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ABSTRACT

We systematically investigate the effects of simple shear and uniaxial strains, applied along
various crystallographic directions, as well as biaxial and pure shear strains, on the electronic
spectra of Lieb and Kagome lattices using a tight-binding model. This model employs a
general Hamiltonian that characterizes both lattice types through a single control parameter,
0. Our findings indicate that such deformations do not open an energy gap in their electronic
spectra but can lead to (1) convergence of energy cones, (i1) anisotropy in energy levels, and
(ii1) deformation of the flat band. Consequently, the triply degenerate Dirac point in the Lieb
lattice transforms into two doubly degenerate Dirac points. Our analysis of hypothetical strain
scenarios, in which the hopping parameters are unchanged, shows that effects such as the
flat band deformation and the splitting of the triply degenerate Dirac point result solely from
strain-induced changes in hopping parameters. Additionally, we identify cases where non-zero
strain-induced pseudovector potentials arise in Lieb and Kagome lattices. Moreover, when
considering intrinsic spin-orbit coupling, these lattices exhibit two-dimensional topological
insulator behavior with a Z, topological classification. Our comprehensive study reveals that
such deformations can induce topological phase transitions by altering the structural lattice angle,
strain amplitude, and the magnitude of the intrinsic spin-orbit coupling. These transitions are
evidenced by the evolution of Berry curvature and shifts in the Chern number when the gap
closes. By analyzing hypothetical strain scenarios where the hopping and intrinsic spin-orbit
coupling parameters remain intentionally unchanged, we demonstrate that the strain-induced
phase transitions stem from simultaneous modifications in the hopping and intrinsic spin-orbit
coupling parameters. Further analysis extends to finite-size effects on the topological properties
of these lattices, evaluating the energy spectrum for nanoribbons with straight, bearded, and
asymmetric edges. The results confirm strain-driven topological phase transitions, supported by
the bulk-edge correspondence. Additionally, the evolution of edge states under strain suggests

the generation of opposite spin currents.

Keywords: topological phase transition; Lieb-Kagome lattice; strain; electronic spectrum.



RESUMO

Investigamos sistematicamente os efeitos de deformacdes por cisalhamento simples e defor-
magoes uniaxiais, aplicadas ao longo de vdrias dire¢des cristalograficas, bem como deformagdes
biaxiais e cisalhamento puro, nos espectros eletronicos das redes de Lieb e Kagome usando um
modelo tight-binding. Este modelo emprega um Hamiltoniano geral que caracteriza ambos o0s
tipos de rede através de um unico parametro de controle, 6. Nossas descobertas indicam que tais
deformagdes ndo abrem um gap de energia nos seus espectros eletronicos, mas podem levar a
(i) convergéncia dos cones de energia, (ii) anisotropia nos niveis de energia e (iii) deformacao
da banda plana. Consequentemente, o ponto de Dirac triplamente degenerado na rede de Lieb
se transforma em dois pontos de Dirac duplamente degenerados. Nossa andlise de cendrios
hipotéticos de deformacao, nos quais os parametros de hopping sao inalterados, mostra que
efeitos como a deformacgdo da banda plana e a divisdo do ponto de Dirac triplamente degenerado
resultam exclusivamente de mudancas nos parametros de hopping induzidas pela deformacao.
Adicionalmente, identificamos casos onde potenciais pseudovetoriais induzidos por deformacdo
surgem nas redes de Lieb e Kagome. Além disso, ao considerar o acoplamento spin-6érbita
intrinseco, essas redes exibem comportamento de isolante topolégico bidimensional com uma
classificacdo topoldgica Z,. Nosso estudo abrangente revela que tais deformagdes podem induzir
transicoes de fase topoldgicas ao alterar o angulo estrutural da rede, a amplitude da deformacgao
e a magnitude do acoplamento spin-Orbita intrinseco. Essas transi¢des sdo evidenciadas pela
evolucdo da curvatura de Berry e mudancas no nimero de Chern quando o gap se fecha. Ao
analisar cendrios hipotéticos de deformagdo onde os parametros de hopping e acoplamento spin-
orbita intrinseco permanecem intencionalmente inalterados, demonstramos que as transi¢des
de fase induzidas pela deformagdo originam-se de modificagdes simultaneas nos parametros
de hopping e acoplamento spin-Orbita intrinseco. Andlises adicionais se estendem aos efeitos
de tamanho finito nas propriedades topoldgicas dessas redes, avaliando o espectro de energia
para nanofitas com bordas retas, barbadas e assimétricas. Os resultados confirmam transicoes
de fase topoldgicas decorrentes da aplicacao de deformagdes, sustentadas pela correspondéncia
bulk-edge. Além disso, a evolugdo dos estados de borda sob deformacgdo sugere a geracdo de

correntes de spin opostas.

