
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE FÍSICA

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

DOUTORADO EM FÍSICA

WELLISSON PIRES LIMA

STRAINED LIEB-KAGOME LATTICES: EVOLUTION OF THE ELECTRONIC

SPECTRUM AND TOPOLOGICAL PHASE TRANSITIONS

FORTALEZA

2024



WELLISSON PIRES LIMA

STRAINED LIEB-KAGOME LATTICES: EVOLUTION OF THE ELECTRONIC

SPECTRUM AND TOPOLOGICAL PHASE TRANSITIONS

Tese apresentada ao Programa de Pós-
Graduação em Física do Centro de Ciências da
Universidade Federal do Ceará, como requisito
parcial à obtenção do título de doutor em
Física. Área de Concentração: Física da Matéria
Condensada.

Orientador: Prof. Dr. João Milton Pereira
Júnior.
Coorientador: Prof. Dr. Diego Rabelo da
Costa.

FORTALEZA

2024



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

L711s Lima, Wellisson Pires.
    Strained Lieb-Kagome lattices : Evolution of the electronic spectrum and topological phase transitions /
Wellisson Pires Lima. – 2024.
    233 f. : il. color.

     Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Física , Fortaleza, 2024.
     Orientação: Prof. Dr. João Milton Pereira Júnior.
     Coorientação: Prof. Dr. Diego Rabelo da Costa.

    1. topological phase transition. 2. Lieb-Kagome lattice. 3. strain. 4. electronic spectrum. I. Título.
                                                                                                                                         CDD 530



WELLISSON PIRES LIMA

STRAINED LIEB-KAGOME LATTICES: EVOLUTION OF THE ELECTRONIC

SPECTRUM AND TOPOLOGICAL PHASE TRANSITIONS

Tese apresentada ao Programa de Pós-
Graduação em Física do Centro de Ciências
da Universidade Federal do Ceará, como
requisito parcial à obtenção do título de
doutor em Física. Área de Concentração:
Física da Matéria Condensada.

Aprovada em: 28/06/2024

BANCA EXAMINADORA

Prof. Dr. João Milton Pereira Júnior (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Diego Rabelo da Costa (Coorientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Márcio de Melo Freire
Universidade Federal do Ceará (UFC)

Profa. Dra. Silvia Helena Roberto de Sena
Universidade da Integração Internacional da Lusofonia

Afro-Brasileira (Unilab)

Prof. Dr. Natanael de Carvalho Costa
Universidade Federal do Rio de Janeiro (UFRJ)



To my beloved wife, my dear father, my excep-

tional mother, my devoted siblings, and my local

church, whose support and love are the pillars

of my life in God the Father, in Christ Jesus,

through the power of the Holy Spirit.



ACKNOWLEDGEMENTS

I extend my deepest gratitude to the Fundação Cearense de Apoio ao Desenvolvi-

mento Científico e Tecnológico (FUNCAP) for their financial support through the doctoral

scholarship granted in the first year. This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and by the

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

My sincere thanks go to Prof. Dr. João Milton Pereira Júnior for his patient and

insightful guidance, and to Prof. Dr. Diego Rabelo da Costa for his excellent co-guidance, which

greatly enriched my experience in the postgraduate program in Physics.

I am grateful to the members of the examining board, Dr. Márcio de Melo Freire,

Dr. Silvia Helena Roberto de Sena, and Dr. Natanael de Carvalho Costa, for their time, valuable

contributions, and insightful suggestions.

Finally, I appreciate all my colleagues from the Condensed Matter Theory Group

(GTMC) for their reflections, critiques, and suggestions that have been pivotal in shaping my

research.



"Whatsoever thy hand findeth to do, do it with

thy might; for there is no work, nor device, nor

knowledge, nor wisdom, in the grave, whither

thou goest." (Ecclesiastes 9:10)



ABSTRACT

We systematically investigate the effects of simple shear and uniaxial strains, applied along

various crystallographic directions, as well as biaxial and pure shear strains, on the electronic

spectra of Lieb and Kagome lattices using a tight-binding model. This model employs a

general Hamiltonian that characterizes both lattice types through a single control parameter,

θ . Our findings indicate that such deformations do not open an energy gap in their electronic

spectra but can lead to (i) convergence of energy cones, (ii) anisotropy in energy levels, and

(iii) deformation of the flat band. Consequently, the triply degenerate Dirac point in the Lieb

lattice transforms into two doubly degenerate Dirac points. Our analysis of hypothetical strain

scenarios, in which the hopping parameters are unchanged, shows that effects such as the

flat band deformation and the splitting of the triply degenerate Dirac point result solely from

strain-induced changes in hopping parameters. Additionally, we identify cases where non-zero

strain-induced pseudovector potentials arise in Lieb and Kagome lattices. Moreover, when

considering intrinsic spin-orbit coupling, these lattices exhibit two-dimensional topological

insulator behavior with a Z2 topological classification. Our comprehensive study reveals that

such deformations can induce topological phase transitions by altering the structural lattice angle,

strain amplitude, and the magnitude of the intrinsic spin-orbit coupling. These transitions are

evidenced by the evolution of Berry curvature and shifts in the Chern number when the gap

closes. By analyzing hypothetical strain scenarios where the hopping and intrinsic spin-orbit

coupling parameters remain intentionally unchanged, we demonstrate that the strain-induced

phase transitions stem from simultaneous modifications in the hopping and intrinsic spin-orbit

coupling parameters. Further analysis extends to finite-size effects on the topological properties

of these lattices, evaluating the energy spectrum for nanoribbons with straight, bearded, and

asymmetric edges. The results confirm strain-driven topological phase transitions, supported by

the bulk-edge correspondence. Additionally, the evolution of edge states under strain suggests

the generation of opposite spin currents.

Keywords: topological phase transition; Lieb-Kagome lattice; strain; electronic spectrum.



RESUMO

Investigamos sistematicamente os efeitos de deformações por cisalhamento simples e defor-

mações uniaxiais, aplicadas ao longo de várias direções cristalográficas, bem como deformações

biaxiais e cisalhamento puro, nos espectros eletrônicos das redes de Lieb e Kagome usando um

modelo tight-binding. Este modelo emprega um Hamiltoniano geral que caracteriza ambos os

tipos de rede através de um único parâmetro de controle, θ . Nossas descobertas indicam que tais

deformações não abrem um gap de energia nos seus espectros eletrônicos, mas podem levar a

(i) convergência dos cones de energia, (ii) anisotropia nos níveis de energia e (iii) deformação

da banda plana. Consequentemente, o ponto de Dirac triplamente degenerado na rede de Lieb

se transforma em dois pontos de Dirac duplamente degenerados. Nossa análise de cenários

hipotéticos de deformação, nos quais os parâmetros de hopping são inalterados, mostra que

efeitos como a deformação da banda plana e a divisão do ponto de Dirac triplamente degenerado

resultam exclusivamente de mudanças nos parâmetros de hopping induzidas pela deformação.

Adicionalmente, identificamos casos onde potenciais pseudovetoriais induzidos por deformação

surgem nas redes de Lieb e Kagome. Além disso, ao considerar o acoplamento spin-órbita

intrínseco, essas redes exibem comportamento de isolante topológico bidimensional com uma

classificação topológica Z2. Nosso estudo abrangente revela que tais deformações podem induzir

transições de fase topológicas ao alterar o ângulo estrutural da rede, a amplitude da deformação

e a magnitude do acoplamento spin-órbita intrínseco. Essas transições são evidenciadas pela

evolução da curvatura de Berry e mudanças no número de Chern quando o gap se fecha. Ao

analisar cenários hipotéticos de deformação onde os parâmetros de hopping e acoplamento spin-

órbita intrínseco permanecem intencionalmente inalterados, demonstramos que as transições

de fase induzidas pela deformação originam-se de modificações simultâneas nos parâmetros

de hopping e acoplamento spin-órbita intrínseco. Análises adicionais se estendem aos efeitos

de tamanho finito nas propriedades topológicas dessas redes, avaliando o espectro de energia

para nanofitas com bordas retas, barbadas e assimétricas. Os resultados confirmam transições

de fase topológicas decorrentes da aplicação de deformações, sustentadas pela correspondência

bulk-edge. Além disso, a evolução dos estados de borda sob deformação sugere a geração de

correntes de spin opostas.

Palavras-chave: transição de fase topológica; rede de Lieb-Kagome; tensão; espectro eletrônico.
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Figure 47 – (a) Transition lattice - D2h with θ = 105◦, (b) Lieb lattice - D4h (θ = 90◦),

and (c) Kagome lattice - D6h (θ = 120◦). The primitive vectors are a1 and a2,

and the unit cells contain three non-equivalent sites A (blue empty circle), B

(yellow filled circle), and C (green circle with a dot inside). Neighboring sites

are denoted by R±BA = ±a2/2 (solid black vectors), R′±BA = ±(a2/2− a1)

(green dot-dashed vectors), R±BC = ±a1/2 (solid black vectors), R′±BC =

±(a1/2− a2) (blue dotted vectors), R±AC = ±(a1− a2)/2 (dashed orange

vectors), and R′±AC =±(a1+a2)/2 (red short dashed vectors). (b-c) The ISO

phase is positive (+iλ⟨i j⟩) for spin-up electrons moving counterclockwise

along the blue solid (+iλ⟨i j⟩), red dashed (+iλ⟨⟨i j⟩⟩), or green dot-dashed

(+iλ⟨⟨⟨i j⟩⟩⟩) lines, where |eij| = +1. Conversely, the ISO coupling phase

is negative (−iλi j) where |eij| = −1. In Lieb and transition lattices, the

term (+iλ⟨i j⟩) remains in the Lieb-Kagome lattice Hamiltonian as complex

hoppings connecting NN sites for completeness, aimed at observing their

effects on the energy evolution when transitioning from Kagome to Lieb,

through stages of evolution. The terms (+iλ⟨⟨⟨i j⟩⟩⟩) are effectively null in

Lieb lattice, due to Eq. (3.6), but are retained in the Lieb-Kagome model as

they become (+iλ⟨⟨i j⟩⟩) in Kagome lattice. . . . . . . . . . . . . . . . . . . 119



Figure 48 – (a-c) Energy dispersion along the high-symmetry points ΓΓΓ, X, K, and M of

the BZ, as shown in the insets, is presented for (a) Lieb, (b) transition, and

(c) Kagome lattices. Cases (i) without ISO coupling λISO = 0 [solid black

lines], (ii) with ISO coupling, i.e., λAB ̸= 0, λBC ̸= 0 [dashed blue lines], and

(iii) with ISO coupling but without the following NN ISO coupling terms

λAB = λBC = 0 [dotted red lines] are presented. The bottom, middle, and top

bands are identified as E1, E2, and E3, respectively. The full energy spectra

are also depicted (see panels d-l). . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 49 – Comparison between the energy bands obtained for t > 0 (left panels) and

t < 0 (right panels) along the high-symmetry points ΓΓΓ, X, K, and M of the

BZ, as shown in the insets. Presented are (a-b) Lieb, (c-d) transition, and (e-f)

Kagome lattices. Cases are: (i) without ISO coupling λISO = 0 [solid black

lines], (ii) with ISO coupling, i.e., λAB ̸= 0, λBC ̸= 0 [dashed blue lines], and

(iii) with ISO coupling but without the following NN ISO coupling terms

λAB = λBC = 0 [dotted red lines]. . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 50 – Evolution of the energy spectrum (1st and 2nd column of panels) and Berry

curvature per energy band (3rd to 5th columns of panels) for fillings 1/3

(6th column of panels) and 2/3 (7th column of panels) for Lieb (1st row

of panels), transition (2nd row of panels), and Kagome (3rd row of panels)

lattices. Obtained considering only NN ISO coupling, i.e., only λAB ̸= 0 and

λBC ̸= 0 for Lieb and transition lattices, and λAB ̸= 0, λBC ̸= 0, and λ
−
AC ̸= 0

for Kagome lattices. It is noted that there is no gap opening in the Lieb lattice,

such that only NNN ISO coupling opens a gap in this lattice as shown in

Fig. 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 51 – Contour plots of Berry curvature Ω1 (panels 1), Ω2 (panels 2), and Ω3

(panels 3) corresponding to the lower, middle, and upper bands presented in

panels 4 for (a) Lieb, (c) transition, and (e) Kagome lattices with λAB ̸= 0,

λBC ̸= 0. The cases where λAB = λBC = 0 are shown in panels (b), (d), and

(f), respectively. Parallelograms indicate the region of reciprocal space with

an area numerically equal to the BZ of each case. . . . . . . . . . . . . . . 131



Figure 52 – Evolution of the Berry curvature per band (1st and 2nd column of panels)

and with fillings 1/3 (3rd column of panels) and 2/3 (4th column of panels)

for (a) Lieb, (c) transition, and (e) Kagome lattices with λAB ̸= 0, λBC ̸=

0. The cases where λAB = λBC = 0 are shown in panels (b), (d), and (f),

respectively. Parallelograms indicate the region of reciprocal space with an

area numerically equal to the BZ of each case as shown in Fig. 51. . . . . . 133

Figure 53 – Contour plots of (a) lower, (b) middle, and (c) upper bands of Lieb (1st row

of panels), transition (2nd row of panels), and Kagome (3rd row of panels)

lattices, for the cases (i) λISO = 0 [solid black line], (ii) λAB ̸= 0, λBC ̸= 0

[dashed blue line], and (iii) λAB = λBC = 0 [dotted red line]. The regions

(i-vi) shaded in blue or red are depicted in an enlarged form in panels (d). . . 134

Figure 54 – Contour plot of the full band gap ∆12 [∆23] between bands E1 [E2] and E2

[E3] as a function of n and θ with λ = 0.2 (1st row of panels), and as a

function of n and λ for Lieb (2nd row of panels), transition (3rd row of

panels), and Kagome (4th row of panels) lattices. Results are presented

considering all ISO coupling parameters (1st and 2nd columns of panels), as

well as assuming the following NN ISO coupling parameters equal to zero,

λAB = λBC = 0 (3rd and 4th columns of panels). The regions simultaneously

exhibiting the closure of the full band gap and the local band gap, i.e., the

touching of bands at a certain point k (shown in Fig. 55), indicate topological

phase transition (TPT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 55 – Contour plots of the full band gap ∆12 [∆23] presented in Fig. 54 are con-

trasted with contour plots of the local band gaps ∆′12 [∆′23], which refer to

the minimum separation between the bands at each individual point in their

momentum space. At points where the bands intersect or touch, the local

band gap reduces to zero, indicating TPT. . . . . . . . . . . . . . . . . . . 137

Figure 56 – Evolution of the local band gap for regions of Fig. 55 that exhibit a negative

indirect gap. Before and after the touching of the bottom and middle bands,

the Chern numbers of the bands are well defined since they do not touch

anywhere. However, no TPT occurs due to it being a region of a null full

band gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



Figure 57 – Evolution of the full band gaps ∆12 [black solid line] and ∆23 [red dashed line]

as a function of the parameter λ (panels a-c), or θ (panel d) assuming λAB ̸= 0

and λBC ̸= 0 (panels a-c) or λAB = λBC = 0 (panels d), which highlights

TPT at gap closing points. Regions with distinct Chern numbers for the

bands, C↑ = (C↑1 ,C
↑
2 ,C
↑
3), have been indicated by different colors, where

(1,0,-1), (-1,2,-1), and (-1,0,1) correspond to the blue, green, and red regions,

respectively. The remaining cases are presented in Fig. 58. . . . . . . . . . 139

Figure 58 – Comparison between the full band gap ∆12 [∆23] and the local band gaps ∆′12

[∆′23], as shown in Fig. 57. Before and after the touching of the bottom and

middle bands, the Chern numbers of the bands are well defined since they do

not touch anywhere. TPT occur only if the full band gap also closes together

with the local band gap at the same point, and both are different from zero

before and after the TPTs points. . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 59 – Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs

identified in Fig. 57. Specifically, panels (a-c), (d-e), and (f-g) correspond to

the cases depicted in panels a, c, and e of Fig. 57. The remaining cases are

presented in Fig. 60. It is noteworthy that the TPT cause a change in the sign

of the Berry curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 60 – Contour plots of the Berry curvature (as shown in Fig. 59), before and after

the TPTs identified in Fig. 57. It is noteworthy that the TPT cause a change

in the sign of the Berry curvature. . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 61 – Contour plot of the full band gap as in Fig. 54, but now as a function of ε and

θ , for UX-strain (1st column of panels), UY-strain (2nd column of panels),

BI-strain (3rd column of panels), SX-strain (4th column of panels), SY-strain

(5th column of panels), and PS-strain (6th column of panels). Results are

presented considering all ISO coupling parameters (1st and 2nd rows of

panels), as well as assuming λAB = λBC = 0 (3rd and 4th rows of panels). For

comparison, Fig. 62 shows the evolution of the local band gap in each case. 144



Figure 62 – Contour plots of the full band gap ∆12 [∆23] presented in Fig. 61 are con-

trasted with contour plots of the local band gaps ∆′12 [∆′23], which refer to

the minimum separation between the bands at each individual point in their

momentum space. At points where the bands touch, the local band gap

reduces to zero, indicating TPT. . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 63 – The evolution of the full band gap ∆12 [∆23] and local band gaps ∆′12 [∆′23] for

the specific cases in Fig. 62 with θ = 90◦ (Lieb lattice), θ = 105◦ (transition

lattice), and θ = 120◦ (Kagome lattice) is depicted. The points of non-

topological phase transition, linking the TI phase with a semimetallic or

metallic phase at 1/3 filling, are indicated by open circles with central dots or

simple open circles, respectively. The points ε of TPT that connect two TI

phases are highlighted in Fig. 64. . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 64 – Evolution of the full band gaps as in Fig. 57, but now as a function of ε for

the cases from Fig. 61 where we identified TPT. Fig. 63 shows the evolution

of the local band gap, confirming the TPT. . . . . . . . . . . . . . . . . . . 148

Figure 65 – Contour plots of the Berry curvature, before and after the TPTs identified in

panels a and b of Fig. 64 (Lieb lattice). It is noteworthy that the TPT cause a

change in the sign of the Berry curvature. . . . . . . . . . . . . . . . . . . . 150

Figure 66 – Contour plots of the Berry curvature, before and after the TPTs identified in

panels (e), (f), and (g) of Fig. 64 (transition lattice). It is noteworthy that the

TPT cause a change in the sign of the Berry curvature. . . . . . . . . . . . . 151

Figure 67 – Contour plots of the Berry curvature, before and after the TPTs identified in

panels (k), (l), and (m) of Fig. 64 (Kagome lattice). It is noteworthy that the

TPT cause a change in the sign of the Berry curvature. . . . . . . . . . . . . 152

Figure 68 – Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs

identified in Fig. 64 for some cases with λAB ̸= 0 and λBC ̸= 0 (see Figs. 75

and 72). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 69 – Comparison between the full band gap ∆12 [∆23] and the local band gaps ∆′12

[∆′23], versus ε as shown in Fig. 64, for TPT identified for values of ε not

presented in Figs. 61 and 62. . . . . . . . . . . . . . . . . . . . . . . . . . 155



Figure 70 – Contour plots of the Berry curvature, before and after the TPTs identified in

panel b of Fig. 69. It is noteworthy that the TPT cause a change in the sign of

the Berry curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 71 – Contour plots of the Berry curvature (which complement those presented in

Fig. 68), before and after the TPTs identified in panels c and d of Fig. 64. It

is noteworthy that the TPT cause a change in the sign of the Berry curvature. 158

Figure 72 – Contour plots of the Berry curvature (which complement those presented

in Fig. 68), before and after the TPTs identified in panels (h), (i), and (j) of

Fig. 64. It is noteworthy that the TPT cause a change in the sign of the Berry

curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure 73 – Contour plots of the Berry curvature, before and after the TPTs identified in

panel c of Fig. 69. It is noteworthy that the TPT cause a change in the sign of

the Berry curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure 74 – Contour plots of the Berry curvature, before and after the TPTs identified in

panels d and e of Fig. 69. It is noteworthy that the TPT cause a change in the

sign of the Berry curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 75 – Comparison between the full band gap ∆12 [∆23] and the local band gaps ∆′12

[∆′23], versus ε as shown in Fig. 63, but now for the case of Lieb only with

λ⟨⟨i j⟩⟩ (first row of panels), and the cases of Kagome only with λ⟨⟨i j⟩⟩ (second

row of panels) and with only [λ⟨i j⟩] (third row of panels). The six columns of

figure panels represent the six types of strain applied. It is noteworthy that in

points where the full band gap is zero, the bands indeed touch because the

local band gap is also zero, corroborating the indication of TPT. . . . . . . . 162

Figure 76 – Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs

identified in Fig. 64 for some cases with λAB = λBC = 0 (see Figs. 73 and 77). 164

Figure 77 – Contour plots of the Berry curvature, before and after the TPTs identified in

panel a of Fig. 69. It is noteworthy that the TPT cause a change in the sign of

the Berry curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 78 – Contour plots of the Berry curvature (which complement those presented in

Fig. 76), before and after the TPTs identified in panels o, p, and q of Fig. 64.

It is noteworthy that the TPT cause a change in the sign of the Berry curvature.168



Figure 79 – Contour plots of the Berry curvature (which complement those presented in

Fig. 76), before and after the TPTs identified in panels r, s, and t of Fig. 64.

It is noteworthy that the TPT cause a change in the sign of the Berry curvature.169

Figure 80 – Contour plot of energy gap ∆12 [∆23] between the bands 1[2] and 2[3] as

a function of ε and θ for (a) λAB ̸= 0 and λBC ̸= 0 and (b) λAB = λBC = 0,

considering the ISO coupling and hopping parameters independent of the strain.171

Figure 81 – Sketches of generic nanoribbons with (b) straight, (c) bearded, and (d) asym-

metric edges, emphasizing their unit cells (red dashed lines), edge termina-

tions, and the row count in each case are shown. The non-equivalent sites

are: A (blue empty circle), B (yellow filled circle), and C (green circle with

a dot inside), as in Figs. 15 (a-c) and 46 (a). N is the total number of lines

defining the ribbon size W = (N−1)|a2|/2, which is always odd for straight

or bearded edges and even for asymmetric edges. . . . . . . . . . . . . . . 176

Figure 82 – Energy spectra (panels with subscript 1) and DOS (panels with subscript 2)

of nanoribbons with: (a-c) asymmetric edges [N = 30], (d-f) straight edges

[N = 31], and (g-i) bearded edges [N = 31] for (a,d,g) Lieb, (b,e,h) transition,

and (c,f,i) Kagome lattices without ISO coupling, i.e., λISO = 0 (Eq. (3.6)).

The cases presented are: (i) n = 1 [black dash-dotted line], (ii) n = 4 [dashed

red line], and (iii) n = 8 [solid blue line]. . . . . . . . . . . . . . . . . . . 183

Figure 83 – Energy spectra of nanoribbons with asymmetric edges (N = 30) for (a,d,g)

Lieb, (b,e,h) transition, and (c,f,i) Kagome lattices. The cases presented are

(a-c) λISO = 0, and (d-i) λISO = 0.2t, with (d-f) λAB ̸= 0, λBC ̸= 0, and (g-i)

λAB = λBC = 0. The solid black lines represent the states with λISO = 0,

while the states with λISO ̸= 0 are represented by solid blue lines (spin-up)

and dashed red lines (spin-down). . . . . . . . . . . . . . . . . . . . . . . . 185
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Figure 85 – Representation of zoomed-in regions of the energy spectra of nanoribbons of

the Kagome lattice shown in Figs. 83 and 84 in the lower energy region, com-

prising the nearly-flat modes, for (a,d,g) asymmetric edges, (b,e,h) bearded

edges, and (c,f,i) straight edges. We present the cases with (a-c) λISO = 0,

and (d-i) λISO = 0.2t, with (d-f) λAB ̸= 0, λBC ̸= 0, and (g-i) λAB = λBC = 0.

The solid black lines represent the states with λISO = 0, while the states with

λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines

(spin-down). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
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λISO = 0.2t, with (d-f,m-o) λAB ̸= 0, λBC ̸= 0, and (g-i,p-r) λAB = λBC = 0.

The solid black lines represent the states with λISO = 0, while the states with

λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines

(spin-down). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Figure 87 – Same as Fig. 86, but for the straight edge with (a-i) N = 5 and (j-r) N = 13. . 192

Figure 88 – Same as Fig. 86, but for the bearded edge with (a-i) N = 5 and (j-r) N = 13. 192

Figure 89 – Energy spectra of nanoribbons for the cases presented in Fig. 59 (a-c). The

solid black lines represent the states with λISO = 0, while the states with

λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines

(spin-down). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 90 – Energy spectra of nanoribbons for the cases presented in Fig. 59 (d-e). The
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λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines
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Figure 91 – Energy spectra of nanoribbons for the cases presented in Fig. 59 (f-g). The

solid black lines represent the states with λISO = 0, while the states with

λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines

(spin-down). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Figure 92 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (a-b). The
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Figure 93 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (c-e). The

subbands for spin-up (spin-down) charges are represented by solid blue lines

(dashed red lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Figure 94 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (f-h). The

subbands for spin-up (spin-down) charges are represented by solid blue lines
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Figure 95 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (i-j). The

subbands for spin-up (spin-down) charges are represented by solid blue lines
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Figure 96 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (k-l). The
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Figure 97 – Enlarged region of the energy spectra of asymmetric-edged nanoribbons in
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Figure 101 – Energy spectra of nanoribbons for the cases presented in Fig. 76 (h-i). The
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E > 0 or E < 0 and C↑ = (−1,2,−1) with E > 0, (b) C↑ = (−1,0,1) with
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QH quantum Hall

QSH quantum spin Hall

QSHI quantum spin Hall insulator

QVH quantum valley Hall

RSO Rashba spin-orbit

SR symmetry representation

SX simple shear along the x direction

SXh hypothetical simple shear along the x direction

SY simple shear along the y direction

SYh hypothetical simple shear along the y direction

TB tight-binding

TI topological insulator



TKNN Thouless–Kohmoto–Nightingale–Nijs

TMDC Transition Metal Dichalcogenide

TPT topological phase transition

TR time-reversal

TRIM time-reversal invariant momenta

UX uniaxial along the x direction

UXh hypothetical uniaxial along the x direction

UY uniaxial along the y direction

UYh hypothetical uniaxial along the y direction
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1 INTRODUCTION

1.1 Lieb-Kagome lattices

In this section, we present the motivation for studying Lieb-Kagome lattices, high-

lighting that they are two-dimensional (2D) structures that exhibit flat bands in their energy

spectrum, are interconvertible by applying strain along the diagonal direction, and exhibit robust

edge states against backscattering.

1.1.1 From graphene to Lieb and Kagome lattices

Electronic devices from the industry have become increasingly prevalent in people’s

lives, generating a need and expectation for more sophisticated and modern equipment. However,

it is believed that the semiconductor industry is reaching the limit of performance improvements

for current technologies dominated by silicon. Thus, there is a continuous search for new non-

traditional materials whose properties can be controlled by an electric field (NOVOSELOV et

al., 2004). This has driven research in the area of Condensed Matter Physics, which constitutes

the basis for the advancement of modern electronics (SIMON, 2013).

In this context, in 2004, a research group led by physicists Andre Geim and Kon-

stantin Novoselov managed to isolate a single layer of graphite, called graphene (NOVOSELOV

et al., 2004), 2D crystal composed of carbon atoms arranged in a flat hexagonal lattice only one

atom thick (Fig. 1). Since its synthesis, this material has attracted the attention of the scientific

community. Firstly, because it was believed to be experimentally unfeasible to obtain 2D crystals

(MERMIN, 1968). Secondly, because graphene has exhibited many unusual, peculiar, and

interesting properties that could potentially generate new electronic devices (CASTRO NETO et

al., 2009). For example, it exhibits semiconductor behavior with a zero bandgap, with valence

and conduction bands meeting at the vertices of the first Brillouin zone (BZ), the so-called K

and K’ points (Fig. 1), resulting in a null density of states (CASTRO NETO et al., 2009). Its

dispersion relation at low energies is a linear function of momentum. Therefore, in this region,

electrons behave like massless fermionic particles, obeying the Dirac equation (CASTRO NETO

et al., 2009; KIM et al., 2012).

The synthesis of graphene sparked interest in the search for other 2D crystals, leading

to the synthesis of materials such as hexagonal boron nitride (hBN) (ALEM et al., 2009; DEAN

et al., 2010; XUE et al., 2011), Transition Metal Dichalcogenides (TMDC) (MAK et al., 2010;



32

Figure 1 – (a) Representation of the crystal structure of graphene. (b) Representation of
graphene’s π bands, obtained by the tight-binding (TB) method.

(a) (b)

Source: Adapted from Novoselov (2011, p. 837) and Pereira et al. (2010, p. 2).

Figure 2 – From left to right: crystal structure (upper panel) and energy bands (lower panel) of
monolayers of hBN, TMDC MoS2, BP, and graphene.

Source: Adapted from Xia et al. (2014, p. 900).

RADISAVLJEVIC et al., 2011; WANG et al., 2012), silicene (LALMI et al., 2010; TAO et

al., 2015), germanene (DÁVILA et al., 2014), and Black Phosphorus (BP) (LI et al., 2014a;

LIU et al., 2014). Some of these are depicted in Fig. 2, through which we see that 2D materials

exhibit a variety of energy gap values. Thus, we can classify them as: (i) insulators, like hBN,

(ii) semiconductors, such as MoS2 and BP, and (iii) semimetals, which is the case with graphene.

In general, the expectations placed on 2D materials stem from their electronic properties, which

essentially depend on the characteristic geometry they exhibit.

Geometry is the fundamental factor for the shape of the electronic band structure,

such that specific geometries give rise to energy spectra that can lead to potentially useful

electronic properties (SLOT et al., 2017). Hence, in addition to 2D materials obtained by
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Figure 3 – Representation of the (a) crystal structure and (b) electronic spectrum of the Lieb
lattice, obtained by the TB method for nearest-neighbor (NN) sites.

(a) (b)

Source: Adapted from Bercioux (2017, p. 628) and Nita et al. (2013, p. 2).

micromechanical exfoliation of three-dimensional crystals, theoretical predictions have triggered

the exploration of alternative 2D geometries that, when theoretically exhibiting peculiar electronic

properties, promptly motivate the experimental scientific community to their fabrication. These

structures can be photonic lattices (BANDRES et al., 2014; GUZMÁN-SILVA et al., 2014;

MUKHERJEE et al., 2015a; MUKHERJEE et al., 2015b; DIEBEL et al., 2016; XIA et al., 2016;

ZONG et al., 2016; SCHULZ et al., 2017; ZHONG et al., 2018; LANG et al., 2023),1 artificial

electronic lattices,2 formed by covalent-organic framework (COF) (JIANG et al., 2019d; LIMA

et al., 2019b; JIANG et al., 2019a; JIN et al., 2017), metal-organic framework (MOF) (LIMA et

al., 2019b), or metal-inorganic framework (WU et al., 2024).

This is the case for the Lieb lattice, i.e., a 2D edge-centered square lattice [Fig. 3

(a)] (LIEB, 1989), and the Kagome lattice [Fig. 4 (a)] (KANÔ; NAYA, 1953; MIELKE, 1992;

MEKATA, 2003), formed by equilateral triangles sharing vertices, creating a structure of interca-

lated hexagons and triangles.

Though quite rare, by Figs. 3 (b) and 4 (b-c), we observe that the energy bands

displayed by Lieb and Kagome lattices are exotic, as they do not obey the common dispersion

relation E (⃗k) ∝ |⃗k|2. We observe the rare coexistence of two types of unconventional energy

bands: linear bands (E (⃗k) ∝ |⃗k|1) and flat bands (E (⃗k) ∝ |⃗k|0) (JIANG et al., 2019c), i.e., in these

2D systems where both Dirac and flat bands coexist. However, the arrangement of the Dirac
1 The periodic waveguides play the role of states with different potentials, where photons in a photonic lattice

behave similar to electrons in a crystal (THOULESS et al., 1982).
2 Electronic lattices are constituted by atoms or molecules organized into a periodic arrangement, thereby

establishing a periodic potential landscape for electrons (SLOT et al., 2019; SLOT et al., 2017; LI et al., 2018;
GARDENIER et al., 2020).
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Figure 4 – (a) Representation of the real Kagome lattice and the structure of the energy bands
calculated by the TB model with one orbital per site in the approximation of NN considering
(b) positive and (c) negative hopping parameters. It is noticeable that the choice of the sign of
the hopping parameter determines the position of the flat band, which is located at the lower or
upper region of the electronic spectrum for positive or negative hopping parameters, respectively.
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Source: Adapted from Ramires e Lado (2018, p. 84), Jiang et al. (2019b, p. 215), and Jiang et al. (2019c, p. 399).

bands and the flat band are quite different. In the Lieb lattice, the flat band is located in the

middle of the Dirac bands, while in the Kagome lattice, the flat band is located either at the top

or the bottom of the Dirac bands (JIANG et al., 2019c).

Flat bands are notable for their completely null kinetic energy, high density of states,

and impeded transport due to zero group velocity (GUO; FRANZ, 2009; TANG et al., 2011;

DEPENBROCK et al., 2012; LI et al., 2016; LU et al., 2017). In the Kagome lattice, the flat

band arises from the destructive interference of the phases of the Bloch functions from the face

sites, which cancel out at the vertex sites (KIMURA et al., 2002; PETRESCU et al., 2012; LI et

al., 2018; YAZYEV, 2019)3. Similarly, in the Lieb lattice, it is found that its flat band is linked

to the lattice topology that allows bound states with finite wave function amplitudes at the face

sites, and null amplitudes at the vertex sites (GOLDMAN et al., 2011b).

The Lieb lattice is found in nature in the Cu-O2 planes of cuprate superconductors4

(LIEB, 1989; NITA et al., 2013), but it has not yet been isolated in a 2D structure. On the other

hand, it is possible to synthesize photonic Lieb lattices using waveguides and to create Lieb

lattices of cold atoms (SHEN et al., 2010; GOLDMAN et al., 2011b; GUZMÁN-SILVA et al.,

2014; MUKHERJEE et al., 2015a; MUKHERJEE et al., 2015b; TAIE et al., 2015; XIA et al.,

2016; DIEBEL et al., 2016). In 2017, Slot et al. (2017) synthesized the electronic Lieb lattice by

assembling a molecular lattice on a substrate with surface states, thereby forcing the electrons to
3 For a dynamic representation of electron behavior in the Kagome lattice, see the video of the UOWNOW (2019).
4 The term cuprates derives from the Latin word for copper, cuprum. The word is commonly used to refer to oxide

materials.
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Figure 5 – Lieb lattice by (a) Femtosecond laser-writing technique. (b) Microscope image at
the output facet of a Lieb lattice for white-light propagation. (c) Electronic Lieb lattice with CO
molecules in Cu(111). Organic Lieb lattice (d) sp2C-COF, (e) CuO2 planar, (f) CuO2 separated
by Ba/Ca insulating sheets, (g) sp2N-COF.

(a) (c) (d)(b)

(e) (f) (g)

Source: Adapted from (a,b) Vicencio et al. (2015, p. 3), (c) Slot et al. (2017, p. 2), (d) Cui et al. (2020, p. 5), (e)
Reichardt et al. (2018, p. 2), (f) Keimer et al. (2015, p. 180) and (g) Cui et al. (2020, p. 5).

remain in the desired geometry (SLOT et al., 2017). They utilized electrons from the surface

state of Cu(111), confined by an array of carbon monoxide molecules, with a scanning tunneling

microscope (SLOT et al., 2017). Therefore, the absence of 2D Lieb structures isolated in organic

materials would not hinder experimental exploration of this lattice (SLOT et al., 2017). However,

the scarcity of organic Lieb lattices has been resolved. According to Jiang et al. (2019a), COF,

specifically sp2C-COF and sp2N-COF, synthesized in recent experiments (JIN et al., 2017), are

the first two material realizations of organic-ligand-based Lieb lattices (see Fig. 5).5

The Kagome lattice, in turn, can also be realized photonically (SCHULZ et al., 2017)

or electronically (LI et al., 2018). For example, Li et al. (2018) synthesized a Kagome structure

in twisted silicene multilaminae, such that the electrons remain localized in the Kagome lattice by

destructive quantum interference of the phases of the Bloch functions, guaranteeing zero kinetic

energy that gives rise to a peak in density of states corresponding to the flat band (LI et al., 2018).

Furthermore, the Kagome lattice can be synthesized with organic bonds with different atoms and

molecules, such as: Cs2TiCu3F12 and Rb2TiCu 3F12 (DOWNIE et al., 2015), the ferromagnetic
5 Crystal lattices are arrays of mathematical points, where each site in the lattice can represent an atom, ion, or

molecule (ASCROFT; MERMIM, 1976; SAITO et al., 1998; KITTEL, 2005). To classify a structure as a crystal
lattice, it is sometimes necessary to identify arrangements of atoms periodically distributed in space that can be
represented by points in the real lattice. This is the case with the experimentally fabricated arrays of the Lieb
and Kagome lattices.
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Figure 6 – Kagome lattice (a) geometric, (b,c) electronics with silicene blades in Ag(111),
(d) photonics, (e) Cs2TiCu3F12, (f) BaCu3V2O8(OH)2, (g) Co3 Sn2S2, (h) Rb2SnCu3F12 and
Cs2ZrCu3F12, (i) Cs2NaMn3F12, (j) Cs2Cu3SnF12, (k) Rb2Cu3SnF12.
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Source: Adapted from (a) Li et al. (2018, p. 2), (b,c) Li et al. (2018, p. 3), (d) Zong et al. (2016, p. 5), (e) Downie et
al. (2015, p. 231), (f) Zhang et al. (2010, p. 2), (g) Yazyev (2019, p. 1), (h) [p. 2]Downie2014, (i) Cui et al. (2017,
p. 2), (j,k) Ono et al. (2009, p. 3).

materials Fe3Sn2 (YE et al., 2018) and Co3Sn 2S2 (LIU et al., 2018), antiferromagnetic Mn3Sn

and Mn 3Ge (NAKATSUJI et al., 2015), among others shown in Fig. 6.

1.1.2 The interconvertibility: Lieb-Kagome lattices

As shown in Fig. 7 (a), the Lieb (LIEB, 1989) and Kagome (MIELKE, 1992) lattices

have in common the fact that they both have three non-equivalent sites (GUO; FRANZ, 2009;

DEPENBROCK et al., 2012; LI et al., 2016; LU et al., 2017; YIN et al., 2019). Curiously, Jiang

et al. (2019c) noted that these lattices are interconvertible by diagonal strain, which allows them

to be described by a generic tight-binding (TB) Hamiltonian constructed for a Lieb-Kagome

lattice defined by a morphological parameter 90◦ ≤ θ ≤ 120◦, setting the Hamiltonian to Lieb

and Kagome configurations for θ = 90◦ and θ = 120◦, respectively, as well as transition lattices

defined by 90◦ < θ < 120◦.6

Notably, when θ changes from π/2 to 2π/3, the BZ gradually changes from a square

to a hexagonal parallelogram to a regular hexagon, as shown in Fig. 7 (b). The plotted band

structures for the three lattices along the high-symmetry k paths in Fig. 7 (c) show the well-known
6 Alternatively, Lang et al. (2023) used the interconvertibility between the Lieb and Kagome lattices to study

transition lattices, defining an angle θ ′ = θ −90◦. However, in this thesis, we will use θ defined by Jiang et al.
(2019c).
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Figure 7 – The Lieb-Kagome lattice: (a) Structures of the Lieb lattice, transition lattice with
θ = 105◦, and Kagome lattice. (b) The corresponding BZ for the three lattices with high-
symmetry K paths are highlighted by red dashed lines. (c) The band structure along high-
symmetry paths for the three lattices with (blue dashed lines) and without intrinsic spin-orbit
(ISO) coupling (red solid lines). Blue (red) arrows indicate compressive (tensile) strain along the
diagonal direction.

  

  

  

  

  

  

(a)

(b)

(c)

Source: Adapted from Jiang et al. (2019c, p. 2).

features of Lieb and Kagome bands, characterized by the coexistence of Dirac bands and a flat

band.7 The flat band is located in the middle of the Dirac bands in the Lieb lattice, while it is at

the bottom in the Kagome lattice. Observing the band structure of the transition state [middle

panel of Fig. 7(c)], one sees that the flat band has disappeared because the distortion has broken

the required symmetry for the flat band (JIANG et al., 2019c).

