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RESUMO

Nesta tese, nds estudamos solugdes autosimilares para fluxo da curvatura média no espago
hiperbdlico. Depois de relembrar alguns fatos gerais sobre solitons em ambientes gerais munidos
com uma métrica produto torcido (warped product metric), nés focamos em solitons no espago
hiperbdlico cujo fluxo, na direcdo de expansdo, pelo campo conforme cujas trajetdrias sao
ortogonais as horoesferas. Primeiramente, nds estudamos sua estabilidade, fornecendo uma
condi¢do suficiente. Em particular, solitons, que sdo (convenientemente) graficos, sao estaveis.
Em seguida, nds investigamos solubilidade do Problema de Plateau no infinito. Por meio de
técnicas de equacdes diferenciais ordindrias, nds caracterizamos exemplos cilindricos e rotaci-
onalmente simétricos, mostrando uma analogia estrita com solitons de transla¢ao (translating
solitons ou translators) no espago euclidiano. De fato, as solu¢des sao os andlogos apropriados do
grim-reaper, bowl e winglike no espaco euclidiano. Por fim, sob algumas condi¢des adicionais,
nds caracterizamos o grim-reaper como o unico soliton cuja a fronteira assintética é dois planos
paralelos. Um par de apéndices contém algum material auxiliar sobre varifolds e a fronteira

assintotica de variedades Cartan-Hadamard.

Palavras-chave: soliton; fluxo pela curvatura média; espaco hiperbdlico; translator; problema

de Plateau assintético; fronteira assintotica.



ABSTRACT

In this thesis, we study self-similar solutions to the mean curvature flow in the hyperbolic space.
After recalling some general facts about solitons in ambient spaces endowed with a warped
product metric, we focus on solitons in hyperbolic space which flow, in the expanding direction,
by the conformal field whose trajectories are orthogonal to horospheres. First, we study their
stability, supplying a sufficient condition. In particular, solitons which are (suitably) graphical
are stable. Next, we investigate the solvability of Plateau’s problem at infinity. By means of
ODE techniques, we then characterize cylindrical and rotationally symmetric examples, showing
an analogy with translating solitons in Euclidean space. Indeed, the solutions are appropriate
analogies of the grim-reaper, bowl, and winglike translators in Euclidean space. Eventually,
under some additional conditions, we characterize the grim-reaper as the only soliton whose
boundary at infinity are two parallel hyperplanes. A pair of appendices contain some auxiliary

material about varifolds and the boundary at infinity of Cartan-Hadamard manifolds.

Keywords: soliton; mean curvature flow; hyperbolic Space; translator; asymptotic Plateau

problem; boundary at infinity.
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1 INTRODUCTION

In this thesis, we present the concept of mean curvature flow (MCF for short),
in which a submanifold flows in the direction of its mean curvature vector field. MCF was
vastly studied in the Euclidean space. An interesting problem related to MCF: given a vector
field X € X(N) on the ambient space (/N,g), we find a submanifold M C N such that, up a
reparametrization of M, the MCF of M is moving along flow lines of the vector field X. A
submanifold M with the property above is known as self-similar soliton (soliton for short).

In Euclidean space R”*!, there are symmetric solitons with respect to parallel vector
field X = 0y. For instance, a grim-reaper cylinder G is a soliton given by the Cartesian product
of a profile curve I by R”~! (see Example 2.1.5). Other examples of solitons are bowl solitons
and winglike solitons. Bowl solitons are rotationally symmetric solitons that can be written
as an entire graph of a slice {0} x R c R"™*! (see Example 2.1.6). Winglike solitons are
rotationally symmetric solitons that can be written as bigraph over the complement of a ball
{0} x (R™\Bg) c R"™*! (see Example 2.1.7).

In this thesis, we find appropriated analogies to grim-reaper, winglike soliton and
bowl soliton in the hyperbolic space with respect to the conformal field X = 9y (see sections 4.2,
4.7 and 4.8). Eventually in Chapter 6, we prove that grim-reaper and vertical hyperplane are the
only solitons that asymptote at infinity two parallel (m — 1)-hyperplanes outside of a cylinder
(see Theorem 6.3.1).

We organize the text in the following way: in Chapter 2, we present the definition of
solitons in a more general context where the Riemannian manifold is equipped with a warped
product metric and some results needed throughout the thesis. Among them, we define the
Ilmanen space, where the solitons correspond to minimal manifolds (Equation (2.1.8)). In
Chapter 3, we derive some basic formula when the ambient space is hyperbolic space and we
prove stability for graphical soliton over the boundary at infinity. In Chapter 4, we study the
solitons that can be written as graphs over some subset of the boundary at infinity 0., H”*! (see
appendix A). We compute the quasilinear equation arising from the soliton identity and recall the
basic Comparison and Tangency Principle (Theorem 4.1.2 and Theorem 4.1.3). In Section 4.2,
we examine solitons that can be written as the Cartesian product of a profile curve I' by R” !,
M =T xR™ ! c H™! (grim-reaper soliton, Lemma 4.2.1) as in the Euclidean space. In Section
4.3, we construct subsolutions for Soliton Equation (SE_) that act as barriers to prove some of

our main results. In Section 4.4 through 4.8, we study rotationally symmetric solitons. The
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main outcome is that there exist only two families of this kind of solitons which we call bowl
and winglike soliton in analogy with translators in the Euclidean space. In Chapter 5, as in the
classical Plateau problem for minimal submanifolds, we prove that for a given compact subset of
the boundary at infinity there exists a soliton with boundary at infinity equal to the given subset.
We describe the geodesics of [lmanen space. In chapter 6, we prove that the grim-reaper and the
vertical hyperplane are the only solitons with respect to X = —d, that are asymptotic at infinity to

parallel (m — 1)-hyperplane outside a cylinder (GR property, Definition 6.1.5)
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2 PRELIMINARIES
2.1 Solitons in warped product spaces

Throughout this thesis M will be a m-dimensional manifold and N an (m +1)-
dimensional manifold equipped with a fixed Riemannian metric g. Let (w1, w>) be an interval
containing 0 and ¥ : (w1,w2) X M — N a smooth map. We say that W is a one-parameter family

of immersions if the map ¥; : M — N given by

Y, (x) =¥(t,x)

for any x € M, is an immersion. We often will denote by M; the image of M in N via the

immersion ¥;.

Definition 2.1.1. An one-parameter family of immersions ¥ : (wi,w2) X M — N is called

solution to the mean curvature flow (MCF for short) if it satisfies the differential equation
0¥ (t,x) =H(t,x)

for any (t,x) € (wy,w2) X M, where H(t,x) is the non-normalized mean curvature vector of the

immersion P, at the point x € M.

Let us discuss now a special class of solutions to the mean curvature flow, following

the exposition in (Alias et al., 2020).

Definition 2.1.2 (Self-similar Soliton). Let X € X(N) be a smooth vector field and ®@ : (o,07) X
N — N its associated flow, defined in the time-interval (o,07) C R. A solution ¥ : (w1, w;) X
M — N to the mean curvature flow is called a self-similar soliton with respect to the vector field
X € X(N) if there exists an immersion  : M — N, a reparametrization s : (w1,w7) — (01,0%)
of the flow lines of X and a one-parameter family of diffeomorphisms n : (w1,w2) XM — M

such that

Y(t,x) = ®(s(1), ¢ (n(1,x))), (2.1.1)

for any (t,x) € (w1, w2) X M.

Roughly speaking, such a solution M; € N to the MCF is moving along the flow

lines of the vector field X. Differentiating the identity (2.1.1) with respect to ¢ and estimating at
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t =0, we obtain the soliton equation
H=s(0)X"

where {-}* is the orthogonal projection on the normal bundle of y. Without loss of generality,
we may assume that s'(0) = 1. Let ¥ : M — N be an immersion satisfying the partial differential
equation

H=X".

Definition 2.1.3. An isometric immersion  : M — N satisfying the differential equation
H=X",
is called soliton solution to the MCF (soliton for short) with respect to X.

Although in this thesis we shall consider solitons in the hyperbolic space H"™*!, it is
useful to recall some properties that hold true for solitons in warped product spaces. Suppose that
I c R is an open interval, & : [ — (0,+00) is a smooth function, P is a m-dimensional manifold

equipped with a metric gp and N = I X, P the manifold equipped with the metric
g=ds*+h’gp. 2.1.2)

Let m;: IXy, P — I and 7p : I X, P — P be the natural projections onto the first and second
factor of N, respectively. Hence, any ¥ € X(N) can be decomposed in the form Y; +Yp, where
Y; € X(I) and Yp € X(P). From the Koszul formula, it follows that the Levi-Civita connection

D of N is given by

DyZ =Dy Z+Y,(logh)Z+ Zi(logh)Y; — gp(Yp, Zp) hl' Oy, (2.1.3)

where D/*P

is the connection of the Riemannian product metric on 7 X P. In warped product
manifolds there exist two "canonical"vector fields which generate the tangent space of the fibers
7r1‘1 (s5), namely those defined by X. = +h d;. It turns out that the smooth function f. € C*(N)
is the potential of X, given by
my(x)
fe(x) = i/ h(o)do, (2.1.4)
S0

where sg € I is a fixed number. Indeed,

X:=xhos=Df.. (2.1.5)
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Moreover, by (2.1.3), the Hessian D2 f. of f, is given by the formula
D*f.(Y,Z)=g(DyX.,Z) =+h'g(Y,Z), (2.1.6)

for any Y,Z € X(N). Consequently, an immersion s : M — [ X;, P is a soliton of the MCF if its
mean curvature satisfies the equation

H=Df".

Example 2.1.4. The warped product model H"*' = R X ,-s R™ with Riemannian metric
m
gu=ds’+e Z dx?,
i=1

where (s5;x1,...,%,) € RXR™. Therefore, the associated conformal field is X. = +e™* 0.

Soliton solutions to the mean curvature flow share many similarities with minimal
submanifolds; see for example (Colding; Minicozzi, a), (Colding; Minicozzi, b), (Ilmanen, 1994)
and (Smoczyk, 2001). According to ideas developed by Ilmanen in (Ilmanen, 1994, Chapter
2), there is a duality between solitons in (I X, P,g) and minimal hypersurfaces in (1 X, P, g, ),

where g, is the metric given by
2f+

gp=em g. (2.1.7)

By a straightforward computation, it follows that the mean curvature H of the isometric im-
mersion y : M — (I X, P,g;, ) relates to the mean curvature H of ¢ : M — (I X P,g) by the

formula
H=c o (H-Df:)=e n (H-XL). (2.1.8)

Consequently, solitons in the warped product manifold (I X, P, g) correspond to minimal hyper-
surfaces in (I X P, g, ) and vice-versa. The Riemannian metric g,_is known in the literature as
the Ilmanen metric.

There is another equivalent way to express a soliton as a minimal hypersurface.
Consider the weighted Riemannian manifold (I x;, P, g, e/*dN) where dN is the volume form of
I xj, P with respect to the metric g. Suppose that M C I X, P is an immersed hypersurface. Then,
the weighted volume of the hypersurface M is defined by

Voly, (M) = / el=dM
M
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where dM is the volume form of M with respect to the volume induced from the Riemannian

metric g. Following Gromov (Gromov, 2003), the vector field
Hft =H- Dfil’

where H is the mean curvature of M C (I X, P,g), is called the fi-mean curvature of the
hypersurface M.

For any normal variation M, of M, with respect to a compactly supported variation
normal along M with velocity vector field Z, the first variation formula for the weighted volume

is given by

d
—| Volg, (M) = - Z,Hy,)eldM,
o Vot ) == [ e(z.p)e

see for example (Ilmanen, 1994, Chapter 2). Consequently, M is a critical point of the weighted
volume if

H, =H-Df; =0.

Hypersurfaces of (I x;, P, g,e/*dN) with zero f.-mean curvature are called f.-minimal hyper-
surfaces. Therefore, there is a one-to-one correspondence between solitons and f.-minimal
hypersurfaces. Summarizing the notions of solitions, f.-minimal hypersurfaces , and minimal

hypersurfaces with respect to the [lmanen metric are equivalent.
2.1.1 Solitons in the Euclidean space

In this subsection, we give some examples of solitons in the Euclidean space. For
more details, we refer to (Martin ef al., 2019) and (Gama; Martin, 2020); see also (Alias et al.,

2020) for a more general setting.

Example 2.1.5 (Euclidean space as a Riemannian product). Using the same notation as above,
N=R™! =RxR™ [=R, P=R™, and h = 1. Hence, the parallel vector field X, = +0y, where
x = (X0,X1,%2, ...,%n) € R™1. An example of soliton with respect to Xy = 0y is the vertical
hyperplane rt, = {x = (x0,X1,...,X;) € R™1: x| = c}, where ¢ € R is a constant. Any rotation
of m,, in which +0y remains tangent to the hyperplane is another example of soliton with respect

to +0y. Another example of soliton with respect to X = 0y is the cylinder over the grim reaper
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curve (or grim reaper cylinder):
G= {(xo,xl,...,xm) e R™! . —% <x; < %,xo = —log(cosxl)}.

More generally, for 6 € [O, %) the tilted grim reaper is given by:

Gy = {(xo,xl, X)) ERMH ,x0 = —sec?(6) log(x1 cos6) +tan(9)xm} ,

T T
<X < ——
2cosf 2cosf

for more details, see (Gama; Martin, 2020). In this context, the soliton is called translating
soliton (or translator) because the mean curvature flow is given by a set-wise translation in the

direction of X, = +0.

Example 2.1.6 (Bowl soliton). It was shown by (Altschuler; Wu, 1994) and (Clutterbuck et al.,

2007) that there does exist an entire rotationally symmetric, strictly convex graphical soliton

M = {(u(p),x1, ,xp) ER™:p2 =xT 4. 4x2}

and the function u : (0,00) — R, m > 2, has the following asymptotic expansion at infinity

2
p 1 5 1
=————1 +0|—
u(p) Sm=1)  2°8F (p)
for more detail see Lemma 2.2 in (Clutterbuck et al., 2007). This solution is called the translating

paraboloid or the bowl soliton.

Example 2.1.7 (Winglike soliton). Given a radius R, we can construct an example of soliton

that can be written as a bigraph over R™\Bg(0):
M = {(u—(P)’Xl,"' Xm) € R™! Pz R}U{(u+(p)’x1"” Xm) € R™! pz R}

where u,,u_ are a solution to rotationally symmetric soliton equation in the Euclidean space

and
2

P -1 +
s=—=1 o Cc=.
Uy =1 np+0(p )+
For more details, see Lemma 2.3 in (Clutterbuck et al., 2007). We call a soliton as M a winglike

catenoid translator.

Example 2.1.8. In general, for N =R Xy, P, with h = 1, {c} X P is a soliton with respect X = +0
(see Example 2.1 in (Alias et al., 2020)).
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Example 2.1.9 (Euclidean space in polar coordinates). Let N = R™*! — {0}, I = (0,00), P =S"
with the standard metric, h(s) = s. Hence, g = ds> + s>gp. Consider the vector field X+ = +s0.

One example of a solution with respect to X is the sphere called self-expander for X, and

self-shrinkers for X_.

2.2 The geometric maximum principle

Since solitons can be regarded as minimal hypersurfaces, we can use the geometric
maximum principle. According to this maximum principle, two different solitons of the MCF
cannot “touch” each other at one interior or boundary point; for more details see for example

(Eschenburg, 1989). More precisely the following holds true:

Theorem 2.2.1. Let M| and M, be embedded oriented connected submanifolds of a manifold
(possibly with boundary) N with unit normals v| and v,, corresponding mean curvatures H

and H», and boundaries 0 M| and d M;, respectively.
(a) (Interior principle) Suppose that there exists a common point x in the interior of M| and
M, where vi(x) = vy(x), My lies above M» in a neighborhood U of x, and Hy < a < H»

therein, for a constant a. Then MiNU = My NU.

(b) (Boundary principle) Let W, and W, be open domains with connected C*-boundaries
O0Wy = My and OW, = M, intersecting ON transversally. Suppose that there exists a point
xin MyNMyNON such that vi(x) = va(x), My lies above M3 in a neighborhood U of x,

and Hy < a < H, therein, for a constant a. Then MiNU = M, NU.

2.3 Second variation and stability

Let us suppose now that M C N = I X, P is a two-sided soliton solution to the MCF.

