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ABSTRACT

Surface tension is a critical parameter in the petrochemical industry. It plays a key role in

designing and optimizing various processes related to the production, transportation, and refining

of hydrocarbons. The importance of surface tension lies in its ability to influence the behavior

of liquids during these processes, affecting factors such as flow rate, separation efficiency, and

the stability of emulsions. In recent years, machine learning (ML) techniques have shown

promise in predicting the physical and chemical properties of hydrocarbons. These techniques

offer a data-driven approach to understanding complex systems, and they have the potential to

significantly improve the efficiency and accuracy of predictions related to hydrocarbon properties.

In this study, we compared various machine learning algorithms, including K-Nearest Neighbors

(KNN), Random Forest (RF), and XGBoost (XGB), to determine their effectiveness in predicting

the surface tension of hydrocarbons. These algorithms were chosen due to their popularity

and proven effectiveness in a variety of applications. The results of our study indicate that

XGBoost exhibited the best performance in predicting the surface tension of hydrocarbons, with

a mean squared error (MSE) of 4.65 and an R2 score of 0.88. The R2 score, also known as the

coefficient of determination, is a statistical measure that represents the proportion of the variance

for a dependent variable that’s explained by an independent variable or variables in a regression

model. An R2 score of 0.88 indicates a high level of accuracy in the predictions made by the

XGBoost model. This study provides promising evidence that machine learning techniques can

be effectively applied to predict the surface tension of hydrocarbons. The successful application

of these techniques could lead to significant improvements in the efficiency and accuracy of

processes in the petrochemical industry.

Keywords: surface tension; hydrocarbons; machine learning; decision tree algorithms.



RESUMO

A tensão superficial é um parâmetro crítico na indústria petroquímica. Desempenha um papel

fundamental na concepção e otimização de diversos processos relacionados à produção, trans-

porte e refino de hidrocarbonetos. A importância da tensão superficial reside na sua capacidade

de influenciar o comportamento dos líquidos durante esses processos, afetando fatores como

vazão, eficiência de separação e estabilidade das emulsões. Nos últimos anos, as técnicas de

aprendizado de máquina (ML) têm se mostrado promissoras na previsão das propriedades físicas

e químicas dos hidrocarbonetos. Estas técnicas oferecem uma abordagem baseada em dados

para a compreensão de sistemas complexos e têm o potencial de melhorar significativamente

a eficiência e a precisão das previsões relacionadas com as propriedades dos hidrocarbonetos.

Neste estudo, comparamos vários algoritmos de aprendizado de máquina, incluindo K-Nearest

Neighbours (KNN), Random Forest (RF) e XGBoost (XGB), para determinar sua eficácia na

previsão da tensão superficial de hidrocarbonetos. Esses algoritmos foram escolhidos devido à

sua popularidade e eficácia comprovada em diversas aplicações. Os resultados do nosso estudo

indicam que o XGBoost exibiu o melhor desempenho na previsão da tensão superficial de

hidrocarbonetos, com um erro quadrático médio (MSE) de 4,65 e uma pontuação R2 de 0,88. A

pontuação R2, também conhecida como coeficiente de determinação, é uma medida estatística

que representa a proporção da variância de uma variável dependente que é explicada por uma

variável ou variáveis independentes em um modelo de regressão. Uma pontuação R2 de 0,88

indica um alto nível de precisão nas previsões feitas pelo modelo XGBoost. Este estudo fornece

evidências promissoras de que técnicas de aprendizado de máquina podem ser aplicadas de

forma eficaz para prever a tensão superficial de hidrocarbonetos. A aplicação bem sucedida

destas técnicas poderá levar a melhorias significativas na eficiência e precisão dos processos na

indústria petroquímica.

Palavras-chave: tensão superficial; hidrocarbonetos; aprendizado de máquina; algoritmos de

árvore de decisão.



LIST OF FIGURES

Figure 1 – Some representations of linear regression for a function of one variable: (a)

Typical representation of a line fitting the data distribution, (b) Tuning of

parameters that adjust the line to the data, labeled as w∗1 since this line has

the parameter that best fits the data. . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2 – View of the model fitting a linear regression in two dimensions. . . . . . . . 20

Figure 3 – Graphical representation of error in linear regression, where ei represents

the error between the model’s prediction for the i-th data point (ŷi) and the
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1 INTRODUCTION

Surface tension is an elemental factor in fluid mechanics, significantly affecting

numerous industrial operations. This property of the fluids is essential in various industries

including but not limited to petrochemicals (SHENG, 2013; MASSARWEH; ABUSHAIKHA,

2020; TAVAKKOLI et al., 2022), microfluidics (BARET, 2012; LEE et al., 2011), cleaning (COX,

1986; MOHARRAM et al., 2013; CHELAZZI et al., 2020; PIRONTI et al., 2020), medicine

(MALDONADO-VALDERRAMA et al., 2011; PERCIVAL et al., 2017; CALLION et al.,

1996), and agriculture (PARIA, 2008; HERNÁNDEZ-SORIANO et al., 2011; HERNÁNDEZ-

SORIANO et al., 2010). Despite its widespread applications and importance, forecasting the

surface tension of organic compounds is a difficult task. This is due to the intricate chemical

structure and varied properties of organic compounds (WU et al., 2023).

Surface tension is an important characteristic of organic compounds that profoundly

influences their behavior in various industrial applications. Determining this property accurately

is essential to numerous fields such as oil extraction, bubble formation, adhesion of liquids to

solid surfaces, and the formulation of chemical products (KATZ; SALTMAN, 1939). Traditional

techniques for measuring surface tension have been in use since the 1930s, with methods like

the capillary rise method, thus providing valuable insights into the nature of surface tension,

including the finding that surface tension of gas-saturated oil decreases with increasing saturation

pressure (SWARTZ, 1931).

Extending the research, studies involving binary mixtures like krypton, ethane, and

ethylene have been conducted using mean field theory (MFT). These studies were successful

in drawing a substantial correlation between theoretical and experimental values (ALMEIDA;

GAMA, 1989). Innovative measurement techniques have also been proposed by scholars like

Abbas and Nordholm, who put forth a technique based on the generalized van der Waals theory

(GvdW). For simple polar fluids, this method has been successful in achieving experimental

values that closely match theoretical predictions, thus showing a high correlation (SIMPLE. . . ,

1995).

As the field continued to grow and evolve, newer, more sophisticated methods have

been introduced to the study of surface tension. Fu et al. (FU et al., 2001) proposed the

development of a theoretical model built on the foundation of density functional theory (DFT)

and the Barker-Henderson perturbation theory (BAKER; HENDERSON, 1967). Utilizing this

model on 18 non-pure polar fluids demonstrated that the equation of state proposed by the



14

model could predict surface tension with a deviation of 3.3%, indicating a fairly high level of

accuracy. Such research indicates the increasing complexity and sophistication of methods to

predict surface tension.

In recent years, machine learning techniques have seen a surge in popularity, with in-

creasing evidence suggesting their potential in accurately predicting these physical and chemical

properties (ZHOU et al., 2020). Machine learning methodologies, utilizing advanced mathemati-

cal models, can learn from experimental data, train on it, and then use that training to predict

outcomes for new instances. Their proven effectiveness in predicting an array of properties for

hydrocarbons, including boiling points, densities, and vapor pressures, showcases their potential

(DOBBELAERE et al., 2022). In light of this, this research focuses on promoting the use of

machine learning techniques to predict the surface tension of organic compounds.

Recently, the fusion of traditional scientific methods with advanced computational

techniques has brought machine learning into the study of surface tension. A proposal for a

hybrid model that combines machine learning techniques such as linear regression and neural

networks was conducted, aiming to develop a predictive model for determining the surface

tension of hydrocarbon surfactants in aqueous solutions. In this regard, the work of Seddon et al.

(SEDDON et al., 2022) is significant. They demonstrated that the three parameters of interest

from the Szyszkowski equation could be determined using a Python code.

In another innovative approach, Soori et al. (ROKONI; SUN, 2021) proposed the

usage of Convolutional Neural Networks (CNN) to estimate surface tension from images of

hanging drops with unknown concentrations of ethanol and water. The trained machine learning

models achieved high accuracies, ranging between 97.8% and 99.5%. This technique allows for

easy, fast, and relatively accurate determination of surface tension, bypassing the need for tedious

preprocessing of image databases. It represents a significant advancement in the application of

machine learning to the study of surface tension.

This research has successfully delivered several notable accomplishments. Firstly,

we have compiled extensive databases containing detailed quantitative information pertaining to

thousands of organic compounds (a). Secondly, we’ve developed an intelligent algorithm that is

designed to choose the dataset that could serve as the optimal training set for machine learning

algorithms (b). Additionally, we have put together a top-performing regression algorithm that

makes the most out of the selected dataset (c). Finally, we conducted an analysis of the factors

that hold the greatest significance when it comes to predicting surface tension in hydrocarbons.
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2 MACHINE LEARNING TECHNIQUES

Machine learning is a subsection of artificial intelligence that involves the creation of

computational models that can learn from data and make predictions or decisions without explicit

programming. Machine learning algorithms are typically categorized into three paradigms:

supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning involves teaching algorithms to make predictions based on

labeled data, where both the input and desired output are provided. This learning paradigm is

widely used in applications like email filtering, where algorithms are trained to classify emails as

spam or not-spam, and regression tasks, such as predicting housing prices based on features like

location, size, and age of the house. In supervised learning, the objective is to learn a function

denoted as y = f (x) from a given dataset {xi,yi}n
i=1. Here, xi represents the i-th data point, and

yi represents its corresponding label.

Unsupervised learning, on the other hand, deals with algorithms that learn from

unlabeled data by identifying patterns or structures within it. These algorithms are often used in

applications like customer segmentation in marketing, where the algorithm clusters customers

based on their purchasing behavior, and anomaly detection, for instance, in credit card fraud

detection, where the algorithm identifies transactions that deviate significantly from the norm. In

unsupervised learning, the primary objective is to discover and understand underlying patterns or

similarities within a dataset {xi}n
i=1.

Reinforcement learning is a paradigm where algorithms learn by interacting with

their environment, receiving feedback in the form of rewards or penalties. This paradigm is

typically applied in areas like game playing, where the algorithm learns to make moves that

maximize the game score, and robotics, where a robot learns to perform tasks by maximizing a

reward function.

In the development of this research, our focus will be on the supervised learning

paradigm. Specifically, we will explore how to make predictions from a dataset.

2.1 Supervised Learning

Within the realm of supervised learning, there exist two principal applications of

algorithms: regression and classification. These applications serve distinct functions and are

chosen based on the nature of the problem at hand.
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Regression is a type of supervised learning task that is utilized when the output

variable is continuous or numerical in nature. It focuses on predicting a continuous outcome

variable (or a dependent variable) from one or more predictor variables (or independent variables).

For instance, predicting the price of a house based on factors such as location, number of rooms,

and age is a typical example of a regression problem. Similarly, forecasting stock prices,

estimating life expectancy, and predicting sales amounts are other common applications of

regression in various fields.

