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RESUMO

Para que os processos de tomada de decisão sejam automatizados em sistemas críticos do

mundo real, agentes autônomos não apenas precisam ser poderosos e eficientes, mas também

transparentes, responsáveis, imparciais, explicáveis, éticos e capazes de lidar com informações

inconsistentes, não confiáveis e incompletas. Um formalismo possivelmente adequado para

modelar o raciocínio com essas características é o Framework de Argumentação Abstrata, no qual

argumentos sem estruturas detalhadas são avaliados unicamente com base em como interagem

entre si. Justificativas a favor ou contra afirmações podem ser obtidas de maneira natural,

seguindo um formato semelhante ao discurso humano. A expressividade desses frameworks foi

expandida para incorporar várias noções, como suporte, preferências e pesos. O aspecto temporal

inerente ao raciocínio humano levou ao desenvolvimento de frameworks temporais nos quais

a aceitabilidade e as interações dos argumentos são relativas ao tempo. As abordagens atuais

para incluir o tempo na argumentação permitem modelar a disponibilidade de argumentos ou de

ataques, mas interações temporais mais gerais entre os argumentos não foram consideradas nos

frameworks tradicionais de argumentação abstrata. Este trabalho revisa as principais abordagens

de incorporação de tempo à argumentação na literatura e discute como uma abordagem de

tradução simples é capaz de representar interações temporais variadas.

Palavras-chave: argumentação; temporalidade; explicabilidade; representação do conhecimento;

inteligência artificial.



ABSTRACT

For decision-making processes to be automated in critical real-world systems, autonomous agents

must not only be powerful and efficient, but transparent, accountable, unbiased, explainable,

ethical, and capable of handling inconsistent, unreliable and incomplete information. A possibly

suitable formalism for modeling reasoning with such features is the Abstract Argumentation

Framework, in which arguments without intricate structures are evaluated solely based on

their interaction with each other. Justifications for or against claims can be naturally obtained

in a format similar to human discourse. The expressiveness of these frameworks has been

expanded to incorporate various notions such as support, preferences and weights. The inherent

temporal aspect in human reasoning led to the development of temporal frameworks in which

arguments’ acceptability and interactions are relative to time. Current approaches of including

time in argumentation allow for modeling argument or attack availability, but general temporal

interactions between arguments have not been considered in traditional abstract argumentation

frameworks. This work reviews the main approaches of featuring time in argumentation from

the literature and discusses how a simple translation approach is able to represent variegated

temporal interactions.

Keywords: argumentation; temporality; explainability; knowledge representation; artificial

intelligence.
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1 INTRODUCTION

Argumentation allows reasoning about incomplete or unreliable knowledge in which

arguments for and against claims interact. It has been found useful for a plethora of areas, such

as Ambient Intelligence (Oguego et al. (2018)), robotics, law, medicine and more generally

Explanable Artificial Intelligence (XAI) (Vassiliades et al. (2021)).

Abstract Argumentation Frameworks (AFs) proposed by Dung (1995) are a major

formalism in formal argumentation due to its simplicity in representing arguments without

structure and evaluating them solely based on their attack relation with each other. However, the

task of instantiating abstract frameworks is not a trivial one, as multiple kinds of interactions

between arguments are present in real world discourses. For this reason many proposals extend

AFs’ expressiveness by including notions such as support (Cayrol and Lagasquie-Schiex (2013)),

preferences (Amgoud and Cayrol (2013)), probability (Li et al. (2011)), argument or attack

weights (Amgoud et al. (2017), Coste-Marquis et al. (2012)), labels (Budán et al. (2015)), joint

attacks (Flouris and Bikakis (2019a)), higher-order (Barringer et al. (2005)) or recursive attacks

(Baroni et al. (2011)), and time availability (Cobo et al. (2010)).

The latter notion led to the definition of Timed Argumentation Frameworks (TAFs)

(Cobo et al. (2010), Cobo et al. (2011), Budán et al. (2015)), in which some arguments may

not be available for reasoning at some time intervals; and Temporal Probabilistic Abstract

Argumentation Frameworks (TPAFs) (Bistarelli et al. (2023b), Bistarelli et al. (2023a)), in which

this availability is expressed by probability distributions.

Time is a natural factor of argumentation in many orthogonal perspectives. Argu-

ments’ strength may vary with respect to the passage of time, or time may be treated as an object

of discourse, susceptible to be reasoned about. Some of these aspects may be better understood

with Example 1, illustrated by Figure 1 in which circles represent arguments and solid arrows

represent attacks.

Example 1. Bob must follow a medical prescription that requires him to take medication every

other day. Due to its drowsiness-inducing effects, he is unable to drive on the days he takes it.

Consider time in daily granularity starting from 0. The following arguments are presented:

a) Bob took a medication that induces drowsiness today (argument A);

b) Bob doesn’t feel sleepy today (argument B);

c) Bob won’t be able to drive tomorrow (argument C);
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d) Bob is able to attend some specific party occuring at day 1 by driving (argument D).

Figure 1 ± Argumentation framework from Example 1

A0

B0

C0

A1

B1

C1

A2

B2

C2

D

· · ·

· · ·

Source: This author.

The index subscripting each argument indicates the time point to which the corre-

sponding argument is linked. For instance, A3 represents argument A at time point 3. Each attack

encodes a particular information. For example, the attack from A0 to A1 encodes the fact that if

A0 is accepted (Bob took medication at time point 0), then he will not take medication at time

point 1 and therefore A1 is rejected. Arguably, other attacks could be included, such as attacks

from B to itself in consecutive points in time, mirroring A’s behavior. Nevertheless, the attacks

in Example 1 are sufficient to highlight some temporal aspects:

a) arguments can be linked to a relative point in time, such as today and tomorrow,

or to an absolute point in time, such as the date of a specific party;

b) arguments linked to relative points in time can be accepted in some time instances,

but rejected in others;

c) arguments accepted in some point in time can be used to justify or deny the

acceptance of arguments (even itself) at a different time.

An important remark is that when arguments are accepted at a specific time point,

the relative time reference "today" refers to such time point. For instance, accepting C1 means

that "Bob won’t be able to drive tomorrow" is accepted at time point 1, which in turn means that

"Bob won’t be able to drive" at time point 2. Also, argument D is not linked to a relative time

point, as it does not refer to relative dates, such as "today" or "tomorrow".

The acceptance or rejection of arguments in an argumentation framework naturally

comes with justification. For example, accepting C1 is justified by rejecting B2, which in turn
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can be explained by the acceptance of A2 and so on.

Four kinds of interactions were shown in Figure 1:

a) the static and mutual attack between A0 and B0 is the traditional notion of attack

at a fixed time point, encoding the information that the medication makes Bob

feel sleepy;

b) the past relative attack of A0 over A1 is a kind of temporal interaction, because if

Bob took medication at time point 0, then he will not take medication at the next

time point, assuming the medical prescription is being correctly followed;

c) the future relative attack of B1 over C0 is explained by C0’s use of a future time

reference ("tomorrow") and encodes the information that Bob cannot drive (at a

time point) if feeling sleepy (at that same time point);

d) the absolute attack of C0 over D encodes the information that if Bob cannot

drive at time 1 (acceptance of C0), then Bob will not be able to attend the party

(rejection of D) scheduled for that same time point.

Note that arguments B and C in Example 1 use negation in their text. If B were "Bob

feels sleepy today", then the acceptance of A would lead to the acceptance of B. That is a positive

interaction between arguments and can be modeled by using supports. The following example

uses a support relation between arguments.

Example 2. Continuing from Example 1, add argument E: "Bob took a medication that induces

drowsiness this week" and assume day 0 is the first day of the week. This is illustrated by Figure

2, in which dashed edges represent support. Obviously, if Bob took medication on any day of

the current week, then he took medication on that same week. Hence, arguments A0, · · · ,A6

support E0, · · · ,E6; arguments A7, · · · ,A13 support E7, · · · ,E13; and so on. Note that E0, · · · ,E6

possess the same meaning and, therefore, only E0 is shown. Although the precise interpretation

for support is not yet given, two of them will be presented later. Without considering a specific

interpretation for support, it is reasonable to include the support from E0 to A0, · · · ,A6, as

accepting that Bob took medication this week contributes to accepting (despite not being a

sufficient reason) that Bob took medication at a specific day of this week.

Instead of using positive interactions, a similar framework can also be properly

encoded by using joint attacks, as shown by the next example. A joint attack from a set of

arguments S to an argument A indicates that A should be rejected if every argument in S is

accepted.
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Figure 2 ± Argumentation framework from Example 2 by using support

E0 E7 E8
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Source: This author.

Figure 3 ± Argumentation framework from Example 2 by using joint attacks
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Source: This author.

Figure 3 illustrates this alternative. The joint attack from S = {B0, · · · ,B6} to E0

encodes the information that E0 must be rejected if every argument in S is accepted, i.e., E0 must

be rejected if every argument {A0, · · · ,A6} is rejected. That way, "Bob did not take medication

this week" (rejection of E0) if "Bob did not take medication today" (rejection of Ai) for every

day 0 ≤ i ≤ 6 of this week. The opposite direction is encoded by the attacks from E0 to each

B0, · · · ,B6, i.e., if E0 is accepted, then B0, · · · ,B6 are rejected. Section 4 discusses expressiveness

and limitations from the approaches briefly introduced above.

Although TAFs and TPAFs can represent time availability, argument acceptability
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in a particular time point t is determined exclusively by the available arguments at t, and

more general temporal interactions cannot be directly expressed, such as the last three of those

discussed above. For instance, the attack from A0 to A1 in Example 1 is an attack from an

argument to itself in consecutive points in time. It is reasonable to accept A0 and reject A1, as

these acceptability statuses refer to two distinct time instants. In a TAF, an argument attacking

itself is not accepted in any time point, as every attack from A to B indicates that if A is accepted

at a time point t, then B is rejected at this same time point.

The paper Brewka and Woltran (2010) introduces Abstract Dialetical Frameworks

(ADFs), a powerful generalization of AFs in which complex interactions can be expressed.

Whereas arguments may interact only by an attack relation in AFs, ADFs associate each argument

A with a propositional formula expressing an acceptance condition for A that can depend on the

acceptabilities of other arguments in the framework.

Recently, ADFs were extended by a new formalism, called Timed Abstract Dialetical

Frameworks (tADFs) Prakken et al. (2020), capable of handling acceptance conditions changing

over time, such as those expressed in Figures 1, 2 and 3, through the use of temporal propositional

formulas. However, it is also reasonable to include this notion of time in less generic frameworks

and see the limitations of expressiveness of different formalisms with respect to encoding distinct

notions of temporal interactions. Temporal approaches for AFs, Bipolar Abstract Argumentation

Frameworks (BAFs) and Frameworks with Sets of Attacking Arguments (SETAFs) (respectively

from Cobo et al. (2011), Budán et al. (2017), Zhu (2020)) focuses strictly in time availability,

without considering the more general temporal interactions discussed so far.

Hence, the objectives of this work are twofold:

a) to apply a simple translation approach for encoding temporal interactions in AFs,

BAFs and SETAFs and investigate their limitations;

b) to show semantic relationships between the simple translation approach and other

timed formalisms, such as TAFs and tADFs;

In the next section, some fundamental background definitions and related formalisms

are introduced. In Section 3, AFs and its semantics are used to encode time. Next, time is

included in Section 4 by using frameworks with support (BAFs) and frameworks with joint

attacks (SETAFs). Timed formalisms related to the simple translation approach used in this work

are presented and compared in Section 5. At last, the conclusion in Section 6 discusses future

investigations and reviews the main contributions of this work.
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2 BACKGROUND

In this chapter, the fundamental and simpler formalism upon which many others

were built is introduced. Then, an approach for including temporality as availability is pre-

sented through Timed Abstract Argumentation Frameworks (TAFs). Later, Abstract Dialetical

Frameworks (ADFs) and its timed version (tADFs) are described.