We denote by v the oriented unit normal vector field along the hypersurface. The second variation
formula is
2

d
ar oVO]ﬂ(Mf):/(|DLZ|2—(|H|2|Z|2+RicN(Z,Z)—szi(z,z)))eﬁdM,
1=

where Z is a normal variational vector field along M, 1l is the second fundamental form of
the immersion and Ric" the Ricci curvature of the ambient space. Since M is assumed to be
two-sided, any normal along M vector field Z can be written in the form Z = ¢n, where ¢ is a

smooth function and n is a globally defined unit normal vector field. Then, the right hand side of
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the second variational formula gives rise to the quadratic form

Orlp9) = / IVl = (HP¢ +Ric" (v,v) = D fu(v,v))¢%) e/-dM,

where ¢ is a compactly supported function. Integrating by parts, we obtain that

0/ (p.p) = - / T pe-dM.

where

Jo = As, o+ (JI* +Ric™ (v,v) = D* £ (v,v)) o, (2.3.1)

and

Ar, o =Ap+g(Dfe, Vo),

for any ¢ € C*(M); for details see for example (Barbosa et al., 2017). The form Qy, is called
the stability operator, J is called the Jacobi operator and Ay, is called the weighted Laplace

operator.

Definition 2.3.1. A f.-minimal hypersurface M C N is called stable if it holds Q, (¢,¢) >0
for all compactly supported functions ¢ € C7(M). Otherwise, the hypersurface is called
unstable. Similarly, a compactly supported domain Q € M is called stable if Q, (¢, ¢) > 0 for
all ¢ € C*(Q).

Let us recall here the following stability result, proved independently by Fischer-
Colbrie & Schoen (Fischer-Colbrie; Schoen, 1980, Section 1) and Allegretto (Allegretto, 1981),
Moss & Piepenbrink (Moss; Piepenbrink, 1978).

Theorem 2.3.2. Let Q € M be an open subset. Then, the following conditions are equivalent:
- Qs stable,

- There exists w € Hll0 .

- There exists w € C*(Q), w > 0 such that Jw =0 on Q;

(Q), w > 0 such that Jw < 0 weakly on €;

In the next proposition, we compute the Jacobi operator of the non-normalized scalar
mean curvature of a soliton of the mean curvature flow lying in an arbitrary warped product

space I X, P.
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Proposition 2.3.3. Let M ¢ N =1 Xy, P be a 2-sided soliton with respect to the vector field

X. =V fi=+hd,. Then, the scalar mean curvature H = g(H, v) satisfies
JH = +hRic" (v,d,) F2W'H, (2.3.2)

where v is the oriented unit normal of the hypersurface.
Proof. Let H be the scalar mean curvature of the soliton M C N, that is

H=g(H,v).
Then, from the soliton equation, we deduce that

H=g(Xs,v) =g(Dfs,v).

Furthermore, recall from the equation (2.1.6) that

D’f, =+hg. (2.3.3)

Let {ey,...,en} be alocal orthonormal tangent frame, which is normal at a fixed point p € M,
and denote by b;; the coefficients of II with respect to the aforementioned frame field. From the

Codazzi equation, we have

N
biji = bijj+Ry;; s
forany i,j € {1,...,m}, where here R" stands for the curvature operator of N. Let us compute

now the gradient and the Laplacian of the scalar mean curvature H. We have,

eig(Xs,v) =-b;jg(Xs,e;),

forany i € {1,...,m}. Moreover, by differentiating and estimating at p, we get
eieig(Xs,v) = —bijig(Xs,ej)Fbijh'6;j —bijg(Xs,Dee))
= —(buj+R);)g(XJ,e;)+ 1 H—bijb;jg(Xs,v)

= —g(XI,VH)FhH+Ric" (v, X]) - |I]*g(Xx,v)
= —g(Df.,VH)FWH+Ric" (v, X, - Hv) - |I]*’H
= —g(Df.,VH)Fh'H+hRic" (v,d;) -Ric" (v,v)H - [I|*H,
whereby {-} T we denote the orthogonal projection on the tangent bundle of the hypersurface.
From the last equality and (2.3.1) and (2.3.3), we immediately deduce
JH = +hRic" (v,8,) ¥2h' H.

This completes the proof. O
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3 SOLITONS IN THE HYPERBOLIC SPACE

We restrict ourselves now to the case of solitons in the hyperbolic space (H"*!, gi) of
constant sectional curvature —1. We will occasionally use the following models of the hyperbolic
space:

(a) The warped product model (Example 2.1.4).

(b) The half-space model H"*! = R* xR with metric

1 m
8H= "5 dx,-z,
*0 =0
where (xg;x1,...,%,) € Rt xXR™,
Note that the map F : R X,-s R — R* xR™ given by
F(s3x15.0,%m) = (€%5X1, .., Xm)

is an isometry from the warped product model to the half-space model, so a soliton with respect
to the direction X = +e~*d; in the warped product model is isometric to a soliton with respect to
the direction X = +dy in the half-space model.

We give some important relations between the scalar mean curvature H and the

coordinate functions of the soliton M c H™*!,

Lemma 3.0.1. Let M c H™! be a two-sided hypersurface of the hyperbolic space, where H™*!
is modelled via the half-space model R* X R™. Assume that M is a soliton of the mean curvature
Sflow, with respect to the vector field X, = +0y, and denote by x; : M — R, k € {0,1,...,m}, also
the restriction of the coordinate function xj to M. Then, the following formulas hold true:

(a) The coordinate function xo : M — R satisfies the following differential equations
Vxo = x(z)é)(;r and |V)c0|2+xgH2 = x(%.
Moreover,
szo(ei,ej) = ixéHbij +2xa1 g(e;, Vxo) g(e;, Vxo) —x00;;,

where {ey,...,ey} is a tangent local orthonormal frame on M and b;; are the components

of the second fundamental form. Additionally,

Axog=+(1F 2x0)x%H2 —(m—-2)xg.
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Furthermore, the other coordinate functions x, : M — R, k € {1,...,m}, satisfy the
equations

Vi :x(z)ﬁlj and Axy :x62(2x0 F1)g(Vxo, Vxg).

(b) The scalar mean curvature H satisfies the differential equations
g(VH,v) = FI(8y ,v) = Fx521(Vxp, v),

and

AH = Fx3% g(Vxo, VH) £ (x;' F|I*)H.

for any tangent vector field v € X(M).

Proof. Let us start with some general computations exploiting the conformally flat structure
of the hyperbolic space. Let us denote by D the Levi-Civita connection of the hyperbolic
space H™*!, by (-,-) the standard inner product in R”*! and by D* the Euclidean Levi-Civita

connection. From the Koszul formula, we have that
D, v2 =Dy va—x5' (90, vi)va —x5 (Do, va)vi+x5 " (vi,v2) o, (3.0.1)

for any vi,v, € X(H™!). If u € C*(H"*!) is a smooth function then, from the formula (3.0.1),

we easily get that

D%u(vi,vy) = Hess(u)(vl,vz)+x61vz(u)(80,v1) (3.0.2)

+x5 V1 (1) (B0, v2) — x5 Bo(u)(v1,v2),

for any vi,vp € %(H’"”), where Hess stands for the Hessian operator with respect to the
Euclidean metric. Consider now the restriction of the function # on M, which for simplicity we
denote again by the letter u. Suppose that {e1,...,e,} is a local orthonormal frame M which is
normal at a fixed point p € M. Let us also denote by v the unit normal along M. Then, Vu is the
orthogonal projection, with respect to the metric of the H™*!, of Du on the tangent bundle of M,
1.e.,

Vu =g(Du,e;)e;.

Differentiating, we get that, for any i, j € {1,...,m}, it holds

VZu(e;, ej)= D?u(e;, e;)+g(Du,ll(e;,ej)). (3.0.3)
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(a) In the case where u is the kM-coordinate function x; : H™*! — R, we have
— 2 _ 29T
Dxy =xp50r and Vi =x;0, , (3.0.4)

for any k € {0,1,...,m}. Using the fact that M is a soliton, from the second identity of
(3.0.4), we deduce that

Vol = x5 2(g 99 ) = X3 (80, d0) — g 2(05, 05) = x5 — xgH>.

Since the Euclidean Hessian of each coordinate function xy : H™! — R is zero, we obtain

from (3.0.2), (3.0.3) and (3.0.4) that

szo(ei,ej) = xo0g(e;,Dxo) g(do,e;)
+x0g(e;, Dxo) g(o, e;) —x00;; +bij g(Dxo, )
= Zng(e,-,éoT) g((’)T,ej)—xoéi]-+b,-jx(2)g(6L,v)

= 2)661 g(ei, Vxo) g(Vxo,e;) —xo0;; £ bijx(%H.
Taking the trace with respect to the induced metric, we get

Axop = 2x(3)g(6T,60T) —mx ix(z)H2
= 2x;(g(do,00) — g(8;"8y)) — mxo £ xgH*
= 2x8(x62—H2) — mxo J_rx(z)H2

= x(1F 2)60))6(2)H2 - (m-=2)xo.
Moreover, again from (3.0.2), (3.0.3) and (3.0.4), we find that for £ > 1 it holds

Axp = 2xog(ei, Dxy)g(do,e;) +g(Dxy, Hv)
= 2xg2(ei 0k) (Do, €:) = x32(0k, 07)
= 2x(3)g(6T,60T) ixég(ak,ao —30T)
= 2x38(8,,07) Fx52(d].97)

= x5 (2x0F 1) g(Vxo, Vxy).

(b) The proof follows the same lines as in Proposition 2.3.3. Differentiating with respect to e;,

ie{l,...,m}, we get that

eiH =e;g(+0p,v) = +g(D,,00,v) £ (0o, Do, V).
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From the formula (3.0.1) we see that
D, 00 = —x(;le,-,
for any i € {1,...,m}. Hence, keeping in mind (3.0.4), we have that
eiH =+g(dy,D.v) = FI(d, ,e;) = Fx5 M(Vxo, e;).
Differentiating once more, using Codazzi equations and (3.0.4), we deduce that at p € M
it holds
AH = eje;H=¢;(Fb;jg(d.e)))
= ¥b;;;g(00,e;) Fb;jg(D,,00,¢;) Fbijg(£0p, D€ )
= Fg(dy.biije;) Fbijg(De,00,¢;) = bijbi; g(+00,v)
= %g(dy,VH) +x;'H-HJ?
= Fx5%g(Vxo, VH) + x5 H - H|I|*.
This completes the proof of lemma. O
Theorem 3.0.2. Let M c H™! be a 2-sided hypersurface whose scalar mean curvature does

not change sign. If M is a soliton with respect to —0y, then M is stable. If M is a soliton with

respect to Oy, then M is stable in the region
S={peM:xy(p)=2/m}.

Proof. Let us compute the Jacobi operator of H. Let v be the unit normal along the soliton M.
Up to changing sign to the unit normal vector, we can assume that H > 0. From (2.3.1), (3.0.1)
and Lemma 3.0.1(b), we have
JH = AH-+g(+8, ,VH)+H|I?
+Ric™™ (v,v)H - g(£D, 8o, v)H

= AH+g(8y,VH)+H|U|>-~mH +x;'H

= —(m=¥F 2x61)H.
Hence,

JH+(mF2x;")H = 0.

By the strong maximum principle, H > 0 on M. The result follows from the result in Theorem

2.3.2. =
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4 BARRIERS AND SYMMETRIC EXAMPLES OF SOLITONS
4.1 Graphical solitons and their stability

Let us consider graphical solitons in H*!, that is, solitons that can be written in the
form

I'(u) = {(u(x);x) e ™! =R*xR" : x e Q c R™},

where € is an open subset of R™ and u : Q — R a smooth function.

Proposition 4.1.1. The graph T'(u) c H™! is a soliton of the hyperbolic space, with respect to

the vector field X = £0y, if and only if u satisfies the following equation:

vk —mu+1
divR ( - ) o s (SE.)
uZ

I+ VR ]2 I+ VR 2

where div® is the Euclidean divergence, V* denotes the Euclidean gradient and | -| the Euclidean
norm. In particular, solitons with respect to —0y have negative mean curvature in upward

direction and T"(u) has nowhere zero mean curvature.

Proof. Observe first that the graph I'(1) ¢ H™*! is the image of the embedding v : Q — H"*!
given by ¥ (x) = (u(x);x), for any x € Q. One can readily check that the components of the

induced metric gy on the graph are

o uiuj+ 6,‘]
(gH)l] = u2
where i,j € {1,...,m}. The components (gg)" of the inverse of the induced metric gy are given
by
T LU 4.1.1
fori,j e {l,...,m}; see for example (Osserman, 1969, page 1101), Moreover, the unit gg-normal

vy along the graph is given by the expression

_ udy—uViu B ”‘90_”2’}11”]6]

Vou = = .
COVIEVERE ez e

4.1.2)
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Denoting y;; = VRd¢(ai)d¢(61~) and ¥; == dy(9;) and making use of (3.0.1) and (4.1.2), the

components of the second fundamental form of the graph are given by

(bgz);; =81 (Y 4y (00 AW (), Ven) = g (Wijs V) +u™ (Wi, 1)811(0, Vs )

1 (ul.j Sij +uiuj) 4.1.3)
- (T
V1+|VEy|2\ U u?
forany i, j € {1,...,m}. Raising one index utilizing the graph metric, the shape operator satisfies
. 1 ukuiui~
b )k = i(by.),, = ——— —— L 4.14
( gH)J (gH) ( gH)lJ 1+|VRM|2 [u (MJ 1+|VRI/{|2 J ( )

Therefore, the scalar mean curvature is

H

(gH)ij(bgH)ij =

1 s uju; 4
————\Uu;j|0jj - — =5 |t M
VIH VR LU 14+ VR

. VEy m
= udlvR(W)+W (4.1.5)
On the other hand, I'(u) is a soliton with respect to X = +dy only if
H = igH(a(),VgH) = i—l (4.1.6)
u/1+|V=Ryl?
Combining (4.1.5) with (4.1.6) we obtain the desired result. O

Remark 4.1.1. Let us mention here that Serrin considered quasilinear equations quite similar to
those of the form (SE..); see (Serrin, 1967) and (Serrin, 1969, Chapter 1V, pages 477-478). In

particular, he studied equations of the form

Du

vV1+|Dul?

However, a gradient term on the right-hand side was not considered.

= f(x,u).

div

We recall the Comparison and Maximum Principle theorems by Pucci and Serrin

(Pucci; Serrin, 2007, Theorem 2.1.3 & 2.1.4).

Theorem 4.1.2 (Maximum Principle). Let Q be a connected bounded open domain of R™ with

boundary 0Q and u,v € C*(Q) solutions of the nonlinear differential inequality
T(x;u;Du;Dzu) > T(x,v;Dv;Dzv),

where the function F : QX R xR™ x R™ SR is continuously differentiable. Suppose also that

the matrix Q = [Q;;] given by

Qij = 7—741',;' (X,M(x),Du(x),QDzu(x) +(1- Q)Dzv(x))
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is positive definite for any x € Q and any 0 € [0,1]. If u < v in Q and u = v at some point x € Q,

thenu =v in Q.

Theorem 4.1.3 (Comparison Principle). Let u,v € C2(Q) NC°(Q) be solutions of the nonlinear
differential inequality given in Theorem 4.1.2. Suppose that the matrix Q = [Q;;] is positive

definite in Q and that for every fixed x € Q the function
t— ?’(x,t,Dv(x),Dzv(x)) 4.1.7)

is non-increasing on the half-line [v(x), c0)-but not necessarily differentiable. If u < v in 0Q,
then u <v in Q. The terms u, Du in Q can be replaced by v, Dv if at the same time the terms Dv,

D?v in (4.1.7) are replaced by Du, D*u and the semi-line [v(x),0) is replaced by (—co,u(x)].

Definition 4.1.4. Let Q be an open subset of R™. A positive C*-smooth function ¢ : Q — (0, c0)
is called:

1. Subsolution to the quasilinear differential equation (SE.), if it satisfies the inequality

givi Ve |, _Tmexl 4.1.8)
VI+|VEP] @2y 1+[VEp|?

2. Supersolution to the quasilinear differential equation (SE.), if if it satisfies the inequality

givi e | _mexl 4.1.9)
VI+|[VEQ2 ] @ 1+]VEg]?

Proposition 4.1.5. If u is a subsolution (supersolution) to

vk —mu—1
divk ( “ ) —— (SE_)
uZ

VI+[VEu)? VI+[VEu

then the region above (below) the graph of u is g;-mean-convex.

Proof. Assume that u is a subsolution. Notice that the scalar mean curvature with respect to
upward direction v,, of the graph I'(u) < (H™*!, g1) is positive. Therefore, the region above
I'(u) is gr-mean-convex. Similarly when u is a supersolution.

O

Proposition 4.1.6. If u, is a subsolution to (SE_) and uy = uy — € for some € > 0, then uy is a
subsolution too. Similarly, if vy is a supersolution to (SE_) and v, = v + € for some & > 0, then

V2 is a supersolution too.
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Proof. Notice that

and

—muy—1 S —mu;—1

u%\/1+|VRu2|2 u%\/1+|VRu1|2
. Therefore,
R _ _
divF [—— |y

VI+ VR 2] w1+ VR, 2

Similarly, for v{ and v,. O

Combining Theorem 3.0.2 and Proposition 4.1.1 we obtain the following result.

