(m+1)ϱ2u|P |2 −6mϱuPikRijklPjl

−16m3(m+1)ϱ4u

= 8(m+1)ϱuTr(P 3)−4m3(m+1)ϱ4u− 12m3ϱ4u[3(m+1)b(u)+ϱu2]

b(u)

+
4ϱ∇u(Tr(P 3))u2

b(u)
+

12ϱu[(m+1)b(u)+ϱu2]

b(u)
Tr(P 3)− 6ϱu3

mb(u)

4∑

³=2

µ4
³

=
4ϱu[5(m+1)b(u)+3ϱu2]

b(u)
Tr(P 3)− 6ϱu3

mb(u)

4∑

³=2

µ4
³

+
4ϱ∇u(Tr(P 3))u2

b(u)
− 4m3ϱ4u[10(m+1)b(u)+3ϱu2]

b(u)
. (4.57)

From (4.56), it is known that µ2, µ3, µ4 and Tr(P ) satisfy the hypothesis of

Corollary A.1 in [40] and therefore,

4∑

³=2

µ4
³ = −10m4ϱ4

3
+

8mϱ

3
Tr(P 3).
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Substituting the above equality into (4.57), we infer

uLm+2(Tr(P 3)) g 4ϱu[5(m+1)b(u)+3ϱu2]

b(u)
Tr(P 3)+

20m3ϱ5u3

b(u)
− 16ϱ2u3

b(u)
Tr(P 3)

+
4ϱ∇u(Tr(P 3))u2

b(u)
− 4m3ϱ4u[10(m+1)b(u)+3ϱu2]

b(u)

=
4ϱu[5(m+1)b(u)−ϱu2]

b(u)
Tr(P 3)+

4ϱ∇u(Tr(P 3))u2

b(u)

−4m3ϱ4u[10(m+1)b(u)−2ϱu2]

b(u)

=
4ϱu[5(m+1)b(u)−ϱu2]

b(u)
(Tr(P 3)−2m3ϱ3)+

4ϱ∇u(Tr(P 3))u2

b(u)
.

(4.58)

Finally, we recall that the potential function of a quasi-Einstein manifold is

transnormal satisfying

b(u) = |∇u|2 =
µ

m−1
− R +(m−n)¼

m(m−1)
u2 = ϱ(u2

max −u2).

Hence,

uLm+2

[
b(u)

(
Tr(P 3)−2m3ϱ3

)]
= ub(u)Lm+2(Tr(P 3))+2uï∇b(u),∇(Tr(P 3))ð

+(Tr(P 3)−2m3ϱ3)uLm+2(b(u))

= ub(u)Lm+2(Tr(P 3))−4ϱu2∇u(Tr(P 3))

+(Tr(P 3)−2m3ϱ3)(−2ϱu2∆u−2ϱu|∇u|2

−(m+2)2uϱ|∇u|2)

= ub(u)Lm+2(Tr(P 3))−4ϱu2∇u(Tr(P 3))

−2ϱu
(
−2ϱu2 +(m+3)b(u)

)
(Tr(P 3)−2m3ϱ3),

(4.59)

where we have used that ∆u = −2ϱu and

La(f) = u−adiv(ua∇f) = ∆f +au−1ï∇u,∇fð, for a ̸= 0 and f ∈ C∞(M). (4.60)

Comparing (4.58) with (4.59) gives

uLm+2

[
|∇u|2

(
Tr(P 3)−2m3ϱ3

)]
g 2(9m+7)ϱu|∇u|2

(
Tr(P 3)−2m3ϱ3

)
,

as we wanted to prove.
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We are now ready to present the proof of Theorem 4.4.

Theorem 4.8 (Theorem 4.4). Let (M4, g, u, ¼) be a nontrivial simply connected compact

4-dimensional m-quasi-Einstein manifold with boundary and m > 1. Then M4 has constant

scalar curvature R = 2 (m+2)
(m+1)¼ if and only if it is isometric, up to scaling, to the product

space S
2
+ ×S

2 with the doubly warped product metric.

Proof. We already know that Tr(P ) = 2mϱ and |P |2 = 2m2ϱ2, i.e.,

|P |2 =
1

2
(Tr(P ))2. (4.61)

Hence, since µ1 = 0, by Lemma 2.4, the eigenvalues µ³, ³ = 1,2,3,4, of P are all nonnegative.

We now set the function

h := |∇u|2(Tr(P 3)−2m3ϱ3).