Palavras-chave: transicdo de fase topoldgica; rede de Lieb-Kagome; tensdo; espectro eletronico.
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Kagome lattices. Cases are: (i) without ISO coupling A;so = 0 [solid black
lines], (i) with ISO coupling, i.e., A4 # 0, Agc # 0 [dashed blue lines], and
(111) with ISO coupling but without the following NN ISO coupling terms
MAp=Agc=0[dottedredlines]. . . . . .. ... ... .. .. .......
Evolution of the energy spectrum (1st and 2nd column of panels) and Berry
curvature per energy band (3rd to 5th columns of panels) for fillings 1/3
(6th column of panels) and 2/3 (7th column of panels) for Lieb (1st row
of panels), transition (2nd row of panels), and Kagome (3rd row of panels)
lattices. Obtained considering only NN ISO coupling, i.e., only A4 # 0 and
Apc # 0 for Lieb and transition lattices, and A4p # 0, Apc # 0, and A, # 0
for Kagome lattices. It is noted that there is no gap opening in the Lieb lattice,

such that only NNN ISO coupling opens a gap in this lattice as shown in

Contour plots of Berry curvature € (panels 1), Q; (panels 2), and Q3
(panels 3) corresponding to the lower, middle, and upper bands presented in
panels 4 for (a) Lieb, (c) transition, and (e) Kagome lattices with A4 # 0,
Asc # 0. The cases where Aqp = Agc = 0 are shown in panels (b), (d), and
(f), respectively. Parallelograms indicate the region of reciprocal space with

an area numerically equal to the BZ of eachcase. . . ... ... ... ...
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Figure 52 —

Figure 53 —

Figure 54 —

Figure 55 —

Figure 56 —

Evolution of the Berry curvature per band (1st and 2nd column of panels)
and with fillings 1/3 (3rd column of panels) and 2/3 (4th column of panels)
for (a) Lieb, (c) transition, and (e) Kagome lattices with Ayp # 0, Agc #
0. The cases where Aap = Agc = 0 are shown in panels (b), (d), and (f),
respectively. Parallelograms indicate the region of reciprocal space with an
area numerically equal to the BZ of each case as shown in Fig. 51. . . . . .
Contour plots of (a) lower, (b) middle, and (c) upper bands of Lieb (1st row
of panels), transition (2nd row of panels), and Kagome (3rd row of panels)
lattices, for the cases (i) Aiso = O [solid black line], (ii) Aag # 0, Agc # 0
[dashed blue line], and (iii) A4p = Agc = 0 [dotted red line]. The regions
(i-vi) shaded in blue or red are depicted in an enlarged form in panels (d). . .
Contour plot of the full band gap A, [Az3] between bands E| [E,] and E;
[E3] as a function of n and 6 with A = 0.2 (I1st row of panels), and as a
function of n and A for Lieb (2nd row of panels), transition (3rd row of
panels), and Kagome (4th row of panels) lattices. Results are presented
considering all ISO coupling parameters (1st and 2nd columns of panels), as
well as assuming the following NN ISO coupling parameters equal to zero,
Aag = Agc = 0 (3rd and 4th columns of panels). The regions simultaneously
exhibiting the closure of the full band gap and the local band gap, i.e., the
touching of bands at a certain point k (shown in Fig. 55), indicate topological
phase transition (TPT). . . . . . . .. .. ... .. .. .. .. .. ...,
Contour plots of the full band gap Ay, [Az3] presented in Fig. 54 are con-
trasted with contour plots of the local band gaps A, [A);], which refer to
the minimum separation between the bands at each individual point in their
momentum space. At points where the bands intersect or touch, the local
band gap reduces to zero, indicating TPT. . . . . .. ... ... ... ...
Evolution of the local band gap for regions of Fig. 55 that exhibit a negative
indirect gap. Before and after the touching of the bottom and middle bands,
the Chern numbers of the bands are well defined since they do not touch

anywhere. However, no TPT occurs due to it being a region of a null full
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Figure 57 —

