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ABSTRACT

We present a method to estimate the amount of displacement, squeezing and temperature of a

single-mode harmonic oscillator state based on both the weighted least squares and maximum

likelihood estimators applied to measured Fock state populations and fluorescence measurements.

Displacement, squeezing and temperature, or equivalently the mean of the quadratures and its

variances, are essential state parameters used in quantum computation and various communication

and sensing protocols. They are often measured with homodyne-style detection, which requires a

phase reference such as a local oscillator. Our method allows estimation without a phase reference,

by using for example a photon-number-resolving detector. To evaluate the performance of our

estimator, we simulated experiments with different values of displacement, squeezing, phase

and temperature. First we simulate Fock population measurement experiments. From 10,000

Fock measurement events we produced estimates for states whose fidelities to the true state are

greater than 99.99% for small squeezing (r < 1.0), and for high squeezing (r = 2.5) we obtain

fidelities greater than 99.9%. We also report confidence intervals and their coverage probabilities,

mean squared error and their coverage probabilities. We also simulate fluorescence measurement

experiments for different motional states of a trapped ion. Jointly fitting datasets for different

relative phases helped to decrease significantly the uncertainty on the estimates. Based on the

analysis of real data we proposed a correction to the model that describes the probability of

measuring the ion on the spin down state.

Keywords: Gaussian states. Temperature. Squeezing. Estimate. Fidelity.
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1 INTRODUCTION

Estimating the state of a quantum system is an important tool for quantum infor-

mation processing. It allows one, for example, to quantify the accuracy of prepared states,

diagnose errors in the state, and estimate properties such as entanglement measures. State

reconstruction is done in two steps: data extraction from the experiment and statistical estimation.

For continuous variable systems, such as harmonic oscillators, the first is usually accomplished

by using balanced homodyne detection to measure quadratures (Lvovsky and Raymer 2009;

Mallet et al. 2011; Raffaelli et al. 2018). Sets of quadratures measured at different phases can

be used to reconstruct the system’s Wigner function by using a numerical inverse Radon trans-

form (Smithey et al. 1993), or one may reconstruct its Fock-basis density matrix by maximizing

the likelihood function (Řeháček et al. 2007) or by other techniques. Another strategy for

state estimation is to apply a displacement operator followed by Fock-state parity measure-

ment, as done in (Leibfried et al. 1996) and (Hofheinz et al. 2009). The homodyne-detection

and the displacement-and-Fock-parity strategies require a phase reference to serve as a local

oscillator and to apply the displacement, respectively. However, in some systems, phase-

sensitive detection is not easily available; examples are integrated optical circuits that use

photon-number resolving detectors (Sahin et al. 2013; Höpker et al. 2019; Arrazola et al. 2021)

and trapped ions whose motional Fock states are measured by coupling to the ions’ qubit states

(Meekhof et al. 1996; Burd et al. 2019; Myerson et al. 2008). In such systems, one would still

like to estimate those features of a quantum state that are phase-independent.

We focus on single-mode, Gaussian states, which we call “squeezed displaced ther-

mal states”. Squeezed states have been studied for applications such as measurement noise reduc-

tion (Acernese et al. 2019; Tse et al. 2019), as generators of entanglement in continuous variable

quantum teleportation (Furusawa et al. 1998), and as resource states for quantum computation

(Gottesman et al. 2001). Some applications of coherent states are optical quantum computation

(Ralph et al. 2003) and quantum metrology (Joo et al. 2011; Wineland and Leibfried 2011). We

present here methods for inferring a system’s displacement, squeezing and temperature based on

Fock state measurements. First we do it by minimizing the weighted squared errors between the

probabilities of measuring each Fock number and the frequency of observing that Fock number.

Then, in a second part of the work, we apply both least squares minimization and log-likelihood

maximization but now using the frequency of observing fluorescence data from a single trapped

ion. Although this data is modeled by the probability of observing the ion in the spin down state,
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it depends on the Fock population associated to the ion’s motional state. Because we measure

only Fock populations, we do not have access to the phase information. The first method can be

applied to any type of quantum oscillator such as superconducting resonators, single trapped ions,

and photons. From 10,000 measurements, we obtained fidelities between the true state and the

estimated state > 99.99% for small squeezing (r < 1.0). Even for high squeezing (r = 2.5) the

estimate’s fidelity with the true state is greater than 99.9%. The second method can be applied to

single-trapped ion data, allowing the estimation of the ion’s motional state parameters.

The thesis is organized as follows: In the second chapter, we present an introduction

to one mode Gaussian states including its Fock population probabilities. In the third chapter, we

present the results for squeezed displaced thermal states from simulated experiments analysis,

for different values of total number of measurements, temperature and squeezing including

confidence intervals and bias correction. In chapter four, we present the results for a more general

state, the squeezed displaced thermal state, by analysing simulated data from blue sideband

(BSB) measurements for a trapped ion. In the same chapter, our estimator is applied to real

data and analysed, leading to a proposal of a new model for this kind of measurements and its

analysis. In chapter five, we present a brief review of the most important results.
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2 GAUSSIAN STATES

Gaussian states plays a major role in quantum information with continuous variables.

They are suitable to describe many bosonic systems such as trapped ions, which has been

intensively studied in the last 40 years.

A system of N bosonic modes can be described by a set of N quantum harmonic

oscillators. Classically, a particle with mass m allowed to move in a direction q with momentum

p and subjected to a parabolic potential has its Hamiltonian written as

H =
p2

2m
+

mω2q
2

, (2.1)

where q and p are the position and momentum variables. The transition to the quantum domain is

obtained by replacing q and p by a set of conjugate operators q̂ and p̂ such that the Hamiltonian

operator Ĥ is given by

Ĥ =
p̂2

2m
+

mω2q̂
2

. (2.2)

Now, q̂ and p̂ are the position and momentum operators. The eigenvalue E and the eigenfunction

ψ associated to Ĥ can be obtained from the equation Ĥψ(q) = Eψ(q), the Schrodinger equation.

This Hamiltonian can be rewritten in terms of two non-hermitian operators â and â†, the

annihilation and creation operators, given by

â =
mω q̂+ i p̂√

2mω h̄
, and â† =

mω q̂− i p̂√
2mω h̄

, (2.3)

resulting in the known expression for the Hamiltonian of any single-mode quantum harmonic

oscillator

Ĥ = h̄ω

(
â†â+

1
2

)
, (2.4)

with eigenvalues En = h̄ω
(
n+ 1

2

)
and eigenfunctions ψn, where n is integer. The eigenstates of

the Hamiltonian operator are given by |n⟩, the Fock states, and form an orthonormal basis in the

Hilbert space. It is possible to write â and â† in terms of dimensionless position and momentum

operators

q̂ =
(â+ â†)√

2
, and p̂ =

(â− â†)

i
√

2
, (2.5)

the quadrature operators. These operators are Hermitian and have a continuous spectra of

eigenvalues given by

q̂ |q⟩= q |q⟩ , and p̂ |p⟩= p |p⟩ , (2.6)
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and obey the commutation relation [q̂, p̂] = i. By using the properties of the annihilation operator

it is possible to obtain the eigenfunction for |0⟩, as a function of the eigenvalues of the quadrature

q̂. For that, we use the definition of the annihilation operator applied to the ground state

eigenfunction resulting in the differential equation âψ0 +
d

dqψ0 = 0. The resulting eigenfunction

is given by

ψ0(q) = π
−1/4e−q2/2, (2.7)

a Gaussian function of q. The eigenfunction of p̂ can be obtained by a Fourier transform of

ψ0(q) resulting in the eigenfunction

ψ0(p) = π
−1/4e−p2/2. (2.8)

It is interesting to note that both functions are Gaussian. Also, both looks like marginal distri-

butions of a joint distribution of q and p. In fact, there is a more appropriate representation of

a quantum state when it can be described by the quadrature operators. It is called the Wigner

function and is defined as

W (q, p) =
1

2π

∫ +∞

−∞

⟨q− s/2| ρ̂ |q+ s/2⟩eipsds, (2.9)

where ρ̂ is the density operator. For the vacuum state ρ̂ = |0⟩⟨0| and its Wigner function can be

obtained by

W0(q, p) =
1

2π

∫ +∞

−∞

⟨q− s/2|0⟩⟨0|q− s/2⟩eipsds

=
1

2π

∫ +∞

−∞

ψ
∗
0 (q+ s/2)ψ0(q− s/2)eipsds

=
π−1/2

2π

∫ +∞

−∞

exp
[
−(q− s/2)2/2− (q+ s/2)2/2+ ips

]
ds

=
π−1/2

2π

∫ +∞

−∞

exp
[
−q2 − p2]exp

[
−(s/2− ip)2] ds

=
π−1/2e−q2−p2

2π

∫ +∞

−∞

e−(s/2−ip)2
ds

=
1
π

e−q2−p2
.