2.1 Abstract Argumentation Frameworks

In his seminal paper Dung (1995), Dung takes argumentation to its simplest form.

Arguments have no structure and attacks are the only way arguments can interact with each other.

Definition 1. An Abstract Argumentation Framework (AF) is a tuple A= (A ,Att), where A

is an enumerable set of arguments and Att ⊆ A ×A is an attack relation. The attackers of an

argument A ∈ A are denoted by the set Att(A) = {B | (B,A) ∈ Att}.

Despite its simplicity, many interesting results follow. Reasoning about which

arguments should be collectively accepted under some specific criteria can be determined

exclusively by the relationship between arguments. Each criteria is called a semantics and a set

of accepted arguments under a semantics is called an extension.

For a set of arguments to be collectively accepted, it must satisfy a property of

internal coherence, called conflict-freeness, which ensures there is no attack between accepted

arguments.

Definition 2 (Conflict-free sets). Let A= (A ,Att) be an AF. A set S ⊆ A is conflict-free in A

iff there is no A,B ∈ S such that (A,B) ∈ Att.

Additionally, as arguments are collectively (and not individually) accepted, it is

natural to extend the notion of attack to sets of arguments.

Definition 3 (Defeat in A). Let A= (A ,Att) be an AF. A set S ⊆ A defeats A ∈ A iff there is

B ∈ S such that (B,A) ∈ Att. The set of all defeated arguments by S is denoted by S+.

The notion of defense stems from that of defeat. An argument must not be rejected

due to attackers if there is a counterargument for every attacker.

Definition 4 (Defense in A). Let A = (A ,Att) be an AF. A set S ⊆ A defends A ∈ A iff for

every B ∈ Att(A) it holds S defeats B.
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Extensions are derived from the concept of defense. At minimum, it is required

that an extension does not defeat itself (i.e., it is conflict-free) and that it defends each of its

arguments.

Definition 5 (Extension-based semantics of A). Let A= (A ,Att) be an AF. A set S ⊆ A is:

a) admissible if S is conflict-free and defends every argument in S;

b) complete if S is admissible and contains every defended argument;

c) grounded if S is ⊆-minimal complete;

d) preferred if S is ⊆-maximal complete;

e) semi-stable if S is complete with ⊆-maximal S∪S+;

f) stable if S is conflict-free and S∪S+ = A .

Although the definitions above are not the ones initially used by Dung, they have

been shown to coincide (see Baroni et al. (2018)). Each semantics provides a reasonable criteria

for determining sets of accepted arguments. The following example should bring clarity to their

differences.

Example 3. Let A= (A ,Att) be the AF depicted in Figure 4 such that A = {A,B,C,D,E} and

Att = {(A,B),(A,D),(B,A),(D,C),(D,D),(E,E)}. A’s extensions are computed as follows:

a) /0,{A},{B},{A,C} are admissible;

b) /0,{B},{A,C} are complete;

c) /0 is grounded;

d) {B},{A,C} are preferred;

e) {A,C} is semi-stable;

f) no set of arguments is stable.

Figure 4 ± Argumentation framework from Example 3

A B

DC E

Source: This author.
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An equivalent and popular characterization from Caminada (2006) for defining

these semantics uses three-valued labellings, in which arguments are explicitly labelled as in

(accepted), out (rejected) or undec (undecided).

Definition 6 (Labelling of A). Let A = (A ,Att) be an AF. A labelling of A is a function

L : A →{in,out,undec}.

A labelling L is said to be conflict-free if there are no arguments A,B ∈ A such

that L (A) = L (B) = in and (A,B) ∈ Att.

Definition 7 (Admissible labelling of A). A labelling L of an AF A= (A ,Att) is admissible if

for any A ∈ A :

a) if L (A) = in, then for every B ∈ Att(A) it holds L (B) = out;

b) if L (A) = out, then there exists B ∈ Att(A) such that L (B) = in.

Definition 8 (Complete labelling of A). A labelling L of an AF A= (A ,Att) is complete if for

any A ∈ A :

a) L (A) = in iff for every B ∈ Att(A) it holds L (B) = out;

b) L (A) = out iff there exists B ∈ Att(A) such that L (B) = in.

Each labelling L partitions A into three sets of respectively accepted, rejected and

undecided arguments, denoted as in(L ),out(L ) and undec(L ). It is convenient to denote a

labelling L by (in(L ),out(L ),undec(L )). The other semantics can be defined by minimality

or maximality, similarly to extensions:

Definition 9 (Labelling-based semantics of A). A labelling L of an AF A= (A ,Att) is:

a) grounded if L is complete with ⊆-minimal in(L );

b) preferred if L is complete with ⊆-maximal in(L );

c) semi-stable if L is complete with ⊆-minimal undec(L );

d) stable if L is complete with undec(L ) = /0.

As proved in Caminada (2006), for each of the semantics above, there is a bijection

between the set of conflict-free extensions and the set of conflict-free labellings of any AF A.

For example, each extension S is mapped to the labelling (S,S+,A − (S∪S+)). This one-to-one

correspondence is made clear after comparing the previously computed extensions of Example 3

with the labellings below of the same framework:
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a) ( /0, /0,A ),({A},{B,D},{C,E}),({B},{A},{C,D,E}) and ({A,C},{B,D},

{E}) are admissible;

b) ( /0, /0,A ),({B},{A},{C,D,E}),({A,C},{B,D},{E}) are complete;

c) ( /0, /0,A ) is grounded;

d) ({B},{A},{C,D,E}),({A,C},{B,D},{E}) are preferred;

e) ({A,C},{B,D},{E}) is semi-stable;

f) no labelling is stable.

2.2 Timed Abstract Argumentation Frameworks

Many concerns arise when dealing with temporal reasoning and representation, such

as how to structure time (linear or branching) and define granularity of properties and events

(instant points or intervals). See Fisher (2008), Pani and Bhattacharjee (2001) for a more detailed

discussion.

In Budán et al. (2015)’s approach for Timed Abstract Argumentation Frameworks

(TAFs), time is incorporated to abstract frameworks by allowing arguments to be valid only

in certain intervals of time called availability intervals. All concepts of defeat and defense are

then adapted to ignore unavailable arguments. The time structure adopted corresponds to the

set of nonnegative real numbers R+ and time intervals are periods of time without interruptions,

e.g., (1,3) = {x ∈ R
+ | 1 < x < 3} is a time interval. Time intervals (1,3),(1,3], [1,3), [1,3] are

all distinct and follow the usual conventions for closed and open intervals: [ and ] denote the

extreme points are included, whereas ( and ) indicate otherwise.

Definition 10 (Timed Argumentation Framework ( Budán et al. (2015))). A Timed Argumentation

Framework (TAF) is a tuple ∆ = (A ,Att,δ ), where A is a set of arguments, Att ⊆ A ×A is

an attack relation and δ : A → 2R
+

is an availability function associating each argument to a

set of time intervals. When convenient, a set of time intervals might be flattened as only one set

of real numbers.

When deciding argument acceptability, each argument is bound to a set of time

intervals. The resulting pair (A,TA), where A ∈ A and TA ⊆ δ (A), is called a t-profile of

A. Intuitively, TA is the set of time intervals where A is available. In particular, the t-profile

(A,δ (A)) is called the basic t-profile of A. Similarly as with AFs, acceptance is determined

collectively. It is then natural to consider collections of t-profiles:
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Definition 11 (Collection of t-Profiles (Budán et al. (2015))). Let ∆ = (A ,Att,δ ) be a TAF. A

collection of t-profiles is a set S = {(A1,TA1), · · · ,(An,TAn
)} such that for every 1 ≤ i ≤ n it

holds:

a) (Ai,TAi
) is a t-profile of Ai;

b) Ai ̸= A j for every 1 ≤ j ≤ n with j ̸= i;

c) TAi
̸= /0.

The notion of internal coherence is adapted for collections of t-profiles as follows.

Definition 12 (Conflict-free in ∆ (Budán et al. (2015))). A collection S of t-profiles is conflict-free

in ∆ if there are no t-profiles (A,TA),(B,TB) ∈ S such that (A,B) ∈ Att and TA ∩TB ̸= /0.

For a t-profile (A,TA) to be defended from t-profile (B,TB) by a collection S of

t-profiles at some time instant t, it must hold that if A and B are available at t, then there is a

t-profile (C,TC) ∈ S with C available at t such that (C,B) ∈ Att. Formally, the interval of when

A is defended from B by S is computed as

T
B
(A|S) = TA ∩TB ∩

⋃

(C,TC)∈S,(C,B)∈Att

TC.

Example 4. Consider the TAF represented by Figure 5, in which nodes represent arguments,

arrows represent attacks and the availability interval of each argument is near its corresponding

node. C is defended from B by {A} when A,B and C are available. B and C are required to be

available because the interval being computed is that of when C is defended from B. Argument

A is required to be available since it counterattacks B. The resulting interval of defense is

T B
(C|{A}) = TC ∩TB ∩TA = [10,30].

Figure 5 ± Defense of C from B by {A} in a TAF

A

[0,30]

B

[10,50]

C

[0,60]

Source: TAF from Budán et al. (2015).

In traditional AFs, when a set S defends an argument A, it is usual to say that A is

acceptable with respect to S. The concept of defense for TAFs is given in terms of acceptable

t-profiles and it is considered that A is trivially defended from B whenever B is not available.
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Definition 13 (Acceptable t-profile w.r.t. S). Let ∆ = (A ,Att,δ ) be a TAF. The acceptable

t-profile of A w.r.t. to a collection of t-profiles S is (A,T(A|S)) such that

T(A|S) =
⋂

(B,A)∈Att

(δ (A)−δ (B))∪T
B
(A|S).

It is also reasonable to accept C when its only attacker is not available, and that is

captured by taking the union of δ (A)−δ (B) in Definition 13. Many semantics are expressed

by minimizing or maximizing the set of accepted arguments (in this case, t-profiles). A relation

⊆t is defined over collections of t-profiles such that S ⊆t S′ iff for any (X ,TX) ∈ S there exists

(X ,T ′
X) ∈ S′ such that TX ⊆ T ′

X .

Definition 14 (Semantics of ∆). Let ∆ = (A ,Att,δ ) be a TAF. A collection of t-profiles S is:

a) t-admissible if for every (A,TA) ∈ S it holds TA = T(A|S);

b) t-complete if S contains every t-profile acceptable w.r.t. S;

c) t-grounded if S is a ⊆t-minimal among t-complete t-profiles;

d) t-preferred if S is a ⊆t-maximal among t-complete t-profiles;

e) t-stable if S is conflict-free and for all X ∈ A −
⋃

(Y,TY )∈SY it holds

δ (X)−
⋃

(Y,TY )∈S

T(Y |S) = /0.

Figure 6 ± Timed Argumentation Framework

A

[0,30]

B

[10,50]

C

[0,60]

E

[10,30]

G

[0,90]

J

[20,30]

D

[10,30]

F

[0,30]

H

[10,50]

K

[20,30]

I

[20,30]

Source: TAF from Budán et al. (2015).

In the TAF of Figure 6, the following two collections of t-profiles are the only

t-preferred collections:
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a)

S1 = {(A,{[0,30]}),(B,{(30,50]}),(C,{[0,30],(50,60]}),(F,{[0,10)})

(G,{[0,90]}),(H,{[10,50]},(K,{[20,30]})};

b)

S2 = {(A,{[0,30]}),(B,{(30,50]}),(C,{[0,30],(50,60]}),(F,{[0,10)})

(G,{[0,90]}),(H,{[10,20),(30,50]},(I,{[20,30]}),(K,{[20,30]})}.

