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"Any moment might be our last. Everything is

more beautiful because we’re doomed. You will

never be lovelier than you are now. We will

never be here again."

(Homer, The Iliad)



ABSTRACT

Composite materials recent spotlight is due to presenting a wide range of applications throughout

many industries. Functionally Graded Materials (FGM) are a specific class of composites,

presenting a smooth and continuous volume fraction gradation of their constituents. Due to the

modernization of both machinery and methodologies associated to their fabrication, the FGM

are receiving a growing attention in academic research. Functionally Graded Materials effective

elastic properties vary along with the volume fractions, being evaluated by the employment

of adequate micromechanical models. Due to the associated complexity, the development of

analytical solutions for FGM problems is usually impossible. Thus, it is necessary to employ

computational methods in order to obtain approximated solutions, such as the Finite Element

Method (FEM) and the Isogeometric Analysis (IGA). This work employs both geometric

nonlinearity, to include the structural effect of large displacements, and material nonlinearity, to

allow the consideration of elastoplastic behavior. Regarding FG structures, the Tamura-Tomota-

Ozawa model is used to estimate the effective plastic properties. Therefore, a 3D formulation

that enables the consideration of tridirectional gradation for solids of any geometry is presented.

Regarding plate problems, kinematic structural theories are used to enhance the model analysis

efficiency. In this work, a novel NURBS-based Quasi-3D isogeometric formulation using a

degenerated solid approach is developed. By presenting an integration over the volume, the same

material nonlinearity algorithms for 3D models can be adopted. The presented formulations are

employed in multiple types of analyses, considering multiple geometries, boundary conditions,

FGM constituents and volume fraction profiles. Numerical examples present a close agreement

with the literature for every formulation. Results show that the novel Quasi-3D approach is able

to accurately represent both material and geometric nonlinear behavior in FG plates.

Keywords: functionally graded materials; isogeometric analysis; quasi-3D plate theory; tamura-

tomota-ozawa model.



RESUMO

O grande interesse nos materiais compósitos resulta de sua vasta gama de aplicações em diversas

indústrias. Materiais com Gradação Funcional (MGF) são uma classe específica de compósitos,

que apresentam uma variação suave e contínua da fração de volume dos seus componentes.

Devido à modernização dos equipamentos e metodologias associadas a sua fabricação, os MGF

estão recebendo uma crescente atenção de pesquisas acadêmicas. As propriedades efetivas

dos MGF variam junto com as frações de volume, sendo estimadas por meio de modelos mi-

cromecânicos adequados. Devido à sua complexidade, desenvolvimento de soluções analíticas

para problemas de MGF é geralmente impossível. Portanto, é necessário o uso de métodos

computacionais para se obter uma resposta aproximada, como o Método dos Elementos Finitos

e a Análise Isogeométrica. Esse trabalho considera tanto a não-linearidade geométrica, para

grandes deslocamentos, quanto a física, para comportamento elastoplástico. No que tange a

estruturas com gradação funcional, o modelo de Tamura-Tomota-Ozawa é empregado para esti-

mar as propriedades plásticas efetivas. Dessa forma, uma formulação 3D que permite gradação

tridirecional para sólidos de qualquer geometria é apresentada. Focando em estruturas de placas,

teorias cinemáticas são usadas para melhorar a eficiência do modelo de análise. Neste trabalho,

uma nova abordagem de teoria Quasi-3D com formulação isogeometrica baseada em NURBS

e utilizando o modelo de sólido degenerado é apresentada. Por apresentar uma integração

sobre o volume, os mesmos algoritmos para análise elastoplástica 3D podem ser adotados. As

formulações apresentadas são empregadas em diversos tipos de análise, considerando múltiplas

geometrias, condições de contorno, constituintes de MGF e perfis de gradação. Exemplos

númericos apresentam boa concordância com a literatura para cada formulação. Os resultados

mostram que a formulação proposta é capaz de representar de forma acurada os comportamentos

não-lineares físico e geométrico de placas com gradação funcional.

Palavras-Chave: materiais com gradação funcional; análise isogeométrica; teoria de placas

quasi-3D; modelo de tamura-tomota-ozawa.
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1 INTRODUCTION

Composites are designed by combining two or more materials at a macroscopic

scale to create a new material with desirable physical properties that the individual components

alone could not achieve[1, 2]. Due to their characteristics, these materials have been extensively

explored within the literature, being applied across various industries, including aeronautics,

naval and microelectronics[3, 4].

Functionally Graded Materials (FGM) represent an advanced class of composites,

featuring a gradual and continuous variation of its constituents[5, 6]. This unique characteristic

helps prevent stress concentrations and delamination experienced by laminates. Even though

FGMs can be found in nature, the first manufactured composite was developed in 1984 by

Japanese researchers, as a requirement of the aerospace program for a material capable of

withstanding high temperature gradients whilst maintaining the desired stiffness[7].

Despite initially developed to address problems with temperatures and thermal

gradients, the employment of FGMs has expanded to encompass diverse industries, including

energy and electronics, assuming diversified functions and applications. Consequently, recent

research regarding FGM has focused on exploring different fields of application[8, 9, 10], being a

popular literature topic.

Functionally Graded Materials are commonly modeled as particulate composites

with a variable concentration of inclusions[6, 11, 12]. Given their composite nature, homogeniza-

tion methods can be applied to enhance the accuracy of material modeling across the gradation[13].

Consequently, effective properties are computed using micromechanical models, being evaluated

within the structural domain in terms of the constituents’ volume fractions[14, 15]. Despite the

tendency to overlook this aspect observed in many related studies, the choice of the microme-

chanical model plays a crucial role in the analysis of FG structures, significantly impacting the

obtained results[16, 14].

Furthermore, the Metal Matrix Composites (MMC) are the most popular FGM

modeling type within the literature, generally adopting metal and ceramic constituents. However,

other kinds of FGM can be manufactured, such as Carbon Nanotubes Reinforced FGM (CNTRC-

FG)[17, 18] and Porous FGM[19, 20]. These composites exhibit slightly distinct properties compared

to the usual matrix-inclusion FGM. As a result, the utilization of these advanced materials requires

the development of accurate analysis methods to fully explore their potential.

In a broad sense, the analysis of Functionally Graded structures, given their complex
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characteristics, cannot be carried out using analytical approaches. Thus, computational methods

such as the Finite Element Method (FEM) and the Isogeometric Analysis (IGA)[21, 22] are

employed in order to obtain approximate results. FEM has been the predominant computational

method globally for quite some time. In contrast, IGA has been recently developed and is not

typically adopted by commercial analysis software. However, it presents advantages over FEM,

being able to exactly represent the structure geometry regardless the mesh refinement and to

easily generate high continuity basis functions[21, 23].

Given the reliance on computational methods for the analysis process, it is crucial

to maintain the model as close to reality as possible to ensure a good approximation. Even

though many studies account for the geometric nonlinearity of Funtionally Graded structures
[23, 24, 25, 26], way less consider the material nonlinearity[27, 28]. Neglecting these effects can be

detrimental to accuracy, as the structural load-carrying capacity depends on the consideration of

both types of nonlinearities.

While it is conceivable to model every structure as a 3D body, certain conditions,

such as geometry or applied loads, might result in numerically negligible strains and stresses

components. In this context, a dimensional reduction to a 2D or 1D model is possible, enhancing

computational efficiency and simplifying both geometric modeling and the imposition of essential

boundary conditions. This reduction can be achieved through the application of structural

kinematic theories[29], resulting in plate, shell and beam models.

Concerning plates, two commonly employed kinematic theories are the Classical

Plate Theory (CPT)[1], which entirely disregards transverse shear strains, and the First-order

Shear Deformation Theory (FSDT)[30], which assumes shear strains to be constant through the

thickness, requiring the use of a shear correction factor to achieve more accurate approximations.

Both CPT and FSDT are implemented in commercial analysis programs.

Considering the possibility of material gradation along the thickness direction in

Functionally Graded structures (FGMs), the use of High-order Shear Deformation Theories

(HSDTs)[29] is advisable. They account for variable transverse shear strains across the thickness,

aligning with the principles of the Continuum Mechanics. Regarding the literature in terms

of kinematic assumptions, geometric nonlinearity is usually considered. However, in terms of

constitutive relations, the accounting of material nonlinearity - specially for FG plate structures

- could hardly be found in the bibliographical review conducted for this work: Moita et al.[31]

used an HSDT with the Tamura-Tomota-Ozawa (TTO) to account for material nonlinearity in
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FG plates, while Sharma and Kumar[32] used a shell formulation along with the TTO for FG

plates subjected to thermomechanical loads.

An alternative approach involves adopting a Quasi-3D kinematic theory for the

analysis of FG plates[33, 34, 35, 36, 37]. This theory shares considerations regarding geometric

nonlinearity and transverse shear strains with High-order Shear Deformation Theories (HSDTs).

However, it presents the distinctive feature of accounting for the thickness stretching[38]. This

allows the Quasi-3D formulation to provide a general state of stress, making possible the use

of 3D constitutive relations. Consequently, this characteristic facilitates the consideration of

elastoplasticity in plate models.

Regarding the Quasi-3D literature, to the best of the author’s knowledge, despite

numerous studies presenting various methodologies, none of them have utilized an Isogeometric

analysis approach for a polynomial formulation. Additionally, due to being based on a plate

model, the mathematical development in these works is often framed in terms of internal forces,

which is not suitable for capturing the elastoplastic behavior.

Given this context, this work develops a novel NURBS-based Reddy’s Quasi-3D

formulation, which adopts a degenerated solid approach and serves as an alternative for the

elastoplastic analysis of FG plates. Additionally, a general geometric nonlinear 3D formulation

for the elastoplastic analysis of Functionally Graded structures is also introduced.

1.1 Aims and scope

This work aims to establish a methodology for material and geometric nonlinear

analysis of Functionally Graded structures, with a specific focus on plates. Considering the

aforementioned purpose, the specific aims of this work are:

(a) Develop a general isogeometric formulation for the analysis of FG solids featuring tridi-

rectional gradation;

(b) Establish a methodology for conducting elastoplastic and geometric nonlinear analysis of

FG 3D models;

(c) Propose a novel NURBS-based approach for elastoplastic and geometric nonlinear analysis

of FG plates using the Reddy’s Quasi-3D theory;

(d) Compare the results obtained by the proposed Quasi-3D formulation against those from

the 3D model and other existing plate theories;

(e) Assess the accuracy and efficiency of different structural theories to FG plates with varying
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geometries, boundary conditions, micromechanical models and constituents.

1.2 Organization of the text

The subjects covered in this work are presented as follows. The second chapter

discusses the fundamental concepts and applications of Functionally Graded structures. Addi-

tionally, the chapter provided an overview of the evaluation of elastoplastic properties.

The third chapter describes the kinematic theory and constitutive relations employed

for simulating the elastoplastic and geometric nonlinear behavior of 3D models. This includes a

general formulation and its specialization for an isogeometric approach.

The fourth chapter introduces a novel NURBS-based approach for the Reddy’s

Quasi-3D theory and discusses its specialization to simpler kinematic theories. It also outlines

the constitutive relations used to consider the elastoplastic behavior on FG plate models.

The fifth chapter presents the numerical examples, assessing the accuracy and

performance of the proposed Quasi-3D approach. The general 3D formulation is validated and

employed to establish benchmarks, while other plate theories serve as an additional source of

validation and comparison for FG structures.

Finally, the sixth chapter presents the concluding remarks of this work and sugges-

tions for future research.
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2 FUNCTIONALLY GRADED MATERIALS OVERVIEW

Functionally Graded Materials are composites characterized by a gradual and con-

tinuous variation in their composition, changing the volume fraction of constituents along a

specified direction. This distinctive feature allows a regular stress distribution profile within

the structure, mostly preventing the occurrence of stress concentration. Consequently, the em-

ployment of FG structures avoid some common failure mechanisms presented by the laminated

composites[5, 1]. An example of an FG plate is shown in Fig. 1.

While some natural materials, like bamboos, human bones and skin, present a grada-

tion of their properties, the concept of FGM was first conceived in a laboratory environment in

1984 by Japanese researchers. They were seeking for a material capable of bear extreme temper-

atures while providing the necessary mechanical strength for aerospace structures, effectively

serving as a thermal barrier. Nowadays, FGMs find application in various industries, such as

energy, aerospace, biomedical, ballistic and electronics[39, 7, 10]. A realistic FGM model can be

seen in Fig. 2.

FGMs are typically composed of ceramic inclusions, presenting high stiffness and

thermal resistance, embedded in a metallic matrix, which provides high toughness and ductility

to achieve the desired properties. Common materials used for the ceramic inclusions are silicon

nitride (Si3N4), aluminum oxide (Al2O3), and silicon carbide (SiC), whereas the ones for the

metallic matrix are stainless-steel (SUS304), aluminum alloys (Al), and titanium (Ti). It is

worth noting that ongoing research studies other types of FGMs, including porous and Carbon

Nanotube reinforced FGMs.

Figure 1 – Functionally graded plate.

Source: The author.
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Figure 2 – Functionally graded com-
posite.

Source: Shiota and Miyamoto[40].

Despite the growing global interest in Functionally Graded structures, it is important

to remark that experimental results for these materials remain limited due to the high cost

associated with their fabrication, as the manufacturing process often involves a complex set of

techniques.

2.1 Volume fraction profile

The gradation profiles are determined by the distribution of the volume fractions of

their constituents, often described by closed-form equations. The most employed equation in the

literature to define the gradation profile is the Power-Law function, or P-FGM[5, 41, 42]:

Vc =Vc,b +(Vc,t −Vc,b)

(
1
2
+

z
h

)N

(2.1a)

Vm = 1−Vc (2.1b)

where the subscripts c and m are referring to ceramic and metal, respectively, while Vc,t and Vc,b

are the ceramic constituent volume fractions at the top and bottom of the structure. Many profiles

can be achieved for the same constituents by varying the exponent N, which is referred to as
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Figure 3 – Volume fraction gradation profiles.

(a) P-FGM (b) S-FGM

Source: The author.

non-homogeneity index.

It can be noted that for N = 0, the FGM matches the ceramic constituent, whilst for

N → ∞ the FGM resembles the metallic constituent. Additionally, it is important to mention

that although many studies consider Vc,t = 1 and Vc,b = 0, a more realistic approximation

for the lowest metallic matrix volume fraction would be around 30%, reflecting the practical

requirements of fabrication processes[13].

Alternatively, various other equations can be employed to simulate the gradation

profile. One of these equations is the sigmoid (S-FGM) function, which generates an S-shaped

curve. It can be preferred due to providing a smoother gradation when compared to the P-FGM

function, especially in the regions near to the top and bottom surfaces, ensuring that there are no

abrupt changes in the volume fraction. It can be computed as:

Vc =


Vc,b +(Vc,t −Vc,b)

(
1− 1

2

(
h−2z

h

)N
)
, 0 ≤ z ≤ h

2

Vc,b +(Vc,t −Vc,b)

(
1
2

(
h−2z

h

)N
)
, −h

2 ≤ z ≤ 0
(2.2)

Fig. 3 illustrates the distinct gradation profiles obtained for different equations and multiple

exponents N. In this work, the adopted profile is the P-FGM.

In addition to these methods, some authors have adopted the basis functions used by

the computational method, as Hermite polynomials for the Finite Element Method and B-Splines

functions for the Isogeometric analysis[43, 44]. This approach can be beneficial for optimization
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problems, as it enhances the design flexibility, and also for problems that require a symmetrical

profile, which can be trivially achieved.

2.2 Effective properties

Once the gradation profile is defined, the effective properties are expected to vary

along with volume fraction. In order to determine how this variation occurs, micromechanical

models can be employed. They are homogenization techniques that evaluate the macroscopic

elastic effective properties in terms of the physical properties and volume fraction of each phase

(metallic matrix and ceramic inclusions).

The simplest micromechanical schemes are the Reuss[45] and Voigt[46] models, with

the Voigt model, also known as Rule of Mixtures, being the most widely used in the literature. It

assumes an uniform strain field for both the matrix and inclusions, allowing the properties to be

evaluated by:

P(z) =
n

∑
i=1

PiVi(z) (2.3)

where Pi is the material property and Vi is the associated volume fraction. The Voigt model

resembles a linear weighted average between the properties of each constituent, providing a

straightforward method for determining the effective properties for the FGM. On the other hand,

the Reuss model assumes that the phases are subjected to a uniform stress field. The properties

are obtained by:

1
P(z)

=
n

∑
i=1

Vi(z)
Pi

(2.4)

The high simplicity of both models is achieved by neglecting important parameters,

such as the shape and orientations of inclusions. Therefore, although they are commonly used, the

Rule of Mixtures often leads results that are not in good agreement with available experimental

data[14, 47]. Using this model may simulate stiffer structures, underestimating stresses and strains,

which can compromise structural safety. Consequently, the Voigt and Reuss models are used to

establish, respectively, extreme upper and lower bounds for the evaluation of effective properties

across the entire range of inclusion volume fractions[14, 48].