The interconvertibility between the Lieb and Kagome lattices has been used as an

important theoretical resource in some recent works, allowing for both the systematic study

of Lieb and Kagome lattices individually, as well as the evolution stages via transition lattices

(JIANG et al., 2019c; JIANG et al., 2019a; LIM et al., 2020; CUI et al., 2020; LIMA et al.,

2023; LANG et al., 2023). 8

7 In fact, the Dirac cone only exists in the absence of ISO coupling. The gap opens due to the ISO coupling, which
will be explained in more detail in Ch. 3.

8 The interconvertibility will be described in detail in Ch. 2.
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Figure 8 – Transition lattice (a) Schematic diagram of waveguide systems of the Lieb lattice,
transition lattice with θ = 105◦, and Kagome lattice. (b) On the left, diffraction patterns after
propagating 40 mm through the transition lattices with θ = 115◦ shown on the right, which
consist of the back facet of a SiO2 sample with laser-written waveguides, forming two photonic
lattices. The inset is a close-up of some waveguides, showing their elliptical cross sections.

θ=105º θ=120º

(b)

(a)

Transition lattice (θ=115º)

200 µm

θ=90º

Source: Adapted from (a) Jiang et al. (2019c, p. 7), (b) Lang et al. (2023, p. 7).

Aiming to experimentally investigate the topological band evolution between the

Lieb and Kagome lattices, including the transition lattices, Jiang et al. (2019c) proposed the

construction of Lieb-Kagome photonic lattices [Fig. 8 (a)], which encompass the transition stages

during the interconvertibility process. In these lattices, the periodic waveguides act as states with

different potentials, and photons behave similarly to electrons in a crystal. Subsequently, Lang

et al. (2023) successfully performed experiments with photonic lattices laser-written in fused

silica (SiO2) [Fig. 8 (b)], observing diffraction patterns characteristic of tilting Dirac cones in the

transition lattice (θ = 115◦). These studies advance the experimental proposal of Lieb-Kagome

lattices and provide a basis for further research into these interesting systems.
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1.1.3 Robust edge states versus backscattering

The inclusion of ISO coupling9 in Lieb, Kagome, and transition lattices opens two

gaps in the energy spectrum, separating the three energy bands, as depicted in Fig. 7 (c). Upon

calculating the energy spectrum corresponding to nanoribbons of these three lattices, the presence

of edge states that link the bulk bands in the region of the gap opened by ISO coupling is observed

[see Fig. 9 (a)] (JIANG et al., 2019c). The red and blue colors of the edge states in Fig. 9 (a)

represent the contributions from two sides of the ribbon, respectively, as confirmed by the edge

state eigenfunction plot shown in Fig. 9 (b).10

In general, the energy gap opening driven by ISO coupling with edge states crossing

the gap configures the Lieb, transition, and Kagome lattices as topological insulators (TI), as

explained in the next section. Edge states arising from the application of an external magnetic

field are linked to trivial topology, due to the breaking of time-reversal (TR) symmetry in this

case. On the other hand, edge states caused solely by the inclusion of ISO coupling indicate

non-trivial topology, as they preserve TR symmetry.11

Bandres et al. (2014) presented TB calculations of the Lieb photonic TI, highlighting

the topological protection of its edge states. They assumed typical experimental parameters of

the waveguides made in fused silica by femtosecond-direct-laser writing (RECHTSMAN et al.,

2013). They launched an edge state in a face of a square Lieb helical lattice with two types of

terminations and two defects at the edges. The propagation of the edge state is shown in Fig. 9

(c). From it, they observed all the topological properties of the edge states: one-way propagation,

no backscattering at corners, propagation around edge defects, different group velocities for

different types of terminations, and coupling to the flat band.

Figure 9 (d) shows the topography of the Kagome lattice on a silicene surface Li et

al. (2018). The edge state appears along all island edges with a regular shape in the Kagome

lattice region [Fig. 9 (e)].

9 Euristically, the ISO coupling has a relativistic origin and is associated with the interaction between the magnetic
dipole moment of the electron’s spin and the internal magnetic field of the atom itself (a consequence of
the electron’s orbital angular momentum). In the phenomenological description of graphene, ISO coupling
originates from the spin-dependent NNN hopping, as proposed by Kane e Mele (2005b), who, following Haldane
(HALDANE, 1988), introduced a term in the TB model that connects second neighbors with a spin-dependent
amplitude, as we will discuss in detail in Ch. 3 (KONSCHUH et al., 2010; ARAÚJO, 2018; VANDERBILT,
2018).

10 Only spin-up states crossing the gap are presented in Fig. 9. When considering both the spin-up and spin-down
components, these topological edge states will form a 1D Dirac cone within the gap. Edge states with opposite
spin channels are observed crossing the two energy gaps, as shown in Ch. 4.

11 The term TR symmetry is associated with the reversal of momentum (SAKURAI, 1994).
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Figure 9 – Edge states. (a-b) Band structures of 15-unit nanoribbons (lines) for Lieb (θ = 90◦),
transition (θ = 105◦), and Kagome (θ = 120◦) lattices. The upper and lower panels located
below each energy spectrum show the wave function of the two edge states identified by the red
and blue stars, respectively. Only spin-up states crossing the gap are presented. The red and blue
colors of the edge states represent the contributions from the two sides of the ribbon, respectively.
(c) TB calculation of the propagation of an edge state amplitude in a Lieb photonic . All lattice
planes are in the rotating helical reference frame. (d) Large-area image of the Kagome lattice
surrounded by silicene (R3 area) (50 nm × 50 nm). The boundary between them is marked by
the black solid line. The red solid line shows the height profile along the white dashed line. The
step height is the thickness of one layer of silicene. (e) DOS mapping simultaneously obtained at
1.45 V, which is the corresponding edge state energy. The position of the edge state is highlighted
by the white arrow.

(c) (e)(d)

Source: (a,b) Jiang et al. (2019c, p. 4), (c) Bandres et al. (2014, p. 2), (d,e) Li et al. (2018, p. 5).
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1.2 Topological insulators

In this section, we conceptualize TI, topological phase transition (TPT), and topolog-

ical invariants in the context of the Haldane and Kane-Mele models with Z and Z2 classifications.

We discuss the connection of these models with quantum anomalous Hall (QAH) and quantum

spin Hall (QSH) physics in terms of the emergence of chiral and helical edge states, respectively.

This is significant because the Lieb-Kagome lattices behave as 2D TI with a Z2 classification

when ISO coupling is included in the TB model, which results in helical edge states.

1.2.1 Topological Insulators versus Ordinary Insulators

TI are materials that behave as ordinary insulators in the bulk, in that they exhibit an

excitation gap, whereas the edge has robust conducting states, according to the bulk-boundary

correspondence, which links the topological structure of the bulk crystal to the presence of

gapless boundary modes (KANE, 2008; HASAN; KANE, 2010; MOORE, 2010; DROST

et al., 2017; WANG et al., 2024). The topological properties of the bulk (the interior) of a

material dictate the existence and characteristics of states on its boundaries (edges or surfaces)

(GRAF; PORTA, 2013). In 2D TI, these boundaries are edges, and the topological phases are

characterized by the presence of gapless edge states, protected against backscattering (WEEKS;

FRANZ, 2010; BANDRES et al., 2014).

TI are distinct from ordinary insulators due to their unique electronic properties. In

a common insulator, electrons are bound to atoms in closed shells [Fig. 10 (a)], making the

material electrically inert as it requires finite energy to dislodge an electron. This behavior is

described by the band theory of solids, which uses the translational symmetry of the crystal to

classify electronic states in terms of their crystal momentum k within a periodic BZ. The energy

bands formed by the eigenvalues Em(k) of the Bloch Hamiltonian H(k) create an energy gap that

separates the occupied valence band states from the empty conduction band states [Fig. 10 (b)].

In contrast, the quantum Hall (QH) state provides a fascinating counterexample. When electrons

confined to two dimensions are placed in a strong magnetic field, their circular orbits [Fig. 10

(d)] quantize into Landau levels with energy εm = h̄ωc(m+ 1/2) [Fig. 10 (e)]. If N Landau

levels are filled, an energy gap similar to that of an insulator separates the occupied and empty

states. However, unlike a conventional insulator, an electric field causes the cyclotron orbits to

drift, resulting in a Hall current characterized by the quantized Hall conductivity σxy = Ne2/h.
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Figure 10 – States of matter. (a)–(c) The insulating state. (a) An atomic insulator. (b) A simple
model insulating band structure. (d)–(f) The QH state. (d) The cyclotron motion of electrons. (e)
The Landau levels, which may be viewed as a band structure. (c) and (f) Two surfaces which
differ in their genus, g. (c) g = 0 for the sphere and (f) g = 1 for the donut. The Chern number
that distinguishes the two states is a topological invariant similar to the genus.

Source: Hasan e Kane (2010, p. 4)

This quantization is a manifestation of the topological nature of σxy, making the QH state a

topologically distinct phase of matter. Landau levels, viewed as a band structure, disperse

with k in the presence of a periodic potential, leading to a band structure that, while similar in

appearance to that of an ordinary insulator, underlies fundamentally different physics due to its

topological properties (HASAN; KANE, 2010).

1.2.2 Topological Phases

Topological phases of condensed matter have attracted immense attention since the

1980s when they were proposed to explain the properties of the QH effect in 2D electronic

systems under a strong external magnetic field (THOULESS et al., 1982). The state responsible

for the QH effect does not break any symmetries, but it defines a topological phase in the sense

that certain fundamental properties, such as the quantized value of the Hall conductance and the

number of gapless boundary modes, are insensitive to smooth changes in material parameters

and cannot change unless the system passes through a quantum phase transition (REN et al.,

2016; WEN, 2017).
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In recent years, the investigation of topological phases of matter has been established

as an important subfield in condensed matter physics (BERNEVIG, 2013; BANSIL et al.,

2016). The fundamental impact of this research topic stems from the fact that in TI, there is no

symmetry that distinguishes the topological from the trivial state, and no order parameter that

becomes nonzero on the topological side, leading to a paradigm shift in the understanding of the

classification of phases of matter (VANDERBILT, 2018). Two insulators are said to belong to

the same topological class if and only if their Hamiltonians can be continuously connected in

such a way that the gap never closes at any point along the connecting path (BERNEVIG, 2013;

BANSIL et al., 2016; VANDERBILT, 2018). An insulating crystal is classified as “trivial” if

it can be adiabatically connected without gap closure to an atomic limit12, and is “topological”

otherwise (HASAN; KANE, 2010; QI; ZHANG, 2011). In general, the topological phases are

classified according to the topological invariants, which are determined based on their bulk

properties (BERNEVIG, 2013).

1.2.3 Topological Invariant

The QH effect is characterized by a vanishing longitudinal conductance and a

nonzero quantized Hall conductance in a six-terminal Hall-bar measurement (KLITZING et

al., 1980). This phenomenon arises from the insulating bulk contributing to zero longitudinal

conductance, while the quantized Hall conductance originates from the Berry curvature of

filled magnetic Bloch bands, as first reported by Thouless et al. (1982). The integration of

Berry curvature over the filled bands in the magnetic BZ gives rise to an integer known as the

Thouless–Kohmoto–Nightingale–Nijs (TKNN) number, later recognized as the first Chern class

of a principal fiber bundle on a torus (NAKAHARA, 2018). This TKNN number, also known as

the Chern number, is a topological invariant, meaning it remains unchanged as long as the bulk

band gap remains open, indicating the topological nature of the QH effect.

The Chern invariant, while rooted in the mathematical theory of fiber bundles

(NAKAHARA, 2018), can be understood physically through the Berry phase associated with

the Bloch wave functions.13 Conceptually, the Berry phase acquired around a closed loop in

momentum space leads to the concept of Berry flux, which is integral to defining the Chern

number. The Chern number, summed over all occupied bands, remains invariant even if there
12 Crystal of well-separated atoms with discrete sets of occupied and unoccupied atomic orbitals.
13 A mathematical synthesis of the definitions of the Berry phase and Chern number can be found in Appendix A.

A detailed discussion is given by Bernevig (2013) and Vanderbilt (2018).
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are degeneracies between occupied bands, as long as the gap between occupied and empty

bands remains finite. This invariance underlies the robust quantization of the Hall conductivity

observed in experiments.

A helpful analogy for understanding the Chern number involves classifying two-

dimensional surfaces by their genus, which counts the number of holes. For example, a sphere

has a genus of zero [Fig. 10 (c)], while a donut has a genus of one [Fig. 10 (f)]. A theorem by

Gauss and Bonnet states that the integral of the Gaussian curvature over a closed surface is a

quantized topological invariant related to the genus (NAKAHARA, 2018). Similarly, the Chern

number is an integral of a related curvature over the BZ.

In general, non-magnetic insulators with broken TR symmetry obey the Z topolog-

ical classification, whose invariants are Chern numbers, C (HALDANE, 1988; FRUCHART;

CARPENTIER, 2013). In this case, 2D TI exhibit a non-zero net integer number of up-crossings

or down-crossings of edge surface states for each side of the ribbon constructed from such TI

material, resulting in chiral edge states at the boundary of the sample (HASAN; KANE, 2010;

MOORE, 2010). On the other hand, non-magnetic insulators with preserved TR symmetry are

characterized by a Z2 topological invariant, ν , such that (i) a 2D TI is characterized by ν-odd

and (ii) a trivial (or ordinary) insulator is identified by ν-even (KANE; MELE, 2005b; KANE;

MELE, 2005a; FU; KANE, 2007; QI et al., 2008). This means that along half of the BZ, the

2D TI displays an odd number of edge surface states for each side of the ribbon, whereas trivial

insulators display an even number, possibly zero (VANDERBILT, 2018). Therefore, the spin-up

and spin-down states move in opposite directions along the edge of the system, generating

spin-filtered edge states in the gap region of the bulk energy spectrum.

In the absence of spin-mixing perturbations, ν is related to the spin Chern number Cs

by the simple relation ν =Cs mod 2, where Cs = (C↑−C↓)/2 and Cσ , σ = {↑,↓}, represents

the Chern number associated with the individual spins (FUKUI et al., 2005; SHENG et al., 2006;

FUKUI; HATSUGAI, 2007).

In n-band insulators, the C determining the count of crossing edge states is just the

total Chern number C = ∑
occ
n Cn; more generally, it is given in terms of the BZ integral of the

band-traced Berry curvature (VANDERBILT, 2018). Analogously, the spin Chern number is

Cs = ∑
occ
n Cs

n (BEUGELING et al., 2012).
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Figure 11 – (a) Haldane model in real space. Lattice vectors a1 and a2 define a shaded
parallelogram unit cell encompassing orbitals 1 (represented by filled circles) and 2 (indicated
with open circles). Real transitions t1 occur between NN, while imaginary transitions it2 link
NNN sites as denoted by the arrows (or −it2 in the reverse direction). (b) The parallelogram-
shaped BZ, outlined by reciprocal lattice vectors b1 and b2, features prominently labeled
high-symmetry points.

Source: Vanderbilt (2018, p. 215).

1.2.4 Haldane model and Kane-Mele model

Historically, the topological classification Z comes from the Haldane model (HAL-

DANE, 1988), which in 1988 introduced imaginary hoppings it2 connecting next-nearest-

neighbor (NNN) sites of graphene, as illustrated in Fig. 11 (VANDERBILT, 2018). This

term breaks TR symmetry. Significantly, a reversal between the character of the valence-band

maximum and the conduction-band minimum is visible at KKK′′′ [see Fig. 12(a,b)]. It turns out that

such a “band inversion” is typical of many kinds of topological transition (VANDERBILT, 2018).

The Fig. 12 (c) shows a surface state emerging out of the conduction band on the top edge of

the ribbon, and another coming from the valence band on the bottom edge, but neither crosses

the gap, manifesting a behavior trivial. On the other hand, we see in Fig. 12 (d) that there is

an up-crossing of one surface state on the top edge of the ribbon and a down-crossing one on

the bottom edge, signaling a topological behavior. The plot of Fig. 12 (e) shows that there are

positive and negative concentrations of Berry curvature near KKK and KKK′′′ which will cancel when

integrated over the BZ, i.e. when we integrate the Berry curvature over the 2D BZ, we obtain the

Chern number equals zero, as expected for this case (VANDERBILT, 2018). On the other hand,

the Berry curvature becomes entirely positive [Fig. 12(f)] when calculated for the cases after the

closing and reopening of the energy gap, i.e., after the TPT.

The Z2 topological invariant was proposed in 2005 by the Kane-Mele model (KANE;

MELE, 2005a; KANE; MELE, 2005b), which constructed a simple model system in which

spin-up and spin-down electrons are described by a pair of complex-conjugated Haldane models
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Figure 12 – Haldane model in a configuration of (a,c,e) trivial topology before closing the gap at
point KKK′′′, and (b,d,f) after closing and opening the energy gap, now being a TI of Z classification
with Chern number C = 1. For these configurations we present the: (a,b) band structures, (c-d)
edge states on a ribbon, since that the surface states on the top and bottom edges of the ribbon are
indicated by full and reduced intensity respectively, and (e,f) contour plots of Berry curvature, in
with the full and dashed lines denote positive and negative contour levels respectively.

(a) (b)

(c)

00

(d)

(e) (f)

Source: Adapted from Vanderbilt (2018, p. 217, 218 and 220).

with some spin-mixing terms included. This restores the TR symmetry that had been broken in

the Haldane model. Fig. 11 still describes the model, but there are now two basis states, spin-up

and spin-down, on each site (VANDERBILT, 2018).

The band structure resulting from this model is illustrated in Fig. 13 (a,b). The

left-right mirror symmetry and the enforcement of Kramers degeneracies14 at the time-reversal

invariant momenta (TRIM) ΓΓΓ and MMM are evident in the plots. At a critical configuration of model,

there is a simultaneous gap closure both the KKK and KKK′′′ points, which we expect is accompanied

by a change topology from Z2-even to Z2-odd. To confirm that this is the case, the ribbon edge

band structure is plotted in Fig. 13 (c,d). A traversal of edge states across the gap in (d) but

not (b), confirming the identification of topologically trivial and nontrivial states respectively.

Equivalently, the number of crossings in the half BZ with any horizontal line drawn inside the

energy gap would be even or odd in Panel (c) or (d) respectively (VANDERBILT, 2018).
14 This theorem states: Any state of a system whose total angular momentum is half-integer (i.e., a system

composed of an odd number of particles with half-integer spin) and that exhibits TR symmetry, must be
degenerate (SAKURAI, 1994; BALLENTINE, 2014).
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Figure 13 – Kane-Mele model in a configuration of (a,c) trivial topology before closing the gap
at points KKK and KKK′′′, and (b,d) after closing and opening the energy gap, now being a TI of Z2
classification with Cs = 1. For these configurations we present the: (a,b) band structures, and
(c,d) edge states on a ribbon, since that the surface states on the top and bottom edges of the
ribbon are indicated by full and reduced intensity respectively.

(a) (b)

(c) (d)

Source: Adapted from Vanderbilt (2018, p. 247 and 248).

1.2.5 Chiral and helical edge states

Edge states of a TI can be used to explore fundamental science emerging at the

interface of low dimensionality and topology (HUANG et al., 2024). Chiral and helical edge

states arising from a non-trivial bulk topology are expected to be protected against backscattering

and support a wealth of interesting topological, mesoscopic and interacting phenomena in low

dimensions (SARMA; PINCZUK, 2008; QI; ZHANG, 2011). Chiral edge states of the QH and

QAH effects are robust over long distances (CHANG et al., 2013; DENG et al., 2020; SERLIN

et al., 2020; LI et al., 2021), harbor the physics of a chiral Luttinger liquid (CHANG, 2003), and

are instrumental to the understanding of fractional and non-Abelian braiding statistics (NAYAK

et al., 2008; NAKAMURA et al., 2020). Helical edge states of the QSH and quantum valley

Hall (QVH) effects occur at zero external and internal magnetic field, which is generally more

compatible with device applications (KÖNIG et al., 2007; MARTIN et al., 2008; LI et al., 2010;
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QIAO et al., 2011; ZARENIA et al., 2011; ZHANG et al., 2013; QIAN et al., 2014; DU et

al., 2015; JU et al., 2015; LI et al., 2015; LI et al., 2016; FEI et al., 2017; LEE et al., 2017;

LI et al., 2018; WU et al., 2018; MANIA et al., 2019; CHEN et al., 2020). Previously, QVH

internal edge states, known as the kink states, were realized in Bernal bilayer graphene using

lithographically patterned gates, and operations of a valley valve and electron beam splitter

were demonstrated (LI et al., 2016; LI et al., 2018). The tunable beam splitter is analogous

to the action of a quantum point contact, which is a powerful element used in a wide range of

fundamental research and quantum devices (HOUTEN; BEENAKKER, 1996). The absence

of precise resistance quantization, which implies backscattering is still present, is a critical

impediment to the pursuit of some of the most exciting prospects of helical 1D systems, such as

topological superconductors (KILLI et al., 2010; HART et al., 2014; LI et al., 2015; WIEDER et

al., 2015; BOCQUILLON et al., 2017; ZHANG; LIU, 2017; MAHONEY et al., 2017; RHODES

et al., 2019; LODGE et al., 2021), helical Luttinger liquid physics (KILLI et al., 2010; LI et al.,

2015; WIEDER et al., 2015; MAHONEY et al., 2017; ZHANG; LIU, 2017; RHODES et al.,

2019) and the development of edge-based quantum transport devices (HOUTEN; BEENAKKER,

1996; QIAO et al., 2011; QIAN et al., 2014; MAHONEY et al., 2017; LODGE et al., 2021).

As a rule, TR symmetry-invariant TI exhibit QSH physics, while TI with broken TR

symmetry present QAH physics. It is worth mentioning that in the QSH effect [Fig. 14 (a)], the

strong ISO coupling leads to the formation of helical edge states, in which the spin orientation

of the edge state depends on the direction of travel. That is, the helical edge states exist at

the boundaries of two-dimensional topological insulators, with the spin of an electron locked

to its direction of motion, so that electrons with opposite spins move in opposite directions

along the edge. This spin-momentum locking provides robustness against backscattering from

non-magnetic impurities, making helical edge states a hallmark of Z2 topological insulators. In

this effect, the edge states exist regardless of an external bias.

In the QAH effect [Fig. 14 (b)], on the other hand, the edge states all carry the same

spin direction, i.e., they are chiral. This means they are unidirectional electronic states where

electrons move in a single direction along the edge, regardless of their spin. These edge states

exist regardless of an external bias or magnetic field.

In both cases, the topological invariants ν and C are closely related to QSH and QAH

physics, respectively. The Chern number is directly related to the anomalous Hall conductivity

(AHC) by σAHC = (∑occ
n Cn)e2/h = Ce2/h. Analogously, the spin Hall conductivity equals
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Figure 14 – Schematic representation of: (a) QSH effect, (b) QAH effect, where M is the
spontaneous magnetization inherent to this effect.

(b)(a)

Source: Adapted from Klitzing et al. (2020, p. 399).

σSH = (∑occ
n Cs

ne)/(4π) =Cse/(4π).

Exceptions to this rule occur when one introduces Rashba spin-orbit (RSO) coupling

and an exchange field, such that one can have an QSH-like phase in a system where the TR

symmetry is broken (YANG et al., 2011) or obtain an QAH-like phase in a system with invariant

TR symmetry (QIAO et al., 2010).

1.2.6 Topological phase transitions

The self-organization of a large number of nuclides and electrons leads to the

emergence of various phases of matter. Each phase represents a specific organizational pattern

that can be spatially replicated infinitely and has properties that change continuously in response

to external fields, distinguishing it from other phases. Consequently, certain system properties

are altered as the material undergoes a phase transition. A general characteristic of a phase

transition is that it either involves a discontinuity in an order parameter, according to Landau’s

paradigm of phase transitions (MA, 1976; GOLDENFELD, 1992), or a change in a topological

invariant in the case of TPT (CHRISTIAN, 2002; SACHDEV, 2011; FRADKIN, 2013; LI et al.,

2021).

The exploration of TPT began in the 1970s when phenomena such as the QH effect

(KLITZING et al., 1980) and 2D superfluid phase transitions (NELSON; KOSTERLITZ, 1977)

were elucidated using the principles of topology (THOULESS et al., 1982; HALDANE, 1983;

KOSTERLITZ; THOULESS, 2018). These foundational studies significantly impacted electron

band theory (BANSIL et al., 2016). Topological states typically remain unaffected by gradual

changes in material parameters, except when TPT occurs. Numerous TI with distinct band

inversion mechanisms have been both theoretically proposed and experimentally confirmed, in
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both periodic (ZHOU et al., 2014; REIS et al., 2017) and aperiodic systems (MITCHELL et al.,

2018; AGARWALA; SHENOY, 2017; HUANG; LIU, 2018a; HUANG; LIU, 2018b; HUANG;

LIU, 2019).

Unlike conventional phase transitions described by Landau’s theory of spontaneous

symmetry breaking, which follow universal critical scaling laws, TPTs are marked by abrupt

changes in topological invariants in response to continuous variations in system parameters. This

change in the topological invariants due to TPT is characterized by the closing of the gap, which

usually reopens after the transition (MURAKAMI, 2007; MURAKAMI et al., 2007; HASAN;

KANE, 2010). This can be understood through an analogy with geometric shapes. Consider a

sphere and a donut: a sphere has a genus of G = 0 because it has no holes, while a donut has

a genus of G = 1 due to its single hole. If a hole were to form in the sphere, it would undergo

a TPT, changing its genus from 0 to 1 and becoming topologically equivalent to a donut. This

process is analogous to the closing and reopening of the energy gap in a material during a TPT,

where the change in the Chern number signifies the transition (BEUGELING et al., 2012; LIU et

al., 2012; WANG et al., 2016; CHEN; ZHOU, 2017; OWERRE, 2018; ABLOWITZ; COLE,

2019; MOJARRO; ULLOA, 2023; XING et al., 2024). Conversely, transforming a donut into a

coffee mug, which also has a genus of G = 1, does not change its topological invariant because

both shapes have the same number of holes.15 Thus, the topological invariant remains the same

unless there is a fundamental change, such as the creation or annihilation of a hole, reflecting the

robustness of topological phases in materials.

1.3 Outline

Throughout the subsequent chapters, we will develop the mathematical framework

that helps to investigate the basic electronic properties of the Lieb-Kagome lattice subjected

to strain, both with and without ISO coupling. More precisely, we will present the generic

TB model applied to Lieb, transition, and Kagome lattices to obtain the effects on the energy

spectrum driven by strain, investigating the occurrence of TPT and the evolution of edge states

in nanoribbons constructed from Lieb-Kagome lattices. The effects of hypothetical strains and

non-topological phase transitions are also analyzed.

In Ch. 2, we develop a generic tight-binding Hamiltonian based on the interconvert-
15 The deformation of a coffee mug into a donut (torus) can be seen in this gif: https://upload.wikimedia.org/

wikipedia/commons/2/26/Mug_and_Torus_morph.gif.

https://upload.wikimedia.org/wikipedia/commons/2/26/Mug_and_Torus_morph.gif
https://upload.wikimedia.org/wikipedia/commons/2/26/Mug_and_Torus_morph.gif


51

ibility of Lieb-Kagome lattices, discussing the energy spectra obtained when these lattices are

subjected to biaxial, pure shear, as well as uniaxial and simple shear strains along the crystallo-

graphic x and y directions. The discussion of second neighbor effects, hypothetical strain cases,

in which the values of the hopping parameters do not change, and the strain-induced vector

pseudopotentials, is also carried out.

In Ch. 3, we present the Hamiltonian with ISO coupling, and subsequently discuss

the effects of strain on the electronic spectrum of Lieb and Kagome lattices with ISO coupling,

respectively, investigating the opening and closing of energy gaps, the evolution of Berry

curvature for each case, and the change of spin Chern numbers, setting up topological phase

transitions driven by strain.

In Ch. 4, we investigate the effects of NNN sites and strain on the energy spectrum

and DOS of the nanoribbons with three types of edges (straight, bearded, and asymmetric). We

also explore the role of strain on edge states.

Finally, we present the main concluding remarks in Ch. 5.
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2 EFFECTS OF UNIAXIAL AND SHEAR STRAINS ON THE ELECTRONIC

SPECTRUM OF LIEB AND KAGOME LATTICES

We systematically study the effects of the shear and uniaxial strains, applied along

different crystallographic directions, on the electronic spectrum of Lieb and Kagome lattices by

using the TB model with a general Hamiltonian that describes both lattices by means of only

one control parameter. Our findings show that such deformations do not open an energy gap in

their electronic spectra, but can cause: (i) approximation of the energy cones, (ii) anisotropy in

the energy levels, and (iii) deformation of the nearly-flat band, such that the triply degenerate

Dirac point in the Lieb lattice transforms into two doubly degenerate Dirac points. By analyzing

hypothetical strain cases in which the values of the hopping parameters do not change, we observe

that effects such as deformation in the nearly-flat band and division of the triply degenerate Dirac

point are only due to the hopping parameter changes caused by the strain. Moreover, we identify

cases in which there are non-null strain-induced pseudovector potentials in Lieb and Kagome

lattices.

2.1 Motivation

The discovery of many interesting properties of 2D crystals has led in recent years

to a renewed interest on the study of structures such as the Lieb and Kagome lattices. In

these systems, a conical Dirac energy band coexists with nearly-flat bands. The development

of experimental techniques for the synthesis of electronic and chemical structures with such

lattice configurations has motivated research on electronic-based lattices (SLOT et al., 2017;

LI et al., 2018), waveguides-based photonic systems (SHEN et al., 2010; GOLDMAN et al.,

2011b; GUZMÁN-SILVA et al., 2014; VICENCIO et al., 2015; MUKHERJEE et al., 2015a;

MUKHERJEE et al., 2015b; TAIE et al., 2015; XIA et al., 2016; ZONG et al., 2016; DIEBEL

et al., 2016; SCHULZ et al., 2017; LI et al., 2018), and even structures formed by organic bonds

(ONO et al., 2009; ZHANG et al., 2010; NITA et al., 2013; KEIMER et al., 2015; NAKATSUJI

et al., 2015; DOWNIE et al., 2015; CUI et al., 2017; LIU et al., 2018; REICHARDT et al., 2018;

JIANG et al., 2019a; YAZYEV, 2019; CUI et al., 2020).

In this context, Yin et al. (2022) presents some of such artificial kagome materials

connecting the theoretical ideas and experimental observations, as well as the bond between

quantum interactions within kagome magnets and kagome superconductors, and their relation to

the concepts in topological insulators, topological superconductors, Weyl semimetals, and high-
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temperature superconductors, whose topics are at the research cutting-edge of the topological

quantum matter. Such experiments have allowed the verification of theoretical predictions

(ONSAGER, 1944; LIEB, 1989; MEKATA, 2003), such as the co-existence of Dirac-like cones

and flat bands, (GUO; FRANZ, 2009; DEPENBROCK et al., 2012; LI et al., 2016; LU et

al., 2017; YIN et al., 2019), and have encouraged theoretical investigations of the effects

of deformation on the optoelectronic and magnetic properties of these structures. Recently,

there have been investigations of the stability of the flat band and the band-touching points

due to breathing anisotropy (ESSAFI et al., 2017) and disordered flat bands in the Kagome

lattice (BILITEWSKI; MOESSNER, 2018), as well as multi-functional twisted-Kagome lattices

(LIARTE et al., 2020), strain-induced topological magnon phase transitions (OWERRE, 2018)

and strain-induced pseudomagnetic field in Kagome crystals (LIU, 2020). Similar studies have

explored the dispersion relations of strained and complex Lieb lattices (ZHANG et al., 2016)

and strain-induced superconductor-insulator transition on a Lieb lattice (SWAIN; KARMAKAR,

2020).

In addition, it has been shown that the Lieb and Kagome lattices are inter-convertible

by the application of strain along the diagonal direction (JIANG et al., 2019c; JIANG et al.,

2019a; CUI et al., 2020; LIM et al., 2020). Before the publication of the article derived from

this chapter of our thesis (LIMA et al., 2023), there was a lack of studies presenting a generic

TB Hamiltonian that describes the effect of strain on both Lieb and Kagome lattices.1 Jiang et

al. (2019a), Jiang et al. (2019c), Cui et al. (2020) and Lim et al. (2020) include strain applied

along the diagonal direction of the lattice in order to induce the interconversion between Lieb

and Kagome lattices, but no strain tensor is used in the Hamiltonian, such that diagonal strains

are used as a thought experiment, not being explicit in the methodology of these articles. A

TB Hamiltonian with the presence of the strain tensor was reported by Liu (2020), but only for

the study of strained Kagome lattices. However, the authors did not use the knowledge of the

interconversibility of Lieb and Kagome lattices, which would allow a comparison between the

strained Lieb and Kagome lattices. Thus, as a generalization of the previous studies, in this

chapter we present a general TB Hamiltonian that not only describes the interconversion between

the Lieb and Kagome lattices, but also enables the study of these structures when subject to

uniaxial and shear strains along different crystallographic directions. Based on this formalism,

we investigate the effects of strain on the energy spectrum of Lieb and Kagome lattices that have
1 An initial study was conducted in the master’s dissertation of the author of the present thesis (LIMA, 2020).
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not been previously explored, such as: (i) the appearance of anisotropy in the energy levels, (ii)

the variation of the Fermi level, (iii) strain-induced flat band deformations, (iv) a shift of the Dirac

points with respect to the location of the high symmetry k-space points, and (v) the appearance

of a strain-induced pseudovector potentials. The pseudovector potential terms originated by

strain in the Kagome lattice were presented by Liu (2020), but the effects caused by such terms

on the energy spectrum were not explored. In the present chapter, on the other hand, we show

both the effect of non-zero strain-induced pseudovector potentials on Kagome and Lieb lattices,

and make a comparison between these lattices.

Furthermore, inspired by studies that explore the strain effects on graphene based

systems (PEREIRA et al., 2009; COCCO et al., 2010; LI et al., 2010; SENA et al., 2012; QU

et al., 2014; NAUMIS et al., 2017), we investigate two theoretical methodologies for applying

deformations in Lieb and Kagome lattices, namely: real and hypothetical cases. In the former

case, we consider that the strain tensor changes the position of the lattice sites, and consequently,

it modifies the hopping parameter values that connect the atomic sites. In the latter, we admit

that the hopping parameters’ values remain unchanged, being independent of the applied lattice

deformation (KITT et al., 2012; OLIVA-LEYVA; NAUMIS, 2013; OLIVA-LEYVA; NAUMIS,

2015; KITT et al., 2013; OLIVA-LEYVA; WANG, 2017). Shear and uniaxial strains applied

along different crystallographic directions are investigated for Lieb and Kagome lattices, for

both real and hypothetical cases.

The chapter is organized as follows. In Sec. 2.2, we describe the generic lattice that

enables the study of strain in Lieb and Kagome lattices, as well as present the high symmetry

points of the corresponding reciprocal lattices. In Sec. 2.3, we review the strain theory for

2D materials, and in Sec. 2.4 we derive the TB model for the generic lattice within the strain

formalism. In Sec. 2.5, we discuss the hopping renormalization adopted in the previously

developed model, and in Sec. 2.6 we examine the choice of the n parameter that governs the

adopted hopping parameterization. In Secs. 2.7 and 2.8, we discuss the strain effects on Lieb and

Kagome lattices, respectively. The results for the hypothetical case are discussed in Sec. 2.9, and

in Sec. 2.10 we identify the effects of the strain-induced pseudovector potentials. We present

a synthesis of strain effects on Lieb and Kagome lattices in Sec. 2.11. Finally, in Sec. 2.12 we

summarize our main findings.
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Figure 15 – Real (top panels) and reciprocal (bottom panels) generic lattices: (a) Lieb lattice
- D̂4h (θ = π/2), (b) transition lattice - D̂2h (π/2 < θ < 2π/3) and (c) Kagome lattice - D̂6h
(θ = 2π/3). a1 and a2 are the primitive vectors with unit cells denoted by the red dashed
lines containing three non-equivalent sites A (blue empty circle), B (yellow filled circle) and C
(green circle with dot inside). The distance between NN sites is a0 and the non-null hopping
parameters are represented by tBA, tBC, t−AC, t+AC. For Lieb and Kagome lattices, the NN hopping
is tBA = tBC = t and the NNN hopping is t−AC = t+AC = t ′. BZ of the (d) Lieb, (e) transition, and (f)
Kagome lattices denoted by the dashed blue lines. The reciprocal vectors are b1 and b2 and the
high symmetry points are ΓΓΓ (filled circle), X (empty solid circle), M (circle with dot inside) and
K (empty dashed circle).
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2.2 Generic lattice

We define the generic lattice as a 2D crystalline structure with a unit cell composed

by three sites at the basis (labeled by A, B, and C), which may present symmetry D̂4h, D̂2h and

D̂6h according to the angle choice π/2≤ θ ≤ 2π/3. As represented in the Figs. 15 (a) and 15 (c),

θ = π/2 and θ = 2π/3 correspond to the Lieb (D̂4h) and Kagome (D̂6h) lattices, respectively.

The 2D crystals obtained with π/2 < θ < 2π/3 are called transition lattices (D̂2h), as shown in

Fig. 15 (b), since they represent the evolution stages between Lieb and Kagome lattices in the

interconversion process, as well discussed by Jiang et al. (2019c), Cui et al. (2020), Jiang et al.

(2019a) and Lim et al. (2020).

The generic primitive lattice vectors are

a1 = aυ̂1, and a2 = aυ̂2, (2.1)
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with υ̂1 = (1,0) and υ̂2 = (−cosθ ,sinθ). In order to investigate a more generic case, we

consider here, without loss of generality, that a = 1 Å. The reciprocal lattice in turn, is generated

by the following primitive vectors

b1 = b1ν̂1, and b2 = b2ν̂2, (2.2)

with |b1| = |b2| = 2π/(asinθ) ≡ b, ν̂1 = (sinθ ,cosθ) and ν̂2 = (0,1). The high symmetry

points in the BZ are given by

ΓΓΓ = (0,0), X =
b
2

ν̂1, M =
b
2
(ν̂1 + ν̂2) , K =

1
2
(b− l cosθ) ν̂1 +

l
2

ν̂2, (2.3)

with l = b/(1− cosθ). The BZ, the high symmetry points in the reciprocal space, and the

reciprocal vectors are illustrated in Figs. 15 (d), 15 (e), and 15 (f), for Lieb, transition and

Kagome lattices, respectively.

Throughout this chapter, we will use a generic lattice to simultaneously study the

strained Lieb and Kagome lattices using a generic TB model as a function of the angle θ .

2.3 Analysis of strain

The application of strain in a crystal modifies the vectors connecting lattice sites and

changes the corresponding hopping parameters. Considering r the position vector of a unstrained

site. The new site position on the deformed lattice is written as (OLIVA-LEYVA; NAUMIS,

2013; SI et al., 2016; NAUMIS et al., 2017)

r′ = r+δ (r), (2.4)

where δ (r) is the displacement vector usually expressed in terms of the strain tensor ε , given by

(PEREIRA et al., 2009; OLIVA-LEYVA; NAUMIS, 2013; NAUMIS et al., 2017)

δ (r) = ε · r. (2.5)

Thus, the sites of the strained lattice are located by (NASCIMENTO et al., 2017; BANDEIRA et

al., 2020)

r′ = (I+ ε) · r, (2.6)

where (I+ ε) is the transformation matrix that takes the original lattice vectors and provides

the vectors corresponding to the strained lattice. As for instance, by Eqs. (2.1) and (2.6), one
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has that the primitive vectors of the generic lattice are transformed as a′1 = (I+ ε) · a1 and

a′2 = (I+ ε) ·a2.