Intuitively, B can be accepted over (30,50] in S1 and S2, as the attack from the

unavailable argument A can be ignored in such time frame. Although B is available at [10,30],

it is rejected in this time interval due to A’s attack. Another example is the acceptance of

H over [10,50] in S1. Even though I attacks H over [20,30], argument H can defend itself

from I. It is also reasonable to accept I over [20,30] and reject H in this time interval and

that is the decision encoded by S2. Note that C is accepted over [0,30]∪ (50,60] in S1 and

S2. This interval is the union of T B
C|{A} = [10,30] (previously computed in Example 4) and

δ (C)− δ (B) = [0,10)∪ (50,60], which means C is accepted when it is defended from its

attackers or when it is not attacked by an available argument.

There are no t-stable collections, and the unique t-grounded collection is

S3 = {(A,{[0,30]}),(B,{(30,50]}),(C,{[0,30],(50,60]}),(F,{[0,10)}),(G,{[0,90]}),

(H,{[10,20),(30,50]}}.

Note that neither H nor I are accepted over [20,30] in the t-grounded collection (in

the context of labellings, H and I would be labeled as undecided), which is expected given the

t-grounded collection minimizes the acceptance of arguments among all t-complete collections

S1,S2 and S3.

Temporal interactions in TAFs are restricted to availability. The acceptance of A over

[0,30] in Figure 6 leads to the rejection of B over that same time interval, which explains why B

is only accepted over (30,50]. The interaction represented by the attack (A,B) in a TAF indicates

that A and B cannot be accepted at the same time. That differs from the approach of Prakken et

al. (2020) applied to ADFs, which allows the acceptance of arguments at some time points to

influence the acceptance of arguments at other time points, and that is the main inspiration for

this work.
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2.3 Abstract Dialectical Frameworks

Abstract Dialectical Frameworks (ADFs) extend Dung’s frameworks by allowing

advanced forms of interaction between arguments, and not only attacks. All arguments (which

in ADFs are commonly called statements) are given an acceptance condition expressed as a

propositional formula, which is sufficient to represent many kinds of interactions (referred to as

links), such as support and joint-attacks.

The definitions and theorems that follow are from Brewka and Woltran (2010),

Brewka et al. (2013), but some adaptations were made to use labellings instead of extensions,

and to not explicitly specify the set of links between statements.

Definition 15. An abstract dialectical framework (ADF) is a tuple (S,Φ) where S is a set of

statements and Φ = {Φs}s∈S is a collection of propositional formulas, one for each statement.

A propositional formula expresses how an argument is accepted given the accept-

ability of each related argument. Three-valued functions will be used, similarly to the labelling

approach for AFs.

Example 5. Let D = (S,Φ) be an ADF such that S = {X ,Y,Z,W},ΦX = ⊤,ΦY = ¬X ,ΦZ =

X ∨Y,ΦW = ¬(X ∧Z). It is illustrated by Figure 7, in which nodes represent statements, arrows

represent links and the acceptance condition of each statement is near its corresponding node.

A statement X is linked to Y if X appears in Y ’s acceptance condition ΦY . The links can be

obtained from Φ.

Figure 7 ± ADF from Example 5

X

⊤

Y

¬X

Z

X ∨Y

W

¬(X ∧Z)

Source: This author.
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Many interactions may appear at the same time in an ADF. The acceptance condition

for Y is ¬X, which means Y is rejected if X is accepted, otherwise Y is accepted. This link from

X to Y encodes an attack as in traditional AFs. The acceptance condition for Z is X ∨Y , which

means Z is accepted if X or Y are accepted, otherwise Z is rejected. This positive interaction

from X and Y to Z represents a notion of support. Finally, W’s acceptance condition is ¬(X ∧Z),

meaning W is rejected if X and Z are both accepted, otherwise W is accepted. That encodes a

joint attack from {X ,Z} to W.

Definition 16. Let D = (S,Φ) be an ADF. A two-valued (resp. three-valued) interpretation v

for D is a total function v : S →{t, f} (resp. v : S →{t, f,u}). We denote V D
2 (resp. V D

3 ) for the

set of all two-valued (resp. three-valued) interpretations for D.

The acceptability u (undecided) has the least information. Valuations may be com-

pared with each other with respect to an information order.

Definition 17. Let D = (S,Φ) be an ADF. The information order ≤i over {t, f,u} is the reflexive

closure of <i, where u <i t and u <i f. This is generalised for three-valued interpretations for D

in a point-wise fashion:

v1 ≤i v2 if and only if ∀s ∈ S : v1(s) ∈ {t, f}→ v1(s) = v2(s)

Let u ∈ V D
3 such that u(s) = u for any s ∈ S. Note that u is the least information

interpretation, i.e., for every v ∈ V D
3 , it holds u ≤i v.

Definition 18. Given v ∈ V D
3 , we define [v]D2 = {w ∈ V D

2 | v ≤i w} as the set of all two-valued

completions of v.

It can be checked whether an argument acceptability is consensual with respect to

distinct valuations.

Definition 19. The consensus operator ⊓i assigns t⊓i t = t, f⊓i f = f and x⊓i y = u otherwise.

Semantics are then defined by operators from approximation fixpoint theory from

Denecker et al. (2004). The operator below updates the acceptance condition of those statements

for which there is a consensus among all two-valued interpretations with at least as much

information.
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Definition 20. Let D = (S,Φ) be an ADF. We define ΓD : V D
3 → V D

3 as

ΓD(v) : S →{t, f,u} such that ΓD(v)(s) = ⊓i{w(Φs) | w ∈ [v]D2 }

where w(Φs) is the application of valuation w over the acceptance condition Φs for statement s.

Example 6. Consider the ADF from Example 5 illustrated by Figure 7. Let u be the valuation

that assigns u to every statement. Note that [u]D2 is the set of all two-valued valuations with

at least more information than u. As any valuation is more informative than u, [u]D2 is simply

the set of all two-valued valuations. For any w ∈ [u]D2 , it holds w(ΦX) = w(⊤) = t. Therefore,

ΓD(u)(X) = ⊓i{w(ΦX) | w ∈ [u]D2 }= t. Similarly, it holds w(ΦY ) = w(¬X) = f for any w ∈ [u]D2

and thus ΓD(u)(Y ) = ⊓i{w(ΦY ) | w ∈ [u]D2 } = f. At last, ΓD(u) is a valuation v such that

v(X) = t,v(Y ) = f,v(Z) = t and v(W ) = f.

Definition 21. Let D = (S,Φ) be an ADF and v ∈ V D
3 . It holds:

a) v is admissible iff v ≤i ΓD(v).

b) v is complete iff v = ΓD(v).

c) v is grounded iff v is ≤i-minimal among complete interpretations in V D
3 .

d) v is preferred iff v is ≤i-maximal among complete interpretations in V D
3 .

e) v is stable iff v is complete and v ∈ V D
2 .

Example 7. The valuation v from Example 6 is a two-valued valuation, as no statement is

labelled u. No other valuation can be more informative, i.e., [v]D2 = {v}. This implies v is

admissible, complete, grounded, preferred and stable.

Figure 7 has shown how to encode an attack (X ,Y ) from a traditional Dung AF.

More generally, any AF can be represented by an ADF when restricting the acceptance condition

of each statement to formulae as ¬A1 ∧ ·· · ∧¬An, where each Ai ∈ {A1, · · · ,An} is an atomic

formula.

Definition 22. For an AF A= (A ,Att), define the ADF associated to A as DA = (A ,Φ) with

Φ = {ΦA}A∈A and ΦA =
∧

B∈Att(A)¬B for every A ∈ A .

The connection between labellings and interpretations is trivial.

Definition 23. For any three-valued interpretation v : S → {t, f,u}, we define an associated

labelling Lv : S →{in,out,undec} such that:
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a) Lv(s) = in iff v(s) = t

b) Lv(s) = out iff v(s) = f

c) Lv(s) = undec iff v(s) = u

Finally, ADFs are not only strictly more expressive, but also generalizations of AFs.

Theorem 1. Let A= (A ,Att) be an AF and DA its associated ADF. A three-valued interpreta-

tion v of DA is admissible, complete, grounded, preferred, stable iff its associated labelling Lv is

respectively an admissible, complete, grounded, preferred, stable in A.

2.4 Timed Abstract Dialectical Frameworks

Prakken et al. (2020) add temporality to ADFs by a simple translation approach.

Prakken’s paper is the main influence for this work, in which the same approach is investigated

in less generic formalisms, such as BAFs and SETAFs.

Definition 24. A timed abstract dialectical framework (tADF) is a tuple D= (S,T,Φ) where S

is a set of statements, T is a total ordered set of time states and Φ = {Φst
| s ∈ S, t ∈ T} is a set

of propositional formulas, one for each statement s ∈ S and time state t ∈ T .

Any tADF (S,T,Φ) can be translated into an ADF (S′,Φ′) where S′ = {(s, t) | s ∈

S, t ∈ T} and Φ
′
(s,t) = Φst

for every s ∈ S and t ∈ T . Evaluating semantics of tADFs correspond

to evaluating semantics of the associated ADF.

Definition 25. For any tADF D= (S,T,Φ), the ADF associated to D is (S×T,Φ).

Example 8. Recall the framework from Example 2. Figure 8 illustrates a fragment of this

framework containing only arguments A,B and E.

Shorthands facilitate the use of tADFs by compactly expressing many kinds of

temporal interactions. In Example 8, argument E is accepted at time point 0 precisely if

argument A is accepted at least once in [0,6]. The shorthands proposed by Prakken et al. (2020)

are described below:

a) Φct
= a

[i, j]
≥1 :=

∨

i≤k≤ j ak (c should be accepted at time state t if a is accepted at

least once in [i, j]);

b) Φct
= a

[i, j]
≥n :=

∨

K⊆[i, j],|K|=n

∧

k∈K ak (c should be accepted at time state t if a is

accepted at least n times in [i, j]);
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Figure 8 ± tADF fragment from Figure 2

E0

A0 ∨A1 ∨A2 ∨A3 ∨A4 ∨A5 ∨A6

A0¬B0

B0

¬A0

A1

¬B1 ∧¬A0

B1

¬A1

A2

¬B2 ∧¬A1

B2

¬A2

· · ·

Source: This author.

c) Φct
= a

[i, j]
≤n := ¬(a

[i, j]
≥n+1) (c should be accepted at time state t if a is accepted at

most n times in [i, j]);

d) Φct
= a

[i, j]
≤1 := ¬(a

[i, j]
≥2 ) (c should be accepted at time state t if a is accepted at

most once in [i, j]);

e) Φct
= a

[i, j]
=n := a

[i, j]
≤n ∧a

[i, j]
≥n (c should be accepted at time state t if a is accepted

exactly n times in [i, j]).

By using shorthands, ΦE0 can be specified as A
[0,6]
≥1 . More generally, the relation

between A and E is explained by the intuitive notion that "if Bob took medication any day on

this week, he took medication this week", encoded by ΦE7i
= A

[7i,7(i+1)−1]
≥1 and ΦE7i

= ΦE7i+ j

for every 0 ≤ j < 7 and i ≥ 0. The equality ΦE7i
= ΦE7i+ j

for i = 0 ≤ j < 7 simply means that

E0,E1, · · · ,E6 all interact in the same way and share the same acceptability degree. Application

of shorthands on the tADF of Example 8 is shown in Figure 9.
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Figure 9 ± tADF fragment from Example 8 using shorthands

E0

A
[0,6]
≥1

A0¬B0

B0

¬A0

A1

¬B1 ∧¬A0

B1

¬A1

A2

¬B2 ∧¬A1

B2

¬A2

· · ·

Source: This author.
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3 ENCODING TIME IN AFS

The main contributions of this work start in this section, in which traditional AFs are

extended for dealing with time. When including temporal interactions, arguments or attacks must

be explicitly associated with temporal marks in order for past and future attacks be represented.

Following the translation approach from tADFs to ADFs described in Prakken et al. (2020),

arguments are treated as pairs (A,a), meaning "argument A" at "time instant a".