(2.10)

That is a 2-dimensional Gaussian distribution of q and p. Such states whose Wigner functions are

Gaussian are called Gaussian States. For Fock states with n > 0, the Wigner function Wn(q, p)

can be obtained by replacing ρ̂ = |n⟩⟨n| in Eq. (2.9):

Wn(q, p) =
1

2π

∫ +∞

−∞

⟨q− s/2|n⟩⟨n|q− s/2⟩eipsds

=
1

2π

∫ +∞

−∞

ψ
∗
n (q+ s/2)ψn(q− s/2)eipsds,

(2.11)
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where ψn(q) is the eigenfunction of |n⟩ and is given by

ψn(q) =
Hn(q)√
2nn!

√
π

e−q2/2, (2.12)

where Hn(q) is the Hermite polynomial of order n. The resulting Wigner function Wn(q, p) is

given by

Wn(q, p) =
(−1)n

π
e−q2+p2

Ln(2q2 +2p2), (2.13)

and Ln are the Laguerre polynomials. Figure 1 shows the Wigner functions for n = 0, n = 1 and

n= 2. The first one is a 2-dimensional Gaussian distribution centered on the origin. For n= 1 and

n = 2 it is interesting to note that the function presents negative values indicating non-classical

behaviour of the states. Among all possible quantum states described by the continuum spectra

of the quadrature operators q̂ and p̂, we focus in this work in those whose W (q, p) is Gaussian.

Since |0⟩ has a Gaussian representation in the phase space, any operation on the

mean of the quadratures and on its covariance matrix will also result in a quantum state with a

Gaussian distribution in the phase space. For example, displacing the center of the Gaussian to

a point (q0, p0) results in a displaced Gaussian where α = q0 + ip0 is the displacement in the

phase space. It is called the displaced state and it is the eigenstate of the annihilation operator,

âk |α⟩= α |α⟩, and can be obtained from displacing the vacuum state |0⟩ by

D̂(α) |α⟩= eα â†−α∗â |α⟩ . (2.14)

In the number states basis the displaced state can be written as

|α⟩= e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n⟩ . (2.15)

The probability of finding |α⟩ in a Fock number n is given by

P(n|α) = | ⟨n|α⟩ |2 = e−|α|2 |α|2

n!
. (2.16)

It is interesting to note that although the displacement can be written as α = |α|eiθ , where θ is

its argument, the probability function P(n) depends only on its amount of displacement |α|.

Another important Gaussian state can be obtained by applying the operator

Ŝ = exp
[

ζ â2

2
− ζ ∗(â†)2

2

]
(2.17)

to |0⟩, resulting in the squeezed state

|ζ ⟩= Ŝ(ζ ) |0⟩ . (2.18)
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W0

W1

W2

Figure 1 – Graphs showing the Wigner functions for the states |0⟩, |1⟩ and |2⟩. Only the first
presents 2-dimensional Gaussian shape.
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Ŝ is the squeezing operator, ζ = re−iφ is the squeezing parameter, r is the amount of squeezing

applied and φ is the squeezing phase. The operators â and â† transforms under a squeezing

operation according to

âs = Ŝ â Ŝ†,

âs = âcoshr+ â†eiφ sinhr,
(2.19)

and

â†
s = Ŝ â† Ŝ†,

â†
s = â† coshr+ â e−iφ sinhr,

(2.20)

Consequently, rewriting equations (2.5) in its squeezed form for φ = 0, we get

q̂s =
(âs + â†

s )√
2

q̂s =
(â+ â†)(coshr+ sinhr)√

2

q̂s = q̂ er.

(2.21)

Doing the same for the quadrature p̂ results in the squeezed quadrature p̂s = p̂ e−r. It shows

that when the quadratures are squeezed by an amount r, the eigenvalues of the quadratures

are enlarged in one direction and squeezed in the other direction. Consequently, the Wigner

function for a squeezed state can be obtained from the distribution for the vacuum state by simply

transforming its coordinates like

Ws(q, p) =W0(qer,qe−r). (2.22)

The effect of the squeezing operator can be seen in Figure 2. The bigger the value of r, the more

the Gaussian state is squeezed towards the chosen direction.

The Fock population of a squeezed state can be obtained from P(n|ζ ) = | ⟨n|ζ ⟩ |2 =

| ⟨n|Ŝ(ζ )|0⟩ |2. The resulting expression is given by

P(2n|r) =
(

2n
n

)
1

coshr

(
1
2

tanhr
)2n

. (2.23)

That is zero for odd values of n, and P(n|ζ ) does not depend on φ . Figure 3 shows three Fock

populations for pure squeezed states for different values of r. The bigger the r, the bigger the

size of the Fock population.



23

Figure 2 – Graphs showing the Wigner function for squeezed states with three different values
of r. The squeezing phase φ is set to zero.
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Figure 3 – Graphs showing the Fock populations for squeezed states with three different values
of r. The squeezing phase φ is set to zero.
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Another relevant set of 1-mode Gaussian states can be obtained from displacing or

squeezing thermal states (or applying both operators in any order). These states are given by the

density operator

ρ̂th = ∑
n

n̄n

(n̄+1)n+1 |n⟩⟨n| . (2.24)

Their Wigner functions can be obtained by using the definition

Wth(q, p) =
1

2π

∫ +∞

−∞

⟨q− s/2| ρ̂th |q+ s/2⟩eipsds

=
1

2π

∫ +∞

−∞
∑
n

n̄n

(n̄+1)n+1 ⟨q− s/2|n⟩⟨n|q− s/2⟩eipsds

=
1

2π
∑
n

n̄n

(n̄+1)n+1

∫ +∞

−∞

⟨q− s/2|n⟩⟨n|q− s/2⟩eipsds

= ∑
n

n̄n

(n̄+1)n+1Wn(q, p)

= ∑
n

n̄n

(n̄+1)n+1
(−1)n

π
e−q2−p2

Ln(2q2 +2p2)

= ∑
n

(−n̄)n

π(n̄+1)n+1 e−q2−p2
Ln(2q2 +2p2)

=
∞

∑
n=0

(−n̄)n

π(n̄+1)n+1 e−z/2Ln(z)

=
e−z/2

π(n̄+1)∑
n

tnLn(z),

(2.25)

where z = 2q2 + 2p2 and t = [(−n̄)/(n̄+ 1)]n. Using the generating function for Laguerre

polynomials
∞

∑
n=0

tnLn(z) =
1

1− t
e−tz/(1−t), (2.26)

the resulting Wigner function becomes

Wth(q, p) =
1

π(2n̄+1)
e−(q2+p2)/(2n̄+1), (2.27)

and that is a Gaussian state.

All 1-mode Gaussian states obtained from both vacuum and thermal states have a

bivariate Gaussian distribution that is characterized by the the first and second central statistical

moments only. It means that the function is completely determined by its mean and its covariance

matrix and has the general form

W (q, p) =
1

2π|Σ|−1 exp
[
−1

2
(X −d)T

Σ
−1(X −d)

]
,

(2.28)
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where X̂ = (q̂, p̂)T is the quadrature operators vector, X = (q, p)T the vector of eigenvalues and

d is given by the expectation of X̂

E[X̂ ] = ⟨X̂⟩= Tr(X̂ ρ̂) = (q0, p0)
T = d. (2.29)

d is known as the first central moment. Σ, the second central moment, is the 2×2 covariance

matrix of the Gaussian distribution. Its diagonal elements are the variances of the quadratures:

Σii = E[(X̂i −di)
2]

= E[(X̂2
i +d2

i −2X̂idi)]

= E[X̂2
i ]+E[X̂i]

2 −2diE[X̂i]

= E[X̂2
i ]−E[X̂i]

2.

(2.30)

The off-diagonal elements, Σi j, are the covariance between the quadratures:

Σi j = E[(X̂i −di)(X̂ j −d j)]

= E[X̂iX̂ j −diX̂ j −d jX̂i +did j]

= E[X̂iX̂ j]−diE[X̂ j]−d jE[X̂i]+did j

= E[X̂iX̂ j]−did j −d jdi +did j

= E[X̂iX̂ j]−did j

= Cov(q̂, p̂).

(2.31)

To completely know a Gaussian state it is sufficient to determine its displacement d and its

convariance matrix Σ.

This work focus on the analysis of 1-mode Gaussian states obtained from thermal

states. There are two chapters of analysis. The first one presents a method of learning the

variances of the quadratures from Fock population measurements of a squeezed thermal state.

All the computational and statistical tools needed in both chapters are presented together with

the results. The second one presents a method of analysis of blue sideband (BSB) measurements

data from trapped ion systems. It includes a proposal of a model to this kind of measurement

and its analysis with both simulated and real data. The model depends on the Fock population

of the state measured. The statistical tools used are the same from chapter 3 and any other new

knowledge needed is presented during the chapter.
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3 SQUEEZED THERMAL STATE ANALYSIS

3.1 Squeezed Thermal States

Squeezed thermal states can be obtained by different processes. Thermal noise can

be added to a squeezed state, squeezing can be applied to a thermal state, or both heating and

squeezing can happen simultaneously. All the resulting states are Gaussian and can be described

by the parameters n̄ (the mean thermal Fock number, which quantifies the temperature) and r

(the strength of the squeezing) (Olivares 2012).