Any point (k = (kx,ky)) in the reciprocal space is transformed by the strain tensor ac-

cording to the following relation (OLIVA-LEYVA; NAUMIS, 2013; OLIVA-LEYVA; NAUMIS,

2015; NAUMIS et al., 2017; OLIVA-LEYVA; WANG, 2017)

k′ = [(I+ ε)−1]T ·k. (2.7)

For 2D crystals, the strain tensor is generally of the form (PEREIRA et al., 2009;

COCCO et al., 2010; LI et al., 2010; SENA et al., 2012; QU et al., 2014; NAUMIS et al., 2017)

ε =

 εxx εxy

εyx εyy

=

 εxx−σpεyy εxy

εyx εyy−σpεxx

 , (2.8)

where εi j refers to a deformation in the i direction that will be multiplied by the j component of

the non-deformed vector r, and σp denotes the Poisson ratio (BLAKSLEE et al., 1970; PEREIRA

et al., 2009), adopted in this thesis as σp = 0.1 in any direction for uniaxial strains.2

Figure 16 shows the effects on the unit cell of the generic lattice due to the application

of the six different types of strains to the Lieb and Kagome lattices investigated here, which

are: (i) uniaxial along the x direction (UX) [Fig. 16 (a)], (ii) uniaxial along the y direction (UY)

[Fig. 16 (b)], (iii) biaxial (BI) [Fig. 16 (c)], (iv) simple shear along the x direction (SX) [Fig. 16

(d)], (v) simple shear along the y direction (SY) [Fig. 16 (e)], and (vi) pure shear (PS)-strain

[Fig. 16 (f)]. The atomic positions of the strained lattices, r′ = (r′x,r
′
y), are found by Eqs. (2.6)

and (3.5), such that the correspondence with the unstrained lattice sites, r = (rx,ry), is given by r′x

r′y

=

 [1+(εxx−σpεyy)]rx + εxyry

εyxrx +[1+(εyy−σpεxx)]ry

 , (2.9)

with εi j-values (with i, j = x,y) being summarized in the Table 1 for all the six investigated

deformations.

The effects of the six types of strain on the Lieb and Kagome lattices are pictorially

represented in Figs. 17 and 18, respectively, similar to what is depicted in Fig. 16, but now for a

section of the infinite lattice instead of just the unit cell. In both figures, we present a comparison

of lattices without strain (black lines) and with strain (red lines) with ε > 0 of the types: (i) UX
2 The Poisson ratio, when positive (negative), describes how a material contracts (expands) in directions perpen-

dicular to the direction of the applied force. In graphite, σp = 0.165 (BLAKSLEE et al., 1970; PEREIRA et al.,
2009). For convenience, we adopt σp = 0.1 in this work, as we are using a generic Lieb and Kagome model not
tied to a specific material.
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Figure 16 – Comparison of the unstrained (ε = 0) and strained (ε ̸= 0) generic lattices subjected
to (a) UX, (b) UY, (c) BI, (d) SX and (e) SY, and (f) PS-strain. The generic lattice sites (A, B
and C) are represented by black-filled symbols connected by black dashed lines and primitive
vectors a1 and a2, whereas the strained lattice sites (A′, B′ and C′) are represented by red oppend
symbols connected by red dashed lines and primitive vectors a′1 and a′2.
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Table 1 – Strain tensor elements [Eq. (3.5)] for each type of strain applied.
Type of strain εxx εxy εyx εyy

UX ε 0 0 0
UY 0 0 0 ε

BI ε 0 0 ε

SX 0 ε 0 0
SY 0 0 ε 0
PS 0 ε ε 0

[Figs. 17(a) and 18(a)], (ii) UY [Figs. 17(b) and 18(b)], (iii) BI [Figs. 17(c) and 18(c)], (iv) SX

[Figs. 17(d) and 18(d)], (v) SY [Figs. 17(e) and 18(e)], and (vi) PS [Figs. 17(f) and 18(f)].
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Figure 17 – Comparison of Lieb lattices without strain (black lines) and with strain (red lines)
with ε > 0 of the types: (a) UX, (b) UY, (c) BI, (d) SX, (e) SY, and (f) PS. The non-zero Poisson
ratio justifies the compression in the vertical (horizontal) direction for UX (UY) strain.
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Source: The author.
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Figure 18 – Comparison of Kagome lattice without strain (black lines) and with strain (red lines),
with ε > 0, for: (a) UX, (b) UY, (c) BI, (d) SX, (e) SY, and (f) PS. The non-zero Poisson ratio
justifies the compression in the vertical (horizontal) direction for UX (UY) strain.
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Source: The author.
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2.4 Tight-binding model

Since the unit cell of the generic lattice has three distinct sites (A, B, C), as depicted

in Fig. 15, the electronic states can be taken as a linear combination of the Bloch’s functions Φs

with s = A,B,C, such as

Φs(r) =
1√
N

N

∑
R′s

eik·R′sϕs(r−R′s), (2.10)

being ϕs the atomic orbitals of the site s and 1/
√

N the normalization term of the wave function.3

For each site s, the summation is taken over the neighbour sites located on the position R′s,

within the proposed TB approach. In our model, as represented in Fig. 16, we consider the

hopping energy contributions due to the neighbours located on ±a′2/2, ±a′1/2, ±(a′1−a′2)/2

and ±(a′1 +a′2)/2.

Assuming the contribution of one orbital per site, the TB Hamiltonian in first quanti-

zation given by H ′ss′ = ⟨Φs|H ′k|Φs′⟩, with s,s′ = A, B, C, can be written in the matrix format as

H ′k =


H ′AA H ′BA H ′AC

H ′BB H ′BC

H ′CC

 , (2.11)

whose off-diagonal matrix elements are

H ′BA(k) = 2t ′BA cos
(
k ·a′2/2

)
, (2.12a)

H ′BC(k) = 2t ′BC cos
(
k ·a′1/2

)
, (2.12b)

H ′AC(k) = 2t ′−AC cos
[
k · (a′1−a′2)/2

]
+2t ′+AC cos

[
k · (a′1 +a′2)/2

]
, (2.12c)

and the main diagonal matrix elements H ′ss(k), related to the on-site energies, are considered

here null. The omitted lower triangle of the matrix in Eq. (2.11) should be filled in according to

a hermitian matrix. The hopping parameters present in Eqs. (2.12) (a)–(2.12) (c) are defined as

t ′BA =
〈
ϕB(r−R′B)

∣∣H ′k∣∣ϕA(r−R′B±a′2/2)
〉
, (2.13a)

t ′BC =
〈
ϕB(r−R′B)

∣∣H ′k∣∣ϕC(r−R′B±a′1/2)
〉
, (2.13b)

t ′−AC =
〈
ϕA(r−R′A)

∣∣H ′k∣∣ϕC(r−R′A± (a′1−a′2)/2)
〉
, (2.13c)

t ′+AC =
〈
ϕA(r−R′A)

∣∣H ′k∣∣ϕC(r−R′A± (a′1 +a′2)/2)
〉
. (2.13d)

3 In our TB model, we adopt one orbital per site, similar to TB models for graphene that consider only the pz
orbital (REICH et al., 2002; PEREIRA et al., 2009). The index s does not refer to the s orbital, but to the type of
sublattice, which can be s = A, B, or C.
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The Hamiltonian of Eq. (2.11) can be rewritten in the position space by taking

Ĥ = ∑k
〈
Ψ̂k

∣∣H ′k∣∣Ψ̂k
〉

with |Ψ̂k⟩=
(
âk b̂k ĉk

)T
, whereby we obtain (LIMA et al., 2022)

Ĥ =∑
j

(
EAâ′

†
j â
′
j+EBb̂′†j b̂

′
j+ECĉ′†j ĉ

′
j

)
+∑

j j′

[
tBA

(
b̂′†j′ â

′
j+â′ j

†b̂′ j′
)
+tBC

(
b̂′†j′ ĉ

′
j+ĉ′ j

†b̂′ j′
)]

+∑
j j′

[
tAC

(
â′†j′ ĉ

′
j+ĉ′ j

†â′ j′
)]

, (2.14)

where â′ j (â′ j
†), b̂′ j (b̂′ j

†
) and ĉ′ j (ĉ′ j

†) are annihilation (creation) operators corresponding to

the jth-site of sublattice A, B, and C, respectively. These operators are related to the elements of

|Ψ̂k⟩ by the following Fourier expansions

ŝ j =
1√
N ∑

k
eik·r j ŝk, ŝ†

j =
1√
N ∑

k
e−ik·r j ŝ†

k. (2.15)

The TB Hamiltonian for the unstrained lattice is a particular case of Eq. (2.11),

obtained when one takes ε = 0, which leads to |a1|= |a2| in the matrix elements in Eq. (2.12),

since this condition is characteristic of the unstrained generic lattice as indicated in Eq. (2.1). It

implies that

HBA(k) = 2tBA cos(a0k · υ̂2) , (2.16a)

HBC(k) = 2tBC cos(a0k · υ̂1) , (2.16b)

HAC(k) = 2t−AC cos [a0k · (υ̂1− υ̂2)]+2t+AC cos [a0k · (υ̂1 + υ̂2)] . (2.16c)

As expected, the matrix elements in Eq. (2.16) consist exactly the ones for the Hamiltonian

reported by Jiang et al. (2019c), used to study the interconversion between the Lieb and Kagome

lattices for unstrained generic lattice.

2.5 Hopping renormalization

Under strain, as discussed in Sec. 2.3, the interatomic distances change and thus the

hopping energies are modified. We assume the value t = 1.0 eV for the hopping parameter in a

free-standing layer in which the interatomic distance between the NN sites is a0. The hopping

parameters for strained lattices are given by the following transformation

t ′i j = te−n(a′i j/a0−1)a0/a′i j, (2.17)

where4 n= 8 and a′i j represents the distance between the atomic sites i and j in the strained lattice,

that is given, with respect to the undeformed lattice distances ai j, according to a′i j = (I+ ε)ai j,
4 We adopt n = 8 in accordance with Jiang et al. (2019c), because this value results in nearly-flat bands in the

spectra of Lieb and Kagome characteristic of a TB model of NN-sites. Using n < 8 results in the inclusion of
NNN-sites effects, as discussed in Sec. 2.6.
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with a′i j = (a′i j ·a′i j)
1/2. Therefore, Eq. (2.17) governs the values admitted by tBA, tBC, t−AC and

t+AC for all strains applied in Lieb and Kagome lattices.5

For unstrained case, it is evident that Eq. (2.17) becomes

ti j = te−n(ai j/a0−1)a0/ai j. (2.18)

As previously mentioned, we shall also investigate the hypothetical case of strain (Sec. 2.9), in

which one assumes that the strain changes the position of the lattice sites, obeying the Eq. (2.6),

but it does not modify the values of hopping parameters that are characteristic of the unstrained

lattice. Thus, in this hypothetical case the hopping values are given by Eq. (2.18) instead of

Eq. (2.17).

The hopping normalization assumed here, Eq. (2.17), is different from those used

by Jiang et al. (2019a), Jiang et al. (2019c), Lima et al. (2019a) Cui et al. (2020) and Lim et al.

(2020), which are expressed as follows

t ′i j = te−n(a′i j/a0−1), n = 8. (2.19)

Essentially, in our model, we add a dimensionless multiplicative term a0/ai j in

Eq. (2.19), aiming to ensure the study of deformations that contract the material, i.e. compression

(ε < 0), and, in turn, that are theoretically inconsistent by using Eq. (2.19). For example, in

the case when ai j tends to zero, the hopping value must tend to infinity, which is ensured by

Eq. (2.17), but not by Eq. (2.19). Despite this, one can verify that Eqs. (2.17) and (2.19) provide

very close hopping values for small deformations. To check it, let us Taylor expand Eqs. (2.17)

and (2.19), such as

t ′i j/t = 1+∆
(1)
i j +∆

(2)
i j +O(ε3), (2.20)

where ∆
(1)
n and ∆

(2)
n are the first and second-order terms in the strain, respectively. To find these

contributions, one replaces a′i j = [(I+ ε)ai j · (I+ ε)ai j]
1/2 into Eqs. (2.17) and (2.19). One ends

up with the following terms for Eq. (2.19)

∆
(1)
i j =− n

a2
0

ai j · εai j, (2.21a)

∆
(2)
i j =− n

2a2
0
|εai j|2 +

n(n+1)
a4

0

(
ai j · εai j

)2
, (2.21b)

5 In this chapter, we will apply strain to the particular cases of Lieb and Kagome lattices, using the transition
lattice to explain some effects on the energy spectrum of strained Lieb and Kagome lattices. In Ch. 3 and 4, with
the aim of investigating TPT and edge states, we will apply the six types of strain also to transition lattices.
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Figure 19 – Band structures along the high symmetry path ΓΓΓ−X−K−M−ΓΓΓ in BZ of: (a)
the Lieb lattice (θ = π/2), (b) the transition lattice (θ = 7π/12), and (c) the Kagome lattice
(θ = 2π/3), for different parameter n in Eq. (2.18) related to the hopping energy. Results for
n = 1, n = 4, and n = 8 are shown in dotted blue, dashed red, and solid black lines, respectively.
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Source: The author Lima et al. (2023).

and, similarly by performing the same procedure, one obtains for Eq. (2.17) that

∆
(1)
i j =− n

a2
0

ai j · εai j−
1
a2

0
ai j · εai j, (2.22a)

∆
(2)
i j =− n

2a2
0
|εai j|2 +

n(n+1)
a4

0

(
ai j · εai j

)2− 1
2a2

0
|εai j|2 +

3+2n
a4

0

(
ai j · εai j

)2
. (2.22b)

By comparing Eqs. (2.22) and (2.21), one notices that the resulting hoppings, obtained by

replacing them into Eq. (2.20), are not the same, since both first and second order terms have

additional contributions for the hopping case of Eq. (2.17). Although they result in very close

values for small deformations, our proposed theoretical model for the renormalized hoppings

shows to be more appropriate and not limited to a specific deformation.

2.6 Choice of the n-parameter

Let us now discuss the effects of the parameter n, related to the hopping present in

Eq. (2.17), on the energy spectrum of the Lieb-Kagome lattices. According to Eq. (2.17), one can

see that the parameter n, at the exponential exponent, dictates how fast the interaction between

connected atomic sites decays as a function of the interatomic distance. In order to discuss its

effects, we show in Fig. 19 a comparison between the energy bands calculated by taking the

parameter n = 1 (dotted blue curves), n = 4 (dashed red curves), and n = 8 (solid black curves),

along the high symmetry points of (a) Lieb lattice (θ = π/2), (b) transition lattice (θ = 7π/12)

and (c) Kagome lattice (θ = 2π/3). For a better visualization of how the n-changing affects

individually each energy band of the spectrum, one depicts in Fig. 20 the isoenergy curves of
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the upper (bottom panels), middle (middle panels) and lower (top panels) bands for (a - left

panels) Lieb, (b - middle panels) transition, and (c - right panels) Kagome lattices. Before

performing such discussion, let us briefly recall, as reported by Jiang et al. (2019c), the behavior

of the energy spectrum during the interconversion process between the Lieb and Kagome lattices,

showing the well-known coexistence of Dirac bands and nearly-flat bands in the energy spectra

of Lieb and Kagome lattices and the energetic location of the nearly-flat band on the spectrum.

Comparing the spectra obtained for n = 8 in Fig. 19, one notices that when the angle

θ varies from π/2 [Fig. 19 (a)] to 2π/3 [Fig. 19 (c)], the bands evolve in such a way that the

spectrum of Lieb lattice with a nearly-flat band, located at the middle of the band structure,

deforms until it forms a nearly-flat band located at the bottom (top) of the energy spectrum

in Kagome lattice for the hopping case of t > 0 (t < 0) (JIANG et al., 2019c). Moreover, the

triply degenerate Dirac point (at M point) in Lieb lattice transforms into two double-degenerate

Dirac points, one of them moving along the M−ΓΓΓ direction and the another one moves along

the M−K/K′ direction, forming the energy band of Kagome lattice. The Dirac cones in the

transition stages, i.e. for π/2 < θ < 2π/3, are strongly tilted, showing coexistence of type-I

Dirac points, referring to the connection between the middle band and the upper band, and type-II,

characterized by the connection between the middle and lower bands, as already discussed by

Jiang et al. (2019c) and Lim et al. (2020).

From Eq. (2.17), it is seen that the hopping energy decreases as the value of the

n-parameter increases. Thus, the n-parameter governs the range of the interactions between the

atomic sites. That is, the effects of more distant sites are suppressed for n≥ 8, and intensified

for n < 8. Figs. 19 and 20 show that for n = 8 the energy bands give a good approximation of

the characteristic of the Lieb and Kagome lattices within the NN TB model, since they present

almost nearly-flat bands and Dirac cones, as expected for such structures (JIANG et al., 2019c).

From Figs. 19 (a) and 20 (a) for Lieb lattice, one can see that a reduction of the

value of n alters the energy dispersion curves by deforming the nearly-flat band, bringing the

middle band closer to the lower band at the ΓΓΓ-point, with the energy dispersion along the X-M

remaining unchanged, as well as the triply degenerate Dirac point remaining located at M. The

latter is due to the NNN sites to be distributed in such a way that the changes in the hopping

parameters, resulting from the change of n, can be seen in an equivalent way as a biaxial and

symmetric diagonal deformation, maintaining the symmetry of the level curves and changing

only the spectrum in the direction of the energy axis. The effects on the energy spectrum of
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Figure 20 – Isoenergy curves of the upper, middle, and lower bands (from bottom to top panels)
of: (a) the Lieb lattice (θ = π/2), (b) the transition lattice (π/2< θ < 2π/3), and (c) the Kagome
lattice (θ = 2π/3), for different parameter n in Eq. (2.18) related to the unstrained hopping
energy. Results for n = 1, n = 4, and n = 8 are shown in dotted blue, dashed red, and solid black
lines, respectively.

(a) Lieb Lattice (b) Transition Lattice (c) Kagome Lattice

Source: The author Lima et al. (2023).

transition lattices are shown in Figs. 19 (b) and 20 (b), in which one can also find diagonal-like

strain effects in the reciprocal lattice resulting from the modification of the n-parameter. For

the Kagome lattice, Figs. 19 (c) and 20 (c) show that the nearly-flat band is also deformed by

decreasing the n-parameter, but now the Dirac point does not keep the same position in reciprocal

space coinciding with the K-point, but rather it moves along the K-M direction. Moreover,
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for the Kagome lattice, the variation of the n-parameter causes a break of degeneracy at the

ΓΓΓ-point between the lower and middle bands. This is because of the fact that the NNN sites

in the Kagome lattice, corresponding to non-equivalent sites, are not symmetrically distributed

around the NN sites. In fact, they are located diagonally, so that n < 8 makes the hopping

intensities of the NNN to be more and more expressive, causing diagonal-like strain effects in

the Kagome energy spectrum. In addition, we notice a false energy gap in ΓΓΓ-point, as well as

a false asymmetry of X−K and K−M.6 Note that a change in the hopping energies does not

change the reciprocal space and the location of the high symmetry points since the real lattice is

not changed (ASCROFT; MERMIM, 1976). Thus, for n < 8 the energy spectrum is modified

so that the position of the Dirac cones is not found along the path ΓΓΓ−X−K−M−ΓΓΓ (see the

position of the cones moving by comparing the middle and bottom panels of the isoenergy curves

in Figs. 20 (c)).

Such results encourage us in the seek to understand the effects of strain in reciprocal

space, resulting from the real space deformation, whether the hopping parameter is changed or

not. Thus, in the next section, we shall apply uniaxial and biaxial strains, and pure and simple

shear strains to Lieb, transition, and Kagome lattices.

6 In fact, in Fig. 19 (c), for n < 8, there is a separation between the lower band and the middle band at the ΓΓΓ-point.
However, this occurs because the zero-gap point between these bands is no longer at the ΓΓΓ-point. In other words,
we have a false energy gap at the ΓΓΓ-point because there is no gap between the bands for all values of k. Similarly,
the asymmetry between the paths X−K and K−M does not indicate an asymmetry between the k-point of the
Dirac cone and the midpoint between two Dirac points, which indeed remains symmetric as seen in Fig. 20 (c).
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Figure 21 – Band structures along the high symmetry path ΓΓΓ−X−M−Y−ΓΓΓ in the BZ of
Lieb lattice submitted to (a) UX and (b) UY strains for different strain amplitudes: ε = 0.0 (solid
black), ε = 0.1 (dashed blue), ε = 0.7 (dotted red). Vertical gray lines with their respective line
styles linked to the ε-value indicate the position of the high symmetry points for ε = 0.0 (solid),
ε = 0.1 (dashed) and ε = 0.7 (dotted).
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Source: The author Lima et al. (2023).

2.7 Strained Lieb lattice

In Fig. 21 (a) [21 (b)] we represent the dispersion relation along the path that connects

the high symmetry points ΓΓΓ−X−M−Y = b2/2−ΓΓΓ in the reciprocal space of Lieb lattice

subject to UX-strain [UY-strain] for different strain amplitudes. The isoenergy curves of the

upper (right panels), middle (middle panels), and lower (left panels) bands corresponding to

these energy spectra are shown in Figs. 22 and 23 for UX-strain and UY-strain, respectively.

Note that even with the strain application, the electron-hole symmetry is nearly

preserved. By varying the ε-parameter, one notices that if ε > 0 (ε < 0) the Dirac cones

approach (move away) the M−Y direction, i.e. along the kx direction (Fig. 22), and the X−M

direction, i.e. along the ky direction (Fig. 23), for UX-strain and UY-strain cases, respectively.

As seen in Figs. 21 (a) and 21 (b), such uniaxial strains do not cause an energy gap opening,

regardless of the application direction. Instead of the appearance of an energy gap, as shown

in strained graphene (PEREIRA et al., 2009), the Lieb lattice under uniaxial strain presents the

formation of a triply degenerate linear band, i.e. a Dirac line, at the Fermi level along the M−Y

direction for UX-strain case and along the X−M direction for UY-strain case, as shown by
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the red dashed curves in Figs. 21 (a) and 21 (b), respectively. It also can be verified in the fifth

row (for ε = 0.3) of contour plots in Fig. 22 and in Fig. 24 (d) for the UX-strain case, and in

the first row (for ε = −0.3) of contour plots in Fig. 23 in the UY-strain case. Thus, one has

the presence of type-III Dirac point (critically tilted), that combines nearly-flat band and linear

dispersion, similar to cones emerging from flat bands in photonic orbital graphene (MILIĆEVIĆ

et al., 2019). This triply degenerate Dirac strain-induced line state, i.e., triply degenerate nodal

line (LIU et al., 2021), is formed by the approach (separation) of the Dirac cones, which is

accompanied by a small decrease (increase) in the separation and curvature of the upper and

lower energy bands in the energetic line that connects the cones along the kx (ky) direction, for

a fixed ky (kx), near the BZ boundaries for the UX-strain (UY-strain) cases. This trend of the

triply degenerate linear band formation can be noticed by comparing panels (b), (c), and (d) in

Fig. 24 for the UX-strain case. This evolution of the UX (UY)-strain-induced band deformation

increases the energetic distances between the upper and lower bands along the ky (kx) direction,

for a fixed kx (ky) value, reaching the larger value at the ΓΓΓ-point.

As expected, the dispersion relations in Fig. 22 (Fig. 23) are compressed (extended)

along the kx (ky) direction, by taking UX (UY)-strain amplitudes with positive ε > 0 and

oppositely for negative ε < 0 values. In addition, one notices small band distortions along the ky

(kx) direction due to the considered Poisson ratio, as a less expressive response in the opposite

applied strain direction. The consequence of these effects is the flattening of the cones along

the ky (kx) direction, such that they no longer exhibit circular isoenergy curves, but rather has

approximately elliptical shape [see second and fourth panel rows of the contour plots in Fig. 22

(Fig. 23) for lower and top bands, respectively, for UX (UY)-strain case]. This leads to anisotropic

Fermi velocities, resulting in anisotropic transport properties that may be relevant to direction-

dependent electronic transport devices in a similar way to 2D anisotropic semiconductors such as

phosphorene (LI et al., 2014b). It is worth mentioning that an equivalent direct analysis between

the results under UX-strain and UY-strain cases can be easily achieved by taking the following

transformation kx→ ky and x→ y for the reciprocal and real spaces, respectively. This is due to

the fact that Lieb lattice obeys D̂4h-symmetry. Therefore, compression (ε < 0) and extension

(ε > 0) for UX-strain can be mapped by extension and compression, respectively, for UY-strain

case. This statement can be verified by the correspondence between the panels of the following

rows: 1UX ←→ 5UY , 2UX ←→ 4UY , 4UX ←→ 2UY , and 5UX ←→ 1UY for Fig. 22←→Fig. 23.

In order to verify additive effects due to the combination of uniaxial strains along
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x and y directions, viewed as biaxial deformations, Fig. 25 shows the band structures of Lieb

lattice under BI-strain for the same strain amplitudes adopted in Figs. 22 and 23. Regardless

of the strain amplitude, it is seen in Fig. 25 that the bands’ curvatures and their aspect ratios

in k-space are kept undeformed, keeping the circular symmetry of the contour lines close to

the Fermi level, which indicates that the Fermi velocity remains isotropic under BI-strain. This

is easily understood, given that the high symmetry points are also shifted uniformly in both

directions in the BI-strain, as a consequence of the modules increase (decrease) of the two lattice

vectors for extension ε > 0 (compression ε < 0), leading to the modules reduction (increasing)

of the two reciprocal lattice vectors and also to a smaller (larger) first square BZ.

Let us now analyze the energy spectrum of Lieb lattice subjected to shear strain.

For SX-strain, Fig. 26 shows that the triply degenerate Dirac point at Fermi energy level in

the vicinity of the M-point gives place to two pairs of doubly degenerated Dirac points. The

larger the strain amplitude, the more noticeable is the formation of these two pairs of doubly

degenerate Dirac points, which arises from the deformation of the nearly-flat band, without

a band gap opening, adjusting itself to touch a pair of points in the upper energy band and a

pair of points in the lower energy band. This is clearly shown in the 3D plots of Figs. 28 (a)

and 28 (b) and through the bands’ evolution in Fig. 26. The evolution of the BZ distortion

(white dashed line) is shown as the ε-value increases. Moreover, the connecting energetic lines,

between the pair of double degenerate points in the upper bands and in the lower bands, that

are initially perpendicular in k-space, for high ε-values tend to be aligned in k-space and these

double Dirac points move away from each other. This can be clearly seen in Figs. 28 (c) and

28 (d) for ε = 0.5. From these results (Figs. 26 and 28), it becomes evident that the nearly-flat

band plays an important role, as it deforms, creating four Dirac points that do not allow the band

gap opening. Lim et al. (2020) explores the emergence of Dirac points from nearly-flat bands

in generic lattices of Lieb and Kagome during their interconversibility process. This can be

understood in view of the fact that diagonal deformations inherent to the interconversion process

result in structures that can be achieved with a combination of shear and uniaxial deformations.
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Figure 22 – Contour plots of the lower (left panels), middle (middle panels), and top (right
panels) energy bands for Lieb lattice under UX-strain for different strain amplitudes: ε =
−0.3, −0.1, 0.0, 0.1, 0.3 from top to bottom panels.
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Figure 23 – The same as in Fig. 22, but now for the Lieb lattice under UY-strain.
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Figure 24 – 3D plots of the band structures for the Lieb lattice under UX-strain for (a) ε =−0.1,
(b) ε = 0.1, (c) ε = 0.3, and (d) ε = 0.7, in order to emphasize the strain-induced formation of
the triply degenerate linear state.
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Figure 25 – The same as in Fig. 22, but now for the Lieb lattice under BI-strain.
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Figure 26 – The same as in Fig. 22, but now for the Lieb lattice under SX-strain and assuming
the following order of the strain amplitudes: ε =−0.7, −0.5, −0.3, −0.1, 0.0, 0.1, 0.3, 0.5, 0.7
from top to bottom panels. The strain cases with ε > 0 and ε < 0 are enantiomorphs in absolute
values of ε .
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Figure 27 – The same as in Fig. 26, but now for the Lieb lattice under SY-strain.
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Figure 28 – 3D plots of the band structures for the Lieb lattice under SX-strain for (a, b) ε = 0.3
and (c, d) ε = 0.5. An enlargement at the vicinity of the Fermi energy level for panels (a) and
(c) are shown in panels (b) and (d), respectively, in order to emphasize the deformation of the
nearly-flat band, emerging two pairs of doubly degenerate points to appear in place of a triply
degenerate point, and the absence of the energy gap opening in such spectra.
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A particular observation can be noticed on the SX-strained case for ε = 0.5 [Figs. 28

(c) and 28 (d)]. For this strain amplitude, the x components of the vectors that locate the A sites

in relation to the B sites have exactly half of the distance value that separates the B−C sites.

However, perhaps as expected by the analysis of the triangle BAC formed by the sublattices A, B,

and C, this strain situation does not lead to the case of the Kagome lattice. This is due to the

fact that a simple shear strain in x-direction does not change the y-coordinate of the vector that

locates A sublattice, and thus it does not form an equilateral triangle BAC, which in turn does

not correspond to the spatial configuration referred to θ = 2π/3 case. Therefore, by applying

the SX-strain in the Lieb lattice with strain amplitude ε = 0.5, one obtains a lattice structure

that resembles the Kagome lattice compressed uniaxially in x-direction, with some ε < 0, as

indicated by the contour plots in the eighth row of Fig. 26. This result further confirms the

fact that the Lieb and Kagome lattices are interconvertible under diagonal strain, as it is easy



78

to understand geometrically that the combination of uniaxial strain and simple shear strain

can generate deformations similar to those caused by diagonal strain. Moreover, notice that

for ε > 0.5, the inversion in the orientation of the isoenergy curves is owing to the fact that A

sublattice is closer to the left of sublattice C than the right of sublattice B, generating a spatial

configuration of sites that behaves like a simple shear strain with ε < 0, as shown in Fig. 26.

The isoenergy curves for the Lieb lattice under the effect of SY-strain are shown

in Fig. 27. Similarly to the SX-strain case (Fig. 26), one notices that the energy spectra

for SY-strained Lieb lattice are very similar to those ones for a diagonally strained Kagome

lattice when ε = 0.5 (we shall return to this discussed in Sec. 2.8). Moreover, one notes the

following equivalence between the results under SX-strain (Fig. 26) and SY-strain (Fig. 27):

transformations in the SX-strained (SY-strained) isoenergies composed by a π/2-rotation in the

k-space combined with a compression-to-distension (or vice-verse) exchange lead to the same

energetic band curves as the SY-strained (SX-strained) Lieb case with a sign change in the strain

amplitude ε , i.e. by applying a Ĉ2 symmetry operation in the momentum space and changing

ε < 0 by ε > 0 (or vice-versa), one gets the same energy spectrum for Lieb lattice with shear strain

applied in the other direction. This statement can be verified by the correspondence between

the panels of the following rows of Fig. 26 (SX) and Fig. 27 (SY): 1SX ≡ Ĉ29SY (9SY ≡ Ĉ21SX ),

2SX ≡ Ĉ28SY (8SY ≡ Ĉ22SX ), 3SX ≡ Ĉ27SY (7SY ≡ Ĉ23SX ), 4SX ≡ Ĉ26SY (6SY ≡ Ĉ24SX ).

Therefore, it becomes evident that the cases with ε > 0 and ε < 0 are enantiomorphs

in absolute values of ε-parameter, i.e. they are mirror images of each other. The energy spectra

being enantiomorphs are a consequence of the fact that the displacement of the sites in the simple

shear are mirror images of each other for deformations caused by positive and negative values

of ε-parameter. The reference line to perform the simple shear must be the same in both cases

and the atoms will move on both sides of the reference line in order to form exactly deformed

structures enantiomorphs.

To investigate combined effects due to simple shear strains along x and y directions,

we present in Fig. 29 the band structures of Lieb lattice under PS strain for the same strain

amplitudes adopted in Figs. 26 and 27. Note that, similarly to the simple shear strain cases, the

original triple degenerate Dirac point of Lieb lattice is split into two doubly degenerate Dirac

points. When this occurs, the lower and upper energy bands are divided into two, such that the

connecting energetic lines between the upper and middle bands and middle and lower bands are

always perpendicular, regardless of the applied strain amplitude. This situation is opposite to
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Figure 29 – The same as in Fig. 26, but now for the Lieb lattice under PS-strain. Note that the
cases for ε > 0 and ε < 0 are mirror images of each other in absolute values of the ε-parameter,
or equivalently mapped on each other by π/2-rotation.
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that discussed cases of simple shear strains, where such two energetic lines connecting the par

of doubly degenerate points tend to align with each other. The case corresponding to ε = 0.5

(ε =−0.5), shown in the first (seventh) row of Fig. 29, resembles the energy spectrum of the

Kagome lattice rotated by π/4 clockwise (counterclockwise) in relation to to the positive kx-axis.

From Fig. 29, a diagonal deformation is clearly noticeable caused by the PS strain,

but now without any rotation of the energy spectrum as observed for the simple shear strain

cases [Figs. 26 and 27]. This can be understood by Eq. (2.9) and Table 1, which for the PS

strain case one has that a′1 = (εa,0) and a′2 = (0,εa), leading to (a′1)x = (a′2)y = εa and

(a′1)y = (a′2)x = 0, and which consequently sets a diagonal deformation without any isoenergy

curves rotation. On the other hand, the rotation of the isoenergy spectrum for simple shear strain

cases occurs because, in these cases, (a′1)x ̸= (a′2)y and (a′1)y ̸= (a′2)x = 0. This discussion

also explains the reason why PS strain results for ε > 0 and ε < 0 are mirror images of each

other in absolute values of the ε-parameter, i.e. they can be mapped on each other by rotations of

π/2 both clockwise and counterclockwise in relation to the energy axis, what no longer occurs

in simple shear strain cases whatever the deformation direction.
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Figure 30 – The same as in Fig. 22, but now for the Kagome lattice under UX-strain.
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2.8 Strained Kagome lattice

Let us now investigate the effects of the six deformations types illustrated in Fig. 16

and given in Table 1 on the energy spectrum of Kagome lattice. Fig. 30 shows the energy

spectrum of Kagome lattice under UX-strain. For ε > 0 (distention), the Dirac cones approach
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Figure 31 – Dispersion relation of the Kagome lattice under UX-strain (a) along the kx direction,
keeping ky = 0, and (b) along the ky direction, keeping kx = 0, for different strain amplitudes:
ε = 0.0 (black solid lines), ε = 0.1 (blue dashed lines), ε = 0.3 (green dotted lines), ε = 0.5
(red dash-dotted lines), and ε = 0.7 (purple dash-double-dotted lines). The band-crossing is
emphasized by circles with the same strained color lines.
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Source: The author Lima et al. (2023).

and merge, forming an elliptical isoenergy similar to the situation found for graphene (PEREIRA

et al., 2009). However, unlike the latter, the cones in the Kagome lattice approach indefinitely,

without opening an energy gap (compare the isoenergies on the fourth and fifth rows of Fig. 30).

As ε increases, the Dirac cones approach at the same time that the lower band becomes more

dispersive, tending to form a single Dirac cone. This can be noticed by the energy scale increase

on the colorbar for the lower bands in Fig. 30 when ε increases. In this process, the lower band

creates spikes that form Dirac cones with the middle band, to the point where this middle band

tends to become nearly-flat (also note the energy scale decrease on colorbar for the middle bands

when ε increases), thus resembling to the Lieb lattice case. The UX-strained dispersion relation

for the Kagome lattice (Fig. 30) close to the Fermi level is roughly similar to that for simple

shear case applied along the x direction for the Lieb lattice (Fig. 26), as shown in the previous

section. These obtained results are in agreement with the evident interconversion between Lieb

and Kagome lattices. Furthermore, for ε < 0 (compression), the first and second rows of Fig. 30

show that the Dirac cones move away when the absolute value of ε increases, and consequently,

the UX-strained Kagome energy spectrum becomes very similar to that one displayed by the

Lieb lattice under simple shear strain along the x direction (compare with the first row of Fig. 22).

To carefully analyze the approaching behavior of the Dirac cones in the Kagome
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energy spectrum under UX-strain, we present in Fig. 31 (a) [31 (b)] the dispersion relation

along the kx [ky] direction and keeping ky = 0 [kx = 0] fixed, i.e. it is depicted the spectrum

E(kx,ky = 0) [E(kx = 0,ky)], for different strain amplitudes. By Fig. 31 (a), one notices that as ε

increases, the Dirac cones deform, exhibiting a tilted cone shape with an asymmetric kx-projected

spectrum. As shown in Fig. 31 (a), the Dirac cone approximation induced by UX-strain results

in a total cone immersion when ε = 0.7 (purple dash-double-dotted lines). On the other hand, by

Fig. 31 (b) one can realize an unusual behavior (which brings the flat band to the E = 0-level as

ε increases) of the Dirac cone formed by the crossing between the dispersive band in the hole

region and the nearly-flat band. Similar band structure behavior was reported by Montambaux et

al. (2009a), Montambaux et al. (2009b), Gail et al. (2012), Montambaux et al. (2018), Milićević

et al. (2019) and Lim et al. (2020), which explains this energy bands evolution as a characteristic

behavior of Dirac points emerging from nearly-flat bands and merging on nearly-flat bands,

being the latter exactly the current case here.

The energy spectra of the Kagome lattice under UY-strain for the same strain

amplitudes as in UX-strain case (Fig. 30) are depicted in Fig. 32. Due to Kagome lattice obeys

the D̂6h symmetry, which in turn includes Ĉ2, Ĉ3, and Ĉ6 symmetries, it was expected that

UX-strain and UY-strain results would indeed be correlated by, roughly speaking, a π/2-rotation

linked to Ĉ2-symmetry, except by an energy scale difference and a size difference on the aspect

ratio of the BZ for each uniaxial strain case (for instance, compare the isoenergies in the first row

in Fig. 32 for UY-strain and the fifth row in Fig. 30 for UX-strain). This aspect ratio difference

on k-space of the BZ between UX-strain and UY-strain results for Kagome lattice is linked to

the combination of the facts that: (i) uniaxial strain causes a larger deformation in the interatomic

distances along the applied deformation direction, and (ii) the larger the spatial deformation in

a certain direction in the real space the smaller is the BZ dimension along the correspondent

direction. For instance, note, by comparing ε = 0 (black symbols) with ε ̸= 0 (red symbols)

illustrations in Figs. 16 (a) and 16 (b), that the x component of the displacement vectors δ (r)’s in

Fig. 16 (a) are greater than in Fig. 16 (b), increasing (decreasing) its modules in the former (latter)

situation when one compares the unstrained (black symbols) with the strained (red symbols)

cases, which leads to a greater length along the kx-direction of the BZ for the UY-strain case

with ε > 0 in comparison to the UX-strain case with ε < 0 (compare the isoenergies in the first

and second rows in Fig. 30 for UX-strain and the fourth and fifth rows in Fig. 32 for UY-strain).

A similar analysis for the y-direction can be done by connecting the distension case (ε > 0) for
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Figure 32 – The same as in Fig. 22, but now for the Kagome lattice under UY-strain.
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Kagome lattice under UX-strain (Fig. 30) and the compression case (ε < 0) for Kagome lattice

under UY-strain (Fig. 32), as can be seen by the isoenergies in the fourth and fifth rows in Fig. 30

for UX-strain and the first and second rows in Fig. 32 for UY-strain. This qualitatively direct

analogy is such that compression (ε < 0) and extension (ε > 0) results for Kagome lattice under

UX-strain can be mapped by extension and compression, respectively, for the UY-strain case.
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Figure 33 – The same as in Fig. 22, but now for the Kagome lattice under BI-strain.
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This statement can be viewed by the following correspondence between the rows of Figs. 30 and

32: 1UX ≈ 5UY , 2UX ≈ 4UY , 4UX ≈ 2UY , and 5UX ≈ 1UY .

Additive effects of combined uniaxial strains applied along the x and y directions, i.e.

