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RESUMO

Dado um grafo G = (V (G),E(G)) e um subgrafo H = (V (H),E(H)) de G, uma k-coloração

q-backbone de (G,H) é uma função φ : V (G) → {1,2,3, ...,k} tal que, para toda aresta uv ∈
E(G), temos |φ(u)− φ(v)| ≥ 1 e, para toda aresta uv ∈ E(H), temos |φ(u)− φ(v)| ≥ q. O

número cromático q-backbone de (G,H), denotado por BBCq(G,H), é o menor inteiro k tal

que existe uma coloração φ como acima. Similarmente, uma k-coloração q-backbone circular

de (G,H) é uma função φ : V (G)→ {1,2,3, ...,k} tal que, para toda aresta uv ∈ E(G), temos

|φ(u)−φ(v)| ≥ 1 e, para toda aresta uv ∈ E(H), temos k− q ≥ |φ(u)−φ(v)| ≥ q. O número

cromático q-backbone circular de (G,H), denotado por CBCq(G,H), é o menor inteiro k tal

que existe uma coloração φ como acima. Nesta dissertação, primeiramente apresentamos um

breve sumário dos resultados relacionados a Coloração Backbone. Após isto, mostramos que

se G é um grafo planar sem ciclos de tamanho quatro e F é uma floresta geradora de caminhos

induzidos de G, então CBC2(G,F)≤ 7. Por fim, demonstramos o seguinte teorema: se G é um

grafo conexo e k ≥ max{χ(G),�χ(G)/2�+ q}, então existe uma k-coloração c de G tal que

Gc,q é conexo, onde Gc,q é o subgrafo de G tal que V (Gc,q) e E(Gc,q) é formado pelas arestas

vw ∈ E(G) que satisfazem |c(v)− c(w)| ≥ q.

Palavras-chave: coloração de grafos; número cromático; coloração backbone circular; grafos

planares sem C4; árvore como backbone.



ABSTRACT

Given a graph G = (V (G),E(G)) and a subgraph H = (V (H),E(H)) of G, a q-backbone k-

coloring of (G,H) is a function φ : V (G)→{1,2,3, . . . ,k} such that, for every edge uv ∈ E(G),

we have |φ(u)−φ(v)| ≥ 1 and, for every edge uv ∈ E(H), we have |φ(u)−φ(v)| ≥ q. The q-

backbone chromatic number of (G,H), denoted by BBCq(G,H), is the smallest integer k such that

there exists such coloring φ . Similarly, a circular q-backbone k-coloring of (G,H) is a function

φ : V (G) → {1,2,3, . . . ,k} such that, for every edge uv ∈ E(G), we have |φ(u)− φ(v)| ≥ 1

and, for every edge uv ∈ E(H), we have k−q ≥ |φ(u)−φ(v)| ≥ q. The circular q-backbone

chromatic number of (G,H), denoted by CBCq(G,H), is the smallest integer k such that there

exists such coloring φ . In this dissertation, we firstly present a brief summary on the results found

in literature regarding Backbone Coloring. Then, we prove that if G is a planar graph without

cycles of size four and F is a spanning forest of induced paths of G, then CBC2(G,F)≤ 7. Lastly,

we show the following theorem : if G is a connected graph and k ≥ max{χ(G),�χ(G)/2�+q},

then there exists a proper k-coloring c of G such that Gc,q is connected, where Gc,q is the

subgraph of G such that V (Gc,q) =V (G) and E(Gc,q) is the set of edges vw ∈ E(G) that satisfy

|c(v)− c(w)| ≥ q.

Keywords: graph coloring; chromatic number; circular backbone coloring; planar graphs without

C4; tree backbone.
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1 INTRODUCTION

This dissertation presents a contribution to the well-known problem on Graph Theory

called Graph Coloring. The first results involving graph coloring were mainly regarding the

coloring of counties in a map and are dated as early as 1852 (KUBALE, 2004). By that time, it

was observed that if each county was colored with a single color, then the map could be colored

with four colors, in such a way that neighbouring counties are not colored with the same color.

This observation was then published in the form of a puzzle and later became known as the

Four Color Theorem (FRITSCH et al., 1998). In telecommunications, Graph Coloring problems

also appear in the form of Frequency Assignment problems (HALE, 1980). In one version of

these problems, we consider a network of radio transmitters and if the frequencies assigned to

some pairs of transmitters are equal, or too close, then they might interfere with one another.

The problem is to assign frequencies to the transmitters in such way that the interference is at a

minimum. In this case, each radio transmitter may be seen as a node, the frequencies available

for each node as colors and if two transmitters may potentially interfere with one another, the

corresponding nodes are joined by an edge.

In this dissertation, all graphs considered are simple and undirected. We are using

the terminology and notations presented on (WEST, 2000). For more basic notions on Graph

Theory and Graph Colorings, see (BONDY.; MURTY, 2007; JENSEN; TOFT, 2011; MOLLOY;

REED, 2002). For more detailed definitions, see Section 2.

A k-coloring of a graph G = (V (G),E(G)), for some positive integer k, is any

function φ : V (G)→ {1,2,3, ...,k}. We say that a k-coloring φ of G is proper if for any vw ∈
E(G) we have |φ(v)−φ(w)| ≥ 1. If there exists a proper k-coloring φ : V (G)→{1,2,3, ...,k},

then we say that G is k-colorable. The chromatic number of a graph G, denoted by χ(G), is the

smallest positive integer k for which the graph is k-colorable. It is known that ω(G)≤ χ(G)≤
Δ(G)+ 1, where ω(G) and Δ(G) are, respectively, the size of the largest clique in G and the

maximum degree of a vertex in G.

Backbone Coloring is a special case of Graph Coloring where the colors φ(u),φ(v)

of the endpoints u,v of some special edges must satisfy |φ(u)−φ(v)| ≥ q for a given positive

integer q. The subgraph obtained by these special edges is called backbone of G. Problems

regarding backbone colorings were first introduced by Broersma et al. (BROERSMA et al.,

2007), based on coloring problems related to frequency assignment.

There are some known problems in the literature that model some variations of the
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Frequency Assignment problem. A survey on such problems can be found in Hale (HALE, 1980).

For instance, one of the most studied of these problems is the L(2,1)-labelling problem. An

L(2,1)-labelling of a graph G is a function f from the vertex set V (G) to the set of all nonnegative

integers such that | f (x)− f (y)| ≥ 2 if d(x,y) = 1 and | f (x)− f (y)| ≥ 1 if d(x,y) = 2. The L(2,1)-

labelling number λ (G) of G, defined in Griggs et al. (GRIGGS; YEH, 1992), is the smallest

number k such that G has an L(2,1)-labelling with max{ f (v) : v ∈ V (G)} = k. The square of

G is the graph G2, obtained from G by adding all edges between vertices that are at distance

two. Observe that an L(2,1)-labelling of G may be seen as a coloring of the square of G, where

the colors of the endpoints of edges of G must differ by at least two units and the colors of the

remaining edges must be different. This corresponds to a backbone coloring of G2, where G is

the backbone subgraph and q = 2.

More formally, consider a graph G=(V (G),E(G)) and a subgraph H =(V (H),E(H))

of G, we name (G,H) a pair. Given positive integers k and q, a q-backbone k-coloring of a

pair (G,H) is a proper k-coloring φ : V (G)→{1,2, ...,k} satisfying |φ(u)−φ(v)| ≥ q for any

uv ∈ E(H). If such coloring exists, then we say that (G,H) is q-backbone k-colorable. The

q-backbone chromatic number of (G,H), denoted by BBCq(G,H), is the smallest positive integer

k such that (G,H) is q-backbone k-colorable. Similarly a circular q-backbone k-coloring of a

pair (G,H) is a proper k-coloring φ : V (G)→{1,2, ...,k} satisfying k−q ≥ |φ(u)−φ(v)| ≥ q

for any uv ∈ E(H). If such coloring exists, then we say that (G,H) is circular q-backbone

k-colorable. The circular q-backbone chromatic number of (G,H), denoted by CBCq(G,H), is

the smallest positive integer k such that (G,H) is circular q-backbone k-colorable.

In Figure 1a we see the colors fobidden for the neighbors of a vertex assigned with

the color 1, when taking q = 2 and k = 7.

Some graph coloring problems involve considering a graph G that belongs to a

certain graph class and evaluating the smallest number of colors needed to color G. These

problems have a Backbone Coloring version, where we want to color a pair (G,H), with G and

H belonging to certain graph classes. That is the case of problems similar to the Steinberg’s

conjecture. The Steinberg’s conjecture (STEINBERG, 1993) states that every planar graph G

that does not contain a C4 neither a C5 as a subgraph is 3-colorable. Araujo et al. (ARAUJO

et al., 2018) tackled a Backbone Coloring version of this problem where the backbone H is a

spanning forest of the graph G and a version where the backbone is a spanning forest of paths.

Following Broersma et al. (BROERSMA et al., 2007), several other authors studied Backbone
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Figure 1 – Colors firbidden by the color 1

Fonte: elaborado pelo autor.

Coloring, considering either the graph G or the subgraph H to belong to a certain class. Some of

which are presented in Chapter 3.

In this text, we study Circular Backbone Coloring of graphs that do not contain a C4

and taking a forest of induced paths as backbone. We prove the following theorem:

Theorem 1.1 Let G be a planar graph without cycles of size four. If F is an spanning induced

path forest of G, then CBC2(G,F)≤ 7.

We emphasize that Theorem 1.1 holds for every spanning induced path forest F of a given planar

graph G having no cycles of length four. There are several results in literature (BU; ZHANG,

2011; BU; LI, 2011; BU; BAO, 2015) showing that for a given connected graph G, there exists a

spanning connected subgraph H ⊆ G such that the q-backbone chromatic number of (G,H) is

upper bounded. We generalize all these results in the following theorem:

Theorem 1.2 If G is a connected graph and k ≥ max{χ(G),�χ(G)/2�+q}, then there exists a

spanning connected subgraph H of G and a proper q-backbone k-coloring c of (G,H).