Let us consider the case where squeezing is applied to a thermal state. The thermal

state has the density operator ρ̂th given by Eq. (2.24):

ρ̂ = ρ̂th. (3.1)

The state is then squeezed, resulting in the new state

ρ̂s = Ŝ(r)†
ρ̂ Ŝ(r). (3.2)

Since Squeezed thermal states are examples of Gaussian states, their Wigner distributions are

Gaussian functions. A single-mode squeezed thermal state has a two-dimensional Wigner

function given by:

Ws(q, p) =
1

2π|Σ|−1 exp
[
−1

2
XT

Σ
−1X

]
, (3.3)

since there is no displacement, which means d = 0. Consequently, all the thermal and squeezing

information is encoded in the covariance matrix.

Fock state population measurements have no phase dependence. Therefore we cannot

obtain a full estimate of Σ because all phase rotations of Σ give the same Fock distribution. To

overcome this, we estimate a diagonal Σ with the quadrature variances Vq = ⟨q̂2⟩−⟨q̂⟩2 ≤Vp =

⟨p̂2⟩−⟨p̂⟩2:

Σ =

Vq 0

0 Vp

 . (3.4)

In a more detailed way, non-displaced gaussian states can be described by a general covariance

matrix written in the form R(φ)ΣR(φ)T , where R(φ), the rotation matrix, is given by

R(φ) =

 cosφ sinφ

−sinφ cosφ

 . (3.5)
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So, for a diagonal covariance matrix Σ with Vq and Vp there is an infinite set phases associated

to the same variances. Since we want to estimate the diagonal elements only, we can use a

particular phase over all possible values. That is why we set φ = 0. And this is the Gaussian

state we use in all of our simulations in this chapter. For a squeezed thermal state, the variances

are related to the squeezing and temperature by

Vq =
1
2
(2n̄+1)e−2r,

Vp =
1
2
(2n̄+1)e2r.

(3.6)

The experiment provides a list with the number of occurrences of each Fock state

obtained from N measurements. The probability of finding the system in a specific Fock number

n is

P(n|Vq,Vp) = Tr{ρ̂ |n⟩⟨n|}, (3.7)

where ρ̂ is the density operator of the state. This probability could be calculated by overlapping

the unknown state’s Wigner function W (q, p) and the nth Fock state’s Wigner function Wn(q, p):

P(n|Vq,Vp) = 2π

∫∫
∞

−∞

W (q, p)Wn(q, p)dqd p, (3.8)

where Wn(q, p) is

Wn(q, p) =
(−1)n

π
e−q2−p2

Ln(2q2,2p2), (3.9)

and Ln(2q2,2p2) are the Laguerre polynomials.

A similar approach as the one described in (Dodonov et al. 1994) can be used to

obtain P(n|Vq,Vp). In this case, we calculate the diagonal elements of the density matrix in the

coherent state basis, using the overlap relation

⟨α| ρ̂ |β ⟩= 1
2π

∫∫
∞

−∞

W (q, p)Wβα(q, p)dqd p, (3.10)

where |α⟩ and |β ⟩ are coherent states and Wβα is the Wigner function of |β ⟩⟨α|.

The result of the integral for squeezed thermal states is expressed, in terms of 2D

Hermite polynomials H{R}
mn (0,0), as:

⟨α| ρ̂ |β ⟩= P(0|Vq,Vp)exp
[
−(|α|2 + |β |2)

2

]
×

∞

∑
m,n=0

αnβ ∗m

m!n!
H{R}

mn (0,0), (3.11)
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where R is a symmetric 2×2 matrix whose elements are

R11 = R22 =
2(Vp −Vq)

1+2(Vq +Vp)+4(VqVp)

R12 = R21 =
1−4VpVq

1+2(Vq +Vp)+4(VqVp)
.

(3.12)

We can also compute ⟨α|ρ̂|β ⟩ by expanding each of the coherent states in the Fock

basis to obtain

⟨α| ρ̂ |β ⟩= exp
[
−(|α|2 + |β |2)

2

]
∞

∑
m,n=0

αnβ ∗m

(m!n!)
1
2

ρmn. (3.13)

By comparing Eq. (3.11) and Eq. (3.13), (Dodonov et al. 1994) derives the expression for the

diagonal density matrix elements ρnn = P(n|Vq,Vp):

P(n|Vq,Vp) = P(0|Vq,Vp)
H{R}

nn (0,0)
n!

, (3.14)

where

P(0|Vq,Vp) =
[
0.25+VpVq +0.5(Vp +Vq)

]−1/2
, (3.15)

H{R}
nn (0,0) = n!

([
0.5+2VpVq − (Vp +Vq)

][
0.5+2VpVq +(Vp +Vq)

])n/2

Qn( f ),

(3.16)

Qn( f ) is the Legendre polynomial of order n, and

f =
−(1−4VqVp)[

(4VqVp +1)2 −4(Vq +V p)2
]1/2 . (3.17)

The function P(n|Vq,Vp) obtained using Eq. (3.14) was faster to calculate than using Eq. (3.8),

though the two expressions give the same results. Therefore, we use the probability distribution

obtained by Eq. (3.14) in our code. The probability function for squeezed thermal states can also

be obtained as in (Marian 1992; Marian and Marian 1993).

3.2 Fitting Method

The problem of estimating parameters from data can be stated as to capture the main

information of a system by fitting a model to a given dataset. However experimental data comes

with errors, that we represent here by ε . So, given a set of Np data points (ti,ui) with i = 1, ...,Np

and a model function

M = M(t|y), (3.18)
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where y is a vector of parameters to be estimated, we can write ui = M(ti|y)+εi. One may chose

to get data such that Np = dim(y) and solve a system of equations. However ui comes with noise

and this method does not consider all the data measured. A more appropriate procedure used to

determine the vector of unknown parameters is to minimize the sum of squared residuals, given

by

min
m

∑
i=1

r2
i (y) = min

m

∑
i=1

[ui −M(ti|y)]2 . (3.19)

This is known as the Least-Squares method (Hansen P. C. and Scherer 2013).

A common assumption when using this method is that all measurements ui have the

same distribution of εi and, consequently, the same standard deviation σi = σ . Therefore, all ui

have the same importance in the sum of r2
i . It means that Eq. (3.19) can be written as a weighted

sum

min
m

∑
i=1

wi [ri(y)]2 , (3.20)

with all weights wi = 1. However, it may happen that different measurements ui have different

uncertainties associated. When this happens, setting wi = 1 means to give the same importance

in the estimation process to measurements with big and small uncertainties. When εi is normally

distributed we can write

εi ∝ exp
{
−1

2
[ui −M(ti|Y)]

σi

}2

. (3.21)

Comparing this to Eq. (3.20), we can write the weights as wi = 1/σ2
i , the inverse of the

squared standard deviation of the measurement ui. These weights can be obtained from a sets

of measurements from which the standard deviation can be calculated directly. However that

amount of data may not be available, requiring one to estimate those errors from a single dataset.

When dealing with data obtained from Fock states measurements or blue sideband measurements

it is possible to model the detection probability by considering those kind of measurements as

Bernoulli trials, with only two possible results, detecting or not, and that when repeated N times

result in a Binomial distribution of probabilities of detecting an specific Fock number |n⟩ or a

“bright” for an specific pulse duration t.

Let us consider a dataset of measurements of a set of Fock numbers or “brights”

observed for different blue sideband (BSB) pulse durations, and represent it by { f}. In trapped

ion systems there is no phase sensitive nor direct Fock population measurements available. A

common way used to measure the ion’s state is to couple its electronic state to the motional
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state by applying a blue sideband laser (BSB) pulse during a fixed time, and measuring its

state-dependent fluorescence. The probability of detecting fluorescences ("brights") depends

on both the spin and ion’s motional Fock population. It also depends on how long the pulse is

applied to the ion. Thus, the data provided by the experiment is a set of relative frequencies of

fluorescence detection for different pulse duration times. More details about the model will be

presented in next chapter.

The experiments measures the number ki of times the detection occurs over a total

of N measurements (repetitions for ion experiments) such that fi = ki/N for i = 1, ..., imax is the

relative frequency detected, where imax may be the maximum Fock number or the maximum

number of pulse duration considered. The weights wi = 1/σ2( fi) quantify the uncertainty in

the measurement fi. A binomial distribution has success probability Pi = Pi(ki|pi), where pi

is the probability of the measurement to occur and fi → pi as N → ∞. For this distribution,

σ2(kn) = Npn(1−pn), but we need to estimate σ2( fi), that can be done by using the Maximum

Likelihood Estimator (MLE). The MLE for the binomial success probability pi is p̂i = ki/N,

allowing us to estimate σ2( fi)≈ σ2(p̂i). We can estimate σ2(pi) by considering the definition

of the variance of a random variable X : the expected value of the squared difference between X

and its expected value,

σ
2(X) = E

[
(X −E[X ])2

]
. (3.22)

Consequently,

σ
2(bX) = E

[
(bX −E[bX ])2

]
= b2

σ
2(X), (3.23)

where b is a scalar. So the variance of p̂i =
1
N ki can be written as

σ
2(p̂i) =

σ2(ki)

N2 . (3.24)

We can finally find the variance of fi as

σ
2( fi)≈

Np̂i(1− p̂i)

N2 (3.25)

=
ki(N − ki)

N3 . (3.26)

It is important to note that wi = 1/σ2( fi) depends on 1/ki, and that may be a problem

when ki = 0, which will happen frequently with highly pure squeezed states. The weighted sum

of squared residuals is given by:

∆(Vq,Vp) =
nF

∑
n=0

wn
[
P(n|Vq,Vp)− fn

]2
, (3.27)
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where wn is the weight associated with the nth measurement. Our estimates will be those values

of Vq and Vp that minimize ∆(Vq,Vp). However, not all pairs of variances are allowed because the

Heisenberg restriction imposes Vq ×Vp ≥ 0.25. We also impose the constraints Vq ≤Vp, Vq > 0,

and Vp > 0.