BI-strain, in the energy bands of Kagome lattice are shown in Fig. 33. The consequences on the

energy spectrum of Kagome lattice under BI-strain are similar to that observed in Fig. 25 for the
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Lieb lattice subjected to the same strain type: (i) regardless of the strain amplitude, the bands’

curvatures and their aspect ratios in k-space are kept undeformed, maintaining in the current case

its original hexagonal structure of the unstrained middle and upper bands; and (ii) the biaxial

lattice deformation roughly keeps the nearly-flat band without dispersion. On the other hand,

unlike the Lieb response to BI-strain (Fig. 25), the Kagome lattice biaxially strained (Fig. 33)

presents an energetic shift of the nearly-flat band, as verified by the energy scale change of the

lower band colorbar in the left column of Fig. 33 and in Fig. 31 (b). As already discussed in

Sec. 2.4, due to strain, the lattice distances change and consequently t ′ ≡ ti j varies with respect

to the ε parameter according to Eq. (2.17). Thus, by increasing the value of the strain amplitude

ε for the BI-strain case, the entire nearly-flat band of the Kagome lattice (see the left column in

Fig. 33) is energetically shifted up (down) along the energy axis for ε > 0 (ε < 0). This behavior

is emphasized in Fig. 34, which shows the evolution of the nearly-flat band at the ΓΓΓ-point as a

function of the (a) strain amplitude ε and (b) the strained hopping parameter ti j expressed in

Eq. (2.17), that for Kagome lattice case corresponds to ti j ≡ t ′. In Fig. 34 (a), one notices that

the nearly-flat band of the Kagome lattice under BI-strain obeys an exponential tendency given

by the fitting function E/t = aexp(bε− c)+ d with a = −399.9, b = 8.359, c = 5.328, and

d =−0.043, being in concordance with the exponential behavior of the hopping in Eq. (2.17).

Analyzing Fig. 34 (b), one observes a linear dependence of the energy value of the nearly-flat

band on the t ′-parameter. This can be understood considering that the energy expression for

the nearly-flat band in the non-deformed case (MIZOGUCHI; UDAGAWA, 2019) is given by

E f lat ≈−2t, thus in a similar manner it leads to roughly write an analytical expression for the

flat band in the strained Kagome case such as E f lat ≈ −2t ′. This is confirmed by the fitting

function of the obtained data given by E f it = at ′+b with a =−2.014 and b = 0.009257.

The isoenergy spectra obtained by applying shear strain along the x-direction (SX-

strain) and along the y-direction (SY-strain) in the Kagome lattice are shown in Figs. 35 and

36, respectively. By a careful analysis of Fig. 35, one realizes that, similarly to the Lieb lattice

subjected to SX-strain (Fig. 26), the strained isoenergies corresponding to distension (ε > 0)

and compression (ε < 0) deformations are enantiomorphs in absolute values of ε-parameter,

i. e. they are mirror images of each other (compare the first, second, third, and fourth rows

of Fig. 35 with the ninth, eighth, seventh, and sixth rows of Fig. 35, respectively). This is due

to the isotropic lattice structure of Kagome lattice under shear strain for positive and negative

values of ε-parameter which has its atomic positions deformed oppositely to both sides with
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Figure 34 – Evolution of flat band at the ΓΓΓ-point for Kagome lattice under BI-strain as a function
of (a) the strain parameter ε and (b) the hopping parameter t ′ between first NN. The red circles
correspond to the data associated with the cases of Fig. 33.

(b)(a)

fit
data

Source: The author Lima et al. (2023).

respect to an atomic reference line in the lattice (see a similar discussion in the ante-penultimate

paragraph in Sec. 2.7 for Lieb lattice under shear strain). Furthermore, the Kagome lattice

under SX-strain with ε = 0.5 roughly resembles the undeformed Lieb lattice as well as the

undeformed Kagome lattice roughly resembles the Lieb lattice under UY-strain together with a

weakly applied simple shear strain. Although this geometric argument is coherent with respect

to the equivalence between these lattice structures, the energy spectra for these two situations are

not fully equivalent. On the contrary, it is observed that the obtained isoenergy spectra of the

deformed Kagome lattice under SX-strain (Fig. 35) qualitatively resemble that deformed spectra

of the Lieb lattice under SY-strain (Fig. 27). For instance, note the similarities between the results

of the lower, middle and upper bands in the fifth and sixth rows of Fig. 35 and the correspondent

ones in Fig. 26 for ε = 0.3 and ε = 0.5. On the other hand, for high strain amplitudes (see the

ninth row of Fig. 35 for ε = 0.7) the BZ (white dashed lines) of Kagome lattice under SX-strain

is no longer a six-sided polygon, but rather a parallelogram. In the evolving process of BZ

deformation into a parallelogram, the nearly-flat (lower) band becomes more dispersive while

the middle band becomes less dispersive, leading to a displacement of the doubly degenerate

Dirac points such that for high ε values these doubly degenerate Dirac points start to merge

two-by-two connecting the high symmetry points in a parallelogram format.
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Figure 35 – The same as in Fig. 26, but now for the Kagome lattice under SX-strain.
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Figure 36 – The same as in Fig. 26, but now for the Kagome lattice under SY-strain.
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Figure 37 – The same as in Fig. 29, but now for the Kagome lattice under PS-strain.
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For the Kagome lattice under SY-strain, the isoenergies shown in Fig. 36 present a
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very distinct behavior as compared to the previous SX-strain case (Fig. 35). Due to the lattice

deformation caused by the SY-strain applied in the Kagome lattice, the band structure is strongly

affected, becoming highly (less) dispersive for the lower and middle (upper) bands (compare the

energy scale changes on the colorbar in Fig. 36), and also one observes the doubly degenerate

points located at the high symmetry points in the BZ being flattened and thus forming energetic

lines connecting these degenerate points. Energetically speaking, similar features as the ones

obtained in Fig. 36 for deformed Kagome lattice under SY-strain is roughly observed: (i) in the

case of the Lieb lattice under pure shear strain (PS-strain) subjected to high strain amplitudes,

as can be verified by comparing the seventh row of Fig. 29 for ε = 0.5 with the eighth row in

Fig. 36, and (ii) when Kagome lattice is subjected to uniaxial strain along y-direction (UY-strain),

as shown in Fig. 32, but being oriented diagonally in the reciprocal space.

In order to verify the combined effects of simple shear strains along x (SX-strain)

and y (SY-strain) directions in the Kagome lattice, Fig. 37 shows the strained isoenergy spectra

subjected to pure shear deformation. One notices that, unlike the Lieb case subjected to the same

strain (Fig. 29) where PS-strain just causes a diagonal-like deformation in the isoenergies, the

strained Kagome isoenergies are not only diagonally deformed, but rather present a smoother

rotation than those corresponding to simple shear cases in Figs. 35 and 36. According to Eq. (2.9)

and Table 1 for the PS strain case and taking the primitive vectors for Kagome lattice, one finds

that (a′1)x ̸= (a′2)y and (a′1)y ̸= (a′2)x = 0. This geometric statement of the deformed lattice

vectors for each situation explains the nature of the difference between applying PS-strain in

Lieb (Fig. 29) and Kagome (Fig. 37) lattices, as well as between PS-strain and SX and SY-strains

in Kagome lattice.
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2.9 Hypothetical strain

Based on previous works that addressed the origin of strain-induced pseudovector

potentials (A) in strained graphene (OLIVA-LEYVA; NAUMIS, 2013; OLIVA-LEYVA; NAU-

MIS, 2015; OLIVA-LEYVA; WANG, 2017), we shall similarly analyze now the existence of

a non-null A quantity by comparing the obtained energy spectra of strained lattice structures

when one assumes strain-dependent and strain-independent hopping parameter cases. Let us

label them as real and hypothetical cases, respectively, for the case when one admits or not the

ε-dependence on t ′i j. Within this nomenclature, one notes that the previous sections have focused

on the real strain cases for six different types (UX, UY, BI, SX, SY, and PS) of strain, as shown

in Table 1, for the Lieb (Sec. 2.7) and Kagome (Sec. 2.8) lattices, assuming that strain changes

both the position of the lattice sites and the hopping parameters. Similarly, we investigate the

strain effects on the energy spectra of Lieb and Kagome lattices for all six studied strains but now

for the hypothetical case: UXh, UYh, BIh, SXh, SYh, and PSh strain. For each of these cases,

we shall identify when there are non-null strain-induced pseudovector potentials. However, we

already know that, because we apply only uniform strains, no predicted A will be able to generate

non-null strain-induced pseudomagnetic fields, since, in the case of uniform strains, one has that

∇×A = 0 (KITT et al., 2012; KITT et al., 2013; NAUMIS et al., 2017). Even so, the relevance

of understanding when there will be non-null strain-induced pseudovector potentials in uniform

strains is that the expression for A can be used in cases of non-uniform strains, replacing only the

matrix elements of the strain tensor [Eq. (3.5)] for their appropriate position-dependent expan-

sions (KITT et al., 2012; KITT et al., 2013; OLIVA-LEYVA; NAUMIS, 2013; OLIVA-LEYVA;

NAUMIS, 2015; NAUMIS et al., 2017; OLIVA-LEYVA; WANG, 2017). Moreover, our main

goal in this section is to identify, through an energetic comparison with real cases, the role of

lattice deformation, considering or not the changes in hopping. For instance, we examine the

emergence of pairs of doubly degenerate Dirac cones or triply degenerate energetic Dirac lines,

the breaking of the degeneracy of the triply degenerate Dirac cones, and how the nearly-flat band

deforms, if at all.

Concerning such hypothetical cases, what at first glance may seem like fanciful

cases, it can be artificially created atom by atom in a scanning tunneling microscope as reported

by Slot et al. (2019), Gardenier et al. (2020), and Broeke et al. (2021) for artificial electronic

lattices. This experimental platform allows to realize and characterize novel orbital-, position-

, and geometric-controlled artificial lattices by designing on Cu(111) surface (copper) with
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desired positions for the CO molecules/adatoms which enables to manipulate the geometry of

the emerged artificial lattice, the on-site energies, and the inter-site couplings.

Let us start our comparative analysis by the hypothetical uniaxial strains. Fig. 38

presents the isoenergies of the bottom, middle and upper bands for Lieb lattice subjected to

UXh and UYh strains. As expected for uniaxial strain, the applied deformation direction in real

space is the correspondent one distorted in reciprocal space as can be seen by comparing the

square-like shape of the BZ for the unstrained case (white line in the third row in Fig. 38) with

the rectangular shape with minor axis in the x and y-directions for UXh and UYh strain cases in

the fourth and fifth rows, and first and second rows in Fig. 38, respectively. In contrast to the

real UX and UY strain cases in Lieb lattice as shown in Figs. 22 and 23, respectively, here for

both UXh and UYh cases, one notices that: (i) the nearly-flat band does not deform, keeping the

same energy scale of the colorbar, and (ii) the deformed upper and lower bands in hypothetical

strained cases do not form the triply degenerate Dirac strain-induced line state.

Results for the hypothetical biaxial strain (BIh) for Lieb lattice are depicted in the

first (ε = 0.3) and the second (ε = 0.1) rows of Fig. 39, with the third row corresponding to the

unstrained case for reference. By comparing the strained BIh case (Fig. 39) with the strained real

BI case (Fig. 25), one notices that in both cases the aspect ratio in k-space of the bands is kept

undeformed by changing the strain amplitude, exhibiting a circular symmetry of the contour

lines close to the Fermi level, as discussed in Sec. 2.7, since both x and y directions in BI-strain

the bands are extended or squeezed equally for positive or negative ε , respectively. In contrast to

the real BI-strain case (Fig. 25), where the bands deform in such a way that the colorbar range is

clearly altered leading to a maximum energy scale of ten times greater than the unstrained case,

this is not the case for the Lieb lattice with BIh-strain, where the energy scale on the colorbar is

unchanged for any strain value and for any of the three bands. This is easily understood by the

fact that we are forcing changes in the lattice structure without considering any change in the

hopping parameters, which in turn does not allow changes in the energy scale of the bands.

The isoenergies for Lieb lattice under hypothetical PS strain (PSh), shown in the

fourth (ε = 0.1) and the fifth (ε = 0.3) rows of Fig. 39, demonstrate that, unlikely to the real

PS-strain case (Fig. 29), in the present case: (i) the triply degenerate Dirac point at Fermi energy

level does not split into two pairs of doubly degenerate Dirac points and (ii) the electron-hole

symmetry is nearly preserved, as noted by the fact that the lower and upper bands obey the

following Elower =−Eupper symmetry and the colorbar scale of the nearly-flat band for ε > 0
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remains nearly unchanged. Oppositely, one has for the PS-strain case that the lower and upper

energy bands are connected to the middle band by energetic lines that are perpendicular between

themselves, i.e. between the upper and middle bands and middle and lower bands, reinforcing

the symmetry-breaking argument for the real PS-strain case. This can be verified by comparing

the lower and upper isoenergies around the corners of the BZ (white dashed line) in the fifth and

sixth rows of Fig. 29 with the ones in the fourth and the fifth rows of Fig. 39 for the PSh-strain

case, where in the latter case such energetic line band inversion is absent; on the contrary, the

format of the isoenergies around the corners of the BZs is elliptically deformed in a similar

way for the lower and upper bands. Another very noticeable difference between the two cases

is that the hypothetical PS-strain case does not significantly change the energetic scale of the

bands with the deformation as happens in the real PS-strain case. Note in the fourth and the

fifth rows of Fig. 39 that the colorbar scale ranges for the lower and upper bands are unchanged

and the middle band it is just slightly altered for PSh-strain. This was already expected since

in the PSh case we are assuming hypothetical deformation with strain-independent hopping

parameters. Therefore, it demonstrates that the formation of the two pairs of doubly degenerate

Dirac cones, instead of the triply degenerate Dirac point, caused by a pronounced deformation of

the nearly-flat band, and the lack of electron-hole symmetry in the energetic bands of Lieb lattice

under PS-strain is a consequence of both changes in the atomic position and in the hopping

parameters. It is important to note that since the atomic positions and real lattice vectors are

changing due to strain application, the reciprocal lattice vectors and consequently the BZ must

change. Such changes are independent of the hopping parameters changed or not, that is, the

BZ will present the same deformation for both real and hypothetical cases. Note that for both

real and hypothetical PS-strain cases, the unstrained square-like BZ deforms into a six-sided

polygon, leading to the BZ with a hexagonal shape the larger the strain amplitude, which in turn

resembles the Kagome lattice BZ.

Let us now discuss the consequences on the energy spectrum of Lieb lattice due to

hypothetical simple shear strain applied along x and y-directions, i.e. the SXh and SYh cases.

Results are shown in the first (ε = 0.3) and second (ε = 0.1) rows for SYh-strain and in the

fourth (ε = 0.1) and fifth (ε = 0.3) rows for SXh-strain of Fig. 40. The isoenergies in the third

row correspond to the unstrained case for comparison. Similar consequences in the energetic

bands as those observed for the PSh-strain case (Fig. 39) are also verified here for Lieb lattice

subjected to simple shear strain for hypothetical case (Fig. 40), i.e.: the electron-hole symmetry
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is nearly preserved and the triple degeneracy of the Dirac point is maintained regardless of the

applied strain amplitude and direction. This agreement was already expected since the PSh-strain

case can be viewed as a combination of the SXh and SYh strains. In addition to these physical

statements concerning the differences and similarities raised for the PSh-strain in Fig. 39 in

comparison to the real PS-strain case in Fig. 29, here one also observes for hypothetical simple

shear strain (Fig. 40) the absence of the connecting energetic lines between the upper and middle

bands and middle and lower bands that are formed for high strain amplitudes when the triply

degenerate Dirac cone is divided into two. Such notable differences between the hypothetical

shear strain cases and the corresponding real cases can be seen comparing Figs. 26 and 27 for

SX and SY strains with Fig. 40 for SXh and SYh strains. Therefore, the effects of degeneracy

breaking and the non-conservation of the electron-hole symmetry in the energy spectrum of Lieb

lattice under simple and pure shear strains are due to the variation of the strain-induced hopping

parameters, indicating a non-null term for the vector potential A for the real cases of SX and SY

strains. We shall return to this discussed in more detail in Sec. 2.10.

The consequences on the energy spectra of the Kagome lattice by assuming the six

different types of hypothetical strain cases, namely UXh, UYh, BIh, SXh, SYh, PSh, similarly to

the ones mentioned for the real strain cases in Table 1, are present in Figs. 41, 42, and 43. Results

for hypothetical uniaxially strained Kagome lattice deformed along the y and x directions are

shown, respectively, in the first (ε = 0.3) and second (ε = 0.1) rows and in the fourth (ε = 0.1)

and fifth (ε = 0.3) rows of Fig. 41. Unlike the results for Kagome lattice subjected to real

uniaxial strains shown in Figs. 30 (UX-strain) and 32 (UY-strain), in the current hypothetical

case, one observes that: (i) the dispersive character of the bands and, consequently, the colorbar

scale ranges are kept unchanged for all the three bands, regardless the strain amplitude and

direction; (ii) the approaching of the Dirac cones (for ε > 0 and UXh case or for ε < 0 UYh

case) and the moving away of the Dirac cones (for ε < 0 and UXh case or for ε > 0 UYh case)

are less expressive here than in the real case. For instance, compare the location changes of

the BZ corners (white dashed curve) in the fifth row of Fig. 30 for UX case with ε = 0.3 and

the respective hypothetical case in the fifth row of Fig. 41, where in the former (real) case the

cones merge for high ε values, as emphasized in Fig. 31 (a); (iii) the energetic location of the

nearly-flat band is not altered in the presence of the hypothetical strain case, whereas in the real

UX and UY strain cases it approaches to the E = 0-level as ε increases, as depicted in Fig. 31

(b); and (iv) the upper and middle bands are energetically mirror images of each other and such
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symmetry is preserved regardless the strain amplitude and direction. Figs. 30 and 32 show that

such mirror symmetry between upper and middle bands is lacking in the real UX and UY strains

cases. Similarly to the hypothetical cases discussed previously for the Lieb lattice, here for the

Kagome lattice one has that the absence of the energy scale change of the bands, as well as

of the unaltered dispersion character of the bands; and the lacking of the energetic moving of

the nearly-flat band, are due to hypothetical strain does not change the values of the hopping

energies. Therefore, it leads us to state that the strain-induced asymmetry on the isoenergies of

the middle and upper bands and the deformation of the nearly-flat (lower) band in the Kagome

lattice subjected to real uniaxial strain [Figs. 30 and 32] are consequences of the hopping energy

variation when the lattice distances change subjected to strain. It is an indication that there is a

non-null vector pseudopotential term for real UX and UY strain cases for the Kagome lattice, as

we shall discuss more in Sec. 2.10.

In order to verify the combination effect of hypothetical uniaxial strains jointly

applied along both x and y directions on the dispersion relation of the Kagome lattice, we

present in the first (ε = 0.3) and second (ε = 0.1) rows of Fig. 42 the isoenergies of the lower,

middle, and upper bands for the deformed case subjected to hypothetical biaxial strain (BIh).

One observes that the BIh-strained bands’ curvatures and their aspect ratios in k-space are kept

unchanged, similarly to the real BI-strain case (Fig. 33), and in addition to that, likewise to each

separated hypothetical uniaxial strain case, i.e. to UXh and to UYh cases for Kagome lattice

shown in Fig. 41, one obtains upper and middle bands obeying an energetic mirror-symmetry

between themselves without any variation on the energetic scale range for any of the three bands

regardless the ε value. Such lack of energetic alteration in the BIh-strained Kagome energy

bands is equally explained, as in the previous hypothetical cases, in view of the no changes in

the hopping parameters to be considered.

Comparing the results obtained in the fifth and sixth rows of Fig. 37 for the real

PS-strained Kagome lattice with the ones shown in the fourth and fifth rows of Fig. 42 for the

hypothetical case (PSh), one notices that there is a drastic difference between such spectra for

the deformed lattices, in which in the hypothetical case almost no alteration with respect to the

undeformed lattice (third row of Fig. 42) is seen, except by the bands’ diagonal-like bending

subjected to strain. The most pronounced difference between the Kagome lattice under PS and

PSh strains is the non-formation of the energetic lines connecting the doubly degenerate points

located at the high symmetry points in the BZ caused by the flattening of the middle band. This
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is a consequence of the lack of bands’ curvature distortion in the PSh-strain case by keeping the

hopping unchanged.

Generally speaking, no pronounced modification on the dispersion relations of the

BIh and PSh Kagome strained cases, shown in Fig. 42, are observed when compared with the

unstrained case, but, on the other hand, the isoenergies of such hypothetical cases present huge

differences with respect to the real BI (Fig. 33) and PS (Fig. 37) strained Kagome cases. By such

comparison, we understand that the asymmetry of the middle and upper bands, together with the

deformation of the nearly-flat band, is also due to the variation of the hopping parameters with

the strain, indicating non-null vector pseudopotential terms for BI and PS strains in the Kagome

lattice.

As the last two investigated cases, in Fig. 43, we present the isoenergies of the

Kagome lattice subjected to SYh-strain (first and second rows) and SXh-strain (fourth and fifth

rows) for two strain amplitudes: ε = 0.1 and ε = 0.3. Similar remarks as the ones discussed in

the previous paragraph for the PSh-strain case in the Kagome lattice are also obtained here, as

expected since the pure shear strain can be viewed as a combination of the simple shear strains

jointly applied along the both x and y directions. By a direct comparison between Fig. 43 for

hypothetical shear strain SXh and SYh cases and Figs. 35 and 36 for SX and SY real cases,

respectively, one notices that regardless of the strain amplitude and applied direction, there is no

way to get the energetic line in the hypothetical (simple or pure) shear strain cases, as well as

the emergence of the doubly degenerate points and the breaking mirror symmetry between the

middle and upper bands. In this way, we can state that the variation of the hopping parameters

due to strain is the main cause of the drastic changes in the real pure and simple shear strained

energy spectra, indicating that a non-null vector pseudopotential term should be associated with

the real cases of SX and SY strains in Kagome lattice, as discussed in more details in Sec. 2.10.

In the next section, we shall justify in more detail the existence or not of a non-null

pseudovector potentials term associated with the energy spectra changes whose indication of

such existence arose when we compared the results obtained in cases of hypothetical and real

Kagome and Lieb strained lattices. Our previous discussions suggested us a non-null A term for

all investigated cases of real strain, except for the Lieb lattice subjected to UX and UY strains,

owing to the preservation of the nearly-flat band and the triple degenerate Dirac point at zero

energy level.
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Figure 38 – Contour plots of the lower (left panels), middle (middle panels), and upper (right
panels) energy bands for Lieb lattice under hypothetical UY (first and second rows) and UX
(fourth and fifth rows) strains applied along the y and x directions, i.e. UYh and UXh cases,
respectively, for two strain amplitudes: ε = 0.1 and ε = 0.3. The third row presents the non-strain
case for comparison.
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Figure 39 – The same as in Fig. 38, but now for the Lieb lattice under hypothetical BI and PS
strains, i.e. BIh and PSh cases, respectively.
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Figure 40 – The same as in Fig. 38, but now for the Lieb lattice under hypothetical SX and SY
strains, i.e. SXh and SYh cases, respectively.
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Figure 41 – The same as in Fig. 38, but now for the Kagome lattice under hypothetical UX and
UY strains, i.e. UXh and UYh cases, respectively.
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Figure 42 – The same as in Fig. 38, but now for the Kagome lattice under hypothetical BI and
PS strains, i.e. BIh and PSh cases, respectively.
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Figure 43 – The same as in Fig. 38, but now for the Kagome lattice under hypothetical SX and
SY strains, i.e. SXh and SYh cases, respectively.
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2.10 Strain-induced vector pseudopotentials

Consider the high symmetry point K (M) in the BZ of the Kagome (Lieb) lattice,

in which, for the unstrained lattice, it coincides with the position in the reciprocal space of the

Dirac cone, as shown in Figs. 19 and 20. By applying the hypothetical strain, we verified in

Sec. 2.9 that the Dirac cones’ locations always coincide with the positions of the high symmetry

points K′ (M′), being their (kx,ky)-coordinates redefined as the strain is applied to the Kagome

(Lieb) lattice. On the other hand, the results for real strain cases, presented in Secs. 2.7 and 2.8,

revealed that the Dirac points’ locations only coincide with the high symmetry points K′ (M′) if

there are no non-null vector pseudopotential terms (OLIVA-LEYVA; NAUMIS, 2013; KITT et

al., 2013; OLIVA-LEYVA; NAUMIS, 2015; OLIVA-LEYVA; WANG, 2017; NAUMIS et al.,

2017). In general, a A-term must be added to the K′ (M′) points to provide the correct positions

of the Dirac points, such as KD = K′+A (MD = M′+A). It is important to mention that, for the

Lieb lattice cases where Dirac points are split due to strain application, the previous discussion

is still valid, being MD point at the connecting midpoint distance in the reciprocal space between

the two doubly degenerate Dirac points (see Fig. 28).

Owing to check the variation of the Dirac point location in the reciprocal space and

thus to confirm the statements raised in the previous sections concerning the existence or not of a

non-null A term, we present in Fig. 44 (Fig. 45) a comparison between the energy spectra of

Lieb (Kagome) lattice for the case (i) without strain (ε = 0 - black solid curves), (ii) subjected to

real strain (ε = 0.1 - red dashed curves), and (iii) subjected to hypothetical strain (ε = 0.1 - blue

dotted curves). The dispersion relations are shown around the Dirac point in the vicinity of the

Fermi energy level for the Lieb lattice subjected to UX [Fig. 44 (a)], UY [Fig. 44 (b)], BI [Fig. 44

(c)], SX [Fig. 44 (d)], SY [Fig. 44 (e)] and PS [Fig. 44 (f)] strains. It is worth remembering that,

similarly to Secs. 2.7 and 2.8, for the real strain one considers the variation of both: the atomic

positions, a′1 and a′2 (see Sec. 2.3), and the hopping parameters t ′ ≡ t ′(ε) [Eq. (2.17)], whereas

for hypothetical strain case, one just assumes the variation of a′1 and a′2, keeping the hopping

parameters unchanged for any type of strain, i.e. one takes t ′ = t.

Analyzing the Dirac cone position in the reciprocal space for Lieb lattice under

uniaxial (a, b) and biaxial (c) strains in Fig. 44, one notes that the results for both hypothetical

(dotted blue curves) and real (dashed red curves) strain cases exhibit the Dirac point coinciding

with the M′ point. This means that such strain types in the Lieb lattice do not require correction

terms to make matching the position of the Dirac points and the M′ point of the strained reciprocal



105

lattice, and consequently, no vector pseudopotential is expected, i.e. A = 0 and then MD = M′.

These results, for the Dirac point position in the reciprocal space, for the Lieb lattice subjected to

uniaxial strains along the x [Fig. 44 (a)] end y [Fig. 44 (b)] directions are not similar to the ones

for UX and UY strained graphene, whereas the one in Fig. 44 (c) presents identical features as

those obtained for the BI-strained graphene, as reported by Kitt et al. (2012) (KITT et al., 2013).

As follows, we shall demonstrate that A = 0 in the Lieb lattice subjected to UX, UY,

and BI strains. For that, we follow a procedure similar to the one commonly used to find the

terms associated with strain-induced pseudovector potentials in strained graphene, as reported

by Pereira et al. (2009) and Oliva-Leyva e Wang (2017), since similarly to the graphene case,

here for uniaxially and biaxially strained Lieb lattice we have the crossing point of the Dirac

cone energetically located approximately at the E = 0 level, even under the application of strain.

This statement can be verified in Figs. 22, 23, and 24. By diagonalizing the Hamiltonian (2.11),

with off-diagonal matrix elements given by Eq. (2.12) and assuming the main diagonal matrix

elements as zero, one gets for Lieb lattice (θ = 90◦) the following expressions for the lower and

upper energy bands

E lower
upper

=∓2

√
t ′2BC cos2

(
k ·

a′1
2

)
+ t ′2BA cos2

(
k ·

a′2
2

)
. (2.23)

Setting Eq. (2.23) equal to zero, analytically associating the triple degenerate point with the

Dirac point (MD) where the upper and lower bands touch each other, one obtains

0 =

√
t ′2BC cos2(MD ·a1/2)+ t ′2BA cos2(MD ·a2/2), (2.24)

in which, based on Eq. (2.7), the strain dependence of the strained lattice vectors a′1,2 in Eq. (2.23)

is incorporated in the MD point in Eq. (2.24), once that MD ≈ [(I+ ε)−1]T · (M+A)≈M′+A

(OLIVA-LEYVA; NAUMIS, 2013; OLIVA-LEYVA; NAUMIS, 2015; OLIVA-LEYVA; WANG,

2017). Since the position of the Dirac point depends on the strain parameter ε , one can Taylor

expand MD around its unstrained value, that for the Lieb lattice is the M point, such that up to

second-order of the ε-parameter, one has

MD = M+A(1)+A(2)+O(ε3), (2.25)

where A(i) corresponds to the i−th order correction term of the MD point in relation to the

unstrained M point.

Likewise, once the hopping parameters also depend on the strain parameter ε [see

Eq. (2.17)], one can also Taylor expand t ′n around the unstrained hopping value t0 and in terms of
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the ε-parameter, in a similar way to Eq. (2.20), i. e.,

t ′n/t0 = 1+∆
(1)
n +∆

(2)
n +O(ε3), (2.26)

where ∆
(i)
n is the i−th order correction term of the t ′n-parameter in relation to the unstrained value

t0. Replacing the Eqs. (2.25) and (2.26) in Eq. (2.24), and considering expansions up to second

order, one obtains

0 =

√√√√ 2

∑
n=1

t ′2n cos2
(

MD ·
an

2

)

≈ t0

√√√√ 2

∑
n=1

[(
A(1)+A(2)+∆

(1)
n A(1)

)
· an

2

]2
, (2.27)

in which it was used that ∑n t0eiM·δn = 0. In Eq. (2.27), n = 1 and n = 2 refer to terms related to

connections BC and BA, respectively. By taking just the first order in Eq. (2.27), one gets

0 =

√√√√ 2

∑
n=1

[
A(1) · an

2

]2

=

√(
A(1) ·a1

2

)2

+

(
A(1) ·a2

2

)2

, (2.28)

and equivalently that√(
A(1)

x

)2
+
(

A(1)
y

)2
= 0. (2.29)

This means that A(1) = 0, i. e., there are no strain-induced vector pseudopotentials at the first

order generated by UX and UY strains in the Lieb lattice. We emphasize that the calculation to

obtain A(1) = 0 is not valid for other types of strains, since the initial condition for the derivation

was that the Dirac point (MD) remains located at zero energy level when the lattice is subjected

to strain. This only occurs for UX, UY, and BI strains in the Lieb lattice, as shown in Fig. 44.

To perform a similar investigation for the Lieb lattice under shear strain, we show in

Figs. 44 (d), 44 (e), and 44 (f) the dispersion relations for SX, SY, and PS strains, respectively,

around the Dirac point for the real and hypothetical cases. Such results for real strain Lieb lattice

(dashed red curves) demonstrate the presence of two false energy gaps around the M′ point,

between the upper and middle bands, and between the lower and middle bands. This is because

the Dirac cone (MD-point) for such real strain cases is not found at the M′-point, requiring a

strain-induced pseudovector potential term A to be added to M′ to match with the real position
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of the MD-point. The analytical derivation of such correction term is more complicated to be

obtained than the previously analyzed cases of UX and UY strains in the Lieb lattice and also

than the correspondent one for graphene since the Fermi level here does not remain fixed at zero

energy level, varying energetically as strain is applied. However, by a parallel analysis with those

made for the case of strained graphene (KITT et al., 2012; KITT et al., 2013; OLIVA-LEYVA;

WANG, 2017; NAUMIS et al., 2017), one expects a general dependence of the strain-induced

vector pseudopotentials of the Lieb lattice to be in the form A ∝ n(0,εxy + εyx), with ε i j given

by Eq. (3.5) and the n-parameter governing the hopping variation with the strain [Eq. (2.17)].

Figure 45 shows the dispersion relations of the Kagome lattice under UX [Fig. 45

(a)], UY [Fig. 45 (b)], BI [Fig. 45 (c)], SX [Fig. 45 (d)], SY [Fig. 45 (e)], and PS [Fig. 45

(f)] strains. Note that, for all hypothetical strain cases (blue dotted curves), the Dirac cone is

located at the K′ point. This holds true for the real BI case (red dashed curves in Fig. 45 (c)),

but on the other hand, it is not the case for others real strains, where one observes two apparent

energy gaps around the K′ point. This means that a correction A ̸= 0 term should be added to K′

point to match the Dirac point position in the reciprocal space and BI strained Kagome lattice

is the only analysed strain case that the vector pseudopotential term must be identically null,

similarly to the BI strained graphene (KITT et al., 2012; KITT et al., 2013). Our results lead us

to write an analytical strain-induced ε̄-dependent pseudovector potential for the Kagome lattice,

based on the model presented by Liu (2020), such as A ∝ n(εyy− εxx,εxy + εyx), where ε i j is

given by Eq. (3.5) and the n-parameter governs the strain-dependent hopping variation, given

by Eq. (2.17). It is worth mentioning that this A expression is the same as the one for strained

graphene, being this analogy possible due to the hexagonal symmetry shared by the Kagome and

graphene lattices.
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Figure 44 – Band structures around the Dirac point and in the vicinity of Fermi energy level of
the Lieb lattice subjected to the (a) UX, (b) UY, (c) BI, (d) SX, (e) SY, and (f) PS strains. Black
solid, blue dotted, and red dashed correspond to the unstrained (ε = 0), hypothetical (ε = 0.1),
and real strain (ε = 0.1) cases, respectively. t ′i j denotes the strained hopping energies between
s− s′ sublattices, given by Eq. (2.17) for the real strain case and by t ′i j = ti j for the hypothetical
strain and unstrained cases.
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Figure 45 – The same as in Fig. 44, but now for the Kagome lattice.
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2.11 Synthesis of strain effects on Lieb and Kagome lattices

In Tabs. 2 and 3, we present the main effects of strain on the energy spectrum of the

Lieb and Kagome lattices, respectively. We omit some geometric effects, such as the approach

or separation of cones and asymmetry in energy levels. Essentially, we list the effects related to

the variation of the hopping parameter as a function of strain.

Table 2 – Summary of strain effects on the Lieb lattice.
UX UY BI SX SY PS

Does it present an energy gap for any strain value? No No No No No No
Does the middle band remain nearly-flat? Yes Yes Yes No No No
Does the triply degenerate point still exist? Yes Yes Yes No No No
Are there two doubly degenerate Dirac points? No No No Yes Yes Yes
Is there the formation of a triply degenerate line? Yes Yes No No No No
Does it indicate a non-zero vector pseudopotential? No No No Yes Yes Yes

Table 3 – Summary of strain effects on the Kagome lattice.
UX UY BI SX SY PS

Does it present an energy gap for any strain value? No No No No No No
Does the lower band remain nearly-flat? No No Yes No No No
Does it indicate a non-zero vector pseudopotential? Yes Yes No Yes Yes Yes



111

2.12 Conclusions

In summary, we systematically studied the effects of strain on the electronic proper-

ties of the Lieb and Kagome lattices based on a recently proposed TB Hamiltonian reported by

Jiang et al. (2019c) that takes into account the interconversibility between the Lieb and Kagome

lattices by defining a transition lattice that maps such structures by one control parameter. For

this purpose, using the concept of a generic lattice (JIANG et al., 2019c; JIANG et al., 2019a;

LIM et al., 2020; CUI et al., 2020) and the standard deformation theory, we derived a more

general Hamiltonian including the strain tensor for studying in-plane deformation effects on the

energy spectra of such structures within the elastic and linear deformation regimes.

Initially, we discussed the evolution of the energy spectra of unstrained Lieb and

Kagome lattices in view of their lattice interconversibility. The effects that the variation of

the n-parameter, which governs the variation of hoppings parameters, causes on their energy

band structures are also investigated. We found that n = 8 is the appropriate value to resume

the known energy spectra of the unstrained (ε = 0) Lieb and Kagome lattices and, in turn, is

the one assumed here to investigate the strained cases (ε ̸= 0). We verified that for n < 8, the

effects of NNN become more evident, causing distortions on the energy spectra, in particular on

the nearly-flat band, making it more dispersive. In addition, for Lieb lattice the changes of the

n-parameter (taking n < 8) do not move the Dirac point, being located in M point, that is due

to the lattice configuration symmetry of the NNN sites. On the other hand, for Kagome lattice

and n < 8 the Dirac cone moves away from the K point in reciprocal space and the isoenergies

become clearly anisotropic.

In general, we observed some effects analogous to those known in the strained

graphene literature, such as the presence of anisotropic Fermi velocity, the approach or separation

of the Dirac cones, as well as the existence of strain-induced pseudovector potentials for some

types of strain. On the other hand, unlike graphene, the strain in the Lieb and Kagome lattices

never opens an energy gap. Instead, in general terms, we identified effects such as deformation

of the nearly-flat bands, division of the triple degenerate Dirac point in two doubly degenerated

Dirac points (in the Lieb lattice), as well as the appearance of non-null vector pseudopotential

terms in some types of strain.

The results showed that the nearly-flat band deforms without opening an energy gap

for strains applied in the Lieb and Kagome lattices. For the cases of UX, UY, and BI strains in

the Lieb lattice, the nearly-flat band deforms such that the original triple degenerate Dirac point
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splits into two doubly degenerated Dirac points that shift in opposite directions away from the

zero energy level.

In addition, for some cases of strain, we found that there are non-null strain-induced

pseudovector potentials, as SX, SY and PS strains in the Lieb lattice, and UX, UY, SX, SY and

PS strains in the Kagome lattice. Thus, we conclude that for the Lieb lattice A ∝ n(0,εxy + εyx),

with ε i j given by Eq. (3.5) and the n-parameter being the one that governs the variation of

hoppings parameters with the strain [Eq. (2.17)]. On the other hand, the general expression of

strain-induced pseudovector potentials for the Kagome lattice must be A ∝ n(εyy−εxx,εxy+εyx),

as demonstrated by Liu (2020).

Furthermore, we find that some strain effects in the energy spectra are due exclusively

to the variation of the hopping parameters with the strain. Such effects disappear for the

hypothetical case, i. e., when we assume that the strain tensor only modifies the configuration

of sites of the real lattices, keeping unchanged the hopping parameters. Examples of this are

the deformations in the nearly-flat band, the separation of the triple degenerate Dirac point in

two doubly degenerated Dirac points (in Lieb lattice), and the formation of the triple degenerate

Dirac band with the presence of a type-III Dirac point (critically tilted), combining nearly-flat

band and linear dispersions. On the other hand, some effects are seem to arise exclusively from

deformations in real space, which are maintained in hypothetical cases of strains, such as: the

approximation or separation of Dirac cones and the asymmetry in the energy level curves.

We believe that such a systematic study pertinent to the effects of different types

of strains applied in 2D lattices with the coexistence of nearly-flat and conical bands is very

interesting for understanding the defects’ effects on the optoelectronic properties of nearly-flat

band 2D systems. This is, the 2D materials’ electrical and optical properties and consequently

their band gap tunability and band deformations can be dictated by strain engineering, being one

of the various approaches for the proposes aiming to the application of 2D lattices for future 2D

device technologies.
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3 TOPOLOGICAL PHASE TRANSITIONS IN STRAINED LIEB-KAGOME LAT-

TICES

Lieb and Kagome lattices exhibit 2D TI behavior with Z2 topological classification

when considering ISO coupling. In this chapter, we used a general TB Hamiltonian with

a morphological control parameter θ to describe the Lieb (θ = π/2), Kagome (θ = 2π/3),

and transition lattices (π/2 < θ < 2π/3) while considering ISO coupling. As in the previous

chapter, here we systematically investigated the effects of shear and uniaxial strains, applied

along different crystallographic directions, on the electronic spectrum of these structures. Our

findings reveal that these deformations can induce TPT by modifying the structural lattice angle

associated with the interconversibility process between Lieb and Kagome, the amplitude of the

strain, and the magnitude of the ISO coupling. These transitions are confirmed by the evolution

of Berry curvature and by changes in the Chern number when the gap closes. Additionally,

by analyzing hypothetical strain scenarios in which the hopping and ISO coupling parameters

remain intentionally unchanged, our results demonstrate that the strain-induced phase transitions

arise from simultaneous changes in the hopping and ISO coupling parameters.

3.1 Motivation

In recent years, the investigation of topological phases of matter has emerged as

an important subarea of condensed matter physics (BERNEVIG, 2013; BANSIL et al., 2016).