This result shows us that, for every graph G, there exists a spanning tree T such that the pair

(G,T ) can be q-backbone colored with few colors beyond χ(G). Furthermore, we prove this

result is tight.

This text is organized as follows: in Chapter 2, we briefly present some definitions

used throughout the text. Chapter 3 is dedicated to a review on some previously known results

regarding Backbone Coloring, listed by backbone graph class and the nature of the results. In

Chapter 4, we present the proof of Theorem 1.1. This proof, however, is extensive, therefore
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it is split into two sections. In Section 4.1, we present the structural lemmas, that allow us

study a special counterexample and reduce it to smaller and easier cases. In Section 4.2, we use

the structural lemmas and prove the most important lemmas needed to conclude our proof. In

Chapter 5 we present a conclusion of this text and some questions for further research. Finally,

in the appendix we show a brief proof of Theorem 1.2. We emphasize that the content in the

appendix is as it has been submitted to the Journal of Graph Theory.
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2 DEFINITIONS

In this chapter we present some important notions and definitions that are used

throughout this dissertation.

A simple graph, or just graph, is a pair G = (V (G),E(G)) where the set V (G) is the

set of vertices and E(G), satisfying E(G)⊆ (V (G)
2

)
, is named the set of edges. To avoid excessive

notation, an edge u,v ∈ E(G) is simply denoted by uv. Let uv be an edge of G, the vertices u

and v are named the endpoints of the edge uv.

Let G = (V (G),E(G)) be a graph. We say a graph H = (V (H),E(H)) is a subgraph

of G, denoted by H ⊆ G, if V (H)⊆V (G) and E(H)⊆ E(G). The subgraph H of G is said to be

proper if either V (H) or E(H) is a proper subset of V (G) or E(G), respectively. The subgraph

H of G is said to be vertex-induced, or simply induced, if for every v,w ∈ V (H) satisfying

vw ∈ E(G) we have vw ∈ E(H). Furthermore, a subgraph is said to be a spanning subgraph if

V (H) =V (G).

Let G be a graph, H be a subgraph of G and v ∈V (G), we define the neighbourhood

of v in H to be the set NH(v) = {w ∈ V (H) | vw ∈ E(G)}. The degree of v in H, denoted by

dH(v), is given by dH(v) = |NH(v)|. We omit the subscript when H = G. The maximum and

minimum degree of G are, respectively, denoted by Δ(G) and δ (G). A graph G is d-degenerated

if every subgraph H ⊂ G satisfy δ (H)≤ d.

We say that there is a triangle in G if there is a subgraph H of G such that H =

({u,v,w},{uv,vw,uw}), for some {u,v,w} ⊆V (G).

Let S = {v1, · · · ,v j} be a proper subset of V (G). We denote by G−S the induced

subgraph G′ of G such that V (G′) =V (G)\S.

A complete graph is a graph which every two distinct vertices are connected by an

edge. An independent set is a set of vertices in which no two distinct vertices are joined by an

edge. A graph G is said to be a bipartite graph if V (G) can be partitioned into two independent

sets.

A path is a graph whose vertices can be ordered so that two vertices are adjacent

if, and only if, they are consecutive in this order. A graph G is said to be connected if, for

any vertices u,v ∈V (G), there exists a path P ⊆ G such that u,v ∈V (P). For any disconnected

graph G, each maximal connected subgraph H ⊆ G is named a connected component, or simply

component, of G. A cycle is a graph whose vertices can be placed in a circle so that two vertices

are consecutive on that circle if, and only if, they are adjacent. A graph that has a cycle as
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subgraph is named cyclic.

Let P1 = (v1, · · · ,vp),P2 = (w1, · · · ,wq) be two paths in G such that V (P1)∩V (P2) =

/0 and vpw1 ∈ E(G). We say that the path (v1, · · · ,vp,w1, · · · ,wq)⊆ G is a concatenation of P1

and P2, and is denoted by P1 ◦P2.

A forest is an acyclic graph. If a forest G is a connected graph, then G is named tree.

A star is a tree in which all but one vertex have degree 1. A constellation is a graph in which all

components are stars. A graph is called a path forest, or linear forest, if all its components are

paths. A Hamiltonian path of a graph G is a spanning path of G.

A graph is said to be a split graph if its vertices can be partitioned into two sets such

that one set forms a complete subgraph whereas the other set forms an independent set.

A graph G is said to be planar if it can be embedded on a plane in such a way that

each vertex is represented by a dot and each edge vw is represented by a line connecting the

vertices v and w such that no two lines cross each other. A planar graph together with a specific

embedding is named a plane graph. Each maximal connected region of the plane is a face of the

graph G.

Given a plane graph G = (V (G),E(G)), we define the set F(G) as the set of the faces

of the given plane embedding of G. Let f ∈ F(G), the degree of the face f , denoted by dG( f ), is

the size of the smallest closed walk that contains every edge adjacent to f . For more details on

these concepts we refer to (WEST, 2000), but we highlight the following two propositions which

we use throughout our proofs:

Proposition 2.1 Let G = (V (G),E(G)) be a plane graph and F(G) be its set of the faces. The

following holds:

2|E(G)|= ∑
f∈F(G)

dG( f ). (2.1)

Proposition 2.2 Let G = (V (G),E(G)) be a plane graph and F(G) be its set of the faces. The

following holds:

|V (G)|− |E(G)|+ |F(G)|= 2. (2.2)

Proposition 2.2 is known as the Euler’s Formula.

The number of faces of degree i ∈N in F(G) is denoted by Fi. Similarly, the number

of faces of degree at least i ∈ N is denoted by Fi+.
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Given a plane graph G, its dual graph, or simply its dual, is a graph G∗ = (F(G),E∗),

where f f ′ ∈ E∗ if the faces f and f ′ share an edge in G.

2.1 Backbone Coloring Definitions

A pair is an ordered pair (G,H), where G is a graph and H is a subgraph of G. In a

pair (G,H), the subgraph H is said to be the backbone of the graph G. Given a pair (G,H), a

subpair (G′,H ′) of (G,H) is a pair such that G′ ⊆ G and H ′ ⊆ H, also denoted (G′,H ′)⊆ (G,H).

We say a subpair (G′,H ′)⊆ (G,H) is proper if either H ′ or G′ is a proper subgraph of H and G,

respectively. A subpair (G′,H ′) is said to be induced if G′ is an induced subgraph of G and H ′ is

the subgraph of H induced by V (H)∩V (G′). Notice that (G−S,H −S) is an induced subpair

of (G,H), for any S ⊂V (G).

For some positive integers k and q, a q-backbone k-coloring of a pair (G,H) is a

proper coloring φ : V (G)→{1, · · · ,k} such that, for all vw ∈ E(H), we have |φ(v)−φ(w)| ≥ q.

If such coloring exists, then we say that (G,H) is q-backbone k-colorable. The q-backbone

chromatic number of (G,H), BBCq(G,H), is the smallest positive integer k such that the graph

is q-backbone k-colorable. Similarly, for some positive integers k and q, a circular q-backbone

k-coloring of a pair (G,H) is a proper coloring φ : V (G)→{1, · · · ,k} such that for all vw∈ E(H)

we have k−q ≥ |φ(v)−φ(w)| ≥ q. If such coloring exists, then we say that (G,H) is circular

q-backbone k-colorable. The circular q-backbone chromatic number of (G,H), CBCq(G,H), is

the smallest positive integer k such that the graph is circular q-backbone k-colorable. A partial

(circular) q-backbone k-coloring of a pair (G,H) is a (circular) q-backbone k-coloring of a

subpair (G′,H ′)⊆ (G,H). Notice that it is not important whether the backbone H is a spanning

subgraph of G or not, as only the edges in E(H) are considered on the coloring. Therefore,

unless stated otherwise, we treat H to be a spanning subgraph of G.

In Figure 2 on the left, an example of a a graph G and its backbone H, whose

edges are shown as the dashed lines. In this case we have BBCq(G,H) = q+2. On the right, a

graph G and its backbone H, whose edges are shown as the dashed lines. In this case we have

CBCq(G,H) = 2q+1

Let S = {1, · · · ,k} and P(S) be the set of all subsets of S. Let (G,H) be a pair and

L : V (G)→ P(S) such that L (v) �= /0 for all v in V (G). We say (G,H) is circular q-backbone

L -colorable if there is a circular q-backbone k-coloring φ of (G,H) such that φ(v) ∈ L (v).

Even more, let l : V (G) → {1, · · · ,k}. We say (G,H) is circular q-backbone l-colorable if
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Figure 2 – Examples of (circular) backbone colorings

Fonte: elaborado pelo autor.

for every L : V (G)→ P(S) such that |L (v)| = l(v), the pair (G,H) is circular q-backbone

L -colorable.
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3 STATE OF THE ART

In this chapter, we make a brief exposition of some results found in the literature

regarding the Backbone Coloring problem. The sections are organized according to the graph

classes being analysed, whether they are: any subgraph, a path forest, a forest, a constellation or

a matching. For each of these topics, we consider the parameters BBC and CBC, then we show

complexity results that we found and we end each section with open questions.

3.1 General Results

In Havet et al. (HAVET et al., 2014), three general bounds are presented for BBC

and CBC, for any pair (G,H). The first one is shown in the following theorem:

Theorem 3.1 For any pair (G,H) and an integer q ≥ 2, the following inequalities hold:

qχ(H)− (q−1) = BBCq(H,H)≤ BBCq(G,H)≤ BBCq(G,G) = qχ(G)− (q−1).

This theorem is a direct consequence of the definition of backbone coloring. They were also able

to show the following upper bound:

Theorem 3.2 For any pair (G,H) and q ≥ 2, it holds:

BBCq(G,H)≤ (χ(G)+q−2)χ(H)− (q−2).

Furthermore, for q ≥ 4 the upper bound is tight.