Theorem 4.1.7. A graphical soliton, with respect to the vector field X = -0y, in the hyperbolic
space, is always stable. Moreover, a graphical soliton with respect to the vector field X = 0y in

the hyperbolic space is stable if it is contained in the region S = {(xo;x) ER*XR™ 1 xg > 2/m}

4.2 Cylindrical solitons

Let us describe here cylindrical solitons, that is, solitons which can be written
in the form I'x R”~! ¢ H™*!, where here T is a curve in the xox;-plane. For simplicity, let
us work in regions where I' can be represented as the graph of a smooth positive function
u:(e1,&) C R — (0,00) with respect to the direction dy. So we assume that I" can be written as

the image of y(¢) = (u(¢),t) in the xox;-plane. In this case, the equation (SE. ) becomes:

divk ( VEu ) _ —mu + 1
Uy 1 1 —mu+1
\/Tugﬂtt (_5(1+u,2)3/22u[un) ) Mz\/rulz
u? . —muzxl
Tt T T
Uy —-mu=+1

1+u? u?
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CASE A: Let us first consider one dimensional solitons with respect to X = dy. Here

we are interested in positive solutions to the ODE:

Uy —mu+1

== (SE4)

1+ut2 u

One obvious solution is the constant one given by

(=,

for any ¢ € R. Let us examine non trivial solutions now. Consider the function v : (—&1,&2) - R

given by v = u;. Then, we get the following system of first order ODEs:

U =v,

vi=u"2(1—mu)(1+v?),
Let us compute at first the integral curves of the vector field Z : R* x R — R? given by

Z(u,v) = (v,u (1 —mu) (1 +v?)).
In order to analyse the integral curves, let us consider the function G : R* xR — R given by
G(u,v)=u'+mlogu +logm.
Therefore,
W ou 1402

1
gradG:(——+m 4 )

Note that the only critical point of G is the point (1/m,0) and that (grad G, Z) = 0. Therefore if

a=(ay,a) : (—€1,&7) > R* xR is an integral curve of Z, then
(Goa) =(gradG(ay,a),a’) = (gradG(a1,2), Z(a1,a2)) = 0.

Hence, there exists a constant ¢ such that G o @ = ¢. Consequently, the level sets of G are the

integral curves of Z. Putting everything together, we see that

1 1
c = —+mlogu+—10g(1+u,2
u 2
. 1 1
€ = e;+mlogu+710g(l+utz)
2
e* = ewu”(1+u?)

u,z = XMy _1>0

’



30

where ¢ is a positive constant. One can easily check that, for ¢ > m(1 —logm), the function
f:(0,00) — R given by

f(S) — eZce—Z/ss—Zm -1,

takes non-negative values only if the variable s takes values in a suitable closed interval [a,b] C
R* with a > 0 and b depending on ¢. Moreover, f(a) = f(b) =0 and f(s) > 0 for any s € (a,b).

Hence, any solution to (SE;) must be bounded above and below away from zero; see Figure 1.
Fig. 1 — Graph of f

YA

A 4

J T

Source: elaborated by the author.

Indeed, the graph of f is given by Figure 1 because:
L. f'(s) = e22e 5 572m (;—2 - %) Therefore f'(s) >0for0<s < %, f'(s) <Ofors > % and
=0
2. limg0 f(s)=-1
3. limye f(5) =—1
Moreover, notice from (4.2.1) that the part of the curve y above the line xo = 1/m is
concave and the part below xo = 1/m is convex. Consequently, the solutions exist for all values
of the parameter ¢; see Figure 2.
CASE B: Let us examine now cylindrical solitons with respect to X = —dp. In this

case we have to deal with the following ODE:

Uy —mu—1
= . SE_
1+u? u? (SE-)

Observe that the solutions to such an equation must be concave. As in the previous case, consider

the function v : (—¢,&) — R given by v = u, and reduce the second order ODE into the following
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Fig. 2 — Graph of u

Source: elaborated by the author.

system:

ur=v,

v =—u"2(1+mu)(1+v?).

Hence, the solutions to the above system are precisely the integral curves of the vector field

Z : R* xR — R? given by
Z(u,v) = (v,—u_z(l +mu)(1 +v2)) .
Consider the potential G : R* xR — R is given by
G(u,v) = logmﬂnlogu —u!
Observe that
gradG:(ﬂ+1 Y )

u  u? 1+v2

Moreover, grad G is nowhere zero and perpendicular to Z. Consequently, the level sets of G are

precisely the integral curves of Z. As a matter of fact, we get that

9}
Il

1
log+/1+u?+mlogu——
u

Y
Il

2
2 (1+ul)u*"e

u,z = 2y _1 >0,
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where c is a positive constant. One can easily check that, for a fixed number ¢ and natural number

m € N, the function g : (0,00) — R given by

g(s) — 62062/ss—2m -1,

takes positive values only if s lies in an interval of the form (0, »]. Indeed, the graph of g is as in
Figure 3 because:

1. g'(s) = —262"@%s_2’”(si2 + lv) <0 Vs>0..

2. limg,0g(s) = co.

3. limy00g(s) =—1.
Observe now that since the equation (SE_) is autonomous, if u is a solution then for any fixed
a €R, u,(t) =u(t—a) is again a solution to (SE_). This means that the solutions are invariant
under translations which keep fixed the dp direction. Thus, without loss of generality, we may

assume that the interval of definition of # contains 0.
Fig. 3 —Graphof g

YA

VAl

N

Source: elaborated by the author.

Lemma 4.2.1 (Grim-Reaper). Let u be a solution to the differential equation (SE_) satisfying
the initial conditions

u(0)=h>0 and u,(0)=0.

Then, the following hold true:
(a) The function u is even and defined on a maximal bounded interval (-T,T), where T =

T (h) =Ty, is a positive number; see Figure 4.
(b) The function u and its derivative u; satisfy

lim u(¢) =0 and lim u,(t) = Foo.
t—=+T t—+T
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(c) The height h and the length €(h) = 2T (h) of the domain of definition of u are related by

h
t(h) =2 / ds .
0 \/e(Z/S—Z/h)(h/S)Zm 1

(d) hlim {(h) = 0.
(e) €(h) =2T(h) is increasing in h.

Fig. 4 — Graph of u

~+Y

Source: elaborated by the author.

Proof.  (a) We will show at first that the maximal domain of definition of u is bounded. To
achieve this, let us suppose to the contrary that there exists a solution u defined on an
interval of the form (—a, o), where a > 0. Fix some point ¢; > 0. Since u;; < 0 by (SE_),
it follows that u has at most one maximum point. Hence, from our initial conditions, u
attains at r = 0 its global maximum. Moreover, u; is strictly decreasing and u,(¢) < O for

any ¢ > 0. Then, for any 7 > t; we have that

u(t)—u(m:/ uz(S)dssf ui(t1)ds = uy (1) (1 — 1),

1 131

Hence,
O<u(t) <u(ty)+u/(ty)(t—ty).
On the other hand, since u,;(#1) < 0, we obtain that
0< tlim u(t) < tlim (u(tl) +u,(t1)(t—t1)) = —00,
—+00 —+00

which leads to a contradiction. Hence, ¢ cannot tend to +co. In the same way, we prove that

there is no solution defined in an interval of the form (—oo,b) with b > 0. Consequently,



(b)

(c)

(d)
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the maximal domain of definition of such a solution must be a bounded maximal time
interval of the form (—a,b), where a and b are positive numbers. Note now that for
small values of 7, the function # given by #(7) = u(—t) is again a solution to (SE_). Since,
i#(0) =u(0) and i,(0) = 0 = u,(0), from the uniqueness, we get that &i = u which implies
that u is even. Hence, the maximal time of solution is of the form (=7,7T), where T is a
positive number.

We will show now that u tends to zero as ¢ tends to +7" and that u; tends to Foo as time
tends to +7. Recall that in the interval [0,7) the function u is decreasing. Suppose to the
contrary that

limu(t) =1,

t—T

where [ > 0. Then it is possible to extend the solution to the first order ODE

u, = _\/62c82/uu—2m -1 4.2.1)

in an interval 7 + g, for some € > 0. This contradicts the fact that 7 is maximal. From
(4.2.1), we get that u; — —oo as ¢ approaches 7. Analogously we treat the behaviour when
t approaches —T.

Recall that on the interval [0,7), the function u satisfies the first order ODE

U, = _\/eZCeZ/uu—Zm _ 1’

where c is the constant given by e = h*"¢~2/" In this particular interval, u is strictly
decreasing and its inverse ¢ : (0, ) — (0,T) satisfies the equation

1

\/62662/14”—2m -1

ty =

After an integration we get that

h
d
T:/ > .
0 \/eZCeZ/sS—Zm_l

This completes the proof.
For s € (%, h)

1 1 1 1 s™
> 1

= s—1/n m > 1 —1/, m = :
\/e%—%, ()2 =1 \/ez/s—z/h o2 " )™ e )™ enpm

Hence, T > /hh lsm ds = % (hm+] - (h/2)m+1) = L1 (1 1 ) Therefore,

- 1
(m+1)eh e

2 ehpm eh h™(m+1)
T — ocoas h— oo.
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(e) We prove it in two steps:

(a)

(b)

Suppose, by contradiction, that there exist &y, h; > O with sy > h; such that T'(h;) <
T'(hy). Denote by up, : (=T (h;),T(h;)) — R a solution to the differential equation
(SE-) with initial conditions up, (0) = h; and uj,"(0) = 0.

Notice that (up, —up,)(0) > 0 and (up, —upn, ) (T (hy)) < 0. By continuity, there exists
6 € (0,T(hy)) such that up,(6) = up, (6) and up,(—06) = up,(=95). By Comparison
Theorem (Theorem 4.1.3)), up, = up, in (=5,0). This is a contradiction because
Uun,(0) = hy > hy = up,(0).

Suppose, by contradiction, that there exist /5, 21 > 0 with sy > hy such that T (hy) =
T'(hp). Fix a constant € € (0, h — h;), hence there exists a constant a € (0,7 (h;))
such that up, > & in (—a,a). Set vj, . = up, —€ in (—a,a). Notice that vj, . is
a subsolution to (SE_). (vp,e—up,)(0) > 0 and (v, —up,)(a) < 0. By conti-
nuity, there exists ¢ € (0,a) such that vy, »(6) = up, () and vp, (=06) = up, (=9).
By Comparison Theorem (Theorem 4.1.3) , u;, > vp, . in (=0,0), contradicting

Vie(0) = hy—& > hy = uy, (0).

Thus, £ and T are increasing in h.

O

Remark 4.2.1. Similarly to (Martin et al., 2019) and (Gama,; Martin, 2020), we call the graph

of u a grim-reaper with maximum height h and centered in 0, symbolically G, 0. Furthermore,

Gh,[H,,H*) IS the grim-reaper with maximum height h and

OoG .1+ = X1 = H.} U {x) = H'} C 9 H™.

4.3 Barriers

Now we construct some examples of barriers. To simplify the computation, we use

the relation between the Levi-Civita connections of conformal metrics.

Lemma 4.3.1. Let N be a manifold equipped with two conformal metric g = e*"g.

(a) The relation between the Levi-Civita connections is:

VxY = VxY + (X (W)Y + (Yw)X — 3(X,Y)Vw,

forall X,Y € X(N)
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(b) The relation between the gradients of a function u : N — R is:

1 —
Vu=——>Vu.
62W

Proof.  (a) For coordinate frame {9;} , by Koszul formula:

§(0. Vo, 0) = %{@g_/k +0;8ik — Ok&ij}
= OG0 +35(™8) - ()
= ezwé{ai(gjk) +0;(8ix) — 0k (8ij) 1+
3¢ (20, (0) 81+ 20 (Wit ~ 200 (W)
= §(0k.Vo,0) + & (0, 0:(W)3;) + & (3, 0 (w) dy)—
—2(k,8ij VW)

= § (0, Vo, 0:+8;(W)3; +3; (W) — §(9;,0) Vw).

(b) Now the gradient in coordinate is given by Vu = g/ d;ud; = eziwg"f djud; = eziwgu.

O

In the following lemma, we will give the relation between the second fundamental

forms in the hyperbolic metric and [lmanen’s metric of a submanifold.

Lemma 4.3.2 (Conformal second fundamental forms). Let S be a hypersurface in H"™*!.

1 1
I, (vi,v2) = e™0 {HgH(Vl,vz) — Ve (—) gH(Vl,V2)} , (4.3.1)
mxgo

Vp € S andVvi,vy €T,S, where l,, and Iy, are the second fundamental form with respect to

g1 and gy respectively, v, is the gx-normal along S, where vq, = - 2.

Proof. Let {E;} be a gy-orthonormal frame along S. Define the g;-orthonormal frame by

E; = E{ . Similarly the gr-normal v, along S is given by Vg—fﬂ. Using Lemma 4.3.1,
emxo emxo

1 1 1
viyy =vi v+ X (—) Y+Y (—) X —gu(X,Y)VH (—) ,
mxgo mxg mxg
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where V! and V¥ are the Levi-Civita connection in relation to gy and gy respectively. Therefore,

I - 2 H . 1 1 ~ ~ gl 1 ~
g]I(V EngH’Ej):e Og]H[(V Eing+Ei (m—xo)VgI'FVgI (m—xo)Ei—g]H[(El‘,Vgl)v (m—xo),E])
2 L L ~ __L - 1 .
= e {gH (Ei (e mXO)VgH’Ej)+gH(e ’""OVHEngH,EJ‘)+VgI(m—xO)gH(Ei’Ej)}

2 [ L - - 1
= ™0 {e 0 g1 (VE g Vg Ej) +€ ™0 v, (—O)gH(EbEj)}

Fig. 5 —Ug,r,
ToA
UG rq
N0
\
_7"0\\ // T'O xl
N\ /
N s/
\\ //
Ry AN 0|0 7 Ry
AN e /
N7 S
/
/
\ /
¥

Source: elaborated by the author.

To define a spherical barrier(see Figure 5), we need to set some notation. Given a

angle 6 € (O, %] , aradius ro > 0 and a origin o € O H™ ! we set

Ro:=rocscld By (0) = {x € dH™ ' : |x—0| < ro},

Uy : Bry(0) C OH™ - R, g ry (x) == \JRG — |x —0|*> = Rycos b,
By(0,70) ={ (x0,x) € ™!+ x € By (0), x0 = gy ().

Namely, Bg(0,79) is the intersection of H”*! with an Euclidean sphere of radius R that makes

an angle 6 with 0., H"*!,
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Proposition 4.3.3 (Spherical barrier). For all 6 € (0, %] and ro € R", ug ,, is a subsolution to

SE_.

Proof. Using that Bz (0,r0)) is totally geodesic with respect to gy, by Lemma 4.3.2,
I L 1
— mxq — -
a(vi,v) =e Ver | we gu(vi,v2) |,
forallvi,v, €T, Bz (0,rp), where v, is the gg-normal field pointing upward. By —v,, (mon) >0,
Il,, is positive definite. Therefore, H > 0 and Bz (0,r¢). Hence Bz (0,r¢) is a subsolution. For
0 # 7 /2, set uy ‘= U, ,, and uy = ug ,,. Therefore, u; = up — & for suitable £ > 0. By Proposition

4.1.6, u; is a subsolution. O

4.4 Rotationally symmetric graph over an annulus

Definition 4.4.1 (Rotationally symmetric graph soliton over an annulus). Let u : (T},72) — R,
o B u(p), be a function such that T, > Ty > 0 and the m-submanifold generated by rotating

xo = u(xy) about the xy-axis be a soliton with respect to X = —0y, that is,

Ry, () 1 A C 9 H™ SR
(X1, X2, Xm) I—)u(m)

where A = {(x1, LX) € O H™ML T < /x% ot xD < Tz} is an annulus. The m-submanifold
graph of Ry (u), M :=T'(Ry,(u)), is a soliton with respect to X = —0y. M is called rotationally

symmetric graph soliton over an annulus with respect to X = —0y.

Proposition 4.4.2 (ODE for a rotationally symmetric graph soliton over an annulus). Let
M =T (Ry,(u)) be a rotationally graph soliton over an annulus. Therefore, the C2-function
u: (T, T,) — R is a solution for:

14

u m-—1
== . 4.4.1
(1+u’2)Jr Je . u? ( )

Proof. Note that p? = x% +---x2, hence:



ZpVRp = 2X101 +--- +2xm6m,

VRIDZ X161+-'-+6m’
o)
IViplr =1,
and
. R/oR | I _» m 1 m-1
div:(V®p) = —=div- (x101 + - -+ Xx;1.01) +gR(——2V 0, X101+ -+ X, 0p) = ——— = ——
p P p p
By equation (SE..),
divk VR(RXO(M)) _ —mRy,(u)—1
VIHITERG @R | Rey ()2 141V R, ()2
Givt| W (P)VEp _ —mu(p)—1
\/1 +|w' (p)VEp|2 u(p)z\/1+ ' (p)V¥pl2
diVR( W)V | —mu(p)-1
VI+@ (p)?]  u(p)*V1+ W (p))>
eqe . . _ t
Define the auxiliar function ¢ : R = R, ¢(7) = Nt
, 1
@' (1) = 3
(1+12)2
. Therefore,
) , 1+mu
divF (g (' () VRp) = - ()
u(p)*/1+u (p)?
4 ’ 144 ’ : 1+mu( )
gr (@' (' (p))u” (p)Vp, VEp) + (i’ (p))divF (VFp) = — P
u(p)>/1+u'(p)*
., . , m—1 1+mu
o (o))" () + o (p)) 2L = - )
u(p)>/1+u'(p)*
u”(p) L m-1 wW(p) _  1+mu(p)
(o)) -
I+ (p))2 P J1aw(p)®  u(p)® 1+ (p)?
u”(p) m—1, 1+mu(p)
—+ u'(p)=——""—7—.
(l+w(p)®) P u(p)

39
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Lemma 4.4.3. Let uy and uy be solutions to (4.4.1) on an interval (ry,r2). Then, either up = u;

or uy —u| does not have any non-negative local maximum on (ry,ry).