To overcome this problem, we use Bayesian inference (Aitkin 2010) to estimate

σ2( fn). In classical statistics it is possible to estimate a given parameter Θ associated to a system

by doing a set of measurements of it, where that parameter is considered to be fixed. In the

Bayesian statistics, Θ has a probability function associated (a prior distribution) based on any

previous information about the system. Then, after a set of measurements, the prior function is

updated to a posterior distribution. Mathematically, the starting point is the Bayes’s rule

P(Θ|U) = P(U |Θ)P(Θ)/P(U), (3.28)

where U is the data, P(Θ|U) is the posterior function, P(Θ) is the prior function, P(U |Θ) is the

likelihood function, and P(U) is the marginal distribution given by P(U) =
∫

P(U |Θ)P(Θ)dΘ.

The Bayes rule can be rewritten as

P(pn|kn) = P(kn|pn)P(pn)/P(kn), (3.29)

where now P(pn) is the prior probability distribution associated to the measurement of |n⟩.

A direct choice for the likelihood P(kn|pn), considering this specific kind of mea-

surement, is the binomial distribution,

P(kn|pn) =

(
N
kn

)
pn

kn (1−pn)
N−kn.

Since the likelihood function is binomial, an appropriate choice for the prior P(pn) is a beta

distribution given by

P(pn) =
pn

ν−1(1−pn)
η−1

Beta(ν ,η)
, (3.30)

where ν and η are the shape parameters and Beta(ν ,η) is the Beta function,

Beta(ν ,η) =
∫ 1

0
tν−1(1− t)η−1dt.

As a consequence, the posterior distribution will be also a beta distribution. Both P(pn|kn) and

P(pn) are called conjugate distributions and P(pn) is a conjugate prior to the likelihood P(kn|pn).
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The function P(kn) is given by

P(kn) =
∫ 1

0
P(kn|pn)P(pn)dpn

=

(
N
kn

)∫ 1
0 pn

kn+ν−1 (1−pn)
N−kn+η−1 dpn

Beta(ν ,η)

=

(
N
kn

)
Beta(kn +ν ,N +η − kn)

Beta(ν ,η)
.

(3.31)

The posterior distribution is then given by

P(pn|kn) =
pn

kn+ν−1 (1−pn)
N−kn+η−1

Beta(kn +ν ,N +η − kn)
, (3.32)

which is a Beta distribution with new shape parameters ν ′ = kn +ν and η ′ = N +η − kn and

variance

σ
2(pn|kn) =

(kn +ν)(N +η − kn)

(ν +N +η)2(ν +N +η +1)
. (3.33)

We use this variance when computing the weights wn = 1/σ2(pn|kn) in the weighted sum of

squared residuals, which ensures that the weights are finite when kn = 0.

Figure 4 presents the behavior of weights calculated with priors having different

values of N and different shape values. The graphs show that for N ≥ 100, which is easily

achievable in experiments, the weights are not very sensitive to the choices for η and ν . Odd

Fock numbers have higher weights because we are testing a nearly pure squeezed state, which

has low probability for containing odd Fock numbers.

3.3 Testing

3.3.1 Simulated Experiments

To test our estimator we feed it with simulated data from a known state and compare

it with the output. It allows us to do tests for different sets of parameters, covering different

possible states such as thermal states with different temperatures, squeezed thermal states with

different temperatures and compression factors, squeezed states and any other 1-mode Gaussian

state, providing a way to obtain as much data as needed for the statistical analysis. The simulated

experiment must consider a probability of measurement pn and a number of measurements kn
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Figure 4 – Graphs showing log10 wn of the weights used in the least-squares fit versus n for
measurements of the quantum state with squeezing r = 2.5 and thermal average Fock
number n̄ = 0.01, for three different numbers N of measurements and for different
values of the prior distribution’s shape parameters ν and η . We see that the weights
are not very sensitive to the prior distribution’s shape parameters ν and η , and the
closeness increases for increasing N. We observed similar behavior for other choices
of r and n̄.
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for each Fock number that satisfy the relations

nmax

∑
n=0

pn = 1,

nmax

∑
n=0

kn = N,

(3.34)

where nmax is the maximum Fock number considered. The best distribution that describes the

probability of measuring a population of Fock states given by K = {ki}, over a total number of

measurements N, is given by the multinomial distribution

f (K) =
N!

k1!k2! ...kn!
pk1

1 pk2
2 ... pkn

n . (3.35)

Its marginal distributions must describe the probability of measuring kn over a total of N with a

probability pn, as we can see by doing

fn(kn) = ∑
k1 k2 ...kn−1

N!
k1!k2! ...kn!

pk1
1 pk2

2 ... pkn
n

= ∑
k1 k2 ...kn−1

N!
k1!k2! ...kn!

pk1
1 pk2

2 ... pkn
n
(N − kn)!(1− pn)

N−kn

(N − kn)!(1− pn)N−kn
.

(3.36)

The elements associated to kn can be placed outside of the summation resulting in the binomial

distribution times a sum:

fn(kn) =
N! pkn

n (1− pn)
N−kn

kn!(N − kn)!
∑

k1 k2 ...kn−1

(N − kn)!
k1!k2! ...kn−1!

pk1
1 pk2

2 ... pkn−1
n−1

(1− pn)N−kn−1
(3.37)

Rewriting N−kn = k1+k2+ ...+kn−1+kn−kn = ∑
n−1
i=1 ki and replacing in the previous equation

we obtain

fn(kn) =
N! pkn

n (1− pn)
N−kn

kn!(N − kn)!
∑

k1 k2 ...kn−1

(N − kn)!
k1!k2! ...kn−1!

∏
n−1
i=1 pki

i

∏
n−1
i=1 (1− pn)ki

. (3.38)

If we do the substitutions p′i =
pi

1−pn
and N′ = N − kn, the function in the sum becomes a

multinomial distribution with probabilities p′i, where

n−1

∑
i

p′i =
p1 + p2 + ...+ pn−1

1− pn
=

1− pn

1− pn
= 1. (3.39)

With this sum equal to 1, we obtain the following expression for the marginal distribution:

fn(kn) =
N! pkn

n (1− pn)
N−kn

kn!(N − kn)!
. (3.40)

And, as expected, this is a binomial. So for each Fock number there is a binomial distribution

that describes the probability of obtaining kn measurements over a total of N with an associated
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probability pn. Once the simulated datesets are available, the next step is to analyse all the data.

This analysis consists in obtaining the point estimates from the simulated data from a specific

state and calculating its uncertainty.

A common way to compare the performance of two estimators is calculating the

mean squared error of the estimates obtained from fitting an specific dataset. It can be calculated

as the expected value

MSE(θ̂) = E[(θ̂ −θ)2], (3.41)

where θ̂ is the estimator and θ the true value. Expanding the expectation above, we obtain

MSE(θ̂) = E[θ̂ 2 +θ
2 − θ̂θ −θθ̂ ]

= E[θ̂ 2]+E[θ 2]−E[θ̂θ ]−E[θθ̂ ]

= E[θ̂ 2]+θ
2 −2θE[θ̂ ]

= E[θ̂ 2]+ (E[θ̂ ]−θ)2 −E[θ̂ ]2

= σ
2[θ̂ ]+Bias[θ̂ ,θ ]2.

(3.42)

The estimator’s performance is connected to its variance and bias. When there is no bias

the estimator is called unbiased and its mean squared error is equal to its variance. Small

standard deviation together with big bias may result in a small probability of the estimator to

obtain estimates that are close to the true value, since the distribution of point estimates will be

distributed around a value that is far from θ . As a result the trade-off between bias and standard

deviation needs to be included in our analysis.

The data analysis also includes estimates of bias, confidence intervals, and their

coverage probabilities together with the relation between standard deviation and bias and its

tradeoff. For various choices for n̄ and r we simulated 100 experiments. For each experiment,

the Fock distribution is measured N times and an estimate of n̄ and r is produced. From

those experiments, we calculated the mean fidelity and report its dependence on N for n̄ =

(0.001,0.01,0.1,2) and r = (0,1.0,2.5). (Burd et al. 2019) reported squeezing of r = 2.26±

0.02.)

Of course, only a finite number of Fock states can be resolved in an experiment.