On the other hand, classification is a supervised learning task used when the output

variable is categorical. It involves predicting the class or category of a given input. For

instance, determining whether an email is spam or not based on its content is a classification

problem. Similarly, diagnosing diseases based on patient symptoms, recognizing handwriting,

and identifying fraudulent transactions are typical examples of classification problems.

In both regression and classification tasks, the aim is to construct a model that learns

from labeled training data in order to make accurate predictions when faced with new, unseen

data. Both these applications form the backbone of supervised learning and are vital tools in the

machine learning toolkit.

Given the existence of a set of data xi associated with a label yi, it is a challenge to

analytically find a model S that represents the relationship between labels and data. Therefore,

what is done is to estimate this model Ŝ, and the construction of this model is known as learning.

The underlying question to this fact is, how do we know how good Ŝ is? The answer is implicit

in the data itself. We start with the hypothesis that the data is modeled in some way and that this

model relates it to its labels. Thus, if I estimate new labels ŷi with the new model Ŝ, a comparison

between the models becomes possible. Now, to measure this performance, an error criterion must

be applied, which will depend on the task that this model is facing (classification or regression).

In a probabilistic framework, it is known that (x,y)∼ D, which implies that for the

classification task, x∼D and y = c(x) for some unknown deterministic classifier c. Furthermore,

x ∼ D and P[y = 1|x] = α(x), where α(x) is a mapping fuction from the feature space to

the interval [0,1], representing probabilities. In probabilistic terms, this can be expressed as:

α : X → [0,1], where X is the feature space, and for each x ∈X , α(x) gives the conditional

probability that the corresponding label y is equal to 1, given the feature vector x. If the problem

is regression, the assumption that the data follows some distribution still holds, and it can be

stated that x∼ D and y = f (x)+η , where η ∼ Dη , that means that in terms of the regression
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framework, the regression consists of a deterministic function added to a noise term. The noise

term is introduced as η , and of course, this error term has some distribution, denoted as η ∼ Dη .

Now, suppose that from the original dataset x, it is possible to obtain two subsets that will be

referred to as the training set and the test set, denoted as {xi,yi}q
i=0 and {xi,yi}n

i=0, respectively.

The following conditions must hold:

• (x,y)∼ D: The joint distribution of the data and labels is denoted by D.

• {xi,yi}n
i=0 ∼ D: The training set is independently sampled from D.

• {xi,yi}q
i=0 ∼ D: The test set is independently sampled from D, and it is also independent

of the training set {xi,yi}n
i=0.

The above allows us to determine how the error will be measured. In the case of

regression, the error can be expressed as the expected squared difference between the predictions

of the model Ŝ(x) and the true labels y:

ED
[
Ŝ(x)− y

]2
. (2.1)

This means that the error is the average squared difference between the predicted

labels and the true labels of the original data. On the other hand, in classification, the error can

be defined as:

PD
[
Ŝ(x) ̸= y

]
. (2.2)

This quantifies the error of misclassifying a data point, representing the probability

that a data point xi does not belong to its true class.

So far, we have discussed concepts related to the data and the need to quantify the

error of a model, without going into much detail about the type of model Ŝ, which will be

explored in subsequent chapters. In later chapters, we will learn that there is a way to validate

the model before testing it on unseen data. The process of building a supervised learning model

involves several intermediate steps that have not been mentioned yet, and their explanations could

be extensive, as each step has its own rationale. However, we will briefly list these steps, and if

necessary, provide explanations where needed. The steps involved in generating a supervised

machine learning model correctly are as follows:

• Splitting the data into three subsets (Training/Validation/Test).

• Selecting the ML algorithm (Linear Regression, K-Nearest Neighbors, Random Forest,

etc.).

• Data preprocessing.
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• Training:

– Choosing an error function.

– Training models of different "sizes" or complexities:

* Optimizing the error function on the training data.

* Evaluating the model on the validation data.

– Selecting the model with the lowest error on the validation data.

• Evaluating the model on the test data.

These steps outline the general process for building a supervised machine learning model, and

each step plays a crucial role in developing an effective and reliable model.

In the following sections you will find the following content:

• Linear Regression: In this section, we will explore the most basic form of Ŝ(x), which

is linear regression. Linear regression assumes a linear relationship between the input

features and the target variable. The mathematical formulation and interpretation of the

coefficients will be discussed.

• Nearest Neighbors Algorithms: In this section, we will delve into algorithms based on

nearest neighbors, such as k-nearest neighbors (KNN). We will discuss the intuition behind

these algorithms and their implementation, including considerations for parameter tuning

and distance metrics.

• Boosting Techniques: This section will introduce boosting techniques, these techniques

combine multiple weak models to create a strong predictive model. We will explain the

underlying principles and the ensemble learning process.

• Tree-Based Models: In this section, we introduce decision tree-based models, beginning

with a broad overview and progressing to essential theoretical considerations. These

foundational concepts facilitate a deeper understanding of these models, which serve as

the cornerstone for more advanced techniques, such as Random Forest.

• Model Validation: We will emphasize the importance of model validation. We will

discuss different techniques for evaluating and validating the performance of a model, like

cross-validation. Additionally, we will explore the concepts of bias and variance in model

evaluation.

• Principal Components Analysis (PCA): In this final section, we will explore a technique

that allows preprocessing the data in such a way that certain statistical relationships

between variables in a dataset are eliminated. Among other things, this technique reduces
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the dimensionality of the data, which can be beneficial in certain scenarios.

Throughout these sections, our goal is to provide an understanding of the different

forms that Ŝ(x) can take, starting from the basic concepts and gradually building up to more

advanced techniques. We will also emphasize the significance of model validation to ensure

reliable and generalizable trained models.

2.2 Linear Regression

Although linear regression has been extensively studied in the field of statistics and,

of course, in the areas of data science and artificial intelligence, it serves as a key foundation

for understanding techniques of higher complexity. The assumptions made in linear regression

extend to these techniques, which is why linear regression is often considered a baseline when

comparing performance with other methods.

The first assumption is that there exists a linear (affine) relationship between the data

and the labels. Using the notation for n data points {xi,yi}n
i=1, the goal is to model a dependency

of the form y = wx+b. This allows us, as shown in Figure 1a, to predict the value of the label yt

for new values of xt .

xt

yt

x

y

(a) Traditional regression framework for a single-
dimensional input.

x

y
Data
w∗1
w2
w3

(b) Possible adjustments of the w, in this case
will be the parameters that the model tunes.

Figure 1 – Some representations of linear regression for a function of one variable: (a) Typical
representation of a line fitting the data distribution, (b) Tuning of parameters that
adjust the line to the data, labeled as w∗1 since this line has the parameter that best fits
the data.

While understanding regression is intuitive when presented in a one-dimensional

manner, this understanding can be extended to represent datasets with high dimensionality. In
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this way, for example, if the dataset x ∈ R2 is considered 1, it is natural that the model allowing

predictions for new data points xt and their corresponding values of yt will no longer be a line.

Instead, it can be inferred that it will be a plane (Figure 2). If we extend the problem to n

dimensions, we would be referring to a hyperplane.

Now, taking the one-dimensional model of regression as y = wx+ b, we can see

that similarly in two dimensions, we would have y = w1x1 +w2x2 +b. This can be generalized

to y = w1x1 +w2x2 + · · ·+wdxd +b, which can be represented as y = w⊤x+b. Additionally,

an additional adjustment can be made by adopting the convention that x0 = 1 and w0 = b,

simplifying the equation to y = w⊤x.

x1

x2

y

Figure 2 – View of the model fitting a linear regression in two dimensions.

If we adopt the convention y = w⊤x, then the task of linear regression is to adjust

those w in such a way that the dependency between x and y is properly modeled. To achieve this,

w should correspond to a model that fits the data {xi,yi}n
i=1 well. To illustrate the it, Figure 1b

shows that the choice of w is crucial in determining how well the data fits the model. Therefore,

it is highlighted that w∗1 is the model that best fits the data.

To build these concepts, we start with a widely used mathematical element, the

Euclidean distance, which can be used because we are in the Euclidean space Rn. Therefore,

it makes sense for the error function mentioned in the previous section to relate to the distance

between the model’s prediction and the original data. Here, we can use the one-dimensional

representation of regression to illustrate what this distance represents (Figure 3).
1 It should be noted that the dimensionality of the predictions will never change; we are referring to the fact that

we always have continuous values, or equivalently, y ∈ R
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yi

xi

ŷi

ei

x

y

Figure 3 – Graphical representation of error in linear regression, where ei represents the error
between the model’s prediction for the i-th data point (ŷi) and the corresponding value
yi for the i-th data point.

Examining the error function, the error as a function of the adjustment of w, we have

that:

E(w) =
1
2

n

∑
i=1

(yi− ŷi)
2 =

1
2

n

∑
i=1

(
yi−w⊤xi

)2
,

this generates the following optimization problem:

w∗ = argmin
w

E(w)

(2.3)

Now, starting from the error function, we have that:

E(w) =
1
2

n

∑
i=1

(
yi−w⊤xi

)2

=
1
2

n

∑
i=1

(
y2

i −2yiw⊤xi +
(

w⊤xi

)2
)

=
1
2

n

∑
i=1

y2
i −w⊤xiyi +

1
2

(
w⊤xi

)(
w⊤xi

)
=

1
2

w⊤
(

n

∑
i=1

xix⊤i

)
w︸ ︷︷ ︸

QF

−

(
n

∑
i=1

xiyi

)⊤
︸ ︷︷ ︸

b⊤

w+
1
2

n

∑
i=1

y2
i︸ ︷︷ ︸

c

,

where:

H =
n

∑
i=1

xix⊤i , b =
n

∑
i=1

xiyi, c =
1
2

n

∑
i=1

y2
i

(2.4)

From the previous deduction, a particular aspect is highlighted, the first term of the

expression, is a quadratic form (QF). This means that E(w) is a quadratic function of w. This
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represents an advantage in terms of the optimization problem because it allows the application

of an algorithm to search for the optimal w∗ based on convex optimization. Even better, it is

possible to find an analytical solution to the above expression as follows:

∇wE(w) = ∇w

(
1
2

w⊤Hw−b⊤w+ c
)
= Hw−b

∇
2
wE(w) = H.

Note that for any vector z ∈ Rd+1,

z⊤Hz =
n

∑
i=1

(
z⊤xi

)(
x⊤i z
)
=

n

∑
i=1

(
z⊤xi

)2
,

that is, H is positive semidefinite, then the error function E(w) is convex.

If H is positive definite, then E(w) has a unique global minimum:

∇wE(w) = 0 =⇒ w∗ = H−1b

(2.5)

Having this analytical solution allows us to incorporate the found solution into an

iterative algorithm that iteratively finds the value of w∗. In general, this is known as the iterative

descent algorithm.

Algoritmo 1: Iterative Descent Algorithm
Initialize w0
repeat

choose the direction of d
wk+1 = wk +ηkd

until Any termination condition.

It is important to clarify what d and ηk represent in Algorithm 1. Regarding d, it

refers to the descent direction, while ηk represents the learning rate. Although both elements

are crucial for the algorithm’s operation, it is more beneficial to understand the concept of the

descent direction. Therefore, a brief study on this descent direction will be presented next.