Definition 26 (TeAF). A Temporal Argumentation Framework (TeAF) is a tuple T= (A ,Att,T )

such that A is an enumerable set of arguments, Att ⊆ (A ×T )2 is an attack relation, and T

is a total ordered enumerable set of time points. For (A,a) ∈ A ×T , we define Att(A,a) =

{(B,b) ∈ A ×T | ((B,b),(A,a)) ∈ Att}.

The attack (B1,C0) in Figure 1 will be specified as ((B,0),(C,1)) in which 0 ≤ 1

are consecutive points in the timeline T .

Example 9. The framework in Figure 1 can be represented by the TeAF T= (A ,Att,N) such

that:

a) A = {A,B,C,D};

b) Att = X1 ∪X2 ∪X3 ∪X4 ∪X5;

c) X1 = {((A, i),(A, i+1)) | i ∈ N};

d) X2 = {((A, i),(B, i)) | i ∈ N};

e) X3 = {((B, i),(A, i)) | i ∈ N};

f) X4 = {((B, i+1),(C, i)) | i ∈ N};

g) X5 = {((C,0),(D, i)) | i ∈ N}.

The set of attacks will generally be infinite when the timeline is infinite, but most

attack patterns can be expressed with a simpler notation. Some patterns can be recognized in

Example 9:

a) X1 contains every attack from A to itself in consecutive time points;

b) X2 contains every attack from A (in a specific time point i) to B (in the same time

point i);

c) X4 contains attacks from the future, as accepting B at time i+1 implies rejecting

C at time i;
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d) X5 contains attacks from C at time 0 to the argument D, which is linked to no

relative time reference.

The following shorthands allow for a compact representation of many Temporal

Abstract Argumentation Frameworks (TeAFs) containing the patterns discussed above.

Definition 27. Let T = (A ,Att,T ) be a TeAF, i, j ∈ T be time points such that i ≤ j, and

A,B ∈ A be arguments. Attacks between arguments in the same time point can be expressed by

the shorthands:

a) (A,B)
j
i = {((A, t),(B, t)) | t ∈ T , i ≤ t ≤ j};

b) (A,B)i = {((A, t),(B, t)) | t ∈ T , i ≤ t};

c) (A,B) j = {((A, t),(B, t)) | t ∈ T , t ≤ j};

d) (A,X) = {((A, t),(X , t)) | t ∈ T };

e) Attacks may target or stem from an argument at each time point:

± ((A, i),X) = {((A, i),(X , t)) | t ∈ T };

± (X ,(A, i)) = {((X , t),(A, i)) | t ∈ T };

f) If the timeline can be enumerated by integers (T = {· · · , t−1, t0, t1, · · ·}) or naturals

(T = {t0, t1, · · ·}), the following relative attacks may also be abbreviated. For any

s ∈ Z, representing the difference of time points from the attacked argument to its

attacker, the following shorthands abbreviate relative attacks:

± [A,B]s = {((A, ti),(B, ti+s)) | i ∈ Z} when the timeline is enumerated by integers;

± [A,B]s = {((A, ti),(B, ti+s)) | i, i+s∈N} when the timeline is enumerated by natural

numbers.

The attack relation of Example 9 can be abbreviated by the shorthands above:

X1,X2,X3,X4 and X5 are respectively [A,A]1,(A,B),(B,A), [B,C]−1 and ((C,0),D). Calculating

semantics in frameworks with an attack relation described by a finite set of shorthands might be

simpler than in frameworks with arbitrary attacks lacking discernible patterns.

Definition 28. A TeAF T= (A ,Att,T ) is compact iff Att =
⋃n

i=1 Si for n ∈ N finite and such

that each Si is a shorthand as in Definition 27.

The TeAF in Example 9 is compact, because its attack relation is the set [A,A]1 ∪

(A,B)∪ (B,A)∪ [B,C]−1 ∪ ((C,0),D).
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3.1 Extension-based semantics

For TeAFs, argument acceptance is time-dependent. Most definitions and proposi-

tions from this section are directly derived from those for AFs. Although some of the original

definitions and properties for AFs are ommited, they can be easily obtained by the temporal

version. In the following, notions of defeat and defense are refined by considering temporal

interactions.

Definition 29 (Defeat in T). A set S ⊆ A ×T defeats (A,a) ∈ A ×T iff there exists (B,b) ∈

Att(A,a) such that (B,b) ∈ S.

Just as in AFs, the set of arguments (with associated time points) defeated by S is

denoted as S+ = {(A,a) ∈ A ×T | S defeats (A,a)}.

Definition 30 (Defense in T). A set S ⊆ A ×T defends (A,a) ∈ A ×T iff for every (B,b) ∈

Att(A,a) it holds that S defeats (B,b).

For (A,a) ∈ A ×T , saying (A,a) is acceptable with respect to S is equivalent to

saying that S defends (A,a).

Arguments can only be collectively accepted if they are internally consistent (i.e.,

there are no conflicts between accepted arguments).

Definition 31 (Conflict-free in T). A set S ⊆ A ×T is conflict-free iff there is no (A,a) ∈ S

such that S defeats (A,a).

Following the usual methodology in the literature, extensions are defined as conflict-

free fixpoints of a defense operator.

Definition 32 (Characteristic Function). The Characteristic Function associated with a TeAF

T= (A ,Att,T ) is a function FT : 2A ×T → 2A ×T such that

FT(S) = {(A,a) ∈ A ×T | S defends (A,a)}

Definition 33 (Extension-based semantics of T). Let T = (A ,Att,T ) be a TeAF. A set S ⊆

A ×T is:

a) admissible if S is conflict-free and S ⊆ FT(S);

b) complete if S is conflict-free and S = FT(S);

c) grounded if S is ⊆-minimal among all complete extensions;
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d) preferred if S is ⊆-maximal among all complete extensions;

e) semi-stable if S∪S+ is ⊆-maximal among all complete extensions;

f) stable if S is complete and S∪S+ = A ×T .

Extensions for compact TeAFs generally follow certain patterns and can be expressed

by simplified notations similar to attack shorthands. The set {(A, f (t)) | A ∈ S ⊆ A , t ∈ T }

is denoted as S f (t) for some function f : T → T . When S = {X}, it can abbreviated even

further as X f (t). For example, when T = Z, {A,B}3i = {(X ,3i) | X ∈ {A,B}, i ∈ T } and

Yi2 = {(Y, i2) | i ∈ T }.

Example 10. For the framework in Example 9, we compute the following semantics:

a) Complete: /0,A2i ∪{B,C}2i+1 ∪Di and A2i+1 ∪{B,C}2i;

b) Grounded: /0;

c) Semi-stable, stable and preferred: A2i ∪{B,C}2i+1 ∪Di and A2i+1 ∪{B,C}2i.

The next example shows that for some frameworks, every semantics differ.

Example 11. Let T = ({A,B,C,D},Att,N), where Att = [A,A]1 ∪ (A,B)0
0 ∪ (B,A)0

0 ∪ [B,B]1 ∪

((B,2),D)∪ (C,C)∪ (C,D). We compute the following semantics:

a) Complete: /0,A2i ∪B2i+1 and A2i+1 ∪B2i;

b) Grounded: /0;

c) Preferred: A2i ∪B2i+1 and A2i+1 ∪B2i;

d) Semi-stable: A2i+1 ∪B2i;

e) Stable: none.

As expected, TeAFs are shown to generalize many properties of AFs, thus being a

sound formalism for representing time in argumentation. In particular, the Fundamental Lemma

is essential for demonstrating many AFs’ properties. As TeAFs will also satisfy a corresponding

version of the Fundamental Lemma, these properties are naturally preserved in TeAFs.

Lemma 1 (Fundamental Lemma). Let T= (A ,Att,T ) be a TeAF, S be an admissible extension

of T, and (A,a),(A′,a′) ∈ A ×T be acceptable with respect to S. Then

1. S′ = S∪{(A,a)} is admissible, and

2. (A′,a′) is acceptable with respect to S′.

As in Dung (1995), the next theorem results directly from the Fundamental Lemma:
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Theorem 2. Let T be a TeAF.

(1) The set of all admissible extensions of T forms a complete partial order with respect

to set inclusion;

(2) For each admissible extension S of T, there exists a maximal admissible extension E

of T such that S ⊆ E .

From Theorem 2 and the admissibility of /0, the following corollary holds:

Corollary 1. Every TeAF possesses at least one maximal admissible extension with respect to

set inclusion.

Dung (1995) shows that a set of arguments S is stable if it is the set of arguments not

defeated by S. Furthermore, he proves that every stable extension is a preferred extension, but

not vice-versa. These properties are preserved in TeAFs with stable and preferred extensions:

Proposition 3. Let T= (A ,Att,T ) be a TeAF. Then S is a stable extension of T iff S = {(A,a) |

(A,a) is not defeated by S}.

Proposition 4. For any TeAF T, any stable extension of T is a preferred extension of T. However,

there is some TeAF T such that not every preferred extension of T is a stable extension of T.

Lemmas 2 and 3 are related to the FT operator: Lemma 2 guarantees FT preserves

the conflict-freeness property, while Lemma 3 shows FT is monotonic.

Lemma 2. Let T= (A ,Att,T ) be a TeAF. If S ⊆ A ×T is conflict-free, then FT(S) is also

conflict-free.

Lemma 3. Let T= (A ,Att,T ) be a TeAF. Then FT is monotonic with respect to set inclusion.

Initially, preferred extensions were defined as maximal admissible extensions. Next,

it is shown the equivalence to the alternative characterization of preferred extensions as maximal

complete extensions (Lemma 4) as well as the existence of preferred/complete extensions

(Theorem 5):

Lemma 4. Let T be a TeAF. It holds S is a preferred extension of T iff S is a ⊆-maximal

admissible extension of T.
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The next result is an immediate consequence of Corollary 1, Lemma 4 and Definition

33:

Theorem 5. Every TeAF has at least one preferred/complete extension.

The grounded extension is uniquely defined for every TeAF T and it coincides with

the ⊆-least fixpoint of FT.

Theorem 6. Every TeAF T possesses a unique grounded extension and it is the ⊆-least fixpoint

of FT.

Just as for traditional AFs, complete extensions for a TeAF constitute a complete

semilattice under set inclusion.

Theorem 7. Let T = (A ,Att,T ) be a TeAF. The complete extensions of T form a complete

semilattice with respect to set inclusion.

The results from this section are expected, as the complete semantics for TeAFs

coincide with the complete semantics for AFs when each pair of argument and time instant from

an TeAF is treated as an argument in an AF.

3.2 Labelling-based semantics

Semantics can also be defined by argument labellings as in Caminada (2006), in

which the 3-valued model of acceptability degrees (in,out,undec) are explicit.

Definition 34 (Labelling). Given a TeAF (A ,Att,T ), a labelling is a (total) function L :

A ×T →{in,out,undec}. We define in(L , t) as {(A, t) ∈ A ×T | L (A, t) = in}, out(L , t)

as {(A, t)∈A ×T |L (A, t) = out} and undec(L , t) as {(A, t)∈A ×T |L (A, t) = undec}.

A labelling L may be denoted as (I,O,U) where I = {(A, t) ∈ A ×T | L (A, t) =

in}, O = {(A, t) ∈ A ×T | L (A, t) = out} and U = {(A, t) ∈ A ×T | L (A, t) = undec}.

Given t ∈ T , Lt denotes the function Lt(A) = L (A, t), which returns the label

of A at time t. Also, Lt can be described by (I,O,U) where I = in(Lt) = {A ∈ A | Lt(A) =

in},O = out(Lt) = {A ∈ A | Lt(A) = out} and U = undec(Lt) = {A ∈ A | Lt(A) = undec}

when convenient.

Definition 35 (Admissible labelling). A labelling L of TeAF (A ,Att,T ) is admissible if for

every A ∈ A and a ∈ T it holds:
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a) L (A,a) = in if L (B,b) = out for all B ∈ A and b ∈ T such that ((B,b),(A,a)) ∈

Att;

b) L (A,a) = out if L (B,b) = in for some B ∈A and b ∈T such that ((B,b),(A,a))∈

Att.