(Burd et al. 2019) reported the resolution of 20 Fock states for ion motion, and (Lolli et al. 2012)

and (Morais et al. 2020) resolve 29 and 16 photonic Fock states, respectively, with transition

edge sensors. In our simulations, we assume that the detectors can resolve Fock numbers

0 through 20, but they cannot distinguish higher Fock numbers. Thus we have 22 possible
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measurement results, with the first 21 being Fock numbers 0 through 20 and the last containing

all events with Fock numbers ≥ 21. This provides enough information for our tests, which have

r ≤ 2.5 and n̄ ≤ 2. During the simulated experiment the probability of getting a set of counts

for n = 0 to 21 over a total of N measurements can be calculated by a multinomial distribution

for P(n|Vq,Vp) and N total measurements. We used Mathematica to generate samples from a

multinomial distribution. Thus we simulate all the data needed to evaluate our method.

Quantum state fidelity, F , measures the closeness of two states ρ1 and ρ2:

F(ρ1,ρ2) =

[
Tr
(√√

ρ1ρ2
√

ρ1

)]2

. (3.43)

We use the quantum state fidelity between the true state and our estimate to quantify the accuracy

of our estimator. Because we are estimating squeezed thermal states, we rewrite the fidelity

as (Marian and Marian 2012):

F(ρ1,ρ2) = (
√

Ξ+Λ+
√

λ )−1, (3.44)

where Ξ and Λ are given by

Ξ = det(Σ1 +Σ2),

Λ = 4det
(

Σ1 +
i
2

J
)

det
(

Σ2 +
i
2

J
)
.

(3.45)

Σ1 and Σ2 are the single mode covariance matrices for each mode, and J is

J =

 0 1

−1 0

 . (3.46)

Figure 5 plots the mean infidelity, 1 − ⟨Fidelity⟩, averaged over 100 simulated

experiments using different shape parameters η and ν (used to specify the prior distribution

when calculating the posterior used to estimate the weights) on the fidelities as a function of N

for three different states. For any N and the three states chosen, η = ν = 1 (corresponding to the

uniform prior distribution) performs better than the other tested pairs of shape parameters. For

all following simulations we use η = ν = 1. Fig. 5 also shows the importance of using weights,

specially for high squeezing states (r = 2.5).

Figure 6 presents 1−⟨Fidelity⟩ versus N for three different squeezing values and four

values of n̄. States with higher squeezing require larger N to obtain high fidelity estimates, but

the fidelities are less sensitive to n̄. For a state with r = 2.5, n̄ = 0.1, after 10100 measurements,

from 100 simulated experiments, we obtain an average fidelity of 0.9991, and the standard

deviation of the fidelity estimates is 0.0011.
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3.3.2 Confidence Intervals

We characterize uncertainty in our estimates using confidence intervals. We do it by

estimating a set of values from the data, provided that it may contain the true value. So, given

the data f there exist a pair of functions such that Ci(f)≤C j(f) and the inference

Ci(f)≤ Θ ≤C j(f) (3.47)

can be made. The interval [Ci(X),C j(X)] is the interval estimate associated to the data. Although

an interval estimate provides a set of values instead of a point estimate, it adds to the analysis

some guarantee of covering the parameter of interest. This guarantee is represented by the

coverage probability, that means the chance of the estimated intervals covering Θ. These

intervals are also known as confidence intervals with a confidence level, that impacts directly on

its size. A larger confidence level may result in larger interval, and a smaller confidence level in

a smaller interval.

A confidence interval (CI) of confidence level (1− 2β ) (with 0 ≤ β ≤ 1) for an

estimated parameter has the property that with probability (1− 2β ) when the experiment is

performed and the CI calculated, the CI will contain the true value of the parameter. Bootstrap

methods (Efron and Tibshirani 1993) provide a way to calculate CIs, based on two steps: using

simulations to build a set of estimates and applying an algorithm to the simulated estimates to

produce the interval. For the first step, we use a “parametric bootstrap” in which estimates of

Vq and Vp obtained from the original experiment are used to simulate experiments NB times

according to the model described by Eq. (3.14), producing NB pairs of simulated estimates of Vq

and Vp (or equivalently r and n̄).

The Percentile Method (Efron and Tibshirani 1993; Carpenter and Bithell 2000) was

the first used to calculate our confidence. For an estimator Θ̂ of some parameter Θ and an ordered

set of simulated bootstrap estimates BR = (Θ̂1,Θ̂2, ...,Θ̂NB), the (1−2β ) CI is [Θ̂l,Θ̂m], where

l = ⌊NBβ⌋

m = ⌊NB(1−β )⌋.
(3.48)

We performed a test of the Percentile Method on three different reference states given by fixed

n̄ = 0.01 and squeezing r = (0,1.0,2.5). For each state, we ran 100 simulated experiments

with N = 104. For each we calculated a 90% confidence interval (β = 0.05) and then estimated

the coverage probabilities by the fraction of times that the confidence intervals contained the
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State (r, n̄) Vp(1k) Vq(1k) r(1k) n̄(1k) Vp(2k) Vq(2k) r(2k) n̄(2k)
(0, 0.01) 83% 88% 98% 94% 84% 89% 98% 93%
(1.0, 0.01) 82% 88% 87% 56% 83% 88% 86% 57%
(2.5, 0.01) 86% 58% 70% 15% 87% 59% 73% 18%

Table 1 – Table of the coverage probabilities for nominal 90% confidence intervals using the
percentile method. The coverage probabilities were estimated from 100 simulated
experiments using NB = 1,000 (left) and NB = 2,000 (right) bootstrap replicates.
The coverage probabilities significantly different from 90% motivate our use of bias
correction, shown in Table 3.

True r B/σ in r True Vp B/σ in Vp True Vq B/σ in Vq B/σ in n̄
0 0.69 0.51 0.68 0.51 -0.68 0.069
0.5 -0.16 1.39 -0.19 0.19 0.013 -0.25
1 -0.24 3.77 -0.32 0.069 0.16 -0.64
1.5 -0.020 10.24 -0.12 0.025 -0.085 -0.90
2 0.27 27.85 0.094 0.0093 -0.44 -1.098
2.5 0.45 75.69 0.15 0.0034 -0.72 -1.40

Table 2 – Estimates of bias B divided by standard deviation σ for estimates of parameters of
states with various squeezing parameters r and n̄ = 0.01. Each estimate was generated
from 1,000 simulated experiments, containing N = 10,000 Fock measurements each,
so some statistical fluctuation is expected. Estimates for which |B/σ |> 1 indicate that
the bias in the estimate is significant when compared to the statistical uncertainty in
the estimate, and so bias correction may be useful.

true value, with Vq, Vp, r, and n̄ considered independently. For comparison we tested both

NB = 1,000 and 2,000. Table 1 presents the results of the test. NB = 1,000 gives good results

for lower squeezing, but as squeezing increases the coverage probabilities decrease for all

parameters but Vp. Doubling the number of bootstrap simulations does not significantly improve

the coverage probabilities. For r = 2.5, the coverage probability for n̄ is far from expected.

Coverage probabilities of around 98% are obtained for estimates of r when r = 0 because this is

on the boundary of parameter space and no bootstrap simulation can give estimates below 0.

To understand the low coverage probabilities we explore the ratio B/σ of bias (here

denoted by B) to standard deviation for estimates of parameters of different states, as shown in

Table 2. Bias is the difference between the expectation value of an estimate of a parameter and

the true value of that parameter. We calculated B/σ for both quadrature variances, r, and n̄ for

several states. We have previously seen that the highest squeezing considered, r = 2.5, presented

the worst results of average fidelity, and we can see in Table 2 that high squeezing also causes

large B/σ ratios. Such large B/σ ratios, especially for estimates of n̄ at high squeezing, could

be the cause of the low coverage probabilities obtained when using the percentile method to

construct confidence intervals.
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State (r, n̄) Vp(1k) Vq(1k) r(1k) n̄(1k) Vp(2k) Vq(2k) r(2k) n̄(2k)
(0, 0.01) 89% 88% 97% 97% 86% 90% 98% 97%
(1.0, 0.01) 87% 89% 88% 82% 89% 89% 89% 85%
(2.5, 0.01) 92% 89% 89% 74% 90% 86% 88% 77%

Table 3 – Table of the coverage probabilities for nominal 90% confidence intervals with bias
correction, computed for the same states and data as shown in Table 1. We see
the coverage probabilities significantly closer to 90%, compared to the uncorrected
intervals of Table 1.

To reduce the influence of bias we use the “BC” algorithm from (Efron 1982) to

calculate the CIs. The results are shown in Table 3 and were obtained using the same data used

for Table 1. The bias correction provides confidence intervals with coverage probabilities closer

to the specified confidence level of 90%, though the coverage probability for n̄ is still low.

Fig. 7 shows a set of 30 example 90% intervals for n̄ calculated for the tests presented

on Tables 1 and 3. After bias correction, far more of the confidence intervals contain the true

value of n̄. For example, for the state with r = 2.5 and n̄= 0.01, measured N = 1,000 times, when

nominal 90% confidence intervals are calculated, the coverage probability for n̄ has increased

from 15% to 74% by using the bias correction. Because of the n̄ ≥ 0 boundary, we expect that

it will be difficult to achieve exact coverage probability for states with n̄ near 0 using standard

methods, but given the bootstrap estimates, the bias correction is easy to apply and significantly

improves the coverage probability.
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Figure 7 – Example confidence intervals for n̄, computed with the percentile method (upper
panel) and the bias correcting BC method (lower panel) arranged in arbitrary order
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the mean of the point estimates, and the dashed lines show the means of the upper
and lower ends of the confidence intervals.
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4 SQUEEZED DISPLACED THERMAL STATES ANALYSIS

This chapter focus on the analysis of a method to learn from squeezed displaced ther-

mal states (SDTS) data. Essentially, the whole analysis e based on blue sideband measurements

obtained from a single trapped ion experiment and its steps as presented in (Burd et al. 2019) and

more recently at (Burd et al. 2023). The experiment aims to produce displaced thermal states.