Finally, regarding the parameter CBC we have the following theorem:

Theorem 3.3 For any graphs H ⊆ G such that 2 ≤ χ(H)≤ χ(G) and q ≥ 2, it holds:

CBCq(G,H)≤ (χ(G)+q−2)χ(H).

One interesting result also proven by Havet et al. is that if H is a connected spanning subgraph

of G, then CBCq(G,H) = 2q if, and only if, G is bipartite.

Miškuf et al. (MIŠKUF et al., 2010) showed that:

Theorem 3.4 Given a graph G and a d-degenerated subgraph T of G, the 2-backbone chromatic

number satisfy BBC2(G,T )≤ Δ(G)+d +1.
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Along with that result, they also showed that for a given Δ(G), there exists a graph G with

maximum degree Δ(G) and a tree backbone T such that BBC2(G,T ) = Δ(G)+2. They extend

this result by showing that Δ(G) is strictly greater than the maximum degree of the tree T .

Regarding complexity results, it is presented in Havet et al. (HAVET et al., 2014)

that given an integer q ≥ 2, a connected graph G and a connected spanning subgraph H of G,

then deciding whether BBCq(G,H)≤ q+2 can be done in polynomial time.

3.2 Forest Backbone

Given a positive integer k and an integer q such that q≥ 2, Broersma et al. (BROERSMA

et al., 2007) defined the parameter Tq(k) to be the maximum possible value of BBCq(G,T ) for

any graph G such that χ(G) = k and any forest T subgraph of G. Concerning this parameter,

they showed that T2(k) = 2k−1, for every k ≥ 1.

In Zhu et al. (BU et al., 2013) the following theorem is proven:

Theorem 3.5 For any positive integers k and �, there exists a graph G with girth greater than �

and χ(G) = k, and a spanning forest T of G such that BBC2(G,T ) = 2k−1.

This result is interesting because it provides additional information to the one presented by

Broersma et al. Since not only there exists a graph G with a tree backbone such that BBC2(G,T )=

2χ(G)−1, but also that there exist infinitely many graphs such that this holds, even with the

additional property that these graphs have high girth. Furthermore, the proof of this theorem

provides a method for constructing such graphs.

Bu et al. (BU; ZHANG, 2011; BU; LI, 2011; BU; BAO, 2015) studied the coloring

of planar graphs without special cycles. In Bu (BU; ZHANG, 2011), it is proven that:

Theorem 3.6 If a planar graph G without C4 cycles, then there exists a spanning tree T of G

such that BBC2(G,T )≤ 4.

In Bu et al. (BU; LI, 2011) it is shown that the following theorems hold:

Theorem 3.7 If a planar graph G without C6 cycles and such that no two C3 cycles share an

edge, then there exists a spanning tree T of G such that BBC2(G,T )≤ 4.

Theorem 3.8 If a planar graph G without C7 cycles and such that no two C3 cycles share an

edge, then there exists a spanning tree T of G such that BBC2(G,T )≤ 4.
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And finally, in Bu et al. (BU; BAO, 2015), the following theorems are proved:

Theorem 3.9 If a planar graph G without C8 cycles and such that no two C4 cycles share an

edge, then there exists a spanning tree T of G such that BBC2(G,T )≤ 4.

Theorem 3.10 If a planar graph G without C9 cycles and such that no two C4 cycles share an

edge, then there exists a spanning tree T of G such that BBC2(G,T )≤ 4.

These theorems are proven by assuming the existence of a structure called a minimal counterex-

ample, studying its properties and then using the discharging method to find a contradiction to

the existence of such counterexample.

Araujo et al. (ARAUJO et al., 2018) also studied backbone coloring of planar graphs

with tree backbones, which resulted in the following theorem:

Theorem 3.11 If G is a planar graph with no cycles of length 4 or 5 and H is a forest in G, then

CBC2(G,H)≤ 7.

Broersma et al. (BROERSMA et al., 2007) also proved two complexity results,

showing that, given a positive integer �, the following results hold:

Theorem 3.12 Deciding whether BBC2(G,T )≤ � is solved in polynomial time, for any �≤ 4,

where T is a spanning tree of G.

Theorem 3.13 Deciding whether BBC2(G,P)≤ � is NP-complete, for any �≥ 5, where P is a

Hamiltonian path of G.

Havet et al. (HAVET et al., 2014) studied the complexity of some decision problems

regarding graphs with tree backbones. The following results hold:

Theorem 3.14 – Deciding whether BBC2(G,T )≤ 5 is an NP-complete problem, where T

is a spanning tree of G.

– Deciding whether BBCq(G,T )≤ q+5 is an NP-complete problem, for any q ≥ 5, where

T is a spanning tree of G.

When studying the coloring bounds on forest backbones, many questions arise.

Broersma et al. stated the following open problems: Is there any bound on Tq(k), for q ≥ 3? Is

there any constant c such that BBC2(G,T ) ≤ χ(G)+ c, for chordal graphs G and any tree? Is
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there any constant c such that BBC2(G,T )≤ χ(G)+ c for graphs G without triangles, where T

is a spanning tree?

For this last question, Miškuf et al. (MIŠKUF et al., 2009) proved it to be false

by modifying the Mycielski construction and creating sequences of graphs (Gn) and (Tn),

such that Gn is a triangle-free graph and (Tn) is a spanning tree backbone of Gn, satisfying

BBC2(Gn,Tn) = 2χ(Gn)−1.

We know from Havet et al. (HAVET et al., 2014) that if G is a planar graph with

spanning tree T , then BBC2(G,T ) ≤ 7. Is any way to prove that without relying on the Four

Color Theorem? Furthermore, can this upper bound be lowered? In Figure 3 there is an example

where BBC2(G,T ) = 6, for some graph G with a forest T , so we know that the right-hand

side of the inequality cannot be lowered, but we do not know yet if there is an example where

BBC2(G,T ) = 7, so the question is still left open.

Figure 3 – Graph such that BBC2(G,T ) = 6

Fonte: Broersma et al. (BROERSMA et al., 2007) p.16.

3.3 Path Forest Backbone

After considering forest backbones, we study the bounds on simpler backbones. The

first one we consider is path forest backbones.

Given a positive integer k and an integer q such that q≥ 2, Broersma et al. (BROERSMA

et al., 2007) defined the parameter Pq(k) to be the maximum possible value of BBCq(G,P) for

any graph G such that χ(G) = k and any Hamiltonian path P of G. Concerning this parameter,
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they showed that for any k ≥ 1;

P2(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k−1, if k ≤ 4;

2k−2, if k = 5 or k = 6;

6t, if k ≥ 7 and k = 4t, for some integer t;

6t +1, if k ≥ 7 and k = 4t +1 for some integer t;

6t +3, if k ≥ 7 and k = 4t +2 for some integer t;

6t +5, if k ≥ 7 and k = 4t +3 for some integer t.

Regarding the parameter CBC, it is known some upper bounds. For instance, from

Araujo et al. (ARAUJO et al., 2018), we get the following result:

Theorem 3.15 If G is a planar graph without cycles of length 4 and 5, and H is a path forest,

then CBC2(G,H)≤ 6.

Note that this theorem would be implied by Steinberg’s conjecture (STEINBERG, 1993), which

says that if G is planar with no cycles of length four or five, then χ(G) ≤ 3. Broersma el

al.(BROERSMA et al., 2007) believe that if we drop the restriction on cycles of length five, then

we get an upper bound of 7 for CBC2(G,H). They, then, proposed the following conjecture:

Conjecture 3.1 If G is a planar graph without cycles of length 4 and H is a path forest, then

CBC2(G,H)≤ 7.

As we stated in Chapter 1, in this dissertation we prove a variant of this conjecture where each

path of the backbone is an induced subgraph of G.

Broersma et al. (BROERSMA et al., 2007) presented a question regarding the

parameter Pq(k). What are the bounds for Pq(k) when q ≥ 3? It was left as further research

and, to the best of our knowledge, no one has tackled this problem yet.

3.4 Constellation Backbone

In this section, we consider the cases where the backbone is a constellation. A

constellation, or forest of stars, is a simple case for those groups.

Given a positive integer k and an integer q such that q≥ 2, Broersma et al. (BROERSMA

et al., 2007) defined the parameter Sq(k) to be the maximum possible value of BBCq(G,S) for
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any graph G such that χ(G) = k and any constellation S subgraph of G. Concerning this

parameter, they showed that:

Sq(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q+1, if k = 2;⌈
3
2k

⌉
+q−2, if 3 ≤ k ≤ 2q−3;

k+2q−2, if 2q−1 ≤ k ≤ 2q where q = 2;

k+2q−2, if 2q−2 ≤ k ≤ 2q−1 where q ≥ 3;

2k−1, if k = 2q where q ≥ 3;

2k−
⌊

k
q

⌋
, if k ≥ 2q+1.

Interestingly, in another paper, Broersma et al. (BROERSMA et al., 2009a) showed

that for split graphs G with chromatic number χ(G) = k, we have:

BBCq(G,S)≤

⎧⎪⎨
⎪⎩

k+q, if k = 3 and q ≥ 2 or k ≥ 4 and q = 2;

k+q−1, on the other cases.

which are fairly good upper bounds for the q-backbone coloring of (G,S), as they are not that far

from χ(G).

Concerning complexity results, Broersma et al. (BROERSMA et al., 2009b) also

proved that, for a graph G and a constellation S, determining whether BBCq(G,S) ≤ � is a

problem solved in polynomial time for �≤ q+1, and it is an NP-complete problem if �≥ q+2.

In their studies of complexity, Havet et al. (HAVET et al., 2014) worked with stars

with bounded degree. Some of the results they obtained are:

Theorem 3.16 Given a planar graph G and a constellation S with maximum degree 3, deciding

whether BBCq(G,S)≤ q+3 is an NP-complete problem.

Theorem 3.17 Given a planar graph G and a constellation S with maximum degree 2, deciding

whether BBC2(G,S)≤ 5 is an NP-complete problem.