Assume that for the choice of d we have a function of a fixed point w along a certain

direction d.

g(η) = E (w+ηd) .

From the directional derivative:

g′ (η) = d⊤∇wE (w+ηd) =⇒ g′(0) = d⊤∇wE (w) = ⟨d,∇wE(w)⟩

For ∥d∥ constant, the directional derivative is maximally negative when d = −∇wE(w).

(2.6)
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This means that the negative gradient is the direction of the steepest descent. This modification

changes the update equation of Algorithm 1 from wk+1 = wk+ηkd to wk+1 = wk−ηk∇wE(wk).

So far, it has been shown that the error function has a quadratic form, which, if

positive definite, defines a convex surface. In the simplest case, it is a parabola, and in higher

dimensions, it is a hyperparaboloid. Based on this fact, an analytical solution was found to

determine the optimal value w∗ that minimizes this error function. Later on, the translation of

this into computational implementation was discussed2.

Another way to approach linear regression is the probabilistic derivation. It starts

with the following assumptions:

• yi and xi are related by:

yi = w̌⊤xi + εi (2.7)

• εi ∼N
(
0,σ2), and are independent.

p(ε) =
1√

2πσ
exp
(
− ε2

2σ2

)
(2.8)

If yi is a random variable with density:

p(yi|xi; w̌) =
1√

2πσ
exp

(
−
(
yi− w̌⊤xi

)2

2σ2

)
where w̌ is a parameter of the density. Thus, the likelihood function is:

L(w̌) = p(y|X; w̌)
εi is i.i.d−−−−→ L(w̌) =

n

∏
i=1

p(yi|xi; w̌) =
n

∏
i=1

1√
2πσ

exp

(
−
(
yi− w̌⊤xi

)2

2σ2

) (2.9)

From the above, a question arises regarding the choice of w̌. What would be a good

w̌ in this probabilistic case? The immediate answer lies in the principle of maximum likelihood.

The idea is to find a w̌ that maximizes the probability of the data. In this case, we want to

maximize the logarithmic likelihood.

log(L(w̌)) = log

(
n

∏
i=1

1√
2πσ

exp

(
−
(
yi− w̌⊤xi

)2

2σ2

))

=
n

∑
i=1

(
log

(
1√

2πσ
exp

(
−
(
yi− w̌⊤xi

)2

2σ2

)))

= n log
1√

2πσ
− 1

σ2
1
2

n

∑
i=1

(
yi− w̌⊤xi

)2

︸ ︷︷ ︸
MSE!

(2.10)

2 There are other ways to analyze linear regression, for example, it can be examined from the perspective of
normal equations (HASTIE et al., 2009).
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Under the aforementioned assumptions, maximizing likelihood is equivalent to

minimizing the squared error in the data. However, there is an additional study to be done based

on this probabilistic derivation. Let’s once again decompose the error. Given (x,y)∼ D, let’s

assume that h is a function of x with parameters w.

Ě(w) =
1
2

n

∑
i=1

(h(xi,w)− yi)
2

In the limit as n→ ∞

E(w) = lim
n→∞

Ě(w)

n
=

1
2

∫∫
(h(x,w)− y)2 p(x,y)dydx =

1
2

∫∫
(h(x,w)− y)2 p(y|x)p(x)dydx

(2.11)

By performing certain manipulations3 and integrating over y:∫∫
(h(x,w)−E [y|x])2 p(y|x)p(x)dydx =

∫
(h(x,w)−E [y|x])2 p(x)dx∫

(h(x,w)−E [y|x]) (E [y|x]− y) p(y|x)dy = 0∫
(E [y|x]− y) p(y|x)dy = E

[
y2|x

]
−E [y|x]2

Putting it all together:

E(w) =
1
2

∫
(h(x,w)−E [y|x])2 p(x)dx+

1
2

∫
E
[
y2|x

]
−E [y|x]2 p(x)dx,

(2.12)

notice that the second integral does not depend on w, and this part of the error

function is known as the irreducible error. Another element that becomes evident is that the value

of h(x,w) that minimizes E(w) is E [y|x], and from now on, this function will be referred to as

the regression function.

To conclude this section, we introduce the bias-variance tradeoff, which encompasses

the two remaining components of the error, and some tips to understand preprocessing. It is

important to note that these two elements are strongly interrelated, and there exists a compromise

between them. The following considerations are taken into account:

In practice, n is finite. Consider datasets with n data points D1,D2, · · · ∼ p(x,y). For

a fixed x, the term (h(x,w)−E [y|x])2 depends on the particular Di. Thus, averaging over all

possible D:

E [E(x)] = ED (h(x,w)+E [y|x])2 = ED (h(x,w)−EDh(x,w)+EDh(x,w)−E [y|x])2

= E(h(x,w)−ED (h(x,w)))2 +(ED (h(x,w))−E [y|x])2
(2.13)

3 (h(x,w)− y)2 = (h(x,w)−E [y|x]+E [y|x]− y)2 = (h(x,w)+E [y|x])2
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From the above, it can be said that (ED (h(x,w))−E [y|x])2 is the bias of h at x, and

E(h(x,w)−ED (h(x,w)))2 is the variance of h at x. Integrating over x:

bias2 =
1
2

∫
(ED (h(x,w))−E [y|x])2 p(x)dx

variance =
1
2

∫
E(h(x,w)−ED (h(x,w)))2 p(x)dx

(2.14)

x

y Data
y = w2x2 +w1x+w0
y = wx+b

Figure 4 – Choosing the appropriate model according to the nature of the data is crucial. We
demonstrate the fitting of data using a quadratic curve and a straight line.

Let’s consider an example of a dataset that doesn’t visually follow a straight line,

as shown in Figures 1 and 3. Suppose the data now follows a parabolic pattern as depicted

in Figure 4. This might lead to confusion as it is no longer a linear function that fits the data.

However, careful examination and appropriate model selection can address this issue. For the

data distribution in Figure 4, the best choice would be y = w2x2+w1x+w0. A simple inspection

reveals that the nature of the model remains linear in terms of the parameters. When comparing

the fit with the linear model, it becomes evident that the linear model is not the optimal choice. To

have a clearer understanding, linearity applies to the parameters of the model and not necessarily

to the nature of the data, as long as a strategy is found to transform the problem into the usual

linear model. For instance, let’s examine the previous case, which was one-dimensional, and
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extend it to two dimensions as follows:

y =w11x2
1 +w22x2

2 +w12x1x2 +w1x1+w2x2 +w0

For d dimensions:

y =w11x2
1 +w22x2

2 + · · ·+wddx2
d

+w12x1x2 +w13x1x3 + · · ·+w23x2x3 + · · ·+w(d−1)dxd−1xd

+w1x1 +w2x2 + . . .wdxd +w0(
d +2

2

)
terms.

(2.15)

This means that the combination shown in the previous equation determines the

number of parameters to be adjusted in the model. In the case of two dimensions, it would

be a combination of four choose two, resulting in a total of six parameters to be adjusted:

{w11,w22,w12,w1,w2,w0}.

2.3 K-Nearest Neighbors

The k-Nearest Neighbors (k-NN) algorithm is a versatile and intuitive method widely

employed for both classification and regression tasks in machine learning. The k-NN algorithm

makes minimal assumptions about the underlying structure of the data. This flexibility enables

the k-NN method to adapt effectively to a wide variety of situations, constructing a decision

boundary that can conform to irregular patterns in the data. However, this adaptability comes

at a cost. The decision boundary produced by the k-NN algorithm can be highly sensitive to

fluctuations in the training data. Each subregion of the decision boundary is determined by a

small subset of the training instances. Consequently, the exact position of these instances can

cause the boundary to be irregular and unstable.

The subsequent sections delve deeper into the workings of the k-NN algorithm, its

strengths and weaknesses, and the trade-offs involved in its use.

2.3.1 Problem Setup

Consider a training dataset T = {(x1,y1), . . . ,(xn,yn)}, where xi ∈ Rd is a feature

vector and yi ∈ Y is the corresponding label. For classification, Y is a discrete set, while for

regression, Y is a continuous set.
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2.3.2 Distance Measure

The distance function d(x,x′) can vary according to the specific problem and feature

type. For continuous features, the Euclidean distance is often used, defined for two vectors x,x′ ∈

Rd as d(x,x′) =
√

∑
d
i=1(xi− x′i)2. Other distance measures, such as Manhattan or Minkowski

distance, can also be used.

2.3.3 The Algorithm

Given an unlabelled instance x, the k-NN algorithm operates as Algorithm 2 de-

scribes:

Algoritmo 2: K-Nearest Neighbors Algorithm
Input: Unlabelled instance x, training dataset T , number of neighbors k, distance metric
d.

Procedure:
Compute d(x,xi) for each instance xi ∈ T .
Identify the k instances Nk(x) = {x(1), . . . ,x(k)} in T that are nearest to x.
Determine the prediction ŷ:
if Y is discrete

ŷ = mode({y(1), . . . ,y(k)})
else

ŷ = 1
k ∑

k
i=1 y(i)

end if
Output: Predicted label ŷ.

2.3.4 Theoretical Considerations

The k-NN rule is a classification and regression method predicated on the notion that

observations in close proximity within a feature space share similar labels. Given a novel data

point, the k-NN rule identifies the k nearest points within the training set, assigning a label based

on the majority of those k nearest neighbors’ labels. Various metrics, such as Euclidean distance,

can be employed to measure the distance between points.

In the other hand, Bayes risk R∗ represents a theoretical measure of the minimum

error expected from a classifier, given knowledge of the underlying true probability distribution

of the data. It is associated with the optimal Bayes decision rule, which classifies an observation

into the class that maximizes the posterior probability given the observation. In essence, it is the
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lowest achievable error in classification, assuming all conditional probabilities are known. The

k-NN decision rule approaches the Bayes risk as the number of instances n tends to infinity, and

k also grows but at a slower rate than n (i.e., k
n → 0). This implies that the k-NN rule can be a

consistent approximation to the optimal Bayes rule in the limit of an infinite amount of data.

2.3.4.1 Convergence Theorem

Under certain regularity conditions, as the number of instances n goes to infinity

and for fixed k, the k-NN decision rule approaches the Bayes rule. The formal statement of the

theorem is as follows:

Let Rn be the risk of the k-NN rule and R∗ be the Bayes risk. Then, if k→ ∞ and

k/n→ 0 as n→ ∞, we have:

lim
n→∞

E[Rn] = E[R∗] (2.16)

where E[Rn] and E[R∗] denote the expected risks.

2.3.4.2 Choice of k

The choice of k balances the bias-variance trade-off. Formally, the expected predic-

tion error of k-NN can be decomposed as follows:

E
[
(y− ŷ)2]= σ

2 +
σ2

k
+Bias2( f̂ (x)), (2.17)

where σ2 is the irreducible error, 1/k represents the model’s variance, and Bias2( f̂ (x)) is the

squared bias.