To mitigate the issues mentioned above, other micromechanical models are available,

including the the Mori-Tanaka, the Hashin-Shtrikman bounds and the Self-Consistent Method,

which can be employed for more accurate predictions[15, 49].
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The Hashin-Shtrikman bounds adopt a different approach compared to the Voigt and

Reuss models. They incorporate auxiliary fields to represent deviations from a chosen reference

solution. This approach minimizes the impact of possible errors presented by the approximations

on the final results[48, 49], resulting in a narrower range for the evaluation of effective properties

and enhancing the precision of homogenization procedure.

The lower Hashin-Shtrikman boundary involves considering the softer constituent

as the matrix phase. In the case of a matrix phase being reinforced by randomly distributed

spherical particles, the volume fraction profile is employed to evaluate the bulk (K) and shear

(G) moduli:

K(z) = Km +
Vc

1
Kc −Km

+
Vm

Km +
4Gm

3

(2.5a)

G(z) = Gm +
Vc

1
Gc −Gm

+
Vm

Gm + fm

(2.5b)

where:

fm =
Gm(9Km +8Gm)

6(Km +2Gm)
(2.6)

Then, the Young’s modulus and the Poisson’s ratio are given by:

E(z) =
9K(z)G(z)

3K(z)+G(z)
(2.7a)

ν(z) =
3K(z)−2G(z)

2(3K(z)+G(z))
(2.7b)

The upper bound can be readily achieved by interchanging the matrix and inclusion regimes in

the formulation.

Alternatively, the Mori-Tanaka model can also be used to evaluate the effective

properties [50, 48]. Given a dilute distribution of inclusions, it assumes that, at a sufficient distance

between them, the strain or stress fields caused by the external load prevail, disregarding possible

interactions between inclusions. In the special case where an isotropic matrix is reinforced

by isotropic spherical particles, the effective properties approximation is equal to the Hashin-

Shtrikman lower bound[47].

Regarding the Self-Consistent Method (SCM), while it was primarily developed to

address single-phase polycrystalline problems, it presents beneficial features to FGM applications.



23

The method does not discriminate between the two phases, making no assumptions about which

constituent is each phase [15, 14]. It accounts for the interaction between inclusions, which

is crucial in modeling the effective medium. The SCM employs a semi-explicit formulation

where the effective properties are not directly determined from the volume fraction and physical

properties of the constituents, but through an iterative scheme:

Vc(z) =

Km
Km+

4
3 G(z)

+ 5Gc
G(z)−Gc

+2

Km
Km+

4
3 G(z)

+ 5Gc
G(z)−Gc

− Kc
Kc+

4
3 G(z)

− 5Gm
G(z)−Gm

(2.8a)

K(z) =
1

Vc(z)
Kc+

4
3 G(z)

+ 1−Vc(z)
Km+

4
3 G(z)

− 4
3

G(z) (2.8b)

The Young’s modulus and the Poisson’s ratio are then given using Eq. (2.7a) and (2.7b). It is

worth remarking that this model provides a reliable estimation for the effective properties, with

results falling within the Hashin-Shtrikman bounds. Despite being a complex method, the SCM

can be valuable when information about the FGM is limited[51, 52]. Alternatively, the Generalized

Self-Consistent Method (GSCM) is an extension of the SCM that covers a broader range of

microstructural variations and is more commonly employed in recent studies[53, 54].

Fig. 4 presents a comparison of the Young’s modulus homogenization results

obtained using micromechanical models against experimental data. Although the Voigt model

exhibits a poor agreement, it remains the most widely used homogenization method in the

literature. On the other hand, despite its simple approach to the evaluation of effective properties,

the Mori-Tanaka technique demonstrates a remarkable agreement with experimental data for

Al/SiC composites, boasting a coefficient of determination R2 = 96.9%[13]. The Generalized

Self-Consistent Method also yields very close results, with a slight accuracy gain over Mori-

Tanaka for this specific dataset, but it involves a significantly more complex implementation.

Thus, this work exclusively uses the Voigt and Mori-Tanaka models.

Fig. 5 illustrates the effective elastic modulus of an Al/Al2O3 FG plate for various

power indices N, being assessed by both micromechanical models. It is evident that the Voigt

model consistently returns a higher effective property across the entire gradation when the

resulting material is non-homogeneous, implying in a overall stiffer structure.

2.3 Tamura-Tomota-Ozawa model

Structural failure can be attributed to instability or material failure, and in practical

scenarios these factors often occur simultaneously. It happens due to an inelastic material
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response leading to a destabilizing structural effect, or the reverse, where an overload results in

inelastic deformation. Since this work focuses on FGM as particulate metal matrix composites

(MMC), material failure is primarily determined by the behavior of the ductile phase, thus

necessitating the employment of an elastoplastic analysis to thoroughly determine the structural

response[32].

Figure 4 – Comparison among homogenization schemes
and experimental results for Al/SiC MMC.
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Figure 5 – Effective elastic modulus of an
Al/Al2O3 FG plate by Voigt and Mori-Tanaka
models.

Source: The author.
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To accurately capture the overall mechanical performance of FGM, more sophis-

ticated failure criteria are required. This is because the mechanical behavior depends on the

properties of the composites’ individual phases. The homogenization methods previously dis-

cussed can be solely used to determine effective elastic properties. In order to obtain variables

related to the plastic regime, an additional model capable of approximating both the yield stress

and the hardening law is necessary[13, 55, 28].

While the Tsai-Hill criteria are commonly used in the literature for laminated,

anisotropic, composites, they may not be suitable for FGM structures. FGMs are often isotropic,

despite non-homogeneous, and present a continuous gradation between their phases. Conse-

quently, alternative models are typically employed for material failure analysis in FGMs.

The Tamura-Tomota-Ozawa (TTO) model is widely used to simulate the performance

of MMCs[56, 57]. This model assumes that the failure is governed by the ductile constituent,

resulting in the matrix displaying an elastoplastic behavior while the inclusions remain elastic.

Furthermore, the TTO model defines the composite uniaxial stress and strain as the

corresponding average uniaxial stresses and strains of both constituents. Therefore, an additional

parameter, the stress-to-strain ratio (q), is introduced:

q =
σ1 −σ2

ε1 − ε2
, 0 < q < ∞ (2.9)

where σi and εi are the average stresses and strains of each constituent. This parameter is used to

improve the approximation of the composite behavior to an available set of experimental data.

The effective yield stress is evaluated by:

σy,eff = σy,m

[
Vm +

(
q+Em

q+Ec

)
Ec

Em
(1−Vm)

]
(2.10)

where σy,m is the yield strength of the metallic phase, Em and Ec are the Young’s moduli for

metal and ceramic constituents respectively. Additionally, the FGM material nonlinearity is

considered by assuming the hardening law to be linear with the hardening modulus depending on

the volume fraction. This definition is confusing within the literature, since most studies define

the elastoplastic tangent modulus with the variable H[58, 13], which is commonly used to define

the hardening modulus[59]. These moduli, despite presenting close values, carry distinct physical

meaning. Therefore, for the sake of clarity, in this work the plastic modulus is defined as:

Ep =
VmEp,mξ +(1−Vm)Ec

Vmξ +(1−Vm)
(2.11)
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where Ep is the effective elastoplastic tangent modulus, Ep,m is the metal elastoplastic tangent

modulus, and ξ =(q+Ec)/(q+Ep,m). Then, the effective hardening modulus H can be evaluated

using the uniaxial formula[60]:

H =
E Ep

E −Ep
(2.12)

Fig. 6 illustrates the variation in yield strength of an FG structure comprised of metal matrix

and ceramic inclusions. It can be seen that the ceramic represents a brittle phase and the metal

represents a ductile phase, whilst the composite presents an intermediate behavior depending

on the volume fraction. It also shows the bilinear failure response governed by ductile phase,

highlighting the influence of the parameter q on the yield strength.

Figure 6 – Schematic stress-strain curve
for FGM.

Source: Adapted from Nayak, Bhowmick and
Saha[61].

In order to define the plastic regime, the von Mises yielding criterion is employed.

The material behaves elastically until it reaches the yield stress, after which it undergoes plastic

deformation. The yield criterion can be defined as:

f =
√

3J2 −σy (ε
p) =

√
3
2

si jsi j −σy (ε
p)≤ 0 (2.13)

where f is the yield surface, and si j is the deviatoric stress tensor given by:

si j = σi j −
1
3

δi jσkk (2.14)

and σy (ε
p) is the uniaxial yield stress expressed in terms of the accumulated plastic strain.
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This work employs an associative flow rule, where the direction of the plastic flow

depends solely on the current stress state and yield surface. Consequently, the plastic strain rate

can be mathematically described as:

ε̇
p
i j = γ̇

∂ f
∂σi j

(2.15)

where γ̇ ≥ 0 is the plastic multiplier. Since plastic deformation is irreversible, the accumulated

equivalent plastic strain ε
p serves as an internal state variable to monitor the loading history:

ε
p =

∫ √2
3

ε̇
p
i jε̇

p
i j dt (2.16)

Additionally, the material stiffens as plastic deformation occurs. The strain hardening is isotropic

and, as previously stated, linear, resulting in:

σy (ε
p) = σy0 +H ε

p (2.17)

where H is the composite effective hardening and σy0 is the effective initial yield stress. A

more detailed discussion about the elastoplastic behavior, including the computational aspects, is

presented in Section 3.5.
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3 ANALYSIS OF FG SOLIDS

In the process of conducting a structural analysis, the primary objective is to accu-

rately predict the mechanical behavior and performance of a body when subjected to external

loads. This typically includes determining displacements, strains and stresses within the structure.

Indeed, there are multiple categories of analysis, including buckling, post-buckling and vibration,

among others.

Still within the realm of structural analysis, static and stability are significant areas

of application. In these scenarios, experimental data suggests that both geometric and material

nonlinearities are present during structural failure. Therefore, in this work, both types of

nonlinearities are considered to provide a more consistent approximation of structural behavior.

A general Finite Element formulation is primarily presented, since it is the most

commonly adopted computational method. Then, an Isogeometric Analysis approach is further

discussed. Both formulations presented in this chapter have been implemented in an in-house

software developed in C++ called Finite Element Analysis Tool (FAST), following the references

defined in each section. The implementations are validated later in this work by comparing

numerical results against evaluations found in the existing literature.

3.1 Displacements and Strains

In order to provide a general computational approach for analysis of FG solids, a

Finite Element Method formulation is presented. The displacements (u, v, w) within the element

can be expressed in terms of the nodal displacements (ui, vi, wi):

u =
n

∑
i=1

Ni ui, v =
n

∑
i=1

Ni vi, w =
n

∑
i=1

Ni wi (3.1)

where Ni are the basis functions and n is the number of nodes. Alternatively, the matrix

formulation is defined as:

û =


u

v

w

=
n

∑
i=1


Ni 0 0

0 Ni 0

0 0 Ni




ui

vi

wi

=
n

∑
i=1

Niui = Nu (3.2)

Furthermore, employing an isoparametric approach, the element geometry is de-

scribed by the same basis functions used to interpolate the displacements:

x =
n

∑
i=1

Ni xi, y =
n

∑
i=1

Ni yi, z =
n

∑
i=1

Ni zi (3.3)
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where xi, yi and zi are the global coordinates.

Additionally, finite elements can be employed to simplify the representation of FGM

composites, allowing the volume fraction of each node to be approximated by the basis functions,

similarly to the interpolation of displacements[62, 63]. Consequently, the volume fraction profile

within the element is expressed as:

Vc =
n

∑
i=1

NiVc,i (3.4)

The effective properties can then be evaluated by any of the aforementioned micromechanical

models discussed in Chapter 2.

Since strains require derivatives in 3D Cartesian space and the displacements are

described in parametric coordinates, these derivatives have to be transformed by employing the

chain rule. The matrix formulation for derivatives is given as follows:
Ni,r

Ni,s

Ni,t

= J


Ni,x

Ni,y

Ni,z

 (3.5)

where J is the Jacobian matrix, which is evaluated by:

J =



n

∑
i=1

Ni,rxi

n

∑
i=1

Ni,ryi

n

∑
i=1

Ni,rzi

n

∑
i=1

Ni,sxi

n

∑
i=1

Ni,syi

n

∑
i=1

Ni,szi

n

∑
i=1

Ni,txi

n

∑
i=1

Ni,tyi

n

∑
i=1

Ni,tzi


(3.6)

Finally, in order to obtain the derivatives in the cartesian space:
Ni,x

Ni,y

Ni,z

= J−1


Ni,r

Ni,s

Ni,t

 (3.7)

In this work, the total Lagrangian formulation for continuum (i.e. solid) elements

is used. The formulation considers large displacements but assumes small strains. Thus,

Green-Lagrange strains and Piola-Kirchhoff II stresses are adopted in further mathematical devel-

opments. Both parameters are computed with respect to the undeformed structural configuration.
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The Green-Lagrange strains are comprised of both linear and nonlinear contributions.

Given a displacement field, they can be defined in a matrix formulation as follows[64]:

ε =



εx

εy

εz

γxy

γxz

γyz


=



u,x

v,y

w,z

u,y + v,x

u,z +w,x

u,z +w,y


︸ ︷︷ ︸

εl

+



1
2(u

2
,x + v2

,x +w2
,x)

1
2(u

2
,y + v2

,y +w2
,y)

1
2(u

2
,z + v2

,z +w2
,z)

u,xu,y + v,xv,y +w,xw,y

u,xu,z + v,xv,z +w,xw,z

u,yu,z + v,yv,z +w,yw,z


︸ ︷︷ ︸

εnl

(3.8)

The required derivatives for the aforementioned 3D formulation can be evaluated as:

u,x =
n

∑
i=1

Ni,xui, u,y =
n

∑
i=1

Ni,yui, u,z =
n

∑
i=1

Ni,zui,

v,x =
n

∑
i=1

Ni,xvi, v,y =
n

∑
i=1

Ni,yvia, v,z =
n

∑
i=1

Ni,zvi,

w,x =
n

∑
i=1

Ni,xwi, w,y =
n

∑
i=1

Ni,ywi, w,z =
n

∑
i=1

Ni,zwi

(3.9)

Thus, the vector β becomes:

β =



u,x

u,y

u,z

v,x

v,y

v,z

w,x

w,y

w,z



=
n

∑
i=1



Ni,x 0 0

Ni,y 0 0

Ni,z 0 0

0 Ni,x 0

0 Ni,y 0

0 Ni,z 0

0 0 Ni,x

0 0 Ni,y

0 0 Ni,z




ui

vi

wi

= Gu (3.10)

By organizing the displacement derivatives from the vector β = [u,x,u,y, ...,w,z]
T , the strain

matrix formulation can be written as:

ε = εl + εnl = Hβ +
1
2

Aβ (3.11)
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where:

H =



1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0


; A =



u,x 0 0 v,x 0 0 w,x 0 0

0 u,y 0 0 v,y 0 0 w,y 0

0 0 u,z 0 0 v,z 0 0 w,z

u,y u,x 0 v,y v,x 0 w,y w,x 0

u,z 0 u,x v,z 0 v,x w,z 0 w,x

0 u,z u,y 0 v,z v,y 0 w,z w,y


(3.12)

By substituting β = Gu in Eq. (3.11):

ε = HGu+
1
2

AGu (3.13)

Therefore, the matrix which describes the strain-displacement relations is defined by:

ε = Bu, B = B0 +
1
2

BL (3.14)

where B0 and BL are the linear and nonlinear contributions, respectively defined as:

B0 = HG; BL = AG (3.15)

3.2 Equilibrium Equations

Using the Principle of Virtual Work, the equilibrium for any given solid is achieved

when the internal virtual work (δU) equals the external virtual work (δWext), assuming that the

displacement field obeys the essential boundary conditions of the problem. Mathematically, this

is described as:

δU = δWext =⇒
∫

V
δε

T
σ dV =

∫
V

δ ûT bdV +
∫

S
δ ûT qdS+

n j

∑
j=1

ûT
j F j (3.16)

where δε is the virtual strain vector, σ is the stress vector, b denoted the body forces, q stands

for the surface forces and F j are the concentrated forces applied to the body. In order to simplify

this formulation, the internal virtual work can be expressed in terms of the internal force vector

(g):

δU = δuT g =
∫

V
δε

T
σ (3.17)
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Since the Green-Lagrange strains are being adopted, it can be shown that:

δε = Bδu (3.18)

with:

B = B0 +BL (3.19)

what implies in:

g =
∫

V
BT

σ dV (3.20)

On the other hand, the external virtual work can be described as:

δWext = δuT
∫

V
NT bdV +δuT

∫
S

NT qdS+δuT
n j

∑
j=1

NT
j F j = δuT f (3.21)

where the external load vector (f) is given by:

f =
∫

V
NT bdV +

∫
S

NT qdS+
n j

∑
j=1

NT
j F j (3.22)

Therefore, the equilibrium equations can be written as:

g = f (3.23)

It is important to highlight two things. First, this equation is valid for all geometric and material

nonlinear problems. Second, the volume and surface parameters used in the integrals are

evaluated for the undeformed geometry, due to the use of the Total Lagrangian approach as

previously mentioned.