These states are then squeezed and then anti-squeezed to generate, ideally, a new displaced

thermal state with modified displacement. However, it may happen that the reverse squeezing

protocol does not work perfectly resulting in residual squeezing in the final state. Therefore both

the state obtained after squeezing the displaced thermal state and the one obtained after reversing

the squeezing are SDTS. Displaced thermal states (DTS) are included in the analysis in order to

compare displacements before and after squeezing + reverse-squeezing. Moreover, the amount

of squeezing and residual squeezing can be better analysed from squeezed thermal states (STS)

both after squeezing and after squeezing and anti-squeezing. Finally, the thermal state at which

the ion is started must be included. The final state is a SDTS represented by the density operator

ρ̂SDT S = Ŝ(ζ )D̂(α) ρ̂th D̂†(α)Ŝ†(ζ ) (4.1)

Thus, the parameters to be estimated are |α|, r, n̄, θ and φ , that are the amount of displacement,

squeezing, temperature, displacement phase and squeezing phase, respectively. Here, both phases

are related such that the phase to be considered is the relative phase ϕ = θ − φ

2 .

𝜃

∅

Δ𝑋1

Δ𝑋2

𝑋1

𝑋2

Figure 8 – Uncertainty region of a squeezed displaced thermal state.
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Fig. 8 presents a plot of the region of standard deviation associated to the quadratures,

here written as the components X1 = q and X2 = p.

The data considered is a set of measurements obtained for different blue sideband

laser pulse duration since that duration interfere in the interaction of the pulse with the spin of

the ion. For a pulse duration ti, each measurement consist in detecting or not fluorescence from

the ion. After repeating the process N times the number of “brights” detected are ki. The relative

frequency of detection is given by fi = Ki/N and it is related to the probability of detecting the

spin down state by fi ≈ P↓(ti). That probability is given by (Burd et al. 2019)

P↓(t) =
1
2
+

1
2

∞

∑
n=0

P(n)e−γnt cosΩnt, (4.2)

where Ωn is the Rabi frequency and γn is a decay rate constant. Both depends on the Fock

number n of the ion’s motional state and are considered to be given by (Burd et al. 2019)

Ωn = Ω
√

n+1,

γn = γ
√

n+1.
(4.3)

For a SDTS, the Fock population P(n) is in the form P(n||α|,r, n̄,ϕ) and it can be obtained from

the representation of ρ̂SDT S = ρ̂ f inal = ρ̂ f in the coherent states basis by doing

⟨β1|ρ̂ f |β2⟩=
∞

∑
l=0

∞

∑
m=0

e−|β1|2/2e−|β2|2/2 β ∗
1

lβ m
2√

l!m!
⟨m|ρ̂ f |n⟩

=
∞

∑
l,m=0

e−(|β1|2+|β2|2)/2
ρ f lm

β ∗
1

lβ m
2√

m!n!
,

(4.4)

where now ρ f lm are the elements of the density operator in the Fock basis and ⟨β1|ρ̂ f |β2⟩ is the

overlap between the Gaussian Wigner function for SDTS and the Wigner function of the operator

|β1⟩⟨β2|. The right side of the previous equation can be written in terms of Hermite polynomials

by using its generating function e2xz−z2
= ∑

∞
n=0 Hn(x)zn/n!. When compared with the result of

the left side, as done by (Marian 1992), the expression for the diagonal elements of the density

matrix ρ f nn = P(n) are given by

P(n) = πQ(0)(−1)n2−2n(A+ |B|)n
∞

∑
k=0

fk(A,B)H2k

(
i

Im(C)

(A−|B|)1/2

)
H2(l−k)

(
i

Re(C)

(A+ |B|)1/2

)
.

(4.5)

H j is the Hermite polynomial of order j and fk(A,B) is given by

fk(A,B) =
1

k!(1− k)!

(
A−B
A+B

)k

. (4.6)
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A, B are given by

A(n,r) = n(n+1)/
[
n2 +(n+1/2)(1+ cosh2r)

]
B(n,r) = (n+1/2)sinh2r/

[
n2 +(n+1/2)(1+ cosh2r)

] (4.7)

and C is given by

C(n,r,ϕ) =

|α|(e
iϕ
2 coshr+ e

−iϕ
2 sinhr)

[
1
2
+(n+1/2)cosh2r

]
−

|α|(e
−iϕ

2 coshr+ e
iϕ
2 sinhr) [(n+1/2)sinh2r] .

(4.8)

Now that the probability function is known, the fitting model can be built. We use

here the same model used in the previous chapter, that is the weighted least squares estimator

with weights calculated by using the Bayes model. The data is a vector of relative frequency of

brights observed { fi} for different pulse duration times. The weighted sum of squared residuals

now is written as

∆(|α|,r, n̄,ϕ,Ω,γ|{ fi}) =
nt

∑
i=0

wi
[
P↓(ti||α|,r, n̄,ϕ,Ω,γ)− fi

]2
. (4.9)

Now the sum is over the pulse durations ti and nt is the maximum pulse duration considered.

The set of estimates is obtained from minimizing ∆(|α|,r, n̄,ϕ,Ω,γ). The fitting algorithm is

different from the one used in the previous chapter. Now the model function is more complex

and depends on more variables. It results in an estimator more sensitive to the starting conditions.

To overcome this difficulty it is set a fitting process in 2 steps. The first one is set to minimize

Eq. (4.9) using a global optimization method to obtain a good set of starting points. The second

step is set to minimize the sum of squared residuals using a local optimization method, with the

estimates obtained in the previous step as starting points.

The simulated data used in this analysis is obtained in the following way. The true

values of the experiment are initially set such as the number of repetitions N, the parameters asso-

ciated to the quantum state of the ion |αT |, rT , n̄T and ϕT , and the parameters associated to the ex-

periment Ω and γ . The size of the Fock population of the state considered is fixed allowing one to

simulate a vector of datapoints { fi}, with fi = Random
(
Binomial(P↓(ti||α|,r, n̄,ϕ,Ω,γ),N)

)
/N.

Examples of simulated data can be seen in Figs. 9 and 10, with plots for a thermal state and a

squeezed displaced thermal state. Each figure presents two plots, one with a simulated dataset

together with the P↓(t) for a set of true values and one with the Fock population associated to the

state considered.
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Figure 9 – The plot above presents a simulated dataset for fluorescence measurements of a single
trapped ion in a thermal state and the probabilities associated to the true values of
the state. Below, the probabilities P(n) of the motional state chosen. The mean Fock
number is n̄ = 0.06, Ω = 14.451 and γ = 0.51. The number of repetitions was set to
N = 200 for each of the 200 pulse durations.
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Figure 10 – The plot above presents a simulated dataset for fluorescence measurements of a single
trapped ion in a squeezed displaced thermal state and the probabilities associated
to the true values of the state. Below, the probabilities P(n) of the motional state
chosen. The true values for these plots are |α| = 0.9, r = 0.3, n̄ = 0.06, ϕ = 0,
Ω = 14.451 and γ = 0.51. The number of repetitions was set to N = 200 for each
of the 200 pulse durations.
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In order to produce the final quantum state, the ion is cooled down to its initial state

ρ̂th, a thermal state. It is then measured and fitted to obtain estimates for n̄, Ω and γ . This step is

called calibration step. By analysing this data we are able to learn about the final temperature of

the cooling process and about the experiment parameters. The estimates obtained for Ω and γ

are now used as input data to our model resulting in a reduction of the number of parameters to

be estimated from six to four. Considering that those estimates are ΩC and γC, the weighted sum

of squared residuals for the final state can be written as

∆(|α|,r, n̄,ϕ|ΩC,γC,{ fi}) =
nt

∑
i=0

wi
[
P↓(ti||α|,r, n̄,ϕ,ΩC,γC)− fi

]2
, (4.10)

and the same can be done to or any other state obtained from the initial state.

To be able to evaluate our model we calculate confidence intervals with bias cor-

rection, using the same method used in the previous chapter, for all set of estimates in all the

simulations considered by using the same method used in the previous chapter, the parametric

bootstrap method. So, given a dataset for the calibration step { fi}thermal , a set of estimates

{n̂C,ΩC,γC} can be obtained by

{n̂C,ΩC,γC}= Min[∆(0,0, n̄,0,Ω,γ|{ fi}thermal)]. (4.11)

Then the estimates {n̂C,ΩC,γC} are used to simulate NBS bootstrap experiments obtaining the

same number of datasets { fBS}. The set of bootstrap estimates for the calibration step is then

obtained by doing

{n̂BS,ΩBS,γBS}= Min[∆(0,0, n̄,0,Ω,γ|{ fBS}] (4.12)

for all bootstrap datasets. The same procedure can be used to generate bootstrap estimates for

the final state. Now, given a dataset for a final state fF the set of estimates can be obtained by

{|α|F ,rF , n̄F ,ϕF}= Min[∆(|α|,r, n̄,ϕ|ΩC,γC,{ fF})]. (4.13)

The simulated bootstrap (BS) datasets for the final state { fF}BS are then obtained by using the

{|α|F ,rF , n̄F ,ϕF} as input parameters in the simulation procedure together with ΩBS and γBS.