Proof. Assume to the contrary that u —u attains a local maximum ¢ > 0 at a point ro. Then,
uy < uy+co near ro with equality attained at the point ro. From cg > 0 and Proposition 4.1.6,
uj +co is a supersolution to (4.4.1) and this contradicts the Maximum Principle (Theorem

4.1.2). O

4.5 Rotationally symmetric graph over cylinder

We are going to analyze solitons which are radially symmetric graphs over a cylinder

in H™*!. We are going to use the following coordinates in H"*!:

X0 =2,

2 2 _ 2
X{+-+x, =p%,

(X15.eesXim)
0

—weS" ! cR" ~ g H™.

(z,p,w) € Ry xRy xS™ 1 =M — {x% +---+x2 =0} and the Riemannian metric

I _
g 1:z2(az®az+ap®ap+;gsn£_l).

Definition 4.5.1. A radially symmetric graph over the cylinder is given by:

Gp: ACR,xS" ! 5 R, xR, xS

(h,a) = (h,¢(h),a).

Now let us compute some quantities to find the mean curvature of ®4. Define
the function &, : H™*!' — R given by F4(z,p,w) = p — ¢(z). Hence dFs = dp — ¢ (z)dz and

G4(RyxS™ 1) = $¢—1(0). The gradient of &, is given by ﬁc&p = id%g_l =72(—¢'(2)0,+0p).
63‘75 = 1 20 _ 41
Tk~ g C 90t 0p)).

Using Lemma 4.3.1 for gy = Z% gr, where w = —Inz. It follows that:

The normal vector field v is

Lemma 4.5.2. Let {9;,0,,001,.-.,0m_1} coordinate frame for R, X Ry X ™~ with the hyper-

bolic metric gu. Then, the following equations hold:
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(a) VEx0.=-1X, VX e X(N).

(b) V¥5,0,=10..

(c) V35,0p = —10,.

(d) V5,0, = V73,89 =0.

(e) VEy,.00; =V=0,,00; + 8= (Di, 09 ) (%az) :
(f) V5,00, = V55,0, = —%391'-

(g) VH3,80:=V"5,,0, =0.

Using Lemma 4.5.2 we can compute the second fundamental form and mean curva-

ture of the graph of 6.

Lemma 4.5.3. Let {0),0¢,...,0¢, _,} be a coordinate frame for R, X S"™ 1 such that the
set of last vector fields {0¢,,...,0¢, .} is coordinate frame for S"™=1. As before let the set
{0:,0,,001,...,09m—1} be coordinate frame for the codomain R xR, X S™=1 with the hyperbolic
metric gu. Define Eq:=®y (0p) =0,+¢'0p and Eq := ®y (0f,,) = Opq for 1 <@ <m—1. Denote
by H the (unnormalized) mean curvature of ® . Then the following equations hold:

(a) Vg Eg= (——+ )8 +( A +¢>”) 0y

(b) g (Vg Eov) = % \/lfw[“ﬁ" (¢')+¢"z].

(c) VEp Eg=V"y, 8op="4,,005+8% (000> 00p) (%az) :

H _ ¢ R z
(d) 8H (V EQE,B’V)—gH(aHQ,aQIB)( \/W)-l-gH (V 69(,69,[3, Wap)

¢//Z N _ (m—l)Z
(# ‘m(lw ")
-0,,v) =
Proof. (a)

Vi, Eo = Vg, (9:+¢'0,)
= VHanz + VHEO((ﬁ,(()p)
= VH61+¢'6;;82 + ¢llap + ¢/VH61+¢’6pap

= V5.0, 44’V 5 0. +¢"0,+¢'V 5.0, +(¢')°V74,0,

e e e (Lo ]!
—-L0.+0/(-10,) 070,40 (10, + 0220,

7”2
e N
Z Z
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(b)
gu(ViE,Eo,v) =
_ _1+(¢/)2) (_2¢/+¢//Z) z .
_gH(( o (o (e
1 1
=(=1+ N2y - 822+_2/+// 82
( (¢))m( PO, +(=2¢"+¢ z)ml oz
Sl L () -2 g0 =
_ l 1 o "n3 ”
“E @D,
(c) It follows by (e) of lemma 4.5.2.
(d)
gH (VHEaEﬁ,V) =
_ R l < Y
—gH(V 69(,595+ng+1(59&,59;3)(Zaz),m( ¢3z+5p))
= g1 (04, 09p) (— i ) +8gH (VRaeaaeﬁ, ;ﬁp) -
(e)

H=(64"gn)"gu (Vg Eo,v) +Z(®¢*8H)aﬂgH(VHE(,E,B,V)
@B

_ Z2 i 1 4t (a3 ”
= 1+(¢’)2(z2m( ¢’ —(¢') +¢ Z))+
6" 0 [ (65" 0x)s | - ¢’ VB, Gpp —
+(§( ¢ 8H) (( ¢ 8H) ,3( m)+g]ﬂ( 309605 VIt @) p))
_ 1 (_¢1_(¢/)3+¢”Z_(m_1)¢/)_ﬂ'
Jir@2 | 1+ VT+(@)?

It was used the Euclidean mean curvature of the sphere of radius ¢ and dimension m — 1 is

m—1

®)

Z
gH(—(')Z,v) =8H (_az,

__
21+ (¢)?

(_‘P/az + ap))
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Now it follows that the cylindrical graph of ®, is a soliton with respect to —dy = —0,

if and only if (vfe —m#') = s = H =g (=0, Equivalently,
if and only i m T+ (9 —m¢ Py vroE g(=0,,v)= W quivalently.
” -1 ’
V2 gy mbz_ ¢ 4.5.1)
1+(¢7)? ¢ z

Proposition 4.5.4 (ODE for cylindrical graph). A cylindrical graph Im(®y) is a soliton with
respect to —0y if and only if

" _l+4mz ,_(m—l)
1+(¢)* 22 ¢

=0. (4.5.2)

In order to understand the rotationally symmetric graph over a cylinder, we need to

study the previous ODE.

4.6 Energy Method

In this section, we define an energy F' to help us to analyze the qualitative behaviour

of cylindrical graphs ®4. By (4.5.2),

¢//Z _m¢/_(m—1)z:£’
1+(¢)? ¢ z’
Define F(z) :=z7™ V&W Hence,
: 1 29" ]
F'(z) = —m¢'|.
&= L@ ™

By (4.5.2), £25 - m¢’ = £+ (m—1). Therefore,

1

i JTr g2 | 2

—n=L_ Multiplying by o

1 -1

= i

¢/

F'(2) = ~ Tm=-1~ ]

Thus, F/ — LF =

(Fefzhr%dr)' oMol
Zm¢, /1 + ¢12

Integrating,

F(h) = F(z)ek 2% = ol B gy 4.6.1)

h
| i
_141 h m—1 141
F(h)—F(z)e n*z :/ e v dr (4.6.2)
2 rmp(r)\1+¢'(r)?
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To understand the behaviour of the solution to (4.5.2), it is necessary to prove some

technical lemmas.

Lemma 4.6.1 (Behaviour of concave branch). Given zo >0, 7o > 0 and ¢, > 0. Let ¢ : (h., h*) —

R be the maximal solution to:

" B 1+mz ;o (m-1) _0
1+(¢)> 22 6
#(20) = To, (4.6.3)
¢’ (20) = ¢y

where 7o € (h., h*). If ¢ (z0) < 0, then the following statements hold true:
(a) ¢’ <0, ¢” <0 on (hy,z0).
(b) h.=0.
() lim ¢(z) = do for some o > 0.

(d) lim ¢'(z) =0.

Proof.  (a) We claim that ¢’(z) <0 Vz € (hs,z0). Otherwise, we would have a z. € (h.,z0)
such that ¢’(z.) =0 and ¢’ <0 on (z,, z0). By (4.6.3), ¢ (z.) > 0, therefore ¢’ is increasing

on a neighborhood of z., contradicting that ¢’ < 0 on (z¢,z¢). Thus, ¢’ < 0 on (h.,zp).
We claim that ¢” < 0 on (h.,zp). Otherwise, we would have a interval (a,b] C (h., 2]

such that ” > 0 on (a,b) and ¢” (b) =0. By (4.6.3),

a

¢(a)

—¢'(a) (m+é) <(m-1) and — ¢’ (b) (m+l) :(m—l)L.

b

Using that ¢ is decreasing on (4., zp), we have:
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0<¢(b) <¢(a) (4.6.4)
1 1
Ol > ) (4.6.5)
b
—¢'(b) (m+ ) > —¢'(a) ( é) 4.6.7)
(m+3)
~¢'(b) > —¢'(a) > —¢'(a) (4.6.8)
(m + }7)
¢'(b) < ¢'(a) <0. (4.6.9)

Contradicting that ¢’ is increasing on (a,b]. Thus, ¢” <0 on (h.,z9). Suppose by
contradiction that ¢”(z;) = 0 for some z; € (h.,z0). Therefore, z; is a critical point for ¢”

on (h.,zp), hence ¢””(z;) = 0. Differentianting (4.6.3),

¢ 2(¢//)2¢/ -2-mz\ l+mz\ ,| m-1, 3
(997 <1+<¢'>2>2] i [( 2 )¢ *( 2 )¢ ]* gr 070 (el
Therefore, ((22’3'ZZ ) +m¢—_21) ¢’ =0 at z = z;, contradicting that ((22’{’1 ) +¢—_2) > 0 and
¢’ (z;) <0. Thus, ¢” <0 on (h.,zp).

(b) Suppose by contradiction that 4, > 0. We claim that:

(1) lirgl+¢(z) = ¢y, for some ¢y, > 0.

(i1) E};ﬁ ¢'(z) = —¢), forsome ¢; >0.

If (i) and (ii) are true, then we could extend solution ¢ : (&, h*) — R, a contradiction by
maximality of (4., /h*). Namely,

(i) As ¢ is decreasing on (h.,zp), either ZEI£+¢(z) = 00 Or ZEI£+</)(z) = ¢y, for some
op, > 0. If zl—i>rl2+¢(z) = oo, we find a contradiction by Maximum Principle (Pro-
position C.0.1). Indeed, we put a small grim-reaper Gy, [g, n+] (Remark 4.2.1)
below Im(®y), that is, & < h, and H. > ¢(z0). Setting G; := G, [H.(h,).H*(h;)]
where h; := h+t and H.(h;) == H.(h). Increasing ¢, there exist a G, such that
Gy NIm Gy # 0, contradiction by the Maximum Principle. Thus, the only possibility
remained is lir}{1+¢(z) = ¢, for some ¢y, > 0.

(i) As ¢” <0 (jr? (*h*,z()), ¢’ is decreasing on (h.,zp). As ¢’ <0 on (hs,z9), ¢’ is

bounded therefore lim ¢’(z) does exist.

Z_)h*
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Thus, . must be equal to zero.

(c) As ¢ is decreasing, we just have to exclude the possibility that Zli)r& ¢(z) = c0. Again, we
use the Maximum Principle to arrive at a contradiction. Namely, put a small grim-reaper
below Im(®4) and slide the grim-reaper in the direction x; up to touching Im(®y), a
contradiction by Maximum Principle.

(d) As ¢” <0 on (0,zp), ¢’ is decreasing. As ¢’ <0 on (0,zp), Zli)r{)l+ ¢'(z) = —¢y, for some
¢, = 0. By argument using a spherical barrier, ¢, cannot be positive. Thus, ¢; = 0.

O

Lemma 4.6.2 (Behaviour of a cylindrical graph with a critical point). Given z; > 0 and T > 0.

Let ¢ : (hi,h*) — R be the maximal solution to:

" _1+mz ,_(m—l)_o

1+(¢)2 22 6
(z) = 1. 4.6.11)

¢'(z1) =0.

Then the following statements hold:
(a) Every critical point of ¢ is a local minimum point.
(b) The only critical point of ¢ is z = z1 and ¢ attains global minimum at 7 = z;.
(c) ¢ is strictly decreasing on (h.,z1) and strictly increasing and convex on (z1,h").
(d) h.=0.
(e) Zli)rgd)(z) = T, for some T, > 0.
(f) h* is finite, Zl_i)rhI}_ ¢ (z) = v for some v > 0 and Zl_i)rhr*l_ @' (z) = oo.
(g) There exists Ao € (0,z1) such that ¢ (1p) =0, ¢’ (1) <0 and ¢”(z) > 0,Yz € (Ao,21).
(h) lim ¢'(2) =0,
(i) ¢"(z) <0 Vze (0,40) and ¢"(z) > 0,Yz € (1op,21).
(j) ¢’ is bounded on (0,z;).

Proof.  (a) By (4.6.11), ¢”(z) > 0 whenever ¢’(z) = 0.
(b) Suppose by contradiction that there exists another critical point z = z,. for ¢. By (a), z =z,
is a local minimum. We must have a local maximal point between the two local minimum
points z = z. and z = z;, however, this is not possible by (a). Thus, z = z; is the only

minimum point in the maximal interval (., h*).
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(d)
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Suppose by contradiction that there exists z+ € (h.,z1) such that ¢’(z4) > 0. There exists
a interval (z; —€,z1) where ¢’ < 0 by minimality at z = z;. Therefore, by continutity of ¢’,
there exists a critical point on (z4,z;) contradicting (b). Similarly , we prove that ¢’ > 0
on (z1,h*). Therefore, by (4.6.11), ¢” > 0 on (z1,h").

By (c), there exists zg € (h.,z0) such that ¢’(zo9) < 0. Therefore, by Lemma 4.6.1.(b),
h.=0.

Suppose by contradiction that Zli)r(r)aq&(z) = o0o. We can put a small spherical barrier
Bz (o,rp) (see Proposition 4.3.3) below the cylindrical graph Im(®,) and we slide
B% (0,rp) in the direction of x( until some part of the spherical barrier has xo-coordinate
greater than xp-coordinate of some part of Im(®) gives a contradiction by Comparison
Principle (Proposition 4.1.3). Therefore, Zli)r(r)l+ ¢(z) is finite.

Suppose by contradiction that A* = co. As ¢ is increasing on (zj,h"), there are two
situations:

) lim ¢(z) = oo.

(ii) Zli_)rglo ¢(z) = 1 for some 7y > 0.
We will show that (i) and (ii) are impossible:

(i) In this case, we can put a grim-reaper Gy, [n, ] below the cylindrical graph Im(®)
and increasing h until Gy, g, p+) touches Im(®) in Im(® (Zl,m)) finding a contra-
diction by Maximum Principle (Proposition C.0.1). Namely, there exists a small
grim-reaper G, [H, (hy),H* (ho)] SUCh that x1 (G, [H, (he),H* (ho)]) > T« and hg < z1, that
i, Go.[H. (ho).H (ho)] C {X1 > T} N {x0 < z1}. Set G, == G, (1. (,).1*(n,)) Where £ > 0,
h; == ho+t and H.(h;) = H.(hp). Notice that G, C {x; > 7.}. Set t; :=sup{r > 0:
G-NIm(G,) =0 VO <r <t}. Therefore, Gy, ﬂIm((5¢|(z1,m)) # O contradicting the
Maximum Principle.

(i1) In this case, there exists a inflection point r; € (z1,00) such that ¢”(r;) =0. By
(4.6.11), ¢’(r;) <0, a contradiction by (c).
Thus, ~* is finite. Now suppose by contradiction that zl—ig}’ ¢(z) = co. We use a similar
argument as in (a). Therefore, there exists 7% > 0 such that Zli)rhri_ ¢(z)=7". By (IIl), ¢’ > 0
on (z1,h"). Hence, by (4.6.11), ¢” > 0 on (z1,h*) and ¢’ is strictly increasing on (z;, h*).
The limit of ¢’(z) as z — A*~ cannot be finite because we could extend the solution ¢

contradicting the maximality of 4*. Thus, lirhn ¢’ (z) = co.
z—>h*

(g) Define A as the smallest number in [0, z;] such that ¢”(z) >0 Vz € (1g,z1). We claim
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that:

1) >0

(ii) lim,_,,+ ¢(z) is finite.
(iii) ¢'(1p) <0

(iv) ¢"(20) =0

Indeed, we prove this in the following way:

(i) Let us assume the opposite, 1o = 0, and see if it leads to a contradiction. As ¢” >
0 on (0,z1), ¢’ is increasing on (0,z;). Therefore, either lim,_,o+ ¢’(z) = —oc0 or
lim, o+ ¢’ (z) = _¢:10 for some positive number ¢/Ao > 0. In any case, by (4.6.11)
and (e), lim,0+ ¢”(z) = —oo, contradicting that ¢” > 0 on (0, z;). Thus, 1o must be
positive.