3.3 Tangent Stiffness Matrix

As will be further discussed, the tangent stiffness matrix is an important part of the

nonlinear analysis. It is computed by differentiating the internal forces vector with respect to the

displacement vector:

KT =
∂g
∂u

=
∫

V
BT ∂σ

∂u
dV︸ ︷︷ ︸

KE

+
∫

V

∂BT

∂u
σ dV︸ ︷︷ ︸

KG

= KE +KG (3.24)

where KE and KG represent the material and geometric stiffness matrices. While the evaluation

of ∂BT/∂u might seem straightforward, the partial derivative ∂σ/∂u is determined by:

∂σ

∂u
=

∂σ

∂ε

∂ε

∂u
= CT B (3.25)
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where CT is called tangent constitutive matrix. and it relies on the material behavior and the

specific constitutive model used in the analysis[60, 59]. In this work, by employing an elastoplastic

analysis process, the evaluation of CT matrix is discussed in details throughout the next section.

Furthermore, the material stiffness matrix contribution is defined as:

KE =
∫

V
BT CT BdV (3.26)

Additionally, the contribution from the geometric stiffness matrix is evaluated by[65]:

KG =
∫

V
GT SGdV (3.27)

where:

S =


S 0 0

0 S 0

0 0 S

 , S =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (3.28)

It is worth emphasizing that, seeking for a more computationally efficient imple-

mentation, the integration process is performed by the Gaussian integration technique for each

integration point along the three parametric directions. The number of points depends on the

shape functions and the gradation profile. The assembly of the finite elements’ contributions to

the global stiffness matrix is accomplished through the use of the Direct Stiffness Method.

3.4 Nonlinear Analysis

In the context of static analysis of nonlinear structures subjected to displacement-

independent loads, the equilibrium equations can be written as:

r(u,λ ) = g(u)−λq = 0, f = λq (3.29)

where r is the residual, q is a reference load vector and λ is referred to as the load factor, a

parameter that governs the rate of load increment.

In order to obtain an appropriate solution for the nonlinear equilibrium equations,

numerical methods are employed. The Newton-Raphson is the most used approach within the

literature for solving such problems. This method is based on the linearization of the residual:

rn = r+KT δu+
∂r
∂λ

⇒ KT =
∂r
∂u

=
∂g
∂u

(3.30)
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where the subscript n is denotes the new residual, KT is the tangent stiffness matrix and ∂r/∂λ

is the internal load vector g.

Furthermore, considering that rn = 0, Eq. (3.30) can be rewritten as:

KT δu−δλq =−r (3.31)

However, as there are n equations and n+1 variables, where n is the number of structural DoFs,

this system of equations is under-determined.

Therefore, the Load Control Method is briefly described here for a clearer under-

standing of the solution procedure. In this method, a load factor (λ ) is assigned for each step.

Since it remains constant throughout each iteration, δλ is zero. Therefore, Eq. (3.31) can be

rewritten as:

KT δu =−r (3.32)

After the evaluating the displacement increment, the new nodal displacements are updated as:

un+1 = un +δu (3.33)

Subsequently, these displacements are used to compute both new internal force vector and

residual. This iterative process continues until the equilibrium equation is satisfied, which means

the residual is smaller than an adopted numerical tolerance:

∥r∥
max(1,∥f∥)

≤ TOL (3.34)

This methodology is commonly employed within the literature due to presenting a quadratic rate

of convergence, resulting in a reduced computational cost.

This method is widely used to trace the nonlinear equilibrium paths of stable

structures[66]. However, the consideration of nonlinearities may result in the appearance of

limit points along the equilibrium path. In these cases, it is necessary to use more complex

path-following algorithms, such as the displacement control and arc-length methods[67, 68, 69].

3.4.1 Linear stability

Furthermore, for stability problems where prebuckling displacements are negligible,

a linear analysis process can be employed. It is postulated that the instability occurs when the
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tangential matrix is equal to the material stiffness matrix, whereas the geometric stiffness matrix

depends on a load factor λ :

KE = K0, KG = λKG (3.35)

By defining the tangent stiffness matrix to be singular at the bifurcation point, the classical

eigenvalue buckling solution is achieved[70] :

(K0 +λKG)φφφ = 0 (3.36)

However, although providing an accurate approximation for the critical buckling

load, this methodology is incapable of modeling the postbuckling behavior. Given that both

nonlinearities are considered in this work, it is crucial be able to study the structural equilibrium

path. Therefore, the aforementioned numerical path-following methods can be employed to

accurately determine the structure’s load-displacement curve.

3.5 Elastoplasticity

Prior to yield, the stresses can be evaluated by the Hooke’s Law:

σ = Cε (3.37)

where C is the elastic constitutive matrix given by:

C =
E

(1+ν)(1−2ν)



(1−ν) ν ν 0 0 0

ν (1−ν) ν 0 0 0

ν ν (1−ν) 0 0 0

0 0 0
(1−2ν)

2
0 0

0 0 0 0
(1−2ν)

2
0

0 0 0 0 0
(1−2ν)

2


(3.38)

When dealing with FG structures, it is important to remark that the adopted values for the elastic

modulus (E) and Poisson’s ratio (ν) are the composite effective properties evaluated by the

proposed micromechanical model. Due to the use of numerical integration, Eqs. (3.37) and

(3.38), as well as the composite properties, are only evaluated at the Gauss points.

Regarding the framework of the small strain theory of plasticity presented in Neto,

Peric and Owen[59], total strain can be decomposed into the sum of an elastic, by definition
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reversible, and a plastic, by definition permanent, components:

ε = ε
e + ε

p =⇒ ε
e = ε − ε

p (3.39)

Given that the elastic domain is delimited by a yield surface f , according to the

plasticity theory, any admissible stress state must lie either inside or on the boundary of the yield

surface. Furthermore, a standard associative flow rule defines that the plastic strain rate can be

given as:

ε̇
p = γ̇ N (3.40)

where N is the Prandtl-Reuss flow vector:

N ≡ ∂ f/∂σ (3.41)

and γ̇ is the non-negative plastic multiplier. For stress levels within the yield surface, only elastic

straining may occur, while for stress states at the yield surface, either elastic unloading or plastic

yielding may happen. This yield criterion is expressed as:

If f (σ ,σy)< 0 =⇒ ε̇
p = 0

If f (σ ,σy) = 0 =⇒

ε̇ p = 0 for elastic unloading

ε̇ p ̸= 0 for plastic loading

(3.42)

Assuming that the plastic multiplier also must satisfy the complementary condition:

f γ̇ = 0 (3.43)

The methodology defined by Eq. (3.42) can be better developed by defining the constraints

related to each case. For instance, the plastic strain rate vanishes within elastic domain:

f < 0 =⇒ γ̇ = 0 =⇒ ε̇
p = 0 (3.44)

On the other hand, the plastic flow may only occur when the stress level coincides with the

boundary of the yield surface:

f = 0 =⇒ γ̇ ≥ 0 (3.45)

The specifics yield condition, flow rule and accumulated equivalent plastic strain

used in this work have been presented in Section 2.3, where the Tamura-Tomota-Ozawa model

was discussed. It is important to once again remark that the plastic regime is based on the von

Mises yield criterion, using the second invariant of the deviatoric stress tensor (J2) approach.
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3.5.1 Returning Mapping

The return mapping is a computational technique used to update the stress state and

strain variables for materials experiencing plastic deformation. It employs an iterative procedure

to ensure that the stress state remains within the yield surface as required by the plasticity

theory[59, 60]. To accomplish this, the return mapping algorithm is divided into two parts: the

elastic predictor and the return mapping process, which will be better described below.

Assuming that a strain increment is provided:

∆ε = εn+1 − εn (3.46)

The first step is the elastic predictor process. During this step, the strain increment is treated as

fully elastic, whilst the accumulated plastic strain remains constant. Thus, the elastic trial strain

and trial plastic strain are defined as:

ε
e trial
n+1 = ε

e
n +∆ε

ε
p trial
n+1 = ε

p
n

(3.47)

Thereafter, the corresponding elastic trial stress is calculated using Eq. (3.38). Subsequently, it is

determined whether the trial stresses σ trial
n+1 lies within the trial yield surface: f trial = f (σ trial).

Depending on the outcome, two different situations are possible:

– if f trial ≤ 0 the process is, indeed, purely elastic and the elastic trial state is the solution to

the problem. The states variables are, then, set as:

ε
e
n+1 = ε

e trial
n+1

σn+1 = σ
trial
n+1

ε
p
n+1 = ε

p trial
n+1 = ε

p

σyn+1 = σ
trial
yn+1

= σyn

(3.48)

– otherwise σ trial
n+1 is out of elastic domain and the process is elastoplastic. Therefore, the

return-mapping technique has to be employed in order to evaluate the proper solution.

In this work, linear isotropic hardening plasticity is considered. Hence, by using Eq.

(2.17), the yield criterion reads as:

f (∆γ)≡ qtrial
n+1 −3G∆γ −σy(ε

p +∆γ) = 0 ⇒

f (∆γ)trial = qtrial
n+1 −3G∆γ − [σ0 +(ε p

n +∆γ)H] = 0
(3.49)
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where:

qtrial
n+1 =

√
3
2

strial
n+1 : strial

n+1 (3.50)

Then, the incremental plastic multiplier solution is obtained using a closed-form equation:

∆γ =
f trial

3G+H
(3.51)

As only deviatoric stresses are corrected and projected onto the plastic surface, the trial hydro-

static (p) and deviatoric (s) stresses must be evaluated. Finally, the updated state variables are

defined by[59]:

pn+1 = ptrial
n+1

sn+1 =

(
1− ∆γ 3G

qtrial
n+1

)
strial

n+1

σn+1 = sn+1 + pn+1I

ε
e
n+1 =

1
2G

sn+1 +
1
3

ε
e trial
vn+1

I

ε
p
n+1 = ε

p
n +∆γ

(3.52)

The entire state update procedure described above is summarized in Algorithm 1.

This box provides a step-by-step overview of the state update procedure for plasticity in the

material. It encompasses elastic prediction, plastic admissibility checks and return mapping,

detailing how the state variables are updated at each step. Additionally, in Fig. 7, the plastic

corrector algorithm is illustrated. The adopted algorithm is based on the closest point projection

since an associative flow rule is employed. It can be used for both perfectly plastic and linearly

hardening materials[71]. The circular shape of the yield surface is due to the von Mises model.

By considering the hardening, the radius of the yield surface increases whenever there is plastic

deformation, whereas in the case of perfect plasticity, the updated surface at tn+1 remains the

same as at tn.

3.5.2 Tangent constitutive matrix

With σn+1 expressed in terms of both the elastic trial strain and the internal variable

evaluated at time tn, it is possible to define the consistent tangent operator:

C =
∂σ

∂εn+1
(3.53)
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Algoritmo 1: Update State Procedure
I) Elastic predictor: Given ∆ε and state variables, the elastic trial state is evaluated

ε
e trial
n+1 = ε

e
n +∆ε, ε

p trial
n+1 = ε

p
n

II) Plastic admissibility: If f (∆γ)trial ≤ 0, update state variables:

ε
e
n+1 = ε

e trial
n+1 , σn+1 = σ

trial
n+1 , ε

p
n+1 = ε

p trial
n+1 = ε

p, σyn+1 = σ
trial
yn+1

= σyn

Then exit the procedure.
III) Return mapping: Plastic correction and update state variables:

∆γ =
f trial

3G+H

pn+1 = ptrial
n+1 , sn+1 =

(
1− ∆γ 3G

qtrial
n+1

)
strial

n+1

σn+1 = sn+1 + pn+1I

ε
e
n+1 =

1
2G

sn+1 +
1
3

ε
e trial
vn+1

I

ε
p
n+1 = ε

p
n +∆γ

Then exit the procedure.

However, it is essential to note that σn+1 is generally non-differentiable because its definition

can change depending on the nature of the step. Consequently, two one-sided derivatives are

determined: the elastic tangent modulus (Ce) and the elastoplastic tangent modulus (Cep). The

former is related to the elastic predictor procedure, whereas the latter is associated with the

plastic corrector. Therefore, in order to correctly assemble the tangent stiffness matrix, it is

crucial to determine the appropriate tangent operator.

If the stress is within the yield surface and no further plastic loading is anticipated,

the elastic tangent modulus used corresponds to the elastic constitutive matrix associated with

the proposed formulation. For example, in the case of a general 3D structure, Eq. (3.38) is

employed. On the other hand, if the stress is on the yield surface and further plastic loading is

expected to occur, the elastoplastic consistent tangent must be evaluated. Under plastic flow, the

update for σn+1 is given as[59]:

σn+1 =

[
Ce − ∆γ 6G2

σ trial
n+1

Id

]
: ε

e trial
n+1 (3.54)

where ∆γ is the solution to the return-mapping algorithm given by Eq. (3.49) and Id is the

deviatoric projection tensor[59]. Therefore, the elastoplastic consistent tangent modulus can be
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obtained with a straightforward application of tensor differentiation rules by substituting Eq.

(3.54) into Eq. (3.53):

∂σn+1

∂εe trial
n+1

= Ce − ∆γ 6G2

σ trial
n+1

Id −
6G2

σ trial
n+1

ε
e trial
d n+1 ⊗

∂∆γ

∂εe trial
n+1

+
∆γ 6G2

(σ trial
n+1 )

2
ε

e trial
d n+1 ⊗

∂σ trial
n+1

∂εe trial
n+1

(3.55)

where:

∂σ trial
n+1

∂εe trial
n+1

= 2G

√
3
2

Nn+1 (3.56)

in which the defined unit flow vector is defined as:

Nn+1 ≡
√

2
3

Nn+1 =
strial

n+1

∥strial
n+1∥

(3.57)

and also:

∂∆γ

∂εe trial
n+1

=
2G

3G+H

√
3
2

Nn+1 (3.58)

Finally, by substituting Eq. (3.56) and Eq. (3.58) into Eq. (3.55), the elastoplastic tangent

operator consistent with the implicit return-mapping algorithm for the von Mises with isotropic

hardening model can be computed as follows:

Cep = Ce − ∆γ 6G2

σ trial
n+1

Id +6G2

(
∆γ

σ trial
n+1

− 1
3G+H

)
Nn+1 ⊗Nn+1

= 2G

(
1− ∆γ 3G

σ trial
n+1

)
Id +6G2

(
∆γ

σ trial
n+1

− 1
3G+H

)
Nn+1 ⊗Nn+1 +K I⊗ I

(3.59)

It is important to emphasize that this Cep operator is symmetric.

Alternatively, in early implicit elastoplastic implementations, the continuum tangent

operator was exclusively employed. For the von Mises model with isotropic strain hardening, it

can be defined as:

Cep
c = Ce − 6G2

3G+H
N⊗N ⇒ Cep = Cep

c − ∆γ 6G2

σ trial
n+1

[
Id −Nn+1 ⊗Nn+1

]
(3.60)

Ensuring the consistency of the numerical method, if ∆γ is set to zero, as in the first iteration of

each load increment, both elastoplastic operators become equal. However, as ∆γ increases, the

difference between the continuum and consistent approaches grows.

Since, the consistent tangent operator is required to guarantee the quadratic conver-

gence presented by the Newton-Raphson approach[59], using the continuum tangent operator for

assembling the stiffness matrix could significantly reduce the overall convergence rate in the

global iterative process[59]. Consequently, this work exclusively employs the consistent tangent

operator.
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Figure 7 – Schematic plastic corrector algorithm.

𝜎𝑛

𝜎𝑛+1
𝑡𝑟𝑖𝑎𝑙

Elastic 
predictor

Plastic 
corrector

Elastic domain 
at 𝑡𝑛

Surface at 𝑡𝑛

Updated surface 
at 𝑡𝑛+1

𝜎𝑛+1

Source: The author.

3.6 Isogeometric analysis

Regarding the Isogeometric analysis (IGA)[21], the functions provided by CAD

systems are integrated into the numerical simulation. This innovative approach utilizes the

geometric representation provided by CAD systems to not only define the geometry of the

solid but also to compute the field solution. In this work, the isogeometric representation relies

exclusively on Non-Uniform Rational B-Splines (NURBS) due to their unique characteristics

and features. A more comprehensive exploration of the unique attributes of NURBS is presented

in subsequent Appendix A.