3.5 Matching Backbone

To end our chapter about the State of the Art, we present a few results on the cases

where the edges of the backbone form a matching.

Given a positive integer k and an integer q such that q≥ 2, Broersma et al. (BROERSMA

et al., 2007) defined the parameter Mq(k) to be the maximum possible value of BBCq(G,M) for
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any graph G such that χ(G) = k and any matching M of G. Concerning that parameter, they

showed that:

Mq(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k+q−1, if 2 ≤ k ≤ q;

2k−2, if q+1 ≤ k ≤ 2q;

2k−3, if k = 2q+1;

2tq, if k = t(q+1) where t ≥ 2;

2tq+2c−1, if k = t(q+1)+ c where t ≥ 2 and 1 ≤ c ≤ q+3
2 ;

2tq+2c−2, if k = t(q+1)+ c where t ≥ 2 and q+3
2 ≤ c ≤ q.

They also studied the cases where G is a split graph with χ(G) = k, which resulted

in:

BBCq(G,M)≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k+1, if k ≥ 4 and q ≤ min
{ k

2 ,
k+5

3

}
;

k+2, if k = 9 or k ≥ 11 and k+6
3 ≤ q ≤ ⌈

1
2k

⌉
;⌈

1
2k

⌉
+q, if k = 3,5,7 and q ≥ ⌈

1
2k

⌉
;⌈

1
2k

⌉
+q+1, if k = 4,6 or k ≥ 8 and q ≥ ⌈

1
2k

⌉
+1.

Miškuf et al. (MIŠKUF et al., 2010) studied the properties of graphs with bounded

degree. In their work, the following results have been shown:

Theorem 3.18 Let M be a matching in a graph G. If G is a Cn cycle, then BBC2(G,M) = 3.

Also, if G = Kn for some n ≥ 3, then BBC2(G,M) = n.

Theorem 3.19 Let G be a graph with maximum degree Δ. If M is a matching in G, then

BBC2(G,M)≤ Δ+1.

Regarding some complexity results, in Broersma et al.(BROERSMA et al., 2003), it is shown

that:

Theorem 3.20 Let M be a perfect matching of a planar graph G. Deciding whether BBC2(G,M)≤
�, for �≤ 3 is a polynomial problem. For �≥ 4 it is an NP-complete problem.

Havet et al. (HAVET et al., 2014) also studied some complexity results regarding matching

backbones, both in backbone coloring and in circular backbone coloring. The following theorems

hold:
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Theorem 3.21 Let M be a perfect matching of a planar graph G.

– Deciding whether BBCq(G,M)≤ q+2 is an NP-complete problem.

– Deciding whether CBC2(G,M)≤ 4 is an NP-complete problem.

– Deciding whether CBC2(G,M)≤ 5 is an NP-complete problem.

Broersma et al. (BROERSMA et al., 2007) present a few open problems as well.

As their results are just upper bounds, it is left unknown whether for any planar graph G and a

perfect matching M of G, the inequality BBC2(G,M)≤ 5 holds. Furthermore, their proof of the

inequality BBC2(G,M)≤ 6 uses the Four Color Theorem and, to the best of our knowledge, it is

still unknown if there is a way to prove that BBC2(G,M)≤ 6 without using this strong result.
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4 ON PLANAR GRAPHS WITHOUT C4

In this chapter we present the proof of Theorem 1.1, that we restate below:

Theorem 4.1 Let G be a planar graph without cycles of size four and let F be an spanning

induced path forest of G, then CBC2(G,F)≤ 7.

The proof for this theorem is done by assuming the existence of a minimal pair (G,F) such that

CBC2(G,F)> 7. A minimal pair is a pair (G,F) , where F is a spanning induced path forest of

G, such that every proper subpair (G−G′,F −F ′)⊂ (G,F) is circular 2-backbone 7-colorable.

Throughout the proof, we obtain contradictions to the existence of (G,F) by extending a coloring

ϕ of (G−G′,F −F ′) to a circular 2-backbone 7-coloring φ of (G,F).

In order to give an example of such argument, consider v to be a leaf of G. If (G,F)

is a minimal pair, then (G− v,F − v) is circular 2-backbone 7-colorable. Let ϕ be this coloring.

As v has only a single neighbour w in G, then either ϕ(w)+2 or ϕ(w)−2 belongs to {1, · · · ,7},

therefore, assuming φ(v) to be any of these two values and φ(u) = ϕ(u), for every other vertex

u of V (G− v), then φ is a circular 2-backbone 7-coloring of (G,F). Consequently we assume

every graph G in a minimal pair (G,F), from now on, does not have a leaf.

In the next section, we present the first tools we need in order to prove the theorem.

4.1 List Backbone Coloring

We emphasize that we use List Coloring concepts merely as a tool, but we do not

prove any profound result concerning list-chromatic number or any other parameter adapted to

the backbone coloring paradigm.

Let (G′,F ′) be an induced proper subpair of (G,F). Let ϕ be a circular 2-backbone

7-coloring of (G−G′,F −F ′). For each v ∈ V (G′), we define the set Aϕ(v) of its available

colors as the subset of elements c ∈ {1, · · · ,7} such that:

(i) 1 ≤ |φ(u)− c|, for all u ∈ NG−G′(v)\NF(v),

(ii) 2 ≤ |φ(w)− c| ≤ 5, for all w ∈ NF−F ′(v).

We also define aϕ(v) = |Aϕ(v)|.
Let vw be an edge of E(G)\E(G′), such that w ∈V (G′). We say the vertex w forbids

a color c to be assigned to the vertex v either if φ(w) = c or if vw ∈ E(F) and |φ(w)−c| ∈ {1,6}.

Also, we say that a color c f ∈ {1, · · · ,7} forbids a color c if |c f − c| ∈ {0,1,6}. We denote
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forb(c f ) the set of colors forbidden by c f . Observe that | forb(c f )|= 3, for any c f ∈ {1, · · · ,7}.

Figure 4a depicts an example of some forbidden colors. Note that the colors 1, 2 and 7 are

forbidden by the color 1.

Figure 4 – Colors forbidden by the color 1

Fonte: elaborado pelo autor.

In the graph shown in Figure 5a, we color the vertices {w1,w2, · · · ,w7} as shown.

For the remaining vertices {v1,v2,v3,v4,v5} we show their respective available sets

Figure 5 – Sets of available colors

Fonte: elaborado pelo autor.

Let (G′,F ′) be an induced proper subpair of the minimal pair (G,F) and let v∈V (G′).

The total degree of v in (G−G′,F −F ′), denoted by dt
(G−G′,F−F ′)(v), is given by the following

equation:

dt
(G−G′,F−F ′)(v) = dG−G′(v)+2dF−F ′(v). (4.1)
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To avoid excessive notation, we write dt
G−G′(v) instead of dt

(G−G′,F−F ′)(v), whenever

there is no ambiguity.

Proposition 4.2 Let (G′,F ′) be an induced proper subpair of a minimal pair (G,F). Let ϕ

be a circular 2-backbone 7-coloring of (G−G′,F −F ′). For every v ∈ V (G′), the following

inequality holds:

aϕ(v)≥ 7−dt
G−G′(v). (4.2)

Demonstration. Let w1, · · · ,wk be the neighbours of v in G that lie in G−G′. If wiv is not an

edge of F , then wi forbids only a single color to be assigned to v. On the other hand, if wiv is an

edge of F , then wi forbids three colors to be assigned to v. Therefore, the number of forbidden

colors to be assigned to v is, at most, the number of vertices that forbid a single color plus

three times the number of vertices that forbid three colors. One can notice that this is exactly

dG−G′(v)+ 2dF−F ′(v) = dt
G−G′(v). Since the number of used colors is at most 7, then we get

aϕ(v)≥ 7−dt
G−G′(v). �

As we may not know which colors are actually forbidden or available for a vertex, it

is more desirable to work with the number of forbidden or available colors for it and study its

implications in the worst case scenario. The concept of available sets helps us turn a Circular

Backbone Coloring problem into a List Coloring problem that should agree with the backbone.

Let (G,H) be a pair and consider a function L : V (G)→ P({1, · · · ,k}) such that

L (v) is not empty for every v ∈V (G). We say (G,H) is circular q-backbone L -colorable if

there exists a circular q-backbone k-coloring φ of (G,H) such that φ(v) ∈ L (v), for every v in

V (G). Furthermore, let � : V (G)→{1, · · · ,k}, we say (G,H) is circular q-backbone �-colorable

if, for every list assignment L : V (G) → P({1, · · · ,k}) satisfying |L (v)| = �(v), for every

v in V (G), the pair (G,H) is circular q-backbone L -colorable. To avoid excessive notation,

we say (G,H) is (�,q)-colorable or (L ,q)-colorable if it is, respectively, circular q-backbone

�-colorable or circular q-backbone L -colorable. Whenever q = 2 we simply use �-colorable or

L -colorable instead of (�,2)-colorable or (L ,2)-colorable, respectively.

Consider (G1,H1) a subpair of (G2,H2) with list assignments, respectively, L1 and

L2 such that L1(v)⊆ L2(v) for every v ∈V (G1) and (G1,H1) admits a list circular backbone

coloring φ1 with respect to L1. If there exists a list circular backbone coloring φ2 of (G2,H2),

with respect to L2, such that φ2(v) = φ1(v) for every v, then we say that φ1 can be L2-extended

to φ2.
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In the following subsections, we focus on subpairs (G′,F ′) of a minimal pair (G,F).

Consider a circular 2-backbone 7-coloring ϕ of (G−V (G′),F −V (F ′)) and the corresponding

sets of available colors Aϕ : V (G′)→ P({1,2, ...,7}). Notice that if (G′,F ′) is Aϕ -colorable,

then (G,F) is circular 2-backbone 7-colorable.