In particular, from (4.49) and the fact that µ³, ³ = 1,2,3,4, are all nonnegative, one sees

that h is a nonnegative function. Besides, since M is compact with boundary ∂M, by

performing integration by parts, we deduce

∫

M
Lm+2(h)dVm+2 =

∫

M
u−(m+2)div(um+2∇h)dVm+2 =

∫

M
div(um+2∇h)dV

= −
∫

∂M
um+2

〈
∇h,

∇u

|∇u|

〉
dS = 0, (4.62)

where we have used the fact that u vanishes on ∂M, dVm+2 = um+2dV is the weighted

measure and the second order operator La, a ∈ R, is given by Eq. (4.60)

On the other hand, it follows from Lemma 4.5 that

2(9m+7)ϱh−Lm+2(h) f 0. (4.63)

So, upon integrating (4.63) over M, we use (4.62) in order to infer

2(9m+7)ϱ
∫

M
hdVm+2 f 0.

Of which, one obtains that

h = |∇u|2(Tr(P 3)−2m3ϱ3) = 0.
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Now, taking into account that |∇u|2 is zero only over the 2-dimensional submanifold

MAX(u), which has measure zero, one concludes that Tr(P 3)−2m2ϱ2 ≡ 0 on M. This

jointly with Eq. (4.49) then implies µ2µ3µ4 = 0, namely, at least one of µ2, µ3 and µ4

is zero. Assume µ2 = 0. Thereby, by using (4.61), one deduces that µ1 = µ2 = 0 and

µ3 = µ4 = mϱ.

Returning to the Ricci tensor, we then conclude that the Ricci tensor has

exactly two distinct eigenvalues, each one with multiplicity two, namely,

¼1 = ¼2 =
¼

m+1
and ¼3 = ¼4 = ¼,

where Ric(ei) = ¼i, for i = 1, 2, 3, 4. In particular, the Ricci tensor Ric is parallel. Then,

by the first contracted second Bianchi identity (∇lRijkl = ∇jRik − ∇iRjk), one obtains

that the curvature tensor is harmonic. Now, we are in the position to apply [60, Corollary

1.14] to conclude that M4 is rigid. Hence, it suffices to use Proposition 2.9 to deduce that

M4 is covered by the product S
2
+ ×S

2. Finally, since M4 is simply connected, we may use

Theorem 54.6 in [81] to conclude that the covering map is a bijective local isometry and

therefore, a global isometry. Thus, M4 is isometric, up to scaling, to the product space

S
2
+ ×S

2. This finishes the proof of the theorem.

As a consequence of Theorem 4.5, Remark 5, Theorem 4.6 and Theorem 4.8,

we get the following classification result.

Corollary 4.4. Let (M4, g, u, ¼) be a nontrivial simply connected compact 4-dimensional

m-quasi-Einstein manifold with boundary and m > 1. Then M4 has constant scalar curva-

ture if and only if it is isometric, up to scaling, to either

(i) the standard hemisphere S
4
+, or

(ii) the cylinder I ×S
3 with the product metric, or

(iii) the product space S
2
+ ×S

2 with the doubly warped product metric.

Proof. The result follows from Theorem 4.5, Remark 5 (and Proposition 4.1), Theorem

4.6 and Theorem 4.8.
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5 CONCLUSION

Geometric inequalities are interesting tools to obtain results in Differential

Geometry. In the first part of this thesis, we deal with geometric inequalities over static

perfect fluid space-times with boundary. In this sense, we obtained some estimates involving

the area of the boundary whose equality case was achieved by the round hemisphere S
n
+.

To do so, we have used the fact that the scalar curvature is not necessarily constant. We

have obtained an inequality involving Area(∂M) by using the generalized Reilly’s formula.

Moreover, we established another inequality involving the Brown-York mass mBY of the

boundary. In addition, we obtained a new simply connected example of static perfect fluid

space-time with connected boundary. In particular, it is a counter-example to the Cosmic

no-hair conjecture for dimension n g 4. Since the conjecture remains open in the case

n = 3, it is important to address this problem in forthcoming works. Moreover, it is also

important to investigate similar results to other kind of special solutions of the Einstein

field equation.

In the second part of this work, we investigate classification results for compact

quasi-Einstein manifolds with boundary and constant scalar curvature. We showed the

possible values for the scalar curvature and we obtained the complete classification in

dimension 3 and 4 under the constant scalar curvature. In particular, they are rigidy.

Our classification is based in the dimension of the space of critical points of the potential

function, which is a smooth submanifold of the ambient manifold, and we saw that there is

a bijective correspondence between the possible values of R and the dimension of Crit(u).

At least in dimensions 3 and 4, also for R = n(n−1)¼
m+n−1 and R = (n−1)¼ in general dimension

n > 2, the constant value of R determines the geometry of a compact quasi-Einstein

manifold with boundary. The problem of classification of quasi-Einstein manifolds with

constant scalar curvature remains open for dimension n g 5.
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