(i) lim,_, .+ ¢(z) cannot be infinity because we can touch Im(®y, 10721)) with a grim-
reaper from below finding a contradiction by Maximum Principle as in the proof of
(d).

(iii) Suppose by contradiction that lim,_, , ¢’ (z) = —co. Therefore, changing coordinates
for a rotationally symmetric graph over an annulus (Definition 4.4.1), (z,¢(z)) =
(u(p),p). Setting pg = ¢(Ao"), u(po) = Ao and u’(po) = 0. Therefore, by Equation
(4.4.1), u”(po) < 0, a contradiction by the behaviour of Im(¢|4,,)). Thus, we
conclude that lim__,, + ¢’ (z) = _¢:10 for some positive number ¢le > 0.

(iv) By continuity of ¢ and ¢” > 0 on (Ag,z1), ¢”(1p) > 0. Notice that ¢” (1y) cannot
be positive because we otherwise could extend on the left side the interval where
¢” > 0 beyond (Ao, z1). Thus, ¢” (1) =0.

(h) Using spherical barrier, we can assure that the graph of ¢ in xox-plane meets orthogonally

the xj-axis, {xg = 0}.

(i) Differentianting (4.6.11),
" M2 47
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Therefore, as ¢’ < 0 on (0,z;), if ¢”(z) =0 for z € (0,z;), then, by Equation (4.6.12),

¢""(z) > 0. Thus, every critical point of ¢’ on (0,z;) is a local minimum point. As in (1),
#’|(0,z,) attains global minimum at z = A and ¢” < 0 on (0,4¢) and ¢” > 0 on (Ao, z1).

() By (g) and (h), Im¢’|(0,;,) C (0,¢'(A0)]. Thus, ¢’| (0., is bounded.
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Lemma 4.6.3. For a € (0, h"), the quantity I (z) := /Za W‘e—%% dr — oo asz— 0.
rme(r +¢' (r

Proof. Noticing that |¢’| is bounded on (0, a) and setting K := rr%gx) d(r)\1+¢'(r)2,
re(V,a

a . _1 —q a \r
/ el gy > —(m )e %dr
2 re(r)\1+¢'(r)? K : T
—De ' a1 —1e 't 1 1
K . 1" K am+l  gm+l

Therefore, lirr(l) I (z) = oo.
—

Proposition 4.6.4 (Behaviour of a solution for a symmetric graph soliton over an anullus). Given

a radius R > 0 and a height h > 0. If u : (T1,T,) — R is a maximal solution to:

u” +m—1 , 1+mu
u' =-— ,
(1+u?)  p u?
; W(R) = h (4.6.13)
u'(R) =0.

Then it follows that:
(a) p =R is a global maximum point for u.
(b) T, is finite.
(c) Ty > 0.
(d) u” <0on (T1,T3).
(e) hnTl u(p)=z1 >0and hm u'(p) =+oo

—T}
(f) hm u(p) =0 and hm u’(p)——

Proof.  (a) We claim that the only critical point is p = R. Namely, by (4.4.1), € Z;'Z) =— 1;’;“‘
at p = R. Hence u” (R) < 0. Therefore p = R is a strict local maximum point for u. There
is no other critical point besides p = R. Indeed, suppose, by contradiction, that there
exists another critical point R € (T7,7»), R # R. Again by (4.4.1), p = R) is a strict local
maximum point. This is a contradiction by continuity of u’. Therefore, u” > 0 in (71, R)
and u’ <0 in (R,T3). Thus, p = R is the global maximum point.

(b) Suppose, by contradiction, that the solution u is defined (77, c0), that is, T, = co. We know

that u is decreasing in (R,o0). Hence, because u is decreasing and bounded below in




(c)

(d)

(e)
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(R, ), there exists z; > 0 such that li_r)lgo u(p) = z1. Then we can find a small spherical
barrier Bz (0,r9) (see Proposition 4.2.3) with radius ro > z; and below M =T"(Ry,(u)).
To use the Maximum Principle (Proposition C.0.1), we increase the radius r( until the
spherical barrier touches M. Namely, set I ={r >0: B(o,r;))NM =0 Vr; <r} and
rs=supl. B(o,rs) "M # 0 and B(o,rs) touches M inside H™*!. This is a contradiction
by Proposition C.0.1. Thus, 75 is finite as claimed.

Set the auxiliary function ¢ : R — (=1,1), ¢(¢) =

t ’ — 1
‘/1+t2’ @ (t) (1+t2)%
By Equation 4.4.1,

u” m—1 1 +mu
+ . 4.6.14
1+w?) p ! u? ( )
” m—1 -1 m—1 1 m—1
< £ty £ TP (4.6.15)
L+@?) i+ )2 P 1+ w)? w1+ (w)?
VN e o om—lsr 1+mu m=1
& W p" 4 () (p" 1Y = -0 —E (4.6.16)
us N1+ (w)?
el 1+mu m=1
(o(u")p"™ 1Y = - p <0. 4.6.17)

Set the auxiliary function ®(p) := ¢(u’(p))p™~!. Hence @ is strictly decreasing, @’ < 0.
o' (p))p™ ' =d(p) > P(R-—€) = p(u'(R—€))(R—€)"!, for a small € >0, and p €
(Ti,R—€). AsImep = (-1,1), p" ' > (' (R—¢€))(R-€)™ ! > 0. Hence, as p — Ty,
Tlm_1 > o(u'(R—€))(R—€)""! > 0. Thus, 7 cannot be equal to zero as claimed.

By (4.6.13) and u’ > 0 on (T1,R], u” < 0 on (71, R). We only need to prove it for (R,T3).
The solution u is defined in some neighborhood of R, say [R — 26, R+26] for some small
60>0. Asu”(R+6) <0and u’'(R+06) <0, we can change the coordinates for a rotationally

symmetric graph over the cylinder on the left side of R, that is, (u(p),p) = (z,¢(z))

1
j—Z(R+6) )

on {(u(p),p) : R < p < R+26}. Setting 70 := u(R+96), 10 := R+ and ¢ :=

%‘f(zo) <0 and Lemma 4.6.1, ¢” < 0 on (0, z9) therefore u” < 0 on (R,T3).

Asu’ >0and u > 0in (T}, R), the limit lin% u(p) exists. As u” <0in (71,T5), the limit
p—1

lin} u’(p) exists or is +oo. Therefore, we have the following possibilities:
p—1

(i) lim u(p) =z;>0and lim u’(p) =z} > 0.
p—T p—T
(i) lim u(p)=0and lim u’(p) =2} > 0.
p—Ti p—Ti
(iii) lim u(p) =0and lim u’(p) = oo.
p_)Tl p—)T]

(iv) lim u(p)=2z; >0and lim u'(p) = 0.
p—T p—T
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(i) It is not possible because we could extend the solution contradicting the maximality
of Ty.

(ii) Itis not possible because because we could touch M =I"(Ry,(«)) from below with a
small spherical barrier Bz (0,r¢) (see Proposition 4.3.3) contradicting the Maximum
Principle (Proposition C.0.1).

(i11) Here we need to change the coordinates and see part of the rotationally symmetric
graph as a radially symmetric over a cylinder. Set M; := I'(Ry, (u|(7,,r)). M1 can be
viewed as a radially symmetric graph over a cylinder. Hence we finda ¢ : (0,h) —» R,
such that the image of ®4 is M. By the Lemma 4.6.3 and the Equation 4.6.1,
F(z)e_%Jr% — —oo as 7 — 0. Hence F(z) < 0 in some interval (0,zp). As F and ¢’
have the same sign, ¢’(z) < 0in (0,z0). Contradicting the fact that ¢’ > 0 in (0, h).
Therefore case (iii) is not possible.

(iv) This is the only remained possibility.

(f) Setting the constants as in the proof of (d) and by Z%f(zg) < 0 and Lemma 4.6.1, we

conclude that lim u(p) =0and lim u’(p) = —co.
p—T; p—=T;

i
-1

4.7 Winglike solitons

In this part, we use propositions 4.6.1, 4.6.2, and 4.6.4 to describe a winglike soliton.

Definition 4.7.1. A winglike soliton is a rotational symmetric soliton with respect to —0y that
can be generated by a rotation of a smooth curve vy in the first quadrant of the xox-plane with

two ends at the boundary at infinity doH"*! where xo(y) is bounded.

Theorem 4.7.2 (Winglike soliton’s behaviour). Suppose that xo oy has a stationary point at t(
and let y(to) = (h,R). Then y can be written as the bi-graph over the xq axis of ¢1,¢> : (0,h] —
(0, 00) satisfying the following properties (Figure 7):
(a) It holds ¢1 < ¢ on (0,h) and ¢1(h) = ¢p2(h) = R. Additionally, $1(0%) < ¢2(0%), namely,
v cannot have the same end-points;
(b) the graph of ¢, is a concave branch on (0, h);

(c) there exists Ay € (0,h) such that ¢, is the union of a concave branch on (0,1y) and a

convex branch on (Ao, h);
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Fig. 6 —Behaviour of a winglike soliton
2o A

h

Source: elaborated by the author.

Proof. In some neighborhood of y(#y) = (h,R), the image of y is the graph of a function u
solution for (4.6.13). By Proposition 4.6.4, we can define ¢, : (0,h) — (0,00) by (u(p),p) =
(z,¢2(z)) for p € (R,T2). Define z; = pli)HTlru(P) and @1z, by (u(p),p) = (z,¢1(z)) for
p € (T1,R). By Lemma 4.6.2 with r =T = ¢, (z1), we can extend ¢; to (0, 2). By contruction
of ¢1, Ty = minye(o.n) $(p) and ¢1 < ¢3 on (z1, h).
(a) Suppose by contradiction that ¢ (z;) = ¢2(z;) for some z; € (0,z1) or ¢1(0%) = ¢(07) =T>.
In first case, the image of 7y intersects itself at (z;,¢1(z;)). In the second case, the image of
v does not intersect itself but has the same ends in OH™! In any case, we can write a
part of the image of y as two graphs of functions u,u; : (T1,73) — (0, 00) over x-axis
solutions to (4.4.1), where T3 := ¢1(z;) = ¢2(z;) in the first case or T3 := T5 in the second
case with up > uy. Asuy #uy, up —u attains a maximum value, a contradiction by Lemma
4.4.3. Therefore, (a) is true as claimed.
(b) It follows by (d) of Proposition 4.6.4.
(c) It follows by (c) and (g) of Lemma 4.6.2.

4.8 Bowl soliton

In this section, we study the existence and behaviour of bowl soliton.

Definition 4.8.1. Given a height h > 0, a bowl soliton M is a soliton with respect to —dy obtained

by rotating a curve (z,¢(z)) as in Definition 4.5.1 such that ¢(h~) = 0.
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Theorem 4.8.2 (Existence of a bowl soliton). Given a height h > 0, there exists a bowl soliton
M =1Im Gy, for some ¢ : (0,h) — (0,00). Futhermore, ¢ is a concave branch on (0, h), that is,
¢” <0o0n (0,h) and ¢’ (h™) = —oo.

Proof. We use a sequence of winglike soliton (M;) to converge to a bowl soliton. Namely, by
Theorem 4.7.2 and Proposition 4.6.4, for a sequence of positive number (&;), &; \, 0, there exists

a sequence of function u; : (T1(&;),T>(&;)) — (0, c0) solution to:

u +m—lu,_ 1 +mu; 20
() 2 T PO
X ui(e) = h (4.8.1)
u;(g;) =0,

where I'(Ry, (u;)) C M;.

Claim 1. {7>(¢;)} is bounded from below and away from zero.

Indeed, suppose the contrary that there is a subsequence 7>(&;) “\, 0. Fix a grim-
reaper G, = Gn.0 = Gn,[H,,1+] (see Remark 4.2.1). Therefore, there exists jo such that (71 (g},),T>(g},)) C
(0, H*). By the behaviour of the grim-reaper (Lemma 4.2.1), max{xo(Gy)} = h. By behaviour
of winglike soliton (Theorem 4.7.2), max{xo(M,)} = h =u;,(gj,). Hence, (M, N Gp) N {x1 >
0} # 0. Now we increase the height of the grim-reaper up until it touches M, just at one point in
{x1 > 0}. Namely, set hg :=sup{z € (h,) : G.NM,, # 0}. (Gny, " Mj,) N {x; > 0} is just one
point and M, is below G, a contradiction by Maximum Principle (Theorem C.0.1). Therefore,
this proves Claim 1.

Define R = inf{T>(g;)} and v; := u;|(¢, r). {vi} has uniformly bounded C?-norm
on any fixed compact set of (0,R). Therefore, up to subquence, {v;} converge to a solution
u to a solution to (4.4.1) with lim,_o+u(p) = h and lim,_o+ u’(p) = 0. Futhermore, u” <0
on (0, R) because v < 0 and u’(0") = 0. Therefore, for corresponding function ¢, such that

(u(p),p) = (z,¢(z)), ¢ <0on (0,h) and ¢’ (h~) = —co.
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S PLATEAU’S PROBLEM

In this section we will prove the existence of solitons M C N with respect to —dy
with given asymptotic boundary X = d, M. In order to accomplish this goal, the Theorem 1.5 in
(Castéras et al., 2018) (Theorem 5.0.2) will be adapted for our purposes.

Recall that a Cartan-Hadamard manifold is a complete, connected and simply con-

nected Riemannian (m + 1)-manifold of non-positive sectional curvature.

Definition 5.0.1 (SC condition). Let (N"*!,3) be a Cartan-Hadamard manifold. We say that
N satifies the strict convexity condition (SC condition) if given x € 0,N and a relatively open
subset W C 0N containing x, there exists a C* open subset Q C N such that x € int 0,Q C W

and N\Q is convex.

Theorem 5.0.2 (Theorem 1.5, (Castéras et al., 2018)). Let N™', m+1 > 3 be a Cartan-
Hadamard manifold satisfying the SC condition and let X C 0o N™*! be a (topologically) em-
bedded closed (k —1)-dimensional submanifold, with 2 < k < m. Then there exists a complete,

absolutely area minimizing, locally rectifiable k-current M modulo 2 in N™*' asymptotic to ¥ at

infinity, i.e., oM =X
Our main theorem in this chapter is the following one:

Theorem 5.0.3 (Plateau’s problem). Let ¥ C 0o H"! be the boundary of a relatively compact
subset A C 8 H"™ with A =int(A). Then, there exists a closed set W of local finite perimeter in
H™! with 0 W = A such that M = [W] is a conformal soliton for —0y on the complement of a
closed set S of Hausdorff dimension dimg (S) < n—"7, and that 0. spt(M) = Z. Furthermore,

when n <7, then M is a properly embedded smooth hypersurface of H'*!.

Theorem 5.0.4 (Hopf and Rinow). Let N be a Riemannian manifold and let p € N. The following
assertions are equivalent:

(a) exp,, is defined on all of T;,N.

(b) The closed and bounded sets on N are compact.

(c¢) N is complete as metric space.

(d) N is geodesically complete.

(e) There exists a sequence of compact subsets K,, C N, K,, C K,4+1 and | J,, K,, = M, such that

if qn ¢ Ky then dist(p, qn) — .

For a proof of Theorem 5.0.4, see Theorem 2.7, Chapter 7 in (do Carmo, 1992).
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In our particular case in Theorem 5.0.2, we need to show that Ilmanen’s space

2
(H™*!, g1) is a Cartan-Hadamard and the SC condition holds. By g; = e ™ gi > gu, dist,, (p,q) >
dist,,. (p,q). By the completeness of (H™*!, ggr) and Theorem 5.0.4.(e), (H"*!, g;) is complete.

5.1 Sectional Curvature of Ilmanen’s Space

By the following proposition, the sectional curvature is non-positive for any pair of

vectors.