Figure 58 —

Figure 59 —

Figure 60 —

Figure 61 —

Evolution of the full band gaps A1, [black solid line] and A3 [red dashed line]
as a function of the parameter A (panels a-c), or 0 (panel d) assuming A4 # 0
and Agc # 0 (panels a-c) or Ayp = Agc = 0 (panels d), which highlights
TPT at gap closing points. Regions with distinct Chern numbers for the
bands, CT = (CI,C; ,Cg ), have been indicated by different colors, where
(1,0,-1), (-1,2,-1), and (-1,0,1) correspond to the blue, green, and red regions,
respectively. The remaining cases are presented in Fig. 58. . . . . . . . ..
Comparison between the full band gap A1, [A23] and the local band gaps A’12
[A);], as shown in Fig. 57. Before and after the touching of the bottom and
middle bands, the Chern numbers of the bands are well defined since they do
not touch anywhere. TPT occur only if the full band gap also closes together
with the local band gap at the same point, and both are different from zero
before and after the TPTs points. . . . . . . . ... ... ... .......
Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs
identified in Fig. 57. Specifically, panels (a-c), (d-e), and (f-g) correspond to
the cases depicted in panels a, c, and e of Fig. 57. The remaining cases are
presented in Fig. 60. It is noteworthy that the TPT cause a change in the sign
of the Berry curvature. . . . . . . . .. ...
Contour plots of the Berry curvature (as shown in Fig. 59), before and after
the TPTs identified in Fig. 57. It is noteworthy that the TPT cause a change
in the sign of the Berry curvature. . . . . . .. .. ... ... ... ... ..
Contour plot of the full band gap as in Fig. 54, but now as a function of € and
0, for UX-strain (1st column of panels), UY-strain (2nd column of panels),
Bl-strain (3rd column of panels), SX-strain (4th column of panels), SY-strain
(5th column of panels), and PS-strain (6th column of panels). Results are
presented considering all ISO coupling parameters (1st and 2nd rows of
panels), as well as assuming A4p = Agc = 0 (3rd and 4th rows of panels). For

comparison, Fig. 62 shows the evolution of the local band gap in each case.
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Figure 62 — Contour plots of the full band gap A, [A23] presented in Fig. 61 are con-

trasted with contour plots of the local band gaps A}, [A};], which refer to

the minimum separation between the bands at each individual point in their

momentum space. At points where the bands touch, the local band gap

reduces to zero, indicating TPT. . . . . . . . ... ... .. ... ...... 146
Figure 63 — The evolution of the full band gap A [A23] and local band gaps A’lz [A’23] for

the specific cases in Fig. 62 with 8 = 90° (Lieb lattice), 8 = 105° (transition

lattice), and 6 = 120° (Kagome lattice) is depicted. The points of non-

topological phase transition, linking the TI phase with a semimetallic or

metallic phase at 1/3 filling, are indicated by open circles with central dots or

simple open circles, respectively. The points € of TPT that connect two TI

phases are highlightedinFig. 64. . . . . .. ... ... ... ... ..... 147
Figure 64 — Evolution of the full band gaps as in Fig. 57, but now as a function of € for

the cases from Fig. 61 where we identified TPT. Fig. 63 shows the evolution

of the local band gap, confirming the TPT. . . . . ... ... ... ... .. 148
Figure 65 — Contour plots of the Berry curvature, before and after the TPTs identified in

panels a and b of Fig. 64 (Lieb lattice). It is noteworthy that the TPT cause a

change in the sign of the Berry curvature. . . . . . . ... ... ... .... 150
Figure 66 — Contour plots of the Berry curvature, before and after the TPTs identified in

panels (e), (f), and (g) of Fig. 64 (transition lattice). It is noteworthy that the

TPT cause a change in the sign of the Berry curvature. . . . . . ... .. .. 151
Figure 67 — Contour plots of the Berry curvature, before and after the TPTs identified in

panels (k), (1), and (m) of Fig. 64 (Kagome lattice). It is noteworthy that the

TPT cause a change in the sign of the Berry curvature. . . . . . . ... ... 152
Figure 68 — Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs

identified in Fig. 64 for some cases with A4 7 0 and Agc # O (see Figs. 75

and 72). ..o 153
Figure 69 — Comparison between the full band gap Aj» [Ap3] and the local band gaps A/,

[A’23], versus € as shown in Fig. 64, for TPT identified for values of € not

presented in Figs. 61 and 62. . . . . . ... ... ... ... ........ 155



Figure 70 — Contour plots of the Berry curvature, before and after the TPTs identified in

panel b of Fig. 69. It is noteworthy that the TPT cause a change in the sign of

the Berry curvature. . . . . . .. ... L L 156
Figure 71 — Contour plots of the Berry curvature (which complement those presented in