In the realm of IGA, any given structure can be expressed as a linear combination

of the basis functions in conjunction with their associated control points. When considering

Cartesian coordinates within a three-dimensional real space, their coordinates can be expressed

by[21, 23]:

x =
np

∑
i=1

Ri(ξ ,η ,ζ )xi, y =
np

∑
i=1

Ri(ξ ,η ,ζ )yi, z =
np

∑
i=1

Ri(ξ ,η ,ζ )zi (3.61)
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where Ri(ξ ,η ,ζ ) are the NURBS basis functions and xi, yi, zi are the pi control points coordi-

nates. Then, the displacements can be approximated using the same basis functions adopted to

describe the geometry. Thus, the displacements are described as:

u =
np

∑
i=1

Ri(ξ ,η ,ζ )ui, v =
np

∑
i=1

Ri(ξ ,η ,ζ )vi, w =
np

∑
i=1

Ri(ξ ,η ,ζ )wi (3.62)

Additionally, in this work, the Bézier extraction procedure is employed[72]. This

methodology involves transforming NURBS basis functions into local Bézier shape functions.

Thus, instead of evaluating basis functions over a complete patch, numerical integration can be

carried out efficiently over the local elements corresponding to the knot spans. Therefore, this

procedure allows this NURBS-based approach to be included into the finite element framework.

If required, a more detailed explanation can be found in Barroso[23]. Consequently, following

the establishment of the shape functions for the Isogeometric analysis elements, the remainder of

the 3D formulation shown in the previous sections remain valid.

Moreover, similar to the methodology introduced to finite elements[62, 63], Isogeo-

metric analysis can also extend its application to represent FGM composites. However, in this

particular context, the Isogeometric Analysis approach presents a noteworthy difference when

compared to the one previously defined for FEM. Since control points are not generally interpo-

lated by NURBS, the volume fraction is initially evaluated for nsp sample points considering

the initial geometry. Given that nsp is greater than the number of control points np, the volume

fraction Vc at the control points can be computed by employing the least square method[73]:(
RT R

)
Vc =

(
RT Vc

)
(3.63)

where R is the matrix of NURBS basis functions and Vc is the matrix of volume fractions, both

regarding sample points. Then, the NURBS basis functions are used to represent the volume

fraction gradation within the solid:

Vc =
np

∑
i=1

RiVc,i (3.64)

In this work, this methodology is implemented in a MATLAB routine and provides an input

compatible with the analysis software.
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4 ISOGEOMETRIC ANALYSIS OF FG PLATES USING A QUASI-3D THEORY

Plates are plane structures whose thickness is significantly smaller than the other

dimensions. Consequently, they can be effectively modeled as two-dimensional structures. In the

literature, various kinematic theories are employed to assess the mechanical behaviour, with the

most widely used ones being the Classical Plate Theory (CPT) and the Reissner-Mindlin Plate

Theory (RMPT)[29, 33].

The CPT is the oldest theory presented for modeling plate behavior, being char-

acterized by the simplest kinematic hypothesis. By completely disregarding the influence of

transverse shear strains, it is solely recommended for the analysis of conventional thin plates.

The RMPT distinguishes itself by being able to account for the influence of transverse

shear strains, assuming them to be constant throughout the thickness. Consequently, this theory

is also referred to in the literature as the First-order Shear Deformation Theory (FSDT). However,

as per the Continuum Mechanics, transverse shear strains of homogeneous and isotropic materials

exhibit a quadratic variation along the thickness. Thus, a correction factor needs to be applied in

order to enhance the result accuracy. This characteristic allows the FSDT to be applicable for

both thick and thin plate analysis.

Furthermore, several High-order Shear Deformation Theories (HSDT)[74, 75, 76, 77]

have been proposed to account for the variable nature of transverse shear strains through the

thickness of the plate. Since they are able to obey the boundary condition of shear-free upper

and lower surfaces, these theories avoids the requirement of any correction factors.

Nevertheless, all the aforementioned kinematic theories overlook the thickness

stretching effect by assuming the normal transverse strain to be zero, focusing solely on the

effects related to the plate mid-surface. Consequently, Quasi-3D plate theories were developed

to address this limitation, including the thickness stretching while retaining the behavior of

transverse shear strain discussed earlier[33, 78, 35, 79]. Thus, this approach presents a general 3D

state of stress instead of the reduced state commonly portrayed by other plate theories.

Besides the differences of the presented kinematic hypotheses among the formula-

tions, some theories require distinct continuity in basis functions during the analysis process

using computational methods. The CPT, HSDT and Quasi-3D require C1 continuity, while

the FSDT requires a C0 continuity. This makes the use of FSDT more practical for general

applications, leading to its widely adoption in many commercial analysis software. However,

given that transverse shear strains and normal stretching effects can be crucial due to material
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gradation, the Quasi-3D theory is employed. In this work, among the alternatives presented in

the literature, the Reddy’s Quasi-3D Theory is adopted due to its relative simplicity.

Furthermore, in order to develop a novel formulation capable of utilizing 3D con-

stitutive relations, the Quasi-3D formulation is defined based on a degenerate solid approach.

This methodology is commonly employed for shell elements, where the geometry is represented

by the mid-surface in addition to a normal vector. Consequently, the plate geometry is modeled

by a surface, while the strain and stresses are related using 3D constitutive equations and the

numerical integration uses the same scheme adopted for solid elements. Therefore, while the

literature employs a mathematical development based on stress-resultants, this methodology

allows for a stress-focused approach, making it more suitable to the consideration of material

nonlinearity.

4.1 Reddy’s Quasi-3D Plate Theory

According to the Reddy’s Quasi-3D Theory[33], the displacement field within the

plate can be obtained by expanding the midplane displacements along the thickness direction.

Primarily, the in-plane displacements are expanded up to cubic terms to obtain quadratic trans-

verse shear strains, whilst the transverse displacement is up to quadratic terms to obtain a linear

variation of the stretching, as follows:

u1(x,y,z) = u(x,y)− zβx + z2
φx + z3

ψx

u2(x,y,z) = v(x,y)− zβy + z2
φy + z3

ψy

u3(x,y,z) = w(x,y)+ zβz + z2
φz

(4.1)

where the parameters u, v, w are the displacements along the xy-plane when z = 0, i.e., the unde-

formed plate midplane. It is important to note that, by using the general displacement field repre-

sented in Eq. (4.1), there are 11 generalized displacements (u, v, w, βx, βy, βz, φx, φy, φz, ψx, ψy),

which would require 11 differential equations in order to determine them.

However, the displacement field can be simplified by applying boundary conditions

regarding the strains. Thus, by assuming that the plate top and bottom surfaces are free of any

tangential forces and transverse shear stresses:

γxz(x,y,±h/2) =−βx +w,x+
h
2
(2φx +βz,x)+

h2

4
(3ψx +φz,x) = 0

γyz(x,y,±h/2) =−βy +w,y+
h
2
(2φy +βz,y)+

h2

4
(3ψy +φz,y) = 0

(4.2)
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Then, it is possible to define ψi in terms of w, βi, φz,i and also φi in terms of βz,i:

ψx =
−φz,x

3
− 4

3h2 (−βx +w,x) , φx =−
βz,x

2

ψy =
−φz,y

3
− 4

3h2 (−βy +w,y) , φy =−
βz,y

2

(4.3)

By applying Eq. (4.3) in Eq. (4.1), the new displacement field is given as follows:

u1(x,y,z) = u(x,y)− zβx −
z2

2
βz,x − z3 4

3h2 (w,x −βx)−
z3

3
φz,x

u2(x,y,z) = v(x,y)− zβy −
z2

2
βz,y − z3 4

3h2 (w,y −βy)−
z3

3
φz,y

u3(x,y,z) = w(x,y)+ zβz + z2
φz

(4.4)

These equations can be written as:

u1(x,y,z) = u1(x,y,z)+ zw,x − zw,x = u(x,y)− zw,x +(z− z3 4
3h2 )(w,x −βx)−

z2

2
βz,x −

z3

3
φz,x

u2(x,y,z) = u2(x,y,z)+ zw,y − zw,y = v(x,y)− zw,y +(z− z3 4
3h2 )(w,y −βy)−

z2

2
βz,y −

z3

3
φz,y

u3(x,y,z) = w(x,y)+ zβz + z2
φz

(4.5)

Therefore, it is possible to observe that the number of generalized displacements is reduced to

7 (u, v, w, βx, βy, βz, φz), where βx and βy are the rotations, βz and φz are the stretching related

terms.

Furthermore, it is interesting to note that the aforementioned displacement field

shown in Eq. (4.5) can be generalized to accommodate other variations across the thickness:

u1(x,y,z) = u(x,y)− zw,x + f (z)(w,x −βx)+h(z)βz,x +g(z)φz,x

u2(x,y,z) = v(x,y)− zw,y + f (z)(w,y −βy)+h(z)βz,y +g(z)φz,y

u3(x,y,z) = w(x,y)+h∗(z)βz +g∗(z)φz

(4.6)

where f (z) dictates the transverse shear strains profile, and h(z), g(z), h∗(z) and g∗(z) are related

to the stretching. For a function to be a valid solution, the plate top and bottom surfaces have to

be free of any tangential forces and transverse shear stresses:

γxz = f ′(±h
2
)(w,x −βx) = 0 ⇒ f ′(±h

2
) = 0 (4.7)
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Subsequently, it is assumed that both βz and φz must have no influence on the transverse shear

strains throughout the thickness:

γxz = f ′(z)(w,x −βx)+(h′(z)+h∗(z))βz,x +(g′(z)+g∗(z))φz,x ⇒

h′(z)+h∗(z) = 0, g′(z)+g∗(z) = 0 ∀ −h
2

≤ z ≤ h
2

h∗(z) =−h′(z), g∗(z) =−g′(z)

(4.8)

Finally, by substituting Eq. (4.8) in Eq. (4.6), a general displacement field for the Quasi-3D

Plate Theory can be defined as:

u1(x,y,z) = u(x,y)− zw,x + f (z)(w,x −βx)+h(z)βz,x +g(z)φz,x

u2(x,y,z) = v(x,y)− zw,y + f (z)(w,y −βy)+h(z)βz,y +g(z)φz,y

u3(x,y,z) = w(x,y)−h′(z)βz −g′(z)φz

(4.9)

The corresponding strains are given by:

εxx = u,x − zw,xx + f (z)(w,xx −βx,x)+h(z)βz,xx +g(z)φz,xx

εyy = v,y − zw,yy + f (z)(w,yy −βy,y)+h(z)βz,yy +g(z)φz,yy

εzz =−h′′(z)βz −g′′(z)φz

γxy = u,y + v,x −2zw,xy + f (z)(2w,xy −βx,y −βy,x)+2h(z)βz,xy +2g(z)φz,xy

γxz = f ′(z)(w,x −βx)

γyz = f ′(z)(w,y −βy)

(4.10)

Additionally, in order to consider the geometric nonlinearity, the strains are assumed

to be small, whilst the displacements and rotations are assumed to be moderately large. Thus,

the nonlinear terms are given by:

(u1,x)
2 = (u2,x)

2 = (u1,y)
2 = (u2,y)

2 ≈ 0

(u3,x)
2 ≈ (w,x)

2, (u3,y)
2 ≈ (w,y)

2, u3,xu3,y ≈ w,xw,y

(4.11)

Therefore, the von Karman[64] membrane strains contributions are added into the strains defined
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by Eq. (4.10):

εxx = u,x +
1
2

w2
,x − zw,xx + f (z)(w,xx −βx,x)+h(z)βz,xx +g(z)φz,xx

εyy = v,y +
1
2

w2
,y − zw,yy + f (z)(w,yy −βy,y)+h(z)βz,yy +g(z)φz,yy

εzz =−h′′(z)βz −g′′(z)φz

γxy = u,y + v,x +w,xw,y −2zw,xy + f (z)(2w,xy −βx,y −βy,x)+2h(z)βz,xy +2g(z)φz,xy

γxz = f ′(z)(w,x −βx)

γyz = f ′(z)(w,y −βy)

(4.12)

The polynomial profile provides a straightforward approach to representing the

displacement behavior. By defining the functions as follows:

f (z) = z− z3 4
3h2 , h(z) =−z2/2, g(z) =−z3/3 (4.13)

the Reddy’s displacement field described in Eq. (4.5) is obtained and will be employed in this

study (being called as Q3D7).

Furthermore, it is important to remark that, according to variational methods[70],

when derivatives of order m appear in the functional, essential boundary conditions also involves

derivatives of order zero through m−1, with the zeroth derivative being the variable itself. There-

fore, although this formulation presents 7 DoFs (u, v, w, βx, βy, βz, φz), other 6 essential boundary

conditions are also set during the mathematical development: w,x , w,y , βz,x, βz,y, φz,x, φz,y.

As a weak form approach will be further employed, only essential boundary con-

ditions are directly enforced, but the natural boundary conditions associated with them are

documented in the literature[33]. For instance, simply supported ends may only enforce some of

the 7 DoFs. On the other hand, clamped ends require the enforcement of the other 6 essential

boundary conditions, which results in a more complex process.

Regarding the strain-displacement relations, it can be noted that the transverse shear

strains, γxz and γyz, exhibit a quadratic variation through the thickness, as expected due to using

the same profile as the Reddy’s Third-order Theory[29]. Additionally, the transverse normal

strain εzz is defined by a complete linear polynomial along the thickness, characterizing the plate

stretching.
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4.1.1 Specialization to other theories

The parameters f (z), h(z), g(z) presented in Eqs. (4.9) and (4.10) can be modified

to achieve various profiles and even simpler kinematic theories.

While Reddy’s formulation present a complete linear polynomial for the thickness

normal strain, as shown in Eq. (4.5), some works within the literature neglect the quadratic

term (g(z) = 0), leading to a constant normal strain throughout the thickness. However, previous

research on shell structures has shown that the sole inclusion of a linear term leads to Poisson

locking, not being able to accurately represent the stretching[80, 81].

On the other hand, Moita et al.[34] only excludes the linear term (h(z) = 0). Conse-

quently, while no longer qualifying as a complete polynomial, the normal strain throughout the

thickness presents a linear behavior. In order to explore potential capabilities and limitations,

this alternative Quasi-3D approach is also further employed in this work (also called as Q3D6).

The displacement field is given as follows:

u1(x,y,z) = u(x,y)− zw,x +(z− z3 4
3h2 )(w,x −βx)−

z3

3
φz,x

u2(x,y,z) = v(x,y)− zw,y +(z− z3 4
3h2 )(w,y −βy)−

z3

3
φz,y

u3(x,y,z) = w(x,y)+ z2
φz

(4.14)

Then, the strain-displacement relations are described as:

εxx = u,x − zw,xx +(z− z3 4
3h2 )(w,xx −βx,x)+

z3

3
φz,xx

εyy = v,y − zw,yy +(z− z3 4
3h2 )(w,yy −βy,y)+

z3

3
φz,yy

εzz =−2zφz

γxy = u,y + v,x −2zw,xy +(z− z3 4
3h2 )(2w,xy −βx,y −βy,x)+

z3

3
φz,xy

γxz = (1−3z2 4
3h2 )(w,x −βx)

γyz = (1−3z2 4
3h2 )(w,y −βy)

(4.15)

Regarding the geometric nonlinearity, the assumptions and terms are the same as defined in Eq.

(4.11).

Furthermore, if both thickness stretching terms are disregarded (h(z) = g(z) = 0),
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the resulting field is a general Higher-order Shear Deformation Theory:

u1(x,y,z) = u(x,y)− zw,x + f (z)(w,x −βx)

u2(x,y,z) = v(x,y)− zw,y + f (z)(w,y −βy)

u3(x,y,z) = w(x,y)

(4.16)

Within the HSDT literature, transverse shear strains were described by polynomials[33], trigonometric[75],

hyperbolic[76] and exponential[77] functions. Additionally, the First-order Shear Deformation

Theory can also be obtained by varying f (z). Some of these functions are shown in Table 1.

Table 1 – f (z) adopted by multiple kinematic theories.

Kinematic Theory f (z) f ′(z)

TSDT [74] z− 4z3

3h2 1− 4z2

h2

SSDT [75] h
π

sin π z
h cos π z

h

SHSDT [76] h sinh z
h − z cosh 1

2 cosh z
h − cosh 1

2

ESDT [77] z
4

3h2

−2(z/h)2
4

3h2

−2(z/h)2 (
1− 4z2

h2

)
FSDT [29] z 1

Source: The author.

4.2 Displacements and Strains

The proposed kinematic theory requires a C1 continuity in the basis functions, which

is evident by the inclusion of second-order derivatives in the strain-displacement relations.