Striking examples of these phases of matter are the materials known as TI, which are found to

display insulating behavior in bulk, whereas their surface supports conducting states (KANE,

2008; HASAN; KANE, 2010; MOORE, 2010). In 2D TI, the boundaries correspond to edges,

where non-trivial topological phases give rise to gapless edge states (KANE; MELE, 2005a;

KANE; MELE, 2005b). In general, non-magnetic insulators with preserved TR symmetry are

characterized by the Z2 invariant ν , where an odd ν value represents a 2D TI, i.e., quantum

spin Hall insulator (QSHI), and an even ν value represents a trivial insulator (KANE; MELE,

2005a; KANE; MELE, 2005b; FU; KANE, 2007; QI et al., 2008). Alternatively, the spin Chern

number is an efficient and convenient way to distinguish different non-trivial topological states;

incidentally, the Z2 invariant can also be calculated using the spin Chern numbers (FU; KANE,

2007).

TPTs are characterized by a change in the spin Chern number calculated for topo-

logical invariants of energy bands, typically observed as the closing and reopening of the band
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Figure 46 – (a) Lieb-Kagome lattice. a01 and a02 are the primitive vectors of the unstrained
lattice, and the shaded unit cell contains three non-equivalent sites: A (blue empty circle), B
(yellow filled circle), and C (green circle with a dot inside). The distance between NN sites
is a0, and the non-zero hopping parameters are represented by tAB, t ′AB, tBC, t ′BC, tAC, and t ′AC.
The ISO phase is positive (+iλ⟨i j⟩) for spin-up electrons moving along the blue (λ⟨i j⟩) or red
(λ⟨⟨i j⟩⟩) dotted line counterclockwise, since |eij| = +1. Otherwise, the ISO coupling phase is
negative (−iλi j) where |eij|=−1. (b-g) Comparison of the unit cell of the Lieb-Kagome lattice:
(i) unstrained (black solid lines), ε = 0, and (ii) strained (red dashed lines), ε > 0, subjected to:
(b) UX, (c) UY, (d) BI, (e) SX, (f) SY, and (g) PS strains.
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gap (MURAKAMI, 2007; MURAKAMI et al., 2007; HASAN; KANE, 2010). Theoretical and

experimental studies have demonstrated that TPT can be induced by manipulating the band struc-

ture through strain (AGAPITO et al., 2013; LIU; XU YONG E WU, 2014; PAL; WAGHMARE,

2014; QIAN et al., 2015; LI et al., 2015; KIRTSCHIG et al., 2016; WANG et al., 2017; KIBIS et

al., 2019; MUTCH et al., 2019; TESHOME; DATTA, 2019; JIANG et al., 2020; NICHOLSON

et al., 2021; BHATTARAI et al., 2024; XING et al., 2024), as well as through other means, such

as chemical substitution, pressure, and electron correlation effects (PESIN; BALENTS, 2010;

WAN et al., 2011; WRAY et al., 2011; XU et al., 2011; WU et al., 2013).

In this chapter, we present calculations that demonstrate that TPT can be driven by

uniaxial and shear strains in 2D Lieb (WEEKS; FRANZ, 2010; GOLDMAN et al., 2011b) ,

transitions (JIANG et al., 2019c; JIANG et al., 2019a; CUI et al., 2020; LIM et al., 2020; LANG

et al., 2023) and Kagome (GUO; FRANZ, 2009) lattices. These lattices are QSHI, exhibiting

characteristic behavior of TI with Z2 topological classification when the ISO coupling is taken

into account (WEEKS; FRANZ, 2010; TITVINIDZE et al., 2021).

In our study, we adopt an approach similar to Ch. 2, with the notable distinction

that we incorporate the ISO coupling into the Lieb-Kagome lattice. Our aim is to elucidate the
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topological evolution of the Lieb, transition, and Kagome lattices under the six types of strain

investigated in Ch. 2 (LIMA et al., 2023) and represented in Fig. 46 (b-g panels).

Previous studies have investigated TPT in Lieb (WANG et al., 2016; CHEN;

ZHOU, 2017; JIANG et al., 2020) or Kagome (LIU et al., 2012; BOLENS; NAGAOSA,

2019; TITVINIDZE et al., 2021; ZHAO et al., 2022; DENG et al., 2024; MOJARRO; UL-

LOA, 2023) lattices, as well as in both types (BEUGELING et al., 2012; ABLOWITZ; COLE,

2019; JIANG et al., 2019c). Typically, these studies consider the inclusion of ISO coupling

and have identified several methods to drive TPT, including: (i) adjusting the strength of a

real NNN hopping term (BEUGELING et al., 2012), (ii) incorporating RSO coupling with

spin-independent and spin-dependent staggered potentials (CHEN; ZHOU, 2017), (iii) tuning

the trimerization parameter by considering different hopping amplitudes on two distinct sets

of lattices (BOLENS; NAGAOSA, 2019), (iv) decomposing the lattice into three sublattices

that can move independently (ABLOWITZ; COLE, 2019), (v) employing artificial gauge fields

represented as spin-dependent Peierls phases (TITVINIDZE et al., 2021), (vi) pressure (DENG

et al., 2024) and (vii) by applying mechanical strain to these lattices (JIANG et al., 2020; ZHAO

et al., 2022; MOJARRO; ULLOA, 2023; XING et al., 2024).

Jiang et al. (2020) demonstrated TPT in phthalocyanine-based metal-organic frame-

works (MPc-MOFs) with a Lieb band structure via biaxial strain engineering. Similarly, Zhao

et al. (2022) showed that weaker ISO coupling-induced TPT under uniaxial strain. Mojarro

e Ulloa (2023) demonstrated theoretical TPT in Kagome lattices under uniaxial strain, RSO

coupling, and site asymmetries. More recently, Xing et al. (2024) observed topological edge

state modulation in 2D ferromagnetic V3F8 under uniaxial strain, highlighting the electronic

Kagome lattice’s signature transition.

However, it is important to note that these previous studies did not employ a versatile

generic TB model to study transition lattices or conduct a comparative analysis of the effects of

strain on the TPT of Lieb and Kagome lattices. Furthermore, they primarily focused on uniaxial

or biaxial strains and did not explore the full range of strain types that we have incorporated in

our model. Thus, to the best of our knowledge, there is a lack of systematic studies exploring the

potential TPT driven by uniaxial and shear strains in the Lieb, transition, and Kagome lattices in

the existing literature.

The chapter is structured as follows: In Sec. 3.2, we introduce the TB model with

ISO coupling for the Lieb-Kagome lattice under strain. In Sec. 3.3 the comparison with previous
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models for unstrained lattices, and the evaluation of the Chern numbers in Sec. 3.4. Sec. 3.5 and

Sec. 3.6 are dedicated to discussing TPT in the unstrained and strained Lieb-Kagome lattice,

respectively. In both sections, we present the closing and reopening of the full1 and local2 band

gaps for 1/3 and 2/3 filling,3 the evolution of the Berry curvature, and changes in the spin

Chern numbers as evidence of TPT. For completeness, as evaluated in the previous chapter, in

Sec. 3.7 we discuss the results for hypothetical strains. Finally, in Sec. 3.8, we provide the main

concluding remarks.

3.2 Tight-binding model with intrinsic spin-orbit coupling

The general TB Hamiltonian that applies to strained Lieb-Kagome lattices presented

in this chapter reads

Ĥ = Ĥ0 + ĤISO, (3.1)

with

Ĥ0 = ∑
i, j;σ

ti j ŝ
†
i,σ ŝ j,σ +h.c. (3.2a)

ĤISO = ∑
i, j;σ ,σ ′

iλi j ŝ
†
i,σ

(
ei j ·σσσ ′

)
ŝ j,σ ′+h.c., (3.2b)

Here, ŝi,σ (ŝ†
i,σ ) represents the annihilation (creation) operator for a particle on-site i with spin σ .

The first term, Ĥ0, describes the hoppings considered in our TB model (see Sec. 2.4). The second

term, ĤISO, represents the ISO coupling Hamiltonian; in this term, we define the unit vector

ei j =
(
dik×dk j

)
/
∣∣dik×dk j

∣∣ in terms of the bond vectors dik and dk j, connecting the sites i and

j through the unique intermediate site k (BEUGELING et al., 2012). Finally, σ = (σx,σy,σz)

represents the Pauli matrices.
1 A full band gap refers to an energy range in an electronic structure where no electronic states can exist. This

gap separates the valence band from the conduction band for all k. This means that the maximum energy of the
bottom band E1 is always less than the minimum energy of the middle band E2, guaranteeing a full gap at 1/3
filling different from zero for all k values in the BZ, i.e., ∆12 ̸= 0. Similarly, when the maximum energy of the
middle band E2 is always less than the minimum energy of the upper band E3, we ensure a full gap at 2/3 filling
different from zero for all k values in the BZ, i.e., ∆23 ̸= 0.

2 The local band gap refers to the minimum separation between the bands at each individual point in momentum
space. Thus, a non-null local band gap indicates that the bands are separated at each point in the BZ without
band crossing. However, the minimum energy of the upper [middle] band is lower than the maximum energy of
the middle [bottom] band at different points in momentum space, leading to an indirect band gap at 2/3 [1/3]
filling.

3 The terms 1/3 filling and 2/3 filling refer to the proportion of the electronic states that are occupied in the bands.
At 1/3 filling, one-third of the available electronic states in the system are occupied, typically filling the lower
energy bands. At 2/3 filling, two-thirds of the available electronic states are occupied, filling both the lower and
middle energy bands.
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In 2D lattices, hopping processes are naturally restricted to in-plane motions, making

the ISO coupling effectively proportional to σz. Thus, Eq. (3.2b) can be written as (JIANG et al.,

2019c)

ĤISO = ∑
i, j;σ ,σ ′

ei jiλi j ŝ
†
i,σ σzŝ j,σ ′+h.c.. (3.3)

We obtain ei j =±1, where the positive value is assigned to the case where the electron shows a

leftward deviation (counterclockwise direction) and the negative value when it shows a rightward

deviation (clockwise direction). The λi j represent the amplitudes of the ISO coupling, while ti j

are the hopping parameters depicted in Fig. 46 (a), obeying the Eq. (2.17) (LIMA et al., 2022;

LIMA et al., 2023),

ti j = te−n(ai j/a0−1)a0/ai j, n = 8, (3.4)

where t (= 1.0 eV) is the value of the hopping parameter corresponding to the distance between

NN sites in the unstrained Lieb-Kagome lattice, i.e., a0, and ai j is the distance between the sites

i and j of types A, B, or C in the strained lattice, calculated by aij = (I+ ε)a0,ij, with

ε =

 εxx−σpεyy εxy

εyx εyy−σpεxx

 , (3.5)

where σp = 0.1 denotes the Poisson ratio (PEREIRA et al., 2009), and the εi j values (with

i, j = x,y) are summarized in Table 1 for all six investigated deformations, which are depicted in

Fig. 46 (b-g).

From Eq. (3.4) it is seen that the value of n controls the magnitude of the hopping

parameters. For a given distance between sites, the corresponding hopping value will decrease

(increase) as the value of the n-parameter increases (decreases). As discussed by Lima et al.

(2023), the effects of sites more distant than the NN sites are suppressed for n≥ 8 and intensified

for n < 8. With n = 8, we obtain both nearly-flat bands and smooth transitions between the two

lattices (JIANG et al., 2019c), thus finding a good approximation for the TB model of NN sites

in the specific cases of the Lieb and Kagome lattices (JIANG et al., 2019c; LIMA et al., 2023).

Similarly, we consider λi j given by (JIANG et al., 2019c)

λi j = λISOe−(di j/a0−1)
n

a0/di j, n = 8, (3.6)

with λISO = λ t, where λ governs the strength of ISO coupling. We generally consider λ = 0.2.4

We admit n = 8 in agreement with the expression that governs the hopping parameters [Eq. (3.4)].
4 We adopt λ = 0.2 for convenience, as this value provides clear gaps in the Lieb-Kagome energy spectrum,

as seen in Fig. 48. Smaller values of λ would result in smaller, less visible gaps. For completeness, we will
investigate the evolution of the energy gaps as a function of varying λ in Fig. 54.
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In our model, we consider the hopping parameters corresponding to neighboring sites

located by RBA
± = ±a2/2, R′BA

± = ±(a2/2−a1), RBC
± = ±a1/2, R′BC

± = ±(a1/2−a2),

RAC
± =±(a1−a2)/2, and R′AC

± =±(a1 +a2)/2, as displayed in Fig. 47 (a). Thus, applying

a Fourier transformation to the real-space Hamiltonian [Eq. (3.2)],

ŝi,σ=
1√
N∑

k
eik·ri ŝk,σ , (3.7a)

ŝ†
i,σ=

1√
N∑

k
e−ik·ri ŝ†

k,σ , (3.7b)

we find the Hamiltonian in momentum space (LIMA et al., 2022),

Ĥ = ∑
k

Ψ̂
†
kH(k)Ψ̂k, (3.8)

with

H(k) = H0(k)⊗12×2 +HISO(k)⊗σz, (3.9)

where Ψ̂k ≡ (Ψ̂k,↑,Ψ̂k,↓)
T with Ψ̂k,σ ≡ (âk,σ , b̂k,σ , ĉk,σ )

T , where H0(k) and HISO(k) are 3×3

matrices presented below (BEUGELING et al., 2012).

The H0(k) is given by (see Sec. 2.4)

H0(k) =


HAA

0 (k) HAB
0 (k) HAC

0 (k)

HBB
0 (k) HBC

0 (k)

HCC
0 (k)

 , (3.10)

where

HAB
0 (k) = 2tAB cos(k ·a2/2)+2t ′AB cos [k · (a2/2−a1)] , (3.11a)

HBC
0 (k) = 2tBC cos(k ·a1/2)+2t ′BC cos [k · (a1/2−a2)] , (3.11b)

HAC
0 (k) = 2tAC cos [k · (a1−a2)/2]+2t ′AC cos [k · (a1 +a2)/2] . (3.11c)

The lower triangle of the matrix should be filled accordingly for a Hermitian matrix, which is

not shown. The hopping parameters ti j (t ′i j) are shown in Fig. 46 (a), whose values are governed

by Eq. (3.4).

As in the previous chapter, the on-site energies and the hopping parameters be-

tween equivalent sites are considered null throughout this thesis, such that HAA
0 (k) = HBB

0 (k) =

HCC
0 (k) = 0.
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Figure 47 – (a) Transition lattice - D2h with θ = 105◦, (b) Lieb lattice - D4h (θ = 90◦), and
(c) Kagome lattice - D6h (θ = 120◦). The primitive vectors are a1 and a2, and the unit cells
contain three non-equivalent sites A (blue empty circle), B (yellow filled circle), and C (green
circle with a dot inside). Neighboring sites are denoted by R±BA =±a2/2 (solid black vectors),
R′±BA =±(a2/2−a1) (green dot-dashed vectors), R±BC =±a1/2 (solid black vectors), R′±BC =

±(a1/2−a2) (blue dotted vectors), R±AC =±(a1−a2)/2 (dashed orange vectors), and R′±AC =
±(a1 +a2)/2 (red short dashed vectors). (b-c) The ISO phase is positive (+iλ⟨i j⟩) for spin-up
electrons moving counterclockwise along the blue solid (+iλ⟨i j⟩), red dashed (+iλ⟨⟨i j⟩⟩), or
green dot-dashed (+iλ⟨⟨⟨i j⟩⟩⟩) lines, where |eij| = +1. Conversely, the ISO coupling phase is
negative (−iλi j) where |eij|=−1. In Lieb and transition lattices, the term (+iλ⟨i j⟩) remains in the
Lieb-Kagome lattice Hamiltonian as complex hoppings connecting NN sites for completeness,
aimed at observing their effects on the energy evolution when transitioning from Kagome to
Lieb, through stages of evolution. The terms (+iλ⟨⟨⟨i j⟩⟩⟩) are effectively null in Lieb lattice, due
to Eq. (3.6), but are retained in the Lieb-Kagome model as they become (+iλ⟨⟨i j⟩⟩) in Kagome
lattice.
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The HISO(k) is given by

HISO(k) =


0 HAB

ISO(k) HAC
ISO(k)

0 HBC
ISO(k)

0

 , (3.12)
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with

HAB
ISO(k) =−2iλAB cos(k ·a2/2)+2iλ ′AB cos [k · (a2/2−a1)] , (3.13a)

HBC
ISO(k) =−2iλBC cos(k ·a1/2)+2iλ ′BC cos [k · (a1/2−a2)] , (3.13b)

HAC
ISO(k) = 2iλAC cos [k · (a1−a2)/2]−2iλ ′AC cos [k · (a1 +a2)/2] . (3.13c)

The λi j (λ ′i j) correspond to the distances between the sites located by Rij
± (R′ij

±), represented

in Fig. 47.

The Hamiltonian matrix H(k) consists of two uncoupled blocks corresponding to

the spin-up and spin-down projections, related by TR symmetry, i.e., H↓ISO(k) =
[
H↑ISO(−k)

]∗
.

Due to the TR and inversion symmetries, the ISO coupling is unable to lift the spin degeneracy.

For the calculation of the energy spectrum, it thus suffices to restrict our attention to one spin

component, while keeping in mind that the resulting bands are doubly degenerate (BEUGELING

et al., 2012).

3.3 Comparison with previous models for unstrained lattices

Due to the generality of our model, which includes deformations in the lattices by

variation of θ and application of strain, we admit dik and dk j equal to RBA
± (=±a2/2), RBC

± (=

±a1/2) and RAC
± (=±(a1−a2)/2). Thus, we evaluated the amplitudes of ISO coupling λi j

given by Eq. (3.6), with di j equal to module of RBA
± (= ±a2/2), R′BA

± [= ±(a1−a2/2)],

RBC
± (=±a1/2), R′BC

± [=±(a2−a1/2)], RAC
± [=±(a1−a2)/2], R′AC

± [=±(a1 +a2)/2]

[see Fig. 47 (a)]. Specifically, we note that: (i) RBA
± and RBC

± provides the amplitude of

ISO coupling calculated with di j = {|RAC
±|, |R′AC

±|}, (ii) RBA
± and RAC

± corresponds to

di j = {|RBC
±|, |R′BC

±|}, and (iii) RBC
± and RAC

± leads to di j = {|RBA
±|, |R′BA

±|}.

Previous theoretical models for the particular cases of unstrained Lieb and Kagome

lattices usually admitted dik and dk j vectors that localize only NN sites, such that di j connect

only NNN sites (GUO; FRANZ, 2009; GOLDMAN et al., 2011b; BEUGELING et al., 2012).

In order to better compare the present model with previous works, we express the Hamiltonian

H0(k) and HISO(k) in terms of π/2≤ θ ≤ 2π/3, for the unstrained Lieb-Kagome lattice,
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HAB
0 (k) = 2tAB cos[−kxa0 cosθ + kya0 sinθ ]+2t ′AB cos[kxa(1+ cosθ/2)− kya0 sinθ ], (3.14a)

HBC
0 (k) = 2tBC cos(kxa0)+2t ′BC cos[−kxa(1/2+ cosθ)+ kyasinθ ], (3.14b)

HAC
0 (k) = 2tAC cos[kxa0(1+cosθ)−kya0 sinθ ]+2t ′AC cos[kxa0(1−cosθ)+kya0 sinθ ], (3.14c)

and

HAB
ISO(k) = 2i

[
−λAB cos(−kxa0 cosθ+kya0 sinθ)+λ

′
AB cos(−kxa(1+cosθ/2)+kya0 sinθ)

]
,

(3.15a)

HBC
ISO(k) = 2i

[
−λBC cos(a0kx)+λ

′
BC cos(kxa(1/2+cosθ)−kyasinθ)

]
, (3.15b)

HAC
ISO(k) = 2i

[
λAC cos(kxa0(1+cosθ)−kya0 sinθ)−λ

′
AC cos(kxa0(1−cosθ)+kya0 sinθ)

]
,

(3.15c)

where we use a0 = a/2 and a1 = a(1,0) and a2 = a(−cosθ ,sinθ) for the cases of unstrained

lattices, i.e, with ε = 0.

For the Lieb lattice with θ = π/2, the Hamiltonian H0,L becomes

HAB
0,L(k) = 2tAB cos(kya0)+2t ′AB cos [a(kx− ky/2)] , (3.16a)

HBC
0,L(k) = 2tBC cos(kxa0)+2t ′BC cos [a(ky− kx/2)] , (3.16b)

HAC
0,L(k) = 2tAC cos [a0(kx− ky)]+2t ′AC cos [a0(kx + ky)] , (3.16c)

and the Hamiltonian of ISO coupling, HISO,L, expressed by the elements:

HAB
ISO,L(k) = 2i

[
−λAB cos(kya0)+λ

′
AB cos[a(kx− ky/2)]

]
, (3.17a)

HBC
ISO,L(k) = 2i

[
−λBC cos(a0kx)+λ

′
BC cos[a(ky− kx/2)]

]
, (3.17b)

HAC
ISO,L(k) = 2i

[
λAC cos[a0(kx− ky)]−λ

′
AC cos[a0(kx + ky)]

]
. (3.17c)

Equations (3.16) and (3.17) show that in this model the unstrained Lieb lattice [see

Fig. 47 (b)], i.e. with θ = π/2 and ε = 0, has dik and dk j that are (i) NN sites (RBA
±, RBC

±)

and (ii) NNN sites (RAC
±, R′AC

±), such that di j connect (i’) NNN sites (RAC
±, R′AC

±), but

also connect (ii’) fourth NN sites (R′BA
±, R′BC

±). The hopping parameters between third

NN correspond to equivalents sites that are disregarded in our model together with the on-site

energies, similarly to the models of Beugeling et al. (2012) and Jiang et al. (2019c). Firstly,

since Eq. (3.4) automatically makes tAC, t ′AC, t ′AB and t ′BC negligible, similar to TB models of first

neighbors for these particular case, i.e. with only tAB and tBC significantly non-null. Secondly,
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due to the fact that Eq. (3.6) makes λ ′AB and λ ′BC negligible as well, while only λAC and λ ′AC

are significant in accordance with previous models for these particular case (GOLDMAN et

al., 2011b; BEUGELING et al., 2012). The λAB and λBC are spin orbit amplitudes of NN sites,

included in the present model for completeness. Therefore, assuming tAC = t ′AC = t ′AB = t ′BC = 0,

λ ′AB = λ ′BC = 0, knowing that tAB = tBC = t and λAC = λ ′AC = λISO, and disregarding the ISO

coupling parameters of NN sites (λAB = λBC = 0), the Hamiltonian H0,L and HAB
ISO,L from the

Goldman et al. (2011b) and Beugeling et al. (2012) result, given by

HAB
0,L(k) = 2t cos(kya0), (3.18a)

HBC
0,L(k) = 2t cos(kxa0) , (3.18b)

HAC
0,L(k) = 0. (3.18c)

and

HAB
ISO,L(k) = 0, (3.19a)

HBC
ISO,L(k)= 0, (3.19b)

HAC
ISO,L(k)=2iλISOcos [a0(kx−ky)]−2iλISO cos [a0(kx + ky)] . (3.19c)

For the case of unstrained Kagome lattice with θ = 2π/3 and ε = 0 (see Fig. 47c)

we obtain the Hamiltonian H0,K given by

HAB
0,K(k)=2tABcos

[
a0/2(kx +

√
3ky)

]
+2t ′ABcos

[
a0/2(3kx−

√
3ky)

]
, (3.20a)

HBC
0,K(k)=2tBCcos(a0kx)+2t ′BCcos

(√
3a0ky

)
, (3.20b)

HAC
0,K(k)=2tACcos

[
a0/2(kx−

√
3ky)

]
+2t ′ACcos

[
a0/2(3kx+

√
3ky)

]
, (3.20c)

and HISO,K(k), whose elements are given by

HAB
ISO,K(k)=−2iλABcos

[
a0/2(kx +

√
3ky)

]
+2iλ ′ABcos

[
a0/2(3kx−

√
3ky)

]
, (3.21a)

HBC
ISO,K(k)=−2iλBCcos(a0kx)+2iλ ′BCcos

(√
3a0ky

)
, (3.21b)

HAC
ISO,K(k)=2iλACcos

[
a0/2(kx−

√
3ky)

]
−2iλ ′ACcos

[
a0/2(3kx+

√
3ky)

]
. (3.21c)

So, the generic model for this is case entails dik and dk j that are NN sites (RBA
∓, RBC

±, RAC
±),

such that di j connect: (i) NNN sites (R′BA
±, R′BC

±,R′AC
±) and (ii) NN sites (RAC

±, RBA
±,

RBC
±). Explicitly, this last point occurs because the (i) dik = RAB

± ≡ RBA
∓ and dk j = RBC

±

correspond to di j = RAC
±; (ii) dik = RBA

± and dk j = RAC
± correspond to di j = RBC

±; and (iii)

dik = RBC
± and dk j = RCA

± ≡ RAC
∓ correspond to di j = RBA

±.
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Beugeling et al. (2012) employs a theoretical model that considers only the ISO

coupling amplitude corresponding to di j that connect NNN sites on Kagome lattice, i.e. λ⟨⟨i j⟩⟩ =

{λ ′AB,λ
′
BC,λ

′
AC}, as usually accepted to determine the ISO coupling contribution in Hamiltonian

(GUO; FRANZ, 2009; BEUGELING et al., 2012). On the other hand, Liu et al. (2010) admitted

only di j that connect NN sites, i.e. λ⟨i j⟩, and the usual amplitudes λ⟨⟨i j⟩⟩ are neglected for the

unstrained Kagome lattice. Jiang et al. (2019c) also considers only λ⟨i j⟩, but differently of Liu et

al. (2010), it is admitted λAB = λBC = 0, i.e, only λAC is non-null. The present model includes

both terms that are admitted separately by Liu et al. (2010), Beugeling et al. (2012), Jiang et al.

(2019c). Therefore, naming tAC = tAB = tBC = t and t ′AC = t ′AB = t ′BC = t ′, we obtain exactly the

Hamiltonian H0,K of the Guo e Franz (2009) and Beugeling et al. (2012),

HAB
0,K(k)=2tcos

[
a0/2(kx +

√
3ky)

]
+2t ′cos

[
a0/2(3kx−

√
3ky)

]
, (3.22a)

HBC
0,K(k)=2tcos(a0kx)+2t ′cos

(√
3a0ky

)
, (3.22b)

HAC
0,K(k)=2tcos

[
a0/2(kx−

√
3ky)

]
+2t ′cos

[
a0/2(3kx+

√
3ky)

]
, (3.22c)

Assuming t ′ = 0 we find the H0,K of Liu et al. (2010). Furthermore, considering

λAB = λBC = λAC = 0 and naming λ ′AB = λ ′BC = λ ′AC = λISO we obtain exactly the Hamiltonian

HISO,K of Guo e Franz (2009) and Beugeling et al. (2012),

HAB
ISO,K(k)=2iλISOcos

[
a0/2(3kx−

√
3ky)

]
, (3.23a)

HBC
ISO,K(k)=2iλISOcos

(√
3a0ky

)
, (3.23b)

HAC
ISO,K(k)=−2iλISOcos

[
a0/2(3kx+

√
3ky)

]
. (3.23c)

On the other hand, admitting λ ′AB = λ ′′BC = λ ′AC = 0 and naming λAB = λBC = λAC =

λISO we obtain exactly the Hamiltonian HISO,K of Liu et al. (2010),

HAB
ISO,K(k)=−2iλISOcos

[
a0/2(kx +

√
3ky)

]
, (3.24a)

HBC
ISO,K(k) =−2iλISO cos(a0kx) , (3.24b)

HAC
ISO,K(k)=2iλISOcos

[
a0/2(kx−

√
3ky)

]
. (3.24c)

Having discussed the correspondences between the generic Hamiltonian we devel-

oped and those presented in the literature for unstrained Lieb or Kagome lattices, it is worth

mentioning that the configuration C↑ = (−1,2,−1) obtained for the Kagome lattice corroborates
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the models presented by Beugeling et al. (2012) and Guo e Franz (2009) which consider only

NNN ISO coupling in the Kagome lattice. This means that the ISO coupling amplitudes of NN

sites (λ⟨i j⟩ = λAC and λAB and λBC) do not modify the C↑ = (−1,2,−1) configuration of the

unstrained Kagome lattice if the ISO coupling amplitudes of NNN sites being considered are

λ⟨⟨i j⟩⟩ = {λ ′AC,λ
′
AB,λ

′
BC}.

Jiang et al. (2019c) argue that the Chern numbers for the unstrained Lieb-Kagome

lattice remain invariant for values of θ ranging from θ = π/2 (Lieb lattice) to θ = 2π/3 (Kagome

lattice). Our results do not agree that that statement is always valid in the Lieb and Kagome

lattices since the Chern numbers for the three bands of the unstrained Lieb and Kagome lattices

are, in fact, different if λAB = λBC = 0. That shows that one cannot neglect the terms λ⟨⟨i j⟩⟩

in the calculation of the energy spectrum of the Kagome lattice if one seeks to compare it to

the Lieb spectra with λ⟨⟨i j⟩⟩, as done by Jiang et al. (2019c). Thus, if the goal is to assess the

possibility of phase transitions due to angle variations, then one must consider both λ⟨⟨i j⟩⟩. Thus,

our calculations show that there is a change in the Chern numbers of the three energy bands of

the unstrained Lieb-Kagome lattice when θ is varied from θ = π/2 to θ = 2π/3, such that the

unstrained Lieb and Kagome lattices have different Chern numbers per energy band.

3.4 Evaluation of the Chern Numbers

The Chern number Cn associated to the band n is an integer topological index defined

as the integral of the Berry curvature over the BZ (BEUGELING et al., 2012; VANDERBILT,

2018)

Cn =
1

2π

∫
BZ

dk
[
∂kxAy

n(k)−∂kyAx
n(k)

]
, (3.25)

where Aµ
n = −i

〈
ψn,k

∣∣∂kµ

∣∣ψn,k
〉

(µ = {x,y}) is the Berry connection, defined in terms of the

eigenstates |ψn,k⟩ (see App. A). Using the Kubo formula (HOR et al., 2009; XIA et al., 2009;

HSIEH et al., 2009; VANDERBILT, 2018; JIANG et al., 2019c)

Cn =
1

2π

∫
BZ

d2kΩ(k) , Ω(k) = ∑
n

fnΩn (k) , (3.26)

Ωn (k)=−∑
n′ ̸=n

2Im

〈
ψn,k

∣∣v̂x
∣∣ψn′,k

〉 〈
ψn′,k

∣∣v̂y
∣∣ψn,k

〉(
En′,k−En,k

)2 , (3.27)

where ψn,k and En,k are the eigenstates and eigenvalue of band n, respectively. fn is the Fermi

distribution function, and v̂µ (µ = {x,y}) is the velocity operator.
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Degeneracies in the spectrum are forbidden in order for the Chern number to be well

defined. The spin degeneracy problem of the three bands in this model is solved by projecting

the system onto a single spin component. Thus, we obtain separate Chern numbers for the

spin-up and the spin-down bands, which we write as C↑n and C↓n , respectively. Thus, the nontrivial

topology of the systems can be further confirmed through the calculation of the topological

invariant, i.e., the spin Chern number by band n, Cs
n = C↑n −C↓n (BEUGELING et al., 2012;

JIANG et al., 2019c).

Alternatively, the spin Chern number is an efficient and convenient way to distinguish

different non-trivial topological states, incidentally, the Z2 invariant can also be calculated using

the spin Chern numbers (FU; KANE, 2007).

The spin-up Chern numbers are denoted as C↑= (C↑lower,C
↑
middle,C

↑
upper) for the lower,

middle, and upper bands, respectively. For the spin-down component, we define C↓ =−C↑. This

relationship allows us to straightforwardly derive the Chern numbers for λISO < 0 from those for

λISO > 0 by swapping the roles of spin-up and spin-down.

Since the Hamiltonian is diagonal in spin space, the spin Chern number is defined as

Cspin =C↑−C↓ (SHENG et al., 2006). Due to the symmetry between the two spin components,

it follows that Cspin = 2C↑ (GOLDMAN et al., 2011b; BEUGELING et al., 2012).

By virtue of the bulk-boundary correspondence, the spin Hall conductivity (in units

of the spin conductivity quantum e/4π) is given by

σSH = ∑
s:εs<EF

Cspin,s, (3.28)

where the summation includes all filled bands (EF represents the Fermi energy). The Z2 index

ν , defined as 0 for an even and 1 for an odd number of edge-state pairs, is then related to the

spin Hall conductivity by (SHENG et al., 2006; FUKUI; HATSUGAI, 2007; GOLDMAN et al.,

2011b; BEUGELING et al., 2012)

ν =
σSH

2
mod 2. (3.29)

An alternative approach to determine the Chern numbers and the spin Hall conduc-

tivities involves diagonalizing the system in a ribbon geometry and counting the number of edge

states that appear inside the bulk gaps (HATSUGAI, 1993; FUKUI et al., 2005; VANDERBILT,

2018). Remarkably, for systems that preserve inversion symmetry, the Z2 invariant can also be

calculated using the parity eigenvalues at the TR symmetric momenta (FU; KANE, 2007). The
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advantage of calculating the spin Chern numbers, as we have done here, is that they are directly

related to the quantized spin Hall conductivity in the band gaps (BEUGELING et al., 2012).

3.5 Phase transition in the unstrained Lieb-Kagome lattice

3.5.1 Lieb-Kagome lattice with intrinsic spin-orbit coupling

In this section, we investigate TPT on the unstrained Lieb-Kagome lattice. For this,

we initially analyze the effects of ISO coupling on the energy spectra of the Lieb, transition

(θ = 105◦), and Kagome lattices. In Fig. 48, we compare the energy bands obtained in the case

without ISO coupling, λISO = 0 (panels d-f), with all ISO coupling parameters different from

zero, including the NN ISO coupling, λAB ̸= 0, λBC ̸= 0 (panels g-l), and considering these as

zero, λAB = λBC = 0 (panels j-l).

Let us first consider λISO = 0. For the Lieb and Kagome lattices, we identify the

well-known coexistence of Dirac bands and nearly-flat bands. In the Lieb lattice, the nearly-flat

band is located in the middle of the Dirac bands, while in the Kagome lattice, it is situated at the

bottom (top) of the energy spectrum for hopping cases of t > 0 (t < 0), as shown in Fig. 49. This

effect of shifting the location of the nearly-flat bands in Lieb-Kagome lattices can be understood

by considering the local magnetic flux (OHGUSHI et al., 2000; GUO; FRANZ, 2009; JIANG et

al., 2019c). On the other hand, in the band structure of the transition lattices, the nearly-flat band

has disappeared, as the lattice distortion breaks the required symmetry for flat band formation

in the Lieb and Kagome lattices. This is attributed to the destructive interference or phase

cancellation of Bloch wave functions caused by lattice symmetry (LI et al., 2018; JIANG et al.,

2019c).

Indeed, without ISO coupling, the singular nearly-flat bands of the Lieb and Kagome

lattices unavoidably cross with dispersive bands due to a symmetry representation (SR) mismatch

between the compact localized state (CLS) and its constituent atomic orbitals under unitary

symmetry, as demonstrated by Hwang et al. (2021). In the Lieb lattice, while the atomic orbitals

constituting the CLS occupy only the sublattices A and C, and do not occupy the B sublattice,

the SR of CLS under C4 alone enforces a band crossing at M. Besides the two-fold degeneracy

enforced by SR for C4, which belongs to the wallpaper group p4mm, there exists an accidental

degeneracy that can be broken by the inclusion of a nonzero onsite potential at the B sublattice

(HWANG et al., 2021). In the Kagome lattice, all atomic orbitals contribute to the hybrid orbital
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Figure 48 – (a-c) Energy dispersion along the high-symmetry points ΓΓΓ, X, K, and M of the BZ,
as shown in the insets, is presented for (a) Lieb, (b) transition, and (c) Kagome lattices. Cases (i)
without ISO coupling λISO = 0 [solid black lines], (ii) with ISO coupling, i.e., λAB ̸= 0, λBC ̸= 0
[dashed blue lines], and (iii) with ISO coupling but without the following NN ISO coupling
terms λAB = λBC = 0 [dotted red lines] are presented. The bottom, middle, and top bands are
identified as E1, E2, and E3, respectively. The full energy spectra are also depicted (see panels
d-l).
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Figure 49 – Comparison between the energy bands obtained for t > 0 (left panels) and t < 0
(right panels) along the high-symmetry points ΓΓΓ, X, K, and M of the BZ, as shown in the insets.
Presented are (a-b) Lieb, (c-d) transition, and (e-f) Kagome lattices. Cases are: (i) without ISO
coupling λISO = 0 [solid black lines], (ii) with ISO coupling, i.e., λAB ̸= 0, λBC ̸= 0 [dashed
blue lines], and (iii) with ISO coupling but without the following NN ISO coupling terms
λAB = λBC = 0 [dotted red lines].
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of the CLS, and the band crossing point of the nearly-flat band can be explained by the SR of the

CLS under C6, which belongs to the wallpaper group p6mm. Notably, these degeneracies can be

lifted by the inclusion of ISO coupling in Lieb-Kagome lattices [Fig. 48 (g-l)].

Assuming λISO ̸= 0, we observe the opening of two full band gaps in the Lieb-

Kagome spectra, denoted by ∆12 and ∆23, between bands E1 and E2 (1/3 filling), and E2 and E3

(2/3 filling), respectively, as illustrated in Fig. 48 (a-c). In the Lieb lattice, the NN ISO coupling

maintains the four-fold rotational symmetry, D4h [see Fig. 47 (b)], without creating a gap at the

Dirac point, as depicted in Fig. 50 (JIANG et al., 2019c). This occurs due to the preservation of

both the double degeneracy, resulting from the SR coupled with the CLS of the flat band, which

remain composed solely of atomic orbitals located on sublattices A and C, and the accidental

degeneracy that arises from maintaining the symmetry of the face sublattice sites in relation to

the corner sites (HWANG et al., 2021). Additionally, the Lieb lattice with NNN ISO coupling

breaks the D4h symmetry, leading to the formation of gaps as illustrated in Fig. 48 (g,j). In this

case, C4 exists while the CLS occupies the B sublattice, resulting in a nearly-flat band with a

zero Chern number. Hwang et al. (2021) demonstrates that a nonzero Chern number for the

nearly-flat band is achieved only when the Lieb lattice undergoes a perturbation that preserves

C4 symmetry while ensuring that the CLS are occupied solely by the A and C sublattices. This

investigation is beyond the scope of this thesis. What we can confirm is that, despite the Chern

number of the nearly-flat band being zero, the Lieb lattice becomes a non-trivial TI when the

ISO coupling is included [Fig. 51 (a-b)] (JIANG et al., 2019c).

In the transition (D2h) and Kagome (D6h) lattices, even NN ISO coupling alone

results in the appearance of gaps at both Dirac points. In this case, the inversion symmetry is

preserved, ensuring that as Lieb-Kagome lattices remain in the same topological phase as the

Lieb lattice during the interconvertibility process, as demonstrated by Jiang et al. (2019c) and

verified in Fig. 50 (JIANG et al., 2019c). Moreover, Hwang et al. (2021) showed that in the case

of the Kagome lattice, the inclusion of NN and NNN ISO coupling preserves C6 but breaks other

irrelevant symmetries such as mirror symmetries. Then, all the bands are gapped, and the flat

band becomes a nearly-flat band with a Chern number C↑1 =±1 [Fig. 51 (e4 and f4)]. As we will

see, the change in the sign of the spin Chern number of the lower band of the Kagome spectrum,

due to the inclusion [Fig. 51 (e4)] or cancellation [Fig. 51 (f4)] of the NN ISO coupling terms

λAB and λBC, indicates TPT.

In all cases, the opening of gaps due to the ISO coupling effect indicates that the
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Figure 50 – Evolution of the energy spectrum (1st and 2nd column of panels) and Berry curvature
per energy band (3rd to 5th columns of panels) for fillings 1/3 (6th column of panels) and 2/3
(7th column of panels) for Lieb (1st row of panels), transition (2nd row of panels), and Kagome
(3rd row of panels) lattices. Obtained considering only NN ISO coupling, i.e., only λAB ̸= 0 and
λBC ̸= 0 for Lieb and transition lattices, and λAB ̸= 0, λBC ̸= 0, and λ

−
AC ̸= 0 for Kagome lattices.

It is noted that there is no gap opening in the Lieb lattice, such that only NNN ISO coupling
opens a gap in this lattice as shown in Fig. 48.
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lattice is topologically nontrivial, regardless of the value of the Chern number of the nearly-flat

band. All the TPT identified are confirmed by the gap closing and reopening, evolution of the

Berry curvature, and the calculation of the Chern number per energy band, as shown in Fig. 51.