Definition 36 (Complete labelling). A labelling L of TeAF (A ,Att,T ) is complete if for every

A ∈ A and a ∈ T it holds:

a) L (A,a) = in iff L (B,b) = out for all (B,b) ∈ Att(A,a);

b) L (A,a) = out iff L (B,b) = in for some (B,b) ∈ Att(A,a).

Refinements of the complete semantics are defined as usual by minimality/maximal-

ity with respect to the set-inclusion relation over the set of accepted/undecided arguments.

Definition 37 (Labelling-based semantics). A labelling L of TeAF (A ,Att,T ) is:

a) grounded if in(L ) is ⊆-minimal among all complete labellings;

b) preferred if in(L ) is ⊆-maximal among all complete labellings;

c) semi-stable if undec(L ) is ⊆-minimal among all complete labellings;

d) stable if L is complete and undec(L ) = /0.

Example 12. The labelling semantics for the TeAF defined in Example 11 are:

a) Complete: ( /0, /0,A ),(A2i ∪ B2i+1,A2i+1 ∪ B2i,Ci ∪Di) and (A2i+1 ∪ B2i ∪Di,A2i ∪

B2i+1,Ci);

b) Grounded: ( /0, /0,A );

c) Preferred: (A2i ∪B2i+1,A2i+1 ∪B2i,Ci ∪Di) and (A2i+1 ∪B2i ∪Di,A2i ∪B2i+1,Ci);

d) Semi-stable: (A2i+1 ∪B2i ∪Di,A2i ∪B2i+1,Ci);

e) Stable: none.

The link between the extension-based and the labelling-based approach is that

arguments labelled in (resp. out) are those defended (resp. defeated) by the set of accepted

arguments.

Proposition 8. Let T= (A ,Att,T ) be a TeAF and L : A ×T →{in,out,undec} a labelling

of T. Then, L is complete iff for any A ∈ A and a ∈ T :

a) L (A,a) = in iff in(L ) defends (A,a);

b) L (A,a) = out iff in(L ) defeats (A,a).
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The following propositions can be used to provide alternative characterizations for

the semantics, as done in Baroni et al. (2018), based on the minimization or maximization of

arguments with a specific label.

Proposition 9. Let L ,L ′ be complete labellings of a TeAF T. It holds:

a) in(L )⊆ in(L ′) iff out(L )⊆ out(L ′);

b) in(L )⊂ in(L ′) iff out(L )⊂ out(L ′).

Proposition 10. Let L ,L ′ be complete labellings of a TeAF T. It holds

1. If in(L )⊆ in(L ′), then undec(L ′)⊆ undec(L );

2. If in(L )⊂ in(L ′), then undec(L ′)⊂ undec(L );

3. If out(L )⊆ out(L ′), then undec(L ′)⊆ undec(L );

4. If out(L )⊂ out(L ′), then undec(L ′)⊂ undec(L ).

Proposition 11. Let L ,L ′ be complete labellings of a TeAF T. It holds:

a) If in(L ) = in(L ′), then L = L ′;

b) If out(L ) = out(L ′), then L = L ′.

3.3 Connection with TAFs

TeAFs are as expressive as TAFs. An attack (A,B) in a TAF ∆ = (A ,Att,δ ) is rep-

resented in a TeAF T= (A ′,Att ′,T ) by the set of attacks {((A, t),(B, t)) | t ∈ T } conveniently

described by the shorthand (A,B) from Definition 27. Argument availability can be represented

in TeAF T by including a meta-argument X that attacks (A,a) ∈ A ×T iff a ∈ δ (A). Thus,

argument A is rejected at time point a in TeAF T if A is not available at a according to the TAF

∆. That is formalized below.

Definition 38. Let ∆ = (A ,Att,δ ) be a TAF with an enumerable timeline. The corresponding

TeAF is T∆ = (A ′,Att ′,T ) such that:

a) A ′ = A ∪{X}, where X /∈ A ;

b) Att ′ = {((X , t),(A, t)) | A ∈A , t ∈T −δ (A)}∪{((A, t),(B, t)) | (A,B)∈ Att, t ∈T },

taking δ (A) as a set of time points, instead of as a set of intervals;

c) T is the timeline of ∆.
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In the previous definition, time points in TeAFs correspond exactly to those in TAFs.

Sometimes, time points in TeAFs can be associated to entire time intervals in TAFs, allowing for

a more compact representation. The following example displays this strategy.

Example 13. In the TAF from Figure 5, A, B and C are respectively available in [0,30], [10,50]

and [0,60]. This timeline can be divided as follows:

a) In [0,10), only A and C are available.

b) In [10,30], A, B and C are available.

c) In (30,50], only B and C are available.

d) In (50,60], only C is available.

e) In any time point not included in some interval above, every argument is unavailable.

Figure 10 ± Corresponding TeAF of a TAF, with time points associated to intervals

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

C0 C1 C2 C3 C4

X

Source: This author.

Acceptability only changes over time by arguments becoming available or unavail-

able. Thus, for every interval shown above, acceptability does not vary within the same interval.

Let T = {0,1,2,3,4} be the set of time points of the corresponding TeAF, where 0,1,2,3 and 4

represent the intervals in the order they were listed. The TAF in Figure 5 can be represented by

the TeAF in Figure 10. As meta-argument X interacts equally at every time point, X0,X1,X2,X3
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and X5 are all represented by the sole meta-argument X. Semantics for the TAF can be ob-

tained by applying the semantics defined for TeAFs. For instance, B2’s acceptance in the TeAF

indicates that B is accepted at interval (30,50] in the TAF.

3.4 Expressiveness limitations

Certain interactions cannot be easily expressed in TeAFs without including additional

meta-arguments whose sole purpose is that of encoding such interactions. These are the same

limitations encountered when using AFs to encode acceptance conditions of ADFs.

Figure 11 ± TeAF fragment encoding A
[i, j]
≥1

Ai Ai+1 · · · A j

¬Ct Ct

Source: This author.

Take for instance the following interaction: argument C should be accepted at time

t if A is accepted at least once in [i, j]. In tADFs, it can be encoded directly by defining C’s

propositional formula at time t as ϕct
= A

[i, j]
≥1 =

∨

i≤k≤ j Ak. In TeAFs, a possible encoding for this

interaction is illustrated by Figure 11. If any Ak for i ≤ k ≤ j is accepted, then the meta-argument

¬Ct is rejected and Ct is accepted. Argument C can only be rejected at time t if every Ak for

i ≤ k ≤ j is rejected.

For some interactions, the size of the meta-framework is unfeasible, as for expressing

that C should be accepted at time t if A is accepted at least n times in [i, j]. In tADFs, this is

encoded by the propositional formula ϕCt
= A

[i, j]
≥n =

∨

K⊆[i, j],|K|=n

∧

k∈K ak. As for TeAFs, Figure

12 shows a possible encoding.

Let K = {K ⊆ {Ai, · · · ,A j} | |K| = n} with |K | = m be the set of all sets of n

arguments among Ai, · · · ,A j. A meta-argument Ks (1 ≤ s ≤ m) is added for each K′
s ∈ K . Note

that Ks is accepted if meta-argument ¬Ak is rejected for every Ak ∈ K′
s. That means Ks is accepted

if every argument in K′
s is accepted, i.e., A is accepted n times in [i, j]. The unviability of such

approach comes from the enormous amount of meta-arguments introduced: for an interval [i, j],
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Figure 12 ± TeAF fragment encoding A
[i, j]
≥n

Ai · · · A j

¬Ai · · · ¬A j

K1 K2 · · · Km

¬Ct Ct

Source: This author.

(

j−i+1
n

)

meta-arguments Ks are introduced.

Example 14. The shorthand A
[0,3]
≥2 is encoded by the TeAF fragment in Figure 13.

In the two examples above, a meta-argument ¬Ct was used for indirectly expressing

a positive interaction from an argument Ak (or Ks) to the argument Ct . Since only attacks are

allowed in traditional AFs, support for Ct is expressed through an attack towards ¬Ct . In the next

section, time is encoded in a framework with two independent relations between arguments: an

attack and a support relation. It will facilitate the encoding of positive interactions such as those

previously discussed and eliminate the need for using meta-argument ¬Ct .
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Figure 13 ± TeAF fragment encoding C0 = A
[0,3]
≥2

A0 A1 A2 A3

¬A0 ¬A1 ¬A2 ¬A3

{A0,A1} {A0,A2} {A0,A3} {A1,A2} {A1,A3} {A2,A3}

¬C0

C0

Source: This author.
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4 ENCODING TIME IN BAFS AND SETAFS

4.1 Representing time with support

The notion of bipolarity appears in many domains such as in knowledge and prefer-

ence representation (Benferhat et al. (2002), Dubois and Prade (2005)), and has also been studied

in the context of argumentation as in Cayrol and Lagasquie-Schiex (2013). In traditional AFs,

positive interactions are encoded by the notion of defense, which in turn is defined exclusively

from attacks and counterattacks. In BAFs, support is explicitly given as a relation between

arguments, just like attacks.

Definition 39 (BAF). A Bipolar Abstract Argumentation Framework (BAF) is a tuple (A ,Att,

Sup) where A is a set of arguments, Att ⊆ A ×A is an attack relation and Sup ⊆ A ×A is

a support relation. The attackers of A ∈ A are denoted by Att(A) = {B ∈ A | (B,A) ∈ Att}.

Similarly, the direct supporters of A ∈ A are denoted by Sup(A) = {B ∈ A | (B,A) ∈ Sup}.

How attack and support interact is not a consensus in the literature, and many

approaches give distinct interpretations for the support relation, such as those from Cayrol and

Lagasquie-Schiex (2005), Boella et al. (2010), Nouioua and Risch (2011), Potyka (2021) (see

Cohen et al. (2014) for a survey). In fact, the interpretation chosen should suit the application

being modeled, as no interpretation will suffice to appropriately model every problem. A common

interpretation for support is the deductive interpretation: if A is accepted and supports B, then B

is accepted.

Figure 14 ± BAF fragment with deductive support encoding A
[i, j]
≥1

Ai Ai+1 · · · A j

Ct

Source: This author.

This interpretation can be used for modeling the temporal shorthands introduced in

Prakken et al. (2020), as for instance the shorthand ϕCt
= A

[i, j]
≥1 , which expresses that C should be

accepted at time t if A is accepted at least once in [i, j]. One could try to encode this by the BAF
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of Figure 14, in which nodes represent arguments at some time point and dashed arrows represent

support. Note that the translation approach was used, i.e., each argument in the framework

actually represents a pair (argument, time instant).

Conversely, the shorthand A
[i, j]
≥n may be better encoded by an interpretation of support

that takes quantity into account. Next, one such semantics is presented, namely the bi-complete

semantics. After, the β -semantics with deductive interpretation is used to encode A
[i, j]
≥1 .

4.1.1 Bi-complete semantics

In the bi-complete semantics proposed by Potyka (2021), acceptance is obtained

from majority voting.

Definition 40 (Bi-complete). A labelling L of BAF B = (A ,Att,Sup) is bi-complete iff for

every A ∈ A :

a) L (A) = in iff Att(A)⊆ out(L ) or |Sup(A)∩ in(L )|> |Att(A)−out(L )|;

b) L (A) = out iff |Att(A)∩ in(L )|> |Sup(A)−out(L )|.

It allows for compactly encoding A
[i, j]
≥n+1, as shown in Figure 15. Note that meta-

arguments X1, · · · ,Xn are always accepted, but arguments Ai, · · · ,A j are accepted according to

the rest of the framework, which is not explicitly shown.

Figure 15 ± BAF fragment encoding A
[i, j]
≥n+1 in bi-complete semantics

Ai · · · A j

Ct

Xn· · ·X1

Source: This author.