Fig. 68), before and after the TPTs identified in panels c and d of Fig. 64. It

is noteworthy that the TPT cause a change in the sign of the Berry curvature. 158
Figure 72 — Contour plots of the Berry curvature (which complement those presented

in Fig. 68), before and after the TPTs identified in panels (h), (i), and (j) of

Fig. 64. It is noteworthy that the TPT cause a change in the sign of the Berry

CUTVALUTE. . . . v v vt e et et e e e e e e e e e e e e 159
Figure 73 — Contour plots of the Berry curvature, before and after the TPTs identified in

panel c of Fig. 69. It is noteworthy that the TPT cause a change in the sign of

the Berry curvature. . . . . . . . . ... L 160
Figure 74 — Contour plots of the Berry curvature, before and after the TPTs identified in

panels d and e of Fig. 69. It is noteworthy that the TPT cause a change in the

sign of the Berry curvature. . . . . . . ... ... ... ... ... ..... 161
Figure 75 — Comparison between the full band gap Aj» [Ap3] and the local band gaps A/,

[A}], versus € as shown in Fig. 63, but now for the case of Lieb only with

7L<<l- ;) (first row of panels), and the cases of Kagome only with 7L< (ij)y (second

row of panels) and with only [7L<l- ;)] (third row of panels). The six columns of

figure panels represent the six types of strain applied. It is noteworthy that in

points where the full band gap is zero, the bands indeed touch because the

local band gap is also zero, corroborating the indication of TPT.. . . . . . . 162
Figure 76 — Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs

identified in Fig. 64 for some cases with A4 = Agc = 0 (see Figs. 73 and 77). 164
Figure 77 — Contour plots of the Berry curvature, before and after the TPTs identified in

panel a of Fig. 69. It is noteworthy that the TPT cause a change in the sign of

the Berry curvature. . . . . . .. . ... 166
Figure 78 — Contour plots of the Berry curvature (which complement those presented in

Fig. 76), before and after the TPTs identified in panels o, p, and q of Fig. 64.

It is noteworthy that the TPT cause a change in the sign of the Berry curvature. 168



Figure 79 —

Figure 80 —

Figure 81 —

Figure 82 —

Figure 83 —

Figure 84 —

Contour plots of the Berry curvature (which complement those presented in

Fig. 76), before and after the TPTs identified in panels 1, s, and t of Fig. 64.

It is noteworthy that the TPT cause a change in the sign of the Berry curvature. 169

Contour plot of energy gap Aj> [Az3] between the bands 1[2] and 2[3] as
a function of € and 6 for (a) Axp # 0 and Agc # 0 and (b) Ayp = Agc =0,

considering the ISO coupling and hopping parameters independent of the strain.171

Sketches of generic nanoribbons with (b) straight, (c) bearded, and (d) asym-
metric edges, emphasizing their unit cells (red dashed lines), edge termina-
tions, and the row count in each case are shown. The non-equivalent sites
are: A (blue empty circle), B (yellow filled circle), and C (green circle with
a dot inside), as in Figs. 15 (a-c) and 46 (a). N is the total number of lines
defining the ribbon size W = (N — 1)|ay|/2, which is always odd for straight
or bearded edges and even for asymmetricedges. . . .. ... ... .. ..
Energy spectra (panels with subscript 1) and DOS (panels with subscript 2)
of nanoribbons with: (a-c) asymmetric edges [N = 30], (d-f) straight edges
[N =31], and (g-i) bearded edges [N = 31] for (a,d,g) Lieb, (b,e,h) transition,
and (c,f,i) Kagome lattices without ISO coupling, i.e., Liso = 0 (Eq. (3.6)).
The cases presented are: (i) n = 1 [black dash-dotted line], (ii) n = 4 [dashed
red line], and (iii)) » = 8 [solid blue line]. . . . . . . .. ... ... ....
Energy spectra of nanoribbons with asymmetric edges (N = 30) for (a,d,g)
Lieb, (b,e,h) transition, and (c,f,i) Kagome lattices. The cases presented are
(a-c) 4iso =0, and (d-i) 4iso = 0.2¢, with (d-f) Aap # 0, Agc # 0, and (g-1)
Aag = Agc = 0. The solid black lines represent the states with Ajgg = 0,
while the states with A;go # 0 are represented by solid blue lines (spin-up)
and dashed red lines (spin-down). . . . . . . . .. ... ... ...
Same as Fig. 83, but now for (a-i) straight and (j-r) bearded edges, both with
N =31 e