We will initially discuss the evolution of the Berry curvature of the lower (Ω1),

middle (Ω2), and upper (Ω3) bands, as presented in Fig. 51. Note that the nonzero Berry

curvatures are primarily localized around the Dirac points, which become gapped due to the

influence of the ISO coupling effect. Consequently, the evolution of the Dirac points can also

be directly visualized through the changes in Berry curvatures for the three bands (JIANG et

al., 2019c). This becomes evident when we evaluate the Berry curvatures in the lower (1/3

filling) and upper (2/3 filling) gaps (BEUGELING et al., 2012; JIANG et al., 2019c), which are

presented in Fig. 52.

Let us evaluate the cases where λAB = λBC = 0 (panels (b), (d), and (f) in Fig. 51),

focusing on the evolution of the Berry curvature. Ω1 and Ω3 exhibit circularly symmetric peaks

around the M point, which are positive and negative, respectively [Fig. 51 (b1 and b3)], while Ω2
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Figure 51 – Contour plots of Berry curvature Ω1 (panels 1), Ω2 (panels 2), and Ω3 (panels
3) corresponding to the lower, middle, and upper bands presented in panels 4 for (a) Lieb, (c)
transition, and (e) Kagome lattices with λAB ̸= 0, λBC ̸= 0. The cases where λAB = λBC = 0 are
shown in panels (b), (d), and (f), respectively. Parallelograms indicate the region of reciprocal
space with an area numerically equal to the BZ of each case.
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is negligible due to the flatness of the flat band [Fig. 51 (b2)]. In the transition lattice (θ = 105◦),

Ω1 and Ω3 retain their signs from the θ = 90◦ case but show asymmetric peaks around the M

point. The former is distributed along the diagonal direction, ky = (cosθ +1)/sinθkx [Fig. 51

(d1)], while the latter is along the antidiagonal direction, ky = (cosθ −1)/sinθkx, perpendicular

to the former. This also occurs with 1/3 and 2/3 filling, respectively [Fig. 52 (d3 and f3)].

Interestingly, Ω2 exhibits four peaks at the M point, with two negative along the diagonal

direction and two positive in the antidiagonal direction, forming Berry dipoles (ZHANG; SUN

YAN E YAN, 2018; BATTILOMO et al., 2019). This is linked to the formation of two doubly

degenerate Dirac points, located along the ΓΓΓ−M and M−K/K′ paths, originating from the

triply degenerate point at the M point of the BZ of the Lieb lattice when the ISO coupling is

zero (JIANG et al., 2019c). According to Fig. 53, we confirm that the behavior of the Berry

curvature contours is equivalent to that of the energy spectrum contours, particularly with respect

to asymmetries around the M point.

The cases with λAB ̸= 0 and λBC ̸= 0 are presented in panels (a), (c), and (e) of

Fig. 51. We see that the Berry curvatures of the upper and lower bands of the Lieb lattice, which

were circularly symmetric around the M point (JIANG et al., 2019c), are now asymmetric such

that the Berry curvature of the lower (upper) band is similar to the curvature of the upper (lower)

band of the transition lattice with λAB = λBC = 0. This behavior is also evidenced in the energy

spectrum shown in Fig. 53 (d1). Another surprising point is that the consideration of λAB ̸= 0

and λBC ̸= 0 originates Berry dipoles (BATTILOMO et al., 2019) in the Berry curvature of the

middle band of the Lieb spectrum [Fig. 52 (a2)], while the transition lattice ceases to present

them [Fig. 52 (c2)].
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Figure 52 – Evolution of the Berry curvature per band (1st and 2nd column of panels) and with
fillings 1/3 (3rd column of panels) and 2/3 (4th column of panels) for (a) Lieb, (c) transition, and
(e) Kagome lattices with λAB ̸= 0, λBC ̸= 0. The cases where λAB = λBC = 0 are shown in panels
(b), (d), and (f), respectively. Parallelograms indicate the region of reciprocal space with an area
numerically equal to the BZ of each case as shown in Fig. 51.
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Figure 53 – Contour plots of (a) lower, (b) middle, and (c) upper bands of Lieb (1st row of
panels), transition (2nd row of panels), and Kagome (3rd row of panels) lattices, for the cases
(i) λISO = 0 [solid black line], (ii) λAB ̸= 0, λBC ̸= 0 [dashed blue line], and (iii) λAB = λBC = 0
[dotted red line]. The regions (i-vi) shaded in blue or red are depicted in an enlarged form in
panels (d).
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3.5.2 Topological phase transitions driven by θ - evolution

Now, let us evaluate the existence of TPT due to the interconvertibility process

between the Lieb and Kagome lattices. Initially, we observe that there is no change in the Chern

numbers or in the sign of the Berry curvature between the Lieb and Kagome lattices when we

assume λAB ̸= 0 and λBC ̸= 0 [Fig. 51 (a,c,e)], indicating that there are no TPT driven by θ

in this configuration. The evolution of the full band gaps as a function of the n term, which

controls the inclusion of NNN sites in Eq. (3.4), reveals that the topological phase classified

by C↑ = (1,0,−1) is robust against the inclusion of NNN sites (n < 8), provided we maintain

λ = 0.2 [Fig. 54 (a-b)]. Indeed, we do not identify any closing and reopening of the full band
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gaps at any point in Fig. 54 (a-b), which means there are no TPT. However, we note regions with

full band gaps that close and do not reopen, depicted in blue in this figure. In these regions the

spectrum exhibits a negative indirect gap, as explicitly shown in Fig. 56, such that at 1/3 filling,

the system is in a semimetallic regime, characterized by partially filled bands and non-quantized

spin Hall conductivity. At 2/3 filling, the system behaves as an insulator, and the spin Hall

conductivity carried by the helical edge states becomes observable experimentally (BEUGELING

et al., 2012).

Comparing the evolution of the full band gaps presented in Fig. 54 with the local

band gaps ∆′12 and ∆′23 shown in Fig. 55, we observe that ∆′12 ̸= 0 for the range of n where

∆12 = 0. This indicates that E1 and E2 do not possess k points of degeneracy in the region where

∆12 = 0.

In general, a null full band gap in Fig. 54, paired with a nonzero corresponding local

band gap for the same configuration (n, θ ) or (n, λ ) in Fig. 55, suggests that the maximum of

the valence band exceeds the minimum of the conduction band at a different momentum. This

condition is indicative of a spectrum with a negative indirect gap, as explicitly demonstrated

in Fig. 56 (BEUGELING et al., 2012). With ∆′12 ̸= 0, the Chern numbers of the bands remain

well-defined, as they do not intersect, precluding the occurrence of TPT. Notably, ∆′12 closes

and reopens for small n values, leading to a change in C↑1 and C↑2 [Fig. 56 (a-b)]. However,

in a 1/3-filled system, both the lower and middle bands will be partially filled, categorizing

the bulk as a semimetal and thereby impeding the detection of helical edge states. In this

semimetallic phase with partially filled bands, the spin Hall conductivity remains unquantized. It

is crucial for the quantization of the spin Hall conductivity that the spectrum possesses a full

gap, establishing a range of Fermi energies where only edge states are present, excluding any

bulk states (BEUGELING et al., 2012). This condition is met at 2/3 filling, where the system

acts as an insulator, allowing the spin Hall conductivity associated with helical edge states to be

experimentally observed (BEUGELING et al., 2012).

This discussion also applies to subsequent cases involving strain application. When-

ever ∆12 and ∆23 nullify while ∆′12 and ∆′23 remain nonzero, the same principles hold.

For λAB = λBC = 0, interestingly, we observe that the Berry curvature of the lower

band of the Kagome lattice is negative [Fig. 51 (f1)], in contrast to the positive curvatures of

the lower bands of the Lieb [Fig. 51 (b1)] and transition [Fig. 51 (d1)] lattices. Similarly, the

middle band of the Kagome lattice becomes entirely positive [Fig. 51 (f2)], unlike at θ = 90◦
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Figure 54 – Contour plot of the full band gap ∆12 [∆23] between bands E1 [E2] and E2 [E3] as a
function of n and θ with λ = 0.2 (1st row of panels), and as a function of n and λ for Lieb (2nd
row of panels), transition (3rd row of panels), and Kagome (4th row of panels) lattices. Results
are presented considering all ISO coupling parameters (1st and 2nd columns of panels), as well
as assuming the following NN ISO coupling parameters equal to zero, λAB = λBC = 0 (3rd and
4th columns of panels). The regions simultaneously exhibiting the closure of the full band gap
and the local band gap, i.e., the touching of bands at a certain point k (shown in Fig. 55), indicate
TPT.
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[Fig. 51 (b2)] and θ = 105◦ [Fig. 51 (d2)], which exhibit an equal volume of positive and

negative phases in the BZ, resulting in a null Chern number. However, we note that the Kagome

lattice now presents C↑ = (−1,2,−1), while the Lieb and transition (θ = 105◦) lattices show
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Figure 55 – Contour plots of the full band gap ∆12 [∆23] presented in Fig. 54 are contrasted with
contour plots of the local band gaps ∆′12 [∆′23], which refer to the minimum separation between
the bands at each individual point in their momentum space. At points where the bands intersect
or touch, the local band gap reduces to zero, indicating TPT.
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C↑ = (1,0,−1).

The critical point of the TPT is at θ = 118.3◦, where band touchings are indicated

by red dotted lines in the phase diagram of Fig. 57 (d). Additionally, we have shaded the regime

C↑ = (1,0,−1) in blue, and C↑ = (−1,2,−1) in green. In all open gaps, the system behaves as a

QSHI, with a spin Hall conductivity of σSH =±1 (BEUGELING et al., 2012). For θ < 118.3◦,

the conductivities in the lower (1/3 filling) and upper (2/3 filling) gaps are the same, owing to

the zero Chern number of the middle band. For θ > 118.3◦, the two bands exhibit opposite

conductivities (BEUGELING et al., 2012). From Fig. 54 (c) and Fig. 55 (c’), it is evident that the

TPT during the interconvertibility process with λAB = λBC = 0 remains robust for n ̸= 8 values.

Prior to this TPT [Fig. 59 (f)], Ω1 displays two positive peaks along the diagonal

direction. Ω3 is characterized by two negative peaks along the antidiagonal direction. These

peaks evolve from the asymmetric peak near the M point at θ = 105◦, as demonstrated in Fig. 51

(d1 and d3). Ω2 exhibits two positive peaks in the antidiagonal direction and two negative peaks

in the diagonal direction, which are perpendicular to the former. The TPT inverts the signs of the

two peaks in Ω1 and Ω3, and in Ω2, this transformation results in the emergence of four positive

peaks, eliminating the Berry dipole [Fig. 59 (g)] (ZHANG; SUN YAN E YAN, 2018).
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Figure 56 – Evolution of the local band gap for regions of Fig. 55 that exhibit a negative indirect
gap. Before and after the touching of the bottom and middle bands, the Chern numbers of the
bands are well defined since they do not touch anywhere. However, no TPT occurs due to it
being a region of a null full band gap.
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The TPT that occur at 1/3 filling in the transition [Fig. 57 (b)] and Kagome [Fig. 57

(c)] lattices at the critical points λ = 0.78 and λ = 0.84, respectively, are analogous to the TPT in

Fig. 57 (d). Specifically, ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0). The evolution of the Berry

curvature for the transition lattice [Fig. 60 (d-e)] is similar to that of the Lieb lattice [Fig. 59

(a-c)]. In the Kagome lattice [Fig. 59 (d-e)], Ω3 indeed does not exhibit a sign change, remaining

negative, but now it does not show localized peaks, analogous to Ω1 before the TPT [Fig. 51 (e)].

In fact, after the TPT, the Chern nearly-flat band is E3 (HWANG et al., 2021).

Every TPT in the phase diagram can be understood in terms of the difference in

the Chern numbers of the phases on either side of the transition. For the transition defined by

the line θ < 118.3◦, the lower gap closes, and the system behaves as a metal at the gap closing
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Figure 57 – Evolution of the full band gaps ∆12 [black solid line] and ∆23 [red dashed line] as a
function of the parameter λ (panels a-c), or θ (panel d) assuming λAB ̸= 0 and λBC ̸= 0 (panels
a-c) or λAB = λBC = 0 (panels d), which highlights TPT at gap closing points. Regions with
distinct Chern numbers for the bands, C↑ = (C↑1 ,C

↑
2 ,C
↑
3), have been indicated by different colors,

where (1,0,-1), (-1,2,-1), and (-1,0,1) correspond to the blue, green, and red regions, respectively.
The remaining cases are presented in Fig. 58.
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energy, while the upper gap remains helical. Note that the difference in the Chern numbers is

∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0). We observe that the change in the Chern numbers

of the two touching bands is ±2. This change can be attributed to the fact that the bands touch

at the ΓΓΓ point and exhibit quadratic behavior around this point, implying a Berry phase of 4π

associated with this touching point, in accordance with Beugeling et al. (2012).

As shown in Fig. 54 (c), when compared with Fig. 55 (c’), it is also revealed that the

double degeneracy at the ΓΓΓ point between bands E1 and E2 for θ < 118.3◦ can be lifted by either

including (n < 8) or further suppressing (n > 8) the effects of NNN hoppings [see Eqs. (3.4)

and (3.6)], as elucidated in the phase diagram of Fig. 58 (e). TPT occur at n = 4.18 with

C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0) and at n = 8 with C↑ = (−1,2,−1)− (1,0,−1) =

(−2,2,0). Furthermore, the phase diagram in Fig. 58 (f) shows that ∆12 can be opened while

maintaining n = 8 and evolving the intensity of the ISO coupling, such that a TPT occurs at

λ = 0.2 with C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0).

Interestingly, the TPT driven by θ evolution is the only phase transition observed in

Sec. 3.7 that evaluates the case of hypothetical strains that modify the positions of the lattice sites

while keeping the hopping and ISO coupling parameters constant. Other phase transitions that

are discussed in Sec. 3.6 are essentially due to changes in the values of the hopping parameters

and ISO coupling parameters that vary with the strain parameter.

Indeed, the TPT, as well as the non-TPT to be discussed in Sec. 3.6, are related to the
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Figure 58 – Comparison between the full band gap ∆12 [∆23] and the local band gaps ∆′12 [∆′23],
as shown in Fig. 57. Before and after the touching of the bottom and middle bands, the Chern
numbers of the bands are well defined since they do not touch anywhere. TPT occur only if
the full band gap also closes together with the local band gap at the same point, and both are
different from zero before and after the TPTs points.
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evolution of energetic parameters that vary due to diagonal strains during the interconvertibility

process, or due to the application of uniaxial, biaxial, simple shear, or pure strains. They are

not merely a geometric effect resulting from the alteration of the positions of the Lieb-Kagome

lattice sites. Thus, it is possible to find TPT at fixed values of θ without strain, simply by altering

n and λ parameters as shown in Fig. 54.

3.5.3 Topological phase transitions driven by the evolution of the λ or n parameters

In Fig. 54, we present the evolution of full band gaps in response to the variation

of λ and n for Lieb, transition (θ = 105◦), and Kagome lattices. By comparing this with the

evolution of the local band gaps in Fig. 55, we highlight the TPT arising from the variation of λ
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with n = 8 in the phase diagrams of Fig. 57 (a-c), corroborated by the phase diagrams in Fig. 58

(a-c) which demonstrate the closing and reopening of ∆12 or ∆23 at the same values of λ where

∆′12 or ∆′23 also vanish.

In the Lieb lattice, for the transition defined by the points λ = 0.98 and λ = 1.03, the

lower and upper gaps respectively close, and the system behaves like a metal at the gap-closing

energy; meanwhile, the other gap remains helical. The differences in the Chern numbers can be

expressed as ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0) and ∆C↑ = (−1,2,−1)− (−1,0,1) =

(0,2,−2), respectively.

At λ = 0.9, before the TPT, Ω1 (Ω3) features two positive (negative) peaks aligned

in the antidiagonal (diagonal) direction, i.e.„ kx = −ky (kx = ky) [Fig. 59 (a)]. These evolved

from the asymmetric peak located around the M point at λ = 0.2, as shown in Fig. 51 (a1 and a3).

Ω2 shows two positive peaks in the diagonal direction and two negative peaks in the antidiagonal

direction, perpendicular to the first. The TPT at 1/3 (2/3) filling changes the signs of the two

peaks of Ω1 (Ω3). Regarding Ω2, the TPT in the lower gap results in four positive peaks [Fig. 59

(b)], so that it is the TPT in the upper gap that restores the dipole with the two peaks being

negative (positive) in the diagonal (antidiagonal) direction [Fig. 59 (c)] (ZHANG; SUN YAN

E YAN, 2018).

The TPT that occur at 1/3 filling in the transition [Fig. 57 (b)] and Kagome [Fig. 57

(c)] lattices at the critical points λ = 0.78 and λ = 0.84, respectively, are analogous to the TPT in

Fig. 57 (d). Specifically, ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0). The evolution of the Berry

curvature for the transition lattice [Fig. 60 (d-e)] is similar to that of the Lieb lattice [Fig. 59

(a-c)]. In the Kagome lattice [Fig. 59 (d-e)], Ω3 indeed does not exhibit a sign change, remaining

negative, but now it does not show localized peaks, analogous to Ω1 before the TPT [Fig. 51 (e)].

In fact, after the TPT, the Chern nearly-flat band is E3 (HWANG et al., 2021).

In summary, our results clearly indicate TPT due exclusively to the variation of n

and/or λ , without the need for additional factors. With this knowledge, in the next section,

we will investigate TPT driven by the six types of strains presented in Fig. 46 (b-g), while

maintaining λ = 0.2 and n = 8.
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Figure 59 – Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs identified
in Fig. 57. Specifically, panels (a-c), (d-e), and (f-g) correspond to the cases depicted in panels a,
c, and e of Fig. 57. The remaining cases are presented in Fig. 60. It is noteworthy that the TPT
cause a change in the sign of the Berry curvature.
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Figure 60 – Contour plots of the Berry curvature (as shown in Fig. 59), before and after the
TPTs identified in Fig. 57. It is noteworthy that the TPT cause a change in the sign of the Berry
curvature.
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Figure 61 – Contour plot of the full band gap as in Fig. 54, but now as a function of ε and θ ,
for UX-strain (1st column of panels), UY-strain (2nd column of panels), BI-strain (3rd column
of panels), SX-strain (4th column of panels), SY-strain (5th column of panels), and PS-strain
(6th column of panels). Results are presented considering all ISO coupling parameters (1st
and 2nd rows of panels), as well as assuming λAB = λBC = 0 (3rd and 4th rows of panels). For
comparison, Fig. 62 shows the evolution of the local band gap in each case.
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3.6 Phase transition driven by strain

In this section, we investigate the occurrence of phase transition induced by six

distinct types of strains, as depicted in Fig. 46 (b-g). Figure 61 illustrates the evolution of the

full band gaps as the angle θ varies from 90◦ to 120◦, in relation to the strain parameter, ε . For

comparative analysis, the evolution of the local band gaps is presented in Fig. 62.

In both scenarios, while our theoretical model is not constrained by the elasticity

limits of specific real materials, we impose a limitation for uniaxial and biaxial compressive

strains at ε = −0.5 (demonstrated in Fig. 61 and Fig. 62, panels 1, 2, and 3). This constraint

is set to prevent situations where the distance between NN sites in the strained lattice is much

smaller than in the unstrained lattice (a′0≪ a0), potentially resulting in ∆1 and ∆2→ ∞. This

condition is anticipated in the limit where lattice sites overlap.

For simple shear strains, the overlap of site positions is not a concern, as negative ε

values do not induce compression but represent shear in the opposite direction to ε > 0. Thus, we
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allow −1≤ ε ≤ 1 for these cases (shown in Fig. 61 and Fig. 62, panels 4 and 5). For PS-strains,

we consider −0.5≤ ε ≤ 0.5 (Fig. 61 and Fig. 62, panel 6), to facilitate direct comparison with

simple shear cases, since εPS = εSX/2 = εSY/2 (THIEL et al., 2019).

Figure 63 presents the phase diagrams with a direct comparison between the evolution

of full band gaps and local band gaps in specific cases of Lieb lattices [see Fig. 63 (a,d)], the

transition state (θ = 105◦) [see Fig. 63 (b,e)], and Kagome lattices [see Fig. 63 (c,f)]. We explore

the TPT points εc, where closure and reopening of both full and local band gaps at 1/3 and/or 2/3

filling are observed, attributable to the band crossing of E1 and E2 and/or E2 and E3 as a function

of ε .

The TPT identified in Fig. 63 are system atized in the phase diagrams of Fig. 64.

As in Fig. 57, the TPT points εc are indicated by red dotted lines, delineating the regimes

C↑ = (1,0,−1) in blue, C↑ = (−1,2,−1) in green, and C↑ = (−1,0,1) in red. In all cases of

open gaps, the system exhibits behavior characteristic of a QSHI, with spin Hall conductivity

σSH =±1 (BEUGELING et al., 2012). When the middle band has a zero Chern number, the

conductivities at 1/3 filling and 2/3 filling are the same, being opposite otherwise (BEUGELING

et al., 2012).
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Figure 62 – Contour plots of the full band gap ∆12 [∆23] presented in Fig. 61 are contrasted with
contour plots of the local band gaps ∆′12 [∆′23], which refer to the minimum separation between
the bands at each individual point in their momentum space. At points where the bands touch,
the local band gap reduces to zero, indicating TPT.
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Figure 63 – The evolution of the full band gap ∆12 [∆23] and local band gaps ∆′12 [∆′23] for the
specific cases in Fig. 62 with θ = 90◦ (Lieb lattice), θ = 105◦ (transition lattice), and θ = 120◦

(Kagome lattice) is depicted. The points of non-topological phase transition, linking the TI phase
with a semimetallic or metallic phase at 1/3 filling, are indicated by open circles with central
dots or simple open circles, respectively. The points ε of TPT that connect two TI phases are
highlighted in Fig. 64.
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Figure 64 – Evolution of the full band gaps as in Fig. 57, but now as a function of ε for the
cases from Fig. 61 where we identified TPT. Fig. 63 shows the evolution of the local band gap,
confirming the TPT.
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3.6.1 Uniaxial and biaxial strain-driven topological phase transitions with λAB ̸= 0 and

λBC ̸= 0

Initially, we will evaluate the TPT driven by uniaxial and biaxial strains for λAB ̸= 0

and λBC ̸= 0. Figure 64 shows that the Lieb [Fig. 64 (a-b)], transition (θ = 105◦) [Fig. 64

(e-g)], and Kagome [Fig. 64 (k-m)] lattices undergo a TPT characterized by ∆C↑ = (1,0,−1)−

(−1,0,1) = (2,0,−2). In the Lieb lattice, this TPT occurs at εc = 0.44 when subjected to UX

and UY-strains [Fig. 64 (a)], and at εc = 0.22 when under BI-strain [Fig. 64 (b)]. In transition

lattices with θ = 105◦, the TPT occurs at εc = 0.5 when subjected to UX [Fig. 64 (e)] and

UY-strains [Fig. 64 (f)], and at εc = 0.23 under BI-strain [Fig. 64 (g)]. In the Kagome lattice,

this TPT occurs at εc = 0.79 for the UX-strain [Fig. 64 (k)], εc = 0.67 for the UY-strain [Fig. 64

(l)], and εc = 0.3 for the BI-strain [Fig. 64 (m)]. In all cases, at ε = εc, ∆1 and ∆2 close, thereby

preventing the emergence of helical states at 1/3 or 2/3 filling. These TPTs are not observed in

unstrained Lieb-Kagome lattices [Fig. 57].

These TPTs are confirmed by the evolution of the Berry curvatures, as presented in

Figs. 65, 66, and 67 for the Lieb, transition, and Kagome lattices, respectively. We highlight in

Fig. 68 (a-b, i-j, k-l) the configurations non-equivalent for strain-driven TPT with λAB ̸= 0 and

λBC ̸= 0, including the cases of SX, SY, and PS strain, which will be discussed in Subsec. 3.6.2.
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Figure 65 – Contour plots of the Berry curvature, before and after the TPTs identified in panels
a and b of Fig. 64 (Lieb lattice). It is noteworthy that the TPT cause a change in the sign of the
Berry curvature.
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Figure 66 – Contour plots of the Berry curvature, before and after the TPTs identified in panels
(e), (f), and (g) of Fig. 64 (transition lattice). It is noteworthy that the TPT cause a change in the
sign of the Berry curvature.
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Figure 67 – Contour plots of the Berry curvature, before and after the TPTs identified in panels
(k), (l), and (m) of Fig. 64 (Kagome lattice). It is noteworthy that the TPT cause a change in the
sign of the Berry curvature.
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Figure 68 – Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs identified
in Fig. 64 for some cases with λAB ̸= 0 and λBC ̸= 0 (see Figs. 75 and 72).
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The Lieb lattice under UX-strain [see Fig. 68 (a-b)] demonstrates that ΩUX
1 displays

two positive peaks, while ΩUX
3 exhibits two negative peaks, which reverse signs when com-

paring the states before and after εc (LANG et al., 2023). Meanwhile, ΩUX
2 retains its dipole

characteristic, swapping the signs of the two positive and two negative peaks before and after

the TPTs (ZHANG; SUN YAN E YAN, 2018). Indeed, the Berry curvatures of Lieb lattices

under UY-strain [see Fig. 65 (c-d)] or BI-strain [see Fig. 65 (e-f)], and of the transition lattice

(θ = 105◦) under UX, UY, and BI-strains [see Fig. 66] are analogous to those of the UX-strained

Lieb lattice. For Kagome lattices, the three Berry curvatures for UY-strain, and Ω1 for both UX

and UY-strains, also follow a similar pattern [see Fig. 67].

It is noteworthy that this similarity pertains to the sign configuration before and

after the TPTs as well as to the peak distribution of the curvature, with differences in shape and

orientation. Specifically, BI-strained Lieb-Kagome lattices exhibit ΩBI
1 with non-tilted peaks

localized along the antidiagonal direction, defined as ky = ((b1−b2)y/(b1−b2)x)kx, and ΩBI
3

with non-tilted peaks along the diagonal direction, defined as ky = ((b1 +b2)y/(b1 +b2)x)kx.

Meanwhile, ΩBI
2 shows two peaks each along the antidiagonal and diagonal directions. It is

important to remember that b1 and b2 are dependent on θ . In contrast, UX and UY-strained

Lieb-Kagome lattices display tilted peaks, aligning with the direction of the reciprocal lattice

vectors b1 and b2, respectively. This behavior is analogous to the type III tilted cones observed

in the energy spectrum without ISO coupling (LIMA et al., 2023).

The cases of Ω2 and Ω3 in UX and UY-strained Kagome lattice exhibit the same

number of peaks with the sign configurations seen in the previous cases, but with different peak

distributions. In UX-strained Kagome, we find four 1/2 peaks at the edges of the considered

reciprocal space area [see Fig. 68 (i2,3,j2,3)], as opposed to two full peaks outside the edges. In

the case of BI-strained Kagome, we do not identify peaks in the diagonal direction as in Lieb

and transition cases, but we observe a Berry curvature distribution characteristic of a Chern

nearly-flat band [see Fig. 68 (k2,3,l2,3)].

Regardless of the characteristic format of the Berry curvatures for each band, we

note that the TPT driven by uniaxial and biaxial strains for λAB ̸= 0 and λBC ̸= 0 within the

admitted ε region in Fig. 61 ensure the existence of a Berry curvature with both positive and

negative parts calculated for the middle band, and only positive or negative curvature for the

lower and upper bands. This indicates that a TPT always inverts these signs when compared with

configurations before and after εc in Lieb-Kagome lattices.
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Figure 69 – Comparison between the full band gap ∆12 [∆23] and the local band gaps ∆′12 [∆′23],
versus ε as shown in Fig. 64, for TPT identified for values of ε not presented in Figs. 61 and 62.
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Source: The author.

Outside the admitted ε region in Fig. 61, we identify two TPT in the UY-strained

transition lattice [see Fig. 69 (b)], which do not follow this pattern [see Fig. 70]. As observed in

Fig. 69 (b), one occurs at εc =−0.64 at 1/3 filling (preserving the topological insulating phase

at 2/3 filling), characterized by a Chern number change of ∆C↑ = (1,0,−1)− (−1,2,−1) =

(2,−2,0). This change is accompanied by the alteration of the sign of the two peaks in ΩUY
1 , the

disruption of the Berry dipole in ΩUY
2 resulting in four positive peaks, and the preservation of the

sign of the two peaks in ΩUY
3 [see Fig. 70 (b-c)]. Another TPT occurs at εc =−0.68 at 2/3 filling

(maintaining the topological insulating phase at 1/3 filling), with a Chern number change of

∆C↑ = (−1,2,−1)− (−1,0,1) = (0,2,−2), marked by a sign change in the two peaks of ΩUY
3 ,

the restoration of the Berry dipole in ΩUY
2 , and the constant sign of the two peaks of ΩUY

1 . As

we will see next, this behavior is characteristic of TPT subjected to pure and simple shear strains

within the ε range established in Fig. 61.
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Figure 70 – Contour plots of the Berry curvature, before and after the TPTs identified in panel b
of Fig. 69. It is noteworthy that the TPT cause a change in the sign of the Berry curvature.
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3.6.2 Simple and pure shear strain-driven topological phase transitions with λAB ̸= 0 and

λBC ̸= 0

Now, let us examine TPT driven by simple and pure shear strains, when λAB ̸= 0 and

λBC ̸= 0. Reducing ε from zero results in TPT at two distinct values of εc in the Lieb lattice [see

Fig. 64 (c-d)] and transition lattices [see Fig. 64 (h-j)] when ε falls within the range covered in

Fig. 63 (a4−6,b4−6), whereas the Kagome lattice remains robust against TPT in this scenario

[see Fig. 63 (c4−6)]. The first TPT occurs at 1/3 filling, with ∆C↑ = (1,0,−1)− (−1,2,−1) =

(2,−2,0), such that the two positive peaks in Ω1 become negative, the characteristic Berry dipole

present in ΩSX
2 with two positive and two negative peaks is destroyed by the emergence of four

positive peaks, and the two negative peaks of ΩSX
3 maintain their sign. The second TPT occurs

at 2/3 filling with ∆C↑ = (−1,2,−1)− (−1,0,1) = (0,2,−2), such that the two negative peaks

of Ω3 turn positive, the Berry dipole characteristic is restored in Ω2, presenting two positive

and two negative peaks (with opposite signs to the initial Berry dipole), and the sign of the two

negative peaks of Ω1 is maintained [see Figs. 71 and 72].

Specifically, in the Lieb lattice, TPT occur at 1/3 filling for εSX
c = εSY

c =−0.47 and

at εPS
c = −0.22 under PS-strain. At 2/3 filling, TPTs are observed at εSX

c = εSY
c = −0.53 and

at εPS
c = −0.26 [Fig. 71]. In the transition lattice with θ = 105◦, TPT at 1/3 filling occur at

εSX
c = −0.74, εSY

c = −0.84, and εPS
c = −0.35. Meanwhile, at 2/3 filling, TPT take place at

εSX
c =−0.81, εSY

c =−0.86, and εPS
c =−0.38 [Fig. 72].

Due to the D4h symmetry of the unstrained Lieb lattice, the Berry curvatures of

the SY-strained Lieb lattice, ΩSY
1 , ΩSY

2 , and ΩSY
3 [see Fig. 71 (d-f)], are analogous to the Berry

curvatures of the SX-strained Lieb lattice, ΩSX
1 , ΩSX

2 , and ΩSX
3 [see Fig. 71 (a-c)]. To establish

the connection between these Berry curvatures, we first apply a π/2-rotation using the operator

Ĉ4, followed by the application of the mirror symmetry operator σy to reflect the graph across the

ky axis. This process inversely maps points such that those with ky > 0 are mapped to ky < 0 and

vice versa. Therefore, we can express the Berry curvatures for the SY case as ΩSY
1 = σyĈ4ΩSX

1 ,

ΩSY
2 = σyĈ4ΩSX

2 , and ΩSY
3 = σyĈ4ΩSX

3 . Analogously, the relationships for the UY-strain can

be described as ΩUY
1 = σyĈ4ΩUX

1 , ΩUY
2 = σyĈ4ΩUX

2 , and ΩUY
3 = σyĈ4ΩUX

3 [see Fig. 65 (a-d)].

Indeed, the transition lattices do not exhibit such relations between SX and SY or between UX

and UY-strains [Fig. 72 (a-b)].

The evolution of the Berry curvatures for the PS-strained Lieb lattice, before and

after the TPTs at 1/3 filling [see Fig. 68 (g-h)], is analogous to that of the SX and SY-strained
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Figure 71 – Contour plots of the Berry curvature (which complement those presented in Fig. 68),
before and after the TPTs identified in panels c and d of Fig. 64. It is noteworthy that the TPT
cause a change in the sign of the Berry curvature.

0.0 0.5 1.0
kxa0/π

g3

E

kx

ky

h2h1 h3

i2i1 i3

E

kx

ky

E

kx

ky

E

kx

ky

Low   E High
Ω1 Ω2

Ω<0 Ω>0Ω=0

Ω3

Lieb (λAB=0, λBC=0)

E

kx

ky

E

kx

ky

E

kx

ky

E

kx

ky

E

kx

ky

C1=-1  

C2=0  

C3=1  

C1=-1  

C2=2  

C3=-1  

C1=-1  

C2=2  

C3=-1  

C1=1  

C2=0  

C3=-1  

C1=-1  

C2=2  

C3=-1  

C1=1  

C2=0  

C3=-1  

S
X
-s

tr
ai

n

ε=
-0

.6
ε=

-0
.5

S
Y-

st
ra

in
PS

-s
tr

ai
n

C1=-1  

C2=0  

C3=1  

C1=-1  

C2=0  

C3=1  

C1=1  

C2=0  

C3=-1  

ε=
-0

.4
ε=

-0
.6

ε=
-0

.5
ε=

-0
.4

ε=
-0

.3
ε=

-0
.2

4
ε=

-0
.1

0.0 0.5 1.0
kxa0/π

0.0 0.5 1.0
kxa0/π

0.5

0.0

0.5

0.0

k y
a 0

/π

1.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

0.5

0.0

1.0

k y
a 0

/π

c2c1 c3 c4

b2b1 b3 b4

a2a1 a3

d2d1 d3 d4

e2e1 e3 e4

g2g1 g3 g4

f3 f4f2f1

a4

h4

i4

Source: The author.



159

Figure 72 – Contour plots of the Berry curvature (which complement those presented in Fig. 68),
before and after the TPTs identified in panels (h), (i), and (j) of Fig. 64. It is noteworthy that the
TPT cause a change in the sign of the Berry curvature.
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Figure 73 – Contour plots of the Berry curvature, before and after the TPTs identified in panel c
of Fig. 69. It is noteworthy that the TPT cause a change in the sign of the Berry curvature.
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Lieb lattices [see Fig. 71 (a-f)], with the caveat that it now exhibits mirror symmetry relative to

both the diagonal and antidiagonal axes in the presented reciprocal space region. This attribute

is also due to the D4h symmetry of the unstrained Lieb lattice. As such, the Berry curvatures

of the BI-strained Lieb lattice exhibit this symmetry [see Fig. 65 (e-f)], whereas those of the

PS-strained transition lattice do not [see Fig. 71 (g-i)]. A notable difference in the SY-strained

Lieb lattice occurs due to the TPT at 2/3 filling, which presents ΩPS
1 [see Fig. 68 (f1)] with two

extremely tilted peaks that differ in shape, orientation, and position from the peaks observed

in the corresponding SX-strain case [see Fig. 68 (c1)]. This distinction is also evident in the

positive part of Ω2 [compare Fig. 68 (f2) with Fig. 68 (c2)].

In contrast to the shear strain cases of Fig. 64 with λAB ̸= 0 and λBC ̸= 0, where

TPT occurred when either ∆12 or ∆23 closed at different εc, the transition lattice with PS-

strain exhibits a TPT when both the upper and lower gaps close and reopen at εc = 0.62 with

∆C↑= (1,0,−1)−(−1,0,1) = (2,0,−2) [see Fig. 69 (c)]. Similarly, for the Kagome lattice with

PS-strain, a TPT occurs at εc =±0.49 [see Fig. 69 (d-e)]. The corresponding Berry curvatures

are shown in Figs. 73 and 74, respectively, which feature extremely tilted peaks that simply

change sign as in the TPT driven by uniaxial and biaxial strains in Figs. 68 (a-b), 65 and 66.

Notably, only the cases involving pure and simple shear in Kagome lattices exhibit

mirror symmetry across ε = 0 in the evolution of both full and local band gaps, with respect to

positive strain (ε > 0) and negative strain (ε < 0) relative to ε = 0, as observed in Fig. 63 (c4-6).
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Figure 74 – Contour plots of the Berry curvature, before and after the TPTs identified in panels d
and e of Fig. 69. It is noteworthy that the TPT cause a change in the sign of the Berry curvature.
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The Lieb lattice demonstrates this symmetry when considering only NNN ISO coupling, λ⟨⟨i j⟩⟩

[Fig. 75 (d-f)], represented by the red dashed lines in Fig. 47 (b). This symmetry is also observed

in Kagome lattices, which include only NNN ISO coupling, λ⟨⟨i j⟩⟩ [Fig. 75 (j-l)] or only NN ISO

coupling λ⟨i j⟩ [Fig. 75 (p-r)], represented by red dashed and blue dash-dotted lines, respectively,

in Fig. 47 (c)].

Indeed, the TPT we find for the Kagome lattice with λAB ̸= 0 and λBC ̸= 0 are

obtained in the Kagome lattice model with only NN ISO coupling [compare the third row of

panels in Fig. 63 with the panels in the third row of Fig. 75]. Meanwhile, the cases of Lieb and

Kagome with only NNN-ISO coupling exhibit TPT identified in the cases with λAB = λBC = 0

discussed in the following subsection [compare the fourth and sixth row of panels in Fig. 63 with

the panels in the first and second row of Fig. 75]. The non-TPT found in Figs. 63 and 75 are
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Figure 75 – Comparison between the full band gap ∆12 [∆23] and the local band gaps ∆′12 [∆′23],
versus ε as shown in Fig. 63, but now for the case of Lieb only with λ⟨⟨i j⟩⟩ (first row of panels),
and the cases of Kagome only with λ⟨⟨i j⟩⟩ (second row of panels) and with only [λ⟨i j⟩] (third
row of panels). The six columns of figure panels represent the six types of strain applied. It is
noteworthy that in points where the full band gap is zero, the bands indeed touch because the
local band gap is also zero, corroborating the indication of TPT.
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discussed in subsection 3.6.4.

3.6.3 Strain-driven topological phase transitions with λAB = λBC = 0

When λAB = λBC = 0, Fig. 64 (n-t) demonstrates that TPT occur exclusively at

1/3 filling within the ε range covered in Fig. 63. This is observed in the case of PS-strained

Lieb [Fig. 64 (n)] and Kagome lattices subjected to six types of strain [Fig. 64 (o-t)]. In these

instances, we only identify TPT with ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0) or ∆C↑ =

(−1,2,−1)− (1,0,−1) = (−2,2,0), resulting in a change of sign in the Berry curvatures Ω1

and Ω2, while Ω3 remains negative, as depicted in Fig. 76 (panels with subscript 3).

Indeed, the Lieb lattice with λAB = λBC = 0, when subjected to uniaxial strains

along the UX-strain and UY-strain directions, shows a gradual reduction in the energy gap as

ε increases from zero to 1. However, a complete closure of the gap does not occur within the

examined parameter range [see Fig. 63 (d1 and d2)]. Conversely, in the case of biaxial strain

(BI-strain), gap closure is observed at a critical strain value of ε = 0.68. Beyond this critical

point, the system exhibits a closed gap for ε > 0.68, indicating a transition to a metallic phase
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[refer to Fig. 63 (d3)]. Notably, neither the SX-strain [Fig. 63 (d4)] nor the SY-strain [Fig. 63

(d5)] leads to gap closure at any value of ε .