2.3.5 Trade-offs

The k-NN algorithm manifests an array of trade-offs that need to be carefully

considered. Key among these is the bias-variance trade-off, which is greatly influenced by the

choice of k. A small value of k results in a low bias, high variance scenario, which means the

model closely follows the training data but may respond poorly to unseen data. On the contrary,

a large value of k gives rise to a model that has high bias but low variance, implying that the

model may oversimplify and miss certain complexities in the data.
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The k-NN algorithm is also characterized by computational challenges. It must

compute distances between instances, an operation that grows more costly with an increasing

volume of data. Therefore, as the size of the dataset increases, the algorithm can become

significantly slower and less efficient.

Despite these challenges, the k-NN algorithm boasts notable advantages. Its simplic-

ity and intuitiveness are key strengths. There are no assumptions made about the functional form

of the data, allowing it to model complex patterns that other algorithms might miss. Additionally,

the algorithm can be highly effective if the decision boundary is very irregular, flexibly adapting

to the data’s structure.

However, the k-NN algorithm also exhibits certain weaknesses. As mentioned earlier,

it suffers significantly as the volume of data increases. Another critical trade-off arises from the

so-called "curse of dimensionality". k-NN does not handle high-dimensional data effectively due

to this curse. The distance metrics used become less meaningful as the number of dimensions

grows, leading to a deterioration in the algorithm’s performance. Moreover, it is sensitive to

irrelevant features and the scale of the data. Each feature contributes equally to the distance

calculation, which means the algorithm could perform poorly if the features are not carefully

selected and preprocessed.

We have explored two learning techniques for prediction thus far: the stable yet

biased linear model, and the less stable but seemingly less biased class of k-nearest-neighbor

estimates. With a sufficiently large training dataset, it might appear that we could always

approximate the theoretically optimal conditional expectation using k-nearest-neighbor averaging.

We should be able to find a reasonably large neighborhood of observations close to any given point

x and average them. However, this approach and our intuition break down in high-dimensional

spaces, giving rise to the well-known phenomenon referred to as the curse of dimensionality

(BELLMAN, 2015). This issue manifests in various ways, which we will now examine.

Let’s consider the nearest-neighbor procedure for inputs uniformly distributed within

a p-dimensional unit hypercube, as depicted in Figure 5. In this scenario, we define a hypercubical

neighborhood around a target point to encompass a fraction r of the observations. This fraction

corresponds to a fraction r of the unit volume, leading to an expected edge length of the hypercube

represented by ep(r) = r1/p. For instance, in ten dimensions, we have e10(0.01) = 0.63 and

e10(0.1) = 0.80, while the entire range for each input is only 1.0. Therefore, to capture 1% or

10% of the data and compute a local average, we need to cover 63% or 80% of the range for each
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input variable. It becomes evident that these neighborhoods can no longer be considered truly

"local." Additionally, reducing the value of r dramatically does not provide significant benefits,

as averaging fewer observations results in a higher variance in our fit.

1
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Figure 5 – The Curse of Dimensionality with a Subcubical Neighborhood for Uniform Data in
a Unit Cube. The figure on the right demonstrates the side-length of the subcube
necessary to capture a fraction r of the data’s volume, considering different dimensions
p. Notably, in the case of ten dimensions, it becomes crucial to cover 80% of the
range for each coordinate to capture just 10% of the data

2.4 Boosting

To commence this section and gradually develop the concept of Boosting, we delve

into fundamental concepts such as classifier combination. The essence of this technique revolves

around classifiers, as it was initially devised for addressing classification problems. Nevertheless,

its applicability can be readily extended to regression problems.

The idea is to construct a classifier that is a combination of multiple classifiers. This

combined classifier is defined by obtaining classifiers h1,h2, . . . ,hT that minimize the error on

different versions of the data4.

f (x) =
T

∑
i=1

αihi(x) (2.18)

4 f (x) = ∑
T
i=1 αihi(x) = α1h1(x)+α2h2(x)+ · · ·+αT hT (x), this means that the equation 2.18 is a linear combi-

nation of classifiers h1(x),h2(x), . . . ,hT (x), αi can be restricted depending on the learning problem and taking
into account if certain objectives or properties are to be achieved, for example, if ∑

T
i=1 αi = 1, the combination

would no longer be linear, it would become convex.
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Classifying using the sign of f :

h(x) = sign( f (x)) =

1 if f (x)≥ 0,

0 if f (x)< 0
(2.19)

The inspiration behind boosting arose from the desire to create a technique that

merges the predictions of multiple “weak” classifiers to form a formidable and influential

“committee”. To introduce the notions of Boosting, it is stated that within this context, the

objective of Probably Approximately Correct Learning (PAC Learning) is to find a hypothesis

h that satisfies the condition P(e(h) ≥ ε) ≤ δ . In simpler terms, the goal is to ensure that the

probability of the hypothesis h having a generalization error greater than a specified tolerance

level, denoted by ε , is less than a certain confidence level, denoted by δ . The aim is to have

a high level of confidence (with a confidence level of 1−δ ) that the generalization error will

be lower than ε . Suppose there exists an hd that satisfies the condition of weak learnability,

P(e(hd)≥ ε0)≤ δ0, for any data distribution. This raises the question of whether it is possible

to achieve strong learnability from weak learnability. The answer, for now, is yes! (SCHAPIRE,

1990) However, this topic will be further explored and discussed in the development of this

section.

The explanation begins by introducing the simplest boosting algorithm to develop

an initial intuition and gradually demonstrate its usefulness. It is assumed that there exists an

algorithm, denoted as A, which takes data from a distribution D as input, i.e., {xi,yi} ∼ D, and

produces a model h with an error bound of e(h)≤ β , regardless of the distribution D. Building

upon this, a modest algorithm is proposed that involves requesting data (xi,yi) from an oracle,

denoted as EX(c,D). The algorithm proceeds as follows:

1) h1← A(D1) with D1 = D

2) h2← A(D2) where D2 is such that PD2 [h1(x) ̸= c(x)] = 1
2

3) h3← A(D3) where D3 is such that PD3 [h1(x) ̸= h2(x)] = 1

returns h(x) = majority (h1(x),h2(x),h3(x))

It can be shown that:

PD [h1(x) ̸= c(x)]≤ β

PD2 [h2(x) ̸= c(x)]≤ β

PD3 [h3(x) ̸= c(x)]≤ β

=⇒ PD [h(x) ̸= c(x)]≤ 3β
2−2β

3 (2.20)

This means that the error generated by the model is bounded by a function that

depends on β , as shown in Figure 6. In terms of error, it signifies a significant reduction
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compared to the original error. It is important to note that the entire procedure begins with a

hypothesis that allows the model to intuitively learn a weak advantage expressed in the original

data distribution, D.

An intuitive next step is to view the aforementioned procedure as a subroutine,

utilizing it recursively to enhance the accuracy of weaker hypotheses. Assuming that A returns

an h with e(h) ≤ β < 1
2 for any distribution D, the natural goal is to achieve e(h) ≤ ε . If the

weak learning algorithm guarantees e(h)≤ g−1(ε)> ε , then the previous modest algorithm is

applied. In case these guarantees are not met, a natural option is to recursively apply the modest

algorithm as mentioned earlier.

0 0.1 0.2 0.3 0.4 0.5
0

0.1
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)
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Figure 6 – Error Bound of Hypothesis h in Boosting Algorithm A. The graph illustrates the
error bound of hypothesis h, generated by the A algorithm, which is constrained by
the function g(β ) = 3β 2−2β 3. This function showcases a significantly lower error
compared to the original error.

Algoritmo 3: A strong boosting algorithm (ε,D′)
if ε ≥ εWL then

Returns DT (ε,D′)
end if
β ← g−1(ε)
h1← StrongBoosting(β ,D′1)
h2← StrongBoosting(β ,D′2)
h3← StrongBoosting

(
β ,D′3

)
h←majority(h1,h2,h3)
returns h

By examining the structure of Algorithm 3, it becomes apparent that the recursion
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employed in the algorithm increases the depth of the tree, raising concerns about its efficiency

(Figure 7). Another aspect that can contribute to the study of the algorithm’s efficiency is the

number of calls made to the oracle EX(c,D).

ε,D

g−1(ε),D′1

g−1 (g−1(ε)
)
,D′′1 g−1 (g−1(ε)

)
,D′′2 g−1 (g−1(ε)

)
,D′′3

g−1(ε),D′2

g−1 (g−1(ε)
)
,D′′1 g−1 (g−1(ε)

)
,D′′2 g−1 (g−1(ε)

)
,D′′3

g−1(ε),D′3

Figure 7 – Recursion Tree Depth. In the first level of the tree, we illustrate the initial recursion
call. However, this can easily be extended to a second level where two recursive calls
are made.

Up to this point, it can be stated that the boosting algorithm in the PAC model

requires constant queries to the oracle, generates a non-regular structure, relies on knowing a

guarantee of error from the weak algorithm, and overall is not practical enough due to limitations

arising from its poor efficiency.

Although Boosting in the PAC model may not be practical, it serves as an introduction

to a methodology with new considerations for dealing with the effects of this impracticality. We

start with a dataset S = {xi,yi}n
i=1, where xi ∈X and yi ∈ {−1,1}. The data is associated with

a weight vector D = {D1,D2, . . . ,Dn}, which forms a distribution, i.e.,

Di ≥ 0 y
n

∑
i=1

Di = 1. (2.21)

There exists a class of base hypotheses h ∈H where h : X → {−1,1}, which

allows us to calculate the weighted error of a hypothesis h according to D as follows:

eD(h) =
n

∑
i=1

DiI{yi f (xi)≤0} = ∑
i:h(xi)̸=yi

Di (2.22)

Assuming we have access to a weak learner A, which takes S and D as inputs and returns h ∈ H

with eD(h)< 1
2 , AdaBoost proceeds through a series of rounds 1,2, . . . , where it obtains hypothe-

ses h1,h2, . . . . In the first round, the weak learner (A) is called with the uniform distribution

Di =
1
n , where i = 1,2, . . . ,n. In the next round, D is modified such that Di increases if h1(x) ̸= yi,

and decreases when h1(x) = yi. This procedure is iterated, modifying the weights in each round

according to the hypothesis from the previous round. Now, we construct f (x) to minimize:

e( f ) =
1
n

n

∑
i=1

e−yi f (xi) ≥ 1
n

n

∑
i=1

I{yi f (xi)≤0} (2.23)
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Minimizing the margin cost function on the data. To achieve this, we assume that α j

and h j are known for j = 1,2, . . . ,k−1, and we aim to find αk and hk. Let fk = ∑
k
j=1 α jh j be

denoted as the sum of the previous hypotheses.
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y · f
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exp(−y f )
I(sign( f ̸= y))

Figure 8 – Loss functions for binary classification tasks. The target variable is represented as
y =±1, and the prediction is denoted as f , where the class prediction is determined
by the sign of f . The two loss functions considered are misclassification, defined as
an indicator function when the sign of f is not equal to y, and exponential loss, given
by the exponential of the negative product of y and f .

e( fk) =
1
n

n

∑
i=1

e−yi f (xi)

=
1
n

n

∑
i=1

e−yi fk−1(xi)−yiαkhk(xi)

=
1
n

(
n

∑
i=1

e−yi fk−1(xi)

)
n

∑
i=1

(
e−yi fk−1(xi)

∑
n
i=1 e−yi fk−1(xi)

)
︸ ︷︷ ︸

Di

e−yiαkhk(xi)

(2.24)

From this point onward, the objective is to find α and h that minimize:

n

∑
i=1

Die−yiαhxi) = ∑
i:h(xi)̸=yi

Dieα + ∑
i:h(xi)=yi

Die−α

= eD(h)eα +(1− eD(h))e−α

(2.25)
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Therefore, the optimization problem is formulated as follows:

h = arg min
g∈H

eD(g) =⇒ weak learner

With h fixed, we find α by taking the derivative and setting it equal to zero:

α =
1
2

ln
(

1− eD

eD

) (2.26)

Algoritmo 4: AdaBoost
D1(i) = 1/n para i = 1 . . .n
for t = 1 to T do

ht ← A(S,Dt)
εt = ∑i:ht(Xi)̸=yi Dt(i)

αt =
1
2 ln
(

1−εt
εt

)
Update D : Dt+1(i) =

Dt(i)exp(−αtyiht(xi))
Zt

Where Zt normalize D such that ∑
t
i=1 Dt+1(i) = 1

end for
Returns f (x) = ∑

T
i=1 αtht(x)

Note that in Algorithm 4

Dt+1(i) =


Dt(i)

√
εt

1−εt
Zt

if y = ht(xi),

Dt(i)
√

1−εt
εt

Zt
if y ̸= ht(xi).