4.1.1 Leaf Reduction Propositions

The reduction propositions we present here are useful to extend a coloring of a

subpair into a coloring of the pair itself. Such extension is constructed by using list backbone

coloring, but since we do not know which elements are in each list, we mostly work with the

number of colors in each list.

For Propositions 4.3, 4.4 and 4.5, let (G′,F ′) be a subpair of (G,F) and consider

vw ∈ E(G′). Let (G0,F0) be an induced subpair of (G′,F ′) such that V (G0) = V (G′) \ {v,w},

V (F0) =V (F ′)\{v,w} and NG0
(v) = /0. Consider the functions �w : V (G0)∪{w}→ {1, · · · ,7}

and �wv : V (G0)∪{v,w}→ {1, · · · ,7} such that �wv(u)≥ �w(u), for every u in V (G0)∪{w}, and

assume (G[V (G0)∪{w}],F [V (F0)∪{w}]) is �w-colorable. The idea is to reduce the problem of

list coloring (G′,F ′) to the problem of list coloring (G′ − v,F ′ − v), where v is a leaf of F ′. The

graph shown in Figure 6a depicts an example we use throughout this entire section.

Figure 6 – Example of the leaf propositions

Fonte: elaborado pelo autor.

The following propositions are stated under the above conditions:

Proposition 4.3 If �wv(v)≥ 4, then (G0 ∪{w,v},F0 ∪{w,v}) is �wv-colorable.

Demonstration. As it is not specified whether vw ∈ E(F), we assume that this is the case.

Consider a list assignment Lwv : V (G0)∪{v,w}→ P({1, · · · ,7}) such that |Lwv(u)|= �wv(u),

for every u in V (G0)∪{v,w}.
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Define σw(v)⊆Lwv(w) as the set of colors in the list of w that forbid all the colors in

Lwv(v), that is σw(v) = {c f ∈ Lwv(w) | Lwv(v)⊆ f orb(c f )}. If c f ∈ σw(v), then c f forbids at

most three colors to v. However �wv(v) = |Lwv(v)| ≥ 4, which means that σ f (v) = /0. Therefore,

any circular coloring ϕ of (G[V (G0)∪{w}],F [V (F0)∪{w}]) can be Lwv-extended to a circular

coloring φ of (G[V (G0)∪{w,v}],F [V (F0)∪{w,v}]) by taking φ(v) ∈ Lwv(v) \ f orb(ϕ(w)).

Such coloring φ exists since (G[V (G0)∪{w}],F [V (F0)∪{w}]) is �w-colorable. �

Proposition 4.4 If �wv(v) ≥ 3 and �wv(w)− 1 ≥ �w(w), then (G0 ∪{w,v},F0 ∪{w,v}) is �wv-

colorable.

Demonstration. If �wv(v)≥ 4, then it follows directly by Proposition 4.3. We only focus on the

case where �wv(v) = 3.

Consider a list Lwv : V (G0)∪{v,w}→ P({1, · · · ,7}) such that |Lwv(u)|= �wv(u)

for every u in V (G0)∪{v,w}.

Define σw(v) = {c f ∈Lwv(w) |Lwv(v)⊆ f orb(c f )} as before. Because �wv(v) = 3,

there is at most one color c in σw(v), so we can assume |σw(v)| ≤ 1. Therefore, for any list

Lw : V (G0)∪{w}→ P({1, · · · ,7}) satisfying:

(i) Lw(u) = Lwv(u), for every u ∈V (G0),

(ii) Lw(w) = Lwv(w)\σw(v),

There is a list circular coloring ϕ of (G[V (G0)∪ {w}],F [V (F0)∪ {w}]), and it

can be Lwv-extended to a list circular coloring of (G[V (G0)∪{w,v}],F [V (F0)∪{w,v}]) by

taking φ(v) ∈ Lwv(v) \ f orb(ϕ(w)). In fact, as ϕ(w) �∈ σw(v), such coloring ϕ exists since

(G[V (G0)∪{w}],F [V (F0)∪{w}]) is �w-colorable. �

Proposition 4.5 If �wv(v) ≥ 2 and �wv(w)− 2 ≥ �w(w), then (G0 ∪{w,v},F0 ∪{w,v}) is �wv-

colorable.

Demonstration. If �wv(v) ≥ 3, then this holds true by Proposition 4.4. We only focus on the

case where �wv(v) = 2.

Consider a list Lwv : V (G0)∪{v,w}→ P({1, · · · ,7}) such that |Lwv(u)|= �wv(u)

for every u in V (G0)∪{v,w}.
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Define σw(v)= {c f ∈Lwv(w) |Lwv(v)⊆ f orb(c f )} as before. Observe that because

�wv(v) = 2, there is at most two colors in σw(v), so we can assume |σw(v)| ≤ 2. Therefore, for

any list Lw : V (G0)∪{w}→ P({1, · · · ,7}) satisfying:

(i) Lw(u) = Lwv(u), for every u ∈V (G0),

(ii) Lw(w) = Lwv(w)\σw(v),

There is a list circular coloring ϕ of (G[V (G0)∪ {w}],F [V (F0)∪ {w}]), and it

can be Lwv-extended to a list circular coloring of (G[V (G0)∪{w,v}],F [V (F0)∪{w,v}]) by

taking φ(v) ∈ Lwv(v) \ f orb(ϕ(w)). In fact, as ϕ(w) �∈ σw(v), such coloring ϕ exists since

(G[V (G0)∪{w}],F [V (F0)∪{w}]) is �w-colorable. �

4.1.2 Path Reduction Propositions

Propositions 4.3, 4.4 and 4.5 are used to reduce a graph by one vertex at a time. We

dedicate this subsection to prove some propositions that reduce the graph by one path at a time.

For Propositions 4.6 and 4.7, let P = Q ◦ (w) ◦ (v1, · · · ,v j) be a path, where (w) ◦
(v1, · · · ,v j) is an induced subpath of P, for some j ≥ 1. Consider the functions �w :V (Q)∪{w}→
{1, · · · ,7} and �wv : V (Q)∪{w,v1, · · · ,v j} → {1, · · · ,7} such that �wv(u) ≥ �w(u), for every u

in V (Q)∪{w}, and assume (Q◦ (w),Q◦ (w)) is �w-colorable. The graph shown in Figure 11a

depicts an example that can used throughout this entire section.

Figure 7 – Example of the path propositions

Fonte: elaborado pelo autor.

Proposition 4.6 If �vw(v j)≥ 3, �vw(vp)≥ 4 for all p ∈ {1, · · · , j−1}, and �vw(w)−1 ≥ �w(w),

then (Q◦ (w)◦ (v1, · · · ,v j),Q◦ (w)◦ (v1, · · · ,v j)) is �wv-colorable.

Demonstration. We prove this by induction on j. For j = 1, by Proposition 4.4, taking

G0 = F0 = Q and v = v1, (Q∪{w,v1},Q∪{w,v1}) is �wv-colorable.
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Now, assume it is true for some j ≥ 1. For j+1 we have P′=Q◦(w)◦(v1, · · · ,v j,v j+1)=

P ◦ (v j+1). Consider the list assignment � : V (Q)∪{w,v1, · · · ,v j} such that �(w) = �wv(w) ≥
�w(w)+1, �(v j) = �vw(v j)−1 ≥ 3 and, for all p ∈ {1, · · · , j−1}, �(vp) = �vw(vp)≥ 4. By induc-

tion hypothesis, (P,P) is �-colorable. Finally, observe that by Proposition 4.4, taking v = v j+1,

(P∪{v j+1},P∪{v j+1}) is �wv-colorable. �

Proposition 4.7 If �vw(v j)≥ 2, �vw(vp)≥ 4 for all p ∈ {1, · · · , j−1}, and �vw(w)−2 ≥ �w(w),

then (Q◦ (w)◦ (v1, · · · ,v j),Q◦ (w)◦ (v1, · · · ,v j)) is �wv-colorable.

Demonstration. We prove this by induction on j. For j = 1, by Proposition 4.5, taking

G0 = F0 = Q and v = v1, (Q∪{w,v1},Q∪{w,v1}) is �wv-colorable.

Now, assume that it is true for some j ≥ 1. For j + 1, we have P′ = Q ◦ (w) ◦
(v1, · · · ,v j,v j+1) = P◦ (v j+1). Consider the list assignment � : V (Q)∪{w,v1, · · · ,v j} such that

�(w) = �wv(w) ≥ �w(w) + 2, �(v j) = �vw(v j)− 2 ≥ 2 and, for all p ∈ {1, · · · , j − 1}, �(vp) =

�vw(vp) ≥ 4. By induction hypothesis, (P,P) is �-colorable. Finally, observe that, by Proposi-

tion 4.5, taking v = v j+1, (P∪{v j+1},P∪{v j+1}) is �wv-colorable. �

4.1.3 Structural Lemmas

Let us move towards a minimal pair (G,F), where F is a spanning induced path

forest of G. Let P be a connected component of F . We call a subpath of P such that every vertex

has degree in G at most five a strong subpath. In this section, we analyse the possible structures

of P, eliminating those for which a coloring of (G−P,F −P) can be extended to a coloring of

(G,F).

Given any v ∈V (G), we say that v is a type (p,q) vertex, if p = dG(v) and q = dF(v).

For a minimal pair (G,F), consider v ∈V (G) and (G′,F ′) = (G−{v},F −{v}). By

the definition of minimal pair, (G,F) is not circular 2-backbone 7-colorable whereas (G′,F ′) is.

Therefore aϕ(v) = 0, where ϕ is any circular 2-backbone 7-coloring of (G′,F ′). By Corollary 4.2,

we have that 0 ≥ 7−dt
G′(v), that is, dt

G′(v)≥ 7.

Now, if v belongs to a strong subpath P1 of P in a minimal pair (G,F), then because

dG(v)≤ 5 and dt
G′(v)≥ 7, we have that v can only be of type (3,2), (4,2), (5,1) or (5,2).