When there are at least n + 1 accepted supporters, Ct is accepted (labelled in).

Otherwise, Ct is labelled out (when there are less than n accepted supporters) or undec (when

there are exactly n accepted supporters). This behavior is not exactly the one described by the

shorthand A
[i, j]
≥n+1 (according to which Ct should be rejected when A is accepted only n times

in [i, j]), as argument Ct is labelled undec instead of out when it has the same amount n of

accepted supporters and attackers. The main advantage of this strategy is that it is a very efficient
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approximation, as only n meta-arguments were added, and they can be shared among other

shorthands whenever an always accepted argument is necessary.

Note however that this encoding does not make distinction between Ct supporters.

The previous strategy is not capable of correctly encoding the shorthand ϕCt
= A

[i, j]
≥n+1 ∧B

[i, j]
≥n+1,

as there are two independent counters to be tracked. For instance, for the shorthand ϕCt
=

A
[i, j]
≥2 ∧B

[i, j]
≥2 , argument Ct should not be accepted when A is accepted 4 times in [i, j] and B

is accepted only 1 time in [i, j]. However, the bi-complete encoding would detect 5 accepted

supporters, which is more than the 4 meta-arguments attacking Ct . As a consequence, Ct would

be accepted even though B is not accepted twice in [i, j].

A problem arises when encoding A
[i, j]
≥1 with the strategy of A

[i, j]
≥n+1 for n = 0, as Ct

would be always accepted due to the lack of attackers. A solution is shown in Figure 16. By

including both a support and an attack from meta-argument X , Ct is labeled undec when none of

Ai, · · · ,A j are accepted. Otherwise, Ct has more accepted supporters than non-rejected attackers

and is labeled in. It still is an approximate solution, as Ct is not rejected when all of Ai, · · · ,A j

are rejected.

Figure 16 ± BAF fragment encoding A
[i, j]
≥1 in bi-complete semantics

Ai · · · A j

Ct

X

Source: This author.

The solution for encoding A
[i, j]
≤n is almost symmetric to the encoding of A

[i, j]
≥n+1. The

resulting BAF is shown in Figure 17.

Figure 17 ± BAF fragment encoding A
[i, j]
≤n in bi-complete semantics

Ai · · · A j

Ct

Xn+1· · ·X1

Source: This author.
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Again, the solution does not exactly represent the encoding A
[i, j]
≤n when A is accepted

n+1 times in [i, j], as Ct will be labelled undec instead of out.

4.1.2 β -complete semantics

The semantics of Alcântara and Cordeiro (2023) is based on the deductive interpreta-

tion of support, and is invariant to the inclusion of transitive supporters. For a BAF (A ,Att,Sup),

the reflexive and transitive closure of Sup is denoted by S. The supporters of an argument A

are denoted by S(A) = {B ∈ A | (B,A) ∈S}. Defeat and defense are adapted to consider all

supporters.

Definition 41 (Defeat/Defense in B). Let B = (A ,Att,Sup) be a BAF and S ⊆ A . For any

A ∈ A :

a) S defeats A iff for every A′ ∈S(A) there exists B ∈ S such that (B,A) ∈ Att;

b) S defends A iff there exists A′ ∈S(A) such that S defeats B for every B ∈ Att(A′).

Conflict-freeness follow as usual: a set S ⊆ A is conflict-free in B= (A ,Att,Sup)

iff there is no A ∈ S such that S defeats A. Admissibility and its refinements are also naturally

introduced. For the purposes of this discussion, β -complete extensions are enough and other

β -semantics are omitted.

Definition 42 (β -semantics). Let B= (A ,Att,Sup) be a BAF. A set S ⊆ A is:

a) β -admissible iff S is conflict-free and defends every argument in S;

b) β -complete iff S is β -admissible and contains every argument defended by S.

Support is very strong in β -semantics, as only one accepted supporter leads to the

acceptance of the supported argument. That suits the modeling of the temporal shorthand A
[i, j]
≥1 :

Ct is accepted when some of its supporters are accepted, and adding only one meta-argument X

attacking Ct is enough for guaranteeing the rejection of Ct when A is never accepted in [i, j]. In

this interpretation, Ct is rejected by default, i.e., Ct is rejected if every supporter is rejected.

The resulting BAF is shown in Figure 18. Although a meta-argument X is used, it

can be shared among multiple shorthands whenever an argument must be rejected by default.

Hence, this approach is slightly more efficient than when TeAFs were used. Multiple shorthands

can be encoded at once. For instance, the same strategy is applied for ϕCt
= A

[i, j]
≥1 ∨B

[k,l]
≥1 in Figure

19.
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Figure 18 ± BAF fragment encoding A
[i, j]
≥1 in β -complete semantics

Ai Ai+1 · · · A j

CtX

Source: This author.

Figure 19 ± BAF fragment encoding A
[i, j]
≥1 ∨B

[k,l]
≥1 in β -complete seman-

tics

Ai · · · A j

Bk

· · ·Bl

CtX

Source: This author.

It is still not trivial to encode the shorthand ϕCt
= A

[i, j]
≥n , as many meta-arguments

have to be added for each set of n time instants over [i, j], just as it was done when encoding

in AFs. Besides, arbitrarily combining shorthands is a complex task, since supporters are

indistinguishable from each other. For example, the strategy in Figure 19 does not work for

representing ϕCt
= A

[i, j]
≥1 ∧B

[k,l]
≥1 . However, the strategy for representing temporal interactions

in this section can be applied to any semantics for BAFs. In the next section, frameworks with

high-order attacks facilitate the task of mixing shorthands by the connective ∧. Recall that these

are the same limitations encountered when using AFs to encode acceptance conditions of ADFs.

4.2 Representing time with joint attacks

It is argued in Nielsen and Parsons (2006) that argumentation systems must allow

for representing joint attacks on arguments. Similar to when using support, the increase in

expressiveness will also allow for concisely representing some temporal interactions. SETAFs
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extend AFs by defining attacks as an interaction from a non-empty set of arguments to an

argument.

Definition 43 (SETAF (Nielsen and Parsons (2006))). A Framework with Sets of Attacking

Arguments (SETAF) is a pair (A ,Att) where A is a set of arguments and Att ⊆ (2A −{ /0})×A

is an attack relation. The set of attackers of A is denoted by Att(A) = {B ⊆ A | (B,A) ∈ Att}.

A set S ⊆ A is said to attack A ∈ A (denoted S ▶ A) iff there exists S′ ⊆ S such that

(S′,A) ∈ Att. Additionally, a set S ⊆ A is said to attack a set B ⊆ A (denoted S ▶ B) iff there

exists A ∈ B such that S attacks A.

Example 15. Let (A ,Att) be a SETAF such that A = {A,B,C} and Att = {({A},B), ({A,B},

C)}, depicted in Figure 20 in which nodes represent arguments and solid arrows represent joint

attacks. Note that {A,B} attacks B, as there exists {A} ⊂ {A,B} such that {A} ∈ Att(B). The

joint attack from {A,B} to C intuitively means that if A and B are accepted, then C must be

rejected.

Figure 20 ± SETAF from Example 15

A B

C

Source: This author.

This interpretation of joint attack is formalized next through the use of labellings.

Definition 44 (Complete labelling (Adapted from Flouris and Bikakis (2019b))). A labelling L

of a SETAF (A ,Att) is complete iff for any A ∈ A it holds:

a) L (A) = in iff for every B ⊆ A such that B ▶ A there exists B ∈ B such that

L (B) = out;

b) L (A) = out iff there exists B ⊆A such that B ▶ A and L (B) = in for every B ∈B.

The unique complete labelling of the SETAF from Example 15 labels A,C as in and

B as out. The rejection of B comes from an attacker {A} being accepted, whereas the acceptance
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of C comes from not having accepted attackers, as every attacker of C contains a non-accepted

argument B.

Let K = {K ⊆ {Ai, · · · ,A j} | |K| = n} with |K | = m be the set of all sets of n

arguments among Ai, · · · ,A j. Recall the strategy employed in Figure 12 where a meta-argument

Ki (1 ≤ i ≤ m) is included for every set K′
i ∈ K , and Ki is accepted iff each argument in K′

i is

accepted. Figures 21 and 23 use a different strategy by adding joint attacks instead of including

meta-arguments. A label placed near each joint attack indicates the attacker and assists the

comparison of this approach with the one using TeAFs. There is a joint attack from each set

K′ ∈ K to the meta-argument ¬Ct . That means meta-argument ¬Ct is rejected iff there are n

accepted arguments among Ai, · · · ,A j. Hence, argument Ct is accepted iff A is accepted n times

in [i, j].

Figure 21 ± SETAF fragment encoding A
[i, j]
≥n

Ai · · · A j

K1 K2 · · · Km

¬Ct Ct

Source: This author.

Example 16. The shorthand A
[0,3]
≥2 is encoded by the SETAF fragment in Figure 22. Compare it

with the approach using TeAFs shown in Figure 13.

Note that the shorthand A
[i, j]
≥n ∧B

[k,l]
≥m can be encoded by simply adding joints attacks

towards ¬Ct from every set K containing n elements among Ai, · · · ,A j or containing m elements

among Bk, · · · ,Bl . Hence, compared to BAFs, SETAFs facilitate mixing temporal shorthands by

the connective ∧.

Although no meta-arguments were added in the solution of Figure 23, it contains an

enormous amount of joint attacks. The use of support with a suitable interpretation in SETAFs
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Figure 22 ± SETAF fragment encoding C0 = A
[0,3]
≥2

A0 A1 A2 A3

{A0,A1} {A0,A2} {A0,A3} {A1,A2} {A1,A3} {A2,A3}

¬C0

C0

Source: This author.

may allow for a more concise solution, and it is a topic worth investigating in future works.



50

Figure 23 ± SETAF fragment encoding A
[i, j]
≤n−1

Ai · · · A j

K1 K2 · · · Km

Ct

Source: This author.
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5 RELATED WORKS

Time in abstract argumentation has been tackled in many ways. In the works of Cobo

et al. (2010), Cobo et al. (2011), Budán et al. (2015), Budán et al. (2017), Zhu (2020), arguments

are considered nonexistent in certain intervals of time, called availability intervals. Fundamental

notions, such as defeat, defense and conflict-freeness, are adapted to disregard attacks from

unavailable arguments. Argument acceptability becomes dependent on time and semantics

inform when each argument is accepted, rather which arguments are accepted. Recalling the TAF

from Figure 5, the attack from A to B signifies that B must be rejected whenever A is accepted.

That notion of attack in TAFs (Cobo et al. (2011)) also applies to bipolar TAFs (Budán et al.

(2017)) and TAFs with sets of attacking arguments (Zhu (2020)). In contrast, an attack from

(A,a) to (B,b) in TeAFs indicates that accepting A at time point a implies rejecting B at time

point b. Hence, both A and B can be accepted at the same time if a ̸= b. Additionally, the

connection between TeAFs and TAFs has been discussed in Section 3.3.

The probability approach used in TPAFs from Bistarelli et al. (2023a), Bistarelli et

al. (2023b) provides other interpretations for attacks over time. An attack from A to B does not

necessarily imply a conflict between A and B. A partial conflict from A to B occurs when A

attacks B and both of them have positive probability of occurring at the same time. An included

conflict from A to B occurs when A attacks B and there is no positive probability of B occurring

without A occurring. A total conflict from A to B occurs when A attacks B and there is no

positive probability of one occurring without the other. These notions still associate conflict with

argument availability. They do not allow for A and B being accepted if A attacks B and they are

available at the same time interval. That also differs from the expressiveness of TeAFs, where

the attack from (A,a) to (B,b) encodes that B at time b must not be accepted if A is accepted at

time a. Note how A and B might be accepted at the same time if a ̸= b.