Consequently, due to it being easily attainable through the use of Non-Uniform Rational B-

Splines (NURBS) properties, the isogeometric basis functions are the only ones employed within

the following mathematical development. Hence, as previously stated, any given body can be

represented as a linear combination of basis functions and their corresponding control points.

Considering a degenerate solid approach, the Cartesian coordinates can be expressed as[22, 23]:

x =
np

∑
i=1

Ri(ξ ,η)xi, y =
np

∑
i=1

Ri(ξ ,η)yi, z = ζ
h
2

(4.17)

where Ri(ξ ,η) are the NURBS basis functions, ζ is the parametric direction related to the

thickness, h is the plate thickness and xi, yi are the mid-surface control points coordinates. It

is pertinent to observe that the in-plane coordinates are solely defined with respect to ξ and η ,

whereas the out-of-plane coordinate exclusively takes ζ into account.
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The IGA formulation proposes that the displacements are approximated using the

same basis functions adopted to describe the geometry. Thus, given that the formulation

incorporates a total of 7 DoF, the displacements can be expressed as follows:

u =
np

∑
i=1

Ri ui, v =
np

∑
i=1

Ri vi, w =
np

∑
i=1

Ri wi, βx =
np

∑
i=1

Ri βx,i, βy =
np

∑
i=1

Ri βy,i,

βz =
np

∑
i=1

Ri βz,i, φz =
np

∑
i=1

Ri φz,i

(4.18)

Alternatively, the matrix formulation is defined as:

û =



u

v

w

βx

βy

βz

φz


=

np

∑
i=1



Ri 0 0 0 0 0 0

0 Ri 0 0 0 0 0

0 0 Ri 0 0 0 0

0 0 0 Ri 0 0 0

0 0 0 0 Ri 0 0

0 0 0 0 0 Ri 0

0 0 0 0 0 0 Ri





ui

vi

wi

βx,i

βy,i

βz,i

φz,i


=

np

∑
i=1

Riue = Nue (4.19)

Since the strain formulation requires derivatives with respect to the Cartesian space,

and the displacements are defined in parametric coordinates, the derivatives are transformed

through the application of the chain rule. A matrix formulation for derivatives in this particular

context is given as:
Ri,ξ

Ri,η

Ri,ζ

= J


Ri,x

Ri,y

Ri,z

 (4.20)

where J is the Jacobian matrix, which is evaluated by:

J =



np

∑
i=1

Ri,ξ xi

np

∑
i=1

Ri,ξ yi 0

np

∑
i=1

Ri,ηxi

np

∑
i=1

Ri,ηyi 0

0 0
h
2

 (4.21)

Thus, it is possible to demonstrate that the in-plane and out-of-plane derivatives are uncoupled in

this formulation. Finally, in order to obtain the functions in terms of Cartesian coordinates:
Ri,x

Ri,y

Ri,z

= J−1


Ri,ξ

Ri,η

Ri,ζ

 (4.22)
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In this work, the second-order of in-plane derivatives are also required. Given their

uncoupled nature, their evaluation in terms of ξ and η can be accomplished through a successive

application of the chain rule:

Ri,ξ ξ =
(

R,xxx2
,ξ +R,xx,ξ ξ

)
+R,xyx,ξ y,ξ +R,yxy,ξ x,ξ+(

R,yyy2
,ξ ξ

+R,yy,ξ ξ

)
Ri,ηη =

(
R,xxx2

,η +R,xx,ηη

)
+R,xyx,ηy,η +R,yxy,ηx,η+(

R,yyy2
,ηη +R,yy,ηη

)
Ri,ξ η =

(
R,xxx,ξ xη +R,xx,ξ η

)
+R,xyx,ξ y,η +R,yxy,ξ x,η+(

R,yyy,ξ y,η +R,yy,ξ η

)
(4.23)

These expressions can be written in the matrix form as:
Ri,ξ ξ

Ri,ηη

Ri,ξ η

= Js


Ri,xx

Ri,yy

Ri,xy

+


x,ξ ξ y,ξ ξ

x,ηη y,ηη

x,ξ η y,ξ η


Ri,x

Ri,y

 (4.24)

where:

Js =


x2
,ξ y2

,ξ 2x,ξ y,ξ

x2
,η y2

,η 2x,ηy,η

x,ξ x,η y,ξ y,η (x,ξ y,η + x,ηy,ξ )

 (4.25)

Thus, the second-order in-plane derivatives can be evaluated using:
Ri,xx

Ri,yy

Ri,xy

= (Js)−1




Ri,ξ ξ

Ri,ηη

Ri,ξ η

−


x,ξ ξ y,ξ ξ

x,ηη y,ηη

x,ξ η y,ξ η


Ri,x

Ri,y


 (4.26)

In order to account for the influences of geometric nonlinearity, the contributions

from von Karman membrane strains are incorporated:

ε =



εx

εy

εz

γxy

γxz

γyz


=



u,x

v,y

w,z

u,y + v,x

u,z +w,x

u,z +w,y


︸ ︷︷ ︸

εl

+



1
2w,2x
1
2w,2y

0

w,x w,y

0

0


︸ ︷︷ ︸

εnl

(4.27)
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Thus, given the displacement-strain relations shown in Eq. (4.10), the matrix formulation is

defined as:

ε =
np

∑
i=1



Ri,x 0 ( f (z)− z)Ri,xx − f (z)Ri,x 0 h(z)Ri,xx g(z)Ri,xx

0 Ri,y ( f (z)− z)Ri,yy 0 − f (z)Ri,y h(z)Ri,yy g(z)Ri,yy

0 0 0 0 0 −h′′(z)Ri −g′′(z)Ri

Ri,y Ri,x 2( f (z)− z)Ri,xy − f (z)Ri,y − f (z)Ri,x 2h(z)Ri,xy 2g(z)Ri,xy

0 0 f ′(z)Ri,x − f ′(z)Ri 0 0 0

0 0 f ′(z)Ri,y 0 − f ′(z)Ri 0 0


ue

+
1
2

np

∑
i=1



0 0 WxRi,x 0 0 0 0

0 0 WyRi,y 0 0 0 0

0 0 0 0 0 0 0

0 0 WyRi,x +WxRi,y 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


ue =

np

∑
i=1

(
B0 +

1
2

BL

)
ue

(4.28)

in which:

Wx =
np

∑
i=1

Ri,xwi, Wy =
np

∑
i=1

Ri,ywi (4.29)

4.3 Equilibrium Equations

After defining the matrices B0 and BL in accordance with the Quasi-3D formulation,

the internal virtual work can be computed is terms of the internal force vector (g):

δU =
∫

V
δε

T
σ = δuT g (4.30)

Since the geometric nonlinearity strains are considered by the von Karman terms, it can be shown

that:

δε = Bδu (4.31)

where:

B = B0 +BL (4.32)

resulting in:

g =
∫

V
BT

σ dV (4.33)
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It is imperative to notice that, although the Quasi-3D formulation is considered a plate kinematic

theory, it presents a general state of stress. Thus, since none of the stress components are

neglected, it enables the integral shown in Eq. (4.33) to be directly integrated with respect to the

volume, thereby resembling a solid element.

Some studies within the literature[33, 34] adopts a methodology wherein the integra-

tion is performed first across the thickness and subsequently over the area. This approach aligns

with the mathematical development of other plate theories, being employed to provide matrices

related to internal forces and resultants, which can also be used to easily define the natural

boundary conditions. However, since this process is limited to materials under elastic behavior,

Eq. (4.33) is exclusively evaluated over the volume in this work.

Then, the external virtual work (δWext) and external load vector (f) are computed by

the equations previously presented in Section 3.2. The structural equilibrium is achieved when:

g = f (4.34)

4.4 Tangent Stiffness Matrix

It is pertinent to remark that the approach to nonlinear analysis remains consistent

with the one outlined in Section 3.4, given that the Quasi-3D structures under consideration in

this study are also subjected to displacement-independent loads.

Additionally, due Quasi-3D elements being integrated over the volume and incorpo-

rating integration points across three directions, the tangent constitutive matrix can be evaluated

with the same constitutive model previously employed for the 3D state. Consequently, the

tangent stiffness matrix is as:

KT =
∂g
∂u

=
∫

V
BT ∂σ

∂u
dV︸ ︷︷ ︸

KE

+
∫

V

∂BT

∂u
σ dV︸ ︷︷ ︸

KG

= KE +KG (4.35)

where KE and KG represent the material and geometric stiffness matrices. The partial derivative

∂σ/∂u is defined as:

∂σ

∂u
=

∂σ

∂ε

∂ε

∂u
= CT B (4.36)

In this context, since the same constitutive model can be adopted, the tangent constitutive matrix

CT is computed as detailed in 3.5. Moreover, the material stiffness matrix contribution is defined
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as:

KE =
∫

V
BT CT BdV (4.37)

and the contribution from the geometric stiffness matrix is evaluated by:

KG =
∫

V
GT SGdV (4.38)

where:

G =

0 0 Ri,x 0 0 0 0

0 0 Ri,y 0 0 0 0

 , S =

Nx Nxy

Nxy Ny

 (4.39)

Finally, the integration of these matrices is conducted using the Gaussian integration

technique, involving integration points spanning the three parametric directions, akin to the

procedure employed for a 3D element. The number of points used depends on the basis functions

and on the degree of profile gradation. At each Gaussian point, the properties of Functionally

Graded Materials are assessed to capture the gradation profile. The assembly of the finite

elements’ contributions to the global stiffness matrix is accomplished through the use of the

direct stiffness method.

4.5 Boundary conditions

As previously discussed, the Quasi-3D approach involves 7 Degrees of Freedom (u,

v, w, βx, βy, βz, φz) for each control point. The imposition of these boundary conditions is easily

achievable by Isogeometric Analysis, similar to how it is done in FEM. Consequently, modeling

simply supported ends is pretty straightforward. However, as the development of the kinematic

theory also accounts for another 6 essential boundary conditions (w,x, w,y, βz,x, βz,y, φz,x, φz,y),

the imposition of clamped ends is made alternatively[41].

In this work, open knot vectors are employed, meaning that the derivatives of

the shape functions at the boundaries are defined solely by the nearest two control points.

Consequently, clamped ends were enforced by additionally setting w = 0, βz = 0, φz = 0 for all

the control points adjacent to the boundary, as illustrated in Fig. 8. This methodology makes the

NURBS approach for Quasi-3D - and every other C1 kinematic theory - practical and efficient

when compared to other numerical approaches[82]. However, it is important to note that this

method of enforcing essential boundary conditions is an approximation, which may result in a

marginally stiffer performance of clamped ends.
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Figure 8 – Dirichlet’s boundary
conditions imposition.

Source: The author.

It is interesting to note that for FG plates with non-symmetric material distribution

along the thickness, the mechanical centroid does not coincide with the cross-section centroid.

Consequently, the structure exhibits lateral deflection for any in-plane compressive load. Thus,

it can be concluded that FG plates do not undergo bifurcation buckling unless displacement is

constrained on all borders, which is equivalent to clamped boundary conditions all-around[83, 84].

In a complementary manner, it can also be asserted that simply-supported FG plates can only

present bifurcation when exhibiting a symmetric material distribution.

4.6 Displacements and strains specialization to the 6-DoF Quasi-3D theory

The omission of the stretching linear term by setting h(z) = 0 leads to a new dis-

placement field, as shown in Eq. (4.14). Therefore, it is important to note that, despite the high

resemblance from majority of the NURBS-based approach presented for the 7 DoF formulation,
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some key matrices are different. Each displacement can be defined as:

u =
np

∑
i=1

Ri ui, v =
np

∑
i=1

Ri vi, w =
np

∑
i=1

Ri wi, βx =
np

∑
i=1

Ri βx,i, βy =
np

∑
i=1

Ri βy,i,

φz =
np

∑
i=1

Ri φz,i

(4.40)

Since there is no βz, the new matrix formulation excludes the row and column related to it from

Eq. (4.19):

û =



u

v

w

βx

βy

βz

φz


=

np

∑
i=1



Ri 0 0 0 0 0

0 Ri 0 0 0 0

0 0 Ri 0 0 0

0 0 0 Ri 0 0

0 0 0 0 Ri 0

0 0 0 0 0 Ri





ui

vi

wi

βx,i

βy,i

φz,i


=

np

∑
i=1

Riue = Nue (4.41)

Furthermore, the strain-displacement relations are also different, as defined by Eq. (4.15).

Consequently, the updated matrix formulation for this approach is obtained by excluding the

column related to βz from Eq. (4.19):

ε =
np

∑
i=1



Ri,x 0 ( f (z)− z)Ri,xx − f (z)Ri,x 0 g(z)Ri,xx

0 Ri,y ( f (z)− z)Ri,yy 0 − f (z)Ri,y g(z)Ri,yy

0 0 0 0 0 −g′′(z)Ri

Ri,y Ri,x 2( f (z)− z)Ri,xy − f (z)Ri,y − f (z)Ri,x 2g(z)Ri,xy

0 0 f ′(z)Ri,x − f ′(z)Ri 0 0

0 0 f ′(z)Ri,y 0 − f ′(z)Ri 0


ue

+
1
2

np

∑
i=1



0 0 WxRi,x 0 0 0

0 0 WyRi,y 0 0 0

0 0 0 0 0 0

0 0 WyRi,x +WxRi,y 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


ue =

np

∑
i=1

(
B0 +

1
2

BL

)
ue

(4.42)

in which:

Wx =
np

∑
i=1

Ri,xwi, Wy =
np

∑
i=1

Ri,ywi (4.43)
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The rest of the formulation, encompassing the equilibrium equations, in Section 4.3,

and the evaluation of the tangent stiffness matrix, in Section 4.4, remains applicable after the

incorporation of the revised matrices related to the 6-DoF approach.

On the other hand, considering the framework of Higher-order Shear Deformation

Theories, a reduced stress state is attained during the mathematical development, wherein the

stretching terms are disregarded, leading to εzz = 0. Consequently, the integration process for the

HSDT matrices are very different from the methodology presented for the Quasi-3D theories. If

required, a detailed formulation can be found within the literature[16, 29].
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5 NUMERICAL RESULTS

In this chapter, the behavior of Functionally Graded plates is studied by using the

proposed formulations, considering both geometric and material nonlinearities. The results are

presented in two distinct sections. Initially, the computational implementation of the previously

discussed theories is validated using examples available within the literature. The numerical

values are then also compared with the literature or evaluated by commercial analysis software.

Following that, parametric studies are conducted. In order to provide a thorough

discussion on the influence of the nonlinearities over the mechanical response, different analyses

are carried out. Moreover, when considering FG structures, many constituents are used to

consider distinct composites, and their properties are presented in Table 2. The numerical

analyses also encompass various length-to-thickness ratios and gradation profiles (multiple N).

Table 2 – Constituents mechanical properties.

Property
Material

Al Al −2 ZrO2 −2 ZrO2 SUS304 SiC Si3N4 Al2O3

E (GPa) 70 85.8 151 200 208 302 323 380

ν 0.30 0.28 0.30 0.30 0.28 0.17 0.28 0.30

Source: The author.

For a better understanding regarding the analysis methodology, it is crucial to

highlight a few computational aspects. The software Rhino was used for the modeling and

meshing of NURBS surfaces and solids.

Subsequently, a Python routine was employed to export the mesh to FASTModDef,

where additional steps of the analysis preprocessing take place, such as the definition of sections,

loads and boundary conditions. The analysis is then executed by FAST, and the results can be

visualized using other compatible in-house software, such as CAP3D and NlPos.

For cases where a variation profile through NURBS basis functions is required, an

Octave routine was developed to correctly evaluate a volume fraction to each control point.

As previously discussed, since control points are not generally interpolated by NURBS, the

approximation is computed by employing the least squares method.

Additionally, results obtained by the software ABAQUS were also used for compari-

son in some examples. In this case, the modeling of Functionally Graded structures was achieved

by employing the virtual layer approach, where a number of fictitious plies is inserted across
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the gradation direction, and the properties of each ply are evaluated using their mid-surface

coordinates.

5.1 Verification examples

This section discusses the numerical examples used to guarantee the correct imple-

mentation of the formulations presented in this work. Despite the Quasi-3D kinematic theory

being the main focus, other algorithms were implemented in order to fulfill the requirements to

achieve the objectives presented in this work. Therefore, they are also validated.

5.1.1 Functionally Graded beam with circular cross-section

A Functionally Graded cantilever beam is subjected to a load at the tip. It has a

circular cross-section and the volume fraction variation is defined in the x-axis direction:

Vc = 1−
( x

L

)N
(5.1)

where N is a user-controlled factor that allows the employment of multiple profiles. The effective

properties are evaluated using the Rule of Mixtures, with Ec = 380 GPa and Em = 90 GPa. For

this example, the tip load is P = 40 kN, the length is L = 10 m, the diameter is d = 1.456 m

and N = 1, as seen in Fig. 9. The essential boundary conditions are defined by a clamped end

(u = v = 0 at x = 0).