The notion of vertex type is useful for the next lemmas.
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Lemma 4.1 Let P1 be a strong subpath of P. If there is a type (5,1) vertex in P1, then all other

vertices of P1 are of type (5,2).

Demonstration. Suppose, by contradiction, that P1 has either a (3,2) vertex, or a (4,2) vertex

or a second (5,1) vertex. Without loss of generality, assume that P1 = (w)◦ (v1, · · · ,v j), where

w is a type (5,1) vertex and v j is the closest one to w that is not a type (5,2) vertex. Therefore,

for all p ∈ {1,2,3, ..., j−1}, vp is a (5,2) vertex.

Consider (G′,F ′) = (P1,P1) and ϕ be a circular 2-backbone 7-coloring of (G−
V (P1),F −V (P1)). Notice that dt

G−V (P1)
(w) = 4, dt

G−V (P1)
(v j)≤ 5 and for all p ∈ {1,2,3, ..., j−

1}, dt
G−V (P1)

(vp)= 3. Therefore aϕ(w)≥ 3, aϕ(v j)≥ 2 and for all p∈{1,2,3, ..., j−1},aϕ(vp)≥
4. We want to prove that (G′,F ′) is av-colorable, which implies that (G,F) is circular 2-backbone

7-colorable, a contradiction.

Let �wv : V (G′)→{1, · · · ,7} with �vw(u) = aϕ(u), for every u in V (G′).

Let Q be the empty set, we see that Q ◦ (w) is �w-colorable, being �w : V (Q)∪
{w} → {1, · · · ,7} such that �w(w) ≤ �wv(w)− 2. Therefore, by Proposition 4.7, (Q ◦ (w) ◦
(v1, · · · ,v j),Q◦ (w)◦ (v1, · · · ,v j)) is �wv-colorable. �

Figure 8 – Structure forbidden from the minimal pair due to Lemma 4.1

Fonte: elaborado pelo autor.

Lemma 4.2 Let P1 be a strong subpath of P. If there is a vertex w in P1 of type (3,2), then all

other vertices of P1 are of type (5,2).

Demonstration. By Lemma 4.1, P1 does not contain a type (5,1) vertex. Suppose by contradic-

tion that there exists some vertex v distinct of w of type (3,2) or (4,2). Choose a vertex v closest

to w in P1. Name the vertices of P1 such that P1 = (w)◦ (v1, · · · ,v j), where v = v j.

Let (G′,F ′) = (P1,P1) and ϕ be a circular 2-backbone 7-coloring of (G−V (P1),F −
V (P1)). Notice that dt

G−V (P1)
(w) = 4, dt

G−V (P1)
(v j) ≤ 5 and, for every p ∈ {1,2,3, ..., j −
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1}, dt
G−V (P1)

(vp) = 3. Therefore aϕ(w) ≥ 3, aϕ(v j) ≥ 2 and for every p ∈ {1,2,3, ..., j −
1},aϕ(vp) ≥ 4. We want to prove that (G′,F ′) is av-colorable, which implies that (G,F) is

circular 2-backbone 7-colorable, a contradiction.

Let �wv : V (G′)→{1, · · · ,7} with �vw(u) = aϕ(u), for every u in V (G′).

Let Q be the empty set, we see that Q◦(w) is �w-colorable, where �w : V (Q)∪{w}→
{1, · · · ,7} such that �w(w) ≤ �wv(w)− 2, as �w(w) ≥ 1. Therefore, by Proposition 4.7, (Q ◦
(w)◦ (v1, · · · ,v j),Q◦ (w)◦ (v1, · · · ,v j)) is �wv-colorable. Which means (G′,F ′) is av-colorable.

Therefore, (G,F) is circular 2-backbone 7-colorable. �

Figure 9 – Structure forbidden from the minimal pair due to Lemma 4.2

Fonte: elaborado pelo autor.

Lemma 4.3 Let P1 be a strong subpath of P. If there is a type (4,2) vertex in P1, then there is at

most one other type (4,2) vertex in P1 and all other vertices of P1 are of type (5,2).

Demonstration. By Lemmas 4.1 and 4.2, P1 does not contain a type (5,1) vertex nor a type

(3,2).

Suppose by contradiction that P1 has three type (4,2) vertices. Name the vertices

of P1 such that P1 = (w)◦ (v1, · · · ,vm, ...,v j) and let m, j be the smallest integers such that w, vm

and v j are type (4,2) vertices. Therefore, for all p ∈ {1,2,3, ..., j−1}\{m}, vp is a type (5,2)

vertex.

Let (G′,F ′) = (P1,P1) and ϕ be a circular 2-backbone 7-coloring of (G−V (P1),F −
V (P1)). Notice that dt

G−V (P1)
(w) = 5 = dt

G−V (P1)
(v j), dt

G−V (P1)
(vm) = 2 and, for every p ∈

{1,2,3, ..., j − 1} \ {m}, dt
G−V (P1)

(vp) = 3. Therefore, aϕ(w) ≥ 2, aϕ(v j) ≥ 2, aϕ(vm) ≥ 5

and, for every p ∈ {1,2,3, ..., j − 1} \ {m},aϕ(vp) ≥ 4. Let �wv : V (G′) → {1, · · · ,7} with

�vw(u) = aϕ(u) for every u in V (G′).

Let Q = (w,v1, · · · ,vm−1) and �∗ : V (Q)∪ {vm} → {1, · · · ,7} such that �∗(u) =

�wv(u), for every u ∈ {w,v1, · · · ,vm−1}, and �∗(vm) = 3. Also, let �w : {w} → {1, · · · ,7} such
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that �w(w) = 1 = �∗(w)− 1. The pair ({w},{w}) is �w-colorable. Therefore, by Proposi-

tion 4.6, (Q∪{vm},Q∪{vm}) is �∗-colorable. On the other hand, by Proposition 4.7, (Q∪
{vm,vm+1, ...,v j},Q∪{vm,vm+1, ...,v j}) is �wv-colorable. �

4.1.4 Pair Equivalence

Let (G1,F1) and (G2,F2) be two pairs and consider P to be a path such that P1 = P◦
(w1)⊆ F1 and P2 = P◦(w2,v1, · · · ,v j)⊆ F2, for j ≥ 0. For j = 0, consider that (w2,v1, · · · ,v j) =

(w2). Let φ1 and φ2 be circular 2-backbone 7-colorings of (G1 −P1,F1 −P1) and (G2 −P2,F2 −
P2) respectively. We say that P1 and P2 are equivalent if (P1,P1) being aφ1

-colorable implies that

(P2,P2) is aφ2
-colorable.

We emphasize that this definition of pair equivalence does not rely too much on

the pairs (G1,F1) and (G2,F2), but on the list assignments aφ1
and aφ2

. For the following

propositions, we consider aφ1
(u) = aφ2

(u), for every u ∈V (P) and omit the pairs (G1,F1) and

(G2,F2).

Proposition 4.8 If w1 is a type (3,2) vertex and w2 is a type (5,1), then (P◦ (w1),P◦ (w1)) and

(P◦ (w2),P◦ (w2)) are equivalent.

Demonstration. Notice that aφ1
(w1) = aφ2

(w2) = 3. Therefore they are equivalent. �

Proposition 4.9 If w1 is a type (3,2) vertex, w2 and v j, for j ≥ 1, are type (4,2) and vp

is type (5,2) vertex, for p ∈ {1, · · · , j}, then (P ◦ (w1),P ◦ (w1)) and (P ◦ (w2,v1, · · · ,v j),P ◦
(w2,v1, · · · ,v j)) are equivalent.

Demonstration. Notice that aφ1
(w1) = 3, aφ2

(w2) = 5, aφ2
(v j) = 2 and, for every p∈ {1, · · · , j−

1}, aφ2
(vp) = 4. Consider �w : V (P)∪{w2} → {1, · · · ,7} such that �w(w2) = 3 and �w(v) =

aφ2
(v) for every v in V (P). Applying Proposition 4.7 on the pair (P ◦ (w2,v1, · · · ,v j),P ◦

(w2,v1, · · · ,v j)), the conclusion follows. �

Proposition 4.10 If w1 is a type (6,1) vertex, w2 is a type (6,2), v j, for j ≥ 1, is a type (5,1) and

vp is type (5,2) vertex, for p ∈ {1, · · · , j}, then (P◦ (w1),P◦ (w1)) and (P◦ (w2,v1, · · · ,v j),P◦
(w2,v1, · · · ,v j)) are equivalent.
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Figure 10 – Example of equivalent paths

Fonte: elaborado pelo autor.

Demonstration. Notice that aφ1
(w1) = 2, aφ2

(w2) = 3, aφ2
(v j) = 3 and, for every p∈ {1, · · · , j−

1}, aφ2
(vp) = 4. Consider �w : V (P)∪{w2} → {1, · · · ,7} such that �w(w2) = 2 and �w(v) =

aφ2
(v) for every v in V (P). Applying Proposition 4.6 on the pair (P ◦ (w2,v1, · · · ,v j),P ◦

(w2,v1, · · · ,v j)), the conclusion follows. �

The notion of equivalence of the pairs is useful since we are interested not in the

vertices themselves, but in their available list.

4.2 Main result

In this section, we prove Theorem 1.1, which we restate in the sequel:

Theorem 4.11 Let G be a planar graph without cycles of size four and let F be an spanning

induced path forest of G, then CBC2(G,F)≤ 7.

This theorem gives us the following corollary:

Corollary 4.1 Let G be a planar graph without cycles of size four and let M be a matching in G,

then CBC2(G,M)≤ 7.

We recall that in Broersma et al. (BROERSMA et al., 2007), the authors prove that

BBC2(G,M)≤ 6, which implies that CBC2(G,M)≤ 7. However, their proof requires the Four
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Color Theorem, which is not needed here.

We prove Theorem 1.1 by contradiction, double counting edges and evaluating

the average degree of the graph G in a minimal pair (G,F). These evaluations are done in

Section 4.2.3. Before we do so, the reader should be familiar with the concept of islands, that

we present in Section 4.2.2. Furthermore, one of the lemmas requires a key lemma that can be

proved using the propositions presented in Section 4.1. We present and prove that key lemma in

the next section.