(2.27)

The weighted error of ht with respect to Dt+1 is:

eDt+1(h) = ∑
i:h(xi)̸=yi

Dt+1(i)

= ∑
i:h(xi)̸=yi

Dt(i)
√

1−εt
εt

Zt

=

√
εt (1− εt)√

εt (1− εt)+
√

εt (1− εt)
=

1
2

(2.28)

Now, the empiric error:

1
n

n

∑
i=1

I{yi f (xi)≤0} ≤
1
n

n

∑
i=1

e−yi f (xi) and Dt+1(i) =
e−∑t αtyiht(xi)

n∏t Zt
=

e−yi f (xi)

n∏t Zt

1
n

n

∑
i=1

I{yi f (xi)≤0} ≤∏
t

Zt = ∏
t

2
√

εt(1− εt)

(2.29)

From the previous deduction, it can be observed that if εt <
1
2 , the empirical error

decreases exponentially! Furthermore, if εt <
1
2 , the empirical error reaches zero in a finite
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number of steps. There are implications arising from this convergence to the error, with one

notable aspect being overfitting of the training data, which can eventually occur for significantly

large values of T . Furthermore, under certain considerations, Algorithm 4 can be adopted to

classify multiple categories or labels, for example, by using the Hamming loss function5. Another

commonly used modification is to perform multiclass classification using ranking. However,

these specific techniques of machine learning will not be further explored in these sections.

2.5 Tree-Based Models

Several straightforward yet commonly used models function by dividing the input

space into cuboid regions aligned with the axes and assigning a simple model (such as a constant)

to each region. These models can be considered as a method of combining models, where only

one model is responsible for making predictions at any specific point in the input space. The

procedure of choosing a particular model based on a new input x can be likened to a sequential

decision-making process(BISHOP, 2006).

R2

R1

R3

R4

R5

X1
t1 t3

X2

t2

t4

X1 X2

Figure 9 – Fragment space: The right panel displays a partition of a two-dimensional feature
space through recursive binary splitting, while a perspective plot of the prediction
surface can be seen in the bottom right panel.

Consider a regression problem where the response variable Y is continuous, and

the inputs X1 and X2 take values within the unit interval. We begin by dividing the space into

two regions and model the response by taking the mean of Y within each region. The choice
5 Based on Hamming distance. The Hamming distance between two vectors is the number of mismatches between

corresponding entries.
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of variable and split-point is made to achieve the best fit. This process is then repeated for one

or both of these regions, leading to further splits, until a stopping rule is applied. In Figure 9,

the top right panel demonstrates this process, where we initially split at X1 = t1. Subsequently,

the region X1 ≤ t1 is split at X2 = t2, and the region X1 > t1 is split at X1 = t3. Finally, the region

X1 > t3 is split at X2 = t4. This results in a partition of the space into five regions denoted as

R1,R2, . . . ,R5 in the figure. The corresponding regression model predicts the value of Y within

each region with a constant value cm in region Rm, given by:

f̂ (x) =
5

∑
m=1

cmI{(X1,X2)∈Rm}. (2.30)

X1 ≤ t1

X2 ≤ t2

R1 R2

X1 ≤ t3

R3 X2 ≤ t4

R4 R5

Figure 10 – Decision tree that partitions the feature space (in this case two-dimensional X1,X2)
by recursive binary splitting.

One significant benefit of the recursive binary tree6 (Figure 10) is its interpretability.

The entire feature space partition can be fully described by a single tree. Although it becomes

challenging to visually depict partitions like the one in the top right panel of Figure 9 when there

are more than two inputs, the binary tree representation still functions in the same manner.

The process of growing a regression tree is now discussed. The dataset being

considered comprises p inputs and a corresponding response for each of N observations, denoted

as (xi,yi) for i = 1,2, . . . ,N, where xi = (xi1,xi2, . . . ,xip). The algorithm is responsible for

making automated decisions regarding the choice of splitting variables, split points, and the

overall topology or shape of the tree. Initially, the data is partitioned into M regions, labeled as

R1,R2, . . . ,RM, and the response is modeled as a constant cm within each respective region:

f (x) =
M

∑
m=1

cmI{x∈Rm}. (2.31)

6 A recursive binary tree is so named due to its inherent property of bifurcating the feature space into two distinct
partitions whenever a query is executed. This characteristic is visually depicted in both Figure 9 and Figure 10,
which serve as equivalent representations of this structure.
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By adopting the criterion of minimizing the sum of squares ∑(yi− f (xi))
2, it becomes evident

that the optimal estimate for c∗m is simply the average of yi within region Rm:

c∗m = ave(yi|xi ∈ Rm) (2.32)

Finding the optimal binary partition in terms of minimizing the sum of squares

is often computationally infeasible. Therefore, a greedy algorithm is employed instead. The

algorithm starts with all the data and considers a splitting variable j and a split point s. It then

defines two half-planes based on this split, namely:

R1( j,s) =
{

x|x j ≤ s
}

and R2( j,s) =
{

x|x j > s
}

Next, the objective is to find the optimal splitting variable j and split point s:

min
s, j

[
min

c1
∑

xi∈R1( j,s)
(yi− c1)

2 +min
c2

∑
xi∈R2( j,s)

(yi− c2)
2

]

For any chosen splitting variable j and split point s, the inner minimization is solved by:

c∗1 = ave(yi|xi ∈ R1( j,s)) and c∗2 = ave(yi|xi ∈ R2( j,s))

(2.33)

For each splitting variable, the split point s can be determined quickly by scanning

through all of the input data. This enables the identification of the best pair ( j,s) for the split.

Once the optimal split is found, the data is divided into two resulting regions, and the splitting

process is recursively applied to each of these regions. This iterative splitting process is repeated

on all of the resulting regions.

2.6 Model Selection & Regularization

In traditional literature (HASTIE et al., 2009; BISHOP, 2006), the topics of regu-

larization and model selection are typically addressed in relation to the specific methods being

explained. However, this document takes a deliberate approach by first introducing the ML

methods, their theoretical foundations, and the implications of implementing these algorithms.

It then proceeds to discuss the objectives of regularization in each of these models. As seen

thus far, most of these techniques involve solving an optimization problem that depends on the

specific task the algorithm is addressing. At this stage, the idea is to modify the original cost

functions in some way and study the consequences of these adjustments, both in terms of model

complexity and the reduction of error achieved through optimization.

So, there is a dataset that follows a certain distribution (x,y)∼ D, and there exists a

class of hypotheses H (e.g., decision trees, KNN, or any other ML algorithm). The objective is
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to find h ∈H that minimizes a chosen error criterion, such as e(h) = PD [h(x) ̸= y]. The aim is

to strike a balance between the complexity of H and the fit of h ∈H to the training data. This

balance has several implications:

• If H is too simple (e.g., a linear regression), it may not provide a good approximation to

the underlying function that we want to learn. The model may lack the capacity to capture

complex relationships and patterns in the data, leading to high bias and potentially poor

predictive performance.

• If H is too complex (e.g., a random forest with many parameters), it can fit the training

data very well and potentially learn the desired function. However, due to its complexity,

the model may suffer from overfitting, meaning it becomes too specialized to the training

data and fails to generalize well to new, unseen data. This can result in poor performance

and unreliable predictions.

The issues mentioned above are particularly critical when the number of available

data points is small. In such cases, the model’s ability to accurately capture the underlying

patterns in the data becomes challenging. Additionally, if the data contains a certain level of noise

or variability, the model’s performance can be further compromised. Limited data and noise

pose significant challenges for complex models, as they can amplify the effects of overfitting and

hinder the model’s ability to generalize well to new, unseen data.

In model selection algorithms, it is assumed that the complexity of the model class

is a variable to be determined by the learning algorithm. For this purpose, consider the nested

sequence of hypothesis classes: H1 ⊆H2 ⊆ ·· · ⊆Hd ⊆ . . . . The model selection process

involves two steps. First, a candidate function hi is selected from each class Hi, typically by

minimizing an empirical error criterion within H . Second, a criterion is used to select a function

h from the set {h1,h2, . . . ,hd, . . .} such that the error e(h) is minimized. The model selection

algorithm aims to strike a balance between the complexity of the model and its ability to fit the

training data. By considering a sequence of nested hypothesis classes, the algorithm can explore

different levels of complexity and choose the model that achieves the best trade-off between

model complexity and training error. This approach allows for flexibility in model selection, as

it can adapt to the complexity requirements of the specific problem at hand.

It is possible to directly estimate e(hi) by considering certain considerations. Given

a dataset S, it is divided into subsets Strain and Stest , where |Strain|= (1− γ) |S| and |Stest |= γ |S|,

with γ ∈ (0,1). Using this division, a candidate hypothesis hd ∈Hd is found by minimizing
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the empirical error (or surrogate loss) on Strain. The candidate hypothesis hd with the lowest

empirical error on Stest is selected:

h∗d = argmin
{h1,h2,...,}

êStest (hd) (2.34)

Using Chernoff bounds7,8, it is known that in order to make a probabilistic statement about e(h)

with precision ε and confidence 1−δ , the following requirements are needed:

|Stest | ≥
1

2ε2 ln
2
δ
. (2.35)

However, in practice, it may not always be feasible to have a sufficient number of

samples to provide a reliable estimation based on the analysis of the bound. Therefore, the

selection of γ becomes an important aspect to consider. If γ is too small, the estimation of e(h)

will be poor and less reliable. On the other hand, if γ is too large, the model will have very few

data points to learn from, which can lead to overfitting and poor generalization.

Typically, a common choice for γ is around 0.1, which allows for a reasonable

balance between having enough data for estimation and maintaining a sufficient number of

samples for training the model effectively. In practice, the direct estimation of e(h) can be noisy.