Figure 9 – Functionally Graded Beam.

Source: The author.

Since the beam is statically determinate, a reference solution can be obtained by

employing the unit load method (ULM)[85]. To enhance the accuracy of the solution, the shear

contribution is considered. The tip displacement of a cantilever beam is given by:

wmax =
∫

L

MM
EI

dx+
∫

L
fs

QQ
GA

dx =
∫ L

0

P(L− x)2

E(x)I
dx+

∫ L

0
fs

P
G(x)A

dx (5.2)

In this work, the structure is modeled as a 3D solid using IGA. The mesh comprises

8 x 4 x 4 isogeometric elements, with a finer discretization along the gradation direction. Notably,
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due to the circular cross-section, shape functions need to be at least quadratic within the plane.

The mesh along with the deformed configuration can be seen in Fig. 10, and the results are

presented in Table 3.

Figure 10 – Isogeometric analysis of FG beam.

(a) 8 x 4 x 4 isogeometric quadratic mesh. (b) Structural deformed configuration.

Source: The author.

Table 3 – FG cantilever beam tip transverse displacement.

Material
8 x 4 x 4

ULM (mm) Diff. (Quad.) Diff. (Cubic)
Quadratic Cubic

Ceramic 0.1579 0.1588 0.1591 -0.70% -0.17%
FGM 0.2058 0.2068 0.2081 -1.09% -0.66%
Metal 0.6668 0.6704 0.6716 -0.70% -0.17%

Source: The author.

As indicated in Table 3, the results are in excellent agreement. The ULM adopts

beam theory assumptions, which explains the slight discrepancy when compared to the 3D model.

Furthermore, due to the effective properties variation, FGM results exhibit a greater difference

than the homogeneous ones.

Since geometric nonlinearity is considered in this work, the total Lagrangian 3D

formulation is employed to analyze the structure under large displacements. The nonlinear

load-displacement curves are presented in Fig. 11. It is interesting to note that the displacements

initially increase linearly, presenting a nonlinear stiffening response for larger loads.

The displacements of a ceramic beam (N = 0) are compared with results obtained

using the Elastica solution through elliptic integrals [86]. Both axial and transverse displacements

are studied. The variables are measured in terms of dimensionless parameters, evaluated respec-

tively for load and displacements by PL2/EcI and v,u/L. Then, the load-displacements curves
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for ceramic, metallic, and FGM beams are shown in Fig. 11.

Figure 11 – Load-displacement curves.

(a) Transverse displacement. (b) Axial displacement.

Source: The author.

It can be seen that the ceramic nonlinear response is in close agreement with the

reference solution. Additionally, the FGM structure presents an intermediate load-displacement

curve when regarding the constituents, which is expected. Hence, the consistency of the

geometric nonlinear implementation is guaranteed.

5.1.2 Internally pressurized cylinder

To validate the von Mises plasticity algorithms, a thick-walled cylinder subjected to

internal pressure[59] is analyzed. The outer radius is R = 20 cm, and the inner radius is r = 10 cm.

The standard twenty-node finite element with (2 x 2 x 2) Gauss integration points is used to model

discretization. Due to symmetry, only a quarter of the entire cylinder cross-section is modeled,

as shown in Fig. 12a. The imposed boundary conditions include symmetry displacements

constraints: u = 0 across the upper face and v = 0 across the lower face. The material is

homogeneous, with E = 210 GPa, ν = 0.3 and σy = 0.24 GPa, with material nonlinearity

considered perfectly plastic.

The internal pressure is increased until structural collapse occurs. Plastic yielding

initiates at the inner surface and progress steadily until reaching the outer surface, as illustrated

in Fig. 12b. For reference, an analytical closed-form solution is used[87], with the limit pressure
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being defined as:

Plim =
2σy√

3
ln(R/r) ⇒ Plim ≈ 0.19209 GPa (5.3)

Fig. 13 presents the internal pressure curve in terms of the axial displacement of the

outer node, resulting in Plim = 0.19206 GPa. The numerical results are in excellent agreement

with the reference solution. The evolution of the plastic front is also shown: The transition

between elastic and plastic behavior happens while there are integration points within both elastic

and plastic domains.

Figure 12 – Quarter of a cylinder subjected to internal pressure.

P

(a) 8x5x2 mesh.

elastic region

plastic region

plastic front

(b) Partly plastified cylinder cross-section.

Source: The author.

5.1.3 Square plate subjected to transverse loading

This section verifies the proposed novel NURBS-based isogeometric approach for

the Reddy’s Quasi-3D Theory. Various types of analysis will be performed to ensure the correct

computational implementation. Results are compared with the general 3D formulation and with

other plate theories derived from the specialization of the Reddy’s Quasi-3D Theory, as discussed

in Section 4.1.1.

The numerical results are based on a square plate subjected to a transverse uniform

load, as shown in Fig. 14. The 3D mesh consists of 16 elements in each direction over the

x− y plane and 4 elements in thickness (z) direction. Boundary conditions, materials and

length-to-thickness relations are detailed within the description of each analysis.
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Figure 13 – Pressure versus displacement diagram.

Source: The author.

Figure 14 – Square plate subjected to transverse load.

Source: The author.
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While geometry and mesh are based on a solid model for the 3D formulation, both

are based on a surface model for typical plate kinematic theories. In this work, the Quasi-3D

formulation, due to the degenerate solid approach, is characterized by a surface-based mesh and a

solid-based section. Therefore, while it presents integration points across the three directions and

performs integration over the volume, the adopted mesh is the same as for other plate theories.

This aspect is illustrated in Fig. 15.

5.1.3.1 Linear elastic analysis

In this example, both Quasi-3D formulations proposed in this work (Q3D6 and

Q3D7) are compared with the results obtained by Moita et al.[34] using a Quasi-3D theory

with 6-DoFs (Q3D6). A linear elastic analysis is carried out for a Al/ZrO2 FG plate subjected

to a transverse load of q = −10 kN/m2. Simply supported and clamped ends are employed.

Results shown in Tables 4 and 5 are obtained for multiple N and length-to-thickness ratios. The

dimensionless deflections are evaluated by w = 100Emh3w/(12a4(1−ν2)q).

Figure 15 – Element representation of each formulation.

(a) 3D (Solid model) (b) HSDT (Surface model) (c) Quasi-3D

Source: The author.

As can be seen in Tables 4 and 5, the results present an excellent agreement, especially

when considering Q3D6 and reference values, since both adopt the same kinematic hypotheses.

Regarding the Q3D7 approach, it presents larger displacements for every instance, as expected

due to the additional degree of freedom, resulting in more flexible structures.
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Table 4 – Dimensionless deflection for
simply-supported ends.

N a/h
w

Ref.[34] Q3D6 Q3D7

0.5
5 0.231 0.233 0.234

10 0.202 0.203 0.205

1
5 0.271 0.272 0.275

10 0.236 0.237 0.240

2
5 0.312 0.312 0.317

10 0.269 0.269 0.274
Source: The author.

Table 5 – Dimensionless deflection for
clamped ends.

N a/h
w

Ref.[34] Q3D6 Q3D7

0.5
5 0.096 0.096 0.097

10 0.069 0.068 0.069

1
5 0.112 0.112 0.114

10 0.080 0.080 0.081

2
5 0.131 0.131 0.134

10 0.092 0.092 0.093
Source: The author.

Furthermore, the formulations are also compared with the 3D model to assess the

overall accuracy. The dimensionless deflections for clamped ends are shown in Table 6. As can

be observed, the Q3D7 formulation presents a better agreement with the solid model.

Table 6 – Dimensionless deflection
for clamped ends (including the 3D
model).

N a/h
w

Q3D7 Q3D6 3D

0.5
5 0.097 0.096 0.100
10 0.069 0.068 0.071

1
5 0.114 0.112 0.116
10 0.081 0.080 0.083

2
5 0.134 0.131 0.136
10 0.093 0.092 0.095

Source: The author.

Additionally, the evaluation of stresses is also considered. For a length-to-thickness

ratio a/h = 5 and a non-homogeneity index N = 0.5, the dimensionless stress is computed as

σ = σ/(q(a/h)2). The stress distribution over the thickness along a transverse normal passing

through the center of the mid-surface is shown in Tables 7 and 8, and in Fig. 16. To include the
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entire thickness interval, the Lobatto quadrature is employed[88] in all directions.

Table 7 – Dimensionless stresses at integration points - Quasi-3D.

z/h
σ xx σ xz σ zz

Q3D7 Q3D6 Q3D7 Q3D6 Q3D7 Q3D6
0.50 0.3930 0.3913 0.0 0.0 -0.0010 -0.0208

0.4499 0.3384 0.3369 0.0022 0.0022 -0.0037 -0.0240
0.3386 0.2272 0.2260 0.0060 0.0060 -0.0066 -0.0280
0.1816 0.0914 0.0903 0.0090 0.0090 -0.0054 -0.0281

0.0 -0.0393 -0.0405 0.0095 0.0095 -0.0007 -0.0243
-0.1816 -0.1432 -0.1447 0.0073 0.0073 0.0033 -0.0203
-0.3386 -0.2054 -0.2072 0.0039 0.0039 0.0037 -0.0186
-0.4499 -0.2174 -0.2193 0.0011 0.0011 0.0017 -0.0176
-0.50 -0.1704 -0.1720 0.0 0.0 0.0004 -0.0137

Source: The author.

As can be seen in Fig. 16, the transverse shear (σ xz) and normal (σ xx) stresses are

in close agreement with the solid model, despite presenting some minor differences, which is

expected due to distinct kinematic assumptions.

On the other hand, the normal stress along the thickness direction (σ zz) presents a

different behavior for all of the approaches. Regarding the 3D model, since the load is applied at

the upper surface, σzz presents a larger-value in z/h = 0.5 and decreases until reaching the lower

surface. For the Quasi-3D formulations, the Q3D7 profile resembles the Q3D6, but is displaced

over the x axis. It can be explained due to the additional DoF that returns a constant value over

the stretching evaluation.

Table 8 – Dimensionless stresses at in-
tegration points - 3D.

z/h
3D

σ xx σ xz σ zz
0.50 0.3982 0.0006 0.0425

0.375 0.2680 0.0048 0.0368
0.250 0.1540 0.0084 0.0354
0.125 0.0494 0.0093 0.0252
0.0 -0.0409 0.0099 0.0190

-0.125 -0.1191 0.0082 0.0108
-0.250 -0.1817 0.0064 0.0044
-0.375 -0.2206 0.0030 0.0017
-0.50 -0.1747 0.0001 -0.0012

Source: The author.
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Figure 16 – Dimensionless stress distribution.

(a) σ xx (b) σ xz (c) σ zz

Source: The author.

5.1.3.2 Nonlinear elastic analysis

In this example, a geometric nonlinear elastic analysis is carried out for a Al/ZrO2−2

FG plate subjected to a reference load of q =−50 kN/m2, being further multiplied by a Load

Proportionality Factor (LPF). Simply supported with constrained membrane displacements

ends are employed. The length-to-thickness ratio is a/h = 40 and several N are adopted. The

dimensionless deflections are evaluated by w = w/a. Results are compared with the Reddy’s

Third-order Shear Deformation Theory (TSDT), which uses the same von Karman hypotheses,

and the 3D model, as shown in Tables 9, 10, 11 and 12 and illustrated in Fig. 17.

Table 9 – Dimensionless deflection with geometric non-
linearity - Q3D7.

LPF
N

0 1 2 5 ∞

1 0.959 1.359 1.480 1.609 2.052
2 1.905 2.741 2.991 3.234 3.997
3 2.830 4.109 4.487 4.823 5.771
4 3.723 5.429 5.927 6.331 7.361
5 4.581 6.678 7.283 7.736 8.781
6 5.399 7.844 8.540 9.029 10.054
7 6.178 8.925 9.699 10.216 11.203
8 6.917 9.925 10.764 11.305 12.248
9 7.617 10.851 11.745 12.306 13.205

Source: The author.

As seen in Fig. 17, the Q3D7, TSDT and 3D results are in very close agreement. As

expected, the plate theories’ displacements reduces as the formulation present more restraining

kinematic hypotheses. Additionally, due to the distinct consideration of geometric nonlinearity,
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the difference between plate theories and the 3D model grows for larger deflections.

Table 10 – Dimensionless deflection with geometric
nonlinearity - Q3D6.

LPF
N

0 1 2 5 ∞

1 0.958 1.353 1.471 1.602 2.047
2 1.901 2.717 2.960 3.204 3.960
3 2.816 4.048 4.411 4.744 5.672
4 3.693 5.311 5.781 6.179 7.181
5 4.527 6.486 7.048 7.493 8.510
6 5.316 7.568 8.207 8.687 9.690
7 6.060 8.560 9.264 9.772 10.748
8 6.761 9.471 10.230 10.761 11.706
9 7.422 10.310 11.114 11.666 12.580

Source: The author.

Table 11 – Dimensionless deflection with geometric
nonlinearity - TSDT.

LPF
N

0 1 2 5 ∞

1 0.958 1.359 1.479 1.609 2.052
2 1.905 2.740 2.990 3.234 3.996
3 2.829 4.108 4.486 4.822 5.769
4 3.722 5.428 5.926 6.330 7.359
5 4.579 6.676 7.281 7.734 8.778
6 5.398 7.842 8.538 9.027 10.050
7 6.176 8.923 9.696 10.213 11.199
8 6.914 9.923 10.761 11.301 12.243
9 7.615 10.848 11.742 12.302 13.200

Source: The author.

On the other hand, it is also important to note that the Q3D6 presents a poor

agreement for large displacements, despite close results for initial loads. Since other 6-DoF

formulations have presented Poisson locking due to the insufficient consideration of the thickness

stretching behavior, this possibility is further investigated. Consequently, the analyses are

executed a second time setting νc = νm = 0. Results are shown in Tables 13, 14 and 15, and also

in Figs. 18 and 19.

The results show that the differences between Q3D7 and 3D results are similar

for both Poisson’s ratio. However, when considering the Q3D6, the difference reduces from a

maximum of about 6.5% to about 1.5% when the Poisson ratio is disregarded. This showcases the
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Poisson locking of the Q3D6 formulation, which can only be solved by including an additional

DoF to improve the representation of the thickness stretching, as in the Q3D7.

Table 12 – Dimensionless deflection with geometric
nonlinearity - 3D.

LPF
N

0 1 2 5 ∞

1 0.961 1.364 1.486 1.615 2.058
2 1.911 2.750 3.001 3.243 4.016
3 2.840 4.121 4.501 4.836 5.812
4 3.740 5.446 5.947 6.354 7.429
5 4.606 6.703 7.312 7.773 8.879
6 5.435 7.880 8.582 9.084 10.182
7 6.225 8.975 9.757 10.292 11.360
8 6.976 9.990 10.840 11.402 12.433
9 7.690 10.931 11.840 12.427 13.417

Source: The author.

Figure 17 – Dimensionless deflection with geometric
nonlinearity.

Source: The author.
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Table 13 – Dimensionless deflection with geometric
nonlinearity (ν = 0) - Q3D7.

LPF
N

0 1 2 5 ∞

1 1.060 1.506 1.641 1.783 2.269
2 2.107 3.030 3.308 3.576 4.414
3 3.128 4.531 4.948 5.317 6.364
4 4.113 5.970 6.515 6.961 8.105
5 5.057 7.325 7.982 8.484 9.655
6 5.956 8.585 9.337 9.882 11.042
7 6.809 9.750 10.582 11.161 12.292
8 7.619 10.826 11.725 12.333 13.427
9 8.385 11.820 12.778 13.410 14.467

Source: The author.

Figure 18 – Dimensionless deflection with geometric
nonlinearity (ν = 0).

Source: The author.



71

Table 14 – Dimensionless deflection with geometric
nonlinearity (ν = 0) - Q3D6.

LPF
N

0 1 2 5 ∞

1 1.060 1.506 1.641 1.783 2.269
2 2.107 3.030 3.308 3.576 4.414
3 3.128 4.531 4.948 5.317 6.363
4 4.113 5.970 6.515 6.961 8.104
5 5.056 7.324 7.982 8.483 9.653
6 5.955 8.584 9.336 9.880 11.039
7 6.809 9.749 10.581 11.159 12.288
8 7.617 10.824 11.723 12.330 13.422
9 8.383 11.818 12.775 13.407 14.461

Source: The author.

Table 15 – Dimensionless deflection with geometric
nonlinearity (ν = 0) - 3D.