4.2.1 Average Degree Lemma

Lemma 4.6, a key lemma used to prove Theorem 1.1, evaluates the average degree of

the graph G of the minimal pair (G,F). The proof of Lemma 4.6 requires the following lemma:

Lemma 4.4 Let G = (V (G),E(G)) be a planar graph without C4, (G,F) be a minimal pair and

P be a connected component of F, then, the following inequality holds:

∑
v∈V (P)

dG(v)≥ 5|V (P)|+1. (4.3)

The proof of Lemma 4.4 is done by considering an ordering over the strong subpaths

in P. Let P1 and P2 be strong subpaths of P. Name the vertices of P in order, that is, P =

(v1, · · · ,v j). We say P1 is located to the left of P2 if there are vertices vi1 ∈ V (P1) and vi2 ∈
V (P2) such that i1 < i2. Otherwise, P2 is located to the right of P1. Moreover, for an integer

m ∈ {i1, i1 +1, · · · , i2}, we say that vm is a vertex between P1 and P2 if vm /∈V (P1)∪V (P2). We

say P1 and P2 are consecutive if there is no vertex v between P1 and P2 such that dG(v)≤ 5.

Let P0, · · · ,Pj be its strong subpaths such that for every i ∈ {1, · · · , j}, the paths Pi−1

and Pi are consecutive with Pi−1 located to the left of Pi. Name I1, · · · , I j the maximal subpaths

of P such that the vertices of Ii are located between Pi−1 and Pi. It is worth noting that only the

paths P0 and Pj can be empty. We name the sequence (P0, I1,P1, · · · , I j,Pj) the strong partition

of P. The weight of P, denoted by ω(P), is the integer that satisfy ω(P) = ∑v∈V (P)(dG(v)−5).

To prove Lemma 4.4, it is sufficient to prove that ω(P)≥ 1, or in other words, that:

ω(P0)+
j

∑
k=1

(ω(Ik)+ω(Pk))> 0. (4.4)

for any connected component P of F . We use the next lemma to prove Equation 4.4.
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Figure 11 – Strong Partition of a path

Fonte: elaborado pelo autor.

Lemma 4.5 Let P be a connected component of Fand P0, I1,P1, ..., I j,Pj be the strong partition

of P. Let k1 < k2 < ... < kλ be the positive integers such that ω(Pkm) = −2. Furthermore,

consider k0 = 0. If m ∈ {0,1,2,3, ...,λ −1}, then the inequality below is true:

Sm =

k(m+1)

∑
i=km+1

(ω(Ii)+ω(Pi))≥ 0. (4.5)

Demonstration. By contradiction, suppose that Sm < 0, for some m ∈ {0,1, ...,λ −1}. Note

that ω(Ii) ≥ 1, ω(Pi) ≥ −1, for every i ∈ {km + 1, · · · ,km+1 − 1}, and ω(Pkm+1
) = −2, by the

definition of the integers km. Consequently, we have:

Sm =
km+1

∑
i=km+1

(ω(Ii)+ω(Pi)) =−1. (4.6)

As it is an equality, we have that ω(Ii) = 1 and ω(Pi) = −1, for every i ∈ {km +

1, · · · ,km+1 −1}. In other words, for every i ∈ {km +1, · · · ,km+1 −1}, the subpath Ii is a single

vertex of degree 6 in G and Pi has exactly one vertex of type (4,2) and every other vertex is a

type (5,2). Additionally, if m = 0, either P0 is not empty or I1 is a type (6,1) vertex.

If m = 0, let P′ be the smallest subpath of P containing both P0 and I1 and also

containing every vertex of Pk1
of degree smaller than five. Similarly, if m > 0, let P′ be the
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smallest subpath of P containing every vertex of both Pkm and Pkm+1
of degree smaller than five.

Consider a circular 2-backbone 7-coloring ϕ of (G−V (P′),F −V (P′)). We want to prove that

(P′,P′) is aϕ -colorable.

By Propositions 4.8 and 4.9, we can assume that each Pkm , for m ≥ 1, has a type

(3,2) vertex. By Proposition 4.10, we can also assume that Pk0
is not empty, therefore, using

Proposition 4.8 we may assume that it has a type (3,2) vertex as well. Therefore, we consider

the end vertices of P to be type (3,2) vertices.

Notice that in P′ there are exactly km+1 − km −1 vertices of type (4,2). In terms of

list coloring, that means that aϕ(u)≥ 3, for every u of type (3,2) in P′, aϕ(u)≥ 4, for every u

of type (5,2) in P′, aϕ(u)≥ 5, for every u of type (4,2) in P′, and aϕ(u)≥ 3, for every u of type

(6,2) in P′. Without loss of generality, assume that all these inequalities are equalities.

The proof here follows from induction on the number of type (4,2) vertices in

P′. If P′ has no type (4,2) vertex, that is, km+1 − km − 1 = 0, then it can be written as P′ =

(w,v1, · · · ,vr, ...v j) such that aϕ(w) = aϕ(vr) = aϕ(v j) = 3 and, for every other vertex vp, we

have aϕ(vp) = 4. Let �wv : {w,v1, · · · ,vr} → {1, · · · ,7} be such that �wv(vr) = 2 = aϕ(vr)− 1

and �wv(u) = aϕ(u) for the remaining vertices. By Proposition 4.6, if (w,v1, · · · ,vr) is �wv-

colorable, then P′ = (w,v1, · · · ,vr−1 ◦ (vr)◦ (vr+1, ...,v j) is aϕ -colorable. Additionally, let �w :

{w} → {1, · · · ,7} be such that �w(w) = 1 = �wv(w)− 2. By Proposition 4.7, (w,v1, · · · ,vr) is

�wv-colorable as (w) is clearly �w-colorable. Therefore, if P′ has no type (4,2) vertex, then it is

aϕ -colorable.

Now suppose otherwise and let w ∈V (Pkm+1−1) be a vertex of type (4,2). We write

P′ as P′ = Q′ ◦ (w) ◦ (v1, · · · ,vr, ...,v j) such that aϕ(w) = aϕ(vr) = aϕ(v j) = 3 and, for every

other vertex vp, we have aϕ(vp) = 4. Notice that if �w : V (Q′)∪{w} → {1, · · · ,7} is such that

�w(w) = aϕ(w)−2 and �w(u) = aϕ(u), for the remaining vertices, then (Q′ ◦ (w),Q′ ◦ (w)), with

list assignment �w, is equivalent to (Q′ ◦ (w∗),Q′ ◦ (w∗)), with list assignment φ∗, where w∗ is a

type (3,2) vertex and φ∗(v) = �w(v), for every v ∈V (Q′). Therefore, we just have to prove that

Q′ ◦ (w) being �w- colorable implies that P′ is aϕ -colorable.

Observe that aϕ(w) = 5, aϕ(vr) = aϕ(v j) = 3 and for every other vertex vp we have

aϕ(vp) = 4. Let �wv : V (Q′)∪{w,v1, · · · ,vr}→ {1, · · · ,7} be such that �wv(vr) = 2 = aϕ(vr)−1

and �wv(u) = aϕ(u) for the remaining vertices. By Proposition 4.6, if Q′ ◦ (w,v1, · · · ,vr) is

�wv-colorable, then P′ = Q′ ◦ (w,v1, · · · ,vr−1 ◦ (vr)◦ (vr+1, ...,v j) is aϕ -colorable. Additionally,

by Proposition 4.7, Q′ ◦ (w,v1, · · · ,vr) is �wv-colorable, since Q′ ◦ (w) is �w-colorable. Therefore,
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P′ is aϕ -colorable.

Thus, by assuming ∑km+1

i=km+1 (ω(Ii)+ω(Pi)) =−1, we get a contradiction. Therefore

∑km+1

i=km+1 (ω(Ii)+ω(Pi))≥ 0. �

Demonstration of Lemma 4.4. Equation 4.4, that is, ω(P) = ω(P0)+∑ j
k=1 (ω(Ik)+ω(Pk))

can be rewritten as:

ω(P0)+

(
λ−1

∑
m=0

km+1

∑
i=km+1

(ω(Ii)+ω(Pi))

)
+

j−1

∑
i=kλ+1

(ω(Ii)+ω(Pi))+ω(I j)+ω(Pj).

By Lemma 4.5,
(

∑λ−1
m=0 ∑km+1

i=km+1 (ω(Ii)+ω(Pi))
)
≥ 0. Also, by the definition of the numbers

k0,k1, ...,kλ , it holds that ∑ j−1
k=kλ+1 (ω(Ik)+ω(Pk))≥ 0, as there is no Pk such that ω(Pk) =−2,

for k > kλ . Consequently, we have that ω(I j)+ω(Pj)> 0, as ω(Pj) = 0. Therefore, Lemma 4.4

follows. �

4.2.2 Islands

In Araujo et al. (ARAUJO et al., 2018), a theorem similar to Theorem 1.1 is proven

for planar graphs without C4 and C5. Here we drop the “no C5” condition, we assume the

existence of a counterexample for our theorem, then we prove two inequalities that contradict

each other, denying the existence of a counterexample. In order to do that, we define islands as

shown in the sequel, but first notice that since G contains no cycle of size four, then no pair of

triangles can share an edge.

Figure 12 – Islands highlighted on the graph on the right

Fonte: elaborado pelo autor.

Let G be a plane graph and G∗ be its dual. Let G∗
5+ ⊆ G∗ be the subgraph of G∗

induced by the vertices f of G∗ with degree at least five. For some component J∗ of G∗
5+, let
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C be the set of vertices of G contained in some face corresponding to a vertex in J∗. We call

the subgraph J = G[C] an island. In Figure 12a, we see an example of a graph and its islands.

We call J a bad island if J∗ is a tree and every face of J corresponding to a vertex in J∗ is a C5.