To address this issue, a special type of validation known as k-fold cross-validation is commonly

used. In k-fold cross-validation, the hypothesis class H takes the dataset S and divides it into

S1,S2, . . . ,Sk. For each i = 1,2, . . . ,k, a hypothesis hi is obtained by minimizing the empirical

error on
⋃

j ̸=i S j. The error is then estimated by calculating the empirical error êSi(h(i)), and the

values are averaged:

ê(h(i)) =
1
k

k

∑
i=1

êSi(h(i)). (2.36)

Figure 11 illustrates the process starting with the division of the dataset into Strain

and Stest . The idea is to take the training set (Strain) and divide it into k subsets9 (in the case

of Figure 11, k = 5). Once these divisions are made, the performance of the trained model is

evaluated using the distribution shown in the figure. Specifically, one of the subsets is selected as

the test set (red color), while the remaining k−1 subsets are used for training (turquoise color).

In the next iteration of the algorithm, the test subset is changed, and training is performed using

7 Chernoff bounds(Aditive Form): X j ∈ {0,1} , P [X j = 1] = p =⇒ (X j−p)
n ∈

{
− p

n ,
1−p

n

}
→ b j−a j =

1
n

8 P
[

1
n ∑

n
j=1 X j− p≥ ε

]
≤ e−2ε2n︸ ︷︷ ︸

δ

=⇒ n = 1
2ε2 ln 2

δ

9 Adapted from: <https://scikit-learn.org/stable/modules/cross_validation.html#k-fold>

https://scikit-learn.org/stable/modules/cross_validation.html#k-fold
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Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test Data

Finding
Param

eters

Final Evaluation
Figure 11 – Illustration of a 5-fold cross-validation process, depicting the splitting of data into

training and test sets, the discovered parameters, and the final evaluation.

the remaining subsets. This process continues until each subset has been used as the test subset

at least once. To determine the best model, the criterion will be the error it has with the original

test dataset Stest . The model that has the lowest error will be the one that, through a certain

combination of parameters, minimizes the empirical error.

Implementing a multiple cross-validation technique has certain implications that

need to be considered. For example, if the hypothesis class H is a Random Forest algorithm

with many parameters, this procedure becomes computationally complex and costly. Although it

is widely used in practice, it lacks technical support because it is still an open problem in the

research community. Therefore, it holds significant importance for further investigation and

advancements.

In the realm of machine learning, “ill-posed” problems represent a unique chal-

lenge. Ill-posed problems are defined as those that do not satisfy the three conditions set by

mathematician Jacques Hadamard for “well-posed” problems: a solution exists, the solution

is unique, and the solution’s behavior changes continuously with the initial conditions. In the

context of machine learning, these problems arise frequently due to the high-dimensional and

often incomplete nature of the data. Examples include overfitting, where an overly complex

model is too precisely fitted to the training data and hence fails to generalize well to unseen data,

and multicollinearity, where predictor variables in a multiple regression are highly correlated,

making it difficult to identify the unique contribution of each. One common solution to tackle

such issues involves regularization, where a penalty is imposed on the complexity of the model,

effectively reducing its tendency to overfit the data or to be excessively sensitive to individual
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predictors. This approach effectively trades off between bias and variance, promoting models

that are not just fitting well to the data at hand but also likely to generalize well to new data.

Regularization, therefore, is a key strategy in addressing the challenges posed by “ill-posed”

problems in machine learning.

So, to see the effects of regularization on the aforementioned ML methods, consider

a model with parameters w and an error function E(w). The regularized error function can be

defined as:

Ẽ(w) = E(w)+λR(w), (2.37)

where R(w) is the regularization term that penalizes complex models, and λ ≥ 0 is

the regularization constant, which is typically tuned during the model regularization process.

The idea is to find a balance between fitting the data and model complexity. In terms of the error

function, this means reducing variance by introducing some bias.

Before, it was shown that E(w) has a quadratic form, which allows for convex

optimization to find the w that minimize this error function. Now, the focus is on the regularizer

term R(w). Let’s explore the possible forms that this term can take. We begin by providing an

intuition for convex regularization. Consider the following optimization problem:

min
x

f (x)+λg(x)

min f (x)

subject to g(x)≤ tλ ,

(2.38)

where f and g are strictly convex functions. For each λ > 0, there exists tλ that

makes the two optimization problems shown earlier equivalent.

• x∗ = argminx [ f (x)+λg(x)]

• (x,λ ) satisfies the Karush Kuhn Tucker (KKT ) conditions for the problem:

min f (x)

subject to g(x)≤ g(x)
(2.39)

1) g(x)≤ g(x)

2) λ < 0

3) x∗ argminx L (x,λ ) = argminx [ f (x)+λg(x)−λg(x∗)]
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4) λ > 0⇒ g(x∗) = g(x∗)

That means that x∗ is an optimal solution to the second problem.

To illustrate the previous point, we consider a toy problem where the cost function is

trivial, such as f (x) = (x−α)2 +λ (x−β )2:

min
x

(x−α)2 +λ (x−β )2

x∗ =
α +λβ

1+λ
g(x∗) =

(
α−β

1+α

)2 (2.40)

The equivalent constrained problem would be as follows:

min
x

(x−a)2

subject to (x−β )2 ≤
(

α−β

1+α

)2 (2.41)

After considering the implications of convex regularization, the concept of ridge

regularization, also known as l2 regularization, is introduced for the penalized or regularized

error function Ẽ(w). In order to apply l2 regularization, the data must be centered and scaled

(i.e., normalized10 ), with w0 = ȳi. Then, the regularized term with l2 norm can be expressed as

follows:

E(w) =
n

∑
i=1

(
w⊤xi− yi

)2
+λ ∥w∥2

2 . (2.42)

From the previous error function, it can be observed that it penalizes large parameter

values. Moreover, with λ ≥ 0, E(w) is a convex function, as demonstrated below by examining

the cases when λ = 0 or λ > 0:

λ ≥ 0

λ = 0 known case E(w) = w⊤Hw−2b⊤w+ c =⇒min(w) : ŵ satisfies Hŵ−b = 0

λ > 0 Ẽ(w) = w⊤(H+λ I)w−2b⊤w+ c =⇒min(w) : w̃ satisfies (H+λ I)w̃−b = 0,

(2.43)

where I is the identity matrix of the same dimensions as H. If H > 0 is a positive

definite symmetric matrix, a comparison between the values of ŵ and w̃ can be made based on

the orthogonal basis decomposition of these vectors.
10 Normalization is achieved (for example) via Z-score, using: Z = X−µ

σ
, where Z represents normalized values, X

the original values, µ the mean, and σ the standard deviation of the dataset.
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ŵ = ∑
j

ŵ ju j w̃ = ∑
j

w̃ ju j,

where Hui = αiui (principal components!) Substituting into the equation 2.43:

−b+∑
j

ŵ jα ju j = 0 −b+∑
j

w̃ jα ju j +λ ∑
j

w̃ ju j = 0

by the orthonormality of the ui :

ŵ jα j = w̃ jα j +λ w̃ j⇒ w̃ j = ŵ j

(
α j

α j +λ

)
α j≫ λ ⇒ w̃ j ≈ ŵ j α j≪ λ ⇒

∣∣w̃ j
∣∣≪ ∣∣ŵ j

∣∣

(2.44)

Based on the previous derivation, it can be concluded that when penalizing the error

function with an l2 regularization, the smaller eigenvalues of H are shrunk. This is why these

methods are known as shrinkage methods. As seen before, even with this regularization, the

function remains convex and satisfies the KKT conditions. Therefore, the optimization problem

can be expressed as follows:

min
w

n

∑
i=1

(
w⊤xi− yi

)2
+λ ∥w∥2

min
n

∑
i=1

(
w⊤xi− yi

)2

subject to ∥w∥2 ≤ t

(2.45)

Another way to select the regularization term R(w) is by using l1 norm penalty, also

known as LASSO regularization. For this, the same considerations as in l2 regularization must

be taken into account, that is, centered and scaled data with w0 = ȳi. Hence, the l1 regularization

can be expressed as:

E(w) =
n

∑
i=1

(
w⊤xi− yi

)2
+λ ∥w∥1

=
n

∑
i=1

(
w⊤xi− yi

)2
+λ ∑

j

∣∣w j
∣∣ (2.46)

From the form of l1 regularization, it can be observed that it also penalizes large

parameters, making it another method of shrinkage. For λ ≥ 0, E(w) is a convex function.

However, due to the l1 regularization term being the sum of absolute parameter values, E(w)
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2

Figure 12 – Estimation picture for the ridge regression. Contours of the error and constraint
functions are depicted, with a solid turquoise area representing the constraint region
w2

1 +w2
2 ≤ t2.

ŵ

w̃
w1

w2

∥w∥1

Figure 13 – Estimation picture for the LASSO regression. Contours of the error and constraint
functions are depicted, with a solid turquoise area representing the constraint region
|w1|+ |w2| ≤ t.

becomes a non-differentiable function. This makes l1 regularization particularly suitable for

models with sparse coefficients, where many coefficients are expected to be exactly zero.

Figures 12 and 13 provide a geometric representation of the norms for a two-

dimensional model with w ∈ R2. It is evident that the effect of regularization is to restrict

the solutions of the model to a circular region in the case of l2 norm and a diamond-shaped

region in the case of l1 norm. This is demonstrated by the fact that, while the minimum ŵ for the

non-regularized problem differs from the regularized problem, the minimum w̃ is located on the
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perimeter of the shaded regions.

To conclude this section, it is worth noting that it is possible to simultaneously

perform regularization and model selection, as seen in the earlier part of this section. In

fact, regularization restricts the set of models that can fit the data, and as demonstrated, a

hyperparameter λ is introduced during regularization, which can be selected through techniques

like cross-validation.

2.7 Principal Component Analysis

So far, the emphasis has been on machine learning models that allow for the pre-

diction of labels ŷi based on a dataset x in general, where the dataset {xi,yi}n
i=1 has a tabular

structure. It can be stated that x ∈Rn and yi ∈R, meaning that both the data and labels belong to

a Euclidean representation space. The well-known curse of dimensionality was also explained,

which in practical terms can be expressed as having more columns than rows in the dataset. This

indicates that the nature of the data has high dimensionality compared to the available data points.

While all of the above is inherent to the data characteristics, there are some ways to address

certain challenges that arise from it. In this section, we will explore a widely used technique

known as Principal Component Analysis (PCA) and discuss its advantages and functionalities.

There are two widely accepted definitions of Principal Component Analysis (PCA)

that lead to the same algorithm. One definition characterizes PCA as the orthogonal projection

of the data onto a lower-dimensional linear space, referred to as the principal subspace. This

projection aims to maximize the variance of the projected data (HOTELLING, 1933). Alterna-

tively, PCA can be defined as the linear projection that minimizes the average projection cost,

which is measured by the mean squared distance between the data points and their projections

(PEARSON, 1901).