LPF
N

0 1 2 5 ∞

1 1.065 1.514 1.650 1.792 2.280
2 2.117 3.045 3.324 3.591 4.440
3 3.144 4.551 4.971 5.339 6.409
4 4.136 5.998 6.546 6.993 8.172
5 5.088 7.361 8.023 8.530 9.745
6 5.996 8.632 9.390 9.944 11.154
7 6.859 9.809 10.649 11.241 12.426
8 7.678 10.897 11.807 12.431 13.581
9 8.455 11.904 12.874 13.527 14.640

Source: The author.

5.1.3.3 Elastoplastic analysis

This section discusses the material nonlinear analysis of simply supported FG plates

subjected to a transverse load of q =−5 MN/m2. First, an homogeneous plate with E = 200 GPa,

ν = 0.3 and σy = 250 MPa with perfect plastic behavior is studied. Dimensionless deflections

are evaluated by w = w/a, and shown in Fig. 20 and in Table 16.

Table 16 – Ultimate load consid-
ering material nonlinearity.

ν
LPF

Q3D7 Q3D6 3D
0.3 2.985 3.043 2.998
0.0 2.978 3.036 2.996

Source: The author.
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Figure 19 – Dimensionless deflection difference between Q3D and 3D formulations.

(a) ν = 0.0 (b) ν = 0.3

Source: The author.

Figure 20 – Load-displacement curve considering material nonlinearity.

(a) ν = 0.0 (b) ν = 0.3

Source: The author.
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In Fig. 20, it can be observed that the load-displacement curves for the Q3D7

and 3D models present an excellent agreement with respect to the ultimate load and a good

overall agreement for the load-displacement curve. However, the Q3D approaches present a

more flexible plastic response, reaching the critical load earlier than the solid. This can be

explained due to the solid model having many more DoFs and thus a better representation of the

through-thickness behavior.

Furthermore, regarding the Q3D6 approach, the results present a higher difference

when compared to the 3D. However, in this case, the Poisson locking is not observed, as the

differences remain stable for both values of ν , as seen in Table 16. Therefore, since the Q3D7

exhibits a better overall performance, it will be employed in further analyses.

Finally, it is important to note that, in this section, the Q3D results are only compared

with 3D models. While some works in the literature use the same methodology employed in

solids for other plate theories, plasticity algorithms would need to be modified to be employed in

problems with reduced stress states[60, 59], and none of these works consistently discusses this

phenomenon.

5.2 Parametric Studies

In this section, the 7-DoF Quasi-3D formulation (Q3D7) is employed for the analysis

of Functionally Graded plates. Multiple FGM components, micromechanical models, length-

to-thickness ratios and types of analyses are considered. Additionally, for the sake of brevity,

unless otherwise stated in the description of each problem: The gradation occurs in the thickness

direction and the employed micromechanical model is the Rule of Mixtures. The mesh comprises

16x16 cubic isogeometric elements, and the Gauss quadrature is employed with 4x4x4 integration

points in each element.

5.3 Elastic analysis

The first example deals with Functionally Graded square plates with linear consti-

tutive relations. Both simply supported and clamped ends are considered. The influence of

length-to-thickness ratios and micromechanical models in deflections and buckling critical loads

is assessed.
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5.3.1 Static analysis

For the static analysis of FG square plates, three distinct FGM are considered:

SUS304/Si3N4, Al/ZrO2 and Al/Al2O3. Considering simply supported ends, the dimensionless

center deflection w/a is evaluated for both micromechanical models, Rule of Mixtures (RoM)

and Mori-Tanaka (MT). Results are shown in Tables 17, 18 and 19.

As shown in Table 17, there is a high agreement between the results, with a maximum

difference of 1.5% across various N and length-to-thickness ratios. in contrast, Table 19 indicates

a poor agreement overall, with a maximum difference of 23.3%, reflecting the discrepancies

between evaluations from the distinct micromechanical models. The variations in mechanical

properties of the FGM components contribute to these differences. For example, while the

Young’s modulus ratio between SUS304 and Si3N4 is only 1.55, it reaches 5.43 for the Al/Al2O3

composite. Table 18 supports this discussion, showing intermediate differences regarding

Al/ZrO2, which presents an Young’s modulus ratio is 2.86, also an intermediate value.

Table 17 – Dimensionless center deflection -
SUS304/Si3N4.

a/h N
w−SUS304/Si3N4

RoM MT Diff. (%)

100

0 -6.99E-03 -6.99E-03 0.0
0.5 -8.10E-03 -8.22E-03 -1.46
1 -8.62E-03 -8.71E-03 -1.11
2 -9.02E-03 -9.10E-03 -0.87
5 -9.46E-03 -9.55E-03 -1.02

50

0 -8.83E-04 -8.83E-04 0.0
0.5 -1.02E-03 -1.04E-03 -1.46
1 -1.09E-03 -1.10E-03 -1.11
2 -1.14E-03 -1.15E-03 -0.88
5 -1.20E-03 -1.21E-03 -1.01

20

0 -5.88E-05 -5.88E-05 0.0
0.5 -6.81E-05 -6.91E-05 -1.47
1 -7.25E-05 -7.33E-05 -1.14
2 -7.60E-05 -7.67E-05 -0.90
5 -7.98E-05 -8.06E-05 -1.01

10

0 -7.94E-06 -7.94E-06 0.0
0.5 -9.18E-06 -9.32E-06 -1.49
1 -9.78E-06 -9.90E-06 -1.18
2 -1.03E-05 -1.04E-05 -0.95
5 -1.08E-05 -1.09E-05 -1.00

Source: The author.
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Moreover, it is important to note that the gradation profile can greatly influence the

deflections regarding the micromechanical model choice. The difference in results peaks at

N = 0.5 and reduces as the index increases. For N = 0, however, where the material becomes

homogeneous with constant effective properties throughout the gradation, the evaluations from

both models are equal. This discussion is better illustrated in Fig. 21.

Additionally, the impact of length-to-thickness ratios on the choice of the microme-

chanical model is found to be negligible, despite the difference in outputs still slightly increases

as the plate thickness grows, which is expected.

5.3.2 Buckling analysis

In this example, the FG plate is now subjected to a compression load of q = 1.0

MN/m in the x direction, as shown in Fig. 22. A linear buckling analysis is conducted. In order

to guarantee the bifurcation within the equilibrium-path, all of the plate’s ends are enforced with

clamped boundary conditions. Due to the non-symmetric gradation over the thickness, simply

supported plates present transverse displacements for every applied load. The clamped boundary

conditions are enforced as depicted in Section 4.5. Since the length-to-thickness ratio effect over

the micromechanical model was found to be negligible, only two different ones are used. On

the other hand, all of the three FG material are once again employed. The results are shown in

Tables 20, 21 and 22.

Therefore, it can be seen that the discussion used for the static analysis in the previous

section remains valid in this example. It is important to note that the Rule of Mixtures evaluates

higher critical buckling loads when compared to the Mori-Tanaka model. This is illustrated in

Fig. 23.

Finally, it is important to remark that the Rule of Mixtures simulates stiffer structures,

evaluating higher effective mechanical properties across the entire range of gradation in contrast

to the Mori-Tanaka. Therefore, despite being the most used micromechanical model within the

literature, it may overestimate structural strength.

5.4 Elastoplastic analysis

This section presents a material nonlinear analysis of a FG circular plate, presenting

a radius-to-thickness ratio of r/h = 10. Simply supported ends are enforced at the boundaries.
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The effects of different micromechanical models in the elastoplastic behavior is investigated.

Table 18 – Dimensionless center deflection -
Al/ZrO2.

a/h N
w−Al/ZrO2

RoM MT Diff. (%)

100

0 -1.11E-02 -1.11E-02 0.0
0.5 -1.51E-02 -1.66E-02 -8.96
1 -1.76E-02 -1.90E-02 -7.16
2 -2.00E-02 -2.11E-02 -5.22
5 -2.22E-02 -2.36E-02 -6.03

50

0 -1.41E-03 -1.41E-03 0.0
0.5 -1.91E-03 -2.09E-03 -8.98
1 -2.23E-03 -2.40E-03 -7.20
2 -2.52E-03 -2.66E-03 -5.27
5 -2.81E-03 -2.99E-03 -6.04

20

0 -9.37E-05 -9.37E-05 0.0
0.5 -1.27E-04 -1.39E-04 -9.01
1 -1.48E-04 -1.60E-04 -7.31
2 -1.68E-04 -1.78E-04 -5.43
5 -1.87E-04 -2.00E-04 -6.06

10

0 -1.27E-05 -1.27E-05 0.0
0.5 -1.70E-05 -1.87E-05 -9.07
1 -1.99E-05 -2.15E-05 -7.56
2 -2.27E-05 -2.41E-05 -5.76
5 -2.55E-05 -2.72E-05 -6.07

Source: The author.

Figure 21 – Difference between deflection
evaluations - a/h = 100.

Source: The author.
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Figure 22 – Square plate subjected to axial load.

Source: The author.

The circular mesh is first validated by analyzing a benchmark example presented

in the literature[59]. The isogeometric mesh used for the Q3D7 approach and the axisymmetric

FE mesh used by the reference are shown in Fig. 24. Considering a perfect plastic material

of E = 10 MPa, ν = 0.24 and σy = 16 kPa, the plate is subjected to a uniform transverse load

p. The load-displacement curve for the dimensionless central deflection (w/r) is illustrated in

Fig. 25. The limit load for the present problem can be computed by using the finite difference

method combined with methods of limit analysis[89], which results in P = 260.8. The Q3D

formulation achieved an ultimate load of p = 265.87, presenting a difference of 2%. Hence, the

results present a close agreement. It is important to remark that, due to the use of rational basis

functions, the isogeometric mesh is able to exactly represent the circular geometry of the plate.

Then, the circular plate is now comprised of a Al −2/SiC material[90, 91], in which

q = 183.2 GPa[13]. Material nonlinearity is considered to be perfectly plastic. The Rule of

Mixtures (RoM) and the Mori-Tanaka technique (MT) are used to evaluate the effective elastic

properties. The plate is subjected to a uniform load of p =−1.0 MN/m2. The load-displacement

curve for the dimensionless center deflection (w/r) for multiple N is given in Fig. 26. It can be

seen that the the Rule of Mixtures, by evaluating stiffer mechanical properties, presents lower

displacements for any given load in every N when compared to the Mori-Tanaka.

Therefore, despite the micromechanical models being directly related to the elastic

behavior, they can still influence the Tamura-Tomota-Ozawa evaluations due to the use of

effective Young’s modulus on the hardening modulus. However, since this is a perfectly plastic

nonlinearity, the ultimate load achieved by both micromechanical models is approximately equal,
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as the structure is then fully on plastic domain.

Table 19 – Dimensionless center deflection -
Al/Al2O3.

a/h N
w−Al/Al2O3

RoM MT Diff. (%)

100

0 -5.86E-03 -5.86E-03 0.0
0.5 -8.88E-03 -1.16E-02 -23.17
1 -1.14E-02 -1.43E-02 -20.05
2 -1.44E-02 -1.69E-02 -14.48
5 -1.72E-02 -2.02E-02 -15.04

50

0 -7.41E-04 -7.41E-04 0.0
0.5 -1.12E-03 -1.46E-03 -23.18
1 -1.44E-03 -1.81E-03 -20.12
2 -1.82E-03 -2.13E-03 -14.62
5 -2.17E-03 -2.56E-03 -15.09

20

0 -4.93E-05 -4.93E-05 0.0
0.5 -7.43E-05 -9.68E-05 -23.22
1 -9.56E-05 -1.20E-04 -20.34
2 -1.21E-04 -1.42E-04 -15.02
5 -1.45E-04 -1.71E-04 -15.22

10

0 -6.66E-06 -6.66E-06 0.0
0.5 -9.98E-06 -1.30E-05 -23.31
1 -1.28E-05 -1.62E-05 -20.81
2 -1.62E-05 -1.93E-05 -15.88
5 -1.98E-05 -2.35E-05 -15.46

Source: The author.

Table 20 – Critical buckling load -
SUS304/Si3N4.

a/h N
Pcr(LPF)−SUS304/Si3N4
RoM MT Diff (%)

100

0 2.96 2.96 0.0
0.5 2.55 2.51 1.51
1 2.39 2.37 1.13
2 2.29 2.27 0.86
5 2.18 2.16 1.01

20

0 351.34 351.34 0.0
0.5 303.21 298.67 1.52
1 284.52 281.22 1.17
2 271.04 268.60 0.91
5 258.23 255.67 1.00

Source: The author.

Furthermore, to ensure physical consistency, it is important to note that the Mori-

Tanaka micromechanical model is based on the Mean Field Homogenization, being connected to
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the Eshelby Tensor[92]. In the context of isotropic materials, this tensor is symmetric. However,

when FG structures undergo plastic deformation, a potential anisotropic behavior may appear,

which makes this model not recommended for this type of analysis.

Table 21 –Critical buckling load - Al/ZrO2.

a/h N
Pcr(LPF)−Al/ZrO2

RoM MT Diff (%)

100

0 1.86 1.86 0.0
0.5 1.37 1.24 10.19
1 1.16 1.08 7.86
2 1.02 0.97 5.27
5 0.92 0.87 6.05

20

0 220.82 220.82 0.0
0.5 162.55 147.44 10.25
1 138.12 127.75 8.11
2 120.98 114.54 5.63
5 108.58 102.39 6.04

Source: The author.

In the previous examples, the homogenization process for estimating the elastic

properties occurred prior to the application of any load and the results regarding the Mori-Tanaka

model were used solely for verification purposes. Therefore, the Rule of Mixtures is the only

micromechanical model further employed for material nonlinear analysis in this work.

Table 22 – Critical buckling load -
Al/Al2O3.

a/h N
Pcr(LPF)−Al/Al2O3

RoM MT Diff (%)

100

0 3.54 3.54 0.0
0.5 2.31 1.76 31.65
1 1.77 1.40 25.79
2 1.38 1.19 16.08
5 1.16 1.00 15.83

20

0 419.56 419.56 0.0
0.5 275.58 209.27 31.69
1 210.96 166.84 26.44
2 164.12 140.00 17.23
5 136.37 117.43 16.12

Source: The author.
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Figure 23 – Difference between critical buck-
ling evaluations for both micromechanical
models.

Source: The author.

Figure 24 – Circular plate mesh.

(a) 16x16 isogeometric cubic mesh. (b) Axisymmetric Finite Element mesh.

Source: The author.

5.5 Nonlinear analysis

Finally, this example assess the nonlinear behavior of square plates. First, a homoge-

neous SUS304 plate with perfect plasticity (σy = 205.0 MPa) is subjected to a uniform transverse

load of −5 MN/m2. Simply supported boundary conditions are enforced at the boundaries and

dimensionless center deflection is given by w = w/a. Then, the effect of the length-to-thickness

ratio on the nonlinear behavior is assessed, as multiple load-displacement curves are shown in
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Fig. 27. To present a thorough discussion, three types of analyses are carried out for each case:

geometrically nonlinear (GNL), materially nonlinear (MNL), and geometrically and materially

nonlinear (GMNL).

When considering the GMNL analysis, the load-displacement curve start resembling

the material nonlinear behavior and, as the length-to-thickness ratio increases, it begins to

resemble the geometric nonlinear behavior. For thick plates, material nonlinearity is predominant,

since membrane effects are negligible when compared to the bending ones.

Figure 25 – Dimensionless deflection for homoge-
neous circular plate.

Source: The author.

This behavior can be observed in Fig. 27a, as plasticity occurs before any geometric

nonlinear effect takes place. On the other hand, for thin plates the behavior is the opposite. Due

to the high slenderness, membrane effects are much greater than the bending ones. Hence, in this

case, the geometric nonlinearity effects already takes place during the elastic response, as seen

in Fig. 27d. For intermediate values of a/h, however, both nonlinearities effects are observed,

illustrated in Figs. 27b and 27c.

Then, a Functionally Graded SUS304/Si3N4 plate is subjected to an axial compres-

sion load q = 1 MN/m along the ends that are perpendicular to the x direction, as shown in Fig.

22. The material presents linear hardening plasticity, where the adopted plastic variables are

σy,m = 398.83 MPa, Hm = 1.883 GPa and q = 183.2 GPa. Simply supported boundary condi-
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tions are enforced at the boundaries and dimensionless center deflection is given by w = w/a.

Load-displacement curves for two distinct length-to-thickness ratios are shown in Fig. 28, where

geometrically nonlinear analysis (GNL), and geometrically and materially nonlinear analysis

(GMNL) are carried out.

Figure 26 – Dimensionless deflection for a FG cir-
cular plate.

Source: The author.

Since for any N ̸= 0 the gradation acts like an imperfection, the transverse dis-

placements begin with the load application. In these cases, the structural load-capacity grows

permanently if only the geometric nonlinearity is considered. However, when both nonlinearities

are considered, the load-displacement curve changes due to the reduced structural stiffness from

the plastic behavior.