Timed Abstract Dialectical Frameworks (tADFs), introduced in Prakken et al. (2020),

can be used to represent acceptance conditions changing over time. In a simple translation

approach, each node in a tADF graph is annotated with a time point, just as was done in this

work. TeAFs are very similar to tADFs, but the former is less general, as it is based on AFs

instead of on ADFs. As discussed in Section 3.4, TeAFs may encode some shorthands of tADFs,

at the cost of introducing many meta-arguments. Conversely, tADFs can easily represent TeAFs,

just as ADFs can represent AFs. A TeAF and its corresponding tADF are shown in Figure 24.
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Definition 45. Let T= (A ,Att,T ) be an TeAF. The corresponding tADF is DT = (A ,T ,Φ)

with ΦAa
=

∧

(B,b)∈Att(A,a)¬Bb for every A ∈ A and a ∈ T .

Figure 24 ± Simple TeAF and its corresponding tADF

A0

B0

A1

B1

A0¬A1

B0¬A0 ∧¬B1

A1 ¬A0

B1 ¬B1

Source: This author.

In Budán et al. (2012), Extended Timed Abstract Argumentation Frameworks (E −

TAFs) extend TAFs with the capability of representing availability of attacks. Intuitively, when

an attack is unavailable, it is ignored, as if did not exist in the framework in the first place. There

is a conflict between arguments A and B when A, B and the attack (A,B) are available at the same

time. An attack (A,A) in an E-TAF indicates that A is never accepted when the attack (A,A) is

available. This does not allow for representing that A is rejected in a future time point if it is

accepted in the present, as encoded by the attack (A0,A1) in the TeAF of Figure 24.

Barringer et al. (2012) continues the investigation of Barringer et al. (2005) and

presents an extensive study about time in argumentation. Many temporal interactions are

considered, such as relative attacks, e.g. the attacks between A0 and A1 in Figure 24, and

argument strength varying over time. However, it is applied to argumentation networks instead

of to traditional Dung (1995) frameworks.

The topic of forgetting an argument is studied in Baumann et al. (2020), Baumann

and Berthold (2021). It gives interpretations and limitations for what forgetting means in

argumentation frameworks. It is a very different approach in which time is not the focus.

The passage of time can only be noticed by forgetting arguments, i.e., they define operators

for modifying a framework in order to represent forgetting, whereas in this work, an entire

framework (TeAF) already encodes all temporal interactions between arguments.
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6 CONCLUSION AND FUTURE WORKS

In this work, traditional Dung (1995) frameworks (AFs) were extended with the

notion of time, allowing for the description of many kinds of temporal interactions between

arguments. The resulting formalism is called Temporal Abstract Argumentation Frameworks

(TeAFs) and its properties are thoroughly presented so that it becomes clear that it generalizes

AFs and preserves its fundamental properties. The key insight is that arguments and their

acceptability can be linked to time points. That is the approach taken by Prakken et al. (2020)

with tADFs, a framework in which each argument is given an explicit acceptance condition.

Instead, in TeAFs, this condition is given implicitly by an attack relation, but not all conditions

can be compactly described by attacks. For instance, the TeAF fragment in Figure 13 contains

many meta-arguments with the sole purpose of better representing an acceptance condition of a

tADF. This lack of expressiveness due to allowing only attacks can be partially overcome by

including time in frameworks with support (BAFs) and frameworks with joint attacks (SETAFs).

This work discusses their capabilities and limitations for expressing the temporal shorthands

used in tADFs.

In future works, algorithmic efficiency and complexity analysis are essential for

applying these frameworks in practice. Besides, relating temporal argumentation with formalisms

in other fields, such as Logic Programming, is also an interesting research direction, given the

close relationship between Argumentation and Logic Programming established by Caminada

et al. (2015). Additionally, many paths are open for further improving TeAFs’ expressiveness,

such as:

a) handling gradual argument acceptability, in which arguments are not labeled as

in, out or undec, but instead are given acceptance values over an interval of real

numbers;

b) defining semantics restricted to a particular time interval of interest, in which

the accepted arguments are selected with respect to that interval, such as treating

differently arguments that have the same acceptability over an entire interval;

c) proposing other shorthands for compactly encoding temporal interactions.
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7 PROOFS

7.1 Proofs from Chapter 2

Theorem 1. Let A= (A ,Att) be an AF and DA its associated ADF. A three-valued interpreta-

tion v of DA is admissible, complete, grounded, preferred, stable iff its associated labelling Lv is

respectively an admissible, complete, grounded, preferred, stable in A.

Proof. Is is trivial that for any u,v ∈ V
DA

2 , it holds u ≤i v iff in(Lu)⊆ in(Lv) and out(Lu)⊆

out(Lv). Then, maximizing in(Lv) and out(Lv) coincides with maximizing v w.r.t. ≤i. There-

fore, a proof for the complete semantics suffices to show the equivalence for the grounded,

preferred and stable semantics. Also, the proof for the admissible semantics is very similar to

the proof shown below.

Let v be a three-valued interpretation of DA. Then, v is complete iff v = ΓDA
(v) iff

v(A) = ⊓i{w(ΦA) | w ∈ [v]DA

2 } for every A ∈ A . Then:

a) (⇒) Assume v is complete and let A ∈ A :

± Assume Lv(A) = out, i.e., v(A) = f. Then, ⊓i{w(ΦA) | w ∈ [v]DA

2 } = f, which

means w(ΦA) = f for every w ∈ [v]DA

2 . In particular, v(ΦA) = f. As ΦA =
∧

B∈Att(A)¬B, we conclude v(B) = t for some B ∈ Att(A). Hence, Lv(B) = in

for some B ∈ Att(A);

± Assume Lv(A) = in, i.e., v(A) = t. Then, ⊓i{w(ΦA) | w ∈ [v]DA

2 }= t, which means

w(ΦA) = t for every w ∈ [v]DA

2 . In particular, v(ΦA) = t. As ΦA =
∧

B∈Att(A)¬B, we

conclude v(B) = f for every B ∈ Att(A). From 1, Lv(B) = out for every B ∈ Att(A);

± Assume Lv(A) = undec, i.e., v(A) = u. Then, ⊓i{w(ΦA) | w ∈ [v]DA

2 } = u. If

v(ΦA) ∈ {t, f}, then w(ΦA) = v(ΦA) ̸= u for every w ∈ [v]DA

2 , which contradicts

⊓i{w(ΦA) | w ∈ [v]DA

2 } = u. Hence, v(ΦA) = u. As ΦA =
∧

B∈Att(A)¬B, there

is some B ∈ Att(A) such that Lv(B) ̸= out and it holds Lv(B) ̸= in for every

B ∈ Att(A).

b) (⇐) Assume Lv is complete and let A ∈ A :

± Assume v(A) = f, i.e., Lv(A) = out. As v is complete, there is B ∈ Att(A) such that

Lv(B) = in, i.e., v(B) = t. Thus, v(ΦA) = f;

± Assume v(A) = t, i.e., Lv(A) = in. As v is complete, for every B ∈ Att(A) it holds

Lv(B) = out, i.e., v(B) = f. Thus, v(ΦA) = t;

± Assume v(A) = u, i.e., Lv(A) = undec. As v is complete, there is B ∈ Att(A) such
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that Lv(B) ̸= out (i.e., v(B) ̸= f) and for every B ∈ Att(A) it holds Lv(B) ̸= in (i.e.,

v(B) ̸= t). Thus, v(ΦA) = u.

Therefore, v(A) = v(ΦA) for every A ∈ A ⇒ v = ΓDA
(v)⇒ v is complete.

7.2 Proofs from Chapter 3

Lemma 1 (Fundamental Lemma). Let T= (A ,Att,T ) be a TeAF, S be an admissible extension

of T, and (A,a),(A′,a′) ∈ A ×T be acceptable with respect to S. Then

1. S′ = S∪{(A,a)} is admissible, and

2. (A′,a′) is acceptable with respect to S′.

Proof.

a) It suffices to show S′ is conflict-free. By absurd, assume S′ is not conflict-free. This

means there exists (B,b) ∈ S′ such that S′ defeats (B,b). Then, there exists (C,c) ∈ S′

such that (C,c) ∈ Att(B,b).

There are two possibilities:

± (B,b)∈ S: in this case, S does not defeat (B,b), because S is conflict-free. Therefore,

(C,c) /∈ S and (C,c) = (A,a). Also, S defends (B,b) and hence S defeats (A,a),

which is an attacker of (B,b). As S also defends (A,a), it is an absurd given that S

is conflict-free.

± (B,b) = (A,a): given that S defends (A,a) and that (C,c) ∈ Att(A,a), we know

(C,c) /∈ S as S is conflict-free. Thus, (C,c) = (A,a) and S defeats (A,a). As S also

defends (A,a), it is an absurd given that S is conflict-free.

b) As (A′,a′) ∈ FM(S), it is clear (A′,a′) ∈ FM(S∪{(A,a)}), i.e., (A′,a′) is acceptable

with respect to S′.

Theorem 2. Let T be a TeAF.

(1) The set of all admissible extensions of T forms a complete partial order with respect

to set inclusion;

(2) For each admissible extension S of T, there exists a maximal admissible extension E

of T such that S ⊆ E .
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Proof. Let ADMM = {S | S is an admissible extension of M}. We will show (ADMM,⊆) is a

complete partially ordered set:

a) Let (D ,⊆) be a directed set with D ⊆ ADMM. We have to prove

sup(D) =
⋃

{S | S ∈ D} ∈ ADMM

± sup(D) is conflict-free. By absurd, suppose sup(D) is not conflict-free. This

means there exists (A,a)∈ sup(D) such that sup(D) defeats (A,a), i.e., there exists

(B,b)∈ sup(D) such that (B,b)∈ Att(A,a). As (A,a)∈ sup(D), there exists S ∈D

such that (A,a) ∈ S and therefore S defends (A,a). Similarly, as (B,b) ∈ sup(D),

there exists S′ ∈ D such that S′ defends (B,b). As (B,b) ∈ Att(A,a) and S defends

(A,a), we know S defeats (B,b). Given that (D ,⊆) is a directed set, there exists

S′′ ∈ D such that S ⊆ S′′ and S′ ⊆ S′′. It follows that S′′ both defeats B and defends

B. It is an absurd as S′′ is conflict-free.

± sup(D) ⊆ FM(sup(D)): (A,a) ∈ sup(D) ⇒ there exists S ∈ D ⊆ ADMM such

that (A,a) ∈ S ⇒ there exists S ∈ D such that (A,a) ∈ FM(S)⇒ in consequence

of Lemma 1, (A,a) ∈ FM(sup(D)) = FM(
⋃

{S | S ∈ D}).

b) Let S ∈ ADMM and G ⊆ {S′ | S′ is an admissible extension of M and S ⊆ S′} such

that (G ,⊆) is a directed set. According to the previous item, E = sup(G ) is an

admissible extension of M. Indeed, by definition, E is a maximal admissible extension

of M such that S ⊆ E .

Proposition 12. Let T = (A ,Att,T ) be a TeAF. Then S is a stable extension of T iff S =

{(A,a) | (A,a) is not defeated by S}.

Proof. S = {(A,a) | (A,a) is not defeated by S} iff S = {(A,a) | for every (B,b) ∈ Att(A,a) it

holds (B,b) /∈ S} and S is conflict-free and S∪S+ =A ×T iff S =FM(S) and S is conflict-free

and S∪S+ = A ×T iff S is a stable extension of M.

Proposition 13. For any TeAF T, any stable extension of T is a preferred extension of T.

However, there is some TeAF T such that not every preferred extension of T is a stable extension

of T.

Proof. Let S be a stable extension of M. By absurd, suppose S is not a preferred extension of M.

This means there exists a complete extension S′ of M such that S ⊂ S′. As any argument in S′−S

is defeated by S, it follows S′ is not conflict-free. An absurd, as S′ is a complete extension of M.
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In order to show the reverse does not hold, we present the TeAF M = (A ,Att,{0})

with A = {A}, Att = {(A,0),(A,0)}. It is clear that the empty set is a preferred extension of M

which is not stable.