To provide a more formal mathematical framework for the definitions of Hotelling

and Pearson, Principal Component Analysis (PCA) can be formulated as follows:
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A =


x⊤1
x⊤2
...

x⊤m


Rows of A are data points: x⊤i = [xi1 xi2 . . .xin]

Columns of A are descriptors (vectors in Rm)

T ∈ Rn×l

l≪ n

x ∈ Rn y = Tx ∈ Rl

(2.47)

The previous block diagram illustrates what happens in PCA. We have a dataset

x ∈ Rn, which exists in a certain dimensional space with dimension n. This dataset undergoes a

transformation T, which takes the form y = Tx, representing a linear transformation where the

dimension of the transformed dataset is expected to be lower than the original dimension. The

objective then is to preserve the majority of information in the data through this transformation

to a lower-dimensional array of size l. However, it is important to note that when reducing

the dimensionality of the array, the data no longer retains the same interpretability. Therefore,

new descriptors are created, which can be, for example, linear combinations of the descriptors

before undergoing the transformation. Now, the necessary procedures for performing PCA are

presented. The first step is to center the data:

x̄i = xi−
1
m

m

∑
j=1

x j,

The covariance matrix:

1
m

A⊤A =


1
m ∑

m
j=1 x2

j1
1
m ∑

m
j=1 x j1x j2 . . . 1

m ∑
m
j=1 x j1x jn

1
m ∑

m
j=1 x j2x j1

1
m ∑

m
j=1 x2

j2 . . . 1
m ∑

m
j=1 x j2x jn

...
... . . . ...

1
m ∑

m
j=1 x jnx j1

1
m ∑

m
j=1 x jnx j2 . . . 1

m ∑
m
j=1 x2

jn


(2.48)

Now, if we decompose the matrix A ∈ Rm×n into its singular values, we have:
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A = UΣV⊤

= [u1 u2 . . . ur]︸ ︷︷ ︸
column span basis


σ1 0 . . . 0

0 σ2 . . .
...

... 0 . . .

0 . . . σr


︸ ︷︷ ︸

singular values


v⊤1
v⊤2
...

v⊤r




row span basis, (2.49)

where σi =
√

λi, with λi being the eigenvalues of A⊤A. Furthermore, σ1 ≥ σ2 ≥ ·· · ≥ σr > 0.

Also v1,v2, . . . ,vr are the eigenvector of A⊤A check whats happen with only one data point

(Figure 14):

xi =
(

x⊤i v1

)
︸ ︷︷ ︸

c1

v1 +
(

x⊤i v2

)
︸ ︷︷ ︸

c2

v2 + · · ·+
(

x⊤i vr

)
︸ ︷︷ ︸

cr

vr (2.50)

v1v2

xi

xi1

xi2
xi

xi1

xi2

c1
c2

[
x1
x2

]
→
[

c1
c2

]

Figure 14 – Projection of a single data point, xi, onto the basis formed by the eigenvectors v1
and v2 of Principal Component Analysis, with coefficients c1 and c2 representing
the coordinates of the point in this new coordinate system.

Taking into account the above, we can generalize the concept for the first principal

component as follows:



49

Av1 =


x⊤1
x⊤2
...

x⊤m

 v1 =


x⊤1 v1

x⊤2 v1
...

x⊤mv1

= σ1u1→ Variance
1
m
∥σ1u1∥2 =

σ2
1

m

for two principal component:

Av1 +Av2 = σ1u1 +σ2u2→ Variance
1
m
∥σ1u1 +σ2u2∥2 =

σ2
1 +σ2

2
m

(2.51)

Then for k ≤ n principal components:

Av1 + · · ·+Avk = σ1u1 + · · ·+σkuk→ Variance
σ2

1 +σ2
2 + · · ·+σ2

k
m

(2.52)

v 2

v 1

σ2u2

σ1u1

Figure 15 – Visual representation of what happens in PCA. On the left, a scatter plot diagram
shows the eigenvectors of the covariance matrix. On the right, the m-dimensional
space to which PCA maps the data can be seen.

Figure 15 illustrates the representation of PCA. It shows a dataset, which, for the

sake of clarity, is presented in 2 dimensions. As a result, the covariance matrix has only

two eigenvalues and eigenvectors, corresponding to two singular values (σ1,σ2). When the

data is projected onto the basis formed by the eigenvectors, it becomes clear that there is one
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dimension where the data has a better representation, as indicated by the higher variance along

the eigenvector v1. In contrast, the projection onto the eigenvector v2 shows minimal variability.

This demonstrates that σ1 is the singular value that maximizes the variability in the data, leading

to the observation that σ1≫ σ2. In general,

σ1,σ2, . . . ,σk≫ σk+1,σk+2, . . . ,σr

σ1u1 +σ2u2 + · · ·+σkuk ≈ σ1u1 +σ2u2 + · · ·+σkuk +σk+1uk+1 + · · ·+σrur

then, the new data matrix:

Y =


x⊤1
x⊤2
...

x⊤m


[
v1 v2 . . . vk

]
︸ ︷︷ ︸

Vk

=


x⊤1 v1 x⊤1 v2 . . . x⊤1 vk

x⊤2 v1 x⊤2 v2 . . . x⊤2 vk
...

...
...

...

x⊤mv1 x⊤mv2 . . . x⊤mvk



(2.53)

In this way, PCA can be summarized in four steps:

1) Center the data.

2) Find the eigenvalues of the covariance matrix A⊤A: σ2
1 ≥ σ2

2 ≥ ·· · ≥ σ2
n > 0.

3) Choose the value of k that captures the desired percentage of total variance.

4) Compute the projection of the data: y = V⊤k x.

These steps outline the general process of PCA. By following these steps, one can

effectively reduce the dimensionality of the data while retaining the most important information

captured by the principal components.

So far, we have presented the theoretical foundations underlying widely used ML

algorithms. While there are other algorithms that may have similar functionalities, they can

have different theoretical underpinnings. However, in practice, these algorithms are often treated

as black boxes that take in data and produce predictions. Nonetheless, as we have seen, all

techniques have their theoretical foundations, along with their assumptions and conditions.

The question that arises is: why focus on these techniques? The reason is that they

form the basis for the algorithms used in the case study we have considered and will continue

to study going forward. Understanding the theoretical foundations allows us to grasp the inner

workings of these algorithms, interpret their results, and make informed decisions about their

applicability and limitations.
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3 CASE STUDY

3.0.1 Description of Data and Visualizations.

To construct the datasets, data was sourced from the PubChem database, and molec-

ular information was extracted from JSON files. After filtering, properties of the molecules, such

as surface tension, molecular mass, and density, were obtained. To supplement the PubChem

data, information on important properties of organic compounds was sourced from Carl Yaws’

book (YAWS, 2008). This additional information (Table 1) was then incorporated into the

database, filling in the missing quantities.

To extract the data from Yaws’ text, Tabula was used to convert the PDF into a CSV

file. This allowed for data manipulation using Python libraries such as Pandas and Numpy, which

facilitate working with tabular data. Four datasets were obtained, as shown in Table 2. To ensure

data consistency, certain conditions were imposed during the data cross-referencing process,

such as having a common molecular identifier (the CAS number) in all tables and discarding

non-standard information. Additionally, only surface tensions calculated at a temperature of

298.15K were included.

To analyze and extract information from the molecular formula, two libraries, mol-

mass and chemparse, were utilized. This allowed for the incorporation of information on atomic

composition and molecular mass into the datasets.

Table 1 – Amount of molecules present in the reference (YAWS, 2008)
Chapter/Feature No. of Molecules
Enthalpy of Vaporization at Boiling 21337
Density Solid 13781
Critical Properties 9927
Density Liquid 9766
Surface Tension 9766
Thermal Expansion Coefficient 9766
Enthalpy of Vaporization 8646
Enthalpy of Fusion 5846
Dipole Moment 1454
VDW Area and Volume 1411
Radius Gyration 1103
Isothermal Compressibility 650

Hence, our next step is to analyze the provided data from Table 2. Upon inspection

of the last row and the distribution of the table, it becomes apparent that the four datasets are not
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Table 2 – Datasets generated from the data crossing
Measurement Dataset 1 Dataset 2 Dataset 3 Dataset 4

Surface Tension ✓ ✓ ✓ ✓

Density Liquid ✓ ✓ ✓ ✓

Enthalpy of Vaporization at Boiling ✓ ✓ ✓ ✓

Enthalpy of Vaporization ✓ ✓ ✓ ✓

Enthalpy of Fusion ✓ ✓ ✓ ✗

Thermal Expansion Coefficient ✓ ✓ ✓ ✓

Dipole Moment ✓ ✗ ✗ ✗

Radius Gyration ✓ ✗ ✗ ✗

VDW Area and Volume ✓ ✓ ✗ ✗

Number of molecules 498 820 3377 4170

uniform. They differ in terms of the measured properties and the number of molecules included.

Therefore, it is natural to investigate which dataset significantly contributes to the prediction of

surface tension in hydrocarbons.

Before proceeding with the data cleaning process, we need to implement a routine

that loads each dataset using a parameter and applies a set of procedures. This routine serves two

main purposes: i) identifying the best dataset and ii) finding the best classifier for that particular

dataset.

The methodology depicted in Figure 16 outlines the approach taken to address the

task of surface tension prediction (γ̂) using a set of features x f eats ∈Rn. This procedure is applied

to all available databases in a consistent manner. Firstly, data cleaning is performed to handle

any NaN values present in the datasets, which involves discarding compounds with missing

information. Next, data preprocessing is carried out, wherein the nature of the data is examined

and potential correlations between features are identified. If correlations exist, techniques like

principal component analysis (PCA) are applied to transform the data into a space where these

correlations are minimized. Subsequently, the data, represented in the optimal dimensionality

and quality, is fed into four machine learning algorithms to generate models capable of predicting

surface tension based on the provided features.

Considering the planned methodology, it is crucial to assess the dimensions of

each dataset to prevent encountering the "curse of dimensionality" (BELLMAN, 2003). The

dimensions of the datasets are as follows: the first dataset consists of 497 rows and 22 columns,

the second dataset has 820 rows and 20 columns, the third dataset contains 3377 rows and 20

columns, and the fourth dataset comprises 4170 rows and 21 columns. The goal of the proposed

work is to identify the dataset that best represents the data and yields accurate predictions of γ̂
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Figure 16 – Block diagram describing the proposed methodology.

using the ML-based regression algorithm that performs optimally under these circumstances.

Before implementing any ML algorithm, it is recommended to analyze the correlations among

the features (Figure 17). This step is essential as it offers valuable insights into the available

data. Although addressing correlations can be challenging in ML algorithms, it can be mitigated

by transforming the feature representation space, such as mapping the features to a lower-

dimensional space while preserving high variance. In our approach, we propose employing

a PCA-based mapping technique to determine its contribution to the regression process. It is

important to note that there is a trade-off when applying such techniques, as the interpretability

of the original dataset is sacrificed in favor of the mapping process.

After determining the optimal data representation in the methodology outlined in

Figure 16, the subsequent task is to choose an appropriate ML algorithm for regression. However,

the question that arises is: how can we determine the best regressor? The answer to this query

will be discussed below.