Proposition 5.1.1 (Ilmanen’s sectional curvature). The sectional curvatures of llmanen’s metric

are given by:

(a) secy, (0;,00) = M‘W Vi#0

e IT’IXO

1
(b) secg,(8;,0;) =222 Vi, j#0andi# j

e mxg

(c) secg (sinfdy +cosb;,d;) = sin® Gsec, (Ao, 0;) +cos? Bsecy, (0;,0;), Vi,j # 0,i # j and
0 € (0,2n)

em

Proof. By exercise 4.7.14 of (Petersen, 2016), using the same notation gy = x;" gr = e gp,

where ¢ = m+c0 —Inxg. Hence, dy(y) = —mLx(z) - xlo and Hessgy (0o, 0p) = # + xl% Therefore the
0

sectional curvature in relation to Ilmanen’s metric is given by:

ez‘”secgl(X, Y)=

= secg (X,Y) —Hessp/ (X, X) —Hesspy (Y, Y) + (X () + (Y ())* — |dy 3. (5.1.1)

Applying for X = §; and Y = 9, (a) follows. For X = §; and Y = 9;, (b) follows. And for
X =5sinfdy+cos60; and Y = 9;, (c) follows. O

Proposition 5.1.2. Let p be a point in H"*!, 1t be a 2-plane contained in T,H™*! and secg, (1)

be the sectional curvature with respect to g1. Then secg, () < 0.

Proof. Let 7 < TpH"’+1 be a hyperplane parallel to 9y,0,,...,0,,—1 and 8,,. Then 71 N7 # 0.
Either # C 7 (In this first case, up to rotation, we can choose 7 = d; A &) or 71 N7 is a line (In this
second case, up to rotation, we can choose m = d; A v, where v = cos 89 +sin 89, for 0 # % ). The

first case follows by Proposition 5.1.1.(b). The second case follows by Proposition 5.1.1.(c). O
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5.2 Geodesics of Ilmanen’s space

In this section, we study the qualitative behaviour of geodesics of (H"*!, gr). We
just need to focus on the geodesics in the xox1-plane by the symmetries of (H"*!, gy)
Let y be a geodesic in the xoxj-plane, y(t) = (xo(¢),x;(¢)). The coordinates of y
obey the geodesic equations:
d’xq 0 dx; dxj _
==+ ==L =0,
d e (5.2.1)

Pxp ol dxdy
UG =0

where Fl.kj are the Christhoffel symbols of g; with respect to coordinate frame {9;}. By the Koszul

formula,

I, = L mo (6g]10m 4 081im é’gmo)

B Egl 0xq 0xg 0xyy,

2 2
R N -0
Zemix() (9)61 x(z) ’

F?l _ lgﬂmo A1 + 0811 0811
2 0xy oxg  Oxp

2
Sl
ZemLXO aX() x%

1 98100 98100 98100
0 — 2,00 + _
00 2g]I (axO 0)6() (9)6()
_1 00 { 98100
==81 |—7—
2 ox

_ 1+1
mxé XO’

rto_ 1o (9801 98101 98100
00 6)60 HX() (9)61

2811
=0,
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1 dgigy  Ogryp  0gn
rl = 2,11 o1 , 98m1 _ 0
10 Zg]I (6x1 oxp 0x1

B 1+1
mxé XO’

1 dgry;  0Ogr g1
o= 2,1 1 %8 _ 981
1 28][ ( (9)61 axl 8JC1

=0,

plugging them in (5.2.1),

0 (5.2.2)
2 X
(e o) o
Fig. 7 —Behaviour of geodesic
X0
(O ¥ (0) = (0,1)
4
X1

Source: elaborated by the author.

Proposition 5.2.1 (Behaviour of geodesics). Let y be a geodesic of (H"*!, g1) in the xox,-plane
defined in a maximal interval R with initial conditions y(0) = (4,0,...,0) and Cfl—;y(O) =10 for
some A,vi R  A,vi >0. Then:

(@) &1>0, VreR.

(b) &2 <0, Vr>0.and L2 >0, Vi<O0.

(c)

tlim x0(t) =0 and llir_n x0(t) =0
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Proof. By the initial conditions, d;[l > (O for small enough 7. Suppose by contradiction that

d’“ +(t0) = 0 for some 7y € R. The ordinary differential equation in (5.2.2) involving x is:

dle dX1
T +F(t )— = (5.2.3)
where F(t) = — (m%% + xio) (deo) Setting y; = d;t‘ ,
d
dy‘ +F(t)y = (5.2.4)
By linearity of (5.2.4), the solution is unique, and y(f) =0 Vr € R is a solution with initial
condition y; (#9) = 0. This is a contradiction because y;(0) = v{ # 0. Therefore, ddxt1 >0 VteR.
Dividing the second equation in (5.2.2) by d;t‘ ,
d*x
T2 1 1 d
7 (—2 + —) (2%) . (5.2.5)
T mxy X0 t
Integrating in 7,
d 2
1n(ﬂ) = 4+ 2In(x) +C (5.2.6)
dt mxg
dx 2(——+ln(x0))
— = mxo 5.2.7
¢ (5.2.7)
d
% = emx2¢C) (5.2.8)
L
xp = et / ) 2ar e oy, (5.2.9)
Plugging (5.2.7) in (5.2.2),
2 2 X 2
d 1 1\[(d 1 1 2| =—+In
0 [E2) | == e( " xo)ecl =0 (5.2.10)
2 \mx} xof\ dt mxg X0
A [ 1 1)\({dxo\> (% -
_ _+ +[2+ mxg g=C1 = () 5.2.11
dr? mx(z) ( dt ) m fo)¢ Oe ( )
By the initial conditions and equation (5.2.7), ! = ‘2’—12
emld ]

(a) The equation (5.2.8) proves that d;l >0 VteR.
(b) To prove that y behaves as the figure above, that is, v is concave in the Euclidean sense,
we need to demonstrate that gg (VRyfy’, vR) is positive, where v is the Euclidean normal

vector field along 7 in the xox;-plane pointing downwards, i.e., gr (0o, vr) < 0. Notice that

2 2
VR = a(t)(—%, %) for positive function a = \/(%) + (%) and VRV}// = (%’ %)'
Therefore,
dsz dx d2X1 dxo
VR , /, — _ + 5212
gr(V2yy'sve) a( 2 dr ~ di? dt ( :
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By (5.2.11) and (5.2.2),

g (V5 ¥ vp) =

1 1\ (dxo\*dx (xo 3) e dxi (1 1) (dxo)\dx
=a|-|—+—||—| —+(—+ et — 4| —+—|2|—| —
a,( (mx(z) XQ)( dt ) dt m Yo)¢€ 06 dt mxg X0 dt dt

1 1 dxo 2 dx; o) 20 dxy
— - —_ —_ P - mxgo - O,
a((mx3+xo)(dt) (dt)+(m+xo e ar |~

where we are using % > 0. By gr(V®,y/,vr) > 0, the image of y is concave in the

Lo <0,V >0, and L2 > 0,Vr < 0.

Euclidean sense as in the figure above. Therefore, I

(c) By concavity and dx‘ > 0, lim;—,cx(¢) must be finite (say, lim;—cx1(f) = H*). By
concavity, lim,_,o, xo(#) does exist. We prove that it is zero. Now Suppose by contradiction

that lim;_, ., xo(7) = V.. > 0, for some V., € R. Observe that:
1

e mV:
length, (y]j0,c01) <

8R

where length,, () < oo since y/|[,«] is a graph of a concave function on [0, H*]. However,
length, (¥([0,c01) = |7(0)]g, (c0 = 0) since y is gi-geodesic.

O

In the next lemma, we prove that in fact the behaviour of a geodesic with initial

velocity pointing upwards (but not vertically) still behaves as the geodesics in lemma 5.2.1.

Definition 5.2.2. A geodesic vy is of right-hand grim-reaper type if and only if: for some t,, € R
(a) The geodesic attains a maximum height, i.e,

supxo(t) = xo(tm).
teR

(b) Z1>0 VreR.
(c) dx°>0 Vt<tmanddx°<0 Yt > ty,.

(d) The geodesic y goes to 0H™!, i.e.,
lim xo(¢) =0.
t—+00

(e) The geodesic y is symmetric, i.e., xo(t,, +1) =x0(t,, —t) and x1(t;, +1) —x1(t) =x1(t) —
x1(ty, —1t) ,Vt €R.
The definition of the left-hand grim-reaper type is symmetrically defined.
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Proposition 5.2.3. Let y be a geodesic with initial velocity y'(0) = vody +v10) with vg, vy > 0.
Then the following claims are true:
1. The height is bounded, that is, My := sup,cg Xo() < co.

2. The maximum height is attained, that is, there exists t,, such that xo(t,,) = Mp.

3. vy is of grim-reaper type.

Proof. 1f dxo = 0 for some t,,, we can reason as in Proposition 5.2.1 and the result is proven.
Therefore our goal is to prove that there exists such #,, such that dxo *li=1,, = 0. Suppose by
contradiction that dxo >0 VreR.

We first examine the case that xo — oo as t — oco. For xg-coordinate of vy, the

differential equation (5.2.11) gives:

d? 1 1)\ (dxo\* (%}
ﬂ_ 4 — ﬁ + _O+x8 €mx0€2C]_O,
dt? mx(z) X0 dt m

2 2

X, . .

Notice that (dxo) < Iy’I%- 9—, where |y’|; is the constant [lmanen’s norm because y is a
emxo

geodesic. Hence,

1 1) (dxo\* 11 x2
(—2+—)(ﬂ)‘s(—2+—)|y'|§ 0 (5.2.13)
mxg  Xo |\ dt mxg  Xo om0

2)6()
|y’ |1, (5.2.14)
emxo

for large enough x(. Estimating the third term, for x( large enough:

2
X 4
=2 +x(3) e ¢2C1 2C1
m

3 __4
< 2xoe’"x0 e

d X 1 1 dx 2 )C2 3 =4 2C .. . .
Thus, dlzo = (W-" ) ( dto) — (—0 +Xx )emme I'— —oo0 as xg — oo. This is a contradiction.
0

Indeed, given a large a > 0. Then d X" < —a for t >ty and a large enough #y. Then, integrating
the inequality:
d d
2 -2, < —alt-10) (5.2.15)
1
t? d
xo(t) < —al=—tot|+ ﬁl,z,o -t +x0(tp) (5.2.16)
2 dt
xo(t) < F(¢) (5.2.17)

. . . 2
, where F is a quadratic function, F(t) = —a (% —tot) +4x 2=, - 1 +x0(t9). However, F has a

maximum and x¢(#) — oo as t — oo. Therefore sup, g xo(f) < co.
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Now we prove that the maximum is attained. Suppose by contradiction that xo(7) <
sup,eg Xo(#) =: Mo Vt € R. By the same reasoning in the proof of item 3) of Proposition 5.2.1,

X0 () a5 t — oo,

the image of vy is Euclidean concave. Since ddo > 0and xo — My as t — oo, —

Therefore,
1 1) (dx\*
_2+_ (ﬂ) —0ast — o (5.2.18)
mxo dt
a2 M? 4
— 4N, (—O +MS’) e < (), (5.2.19)
by5.2.11 df? m

.. .. M? =4
This is a contradiction. Indeed, define Ag = (70 + MS) e ™0 ¢2C1 and for ¢ > 1y and some large

enough ¢,
d’xo A
_20 5.2.20
dr? < 2 ( )
dX() dX() —Ao
_— —(t—t 5.2.21
dX() de
— < ——(t—t 5222
7 ( 0)+ I ( )

1=ty
for a fixed tp € R and ¢ > 9. As t — oo, the right-hand side goes to —co, but the left-hand side

goes to 0.

dxg _
T =0, we
t=ty,

can argument as in proposition 5.2.1 and conclude that y is of grim-reaper type. O

We conclude that there exist a ¢, € R such that x((z,,) = M, . Since

5.3 Proof of Theorem 5.0.3

In the IImanen space (H"*!, g1), we will denote by Pe, € oo H"*! the asymptote class
of the vertical geodesic and 8/, H"™*! := 9., H™*!' — {P,}. Notice that we can identify o7, H"*+!

with the set {xo = 0}.

Proposition 5.3.1 (SC condition on 8’ H"*"). Let S ¢ H™*! be a hyperbolic totally geodesic
sphere and N be the upper connected component of H"*'\S, that is, supxo(N) = co and

Q :=H™W\N. Then N is strictly gi-convex in the upward direction.

Proof. By the lemma 4.3.2,

1 1
I, (vi,v2) = e™o {HgH(Vl,Vz) ~Vou (—)gH(Vl,Vz)} :
mxg
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As S is totally gr-geodesic, I, =0 and v, (mon) <0, I, is positive definitive. Therefore, the
scalar mean curvature of S < (H”*!, gr) with respect to the upward direction Vg, 1S positive,
and N is gr-convex. Thus, for any point in e H™*! different from P, the SC condition holds

using a suitable Q. O

Proof of Theorem 5.0.3. By completeness and Lemma 5.1.1, the Ilmanen space (H"*!, g1) is a
Cartan-Hadamard manifold. SC condition holds for points at 8/, H”*! by Lemma 5.3.1. However,
SC condition may fail at P,. To overcome this difficulty, let us proceed as in (Castéras et al.,

2018) and (Lang, 1995). Fix a point o € H”*!. Define the cone
C(0,A) :={y>*(1);t >0,x € A}

, where y?”* is the gr-geodesic joining o and x € A. And denote by B, (0) the gj-geodesic ball

with center in o and radius r. For each i € N, set
T; =9dBi(0)NC(0,A)

with orientation pointing outside of B;(0) and denote by [7;] its associated n-rectifiable current.

d[T;] is supported in C(0,X). Since A relativily compact in 6, H"*!, we can find a big enough

bowl soliton 9B such that C(0,A) lies in the open subgraph U of 8. According to a result
of (Lang, 1995), for each i € N, there exists a set W; C B;(0) of finite perimeter such that
M; = d[W;] — [T;] is area minimizing in B;(0). Note that dM; = —d[T;] is supported in U.
Moreover, since B;(0) is strictly convex, by Strong Maximum Principle of White (White, 2010)
we deduce that

sptM; NdB;(0) = sptoM;, i eN.

Claim 1. spt M; c U. In order to prove Claim 1, suppose to the contrary that this is not true and
consider the foliation of H”*! determined by bowl soliton. Then we could find a large bowl
soliton &’ lying above 3 and touching spt M; from above at some point p ¢ sptoM;. Let U’ be

the open set below 9%’, and consider the manifold with boundary
N’ =U’"NB;(0).

Let v(M]) be the stationary integral varifold obtained, by forgetting orientations, from the
connected component of M; whose support contains p; see (Simon, 1983, Section 27). The

strong maximum principle of White (White, 2010, Theorem 4), guarantees that sptv(M;) N N’
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contains a connected component of 9 N B;(0). In particular, sptdM; contains a piece of
ABNOB;(0). This however contradicts dM; C sptdM; C U. Having observed that each W; is
contained in U and is therefore separated from P, the rest of the argument follows verbatim as

in (Lang, 1995; Castéras et al., 2018).
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6 UNIQUENESS THEOREM

The main goal of this chapter is to prove the Uniqueness Theorem (Theorem 6.3.1).

6.1 C*-asymptotic to Euclidean half-spaces

As in (Gama; Martin, 2020) and (Martin et al., 2019), we will define an asymptotic
graph over a half-hyperplane outside a cylinder, and then we prove that the only solitons with

such behaviour at infinity are grim-reapers (Lemma 4.2.1) and vertical Euclidean hyperplane.

Definition 6.1.1 (Cylinder in the halfspace model). In the halfspace model, a cylinder C(c,r) of

center ¢ = (co,¢1,0,...,0) € H" and radius r > 0 is
Cle,r) ={x=(x0,....%m) ER™ : (xg=co)?+(x1=c1)? < r?}

For convenience, a cylinder C(c,r) will be denoted by C omitting the center ¢ and radius r

where r is small enough that C(c,r) c H™! = R xR™

Definition 6.1.2 (Half-hyperplane with respect to a horosphere). Let Hg = IINH"*! be a
half Euclidean hyperplane in the half space model of H"™*!, where T1 ¢ R™! is an Euclidean
hyperplane not parallel to d-H"'. Suppose that o = Hy N {xo = co}, for some constant
co € R.(Note that o is a horosphere). An H-half-hyperplane H, (6) with respect a horosphere

o C g and distance 9 is the following set:

H;(6) :={x € Hy : +dp,.(0,x) > 6}

where dpy, (0, ®) is the signed hyperbolic distance from o with the agreement that dy,, (o, e) is
positive in the direction of mean curvature of o. For symplicity, we will denote H}(0) by H}.

(Similarly, H).

Definition 6.1.3 (Euclidean graph over half hyperplane). Let A be a subset of Hy and ¢ : A — R
be a real valued function. The Euclidean graph of ¢ over A is given by

G, ={p+e(p)vr:peA}

where vy is the Euclidean normal to Hy.
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Definition 6.1.4 (Euclidean C¥-(Hy, o, +)-asymptotic). Suppose that Hy is a half-hyperplane,
let o be a horosphere and define HZ as in Definition 6.1.3. an embedded submanifold M c H™*!
is Ck-asymptotic to HzZ if:

1. M can be represented as an Euclidean graph of a C*-function ¢ H:—>R

2. Ye >0, 36 > 0 such that:

sup |p(p)] <e,

pPEHE(5)
sup |VR(1)
PEHZ(5)

VR(Z)

¢plr < €forany 1 <1<k,

where is the l-th Euclidean derivative of .