Lemma 2. Let T= (A ,Att,T ) be a TeAF. If S ⊆ A ×T is conflict-free, then FT(S) is also

conflict-free.

Proof. Let S ⊆ A ×T be a conflict-free set. By absurd, assume FM(S) is not conflict-free.

This means there exists (A,a) ∈ FM(S) such that FM(S) defeats (A,a), i.e., there exists (B,b) ∈

Att(A,a)∩FM(S). Then, as S defends (A,a), we know that S defeats (B,b). However, S also

defends (B,b). It is an absurd as S is conflict-free.

Lemma 3. Let T= (A ,Att,T ) be a TeAF. Then FT is monotonic with respect to set inclusion.

Proof. We have to prove that if S ⊆ S′, then FM(S) ⊆ FM(S′). This result is straightforward,

because if (A,a) is defended by S, then (A,a) is also defended by any superset of S.

Lemma 4. Let T be a TeAF. It holds S is a preferred extension of T iff S is a ⊆-maximal

admissible extension of T.

Proof.

a) Let S be a ⊆-maximal admissible extension of M, i.e., S is conflict-free and S⊆FM(S).

From Lemma 2, it is clear FM(S) is also conflict-free. From the monotonicity of FM

(Lemma 3), we obtain

FM(S)⊆ FM(FM(S))

Hence, FM(S) is also an admissible extension of M. As S ⊆ FM(S) and S is a

maximal admissible extension of M, it follows S = FM(S) and consequently S is a

preferred extension of M.

b) Let S be a preferred extension of M. By absurd, assume S is not a maximal admissible

extension of M. Then there exists a maximal admissible extension S′ of M such that

S ⊂ S′. From the previous case, we obtain S′ is also a preferred extension of M. It is

an absurd as S ⊂ S′.

Theorem 6. Every TeAF T possesses a unique grounded extension and it is the ⊆-least fixpoint

of FT.
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Proof. From Theorem 5, we know M has at least one complete extension S′. From the mono-

tonicity of FM (Lemma 3) and the well-known Knaster-Tarski Theorem from Tarski (1955),

we obtain the least fixpoint S of FM exists. As S ⊆ S′ and S′ is conflict-free, then S is also

conflict-free. This means S is the unique grounded extension of M.

Theorem 7. Let T = (A ,Att,T ) be a TeAF. The complete extensions of T form a complete

semilattice with respect to set inclusion.

Proof. Let ADMM = {S | S is an admissible extension of M},COMPM = {S | S is a complete

extension of M} and G ∈ COMPM the grounded extension of M. We will show (COMPM,⊆) is

a complete semilattice:

a) Each nonempty subset of COMPM has a greatest lower bound:

Let S⊆ COMPM and S ̸= /0. We define LB = {E ∈ ADMM | ∀C′ ∈S : E ⊆C′}.

LB is not empty, as clearly G ∈ LB. Given that E ⊆C′ for any E ∈ LB and for any

C′ ∈S, we obtain from Lemma 3, FM(E )⊆ FM(C′) =C′, i.e., ∀E ∈ LB,∀C′ ∈S :

FM(E )⊆C′.

Thus,

∀E ∈ LB : FM(E ) ∈ LB. (7.1)

Let C =
⋃

{E | E ∈ LB}. Now we have to prove C ∈ ADMM:

± C is conflict-free: by absurd, suppose C is not conflict-free. This means there exists

(A,a) ∈ C such that C defeats (A,a), i.e., there exists (B,b) ∈ Att(A,a)∩C. As

(A,a) ∈C, there exists E ∈ LB such that E defends (A,a) and therefore E defeats

(B,b). As (B,b) ∈C, there exists E ′ ∈ LB such that E ′ defends (B,b). It is clear

E ∪E ′ ∈ LB as both E and E ′ are in LB. It follows E ∪E ′ both defeats B and

defends B. It is an absurd as E ∪E ′ is conflict-free;

± C ⊆ FM(C): A ∈ C ⇒ there exists E ∈ LB ⊆ ADMM such that A ∈ E ⇒ there

exists E ∈ LB such that A ∈ FM(E )⇒ in consequence of Lemma 1, A ∈ FM(C).

It follows from the definition of C that ∀C′ ∈S : C ⊆C′. As consequence, C ∈ LB

and according to Equation 7.1, FM(C) ∈ LB.

As C ∈ ADMM, we know C ⊆FM(C); as FM(C) ∈ LB, we know FM(C)⊆C by C’s

definition. Then FM(C) =C, i.e., C ∈ COMPM.
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The complete extension C is a lower bound of S because for every C′ ∈S it holds

C ⊆ C′. Furthermore, C is the greatest lower bound of S as C ∈ LB and for every

E ∈ LB it holds E ⊆C.

b) For each chain (S,⊆) of (COMPM,⊆), the set S has a least upper bound:

Firstly, note that (S,⊆) is also a chain of (ADMM,⊆). This means (S,⊆) is a

directed set of (ADMM,⊆). Let S =
⋃

{S′ | S′ ∈S} ∈ ADMM.

By Theorem 2, there exists a maximal admissible extension E of M such that S ⊆

E . We know E ⊆ FM(E ). From the monotonicity of FM (Lemma 3), we obtain

FM(E )⊆ FM(FM(E )) and, from Lemma 2, we obtain FM(E ) is conflict-free. This

means FM(E ) ∈ ADMM. As E is a maximal admissible extension of M, it follows

FM(E ) = E , i.e., E ∈ COMPM; besides, E is an upper bound of S.

Let S′= {E |E ∈COMPM and E is an upper bound of S}. Obviously, S′ ̸= /0. Note

also that S is a lower bound of S′. From the previous item, we know S′ has a greatest

lower bound C′′ in (COMPM,⊆).

As S ⊆C′′, we conclude C′′ is the least upper bound of S.

Proposition 14. Let T= (A ,Att,T ) be a TeAF and L : A ×T →{in,out,undec} a labelling

of T. Then, L is complete iff for any A ∈ A and a ∈ T :

a) L (A,a) = in iff in(L ) defends (A,a);

b) L (A,a) = out iff in(L ) defeats (A,a).

Proof. (=⇒) Let L be a complete labelling of M. Note that

L (A,a) = out ⇐⇒∃(B,b) ∈ Att(A,a) : L (B,b) = in

⇐⇒∃(B,b) ∈ in(L ) : (B,b) ∈ Att(A,a)

⇐⇒ in(L ) defeats (A,a)

and,

L (A,a) = in ⇐⇒∀(B,b) ∈ Att(A,a) : L (B,b) = out

⇐⇒∀(B,b) ∈ Att(A,a) : in(L ) defeats (B,b)

⇐⇒ in(L ) defends (A,a).

(⇐=) Assume that for any A ∈ A and a ∈ T it holds (i) L (A,a) = in iff in(L )

defends (A,a), and (ii) L (A,a) = out iff in(L ) defeats (A,a).
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Then, L is complete, because

L (A,a) = out ⇐⇒ in(L ) defeats (A,a)

⇐⇒∃(B,b) ∈ in(L ) : (B,b) ∈ Att(A,a)

⇐⇒∃(B,b) ∈ Att(A,a) : L (B,b) = in

and,

L (A,a) = in ⇐⇒ in(L ) defends (A,a)

⇐⇒∀(B,b) ∈ Att(A,a) : in(L ) defeats (B,b)

⇐⇒∀(B,b) ∈ Att(A,a) : L (B,b) = out

Proposition 15. Let L ,L ′ be complete labellings of a TeAF T. It holds:

a) in(L )⊆ in(L ′) iff out(L )⊆ out(L ′);

b) in(L )⊂ in(L ′) iff out(L )⊂ out(L ′).

Proof.

a) (⇒) Assume in(L )⊆ in(L ′). It follows (A,a) ∈ out(L )⇒ there exists (B,b) ∈

Att(A,a) such that L (B,b) = in ⇒ (as in(L ) ⊆ in(L ′)) there exists (B,b) ∈

Att(A,a) such that L ′(B,b) = in ⇒ (A,a) ∈ out(L ′);

(⇐) Assume out(L )⊆ out(L ′). It follows (A,a) ∈ in(L )⇒ for every (B,b) ∈

Att(A,a) it holds L (B,b) = out ⇒ (as out(L ) ⊆ out(L ′)) for every (B,b) ∈

Att(A,a) it holds L ′(B,b) = out ⇒ (A,a) ∈ in(L ′).

b) (⇒) It follows in(L ) ⊂ in(L ′) ⇒ in(L ) ⊆ in(L ′) and in(L ′) ̸⊆ in(L ) ⇒

out(L )⊆ out(L ′) and out(L ′) ̸⊆ out(L )⇒ out(L )⊂ out(L ′);

(⇐) It follows out(L )⊂ out(L ′)⇒ out(L )⊆ out(L ′) and out(L ′) ̸⊆ out(L )

⇒ in(L )⊆ in(L ′) and in(L ′) ̸⊆ in(L )⇒ in(L )⊂ in(L ′).

Proposition 16. Let L ,L ′ be complete labellings of a TeAF T. It holds

1. If in(L )⊆ in(L ′), then undec(L ′)⊆ undec(L );

2. If in(L )⊂ in(L ′), then undec(L ′)⊂ undec(L );

3. If out(L )⊆ out(L ′), then undec(L ′)⊆ undec(L );

4. If out(L )⊂ out(L ′), then undec(L ′)⊂ undec(L ).
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Proof.

a) Assume in(L ) ⊆ in(L ′). From Lemma 9, it follows out(L ) ⊆ out(L ′). Then,

(A,a) ∈ undec(L ′) ⇒ (A,a) /∈ in(L ′)∪ out(L ′) ⇒ (A,a) /∈ in(L )∪ out(L ) ⇒

(A,a) ∈ undec(L );

b) Assume in(L )⊂ in(L ′). From Lemma 9, it follows out(L )⊂ out(L ′). It also fol-

lows in(L )⊆ in(L ′) and in(L ′) ̸⊆ in(L ) and out(L )⊆ out(L ′) and out(L ′) ̸⊆

out(L );

From the previous item, we obtain undec(L ′) ⊆ undec(L ). As in(L ′) ̸⊆ in(L ),

there exists (A,a)∈ in(L ′) such that (A,a) /∈ in(L ). It is clear (A,a) /∈ out(L ) (oth-

erwise (A,a) would be in out(L ′)). Thus, A ∈ undec(L ). It implies undec(L ) ̸⊆

undec(L ′). Consequently, undec(L ′)⊂ undec(L );

c) Similar to proof of item (a);

d) Similar to proof of item (b).

Proposition 17. Let L ,L ′ be complete labellings of a TeAF T. It holds:

a) If in(L ) = in(L ′), then L = L ′;

b) If out(L ) = out(L ′), then L = L ′.

Proof.

a) It follows in(L )= in(L ′)⇒ in(L )⊆ in(L ′) and in(L ′)⊆ in(L ′)⇒ from Lemma

9, out(L )⊆ out(L ′) and out(L ′)⊆ out(L ′)⇒ out(L )= out(L ′)⇒ as in(L )=

in(L ′), it holds undec(L )=undec(L ′)⇒L =L ′ as in(L )= in(L ′),out(L )=

out(L ′) and undec(L ) = undec(L ′).

b) It follows out(L ) = out(L ′) ⇒ out(L ) ⊆ out(L ′) and out(L ′) ⊆ out(L ′) ⇒

from Lemma 9, in(L ) ⊆ in(L ′) and in(L ′) ⊆ in(L ′) ⇒ in(L ) = in(L ′) ⇒

as out(L ) = out(L ′), it holds undec(L ) = undec(L ′)⇒ L = L ′ as in(L ) =

in(L ′),out(L ) = out(L ′) and undec(L ) = undec(L ′).
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