Figure 85 — Representation of zoomed-in regions of the energy spectra of nanoribbons of
the Kagome lattice shown in Figs. 83 and 84 in the lower energy region, com-
prising the nearly-flat modes, for (a,d,g) asymmetric edges, (b,e,h) bearded
edges, and (c,f,i) straight edges. We present the cases with (a-c) Aiso =0,
and (d-i) Aiso = 0.2¢, with (d-f) Ay # 0, Agc # 0, and (g-i) Aup = Agc = 0.
The solid black lines represent the states with Ajso = 0, while the states with
Aso # 0 are represented by solid blue lines (spin-up) and dashed red lines
(spin-down). . . . .. e

Figure 86 — Energy spectra of nanoribbons with asymmetric edges for (a-i) N =4 and (j-r)
N =12, showing (a,d,g,j,m,p) Lieb, (b,e,h,k,n,q) transition, and (c,f,1,1,0,r)
Kagome lattices. We present the cases with (a-c,j-1) 4;so = 0 and (d-i,m-r)
Mso = 0.2¢, with (d-f,m-0) Aap # 0, Agc # 0, and (g-i,p-r) Aap = Agc = 0.
The solid black lines represent the states with Ajgo = 0, while the states with
Mso # 0 are represented by solid blue lines (spin-up) and dashed red lines
(spin-down). . . . . . ... e

Figure 87 — Same as Fig. 86, but for the straight edge with (a-i) N =5 and (j-r) N = 13. .

Figure 88 — Same as Fig. 86, but for the bearded edge with (a-1) N =5 and (j-r) N = 13.

Figure 89 — Energy spectra of nanoribbons for the cases presented in Fig. 59 (a-c). The
solid black lines represent the states with Ajso = 0, while the states with
Mso # 0 are represented by solid blue lines (spin-up) and dashed red lines
(spin-down). . . . .. e e

Figure 90 — Energy spectra of nanoribbons for the cases presented in Fig. 59 (d-e). The
solid black lines represent the states with Ajgo = 0, while the states with
Mso # 0 are represented by solid blue lines (spin-up) and dashed red lines
(spin-down). . . . .. e

Figure 91 — Energy spectra of nanoribbons for the cases presented in Fig. 59 (f-g). The
solid black lines represent the states with Ajgo = 0, while the states with
Mso # 0 are represented by solid blue lines (spin-up) and dashed red lines
(spin-down). . . . .. e

Figure 92 — Energy spectra of nanoribbons for the cases presented in Fig. 68 (a-b). The
subbands for spin-up (spin-down) charges are represented by solid blue lines

(dashedredlines). . . . . . . . . . . . . . . . e



Figure 93 — Energy spectra of nanoribbons for the cases presented in Fig. 68 (c-e). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashedredlines). . . . . . . . . . . . . . . .. ...

Figure 94 — Energy spectra of nanoribbons for the cases presented in Fig. 68 (f-h). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashedredlines). . . . . . . . . . . . . . ... ...

Figure 95 — Energy spectra of nanoribbons for the cases presented in Fig. 68 (i-j). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashedred lines). . . . . . . . . . . . . e

Figure 96 — Energy spectra of nanoribbons for the cases presented in Fig. 68 (k-1). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashedredlines). . . . . . . . . . . . . . e

Figure 97 — Enlarged region of the energy spectra of asymmetric-edged nanoribbons in
Figs. 92, 93, 94, 95, and 96, highlighting the evolution of edge states. The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashedred lines). . . . . . . . . . . . . . e

Figure 98 — Energy spectra of nanoribbons for the cases presented in Fig. 76 (a-d). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashed red lines). Panels (e-i) with CT = (1,0, —1) should be compared with
the case of the unstrained Kagome lattice with CT = (—1,2,—1) shown in
Fig. 83 (1), with an enlarged region in Fig. 85(g). . . .. ... . ... ...

Figure 99 — Energy spectra of nanoribbons for the cases presented in Fig. 76 (e-f). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashed red lines). Panels (e-i) with CT = (1,0,—1) should be compared with
the case of the unstrained Kagome lattice with CT = (—1,2,—1) shown in
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Figure 100—Energy spectra of nanoribbons for the cases presented in Fig. 76 (g). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashed red lines). Panels (e-i) with CT = (1,0, —1) should be compared with
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Figure 101 —Energy spectra of nanoribbons for the cases presented in Fig. 76 (h-1). The
subbands for spin-up (spin-down) charges are represented by solid blue lines
(dashed red lines). Panels (e-i) with CT = (1,0,—1) should be compared with
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Fig. 83 (i), with an enlarged regionin Fig. 85(g). . . ... ... ... ... 205
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Figure 103 —(a-b) Representation of the spin-flipping effect driven by strain in Lieb-
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