Definition 6.1.5 (GR Property). We say that a hypersurface M"™ c H™*! has the (GR) Property
if M is a complete, connected, properly immersed soliton with respect to —0y that, outside a
cylinder C, is C'-asymptotic to two H-half-hyperplanes H,, and H,y,, where o\ is a horosphere
such that oy is one of the connected components of 111 N 0C and H,, can be either H;, or

H,, (similarly, for o).

Definition 6.1.6 (Wings). Let M be a hypersurface with the (GR) property. We call wings of M

the two parts that are C'-asymptotic to Hy, and H,.,.

6.2 Hyperbolic Dynamic Lemma

The main goal of this section is the Hyperbolic Dynamic Lemma (Lemma 6.2.3 ).
That lemma will be a crucial tool to obtain the Uniqueness Theorem (Theorem 6.3.1). For the

Hyperbolic Dynamic Lemma (Lemma 6.2.3), we recall some definitions:

Definition 6.2.1 (Locally bounded area). Let Q c (H™*!, g1) be a open set. We say that a
sequence of smooth manifolds { M;} has locally bounded area if for any relatively compact open

subset B € Q there exists a constant K = K (B) such that:
areag (BNM;) <K VieN

Definition 6.2.2 (Singular set). Let us denote by
Z :={p eQ:limsup,_, area{M; NB,(p)} = oo for every r > 0},

the set where the area blows up. Z is called the singular set. Clearly, Z is a closed set.
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To recall the definitions concerning varifolds, read appendix 2?.

Lemma 6.2.3 (Hyperbolic Dynamic Lemma). Let M have the (GR) property. Suppose that
{vi} c (span{dy,01})* and define M; := M +v,. Then, after passing to a subsequence, {M;}

weakly converges to a connected stationary integral varifold M. Moreover, OooMs C OooM;.

Proof. As in Lemma 3.1 of (Gama; Martin, 2020), we use Theorem C.0.2. Summarizing the
proof:

First step: we prove that sequence {M;} has locally bounded area outside of the
cylinder C with respect to the Ilmanen’s metric g;. Then the singular set Z is inside C.

Second step: By Theorem C.0.3, we prove that the singular set Z is empty inside
cylinder C.

Third step: By Theorem C.0.2, there exists a limit varifold M, for a subquence
of {M;}. Furthermore, outside of cylinder C, M, is the limit of a sequence of graphs that are
stable and therefore they satisfy curvature bounds. Therefore, the convergence is smooth with
multiplicity 1 outside of C.

Fourth step: We prove that .M+ C 0soM;.

First step: For a fixed point P = (po,...,pm) € Hy, (Respectively P € H,;,) and a
Euclidean normal vg=(ay,...,an,) to H,, with |vg|g = 1. Hence there exists a 6 € (0,7) such

that vg = cos60; +sin68dy. We use the following change of coordinates:

yo =cosfxy+sin6fxg,
y1 = -—sinfx;+cos6bx,

yi =x; VYke{2,...,m}.

For constants s; > 0 Vj € {0,...,m} , we define the box B centered in P = (py,...,p,) with

size lenghts s;.

B:={X = (x0.X1,...,%m) € ™| =50 < ag(xo—po) ++++am(Xm—pm) <o |x;j—p;l<s; Vje{2,....m}

|cos@(x;—p1)+sinf(xg— po)| < so and | —sin@ (x| — p1) +cosO(xo— po)| < s1}

Let W, ; be the wing of M; asymptotic to H,, (see Definition 6.1.6). We claim there
exists a constant K > 0 (depending only on B) such that, for all i € N, area, (BNW,, ;) <K
. Similarly to ‘W, ;. Indeed, by Definition 6.1.4, ‘W, ; can be written as a graph over H,, .
Therefore, for each i, there exists a map ¢; : BNH,; — B such that ¢;(BNHy ) = BOA Wy, ;.
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Hence there exists a function f; : BNH,, — R such that ¢;(p) = p+ fi(p)vr. Therefore,

areag (BNWy, ;) = / dV,,

Bﬂ(Wu—l,i
= / vdetgr(M;)dyi A--- Adyp,
BNH,y,

where detgy(M;) = det [811 (‘Pi* (a%) NUR (aiy,))]k’l-
By xo(BNW,, ) is bounded and |V® f;|r < € for some € > 0 and Lemma 6.2.4
below, there exists a constant C > 0 such that v/detgy(M;) < C in BN H,,,. Therefore,

/\/deth(Ml-)dyl/\---/\dym<C / dyi A--- Ndy,, = Careag, (BNH,,)

BNH,, BNH,,

Define K := Careag, (BNH,,). Thus, areag, (BN W, ;) < K, i. e., {M;} has locally
bounded gj-area outside of C.

Second step: By the first step, Z € C. In order to use Theorem C.0.3, we cho-
ose a open set N above Bz (o,ro) such that IN = Bz (o,ro) a spherical barrier (See Pro-
position 4.3.3) with ro > 0 small enough such that Bz (0,r9) NC = 0. By Proposition ??,
the second fundamental form I, of Bz (0,rp) in the upward direction is positive definite
and g1 (Hon» &) = g1 (X7 Uy, (Ei, Ei)vg,, vg,) = 0 where {E;} is a gj-orthonormal frame. Now
we increase the radius ro and guarantee that Z = (). Namely, It is enough to prove that
sup{rgp € R* : Bz(0,r0) NC =0} = co. Suppose, by contradition, that the supremum is fi-
nite, rys := sup{ro € R*: Bz (0,r9) NC = 0}. By definition, Bz (o,ry)NZ #0and Z C N.
Therefore, by Theorem C.0.3, N C Z contradicting the fact that Z c C by the asymptotic
behaviour of Bz (0,ry). Thus Z =0.

Third step: By first and second steps, {M;} has locally bounded gj-area. Thus, by
Theorem C.0.2, {M;} converges weakly to a stationary integral varifold M.

Fourth step: By (GR) property, 0.oM; = 0.cM; Vi, j € N. Take a point P, that is not
in the boundary at infinity of M;, Pe, € 0eH"™ '\ 0o M;. By the uniform asymptotic behaviour
of {M;}, there exists a spherical barrier Bg(o,ro) (see Proposition 4.3.3) such that 0 = P,
(9008% (0,70) N M; = () and Bz (0,ro)NM; =0 Vi e N. Therefore, there is no point of M, in
the connected component of H"+! \Bz (0,rp) whose boundary at infinity contains Pe. Therefore,

P is not in the boundary at infinity of M. Thus, Occ Moo C 0o M;.
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Lemma 6.2.4. It holds that:
detgr = (e*)" (1 +|VF£i]),
where w = m+c0 —Inxgp

Proof. Recall that ¢; : BNH,, — B such that ¢;,(BNHy,) = BN Wy, ;. And f; : BONHy — R
such that ¢;(X) = exp (f;(X)vg).

oo (292} o (29
8lap = 81| Pi aya > Pix ayb .

0 +(9fi 0
dyqs 0ya0yo

0
Notice that ¢;, ( 3 ) = . Hence,
Ya

8lap =€

(6+6f,~ 09 9 a)
oy, aya dyo Ay,  dyp dyo

0ya GYb

Thus,

af; 0f;

detgy = (ezw)mdet (5ab + Ji 01 )
ay“ ayb 1<a,b<m
~ o1 of . Ry
Define D :=det|d,, + — . We claim that D = (1+|V* fi|5) proving the lemma.
aya ayb 1<a,b<m

L 9fi 0fi )
0 ayb lSa,bSm'

Indeed, define the matrix (A,p) := ( If we prove that A has eigenvalues 1

with multiplicity m — 1 and 1+ |V* f;|2 with multiplicity 1, then D = detA = 1+|V* f;|2. Namely,
take v = (v1,...,vy), with gz (VX f;,v) =0. Let us set w = Av:
afi 8f
= Z AajVj = Z 6ajVj
1<j<m 1<j<m (9y (')y]
8 .
Wg=Vg+ fl (VRﬁ,V):Va
0y,

Therefore, w = v, Av = v and 1 is eigenvalue with multiplicity m — 1. Let us set u = A(VE f;).

afi 9fi 0fi 0fi
= A = Oaj
ta = Z a] Z “ay; "oy, dy;dy;

1<j<m 1<j<m
_Ofi 5fz
Ha = 0ya ay fllR
afi

Ug = (1+|VRfl|R)

a

Therefore, A(VE f;) = (1+|V* £;|2)VE f; and (1+|V® f;[2) is eigenvalue with multiplicity 1. O
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6.3 Uniqueness Theorem

In this section we will prove the Uniqueness Theorem (Theorem 6.3.1). By matter
of organization, we separate the proof in two cases, when xo(M) is bounded above and when it

1s not.

Theorem 6.3.1 (Uniqueness Theorem). Let M™ be a mean curvature flow soliton with respect to
—do in (H™*!, g1y) with the (GR) property (see Definition 6.1.5). Then M is a grim reaper or a

vertical totally gy-geodesic hypersurface.

In the case where xo (M) is bounded above, observe that every hyperplane at infinity

is downward pointing. We need the following lemmas.

Lemma 6.3.2 (Vertical half hyperplanes of the type —). Suppose that M has the (GR) property
(Definition 6.1.5) and H(;. is one of the half hyperplanes. Then H;. is vertical, that is, x1(H,,) =

{c1}, where c| € R is a constant.

Proof. Suppose by contradiction that . is not vertical, that is, x; (ng) #X1 (Ooo?{(;i). Up to
rotations, we can assume that x; (8, ) = {c1} for a constant c; € R and x; (H,,) € (—co,c1]
(when x (7‘((;,) C [c1,00) the reasoning is similar). By the asymptotic behaviour of M, there
exists a small spherical barrier Bz (0,ro) such that:
(i) ro is small enough such that Bz (0,r9) NC = 0.
(>i1) B% (0,ro)NM =0
(i) x1 (B3 (0,70)) € (~o0,c1)

In order to use the Maximum Principle (Proposition C.0.1), we have to find a
suitable spherical barrier. We move the center o = (g9, ¢1,42,---,qm) in the x;-direction until
the spherical barrier touches M in the wing. Namely, define 8, := B(o0,,r9), where o, =
(90,91 +H1,q2,...,qm). Define the interval I := {1 € [0,00) : B, "M =0 V0 < pu<pu;}and
Us :=supl.

We claim that supx; (8,) < c1. In fact, for all u such that supx;(8,) > c1, B,NM #
(0 by the asymptotic behaviour of M. And for y such that supx;(8,) = c1, 8, must touch M in
the wing, because 8, is not C!-asymptotic to any subset of non-vertical half hyperplane H,,.

We claim that 8,;, "M # (. Indeed, by definition of supremum, there exists a
sequence of points (P;) in M such that distg(P;,B,;) — 0 as j — oco. By the asymptotic

behaviours of M and B,, inf{xo(P;)} > 0. By the boundedness of coordinates of {P;}, up
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a subsequence, (P;) converges to a point Py, in H™+1. P, € M because M is closed. Hence
distyg (Peo, By;) = 0. Therefore, Po, belongs to B, too because B, is closed and we have a
sequence of point in B, converging to Pe.

Thus, by the Maximum Principle, 8, must be a stationary hypersurface, a contra-
diction. Therefore, x1 (H,;,) is not contained in (—oo,c1]. Similarly for [cy, ).

We conclude that x| (H;,) = {c1}, that is, H;, is vertical. O

Lemma 6.3.3. Let M™ be a mean curvature flow soliton with respect to —0y in (H™*!, gi) with
the (GR) property (see Definition 6.1.5) and supxo(M) < co. Then M is contained in a chimney

C:={x; > b1} n{x; <er}N{xo < co} for some constants by, e| and c.

Proof. By Lemma 6.3.2, H; = {x; =c} and H; = {x; = d}, say, c| <d;. There exists a
small spherical barrier Bz (0,rp) such that:

i) xi (Bg(o,ro)) <cy,

(ii) Bz (0,ro) "M = 0.
We move the center o = (¢o,41,-...,qm) in xj-direction and increase the radius ry in such a
way that the family of spherical barrier converges to a vertical hyperplane. Namely, define
B =Bz (04,ra) where 0y = (qo,q1 = 4,92,9m) and ry = ro+A. Notice that P = (qo,q1 +
10,425 --->»qm) € 0B, VYA € R. By the Maximum Principle (Proposition C.0.1), ByNM =
0 VA > 0. Therefore, {x; < q1+ro} N M = 0. Now define b := g1 +ro. Similarly we can find a
constant e|. Take a constant c( greater than supxog(M). Thus, M C {x; > b} N{x; <e;}N{xp <

co}. O

Lemma 6.3.4. Let M be a mean curvature flow soliton with respect to —3y in (H™!, ggr)
with the (GR) property (see Definition 6.1.5) and supxo(M) < co with H; = {x; = c1} and
?{;2 ={x1 =d,} where ¢\ < d\. Then there exists a small grim-reaper Gy, |g, n+] below M
centered in [c1,d ], that is,

(i) Gn .5 )NM =0.

(ii) c1 <x1(Gnm.7) < d1.

(iii) 2 = atd,

Proof. By the asymptotic behaviour of M, there exists a small spherical barrier fitting between
‘Hj, and H,;, and not touching M, that is, there exists Bz (0,ro) with center 0 = (g0, q1,. .-, qm) €
O H™! such that:

(1) c1 <x (B%(o,ro)) <dj.
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(i) Bz (o,ro)NM =0.
Define a half tube T := {P € H"™*!|q; —r¢ < x1(P) < q1 +7¢ and |xo(P) — go| < ro}. Moving

the spherical barrier below M and between H; and H,, , we can garantee that, by the Maxi-

o

..........

Thus, TN M = ( as claimed. Now there exists a small grim-reaper Gy, (#, (h,),H*(h,)] COntained
in 7. By the Maximum Principle using Gy, [#, (n,),H*(r,)] @S barrier, we can center a grim reaper
in [Cl, d 1] .

O

Proof of Uniqueness Theorem when supxy(M) < co. Suppose that M is not a grim-reaper. In

this case, the two hyperplanes point downward, that is, M is C'-asymptotic to H,, and H.
First step: Now we prove that M is above a grim reapers with the same boundary at

infinity. Indeed, by Lemma 6.3.2, H; and H,;, are vertical. Hence H; = {x; =c} and H, =

{x1=d;} with c; < d;. By Lemma 6.3.4, there exists a grim-reaper G, [, n+] below M such that
(H.+H")
2

= (C‘;d') . In order to use Maximum Principle (Proposition C.0.1), we define a family of
grim reaper G := G, [H.(hy),H* (hy)] Where hy = h+A and [H.(h,) , H*(h;)] is the correspondent
interval in the x;-axis with the same center of [H. (&), H*(h)]. We can increase this grim reaper
without contact with M until it has the same boundary at infinity of M. Namely, define the interval
[:={1>0:GaNM =0 V0<A<A}and As:=supl. We claim that G, " M = (. Otherwise
M must coincide with G, by Maximum Principle and we are assuming that M is not a grim
reaper. By definition of Ag, we have distg (G, M) = 0. There exists a sequence of points (Q;)ien
in M such that distg (Q;, G1;) — 0 as i — co. In order to use the Hyperbolic Dynamic Lemma
(Lemma 6.2.3), define M; = M +v;, where v; := (0,0, —-x2(Q;),...,—x,(Q;)). By the Hyperbolic
Dynamic Lemma, up a subsequence, { M;} weakly converges to a connected stationary integral
varifold M. Notice that R; := (x0(Q;),x1(Q;),0,...,0) € M;, up a to subsequence, converges
to a point Ry and Re € Mo U 0o M. The grim reaper G, has the same boundary at infinity
as M; and M.,. Otherwise, by the asymptotic behaviours of G, and M, R would not belong

t0 0coGas U 0o Mo therefore Ro, would belong to Gig N Mo and , by the Maximum Principle,
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Ms = Ga5. Therefore, as claimed doH,y, U 0oH,;, = OcoM; = 0G15. Thus, Gy is the unique
grim reaper with boundary at infinity equal to 0o H;, U 0 H,;, -

Second step: Now we prove that M is below a grim reaper with the same boundary
at infinity. In fact, by Lemma 6.3.3, M is inside a chimney C :={x; > b1} N {x; <e;} N{xp < co}.
There exists a big grim reaper Gy, [H, (hy),H* (k)] @bOve C and with the same center as [cy,d1] ,

that is, ko > co, H,(ho) < by, H* (ho) > e and 954 = HUHH () yye decrease this grim reaper

without contact with M until it has the same boundary at infinity as M. Namely, in order to use
the Maximum Principle again, we define a family of grim reapers G, := G, [#. (h,,).H* (h,)]>» Where
hy := ho+ u and define the interval J := {pg € (=00,0] : G, "M =0 Vu > up} and p; =infJ.
We claim that G,, N M = 0. Otherwise M must coincide with G, by the Maximum Principle
and we are assumiming that M is not a grim reaper. By definition of y;, distz (G, M) = 0.
There exists a sequence of points (S;);en in M such that distr(S;,G,,;) — 0 as i — oco. Like
in the last step, in order to use the Hyperbolic Dynamic Lemma (Lemma 6.2.3), define M; =
M +v;, where v; := (0,0,—x2(S;),...,—x,»(S;)). By Hyperbolic Dynamic Lemma, up to a
subsequence, {M;} weakly converges to a connected stationary integral varifold M. Notice
that 7; := (x0(S;),x1(S;),0,...,0) € M;, up a subsequence, converges to a point T, and T, €
Mo U 0oMy. We claim that the grim reaper G, has the same boundary at infinity as M;.
Otherwise, by the asymptotic behaviours of G, and M, To would not belong t0 e Gy, U 0o Moo
therefore R., would belong to G,,, " Mo, and , by the Maximum Principle, M, = G,,,. Therefore
as claimed 0H,, U 00w H,;, = 0M; = 0Gy,- Therefore G, is the unique grim reaper with
boundary at infinity equal to dwH;, U e H,,.