In Fig. 28a, it can be observed that the material nonlinearity greatly influences the

behavior early, especially for higher values of N. In some cases, the equilibrium path even

presents a decrease in load capacity. On the other hand, as shown in Fig. 28b, for a thinner

plate, due to the predominance of membrane effects, the material nonlinearity is only taken into

account for relatively large displacements. Nevertheless, it still greatly influences the equilibrium

path.

Additionally, it is important to remark that, since the plasticity is associated with the

metal constituent volume fraction, the TTO cannot be employed for a homogeneous plate of
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ceramic constituent, as it presents a brittle material failure. Therefore, a very small N is used to

simulate its behavior. In this case, while not presenting a bifurcation point as there is a minor

imperfection, the material nonlinearity effects are very small due to the negligible metal volume

fraction.

Figure 27 – Load-displacement curve for a FG square plate.

(a) a/h = 10 (b) a/h = 20

(c) a/h = 40 (d) a/h = 100

Source: The author.
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Figure 28 – Load-displacement curve for a FG square plate.

(a) a/h = 100. (b) a/h = 40.

Source: The author.
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6 CONCLUSION

This work introduced a methodology for the material and geometric nonlinear

analysis of Functionally Graded structures, particularly focusing on plates. It presented a

general 3D formulation capable of handling tridirectional gradation, incorporating algorithms

for both material and geometric nonlinearities, and considering isogeometric and finite elements

approaches. Furthermore, a novel NURBS-based 7-DoF Quasi-3D (Q3D7) formulation was

developed using the degenerated solid approach. Multiple kinematic theories derived from the

specialization of the Q3D7 were also explored. The accuracy of the proposed formulations was

assessed through several types of analyses involving different geometries and materials.

The mathematical developments were implemented in an in-house software named

Finite Element Analysis Tool (FAST), developed in C++. The implementation covered the von

Mises and Tamura-Tomota-Ozawa plasticity models, the Quasi-3D formulations with von Kar-

man strains, and the shape function gradations for both Finite Element Methods and Isogeometric

Analysis approaches.

For the general 3D formulation, the results exhibited a close agreement with literature

examples for both homogeneous and FG materials. The plasticity algorithms were validated

through comparison with reference solutions available in the literature.

Additionally, concerning the Quasi-3D kinematic theories, the Q3D7 formulation

presented an excellent agreement with reference solutions and 3D benchmarks for displacements,

ultimate loads and buckling behavior. The degenerated solid approach allowed the seamless

integration of 3D plasticity algorithms into the formulation. In contrast, the 6-DoF Quasi-3D

theory (Q3D6) presented Poisson locking, making it unsuitable for structural analysis in general.

Regarding the assessment of the behavior of FG plates, the micromechanical model

choice was found to be substantial to the analysis results, depending on the mechanical properties

of constituents and gradation profile. Furthermore, the inclusion of both nonlinearities into the

analysis was essential to accurately define the equilibrium-path, particularly for intermediate

values of length-to-thickness ratios, as it could significantly alter the nonlinear load-displacement

curve behavior. It is important to remark that, in thick plates, structural failure was primarily

influenced by material nonlinearity caused by bending effects, while in thin plates, geometric

nonlinearity played a predominant role due to membrane effects.

Overall, the 7-DoF Quasi-3D theory demonstrated excellent agreement with bench-

marks and reference values. It offered significant advantages over the solid model, requiring a
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simpler mesh and facilitating the enforcement of boundary conditions and applied loads. Addi-

tionally, it also presented advantages over other plate kinematic theories by correctly employing

3D plasticity algorithms and eliminating the Poisson locking observed in the Q3D6.

In conclusion, the use of the Q3D7 is generally recommended over the 3D model

for analysis of FG plates due to the close agreement in results and less complex methodology.

However, for analyses where material nonlinearity is not required, simpler plate theories may be

preferable over the Q3D7, following the same reasoning.

The following suggestions can be further explored in future works:

(a) Employment of alternatives plasticity models for Functionally Graded Materials;

(b) Use of other functions to define both the transverse shear strains and thickness stretching,

adopting the same general formulation;

(c) Adjustment of plasticity algorithms to be employed in reduced stress states, capable of

being used with simpler plate theories;

(d) Development of other benchmarks problems using the general 3D formulation to model

bidirectional and tridirectional graded structures;

(e) Study of other types of Functionally Graded Materials besides the MMC, such as the

Carbon-Nanotube Reinforced and Porous FGM.
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APPENDIX A – NURBS BASIS FUNCTIONS

Geometric modeling is an applied mathematical theory used to represent and describe

geometric shapes. It plays a crucial role in computer graphics and is extensively employed by

Computer Aided Design (CAD) based softwares. These softwares’ applications are utilized in

various industries, ranging from electronic games to diverse engineering fields.

The mathematical framework used by CAD systems, emphasizing the modeling of

free-form curves, surfaces and solids, is frequently presented in recent literature as Bézier, B-

Splines, Non-Uniform Rational B-Splines and T-Splines representations. These representations

not only enable the modeling of complex geometries, but also account for holes and trimmed

surfaces.

In engineering applications, CAD systems are frequently used in conjunction to

Computer Aided Engineering (CAE) systems, resulting in an integrated performance between

geometric modeling and numerical analysis.

In this appendix, since this work employed NURBS-based formulation, the basis

functions provided by this geometric representation are presented, and some of their notable

properties and features are defined. Anyhow, if needed, more in-depth discussions and concepts

can be found within the literature[22, 23].

A.1 B-Splines

B-Splines are a type of curve description in a parametric space known for their

capacity to describe distinct segments within a single parametric representation. This is achieved

by narrowing the influence of their basis functions over specific regions of the parametric space,

defined as knot-vectors. A B-Spline curve is defined by associating the basis functions Ni,p(ξ )

with the control points pi:

C(ξ ) =
n

∑
i=1

Ni,p(ξ )pi (A.1)

where n is the number of control points and p denotes the curve degree.

B-Splines basis functions require the use of a knot-vector, which is a set of non-

negative, non-decreasing parametric values along the range [ξ1,ξn+p+1] where the curve is

defined. These basis functions can be computed using the Cox-de Boor recursion formula. Given
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a knot vector Ξ =
[
ξ1,ξ2, ...,ξn+p+1

]
, the B-spline basis functions are expressed as[22]:

Ni,0(ξ ) =

1, if ξi ≤ ξ < ξi+1

0, otherwise
(A.2)

Ni,p(ξ ) =
ξ −ξi

ξi+p −ξi
Ni,p−1(ξ )+

ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ ) (A.3)

A knot-vector is labeled as uniform if its parameters vary based on a constant factor,

otherwise it is said to be non-uniform. For instance, Ξ = [0,0,0,0.33,0.67,1,1,1] is uniform,

whereas the vector Ξ = [0,0,0,0.4,0.75,1,1,1] is non-uniform. The size of a knot vector directly

impacts on the number of basis functions[22]:

n = ks− p−1 (A.4)

where n is the number of basis functions and ks is the size of the knot vector.

Furthermore, it is essential to emphasize other features and properties of B-splines

basis functions, as these attributes are proven to be valuable in subsequent process of structural

analysis[22]:

– Compact support: Ni,p = 0 if ξ is outside of the interval
[
ξi,ξi+p+1

]
;

– Partition of unity:
n

∑
i=1

Ni,p(ξ ) = 1;

– Non-negative functions: Ni,p ≥ 0;

– Each knot span
[
ξ j,ξ j+1

]
carries exactly p+1 non-negative basis functions;

– Every Ni,p derivative exist within the knot spans. For each knot, the basis function can be

differentiated p−m times, given that m is the knot multiplicity.

The Isogeometric analysis allows three distinct B-spline curve refinement algorithms:

the h, p and k schemes. In the h refinement approach, the knot span size is reduced by introducing

new knots into the knot vector. This increases the number of existing spans and results in the

creation of a new basis function and an associated control point. It resembles the h refinement

method in FEM, where the number of elements is increased while their size is reduced.

The p refinement consists in elevating the curve degree. During this process, the

multiplicity of every knot is increased by one, which maintains the continuity. This scheme

does not alter the number of knot spans, but, in order to preserve the multiplicity, it leads to the

addition of a new basis function and an associated control point. This approach is similar to the

p refinement in FEM, where the degree associated with polynomial basis functions is increased.
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The third refinement algorithm in the IGA is the k refinement. Unlike both methods

previously discussed, there is not a similar procedure presented for FEM, being exclusive to this

computational approach. The k refinement combines aspects of both the p and h refinements

respectively. Consequently, it results in basis functions with an increased degree, a greater number

of knot spans and also a higher continuity between these spans. This feature is particularly

valuable for isogeometric elements that require functions of higher continuity than the usual C0.

This is the reason that makes IGA a more suitable computational method for the development

and implementation of C1 kinematic theories, as presented in this work.

A.2 NURBS

NURBS stands for Non Uniform Rational B-Splines[22]. They are widely employed

by commercial softwares for geometric modelling. Their high popularity is attributed to their

rational basis functions, which allow for the exact representation of non-polynomial geometries,

including shapes like ellipses and circumferences. Besides this upfront advantage, NURBS

curves present multiple other valuable properties, among which are:

(a) The capability to achieve a wide range of geometries by manipulating the control points

and the weights associated with them;

(b) Speed and stability during their numerical evaluation;

(c) The ability to apply conventional geometric transformations, such as rotation and transla-

tion;

(d) The capacity to represent other simpler design curves, such as B-Splines and Bézier

elements.

These attributes make NURBS a versatile tool in the field of geometric modeling.

The rational basis functions are obtained by dividing one polynomial by another.

Furthermore, weight values are associated with each control point to provide a parameter that

better controls the curve’s behavior. This behavior is mathematically described by:

Ri,p(ξ ) =
Ni,p(ξ )wi

n

∑
i=1

Ni,p(ξ )wi

=
Ni,p(ξ )wi

W (ξ )
=

A(ξ )
W (ξ )

(A.5)

where Ri,p is the rational basis, Ni,p stands for the polynomial basis and wi(ξ ) denotes the

weight functions of each control point, and ξ is the parametric coordinate. Therefore, in order

to construct a NURBS curve, the basis functions are required to be paired to the curve control
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points (Pi):

C(ξ ) =
n

∑
i=1

Ri,p(ξ )Pi (A.6)

These curves can also be refined using the three techniques previously defined for B-Splines, as

discussed in Section A.1.

Additionally, due to the mechanical formulation requirements, obtaining the deriva-

tives of NURBS functions is essential. The first-degree derivative can be easily computed using

the quotient rule:

R′
i,p(ξ ) =

W (ξ )A′(ξ )−W ′(ξ )A(ξ )
W (ξ )2 =

A′(ξ )−W ′(ξ )Ri,p(ξ )

W (ξ )
(A.7)

For higher degree derivatives, the Leibnitz technique is employed, where the k-th derivative is

given by:

R(k)
i,p (ξ ) =

A(k)(ξ )−
k

∑
j=1

(
k
j

)
W ( j)(ξ )R(k− j)

i,p (ξ )

W (ξ )
(A.8)

This work aims for the analysis of 3D and 2D models, requiring the combination of

multiple NURBS curves to model geometries in higher space dimensions. A NURBS surface is

the result of a tensor product between two univariate NURBS curves, as illustrated in Figure 29.

Assuming a degree p curve along the (ξ ) direction with a knot vector Ξ =
[
ξ1,ξ2, ...,ξn+p+1

]
,

another degree q curve in the direction (η) with a knot vector H =
[
η1,η2, ...,ηm+q+1

]
and a

control point matrix P(nxm), the NURBS surface is expressed as:

S(ξ ,η) =
n

∑
i=1

m

∑
j=1

Ri j(ξ ,η)Pi j (A.9)

where Ri j is given by:

Ri j(ξ ,η) =
wi jNi,p(ξ )N j,q(η)

W (ξ ,η)
=

A(ξ ,η)

W (ξ ,η)
(A.10)

and W (ξ ,η) is the bivariate weight function:

W (ξ ,η) =
n

∑
î=1

m

∑
ĵ=1

wî ĵNî,p(ξ )N ĵ,q(η) (A.11)

As the surfaces are now defined by two parameters, each representing a parametric

direction, it is necessary to evaluate the partial derivatives. Considering the weight functions,
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they are calculated by:

∂

∂ξ
W (ξ ,η) =

n

∑
î=1

m

∑
ĵ=1

wî ĵN
′
î,p(ξ )N ĵ,q(η)

∂

∂η
W (ξ ,η) =

n

∑
î=1

m

∑
ĵ=1

wî ĵNî,p(ξ )N
′
ĵ,q(η)

(A.12)

Next, the partial derivatives for the NURBS surface are evaluated by:

∂

∂ξ
Ri j(ξ ,η) = wi j

W (ξ ,η)N′
i,p(ξ )N j,q(η)− ∂

∂ξ
W (ξ ,η)Ni,p(ξ )N j,q(η)

W 2(ξ ,η)

∂

∂η
Ri j(ξ ,η) = wi j

W (ξ ,η)Ni,p(ξ )N′
j,q(η)− ∂

∂η
W (ξ ,η)Ni,p(ξ )N j,q(η)

W 2(ξ ,η)

(A.13)

Figure 29 – NURBS surface.

Source: The author.

For a NURBS solid, which represents a 3D model, the equations are analogous to

those presented for the two-dimensional structures. The main difference is that, for this instance,

a tensor product is employed for three univariate NURBS basis functions, as shown in Figure

30. Given a degree p curve along the (ξ ) direction with a knot vector Ξ =
[
ξ1,ξ2, ...,ξn+p+1

]
,

a degree q curve in the direction (η) with a knot vector H =
[
η1,η2, ...,ηm+q+1

]
, a degree l

curve in the direction (ζ ) with a knot vector Z = [ζ1,ζ2, ...,ζo+l+1] and a control point matrix

P(nxmxo), the NURBS solid is given by:

V(ξ ,η ,ζ ) =
n

∑
i=1

m

∑
j=1

o

∑
k=1

Ri jk(ξ ,η ,ζ )Pi jk (A.14)
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where Ri jk is defined as:

Ri jk(ξ ,η ,ζ ) =
wi jNi,p(ξ )N j,q(η)Nk,l(ζ )

W (ξ ,η ,ζ )
=

A(ξ ,η ,ζ )

W (ξ ,η ,ζ )
(A.15)

and W (ξ ,η ,ζ ) is the trivariate weight function:

W (ξ ,η ,ζ ) =
n

∑
î=1

m

∑
ĵ=1

o

∑
k̂=1

wî ĵk̂Nî,p(ξ )N ĵ,q(η)Nk̂,l(ζ ) (A.16)

This approach allows for the modeling of surfaces in higher dimensions, a crucial feature for the

analysis conducted in this work.

Figure 30 – NURBS solid.

Source: Barroso[23].

The methodology for obtaining partial derivatives in 3D models follows the same

approach as presented for 2D models. Beginning with the weight functions, they are calculated

as follows:

∂

∂ξ
W (ξ ,η ,ζ ) =

n

∑
î=1

m

∑
ĵ=1

o

∑
k̂=1

wî ĵk̂N′
î,p(ξ )N ĵ,q(η)Nk̂,l(ζ )

∂

∂η
W (ξ ,η ,ζ ) =

n

∑
î=1

m

∑
ĵ=1

o

∑
k̂=1

wî ĵk̂Nî,p(ξ )N
′
ĵ,q(η)Nk̂,l(ζ )

∂

∂ζ
W (ξ ,η ,ζ ) =

n

∑
î=1

m

∑
ĵ=1

o

∑
k̂=1

wî ĵk̂Nî,p(ξ )N ĵ,q(η)N′
k̂,l(ζ )

(A.17)
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Then, the partial derivatives for the NURBS solid are evaluated by:

∂

∂ξ
Ri jk(ξ ,η ,ζ ) = wi jkN j,q(η)Nk,l(ζ )

W (ξ ,η ,ζ )N′
i,p(ξ )− ∂

∂ξ
W (ξ ,η ,ζ )Ni,p(ξ )

W 2(ξ ,η ,ζ )

∂

∂η
Ri jk(ξ ,η ,ζ ) = wi jkNi,p(ξ )Nk,l(ζ )

W (ξ ,η ,ζ )N′
j,q(η)− ∂

∂η
W (ξ ,η ,ζ )N j,q(η)

W 2(ξ ,η ,ζ )

∂

∂ζ
Ri jk(ξ ,η ,ζ ) = wi jkNi,p(ξ )N j,q(η)

W (ξ ,η ,ζ )N′
k,l(ζ )−

∂

∂ζ
W (ξ ,η ,ζ )Nk,l(ζ )

W 2(ξ ,η ,ζ )

(A.18)

These partial derivatives are essential for various analytical computations and modeling purposes

involving NURBS surfaces and solids.
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