In the PS-strained Lieb lattice, as shown in Fig. 64 (n), increasing ε from ε = 0 to

ε > 0 leads to the first TPT at ε = 0.25 with ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0), and

a second TPT at ε = 0.29 with ∆C↑ = (−1,2,−1)− (1,0,−1) = (−2,2,0). Conversely, when

reducing ε from ε = 0 to ε < 0, one TPT is observed at ε = −0.32 with ∆C↑ = (1,0,−1)−

(−1,2,−1) = (2,−2,0). Interestingly, when considering only NN ISO coupling in PS-strained

Lieb lattice, TPTs are obtained at ε =±0.32 [Fig. 75 (f)]. This indicates that the TPT at ε = 0.25

and ε = 0.29 are due to the effects of ISO coupling between more distant neighbors, mainly the

NNN ISO coupling terms.

The evolution of the Berry curvatures presented in Fig. 76 (b) shows that applying

PS-strain with 0 < ε < 0.2 does not result in TPT, but causes the splitting of the positive

(negative) peak of Ω1 (Ω3) into two peaks distributed along the diagonal (antidiagonal) direction,

when compared to the Berry curvatures of the unstrained lattice [Fig. 51 (b)]. Furthermore,

Ω2 begins to exhibit two negative peaks in the diagonal direction and two positive peaks in

the antidiagonal direction. The TPT at ε = 0.25 leads to a configuration of Berry curvatures

[Fig. 76 (c)] analogous to that of the unstrained Kagome lattice [Fig. 51 (f)], with ΩPS
1 showing

negative peaks localized at the ΓΓΓ points and ΩPS
2 being entirely positive. Subsequently, the TPT

at ε = 0.29 reverses the signs of the peaks of ΩPS
1 and ΩPS

2 back to positive and mixed (two

positive and two negative), respectively, as observed for ε = 0.4 in Fig. 76 (d). However, now

they are significantly tilted compared to the case at ε = 0.2 in Fig. 76 (b). On the other hand, the

TPT at ε =−0.32 results in Berry curvatures as shown in Fig. 76 (a), which exhibit highly tilted

peaks similar to those in Fig. 76 (d), but with a sign configuration observed in Fig. 76 (c), due to

having the same Chern numbers per band.

Turning our attention to the transition lattice with a configuration angle of θ = 105◦

and λAB = λBC = 0, we find that UX-strain does not result in gap closure [Fig. 63 (e1)]. Similarly,

UY-strain does not induce the closure of ∆12 within the considered ε range [Fig. 63 (e2)]. When

considering the biaxial BI-strain [Fig. 63 (e3)], we observe a reduction in the gap for increasingly

positive values of ε , though gap closure does not occur definitively. Both SX-strain [Fig. 63

(e4)] and SY-strain [Fig. 63 (e5)] do not lead to gap closure. Notably, under SY-strain at ε = 0.3,

the gap ∆12 reaches a minimum of ∆12/t = 0.01, while maintaining consistent Chern numbers

before and after this value. Similarly, the PS-strain [Fig. 63 (e6)] case does not result in gap
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Figure 76 – Contour plots of Berry curvature (as in Fig. 51), before and after the TPTs identified
in Fig. 64 for some cases with λAB = λBC = 0 (see Figs. 73 and 77).
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closure within the examined range.

Indeed, in the case of transition lattices, TPT were only observed beyond the

considered range of ε , as shown in Fig. 69 (a), presenting TPT at εc = −0.6 at 1/3 fill-

ing with ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0) and at εc = −0.64 at 2/3 filling with

∆C↑ = (−1,2,−1)− (−1,0,1) = (0,2,−2), analogous to the TPT in the corresponding case

with λAB ̸= 0 and λBC ̸= 0 already discussed in the previous subsection [Fig. 69 (b)]. The

evolution of the Berry curvatures corresponding to these TPT shown in Fig. 77 is also analogous

to those already discussed in Fig. 70, for the equivalent case mentioned.

The Kagome lattice exhibits a heightened susceptibility to TPT with ∆C↑=(−1,2,−1)−

(1,0,−1) = (−2,2,0), when varying ε from its initial value of zero, with λAB = λBC = 0. For

UX-strain, TPT occur at εUX
c =±0.04 [see Fig. 64 (o)]. In the case of UY-strain, transitions are

observed at εUY
c = 0.03 and εUY

c = −0.05 [see Fig. 64 (p)], while for BI-strain, a single TPT

manifests at εBI
c = 0.12 [see Fig. 64 (q)]. SX and SY-strains induce TPT at εSX

c = 0.06 and

εSY
c =−0.04 respectively [see Fig. 64 (r,s)], and PS-strain leads to transitions at εPS

c = 0.03 and

εPS
c =−0.02 [see Fig. 64 (t)].

The TPT observed in uniaxially strained or simply and purely sheared Kagome

lattices also occur when admitting only NNN ISO coupling, but at different εc values. Specifically,

at εUX
c = −0.15 and εUX

c = 0.11 [Fig. 75 (g)], at εUY
c = ±0.12 [Fig. 75 (h)], at εSX

c = εSY
c =

±0.14 [Fig. 75 (j,k)], and at εPS
c = ±0.7 [Fig. 75 (l)]. Intriguingly, the TPT identified at 1/3

filling in the BI-strained Kagome lattice ceases to occur when all NN ISO coupling are nullified

[Fig. 75 (i)]. We conclude that this is due to the NN ISO coupling parameter λAC, which remains

nonzero in Fig. 64 (q).

The TPT driven by uniaxial and biaxial strain are confirmed by the Berry curvatures

shown in Fig. 78. The UX-strain stretch causes the negative peaks of Ω1 at the ΓΓΓ points in the

unstrained Kagome lattice [see Fig. 51 (f1)], to transform into four positive half-peaks. These

half-peaks are distributed as two per face in the admitted reciprocal space area, along the b2

direction [Fig. 76 (f1)]. Similarly, Ω2 begins to exhibit the same four half-peaks but as negatives,

in addition to two positive peaks outside the faces [Fig. 76 (f2)]. Conversely, the compressed

UX-strain leads to two positive (negative) peaks outside the faces in Ω1 (Ω2), diverging from the

four half-peak pattern. This behavior is reversed in the case of UY-strain, such that the Berry

curvatures for stretched UX-strain correspond to those for compressed UY-strain, and vice versa.

This can be observed by comparing a1←→ g1, a2←→ g2, a3←→ g3 and c1←→ e1, c2←→ e2,
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Figure 77 – Contour plots of the Berry curvature, before and after the TPTs identified in panel a
of Fig. 69. It is noteworthy that the TPT cause a change in the sign of the Berry curvature.
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c3←→ e3 in Fig. 78.

Interestingly, the TPT in BI-strained Kagome lattice with λAB = λBC = 0 results in

Berry curvatures similar to those of the unstrained Kagome lattice with λAB ̸= 0 and λBC ̸= 0.

This can be observed by comparing the panels in Fig. 76 (g1, g2, and g3) with those in Fig. 51

(e1, e2, and e3), respectively.

In a SX-strained Kagome lattice, the TPT occurring at ε < 0 results in Berry curva-

tures [Fig. 76 (h)] analogous to those observed in the compressed UX-strained Kagome lattice

[Fig. 76 (e)]. Conversely, the TPT at ε > 0 differs from those in the stretch UX-strained Kagome,

as ΩSX
1 and ΩSX

2 display two complete peaks touching both the upper and lower faces in the

considered reciprocal space region [Fig. 76 (i1,2)], instead of four half-peaks on the right and

left faces, as seen in ΩUX
1 and ΩUX

2 [Fig. 76 (f1,2)]. The SY and PS-strained Kagome cases are

analogous to the SX-strained Kagome, as shown in Fig. 79.

We emphasize that usually one needs strains of at least ε = 0.2 in order to close the

band gap. Furthermore, the cases with λAB ̸= 0 and λBC ̸= 0 show more difficulty in closing

the gap for the Lieb lattice when compared to the case λAB = λBC = 0. Also, smaller strains

are sufficient to close (increase) the gap with extension (compression) than with compression

(extension).

3.6.4 Strain-driven non-topological phase transitions

We did not exclusively identify TPT when applying strain to the Lieb-Kagome

lattices; non-TPT were also observed. When both band gaps, ∆12 and ∆23, as well as ∆′12 and ∆′23,

close at εc and do not reopen, the system transitions to a metallic state, thereby losing its QSHI

characteristics [yellow regions in Figs. 63 and 75]. This occurs in the BI-strained Lieb lattice

for ε > 0.64, regardless of the inclusion of λAB and λBC terms [Fig. 63 (a3,d3)], and remains

the case when considering only NNN ISO coupling [Fig. 75 (c)]. Interestingly, this phase is

also observed at ε > 0.3 in the BI-strained Kagome lattice when only NNN ISO coupling are

admitted in the model [Fig. 75 (i)]. When the NN ISO coupling term λAC is introduced in this

case, instead of a metallic phase, we have a TI phase due to the TPT at εBI
c = 0.12 discussed in

the previous subsection [Fig. 64 (q)].

Conversely, when only the full band gap ∆12 closes while the corresponding local

band gap ∆′12 remains nonzero, the spectrum starts exhibiting a negative indirect gap at 1/3

filling [orange regions in Figs. 63 and 75]. This phenomenon classifies the bulk as a semimetal,
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Figure 78 – Contour plots of the Berry curvature (which complement those presented in Fig. 76),
before and after the TPTs identified in panels o, p, and q of Fig. 64. It is noteworthy that the TPT
cause a change in the sign of the Berry curvature.
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Figure 79 – Contour plots of the Berry curvature (which complement those presented in Fig. 76),
before and after the TPTs identified in panels r, s, and t of Fig. 64. It is noteworthy that the TPT
cause a change in the sign of the Berry curvature.
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wherein the QSHI state is only present in the upper gap. In this case, either the lower and middle

bands are partially filled, precluding the formation of helical edge states at 1/3 filling.

When λAB ̸= 0 and λBC ̸= 0, a semimetallic phase with QSHI in the upper gap occurs

for ε <−0.17 in BI-strained Lieb [Fig. 63 (a3)], ε <−0.16 in BI-strained transition [Fig. 63

(b3)], ε <−0.27 in BI-strained Kagome [Fig. 63 (c3)] and for ε <−0.21 in UY-strained Kagome

[Fig. 63 (c2)]. Conversely, when λAB = λBC = 0, this phase occurs for ε <−0.17 in BI-strained

Lieb [Fig. 63 (d3)], for ε < −0.16 in BI-strained transition [Fig. 63 (e3)], for ε < −0.23 in

BI-strained Kagome [Fig. 63 (f3)], and for ε <−0.09 in UY-strained Kagome [Fig. 63 (f2)].

When comparing the phase diagrams obtained with λAB = λBC = 0 with those

considering only NNN ISO coupling, we conclude that the aforementioned phase continues to

occur in the same region ε <−0.17 in Lieb [Fig. 75 (c)], while it continues to occur in Kagome

lattices under UY [Fig. 75 (h)] and BI [Fig. 75 (i)] strain, but in different regions, εUY <−0.15

and εBI <−0.3, respectively.

Interestingly, when admitting only NN ISO coupling in Kagome lattice, the semimetal-

lic phase with QSHI in the upper gap ceases to exist [Fig. 75 (n,o)], compared to the corresponding

case of λAB ̸= 0 and λBC ̸= 0 [Fig. 63 (c2,c3)]. This shows that the NNN ISO coupling terms are

responsible for this non-topological phase transition in the Kagome lattice.

3.7 Hypothetical strain

In accordance with Sec. 2.9, certain strain effects in the energy spectra are due

exclusively to the variation of the hopping parameters with the strain, when the ISO coupling is

disregarded. Now, let us investigate the evolution of the energy gap as a function of θ and ε in

cases where both the hopping parameters and the ISO coupling parameters remain constant as

the strain is applied, so that the six types of deformations only change the positions of the lattice

sites.

Curiously, we identified that the six types of strain show the same evolution of

the full band gaps as presented in Fig. 80. We observe that the gaps do not close solely as a

consequence of strain, presenting only the TPT occurring due to the interconvertibility process at

θ = 118.3◦ when λAB = λBC = 0, as discussed in Sec. 3.5.2. All other strain-induced topological

or non- TPTs are energetic effects resulting solely from the changes in values of hopping and

ISO coupling parameters that depend on the distances between sites in the strained lattice.
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Figure 80 – Contour plot of energy gap ∆12 [∆23] between the bands 1[2] and 2[3] as a function
of ε and θ for (a) λAB ̸= 0 and λBC ̸= 0 and (b) λAB = λBC = 0, considering the ISO coupling
and hopping parameters independent of the strain.
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Source: The author.

3.8 Conclusions

In summary, we systematically studied the TPT driven by strain on the Lieb-Kagome

lattices with ISO coupling, based on a recently proposed TB Hamiltonian reported by Lima et

al. (2023) that takes into account uniaxial strains and shear applied in different crystallographic

directions of the Lieb-Kagome lattice defined in terms of the interconvertibility discovered by

Jiang et al. (2019c) between the Lieb and Kagome lattices by defining a transition lattice that

maps such structures by one control parameter. For this purpose, using the concept of a strained

generic lattice (JIANG et al., 2019a; JIANG et al., 2019c; LIM et al., 2020; CUI et al., 2020;

LIMA et al., 2023), we derived a more general Hamiltonian including the ISO coupling.

Initially, we focused on understanding the emergence of two band gaps in the energy

spectrum of unstrained Lieb-Kagome lattices, particularly related to the introduction of ISO
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coupling. We demonstrated that NN ISO coupling alone does not induce band gaps in the Lieb

lattice. Instead, it is the incorporation of NNN ISO coupling that disrupts the D4h symmetry,

leading to the formation of a nearly-flat band with Chern number equal to zero (JIANG et al.,

2019c; HWANG et al., 2021). In both transition and Kagome lattices, band gaps are produced

by NN ISO coupling terms, NNN ISO coupling terms, or a combination of both. Specifically, in

the Kagome lattice, the emergence of a Chern nearly-flat band with Chern number equal to ±1

is observed. The process of these band gaps closing and then reopening is indicative of TPT,

confirmed by changes in the Spin Chern number and the Berry curvature, each calculated for the

three energy bands.

The first TPT we identified occurred in the unstrained Lieb-Kagome lattice, specifi-

cally during the interconvertibility process at the point ε = 118.3◦. This transition point is marked

by the NN ISO coupling terms λAB and λBC becoming null. Uniquely, this TPT represents a

singular phase transition driven by hypothetical strains, where the hopping and ISO coupling

parameters remain strain-invariant. This finding underscores that the phase transitions induced

by strain are not solely due to geometric alterations in the lattice. Instead, they are primarily

driven by changes in the Hamiltonian parameters, ti j and λi j, as governed by Eqs. (3.4) and (3.6),

respectively.

Overall, phase transitions were identified when varying the λ or n parameters, as

well as upon applying the six types of strain to the Lieb-Kagome lattices. TPT connecting two

TI phases occur when both full band gaps, along with their corresponding local band gaps, close

and then reopen at the same εc. If the lower full band gap closes and does not reopen, while

the corresponding local band gap remains non-zero, a negative indirect gap is observed. In this

scenario, the system undergoes a non-topological phase transition into a semimetallic regime

at 1/3 filling, characterized by partially filled bands and non-quantized spin Hall conductivity.

At 2/3 filling, the system behaves as an insulator, with the spin Hall conductivity carried by the

helical edge states becoming experimentally observable (BEUGELING et al., 2012). Conversely,

if both full band gaps close and do not reopen, the system transitions to a metallic state, inhibiting

any spin Hall conductivity.

The difference in the Chern numbers of the phases on either side of the TPT identified

in this chapter were ∆C↑ =±(2,−2,0) or ∆C↑ =±(2,0,−2). We observe that the change in the

Chern numbers of the two touching bands is ±2. Consequently, in all configurations with open

gaps, the system behaves as a QSH insulator with spin Hall conductivity equal to σSH = ±1,
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implying a Berry phase of 4π associated with this touching point, in accordance with Beugeling

et al. (2012).

The Berry curvature for each band changes sign when the corresponding Chern

number transitions from positive to negative, or vice versa. Remarkably, the total number of

Berry curvature peaks per band is strain invariant within the BZ, despite changes in their shape

and distribution. In general, the Berry curvatures corresponding to the lower and/or upper bands

exhibit two positive peaks when C↑lower =+1 and/or C↑upper =+1, while they show two negative

peaks when C↑lower =−1 or C↑upper =−1. The Berry curvature associated with the middle band

displays two positive and two negative peaks when C↑middle = 0, which transform into four positive

peaks when C↑middle =+2.

We believe that such a systematic study pertinent to the effects of different types of

strains applied in 2D lattices, as demonstrated in the phase transitions in Lieb-Kagome lattices

with ISO coupling, is crucial for advancing the field of 2D TI. This research underscores the

ability of strain engineering to fine-tune electrical and optical properties, offering new avenues

for controlling band gap tunability and band deformations. Such advancements are pivotal for

the future of 2D lattice-based device technologies, marking a significant contribution to both the

fundamental understanding and practical applications of these materials in nanoscale electronics

and photonics.
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4 STRAIN-INDUCED TOPOLOGICAL PHASE TRANSITION IN LIEB-KAGOME

NANORIBBONS

The combination of ISO coupling and strain can drive TPT in Lieb, Kagome, and

transition lattices, as confirmed by the evolution of Berry curvature and Chern numbers in

Ch.3. Here, we theoretically study the finite-size effects on the topological properties of these

structures, using a TB Hamiltonian that describes nanoribbons of Lieb (θ = π/2), Kagome

(θ = 2π/3), and transition (π/2 < θ < 2π/3) lattices with ISO coupling and under shear and

uniaxial strains applied along different crystallographic directions. The energy spectrum and

DOS for nanoribbons with three types of edges (straight, bearded, and asymmetric) are discussed.

Our results confirm TPT driven by strain engineering in these structures, based on the bulk-edge

correspondence. Furthermore, the evolution of edge states indicates that such deformations can

generate opposite spin currents under strain.

4.1 Motivation

As presented in previous chapters, 2D TI, such as the Lieb (LIEB, 1989; WEEKS;

FRANZ, 2010; GOLDMAN et al., 2011b) and Kagome lattices (MIELKE, 1992; GUO; FRANZ,

2009) with Z2 topological classification (KANE; MELE, 2005a; KANE; MELE, 2005b; QI

et al., 2008; FU; KANE, 2007), have attracted the attention of the scientific community due

to their interesting physical properties with potential applications in tunable spintronics and

optoelectronic devices. In the infinite layer energy spectrum, these lattices already present conical

Dirac energy bands coexisting with flat (non-dispersive) bands. This suggests the combination

of the exciting physics of the linear dispersive bands of graphene, such as massless relativistic

particles and a semimetallic state with extremely high electron mobility, with the promising

physics of flat bands, encompassing phenomena such as the ferromagnetic superconductivity

(LIN et al., 2018), spin liquid (BLOCK et al., 2020), and topological states (DEPENBROCK et

al., 2012; HAN et al., 2012; JIANG et al., 2019d; YIN et al., 2019; LEYKAM et al., 2018).

Other exciting phenomena, which we will explore in this chapter, occur at the edges

of the nanoribbons formed by this class of TI. Due to their Z2 classification (KANE, 2008;

HASAN; KANE, 2010; MOORE, 2010), Lieb (GOLDMAN et al., 2011a; CHEN; ZHOU,

2016; ZHANG et al., 2016; JIANG et al., 2019c; BINH et al., 2019) and Kagome (DEY et

al., 2011; ZHANG; TONG, 2019; JIANG et al., 2019c) nanoribbons display gapless edge

states when the ISO coupling is considered. The spin-up and spin-down states propagate in
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opposite directions along the edge of the system, generating spin-filtered edge states in the gap

region of the bulk energy spectrum (KANE; MELE, 2005a; KANE; MELE, 2005b). According

to the bulk-edge correspondence, this interesting behavior only occurs in cases of non-trivial

topology, characterized by a non-null spin Chern number Cs (KANE; MELE, 2005a; KANE;

MELE, 2005b; FU; KANE, 2007; QI et al., 2008), where Cs = (C↑−C↓)/2 and Cσ , σ = {↑,↓},

represents the Chern number associated with the individual spins (FUKUI et al., 2005; SHENG

et al., 2006; FUKUI; HATSUGAI, 2007).

In addition to studying the bulk and boundary properties of these TI, mechanisms

capable of changing the topological invariant, resulting in TPT, have been investigated. This

is because obtaining new topological configurations can result in the maintenance, loss, or

enhancement of the optoelectronic and transport properties of the sample. In Ch. 3, we show

that TPT can be driven by uniaxial and shear strains in Lieb, Kagome, and transition lattices.

This was confirmed by the evolution of Berry curvature and Chern numbers, but the bulk-edge

correspondence of these phase transitions in nanoribbons constructed from these structures was

not investigated. In fact, Zhao et al. (2022) investigated the evolution of edge states in Kagome

nanoribbons under uniaxial strain and ISO coupling. However, the authors did not apply other

types of possible strains, such as shear and biaxial strains. Also, we did not identify analogous

studies for the strained Lieb nanoribbon with ISO coupling. Thus, as a generalization of previous

studies, in this work, we investigate the strain effects on the electronic properties of Lieb and

Kagome nanoribbons with ISO coupling.

To achieve our objectives, we developed a general TB Hamiltonian that describes

both Lieb and Kagome nanoribbons, with ISO coupling, under uniaxial and shear strains along

different crystallographic directions. This Hamiltonian is based on the interconvertibility of

Lieb and Kagome lattices, initially proposed by Jiang et al. (2019c). The authors presented

a Hamiltonian that describes the Lieb (θ = π/2), Kagome (θ = 2π/3), and transition lattices

π/2 < θ < 2π/3 (JIANG et al., 2019a; CUI et al., 2020; LIM et al., 2020). Subsequently, we

included the strain tensor in this Hamiltonian for the cases without (LIMA et al., 2023) and with

ISO coupling in Chs. 2 and 3, respectively. Furthermore, a Hamiltonian for Lieb, Kagome, and

transition nanoribbons was proposed by Uchoa (2023), but without considering strain and ISO

coupling, which are already included in our theoretical model.

The chapter is organized as follows. In Sec. 4.2, we derive the TB model that

describes the generic nanoribbon, enabling the study of strain in Lieb and Kagome nanoribbons
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Figure 81 – Sketches of generic nanoribbons with (b) straight, (c) bearded, and (d) asymmetric
edges, emphasizing their unit cells (red dashed lines), edge terminations, and the row count in
each case are shown. The non-equivalent sites are: A (blue empty circle), B (yellow filled circle),
and C (green circle with a dot inside), as in Figs. 15 (a-c) and 46 (a). N is the total number of
lines defining the ribbon size W = (N−1)|a2|/2, which is always odd for straight or bearded
edges and even for asymmetric edges.

Source: The author.

with ISO coupling. In Sec. 4.3, we examine the choice of the n parameter that governs the

adopted hopping parameterization. In Sec. 4.4, we discuss the effects of ISO coupling on the

energy spectrum and DOS for nanoribbons with three types of edges (straight, bearded, and

asymmetric). In Sec. 4.5, we present the effects of TPT driven by λ and θ on the edge states of

Lieb-Kagome nanoribbons, while in Sec. 4.6, we discuss the strain effects on these nanoribbons,

showing the edge states before and after the occurrence of TPT in both sections. Finally, in

Sec. 4.7, we summarize our main findings.

4.2 Theoretical model

4.2.1 Crystalographic lattice structure for generic Lieb-Kagome nanoribbons

We will consider Lieb (θ = 90◦), transition (θ = 105◦), and Kagome (θ = 120◦)

nanoribbons with three types of edges: (i) straight [Fig. 81 (a)], (ii) bearded [Fig. 81 (b)], and

(iii) asymmetric [Fig. 81 (c)]. In this figure, we show how the lines are numbered along the

finite size y direction, the structural termination edges, and the unit cell (red dashed lines) for

the three different nanoribbons investigated. The straight edge [Fig. 81 (a)] is characterized by

its first and last lines being formed by B and C sites. For the case of the bearded edge [Fig. 81

(b)], we have that its first and last lines are formed by sites of type A. Finally, for the case of the

asymmetric edge [Fig. 81 (c)], we have the composition of the two previous edges, i.e., one side

of the nanoribbon has a straight edge, and the other side has a bearded edge. In this way, the first

line of atoms of the nanoribbon is formed by sublattices of the type B and C, and its last line is
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formed by sublattices of the type A.

Analyzing how the lines are numbered in Fig. 81, we notice that for the case of the

bearded edge [Fig. 81 (b)], we have NA = (N +1)/2 and NB = NC = (N−1)/2, where N is the

total number of lines defining the ribbon width W = (N−1)a0, and NA, NB, and NC correspond

to the number of lines of sites A, B, and C, respectively. As for the case of the straight edge

[Fig. 81 (a)], we have NA = (N−1)/2 and NB = NC = (N +1)/2. Finally, for the case of the

asymmetric edge [Fig. 81 (c)], where the first line is composed only of sites of type B and C, and

the last line is composed of sites of type A, we have NA = NB = NC = N/2. N is always odd in

the case of straight or bearded edges. For asymmetric edges, on the other hand, N is necessarily

an even number (UCHOA, 2023).

4.2.2 Tight-binding model for Lieb-Kagome nanoribbons without ISO coupling

Due to the periodicity of the ribbon structures along the x direction, which are

characterized by the number of lines as shown in Fig. 81, it is convenient to write the operators

do general TB Hamiltonian [Eq. (3.2a)], that can describe the charge carrier’s dynamics, in the

Fourier basis as

ŝi =
1√

Ncells
∑
kx

∑
n

eikxxi ŝkx,n, (4.1a)

ŝ†
i =

1√
Ncells

∑
kx

∑
n

e−ikxxi ŝ†
kx,n, (4.1b)

where Ncells is the number of unit cells and skx,n(s
†
kx,n) destroys (creates) an electron with

momentum h̄kx at the site of type ŝ = {â, b̂, ĉ} at line n.

Replacing the operators of Eq. (4.1) in Eq. (3.2a), multiplying the resulting ex-

pression by the factor e−ik′xxieik′xxi = 1, and using the appropriate Kronecker delta function

representation, we obtain the following Hamiltonian for generic nanoribbons:

Ĥ0 = ∑
kx

∑
n,n′

τ0
AB
n,n′a

†
kx,nbkx,n′+∑

k′x
∑

n′,n′′
τ0

BC
n′,n′′b

†
k′x,n′

ck′x,n′′+∑
kx

∑
n,n′′

τ0
AC
n,n′′a

†
kx,nckx,n′′+h.c., (4.2)

where τ0
i j
n,n′ , with i, j = (A,B,C), are matrix elements defined for each type of nanoribbon

termination adopted. Writing kkk = (kx,0), one can find for the three types of edges,

τ0
BC
n′,n′′ = δn′,n′′tBC

(
eiRRRBC·kkk + e−iRRRBC·kkk

)
+δn′,n′′−1t ′BCe−iRRR′′′BC·kkk +δn′,n′′+1t ′BCeiRRR′′′BC·kkk. (4.3)
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For straight [Fig. 81 (a)] and asymmetric [Fig. 81 (c)] nanoribbons, we obtain

τ0
AB
n,n′ = δn,n′

(
tABe−iRRRBA·kkk + t ′ABe−iRRR′′′BA·kkk

)
+δn,n′−1

(
tABeiRRRBA·kkk + t ′ABeiRRR′′′BA·kkk

)
, (4.4a)

τ0
AC
n,n′′ = δn,n′′

(
tACeiRRRAC·kkk + t ′ACe−iRRR′′′AC·kkk

)
+δn,n′′−1

(
tACe−iRRRAC·kkk + t ′ACeiRRR′′′AC·kkk

)
, (4.4b)

and for bearded [Fig. 81 (b)] nanoribbons, we obtain

τ0
AB
n,n′ = δn,n′

(
tABeiRRRBA·kkk + t ′ABeiRRR′′′BA·kkk

)
+δn,n′+1

(
tABe−iRRRBA·kkk + t ′ABe−iRRR′′′BA·kkk

)
, (4.5a)

τ0
AC
n,n′′ = δn,n′′

(
tACe−iRRRAC·kkk + t ′ACeiRRR′′′AC·kkk

)
+δn,n′′+1

(
tACeiRRRAC·kkk + t ′ACe−iRRR′′′AC·kkk

)
. (4.5b)

As in Ch. 3, ti j are the hopping parameters that obey Eq. (3.4).

To find the Lieb-Kagome nanoribbon band structure, we apply the standard Heisen-

berg equation of motion, ih̄dÔ/dt = [Ô, Ĥ0], to the operators Ô ≡ {ŝ†
kx,n and ŝkx,n} in line n. As-

suming that the time dependence of the modes behaves like e−
iEt
h̄ , one obtains Eŝkx,n = [ŝkx,n, Ĥ0]

for the three operators ŝ≡ {â, b̂, ĉ}, and thus

[âkx,n, Ĥ0] =
NB

∑
n′=1

τ0
AB
n,n′ b̂kx,n′+

NC

∑
n′=1

τ0
AC
n,n′ ĉkx,n′, (4.6a)

[b̂kx,n, Ĥ0] =
NA

∑
n′=1

τ0
BA
n,n′ âkx,n′+

NC

∑
n′=1

τ0
BC
n,n′ ĉkx,n′, (4.6b)

[ĉkx,n, Ĥ0] =
NB

∑
n′=1

τ0
BC
n,n′ b̂kx,n′+

NA

∑
n′=1

τ0
AC
n,n′ âkx,n′. (4.6c)

Combining this set of coupled equations [Eqs. (4.6a), (4.6b), and (4.6c)], one arrives at the

following matrix equation

T0


âkx,n

b̂kx,n

ĉkx,n

= E


âkx,n

b̂kx,n

ĉkx,n

 , (4.7)

where T0 is the hopping matrix without ISO coupling of order NA +NB +NC that depends on

the ribbon configuration, given by

T0=


[τ0

AA]NA×NA [τ0
AB]NA×NB [τ0

AC]NA×NC

[τ0
BA]NB×NA [τ0

BB]NB×NB [τ0
BC]NB×NC

[τ0
CA]NC×NA [τ0

CB]NC×NB [τ0
CC]NC×NC

 , (4.8)

with τ0
AA, τ0

BB, and τ0
CC standing for the on-site energies of sites A, B, and C, respectively,

that are assumed here to be zero. To illustrate an example of a non-null on-site energy case,



179

one has that Lieb-Kagome nanoribbons subjected to perpendicular or in-plane electric fields are

simulated by changing the on-site energies in the corresponding appropriate way. As discussed

by Uchoa (2023), according to the number of lines for each Lieb-Kagome nanoribbon, the order

of the matrix T0 is (3N−1)/2, (3N +1)/2, and 3N/2 for nanoribbons with bearded, straight,

and asymmetric edges, respectively. Therefore, straight-edged nanoribbons have an additional

mode compared to bearded-edged nanoribbons of the same size (UCHOA, 2023).

From Eq. (4.9), we obtain

[T0−EI]


âkx,n

b̂kx,n

ĉkx,n

= 0, (4.9)

such that the condition det[T0−EI] = 0 provides the energy spectrum of the nanoribbons.

Practically, to obtain the energy levels without ISO coupling, the hopping matrix

T0 is diagonalized by choosing the ribbon features, such as the angle θ , which determines the

lattice type, the type of edge, and the total number of lines N associated with the width of the

nanoribbon.

4.2.3 Tight-binding model for Lieb-Kagome nanoribbons with ISO coupling

Following an analogous path to the previous section, it is convenient to write the

operators of the ISO coupling contribution to the general TB Hamiltonian [Eq. (3.3)], in the

Fourier basis as

ŝi,σ =
1√

Ncells
∑
kx

∑
n

eikxxi ŝkx,σ ,n, (4.10a)

ŝ†
i,σ =

1√
Ncells

∑
kx

∑
n

e−ikxxi ŝ†
kx,σ ,n, (4.10b)

where skx,σ ,n(s
†
kx,σ ,n) destroys (creates) an electron with spin σ and momentum h̄kx at the site of

type ŝ = {â, b̂, ĉ} at line n.

Replacing the operators of Eq. (4.10) in Eq. (3.3), multiplying the resulting ex-

pression by the factor e−ik′xxieik′xxi = 1, and using the appropriate Kronecker delta function

representation, we obtain the following ISO coupling Hamiltonian for generic nanoribbons:

ĤISO = ∑
kx,σ ,σ ′

∑
n,n′

τISO
AB
n,n′a

†
kx,σ ,nσzbkx,σ ′,n′+ ∑

k′x,σ ,σ ′
∑

n′,n′′
τISO

BC
n′,n′′σzb

†
k′x,σ ,n′ck′x,σ ′,n′′

+ ∑
kx,σ ,σ ′

∑
n,n′′

τISO
AC
n,n′′a

†
kx,σ ,nσzckx,σ ′,n′′+h.c., (4.11)
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where τISO
i j
n,n′ , with i, j = (A,B,C), are ISO coupling matrix up-spin elements defined for each

type of nanoribbon termination adopted. The σz is responsible for constructing the complete ISO

coupling matrix that contains both up-spin and down-spin elements, as constructed later. Writing

kkk = (kx,0), one can find for the three types of edges,

τISO
BC
n′,n′′ = iδn′,n′′

(
−λBCeiRRRBC·kkk−λBCe−iRRRBC·kkk

)
+ iδn′,n′′−1λ

′
BCe−iRRR′′′BC·kkk + iδn′,n′′+1λ

′
BCeiRRR′′′BC·kkk.

(4.12)

For straight [Fig. 81 (a)] and asymmetric [Fig. 81 (c)] nanoribbons that

τISO
AB
n,n′ = iδn,n′

(
−λABe−iRRRBA·kkk +λ

′
ABe−iRRR′′′BA·kkk

)
+ iδn,n′−1

(
−λABeiRRRBA·kkk +λ

′
ABeiRRR′′′BA·kkk

)
, (4.13a)

τISO
AC
n,n′′ = iδn,n′′

(
λACeiRRRAC·kkk−λ

′
ACe−iRRR′′′AC·kkk

)
+ iδn,n′′−1

(
λACe−iRRRAC·kkk−λ

′
ACeiRRR′′′AC·kkk

)
, (4.13b)

and for bearded [Fig. 81 (b)] nanoribbons, one gets

τISO
AB
n,n′ = iδn,n′

(
−λABeiRRRBA·kkk +λ

′
ABeiRRR′′′BA·kkk

)
+ iδn,n′+1

(
−λABe−iRRRBA·kkk +λ

′
ABe−iRRR′′′BA·kkk

)
, (4.14a)

τISO
AC
n,n′′ = iδn,n′′

(
λACe−iRRRAC·kkk−λ

′
ACeiRRR′′′AC·kkk

)
+ iδn,n′′+1

(
λACeiRRRAC·kkk−λ

′
ACe−iRRR′′′AC·kkk

)
. (4.14b)

As in Ch. 3, the λi j represent the amplitudes of the ISO coupling, which obey Eq. (3.6).

To find the Lieb-Kagome nanoribbon band structure with ISO coupling, we apply the

standard Heisenberg equation of motion, ih̄dÔ
dt = [Ô, Ĥ], to the operators Ô ≡ {ŝ†

kx,σ ,n, ŝkx,σ ,n}

in line n. By Eq. (3.1), Ĥ = Ĥ0 + ĤISO, with Ĥ0 given by Eq. (4.2) and ĤISO given by Eq. (4.11),

in the current context of nanoribbons.

Assuming that the time dependence of the modes behaves like e−
iEt
h̄ , one obtains

Eŝkx,σ ,n = [ŝkx,σ ,n, Ĥ] for the three operators ŝ≡ {â, b̂, ĉ}, and thus one arrives at the following

matrix equation

T



âkx,↑,n

b̂kx,↑,n

ĉkx,↑,n

âkx,↓,n

b̂kx,↓,n

ĉkx,↓,n


= E



âkx,↑,n

b̂kx,↑,n

ĉkx,↑,n

âkx,↓,n

b̂kx,↓,n

ĉkx,↓,n


, (4.15)

where

T = T0⊗12×2 +TISO⊗σz, (4.16)
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analogously to Eq. (3.9), such that TISO is the ISO coupling matrix corresponding to the up spin

component, of order NA +NB +NC, which depends on the ribbon configuration, given by

TISO=


[τISO

AA]NA×NA [τISO
AB]NA×NB [τISO

AC]NA×NC

[τISO
BA]NB×NA [τISO

BB]NB×NB [τISO
BC]NB×NC

[τISO
CA]NC×NA [τISO

CB]NC×NB [τISO
CC]NC×NC

 , (4.17)

with τISO
AA, τISO

BB, and τISO
CC standing for the ISO coupling between equivalent sites, which

are considered null in this thesis.

Finally, to obtain the energy levels of the Lieb-Kagome nanoribbons with ISO

coupling, the matrix T is diagonalized by choosing the ribbon features, such as the angle θ that

determines the lattice type, the type of edge, and the total number of lines N associated with the

width of the nanoribbon. The matrix T consists of two uncoupled blocks corresponding to the

spin-up and spin-down projections, related by TR symmetry. In Ch. 3, we consider that due to

the TR and inversion symmetries, the ISO coupling is unable to lift the spin degeneracy in Lieb-

Kagome lattices. In the case of nanoribbons, we have inversion symmetry only in the y direction

in straight and bearded nanoribbons, such that we obtain exactly the same energy spectrum for

both spin-up and spin-down cases, resulting in bands that are doubly degenerate. However, in

the case of asymmetric edge nanoribbons, this symmetry is broken, and we find different spectra

depending on whether we consider spin-up or spin-down, with greater differences in the edge

states.

4.2.4 Calculation of the density of states

By leveraging the calculated energy levels, one can determine the DOS, which

serves as a crucial function in condensed matter physics and materials science. The DOS

quantifies the number of available electronic states at each energy level within a specified energy

range, playing a pivotal role in understanding various electronic properties of materials, such

as electrical conductivity, optical characteristics, and thermal capacity (ASCROFT; MERMIM,

1976; KITTEL, 2005).

To compute the DOS, we employ a method that involves the superposition of indi-

vidual energy states. Each of these states is broadened using a Gaussian function, transitioning

from a discrete to a continuous representation of energy levels. This broadening is imperative for

accommodating the inherent uncertainties and variations present in real-world materials, where

perfectly discrete energy levels are rarely observed.
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The Gaussian function used for broadening is mathematically represented as follows:

f (E) = e
− (E−E0)

2

γ2 , (4.18)

where E represents the energy variable, E0 denotes the central energy level around which the

broadening occurs, and γ is the broadening factor that determines the width of the Gaussian peak

(SILVA, 2015).

The parameter γ is of critical importance, as it ensures the Gaussian function effec-

tively smooths the density of states without obscuring the inherent separations between discrete

energy levels. A carefully chosen γ value, smaller than the typical energy level separations,

guarantees that the broadening does not inappropriately merge distinct states, thereby preserving

the physical accuracy of the model (SILVA, 2015).

In this context, we adopt a standard broadening factor γ of 0.05t, unless otherwise

stated. This specific value is selected based on the typical energy scales in the systems under study

and provides a balanced approach to broadening. By using γ = 0.05t, we maintain a consistent

and reproducible method for calculating the DOS across Lieb-Kagome lattice nanoribbons. From

this point onward, all DOS results presented will utilize this standard broadening factor, ensuring

that our analysis remains coherent and comparable throughout the study. Specifically, in the

next section, we admit values of n < 8 in Eq. (3.4) in comparison with n = 8, to investigate

the effects of including NNN sites in the energy spectrum of Lieb, transition (θ = 105◦) and

Kagome nanoribbons within the TB model.

4.3 Effects of next-nearest-neighbors sites

To include increasingly noticeable effects of sites more distant than the NN sites

(e.g., the NNN sites) in the energy spectra of Lieb-Kagome nanoribbons, consider increasingly

smaller values of n < 8, as in Ch. 2 (LIMA et al., 2023). In fact, from Eq. (3.4), it is seen that

the value of n controls the magnitude of the hopping parameters. For a given distance between

sites, the corresponding hopping value will decrease (increase) as the value of the n-parameter

increases (decreases). As discussed by Lima et al. (2023), the effects of sites more distant than

the NN sites are suppressed for n ≥ 8 and intensified for n < 8. With n = 8, we obtain both

nearly-flat bands and smooth transitions between the two lattices (JIANG et al., 2019c), thus

finding a good approximation for the TB model of NN sites in the specific cases of the Lieb and
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Figure 82 – Energy spectra (panels with subscript 1) and DOS (panels with subscript 2) of
nanoribbons with: (a-c) asymmetric edges [N = 30], (d-f) straight edges [N = 31], and (g-i)
bearded edges [N = 31] for (a,d,g) Lieb, (b,e,h) transition, and (c,f,i) Kagome lattices without
ISO coupling, i.e., λISO = 0 (Eq. (3.6)). The cases presented are: (i) n = 1 [black dash-dotted
line], (ii) n = 4 [dashed red line], and (iii) n = 8 [solid blue line].