Otherwise, we call it a good island. Observe that if J is a good island, then at least one of the

following conditions apply:

1. There is a cycle in J∗; or

2. There is a face f ∈ F(J) such that dG( f )≥ 6.

Let us prove a couple of propositions concerning the number of bad islands that a

planar graph with no C4 may have.

Proposition 4.12 Let G = (V (G),E(G)) be a plane graph without C4 and γ be the number of

bad islands in G, then:

3F3 +F5 ≤ |E(G)|+ γ. (4.7)

Demonstration. We prove this by double counting edges in G. The main idea is to count the

edges that lie in a face of size three, then, for each face of size five, count one edge that have not

been counted on the triangles.

As G is a graph without C4, then there are no two faces of size three sharing an edge.

Therefore, we may count one edge for each face of size three without counting the same edge

twice, so there are 3F3 edges on the triangles of G.

Let J ⊆ G be any island and let F5(J) be the number of faces of degree five in J.

Also, let J∗ be the component of G∗
5+ corresponding to J. Notice that the number of edges in J

that are not in a triangle is equal to the number of edges in J∗. As J∗ is connected, then it has at

least |V (J∗)|−1 = F5+(J)−1 edges.

If J is a good island, we split into two cases:

1. If J∗ has a cycle, then |E(J∗)| ≥ |V (J∗)|= F5+(J)≥ F5(J);

2. if J has a face f such that dG( f )≥ 6, then F5+(J)> F5(J) (or in other words F5+(J)−1 ≥
F5(J)). We conclude that |E(J∗)| ≥ |V (J∗)|−1 = F5+(J)−1 ≥ F5(J).

If J is a bad island, we only know that |E(J∗)| ≥ F5+(J)−1 ≥ F5(J)−1.

Let B be the set of bad islands and G be the set of good islands of G. Since, by
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definition of island, each face of degree 5 is in exactly one island, then:

F5 = ∑
J∈G

F5(J)+ ∑
J∈B

F5(J)

≤ ∑
J∈G

|E(J∗)|+ ∑
J∈B

(
|E(J∗)|+1

)

=γ + ∑
J∈G∪B

|E(J∗)|.

In |E(J∗)| we are counting only edges between faces of length greater than or

equal to five in an island, therefore no edge from any triangle is counted |E(J∗)|. Thus 3F3 +

∑J∈G∪B |E(J∗)| ≤ |E(G)|. As a result we have:

3F3 +F5 ≤ 3F3 + γ + ∑
J∈G∪B

|E(J∗)| ≤ |E(G)|+ γ.

�

Let G be a plane graph without C4 with γ bad islands. For each v ∈V (G), we name

γ(v) the number of bad islands which contain the vertex v. Similarly, if H ⊆ G, we name γ(H)

the number of bad islands which contain some vertex of H.

Figure 13 – Visualization of the inequalities

Fonte: elaborado pelo autor.

Proposition 4.13 Let G be a plane graph without C4, w ∈ V (G) and T ⊆ G a tree such that

|V (T )|= t, then:

γ(w)≤
⌊

dG(w)
2

⌋
and γ(T )≤ 1− t +

1

2
∑

v∈V (T )
dG(v). (4.8)
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Demonstration. For the first inequality, γ(w) ≤
⌊

dG(w)
2

⌋
, it is sufficient to notice that w is

incident to dG(w) faces. As two adjacent faces cannot be both from different islands, then there

are at most
⌊

dG(w)
2

⌋
islands containing w.

Thus, we can count, for each vertex v ∈ T , at most
⌊

dG(v)
2

⌋
≤ dG(v)

2 different islands.

Hence, in T there are at most 1
2 ∑v∈V (T ) dG(v) islands incident to T .

However, every edge in T belongs to at most one island, as both sides of the edge

cannot be part of different islands. So when we count 1
2 ∑v∈V (T ) dG(v) islands, we are counting

every island incident to the edges of T twice. To take that into account, we remove t −1 from

1
2 ∑v∈V (T ) dG(v), resulting in γ(T )≤−(t −1)+ 1

2 ∑v∈V (T ) dG(v). �

4.2.3 Tool Lemmas

Now that the reader is familiar with the notion of islands and Lemma 4.4, we are

ready to present the lemmas that lead us to the contradiction we get when assuming the existence

of a minimal pair.

Lemma 4.6 Let (G,F) be a minimal pair such the plane representation of G has γ bad islands.

The following inequality holds:

|E(G)| ≥ 2|V (G)|+ γ
3
. (4.9)

Demonstration. For any P component of F , we have by Proposition 4.13 that:

γ(P)≤−(|V (P)|−1)+
1

2
∑

v∈V (P)
dG(v).

Then:

1 ≥ γ(P)+ |V (P)|− 1

2
∑

v∈V (P)
dG(v).

On the other hand, Lemma 4.4 states that:

∑
v∈V (P)

dG(v)≥ 5|V (P)|+1

∑
v∈V (P)

dG(v)≥ 5|V (P)|+ γ(P)+ |V (P)|− 1

2
∑

v∈V (P)
dG(v)

2 ∑
v∈V (P)

dG(v)≥ 10|V (P)|+2γ(P)+2|V (P)|− ∑
v∈V (P)

dG(v)

3 ∑
v∈V (P)

dG(v)≥ 12|V (P)|+2γ(P)
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Because two components of the spanning subgraph F do not share any vertex, let P

be the set of components of F . It follows that:

2|E(G)|= ∑
v∈V (G)

dG(v) = ∑
P∈P

∑
v∈V (P)

dG(v).

Also, since F is a spanning forest, we get:

∑
P∈P

γ(P)≥ γ and ∑
P∈P

|V (P)| ≥ |V (G)|.

Summing up 3∑v∈V (P) dG(v)= 12|V (P)|+2γ(P) for all components, we get 6|E(G)| ≥ 12|V (G)|+
2γ and the lemma follows. �

Lemma 4.7 Let (G,F) be a minimal pair, such that G has γ bad islands. The following inequality

holds:

|E(G)| ≤ 2|V (G)|−4+
γ
3
. (4.10)

Demonstration. Recall that F(G) is the set of faces of the plane graph G. It holds that

2|E(G)| − 6|F(G)| = ∑ f∈F(G) dG( f )− ∑ f∈F(G) 6. As G does not contain a leaf, G �= K1,2,

then a face f has degree four only if that face is a C4. So ∑ f∈F(G)(dG( f )−6)≥−3F3 −F5 ≥
−|E(G)|−γ by the Proposition 4.12. Therefore, by applying Euler’s formula to the left-hand side,

2|E(G)|−6(2−|V (G)|+ |E(G)|)≥−|E(G)|−γ , which implies that |E(G)| ≤ 2|V (G)|−4+ γ
3 .

�

Demonstration of Theorem 1.1. By contradiction, assume the Theorem 1.1 is not true. There-

fore, there exists pair a (G,F) such that CBC2(G,F)> 7. Without loss of generality, consider

(G,F) as a minimal pair. By Lemma 4.7, we have |E(G)| ≤ 2|V (G)|−4+ γ
3 , whereas Lemma 4.6

states that |E(G)| ≥ 2|V (G)|+ γ
3 . Therefore, we get the following contradiction:

2|V (G)|+ γ
3
≤ 2|V (G)|−4+

γ
3
⇒ 0 ≤−4.

We conclude that there cannot exist such pair (G,F). �
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5 CONCLUSION

Inspired by previous works done by Broersma et al. (BROERSMA et al., 2007) and

Araujo et al. (ARAUJO et al., 2018) we were able to present a proof for a particular case of an

open problem they proposed, that we state in the following theorem:

Theorem 5.1 Let G be a planar graph without cycles of size four and let F be an spanning

induced path forest of G, then CBC2(G,F)≤ 7.

Even though the result we prove seems like a small improvement to the one presented by Araujo

et al., our approach required a more detailed study on the properties of a minimal counterexample.

This indicates the level of complexity needed to prove Conjecture 3.1.

In our proof, we have q = 2. But, as presented in Chapter 3, some authors work with

other possible values of q. Therefore, we ask the following question:

Question 5.1 For any planar graph G without cycles of length four or five, F a spanning induced

path forest of G and q ≥ 2 an integer, is it true that CBCq(G,F)≤ 4q−1? What if we drop the

“no C5” condition?

One thing we strongly need in our proof is that each component of the subgraph F

was an induced subgraph of G. This was needed for the Propositions 4.3, 4.4 and 4.5, as we

exclude some available colors for w in a way that we are still able to color the vertex v. But if v

was adjacent to other vertices of the component, then the induction argument could not be used.

The following question arises:

Question 5.2 Is it possible to extend the results in Propositions 4.3, 4.4 and 4.5 to non-induced

subgraphs of G?

As for the problem itself, we notice that it is closely related to the problem studied

by Araujo (ARAUJO et al., 2018). In their work, they showed that if G is a planar graph

without cycles of size 4 and 5, then CBC2(G,T )≤ 7, for any spanning forest T of G. Aiming to

generalize their results, and ours, it is natural to ask what would happen if T were a spanning

forest of G:

Question 5.3 Let G be a planar graph without C4 and T be a spanning induced forest of G, does

CBC2(G,T )≤ 7 still hold?
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Finally, inspired by the works of Bu et al. (BU; BAO, 2015; BU; LI, 2011; BU et

al., 2013; BU; ZHANG, 2011; BU et al., 2012), we were able to generalize the results they

obtained, avoiding the restrictions imposed on the graph G, but still with the backbone restricted

to a spanning tree or its subgraphs. Therefore, the next step is to research similar problems with

cyclic graphs. The following question arises:

Question 5.4 If G is a cyclic connected graph, q is an integer greater than or equal to 2 and

k ≥ max{χ(G),�χ(G)
2 �+q}, does there exist a connected spanning cyclic subgraph H of G such

that girth(G)≤ girth(H) and (G,H) is q-backbone k-colorable?
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