Each simulated dataset now corresponds to a pair of bootstrap estimates for {ΩBS,γBS} in order

to associate each final state simulated BS experiment with a BS simulated initial state. Finally,

the set of bootstrap estimates needed to calculate the confidence intervals for {|α|F ,rF , n̄F ,ϕF}

are obtained by doing

{|α|FBS,rFBS, n̄FBS,ϕFBS}= Min[∆(|α|,r, n̄,ϕ|ΩBS,γBS,{ fF}BS)]. (4.14)
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Repetitions n̄ Ω γ

N = 200 {0.16, 0.21} {14.43, 14.48} {0.50, 0.55}
N = 1,000 {0.20, 0.22} {14.43, 14.45} {0.50, 0.52}
N = 10,000 {0.20, 0.20 } {14.45, 14.45} {0.53, 0.53}

Table 4 – Table of confidence intervals for different number of repetitions for true values equal
to {n̄,Ω,γ}= {0.2,14.451,0.51}.

The parameters chosen to simulate the experiments to be used to test our method

are based on the experiments described in (Burd et al. 2019) and (Burd et al. 2023). The next

two sections present results for simulated data for different parameters considered for both

calibration step and final state. First we present results for fitting the datasets to the final state

individually, and then when the fit is done by joint fitting a set of datasets obtained by varying

the relative phases. In the last section of the chapter, the method is applied to real data obtained

in (Burd et al. 2023).

4.1 Individual Fitting

In this section we present results for fitting simulated data for the calibration step and

two final states that differ only by the relative phase. The data analysis is based on the estimates

obtained and the confidence intervals calculated.

The set of parameters chosen are {n̄,Ω,γ}= {0.2,14.451(Ω/(2π)= 2.3 kHz),0.51}

for calibration step, and {|α|,r, n̄,ϕ} = {0.9,0.3,0.2,{0,π/2}} for the final state. The pulse

duration vector has values in a range of [0,2.5] ms with ∆t = 0.0125 ms. The values of ϕ chosen

to be {0,π/2} are those that provide the worst and best results respectively. NBS = 1,000 and

the confidence level is set to 90%. The number of repetitions is set to N = {200; 1,000; 10,000}.

The results for the calibration step can be observed at Table 4. The bigger the number

of repetitions the smaller the confidence interval. N = 10,000 is big enough for the confidence

interval to be as small as the true values. Table 5 presents the results for final states fit for the two

different relative phases chosen. Phase π/2 presents the best overall results as can be seen by the

size of the confidence intervals as the number of repetitions increases, specially for α and n̄.

4.2 Joint Fitting

In this section we present the results for joint fitting a set of datasets obtained for

different relative phases. This strategy aims to take advantage of a larger amount of data from
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ϕ,N |α| r n̄ ϕ

ϕ = 0,N = 200 {0.83, 0.99} {0.33, 0.63} {0.0, 0.81} {0.0, 2.53}
ϕ = 0,N = 1,000 {0.86, 0.95} {0, 0.3} {0.0, 0.98} {0.0, 0.94}
ϕ = 0,N = 10,000 {0.86, 0.90 } {0.30, 0.46} {0.0, 0.20} {0.0, 0.90}
ϕ = π/2,N = 200 {0.77, 0.93} {0.0, 0.47} {0.0, 0.53} {0.0, 1.85}
ϕ = π/2,N = 1,000 {0.86, 0.92} {0.27, 0.44} {0.0, 0.43} {1.17, 1.73}
ϕ = π/2,N = 10,000 {0.89, 0.91 } {0.28, 0.34} {0.08, 0.29} {1.43, 1.75}

Table 5 – Table of confidence intervals for different number of repetitions for a SDTS with
relative phases for true values equal to {|α|,r, n̄,ϕ}= {0.9,0.3,0.2,{0,π/2}}.

different datasets. We assume a total number of repetitions N and that the relative phase can

be changed to m known values, where j = 1, ...,m. We also consider that the same fraction of

N/m repetitions is associated to each β j and that ki j is the number of detections for ti and a

given relative phase β j, so that ki j/(N/m)≈ P↓(ti|β j). There is now an offset δ associated to the

experiment and it is considered fixed for all datasets. Since the relative phase can be controlled,

we can write ϕ j = β j + δ for j = 1, . . . ,m where δ is the unknown parameter. So there are

3m+1 parameters to be estimated since there is a set of {|α j|,r j, n̄ j} for each β j plus the fixed

offset.

We consider here a scenario where changing the phase does not change significantly

the other parameters, which means that {|α|,r, n̄} are set to be the same for all datasets. As a

consequence, the number of parameters to be estimated is reduced to four, {|α|,r, n̄,δ}.

Now the function ∆ needs to be rewritten in order to consider all data fi j and weights

wi j for i = 0, ...,nt and j = 1, ...,m. Thus,

∆(|α|,r, n̄,δ |ϕ j,Ω,γ,{ fi j}) =
nt

∑
i=0

m

∑
j=1

wi j
[
P↓(ti||α|,r, n̄,ϕ j +δ ,Ω,γ)− fi j

]2
. (4.15)

Three different sets of parameters {|α|,r, n̄} are considered for the same set of

relative phases. They are referred to as state 1, state 2 and state 3. All three are analysed for 2

different total number of repetitions N. It will provide information about how the joint fitting

performs when compared to individual fitting when the number of repetitions for each dataset is

the same. Also, we take N/m smaller to check how joint fitting improves the results even if we

are using less data.

The parameters for the calibration step are almost the same as in the previous section

except for temperature. The set of parameters chosen are {n̄,Ω,γ}= {0.1,14.451(Ω/(2π) = 2.3

kHz), 0.51} and N = 200. The pulse duration vector has values in the range [0,2.5] ms with

∆t = 0.0125 ms. The values of ϕ j are 2π ×{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. NBS =
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n̄ Ω γ

Estimates 0.093 14.450 0.513
Conf. Intervals {0.08, 0.12} {14.43, 14.48} {0.50, 0.55}

Table 6 – Point estimates and confidence intervals for calibration step used in the joint fitting
results.

ϕ |α| r n̂ ϕ

0 {0.96, 1.08} {0, 0.30} {0, 0.33} {0, 2.27}
2π×0.1 {0.95, 1.09} {0, 0.35} {0, 0.27} {0., 2.48}
2π×0.2 {0.92, 1.00} {0. 0.08} {0, 0.24} {2.11, 3.14}
2π×0.3 {0.91, 0.98} {0, 0.06} {0, 0.25} {1.83, 3.14}
2π×0.4 {0.93, 1.02} {0, 0.23} {0, 0.27} {0, 1.93}
2π×0.5 {0.93, 0.98} {0, 0.34} {0, 0.09} {0, 1.7}
2π×0.6 {1.06, 1.24} {0, 0.40} {0.21, 0.56} {3.14, 3.14}
2π×0.7 {0.98, 1.13} {0, 0.32} {0, 0.50} {0, 0.17}
2π×0.8 {0.98, 1.16} {0, 0.31} {0, 0.50} {0.44, 3.14}
2π×0.9 {0.94, 1.07} {0, 0.34} {0, 0.58} {0, 0.12}

Table 7 – Individual fit of a set of 10 datasets for a squeezed displaced thermal state. The true
values are those for state 1, with {|α|, r, n̄}={1.0, 0.1, 0.1}. The confidence intervals
presents a confidence level of 90%. The number of repetitions was set to N = 300.

|α| r n̄ δ

N = 300
Estimates 0.978 0.125 0.014 2.452
Conf. Intervals {0.976, 1.002} {0.089, 0.17} {0.011, 0.066} {2.121, 2.876}

N = 3,000
Estimates 0.0998 0.102 0.077 1.591
Conf. Intervals {0.99, 0.101} {0.09, 0.12} {0.06, 0.11} {1.42, 1.74}

Table 8 – Table of estimates and confidence intervals for state 1 and two different numbers of
total repetitions. Each dataset was simulated with N/10 repetitions. The true values
are {|α|, r, n̄}={1.0, 0.1, 0.1}.

1,000 and the confidence level is set to 90%. State 1 = {|α|= 1.0, r = 0.1, n̄ = 0.1}, State 2 =

{|α|= 1.0, r = 0.02, n̄ = 0.1} and State 3 = {|α|= 0.5, r = 1.3, n̄ = 0.1}. For all three states

the two values of N are set to be N = {300;3,000} that provides a number N/m = {30,300},

respectively.