Straight edge (N=31) with λISO=0

n=8n=4n=1

(d2)(d1)

(e2)(e1)

(f2)(f1)

Bearded edge (N=31) with λISO=0

(g2)(g1)

(h2)(h1)

(i2)(i1)(c2)(c1)

(a2)

(b2)(b1)

Asymmetric edge (N=30) with λISO=0

(a1)

Source: The author.

Kagome nanoribbons (JIANG et al., 2019c; LIMA et al., 2023).

Figure 82 shows the effects of sites further apart than the NN sites, such as the

NNN sites, on the energy spectra of Lieb, transition (θ = 105◦), and Kagome nanoribbons with

asymmetric (N = 30), straight (N = 31), and bearded (N = 31) edges, respectively. We note that

the inclusion of NNN sites does not close or open an energy gap. The main effect observed is that

the modes originating from the flat band of the corresponding infinite lattice spectrum become

increasingly spaced as more distant neighbors are included in the model. This is confirmed by

the DOS, which initially shows well-localized peaks corresponding to the nearby modes in the

NN TB model. As NNN sites and even more distant neighbors are included in the model, these

peaks become less localized and consequently cover a wider energy range compared to the peaks

of the NN sites model.

Indeed, when considering only NN sites, the flat bands, which are degenerate NA

times, persist in the energy spectrum of Lieb, transition, and kagome nanoribbons for all

three edge types. However, the inclusion of NNN-sites breaks this degeneracy in all cases,
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transforming the flat bands into nearly-flat bands. These nearly-flat bands remain nearly-flat

due to the constraint n = 8 in Eq. (3.4). It is important to mention that for n < 8, as discussed in

Ch. 2, these bands become increasingly dispersive.

Regardless of the value of n, in the Lieb nanoribbon [Fig. 82 (a2, d2, g2)], the DOS

panels show a pronounced sharp peak around E = 0 associated with the NA nearly-degenerate

states, with its peak width related to the nearly-flat states subband width. Additionally, around

E/t ≈±2, the DOS of the Lieb nanoribbons exhibits van Hove singularities (peaks) correspond-

ing to energy levels with almost zero group velocity at the corners of the BZ. These peaks are

more pronounced in larger Lieb nanoribbons (compare black and blue curves, where the former

represents the shortest Lieb nanoribbon). These van Hove singularities have also been reported

in other flat-band nanostructured systems, such as Dice lattice nanoribbons (SONI et al., 2020).

The DOS of transition nanoribbons [Fig. 82 (b2, e2, h2)] shows a splitting of the

van Hove singularity corresponding to the nearly-flat bands observed in the DOS of the Lieb

nanoribbon [Fig. 82 (a2, d2, g2)]. This splitting occurs near the energy E = 0 and is observed in

transition nanoribbons for all three edge configurations. This effect provides evidence for the

interconvertibility process between Lieb and Kagome nanoribbons (UCHOA, 2023).

The DOS of Kagome nanoribbons displays van Hove singularities around E =−2t,

corresponding to the nearly-flat bands, similar to the DOS of Lieb nanoribbons near E = 0. Peaks

in the DOS around E = +2t and E = 0 arise from degenerate points at ka = π . Additionally,

bearded and asymmetric Kagome nanoribbons exhibit an additional peak in the DOS around

E = −1.5t, which originates from two (one) states in the bearded (asymmetric) case. These

states are considered nearly-flat bands since they are in close proximity to the other nearly-flat

bands at ka = 0 and ka = 2π , but deviate from them as k approaches π (UCHOA, 2023).

4.4 Effects of intrinsic spin-orbit coupling

Figure 83 depicts the energy levels of Lieb [Fig. 83 (a,d,g)], transition [Fig. 83

(b,e,h)], and Kagome [Fig. 83 (c,f,i)] asymmetric-edged nanoribbons for the three investigated

cases: (a-c) without ISO coupling (λISO = 0), and (d-i) with ISO coupling (λISO = 0.2t), where

(d-f) λAB ̸= 0, λBC ̸= 0, and (g-i) λAB = λBC = 0.

The results obtained without ISO coupling reveal the presence of NA nearly-flat

modes localized around the infinite-sheet nearly-flat band, which is at E = 0 in the Lieb and

transition lattices, and E =−2t in the Kagome lattice. Additionally, there are NB subbands for
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Figure 83 – Energy spectra of nanoribbons with asymmetric edges (N = 30) for (a,d,g) Lieb,
(b,e,h) transition, and (c,f,i) Kagome lattices. The cases presented are (a-c) λISO = 0, and
(d-i) λISO = 0.2t, with (d-f) λAB ̸= 0, λBC ̸= 0, and (g-i) λAB = λBC = 0. The solid black lines
represent the states with λISO = 0, while the states with λISO ̸= 0 are represented by solid blue
lines (spin-up) and dashed red lines (spin-down).
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each of the two dispersive bands, originating from the infinite-sheet lower (E1) and upper (E3)

bands in the Lieb and transition lattices, and from the middle (E2) and upper (E3) bands in the

case of Kagome, as indicated in Figs. 48(d), 48(e), and 48(f), respectively, for the Lieb, transition,

and Kagome lattices.

The spectrum of transition nanoribbons, shown in Fig. 83 (b), differs from the Lieb
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[Fig. 83 (a)] one mainly due the shape of the nearly-flat modes, which are more dispersive than

those of Lieb nanoribbons. This behavior is a consequence of the interconvertibility process

of the transition nanoribbon, similar to that between Lieb and Kagome infinite lattices. The

evolution of the θ parameter from Lieb (θ = 90◦) to Kagome (θ = 120◦) destroys the nearly-flat

bands located in the middle of the spectrum of Lieb nanoribbon and reconstructs them in the

lower (upper) part of the energy spectrum of Kagome nanoribbon for positive (negative) hopping

parameters [see Fig. 49]. Furthermore, in the case of the asymmetric edge, all states of nearly-flat

bands are degenerate in the ka = π point.

For the Lieb and transition lattices without ISO coupling [Fig. 83 (a,b)], we observe

that due to the confinement effect in the y direction, with an asymmetric nanoribbon cut that does

not preserve inversion symmetry in this direction, an energy gap is opened between the dispersive

subbands originating from E1 and the nearly-flat subbands stemming from E2, and another gap

between the subbands of E2 and E3. Consequently, the Lieb and transition nanoribbons are

semiconductors at 1/3 and 2/3 filling. Kagome nanoribbons with asymmetric edges [Fig. 83 (c)]

are semiconductors, similar to the equivalent cases in Lieb [Fig. 83 (a)] and transition [Fig. 83

(b)] with that type of edge. However, unlike Lieb and transition, which exhibit two energy gaps

between the dispersive bands and the nearly-flat bands, the Kagome nanoribbon presents only

one energy gap between the higher-energy dispersive band and the lower-energy upper dispersive

band.

Despite this difference, similar to the cases of Lieb and transition, the results obtained

for the Kagome nanoribbon [Fig. 83 (c)] reveal the presence of NA nearly-flat bands. However,

in the Kagome case, the nearly-flat bands are located near E =−2t at ka = 0 and ka = 2π/a,

rather than at E = 0 as in Lieb and transition. Additionally, there are NB dispersive bands in

the middle and upper parts of the energy spectrum, whereas in Lieb and transition, there are NB

dispersive bands in the lower and upper parts of the energy spectrum.

The introduction of ISO coupling opens two energy gaps between the bands E1 and

E2 (∆12) and E2 and E3 (∆23) in the spectrum of Lieb-Kagome lattices. A gap is seen between

the higher-energy lower dispersive band and the lower-energy nearly-flat band, while another

gap appears between the higher-energy nearly-flat band and the lower-energy upper dispersive

band. As expected from the bulk-edge correspondence, there are edge states that cross these

bulk energy gaps [Fig. 83 (d-i)]. This is the main reason we refer to Lieb-Kagome lattices as

topological insulators, as they are insulating in the bulk but exhibit topologically protected edge
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Figure 84 – Same as Fig. 83, but now for (a-i) straight and (j-r) bearded edges, both with N = 31.
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states.

It is important to note that the chiral spin-up and spin-down states are not doubly

degenerate, thus configuring helical states (MANI; BENJAMIN, 2017) due to the inversion

symmetry breaking characteristic of the nanoribbon with asymmetric edges [Fig. 81 (c)].

Figure 84 depicts the energy levels of Lieb [Fig. 84 (a,d,g,j,m,p)], transition [Fig. 84

(b,e,h,k,n,q)], and Kagome [Fig. 84 (c,f,i,l,o,r)] nanoribbons with straight [Fig. 84 (a-i)] and

bearded [Fig. 84 (j-r)] edges for the three investigated cases: (a-c) without ISO coupling

(λISO = 0), and (d-i) with ISO coupling (λISO = 0.2t), where (d-f) λAB ̸= 0, λBC ̸= 0, and (g-i)

λAB = λBC = 0.

Notably, without ISO coupling, the Dirac cone observed in the energy spectrum of the

infinite-sheet Lieb lattice (JIANG et al., 2019c) is verified only in the case of Lieb ribbons with

straight edges [Fig. 84 (a)]. This can be attributed to the fact that the straight-edged nanoribbon

is the only one of the three edge terminations that is completely symmetrical and free of dangling

bonds, thus preserving the defect-free structural features of the Lieb lattice. Consequently, it

exhibits the main energetic aspects of the Lieb lattice in its infinite-sheet spectrum, i.e., the

coexistence of a Dirac cone and a nearly-flat band. For Lieb nanoribbons with bearded edges

[Fig. 84 (j)], one can notice the appearance of two energy gaps, similar to the case of asymmetric

edges: one of these gaps is situated between the higher energy (E1) of the lower dispersive
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subband and the lower energy of the nearly-flat subband, and the other energy gap emerges

between the higher energy of the nearly-flat subband and the lower energy of the upper dispersive

subband (ZHANG et al., 2016; UCHOA, 2023). Based on the presence or absence of an energy

gap in the energy spectrum, one can characterize straight-edged Lieb nanoribbons as metallic,

while bearded and asymmetric-edged Lieb nanoribbons can be characterized as semiconductor

systems.

For the transition nanoribbon, similar to the Lieb nanoribbons, only the straight edge

exhibits the Dirac-like spectrum [Fig. 84 (b)]. The main difference between the bearded [Fig. 84

(k)] and asymmetric edges in the transition spectrum is manifested in the nearly-flat subbands.

In the case of the bearded edge, the least energetic and most energetic nearly-flat subbands

separate from the other nearly-flat subbands in the vicinity of the ka = π point [see Fig. 84 (k)],

whereas in the case of the asymmetric edge, as mentioned earlier, all nearly-flat subbands are

degenerate at this k point [Fig. 84 (b)]. Moreover, the bearded edge nanoribbon always has an

extra nearly-flat mode when compared to the other two configurations, when compared without

ISO coupling.

Kagome nanoribbons with straight edges are metallic, lacking an energy gap [Fig. 84

(c)], similar to Lieb [Fig. 84 (a)] and transition [Fig. 84 (b)] nanoribbons with the same edge

type. Conversely, Kagome nanoribbons with bearded edges [Fig. 84 (l)] are also metallic, which

contrasts with Lieb [Fig. 84 (j)] and transition [Fig. 84 (k)] nanoribbons with bearded edges, as

these are semiconductors.

When the ISO coupling is included, the energy spectra of nanoribbons exhibit

notable differences based on edge configurations. In contrast to the spectra of asymmetric-edged

nanoribbons, Fig. 84 shows doubly degenerate spin-up and spin-down states for nanoribbons

with straight or bearded edges, which preserve inversion symmetry. Generally, in nanoribbons

with straight edges, the edge states form a V-shape in the positive energy region, while those

with bearded edges exhibit a Λ-shape in the same region. The combination of these two types of

edge states explains the edge states observed in nanoribbons with asymmetric edges. Indeed,

nanoribbons with asymmetric edges feature both straight and bearded edge types, resulting in a

mixture of the corresponding edge state characteristics.

In Fig. 85, we compare the energy spectrum region of nanoribbons for Kagome lattice

cases, seeking to identify the differences and similarities between the cases with λAB = λBC = 0

and λAB ̸= 0 and λBC ̸= 0 for the three edge types. The results for the asymmetric edge show that
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Figure 85 – Representation of zoomed-in regions of the energy spectra of nanoribbons of the
Kagome lattice shown in Figs. 83 and 84 in the lower energy region, comprising the nearly-flat
modes, for (a,d,g) asymmetric edges, (b,e,h) bearded edges, and (c,f,i) straight edges. We present
the cases with (a-c) λISO = 0, and (d-i) λISO = 0.2t, with (d-f) λAB ̸= 0, λBC ̸= 0, and (g-i)
λAB = λBC = 0. The solid black lines represent the states with λISO = 0, while the states with
λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines (spin-down).
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there is a spin-up and spin-down flip due to the change in the Chern number of the cases analyzed

in Figs. 85 (d) and 85 (g). Note that modes (1) and (2), which correspond to spin-down states

when λAB ̸= 0 and λBC ̸= 0, with C↑ = (1,0,−1), become spin-up states when λAB = λBC = 0, as

C↑ = (−1,2,−1), as represented in Fig. 51 (e4 and f4). Similarly, mode (3) changes from spin-up

to spin-down when there is a phase transition of ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0) at
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θ = 118.3◦, as discussed in Sec. 3.5.2. This spin-flip behavior occurs again, most evidently, in

the strain-driven cases analyzed below. Additionally, the other panels show the states originating

from the bearded and straight edges, helping to identify which edge belongs to the state shown

in the case of the asymmetric edge. Specifically, we observe that mode (1) in the spectrum of the

asymmetric-edged Kagome nanoribbon is located at the lower straight edge, whereas modes (2)

and (3) are located at the upper asymmetric edge, as represented in Fig. 81 (c).

In Fig. 86, we present the energy spectra of Lieb, transition, and Kagome nanorib-

bons with asymmetric edge type for the smallest possible number of lines, N = 4, and for an

intermediate number, N = 12. Similarly, we show the energy spectrum for nanoribbons with

straight (see Fig. 87) and bearded (see Fig. 88) edges for the smallest number of lines admitted

by these types of edges, i.e., N = 5, as well as for an intermediate number, N = 13. For all

these results, the previous conclusions for the spectra with N = 30 (asymmetric edge) and

N = 31 (straight and bearded edge) remain valid, with one exception. We observe that Kagome

nanoribbons with bearded edges [Fig. 88(c)] exhibit a gap between the higher-energy lower

nearly-flat subband and the lower-energy dispersive subband only for N ≤ 7, while they present

a null full band gap for N ≥ 9, as identified for N = 13 [Fig. 88(l)]. In this example with N = 13,

the 1/3-filled system would classify the bulk as a semimetal, preventing the helical edge states

from being observed. In the semimetallic regime, i.e., with partially filled bands, the spin Hall

conductivity is not quantized. For 2/3 filling, regardless of N, there is no gap, which would

classify the bulk in a metallic regime, prohibiting any spin Hall conductivity carried by the helical

edge states from being experimentally observed, differing from Lieb and transition nanoribbons

with bearded edges, which are TI both in 1/3 filling and 2/3 filling.

Through these plots, we see more clearly that the inclusion of ISO coupling causes

the NA nearly-flat subbands of the case without ISO coupling to become 2NA nearly-flat subbands,

with NA spin-up and NA spin-down. Similarly, the NB dispersive subbands become 2NB, with NB

spin-up and NB spin-down. In the case of straight and bearded edges, as previously mentioned, the

energy spectrum is doubly degenerate concerning the spin-up and spin-down modes. However,

for asymmetric edges, this does not occur due to the breaking of mirror symmetry in y.

In asymmetric-edged nanoribbons, we observe that edge states form from an anti-

crossing between nearly-flat subbands and dispersive subbands [Fig. 86 (d-i)]. As N increases,

helical edge states form, which completely cross the bulk gaps generated by the inclusion of ISO

coupling, characteristic of Z2 topological insulators [Fig. 86 (m-r)]. The formation of edge states
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Figure 86 – Energy spectra of nanoribbons with asymmetric edges for (a-i) N = 4 and (j-r)
N = 12, showing (a,d,g,j,m,p) Lieb, (b,e,h,k,n,q) transition, and (c,f,i,l,o,r) Kagome lattices.
We present the cases with (a-c,j-l) λISO = 0 and (d-i,m-r) λISO = 0.2t, with (d-f,m-o) λAB ̸= 0,
λBC ̸= 0, and (g-i,p-r) λAB = λBC = 0. The solid black lines represent the states with λISO = 0,
while the states with λISO ̸= 0 are represented by solid blue lines (spin-up) and dashed red lines
(spin-down).
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in bearded-edged Lieb and transition nanoribbons also occurs through anticrossing at the point

k = π/a, as represented in Figs. 88 (d-i, m-r).



192

Figure 87 – Same as Fig. 86, but for the straight edge with (a-i) N = 5 and (j-r) N = 13.
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Figure 88 – Same as Fig. 86, but for the bearded edge with (a-i) N = 5 and (j-r) N = 13.
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Figure 89 – Energy spectra of nanoribbons for the cases presented in Fig. 59 (a-c). The solid
black lines represent the states with λISO = 0, while the states with λISO ̸= 0 are represented by
solid blue lines (spin-up) and dashed red lines (spin-down).
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4.5 Effects of topological phase transitions driven by λ and θ on edge states of Lieb-

Kagome nanoribbons

Figs. 89, 90, and 91 present the energy spectrum of the unstrained nanoribbons for

the cases where the Berry curvature was shown in Fig. 59 in the previous chapter. We observe

that the effects on the nanoribbon spectrum are mainly in the evolution of the edge states of

asymmetric-edged nanoribbons (panels of Figs. 89, 90, and 91 with subscript 1), as the spectra

obtained for straight (panels of Figs. 89, 90, and 91 with subscript 2) and bearded (panels of

Figs. 89, 90, and 91 with subscript 3) edges are similar before and after the TPT.

In the Lieb lattice, the TPT at λ = 0.98 causes the variation ∆C↑ = (1,0,−1)−

(−1,2,−1)= (2,−2,0), while at λ = 1.03, it causes ∆C↑=(−1,2,−1)−(−1,0,1)= (0,2,−2),

as discussed in Ch. 3. Notably, we observe that the edge states of asymmetric nanoribbons
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Figure 90 – Energy spectra of nanoribbons for the cases presented in Fig. 59 (d-e). The solid
black lines represent the states with λISO = 0, while the states with λISO ̸= 0 are represented by
solid blue lines (spin-up) and dashed red lines (spin-down).
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undergo changes in these two TPTs. In the first transition, by comparing Figs. 89 (a1,b1), we see

that the spin-up and spin-down edge states, which are clearly non-degenerate in the configuration

C↑ = (1,0,−1) in Fig. 89 (a1), tend to become degenerate in the configuration C↑ = (−1,2,−1)

in Fig. 89 (b1).

Despite this, we observe that the change in the sign of C↑1 indeed induces a change

from spin-up to spin-down and vice versa in the bulk-gap ∆12, which corresponds to the 1/3-

filling in the spectrum of the corresponding infinite lattice. This change is evident in Fig. 89

(c1), with the configuration C↑ = (−1,0,1) when compared to Fig. 89 (a1). We conclude that the

carriers with the same spin move in opposite directions along the same edge of the material in

the configurations shown in Fig. 89 (a1) and (c1). Whenever there is a change in the sign of the

corresponding Chern number, this results in opposite spin currents.

Our findings are also observed in the TPT driven by λ evolution that occurs at

1/3 filling in the Kagome lattice at the critical point λ = 0.84, where ∆C↑ = (1,0,−1)−

(−1,2,−1) = (2,−2,0) [Fig. 90]. It is important to note that the edge states do not fully

cross the ∆12 bulk-gap in the spectrum of the asymmetric-edged nanoribbon [Fig. 90 (a1,b1)],

although they do completely cross this gap in the spectra of the corresponding straight [Fig. 90
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Figure 91 – Energy spectra of nanoribbons for the cases presented in Fig. 59 (f-g). The solid
black lines represent the states with λISO = 0, while the states with λISO ̸= 0 are represented by
solid blue lines (spin-up) and dashed red lines (spin-down).
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(a2,b2)] and bearded-edged [Fig. 90 (a3,b3)] nanoribbons. We argue that, by the bulk-edge

correspondence, it is suggested that the gap in the asymmetric-edged nanoribbon is effectively

an anticrossing between the states that cross the gap in the spectra of bearded and straight-

edged nanoribbons, such as those in Fig. 86 (d-i). This is because the energy subbands of the

asymmetric-edged nanoribbon consist of a combination of the edge states from straight and

bearded-edged nanoribbons.

In Fig. 91, we highlight two configurations before and after the TPT that occur at

θ = 118.3◦ during the interconversion process with λAB = λBC = 0 [Fig. 57 (d)], where we

confirm the findings highlighted in Fig. 85. This comparison focuses on the energy spectrum

region of nanoribbons for Kagome lattice cases, seeking to identify the differences and similarities

between the cases with λAB = λBC = 0 and λAB ̸= 0 and λBC ̸= 0 for the three edge types.

The TPT represented by ∆C↑ = (1,0,−1)− (−1,2,−1) = (2,−2,0) at θ = 118.3◦

causes a spin flip at 1/3 filling. Additionally, the other panels show the states originating from

the bearded and straight edges, helping to identify which edge belongs to the state shown in the

case of the asymmetric edge. In all open gaps, the system behaves as a QSHI, with a spin Hall

conductivity of σSH =±1. For θ < 118.3◦, the conductivities in the lower (1/3 filling) and upper
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Figure 92 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (a-b). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines).
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(2/3 filling) gaps are equal since the middle band has zero Chern number. For θ > 118.3◦, the

two bands have opposite conductivities (BEUGELING et al., 2012).

4.6 Effects of topological phase transitions driven by strain on edge states of Lieb-Kagome

nanoribbons

In Figs. 92, 93, 94, 95, and 96, we present the energy spectrum of the strained

nanoribbons before and after the TPT identified in Fig. 64 for the cases with λAB ̸= 0 and

λBC ̸= 0, whose Berry curvatures were shown in Figs. 68. Similarly, in Figs. 98, 99, 100, and 101,

we present the energy spectrum of the strained nanoribbons before and after the TPT identified

in Fig. 64 for some cases with λAB = λBC = 0, whose Berry curvatures were shown in Figs. 76.

These cases are of interest because they present non-equivalent situations that we considered,

calculated before and after the TPT, i.e., the closing and opening of the energy gaps and the

change of the Chern number calculated for the infinite lattices.

It can be observed that a pair of robust gapless edge states reside within both bulk

bandgaps in TI states, where carriers with identical spins travel in opposite directions along

the same edge of the material when considering asymmetric-edged nanoribbons. As previously
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Figure 93 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (c-e). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines).
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discussed in Ch. 3, we identify the topological states by calculating both the spin Chern numbers

and Berry curvature. By the bulk-edge correspondence, we expect that edge states emerge

crossing the bulk gap regions, as definitively observed in the three types of edges. The edge

states correspond to energy modes that completely traverse the gap in straight and bearded-edged

nanoribbons. In the spectra of asymmetric-edged Lieb-Kagome nanoribbons, this occurs through

anticrossing, as can be more clearly observed in Fig. 97, which presents an enlarged view of the

energy spectra of asymmetric-edged nanoribbons shown in Figs. 92, 93, 94, 95, and 96, as well

as in Fig. 102 for the cases shown in Figs. 98, 99, 100, and 101.

In all cases of TPT evaluated in Figs. 92, 93, 94, 95, and 96, as well as in Figs. 98, 99,

100, and 101, the considerations made in the previous section remain applicable here. Spin-up

edge states become spin-down, and vice versa, when comparing before and after the change in the

sign of the corresponding Chern number caused by a TPT. This indicates that the number of edge
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Figure 94 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (f-h). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines).
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state pairs is strain invariant and that the strains applied in Lieb-Kagome lattices can generate

opposite spin currents, as pictorially exemplified in Fig. 103 for the classifications identified

in this thesis: (i) C↑ = (1,0,−1) [Fig. 97 (a,e,h,i,k) and Fig. 102 (b,d-i)], (ii) C↑ = (−1,2,−1)

[Fig. 97 (d,g) and Fig. 102 (a,c)], and (iii) C↑ = (−1,0,1) [Fig. 97 (b,c,f,j,l)].

Since the edge states are helical in bearded-edged nanoribbons, the spin-flip indicates

that the modes corresponding to charges with spin-up [spin-down] and positive [negative] group

velocity in a topological phase classified by C↑=(1,0,−1), such as modes (1) [(2)] represented in

Fig. 103 (c) with E < 0, due to a TPT that results in the topological phase with C↑ = (−1,2,−1),

will transform into modes of charges with spin-down [spin-up] and positive [negative] group

velocity, as modes (6) [(5)], respectively. Modes with E > 0 do not exhibit spin flip because this

TPT does not affect the 2/3 filling, i.e., the gap ∆23 does not close during this evaluated TPT. In

other words, at 1/3 filling, the edge states of charges with spin-up and spin-down reverse the

direction of the group velocity on the edges of the asymmetric nanoribbon. When there is a TPT

at 2/3 filling, resulting in the phase C↑ = (−1,0,1), we observe spin flips in modes with E > 0.

Some TPTs occur immediately from ∆C↑ = (1,0,−1)− (−1,0,1) = (2,0,−2), in these cases

all pairs of edge states exhibit spin flip, regardless of the energy interval.
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Figure 95 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (i-j). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines).
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Figure 96 – Energy spectra of nanoribbons for the cases presented in Fig. 68 (k-l). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines).
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Figure 97 – Enlarged region of the energy spectra of asymmetric-edged nanoribbons in Figs. 92,
93, 94, 95, and 96, highlighting the evolution of edge states. The subbands for spin-up (spin-
down) charges are represented by solid blue lines (dashed red lines).
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Figure 98 – Energy spectra of nanoribbons for the cases presented in Fig. 76 (a-d). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines). Panels
(e-i) with C↑ = (1,0,−1) should be compared with the case of the unstrained Kagome lattice
with C↑ = (−1,2,−1) shown in Fig. 83 (i), with an enlarged region in Fig. 85 (g).
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Figure 99 – Energy spectra of nanoribbons for the cases presented in Fig. 76 (e-f). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines). Panels
(e-i) with C↑ = (1,0,−1) should be compared with the case of the unstrained Kagome lattice
with C↑ = (−1,2,−1) shown in Fig. 83 (i), with an enlarged region in Fig. 85 (g).
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Figure 100 – Energy spectra of nanoribbons for the cases presented in Fig. 76 (g). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines). Panels
(e-i) with C↑ = (1,0,−1) should be compared with the case of the unstrained Kagome lattice
with C↑ = (−1,2,−1) shown in Fig. 83 (i), with an enlarged region in Fig. 85 (g).
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Figure 101 – Energy spectra of nanoribbons for the cases presented in Fig. 76 (h-i). The subbands
for spin-up (spin-down) charges are represented by solid blue lines (dashed red lines). Panels
(e-i) with C↑ = (1,0,−1) should be compared with the case of the unstrained Kagome lattice
with C↑ = (−1,2,−1) shown in Fig. 83 (i), with an enlarged region in Fig. 85 (g).
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Figure 102 – Enlarged region of the energy spectra of asymmetric-edged nanoribbons in Figs. 98,
99, 100, and 101, highlighting the evolution of edge states. The subbands for spin-up (spin-down)
charges are represented by solid blue lines (dashed red lines).
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Figure 103 – (a-b) Representation of the spin-flipping effect driven by strain in Lieb-Kagome
nanoribbons with asymmetric edges for (a) C↑ = (1,0,−1) with E > 0 or E < 0 and C↑ =
(−1,2,−1) with E > 0, (b) C↑ = (−1,0,1) with E > 0 or E < 0 and C↑ = (−1,2,−1) with
E < 0. Red (blue) lines indicate the spin-up (spin-down) edge current directions. In (c-e) we
highlight the states presented in the case of the SX-strained Lieb lattice shown in Fig. 97 (c-e).
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4.7 Conclusions

Analyzing the finite effects in the energy spectrum of the Lieb, transition, and

Kagome lattices, we identified that there are edge states that cross the gaps opened by the

spin-orbit interaction between the bulk states in the energy spectrum of nanoribbons constructed

from these lattices. In all cases, the Chern numbers of different energy bands for the unstrained

Lieb, transition, and Kagome lattices are consistent with the number of quantized edge states.

We noticed that the edge states corresponding to nanoribbons with straight edges

have a V-shape in the region of positive energies, while those corresponding to the bearded

edges have a Λ-shape in the same region, and that the junction of these two types of edge states

approximately results in the edge states of nanoribbons with asymmetric edges, as expected,

except in some cases where, instead of crossing the modes, they exhibit anticrossing.

In the TPT processes driven by strain, when the sign of the spin Chern numbers per

band changes, curiously, we identified that the spin-up edge states become spin-down, and vice

versa. Thus, we found that the strain can cause spin-flip (spin inversion), i.e., the sign of the

spin depends on the strain strength in the Lieb, transition, and Kagome lattices. We intend to

theoretically investigate some possible devices that benefit from this strain-driven spin-flipping

effect since deformations can generate opposite spin currents under strains that cause TPT, such

as stretching and compressive strain.
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5 FINAL REMARKS AND PERSPECTIVES

In this thesis, we have conducted a systematic study on the effects of various strains

on the electronic properties of Lieb-Kagome lattices. After an introduction in Ch. 1, in Ch. 2,

we systematically study the effects of strain on Lieb-Kagome lattices without ISO coupling.

In Ch. 3, we integrate the ISO coupling into the model to investigate the strain-induced TPT,

presenting the effects of these TPT on the evolution of edge states in straight, bearded, and

asymmetric-edged nanoribbons in Ch. 4.

Specifically, in Ch. 2, we systematically study the effects of shear and uniaxial

strains, applied along different crystallographic directions and also jointly applied, generating the

pure shear and biaxial strains, on the electronic properties of Lieb and Kagome lattices. For this,

we use the TB method within a general Hamiltonian description by assuming a generic lattice

with just one control parameter, which, in turn, allows us to map both Lieb and Kagome lattices,

as well as to verify the evolution of their electronic properties. Previous studies investigated

the stability of the nearly-flat band and band-touching points due to breathing anisotropy in the

Kagome lattice, the site disorder on the Kagome lattice, and the dispersion relations of strained

and complex Lieb lattices. In a more general way, our theoretical framework extends these

previous studies reported in the literature that treated separately the deformed Lieb or Kagome

lattices. Our findings showed some effects analogous to those observed for strained graphene,

such as: (i) the presence of anisotropic Fermi velocity, (ii) the approach or separation of the

Dirac cones, and (iii) the existence of strain-induced pseudovector potentials for some types of

strain. Opposite to graphene, we observed that none of the six types of the investigated strains

applied in the Lieb and Kagome lattices are able to open an energy gap in their energy spectra.

Instead, in general terms, we identified effects such as the deformation of the nearly-flat bands,

division of the triple degenerate Dirac point into two doubly degenerated Dirac points (in the

Lieb lattice), as well as the appearance of non-null vector pseudopotential terms in some types

of strain.

Additionally, in Ch. 3, we use the TB method within a general Hamiltonian descrip-

tion with ISO coupling, assuming again a strained generic lattice with just one control parameter.

Previous studies have investigated TPT in Lieb and Kagome lattices, but did not employ a

versatile generic TB model to study transition lattices, and primarily focused on uniaxial or

biaxial strains without exploring the full range of strain types that we have incorporated into

our model. More generally, our theoretical framework extends these previous studies reported
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in the literature that treated separately the deformed Lieb or Kagome lattices, using intercon-

vertibility as a methodological resource to investigate the topological evolution of the Lieb,

transition, and Kagome lattices with ISO coupling under uniaxial and shear strains along various

crystallographic directions. We find (i) TPT that connect topological insulating phases with

different Spin Chern Numbers, where the system behaves as a quantum spin Hall insulator,

(ii) a non-topological phase transition into a semimetallic regime at 1/3 filling, characterized

by partially filled bands and non-quantized spin Hall conductivity, while at 2/3 filling, the

system behaves as an insulator, with the spin Hall conductivity carried by the helical edge states

becoming experimentally observable, and (iii) transitions to a metallic phase with zero gaps,

inhibiting any spin Hall conductivity. Additionally, we interestingly identify TPT due to the

process of interconvertibility, and note that the TPT driven by strain do not occur in the case

of hypothetical strains, showing that they are primarily driven by changes in the Hamiltonian

parameters rather than due to the change in the distances between the lattice sites.

Furthermore, in Ch. 4, we present a theoretical study on the impact of ISO coupling

and mechanical strain on the topological properties of nanoribbons constructed from Lieb,

Kagome, and transition lattices. Our analysis of the energy spectrum and DOS for nanoribbons

with different edge configurations—straight, bearded, and asymmetric—has led to several

important findings: (i) The combination of ISO coupling and applied strains along different

crystallographic directions can induce TPT, fundamentally altering the dynamics of the edge

states and potentially leading to the generation of opposite spin currents. (ii) The edge states in

these strained nanoribbons show unique characteristics; straight edges exhibit a V-shaped energy

profile, while bearded edges display a Λ-shape in the region of positive energies. Moreover, (iii)

our investigations have highlighted how strain-induced modifications in the spin Chern numbers

correlate with a switch in the spin orientation of the edge states, leading to intriguing possibilities

for spintronic applications.

We believe that such a systematic study pertinent to the effects of different types

of strains applied in 2D lattices with the coexistence of nearly-flat and conical bands is very

interesting for understanding the defects’ effects on the optoelectronic properties of nearly-flat

band 2D systems. Moreover, the general theoretical framework presented in this manuscript

allows for the investigation of the evolution stages between Lieb and Kagome lattices and the

consequences on their physical properties by means of just one control parameter. This research

underscores the ability of strain engineering to fine-tune electrical and optical properties, offering
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new avenues for controlling band gap tunability and band deformations. Such advancements

are pivotal for the future of 2D lattice-based device technologies, marking a significant contri-

bution to both the fundamental understanding and practical applications of these materials in

nanoscale electronics and photonics. We propose further theoretical exploration into devices that

could exploit this strain-driven spin flipping effect, which holds significant promise for future

technologies harnessing topological properties under mechanical strain.

As an immediate perspective already underway, we will investigate the evolution of

wave functions across the nanoribbon. This line of inquiry aims to deepen our understanding

of the interplay between strain, topology, and electronic properties at the boundaries of these

materials, potentially revealing new phenomena relevant to nanoscale device engineering. Addi-

tionally, we will promptly extend our systematic study to other materials that exhibit nearly-flat

bands in their energy spectra, such as α-τ3 lattices. Both research perspectives are already in the

early stages of development.
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APPENDIX A – DEFINITIONS OF THE THEORY OF BERRY

In this appendix, we concisely present the definitions of the main concepts of the

theory of Berry in the context of topological insulators, namely, Berry phase, Berry potential,

Berry curvature, and Chern number. For a detailed discussion, see Bernevig (2013) and/or

Vanderbilt (2018).

A1. Berry phase

The geometric (PANCHARATNAM, 1956) or Berry phase (BERRY, 1984) is a

quantity that describes how a global phase accumulates as some complex vector is carried around

a closed loop in a complex vector space (WILCZEK; SHAPERE, 1989; FRANKEL, 2011;

NAKAHARA, 2018; ESCHRIG, 2011). Is usually applied to the adiabatic dynamics of finite

quantum systems, where the vector in question is Bloch wavevector, and the path lies in the

space of wavevectors kkk within the BZ.

In the continuum formulation, we can take the path to be parametrized by a real

variable λ such that |uλ ⟩ traverses the path as λ evolves from 0 to 1, with |uλ=0⟩ ≡ |uλ=1⟩ (see

Fig. 104(a)). We assume here that |uλ ⟩ is a smooth and differentiable function of λ . Thus, the

continuum expression for the Berry phase is (BERRY, 1984; WILCZEK; SHAPERE, 1989)

φ =
∮
⟨uλ |i∂λ uλ ⟩dλ . (A.1)

A2. Berry potential

The integrand on the right-hand side of Eq. (A.1) is known as the Berry connection

or Berry potential

A(λ ) = ⟨uλ |i∂λ uλ ⟩ . (A.2)

in terms of which the Berry phase is

φ =
∮

A(λ )dλ . (A.3)

The Berry connection is not gauge-invariant for a gauge transformation of form

|ũλ ⟩= e−iβ (λ ) |uλ ⟩ , (A.4)

but the Berry phase is gauge-invariant modulo 2π , or in other words, gauge-invariant when

regarded as a phase angle. Although the quantum probabilities is proportional to the norm
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Figure 104 – (a) Evolution of a state vector |uλ ⟩ in continuum limit, in which the parameter runs
over λ ∈ [0,1] with |uλ=0⟩= |uλ=1⟩. (b) Region S of a two-dimensional λ = (λx,λy) parameter
space, bounded by loop P.

(a) (b)

Source: Adapted from (a) Vanderbilt (2018, p. 84) and (b) Vanderbilt (2018, p. 215).

squared of an amplitude, the phases can lead to interference phenomena that are physically

important. For example, if duplicate copies of a system are prepared, subjected to parallel

transport along different paths in parameter space, and then recombined, the resulting phase

difference can lead to physical and measurable interference effects (VANDERBILT, 2018).

A3. Berry curvature

Consider a two-dimensional parameter space such as that illustrated in Fig. 104(b),

so that we have vectors |uλλλ ⟩ as a function of λλλ = (λx,λy). Then the definition of the Berry

connection in Eq. (A.2) naturally generalizes to that of a λ -dependent 2D vector AAA = (Ax,Ay)

via

Aµ = ⟨uλλλ |i∂µuλλλ ⟩ . (A.5)

where ∂µ = ∂/∂λµ (µ = x,y), and the Berry phase expression of Eq. (A.3) can be written as a

line integral around the loop P, i.e.,

φ =
∮

P
AAA ·dλλλ . (A.6)

Then the Berry curvature Ω(λλλ ) is defined as the Berry phase per unit area in (λx,λy) space. In a

continuum framework, it becomes just the curl of the Berry connection, such that we can use

Stokes’ theorem to relate the “Berry flux” ΦS through surface patch S to the Berry phase around

the boundary P,

ΦS =
∫

S
ΩΩΩ(λλλ ) ·dSSS =

∮
P

AAA ·dλλλ = φP. (A.7)
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where P traces the boundary of region S in the positive sense of circulation. That is, the Berry

flux through the surface is equal to the Berry phase around its boundary. It is worth mentioning

that the Berry curvature is gauge-invariant.

There is a close analogy connecting the real-space electromagnetic vector potential

A(r) and its curl, the magnetic field B(r), with the parameter-space Berry connection AAA(((λλλ ))) and

its curl ΩΩΩ(((λλλ ))). In both cases, the “potential” AAA is gauge-dependent, while the “field” BBB or ΩΩΩ is

not, essentially because the gauge freedom is removed when the curl is taken (VANDERBILT,

2018).

A4. Chern theorem

A consequence of the previous definitions is Chern’s theorem which states: The

Berry flux ΦS computed on any closed 2D manifold is quantized to be 2π times an integer, i.e.,∫
S

ΩΩΩ(λλλ ) ·dSSS = 2πC, (A.8)

for some integer C known as the Chern number or Chern index of the surface, and can regarded

as a “topological index” or “topological invariant” attached to the manifold of states |uλλλ ⟩ defined

over the surface S. It is worth mentioning that the Chern index depends not on the geometry of

the surface, but on the manifold of states |uλλλ ⟩ defined over it.
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