Third step: By the first and second steps, M is between two grim reapers, G, and
Gy,» with the same boundary at infinity, e H,;, U deH,;,. However, there is only one grim reaper
with this boundary at infinity. Therefore G, and G, must coincide. Hence, M must coincide

with G, and G,,,. This contradicts our assumption that M is not a grim reaper. O

In this second part of this section, we prove the Uniqueness Theorem when xo(M) is

unbounded above.

Proof of Uniqueness Theorem when supxo(M) = co. We are assuming that supxo(M) = co.
First case: Suppose that the two half hyperplanes point upward, that is, H,, and
‘H,, are of type +. In this case, infxo(M) > 0. Therefore, we can put a small grim reaper

Gh.[H..1+) below M, that is, there is a grim reaper G, [y, 5] such that h < infxo(M). Hence
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G111 "M = 0. We increase the height of G, [y, 5+ until it touches M and we use the

Maximum Principle (Theorem C.0.1) to arrive at a contradiction. Namely, define

Ga =Gy [H, (hy).H (h)]»

where hy :=h+A4

Define I :=={10>0: GaNM =0 VAyp>A>0}and Ag:=supl. If Gi;,NM # 0, by
Maximum Principle, G, = M, contradiction. Therefore, Gi; N M = 0 and, by definition of Ag,
distr (Gas, M) =0, that is, there exists a sequence of points (Q;) in M such that distr (G, Qi) —

0 as i — oo. In order to use the Hyperbolic Dynamic Lemma (Lemma 6.2.3), define
M; =M+v;,

where v; := (0,0,-x3(Q;),...,—xn(Q)). By the Hyperbolic Dynamic Lemma, up to a sub-
sequence, {M;} weakly converges to a varifold M. Notice that the sequence of points (R;),
R; = (x0(Q;),x1(0;),0,...,0) € M;, up to a subsequence, converges to a point R, and R
belongs to G, because:
(1) {xo(R;)} and {x;(R;)} are bounded.

(ii) inf{xo(R;)} > 0.

(iii) distr(Gag, Ro) = ,152, distr (Gas, Ri) = 0.

(iv) Ga 1s closed.

As R is a limit of points R; € M;, R, belongs to M. Hence,
Q,ls NMs # 0.

Therefore, Gi; = Mo by Maximum Principle (Theorem C.0.1). This is a contradiction.
Second case: Now we suppose that one of the half hyperplanes points downward
and the other points upward, say, M is C'-asymptotic to ‘H, and H;,. By Lemma 6.3.2, H is

vertical, that is, x1 (H,;,) = {c1} for a constant ¢;. We claim that for every € > 0,
{x1>c1+e}nM=0.

Indeed, by asymptotic behaviour of M, there exists a small spherical barrier Bz (0,rp) with
center o = (¢o,41,.-.,qm) and radius rg such that:
(i) supxi(Bz(o,ro)) =ci+e.

(i1) 8% (0,ro)NM =0.
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We increase the radius of ry and move the center o = (go,41,...,¢n) in the xi-
direction in such a way that the spherical barriers converge to the half hyperplane {x; = c| + €}

in order to use the Maximum Principle. Namely, define
B/l = B(Oﬂ,rﬂ).

where 0, := (q0,q1+A4,92,...,qm) and ry :=rg+A. Define I :=={1p>0: B, "M =0 Viy>
A > 0}. We claim that sup ] = co. Indeed, if A5 = supl, B, N M # 0 therefore, by the Maximum
Principle, 8, = M, contradiction. Thus, {x; > c;+€e}NM =0 as claimed. Similarly by symmetry
{x1 <ci—€e}nNM =0 for all € >0. We conclude that M C {x; =c;} and M = {x; =c} by

Maximum Principle. O
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APPENDIX A - BOUNDARY AT INFINITY

In this part of the text we give a precise definition of boundary at infinity. For more
details about the subject, read (Eberlein; O’Neill, 1973).

Points at infinity

In this section, we provide an intrinsic definition for the boundary at infinity by

utilizing geodesics. To achieve this, we recall some basic definitions of Riemannian Geometry:

Definition A.0.1 (Unit tangent bundle). For a Riemannian Manifold (N,g). The unit tangent
bundle UTN of N is the subset of unit tangent vectors of TN, i.e.,

UTN := ]_[{v eT,N:g,(v,v) =1}
PEN

The projection u : UTN — N given by u(v,) = p

Definition A.0.2. Given v,w € UT,N, the angle 0 = ¥(v,w) between v and w is the unique

number O < 0 < 1 such that g(v,w) = cosé.

Definition A.0.3. A Cartan-Hadamard manifold (N,g) is a complete, simply connected Rie-

mannian manifold of dimension n > 2 and having sectional curvature
secz(v,w) <0 VpeN, Vv,weT,N

For any two points p # ¢ in a Cartan-Hadamard manifold, there exists a unique
geodesic yp, such that y,,(0) = p and y,,(t) = g where t = distz(p, q) (see section 6.9 of (Jost,
2008)).

Definition A.0.4. Given p # q in a Cartan-Hadamard manifold (N,g), let y,, be the unique (unit
speed) geodesic such that y,4(0) = p and yp, (1) = q where t = distg(p, q). The angle %,(q1,42)
subtended by points q1,q2 € N and a distinct point p € N is defined by %(v,4,(0),74,(0)).

Now, we are able to classify the geodesics that asymptotically approach at infinity.

Definition A.0.5. The unit speed geodesics a : (—c0,00) — N and 3 : (—o0,00) — N in a
Cartan-Hadamard manifold N are asymptotic provided there exists a number ¢ > 0 such that

distg(a(1),B(t)) <c Vt>0

Proposition A.0.6. The following statements are true:
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(I) If a and B are asymptotic, then so are orientation-preserving unit speed reparametrizations
of a and 5.
(II) The asymptote relation is a equivalence relation on the set of all geodesics in N; The
equivalence classes are called asymptote classes.
(I11) If asymptotic geodesics in N have a point in commom, then they are the same up to
parametrization.
(IV) Given a geodesic a and a point p € N there exists a unique geodesic 8 such that 3(0) = p

and B is asymptotic to «

Proof. (I), (II), (II) are straightforward and (IV) is proved in Proposition 1.2 of (Eberlein;
O’Neill, 1973). O

Hence, we can consider the asymptote classes as points at infinity and define the

boundary at infinity as follows:

Definition A.0.7 (Asymptote class). Let @ : (—o0,00) — N be a unit speed geodesic. We denote
the asymptote class of a by a(o0) and the asymptote class of the reverse curve t — a(—t) by

a(—00).

Definition A.0.8 (Boundary at infinity). Let (N,g) be a Cartan-Hadamard manifold. A point
at infinity of N is a asymptote class of geodesics of N. The boundary at infinity of N, denoted
by 0N, is the set of points at infinity of N. And N = NUdsN. If P € dsN we write either

a(o0) = P or a € P depending upon context.

Example A.0.9. For N = H"™! = {(x0,x1,...,x,) € R™ 1 xg > 0} with g = gu = Sgr, the
Xo
boundary at infinity 0.H"*' can be identified with {(x0,X1,...,%xm) € R™! : xg = 0} U {Pw}

where P, is the asymptote class of unit speed vertical geodesics pointing upward.

Cone topology

In this section, we define the cone topology in N = N U d.N to define a boundary at
infinity for a general subset of N. For more details, read section 2 of (Eberlein; O’Neill, 1973).
For this purpose, we need to endow N = N U d,,N with some topology such that it preserves the

topology of N and some natural assumptions are required.

Definition A.0.10 (Admissible topology). A topology T on N is admissible if it satifies the

following four conditions:



79

(1) Closure property: the topology on N induced by T is the original topology of N, and N is
a dense open set of N

(2) Geodecic extension property: if a is any geodesic of N then its asymptotic extension is
continuous.

(3) Isometric extension property: if ¢ is any isometry of N, then its asymptotic extension is
continuous (and hence a homeomorphism by a functorial argument)

(4) Intensive property: if x € 0uN, V is a neighborhood of x in N, and r > 0 is any positive
number then there exists a neighborhood U of x such that N,(U) := {g € N : d(q,U) <
r} C V. Here we have extended the metric trivially so that d(a,b) = o if a # b and either

points lies in 0o N

Now, we construct the cones that serve as a basis for an admissible topology known

as the cone topology.

Definition A.0.11 (Angle for points at infinity). Let p be a point of N distinct from points
a,b € N. The angle subtended by a,b at p is ¥,(a,b) = <)(y;,a(0),)/;b(0))

Definition A.0.12 (Cone). Let v, € UT,N and let € be a number, 0 < & < . Then the set

C(v,e) ={beN: %, (¥v(0),b) < £} is called cone of vertex p = u(v,), axis v, a angle €.

Proposition A.0.13 (Cone topology). If N is a Hadamard manifold, there is a unique topology «
on N such that:

(1) « has the closure property

(2) For each x € 0N the set of cones containing x is a local basis for k at x.

We call k the cone topology on N

Proof. See proposition 2.3 in (Eberlein; O’Neill, 1973).

Proposition A.0.14. The cone topology k for N is admissible.

Proof. See proposition 2.9 in (Eberlein; O’Neill, 1973).

O

Definition A.0.15 (Boundary at infinity of a subset of N). Given a subset A of N, the boundary

at infinity of A, denoted by 0w A, is the intersection between the clousure of A in N and 8. N.
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APPENDIX B - VARIFOLD

In this appendix, we give some definition about varifolds that we will need throughout
the text. This appendix is mostly based on (Simon, 2014) and chapter 3 of (Colding; Minicozzi,
2011).

The concept of varifold is a generalization of manifold. A varifold is a measure in
the space of {-dimensional tangent spaces of ambient space. Having this concept at our disposal,
we can take advantage of the power of Geometric Measure Theory, including Compactness

Theorem (Theorem C.0.2).

Definition B.0.1 (Varifold). An ¢-dimensional varifold V in the Riemannian manifold (N,g) is

a Radon measure on the Grassiamannian G¢(N) of {-planes on N.

Definition B.0.2 (Weight of V). Let 7 : G¢(N) > N, 7n(p,W) = p be the projection. The
Radon measure py (called the weight of V) in N is given by the the pushforward of Radon

measure V by n, that is,
uy(B) =V (x~'(B)) =V(G¢(B)) VB C N Borel set.
The support of V is support of uy and the mass of V on a set U C N is just uy (U)

Without loss of generality, we can assume that N is isometrically embbeded in R™**
for some k > 0 by Nash Theorem. Let " denote the m-Hausdorff measure in R™**
Notice that we can associate an embedded submanifold M in N with a Radon

measure Vy; in G,,(N) given by:
Vu(B)=Z"(n(BNTM)) VB cC G, (N) Borel set .

Therefore, the weight of V is given by uy,, (U) = %™ (U N M) for all Borel set U ¢ N ¢ Rk,
Thus, M can be viewed as a varifold Vy,.
Now, we define an {-rectifiable set, which can be described, in general terms, as a

set that exhibits as piece-wise smooth set.

Definition B.0.3 ({-Rectifiable Set). A set S ¢ R"™* is said to be (-rectifiable if S C Sy U S|,
where H(Sy) =0, where ' is (-dimensional Hausdorff measure of the ambient space R"*
, and Sy is the image of R' under a Lipschitz map. More generally, S is said to be countably
(-rectifiable if S C U;»(S;, where I¢(So) =0 and fori > 1 each S; is the image of R under a

Lipschitz map.
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Definition B.0.4 (Rectifiable Varifold). Let S be a countably C-rectifiable set of R™* with
H(S) < 0o and let 6 be a positive locally F*-integrable function on S. Set V equal to the
varifold associated to the set S (exactly as if S were a smooth submanifold). The associated
varifold V' = 0V is called a rectifiable varifold. If 0 is integer-valued, then V' is an integral
varifold.

The next definition gives us a way to push the varifold forward by a map f.

Definition B.0.5 (Image varifold). Suppose that U and U are open subsets of R"** and f : U — U
is C! with f |sptpynu proper. We define the image varifold f;V on U by

fiV(A) = /F_I(A)wa(p)dV(p,W), A Borel, A C G¢(D),

where F : G (U) — G(U) is defined by F(p, W) = (f(p), fo(W)), f.(‘W) is the pushforward
of W by f, and

Jw £ (p) = (det((dfylw)* o (dfylw)7. (P W) € Ge(N)
G7(U) ={(p. W) € G¢(U) : Jwf(p) # 0}

Now, we can pushforward the varifold using the flow of a compactly supported
vector field, and subsequently measure the variations in mass, as in the case of smooth manifolds.

Then, we can find the right analogy to a stationary submanifold.

Definition B.0.6 (First variation). Given a C' vector field Z compactly supported in an open set

Q € N, the first variation is defined as

oV(Z) = i

G @w@= [ @ zave.w),

Ge(Q)

where @, : G((Q) — G¢(Q) is induced by the flow ¢, of Z by ®(p, W) = (¢:(p), (¢1)«(W)),
and divV Z = Zle g(ﬁeiz, e;) with {e;} an orthonormal basis of W. If V has locally bounded

first variation, that is,
|0V(Z)| < Csup|Z| for all Z compactly supported on Q,
N

then the total variation measure ||6V || is a Radon measure on N, where ||6V || is characterized

by



[[6VI[(€) = sup
Z.|Z|<1,sptZeQ

A C-varifold V is called stationary provided 6V = 0.

16V (2)].
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APPENDIX C - WHITE’S COMPACTNESS THEOREM

In this appendix we introduce the main tools that we will use in the proofs.
Maximum Principle
The theorem below is the version of the Maximum Principle (Theorem 7.6 in (White,

2009)) for H™*!

Theorem C.0.1 (Maximum Principle in H”*'). Let B be a open set in H™'. Let M be a
smooth, connected hypersurface properly embedded in B and dividing B in two components. Let
Q be one of the two components of B\M. Suppose that Q is mean concave along M, i.e., that at
each point of M, the mean curvature is a nonnegative multiple of the outward unit normal to Q.
Suppose S is a spatial support of a nonzero stationary m-varifold in H"*' such that S is disjoint
from Q. If S contains any point of M, then it must contain all of M, and M must be a minimal

surface.

A compactness theorem for minimal surfaces
White (White, 2016, Theorem 2.6 and Theorem 7.4) shows that under some natural
conditions the singular set Z satisfies the same maximum principle as properly embedded

minimal surfaces without boundary.

Theorem C.0.2 ( Compactness Theorem for Integral Varifold). Let {M;} be a sequence of
minimal hypersurfaces in R"!, with not necessary the canonical metric, whose area is locally

bounded, then a subsequence of {M;} converges weakly to a stationary integral varifold M.

Theorem C.0.3 (White’s strong barrier principle Theorem 7.3 in (White, 2016) ). Let (Q2,2)
be a Riemannian (m + 1)-manifold and {M;};cn a sequence of properly embedded minimal
hypersurfaces in (Q, g). Suppose that the set Z of {M;}ien is contained in a closed region N of
Q with smooth, connected boundary ON such that g(Hgn,€) = 0, at every point of ON, where
Hyn (p) is the mean curvature vector of ON at p and &(p) is the unit normal at p to the surface

ON that points into N. If the set Z contains any point of ON, then it contains all of ON.

Remark C.0.1. The above theorem is a sub-case of a more general result of White. In fact
the strong barrier principle of White holds for sequences of embedded hypersurfaces of n-
dimensional Riemannian manifolds which are not necessarily minimal but have uniformly

bounded mean curvatures. For more details we refer to (White, 2016).
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