3.0.2 Selection of best regressor

To determine the optimal regressor, which refers to the technique that yields the

best performance with the most representative dataset, it is necessary to establish a performance

measurement criterion for the algorithms. Since the problem at hand involves regression, two

metrics are utilized to assess algorithm performance: mean squared error (MSE) and the R2

score. Therefore, the ideal regressor for the available datasets will exhibit the lowest MSE and

the highest R2 score. To accomplish this, a straightforward routine is proposed, wherein each

dataset is loaded individually, and the same procedure is applied to all of them to ensure a fair

comparison among the techniques under identical conditions. Algorithm 5 outlines the procedure
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Figure 17 – (a),(b),(c) and (d) represent the correlation matrix of data sets 1, 2, 3, and 4 respec-
tively

for identifying the optimal regressor from the available data. In this case, four algorithms are

tested to address the regression problem: a) Linear Regression (LR), b) K-Nearest Neighbor

(KNN), c) Random Forest (RF), and d) XGBoost.

Algoritmo 5: Selection of the best algorithm for regression over the available data
Require datan, n ∈ 1, . . . ,4
All data← datan;
for i = 1, . . . ,4 do

All data[i]← actual dataset;
Normalize actual dataset
Train LR, KNN, RF and XGB over actual dataset
Store the R2 and MSE metrics

best regressor← max(metrics)

The choice of these algorithms is based on their potential for generalization. Linear

regression is used as a baseline for comparing the performance of other algorithms. More complex

algorithms may demonstrate improved metrics if linear regression has sufficient generalization

capability for the prediction task. The selection of other algorithms is based on their performance
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in tabular data, with Random Forest and XGBoost being particularly effective according to the

state of the art (CHEN; GUESTRIN, 2016). KNN is included as an intermediate choice to

provide additional performance comparisons.

Regarding the data distribution, each available dataset is divided into two subsets:

one exclusively for training the Machine Learning algorithms (80%) and the other for testing

the models generated by the algorithms (20%). Although not explicitly stated in Algorithm

5, a grid search is conducted for each implementation to explore a set of hyperparameters.

Additionally, k-fold cross-validation is performed on a portion of the training data, ensuring

accurate selection of the best model. In simplified terms, a set of potential regressors is obtained,

and the one with the best performance on data not used for training is selected, considering

metrics, hyperparameters, and dataset representativeness. Once the best regressor is chosen,

the model is tested. This process is repeated for each algorithm to establish the comparisons

presented in the Results section.
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4 RESULTS

As stated in the methodology, enhancing feature selection can lead to improved

performance in the ML algorithms’ metrics. Hence, the first subsection of the results will

demonstrate the impact of feature mapping to alternative representation spaces, such as PCA, on

the algorithm’s performance.

4.0.1 PCA Explanation

Figure 18 – PCA explanation of cumulative and explained variance per component (a), (b),
(c), and (d) for data set 0,1,2 and 3 respectively. This figure provides valuable
information on the variance explained by each component in each data set, allowing
for a better understanding of the data variability and structure.
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The primary objective of PCA is to retain a significant amount of information from

the original data while reducing its dimensionality. However, this reduction comes at the cost of

losing variability in the dataset. Figure 18 demonstrates that adding components to the dataset

increases the variance, indicating that σ2
data = 1 ⇐⇒ FPCA is complete, where FPCA refers to

the set of features in the PCA representation space. As depicted in Figure 18, the first component

of each dataset captures the highest variance. However, in order to preserve a substantial amount

of variance, such as close to 0.99, nearly all components are required. This poses a challenge for

applying PCA as the reduction in dimensionality comes at the expense of losing interpretability of

the original datasets. In this case, it is evident that dim(Aor)≈ dim(APCA), where Aor represents

the original matrix with m data points and n dimensions, such that Aor =
[
x⊤1 ,x

⊤
2 , . . . ,xm⊤

]⊤,

where the rows of Aor are the data x⊤i and the columns are the descriptors or vectors in Rm.

Since the dimensionality remains nearly the same, training an ML algorithm based on this

representation would be redundant. Therefore, this representation is discarded as it loses

interpretability while achieving a dimensionality similar to that of the original data, as illustrated

in Figure 18. Consequently, the next subsection presents the metrics obtained after training the

algorithms.

4.0.2 Machine Learning Performance

The outcomes obtained from the data preprocessing and training of the ML al-

gorithms are presented in Table 3. It is evident from the table that the performance of each

algorithm varies across the different datasets, with the third dataset yielding the best results for

all implemented techniques. Among the algorithms, XGBoost (XGB) demonstrates the highest

performance, indicating superior generalization capabilities on unseen data during training. This

is reflected in the R2 and mean squared error (MSE) metrics, which are shown in the table. The

top row represents the MSE values, while the bottom row corresponds to the R2 scores. The

best-performing results are highlighted in bold.

To observe the performance of each technique on unseen data, a random subset of

the data is partitioned multiple times. The experiment is repeated 100 times to generate Figure

19, which displays the boxplots for each algorithm and the corresponding metrics. The focus is

solely on the third dataset, as it consistently produced the best results with all ML techniques, as

previously demonstrated. Notably, XGBoost (XGB) exhibits superior performance compared

to the other algorithms in both metrics. It maintains a lower error level, approximately 4.5 (see
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Table 3 – ML algorithms performances for all data set available, the results with the best perfor-
mance are highlighted in bold.

Technique Dataset 1 Dataset 2 Dataset 3 Dataset 4

LR
642.68
0.31

168.26
-1.20

11.59
0.71

19.70
0.74

KNN
769.37
0.17

14.27
0.81

6.62
0.83

15.74
0.79

RF
671.48
0.28

10.29
0.864

5.46
0.867

15.99
0.795

XGB 707.91
0.24

16.05
0.78

4.65
0.887

11.32
0.85

Figure 19b), while achieving the highest prediction score, approximately 0.88 (see Figure 19a).

The diamonds depicted in the boxplots represent outliers. The results presented in Table 3 align

with the boxplots shown in Figure 19, as the values in the table deviate slightly from the mean in

the boxplots but remain close to the expected values.

Now, although the metrics already indicate the ability to generalize from the trained

model, further interpretability is desired, especially considering that dimensionality reduction

was not performed. In order to gain insights into which features are relevant for predicting surface

tension (γ̂) of hydrocarbons, we can analyze the permutation feature importance. Since XGBoost

(XGB) is the best performing classifier on the third dataset, we focus on reporting the importance

analysis generated by this algorithm. Figure 20 illustrates that the most important features

for XGBoost are vaporization enthalpy, density, molecular weight, and the number of oxygen

atoms in the molecule. These features have the highest importance according to the algorithm.

However, this result can be debated. While features like density make sense, as surface tension

generally decreases with increasing density due to intermolecular forces and interactions, the

relevance of hydrogen (H) and carbon (C) composition in the prediction process is not substantial.

One possible explanation at the model level is that these two variables are highly correlated, as

depicted in Figure 17, which is expected given that hydrocarbons predominantly consist of these

two atoms.

It is important to note that not all trained algorithms exhibit the same features with

the same level of relevance. In this work, we focus on analyzing and reporting the algorithm

that demonstrated the best performance. However, in the supplementary material section, we

provide feature importance analyses for the other algorithms as well as the fourth dataset. Figure

21 showcases the most relevant features for algorithms that typically rely on decision trees,

particularly Random Forest (RF) and XGBoost. As described in the article, the combination
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Figure 19 – Box plot depicting the performance of each technique regarding the third dataset,
quantifying performance in terms of (a) the R2 score and (b) mean squared error
(MSE).

that yields the best performance is achieved by the Boosting algorithm using the third dataset

(Figure 20). It is reasonable to observe the significance of liquid density as a parameter in both

regressors. However, Figure 21 highlights that the importance of density varies across the models.

Additionally, there are other noteworthy features that are consistently shared among all models,



60

such as the number of hydrogen atoms, vaporization enthalpy, and molecular weight, as evident

in Figure 21.

Figure 20 – Feature Importance for the XGBoost algorithm, measured as the percentage of
importance in the prediction process of the target variable γ̂

It is important to highlight that the results of feature importance are only relevant to

algorithms that utilize the concept of ensemble models, specifically Random Forest and XGBoost

in this study. This analysis would not be meaningful for algorithms like K-Nearest Neighbors

(KNN) and traditional linear regression. These models are included in the study primarily as

baselines for comparison purposes. KNN, in particular, is not considered state-of-the-art for

finite tabular data, which is the case for the consulted databases.

To ensure the reproducibility of our findings, we have made the source code devel-

oped for this study available in a dedicated GitHub1 repository. Researchers and practitioners

can access the repository to examine the code and reproduce the results. Additionally, we

have also provided the datasets used in this study, which can be accessed for further analysis

or to supplement existing research. These resources aim to facilitate transparency, promote

collaboration, and encourage further exploration in the field of machine learning for hydrocarbon

surface tension prediction.

1 GitHub Link: <https://github.com/PaulaJimenaFC/Surface_Tension.git>

https://github.com/PaulaJimenaFC/Surface_Tension.git
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Figure 21 – Importance of the characteristics is highlighted for each of the available data sets. It
should be noted that the colors of the bars represent different data sets mentioned
in the document. This analysis specifically applies to algorithms based on decision
trees, such as RF and XGB. It is evident that while they share some of the most
important characteristics, they are not exactly the same.
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5 CONCLUTIONS

Understanding the theoretical foundations of each technique in machine learning is a

clear advantage when applying these algorithms to any dataset. For example, the concepts of

regularization and model validation lead to ideas such as hyperparameter tuning, which is crucial

for finding the algorithm with the best performance on the data. Despite the computational cost,

conducting hyperparameter search algorithms promotes the selection of the optimal model, based

on the strong theoretical foundations discussed. Although machine learning algorithms involve

randomness, this theoretical analysis provides insights into good practices to ensure that the

model’s results align with the developed theory.

Before implementing any machine learning algorithm, it is crucial to carefully

examine the nature of the data, including its dimensionality, the amount of available data, the

need for data imputation, and the presence of correlations among the features. It is also important

to explore how the data behaves in a lower-dimensional space. These considerations are essential

because, for instance, to make probabilistic statements about the error, certain guarantees must be

met by the data to estimate parameters such as precision (ε) and confidence (1−δ ). This implies

that the data should be of sufficient quantity to avoid falling into the curse of dimensionality and

should also be rich enough for the machine learning algorithms to generalize well to unseen data.

Following a thorough exploration of various machine learning algorithms for pre-

dicting hydrocarbon surface tension, it has been observed that XGBoost demonstrates superior

performance in terms of predictive accuracy and generalization capabilities compared to other

algorithms. The findings highlight the significance of specific molecular properties, including

enthalpy of vaporization, molecular weight, density, and the number of oxygen atoms, as key fac-

tors in accurately predicting surface tension. These results contribute to a better understanding of

the relationship between molecular characteristics and surface tension behavior in hydrocarbons.

While our discoveries shed light on the molecular properties that impact surface

tension, there is still room for additional investigation into other molecular attributes and their

correlations. This study presents a promising framework for predicting hydrocarbon surface

tension, which holds potential applications in diverse fields, including the oil and gas industry and

materials science. Further exploration and refinement of these predictive models can contribute

to advancements in various practical domains.
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