The values for the calibration step are presented in the table 6. Table 7 presents

confidence intervals for each simulated dataset used for state 1 when fitted individually. Although

most confidence intervals for the amplitude are small when compared with the true value

|α|= 1.0, there are a lot of uncertainty associated to the estimates of squeezing and temperature

and relative phase. On the other hand, in Table 8 we see a lot less uncertainty in the estimates of

r, n̄ and ϕ for the same number of repetitions for each dataset.



53

|α| r n̄ δ

N = 300
Estimates 0.987 -0.013 0.051 3.169
Conf. Intervals {0.980, 1.014} {0.0, 0.015} {0.049, 0.119} {0.472, 5.648}
N = 3,000
Estimates 1.002 0.017 0.089 1.630
Conf. Intervals {0.996, 1.012} {0.004, 0.029} {0.076, 0.115} {0.633, 2.702}

Table 9 – Table of estimates and confidence intervals for state 2 and two different numbers of
total repetitions. Each dataset was simulated with N/10 repetitions. The true values
are {|α|, r, n̄}={1.0, 0.02, 0.1}.

|α| r n̄ δ

N = 300
Estimates 0.494 1.283 0.052 0.167
Conf. Intervals {0.0, 0.568} {1.248., 1.417} {0.0, 0.383} {0.0, 0.390}
N = 3,000
Estimates 0.490 1.278 0.118 2.848
Conf. Intervals {0.463, 0.510} {1.253, 1.317} {0.084, 0.167} {2.745, 2.968}

Table 10 – Table of estimates and confidence intervals for state 3 and two different numbers of
total repetitions. Each dataset was simulated with N/10 repetitions. The true values
are {|α|, r, n̄}={0.5, 1.3, 0.1}.

Tables 9 and 10 present results for joint fitting for different parameters. The first

table refers to a state with less squeezing, which can be associated to a squeezed displaced

thermal state obtained from small amount of squeezing applied or a residual squeezing as a result

of an imperfect reverse squeezing protocol. Both total number of repetitions present reasonable

results, specially the one with bigger N. Table 10 presents the results for a highly squeezed state

with less amplitude and same temperature. These states can be associated to squeezed displaced

thermal states before reverse squeezing being applied. The smaller the displacement, the bigger

the uncertainty associated to it. However, even for N = 300 we can obtain good point estimates

and very small confidence interval for r.

4.3 Experiment Data Analysis

In this section we apply our SDTS estimator to real data obtained from a single

trapped ion experiment (Burd et al. 2023). The data available includes calibration measurements

from the thermal state, data from squeezed states obtained after applying squeezing and after

reversing the squeezing to check the amount of squeezing applied and the amount of residual

squeezing present, respectively. It also includes displaced thermal states data, before applying
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squeezing and reversing it. All datasets come together with the pulse duration vector used in the

experiment.

The experiment aims to detect phase dependent amplification of the ion’s motional

state by detecting the ratio |α f |/|αi| before squeezing (|αi|) and after reversing the squeezing

(|α f |). To do that, several measurements are obtained for different relative phases and a fixed

total number of repetitions in a similar way presented in the previous section. The relative phases

are considered known. Since the objective is to detect |α f |/|αi| dependence on the relative phase,

joint fitting data must consider now all the |α| for each dataset as a parameter to be fitted. So, for

Nph phases there will be Nph +3 parameters to be estimated: |αk| (for k = 1, ...Nph), r, n̄ and δ .

The analysis begins with the initial state. We focus here in the calibration state

and squeezed thermal state analysis using both least squares (LSE) and maximum likelihood

estimators (MLE). The reason for this choice will be clear in the next pages.

Before moving forward let’s introduce the maximum likelihood estimator. For a

single pulse duration ti, the probability of observing a Ki number of brights over a total of N

repetitions can be modeled by a binomial distribution pi
[
Ki|N,P↓(ti)

]
= Binomial

[
Ki|N,P↓(ti)

]
.

The likelihood li is then given by li = p
[
P↓(ti)|Ki,N

]
. consequently, the likelihood of measuring

Ki brights for a set of different pulse durations ti is given by

l
(
P↓(ti)|N,Ki

)
=

nt

∏
i=1

pi
[
P↓(ti)|Ki,N

]
(4.16)

and its log-likelihood function is given by

L(P↓(ti)|N,Ki) = log[pi]

= log

[
nt

∏
i=1

(
N
Ki

)
P↓(ti)Ki

[
1−P↓(ti)

]N−Ki

]

=
nt

∑
i=1

[
log
[(

N
Ki

)]
+ log

[
P↓(ti)Ki

]
+ log

[
(1−P↓(ti))N−Ki

]]
=

nt

∑
i=1

[
log
[(

N
Ki

)]
+Ki log

[
P↓(ti)

]
+(N −Ki) log

[
1−P↓(ti)

]]
(4.17)

that dividing by N results in

L(P↓(ti)|N,Ki)/N =
nt

∑
i=1

[
1
N

[(
N
Ki

)]
+ fi log

[
P↓
]
+(1− fi) log

[
1−P↓(ti)

]]
. (4.18)

Considering that the objective is to maximize Eq. (4.18), the first sum can be disconsidered and
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n̄ Ω γ

LSE
Estimates 0.060 14.491 0.549
Conf. Intervals {0.046, 0.085} {14.469, 14.513} {0.529, 0.581}
MLE
Estimates 0.094 14.489 0.540
Conf. Intervals {0.070, 0.113} {14.469, 14.514} {0.518, 0.572}

Table 11 – Point estimates and confidence intervals for calibration step using LSE and MLE.

r̄ n̄
LSE
STS 1
Estimates 1.261 0.172
Conf. Intervals {1.16, 1.40} {0.04, 0.28}
STS 2
Estimates 0.121 0.087
Conf. Intervals {0, 0.25} {0.07, 0.11}
MLE
STS 1
Estimates 1.309 0.163
Conf. Intervals {1.19, 1.44} {0.03,0.29}
STS 2
Estimates 0.352 0.073
Conf. Intervals {0.29, 0.42} {0.05, 0.1}

Table 12 – Point estimates and confidence intervals for both squeezed thermal states (STS) data.
Both datasets were fitted using LSE and MLE. The first state (STS1) is a squeezed
thermal state obtained from squeezing the initial state (thermal state). The second
one (STS2) was obtained after reversing the squeezing of STS1. The confidence level
is 90%.

our log-likelihood function can be written as

L(|α|,r, n̄,δ |N,{ fi}) =
nt

∑
i=1

fi log
[
P↓(ti||α|,r, n̄,δ ,Ω,γ)

]
+

nt

∑
i=1

(1− fi) log
[
1−P↓(ti||α|,r, n̄,δ ,Ω,γ)

]
.

(4.19)

The set of estimates provided by the MLE are those for which L(|α|,r, n̄,δ |N,Ki) is maximum.

Table 11 present the results of fitting the calibration step data with both estimators.

They present point estimates and confidence intervals with 90% of confidence level. First thing

to note is that the estimates and confidence intervals both agree for Ω and γ . However, there

is a big difference between the estimates for n̄ using both estimators. Both confidence interval

results barely overlap indicating that these results disagree about which one better represents the

experiment. In that case an extra analysis is needed. One hypothesis is that the MLE may be

influenced by an outlier more than the LSE, since this estimator weights the sum of the squared
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residuals. However, results with simulated data have not presented such disagreement between

both estimators.

Table 12 presents estimates and confidence intervals obtained from fitting datasets of

the two squeezed thermal states (STS) provided. The first state (STS1) is a squeezed thermal

state obtained from squeezing the initial thermal state. The second one (STS2) was obtained after

reversing the squeezing of the first STS. Both estimators provide good estimates and confidence

intervals for squeezing in STS1. Although the temperature point estimates differ significantly

from those obtained in the previous table, its confidence intervals contains all the estimates for n̄

presented in tables 11 and 12. STS2 analysis also provides good estimates with small confidence

intervals for squeezing specially for MSE. Differently from the results for STS1, the temperature

estimates are closer to the thermal state values and with smaller uncertainty.

To check the disagreement presented in table 11, we fitted the data disconsidering

one datapoint of the dataset per fit so that the MLE was applied to a dataset with one missing

point each fit and considering only the corresponding pulse durations. The result was a set of nt

estimates for n̄ where now the influence of a single datapoint associated to a single pulse duration

can be observed. Fig. 11 presents the absolute value of the difference between the estimates of n̄

from LSE and the estimates from MLE when a data point was disconsidered. From Table 11,

that difference is 0.034. If any problem is being caused by a problematic datapoint we expect

that the difference gets closer to zero.

Figure 11 shows that there is one point that when removed fixed the big gap between

LSE and MLE estimates for n̄. It is the data for pulse duration t1 = 0. That datapoint is associated

to the initial state at which the ion is expected to be before any BSB is applied. The log-likelihood

of preparing the spin down state can be written as

L(n̄,Ω,γ) = K1↓× log
[
P↓(t1 = 0)

]
+K1↑× log

[
P↑(t j)

]
+

nt

∑
j=2

K j↓× log
[
P↓(t j)

]
, (4.20)

where K1↓ and K1↑ are the number of times spin down and spin up were detected before any BSB

pulse was applied. K j↓ and K j↑ are the counts observed for both down and up states for all BSB

pulses of duration t j considered. The summation only consider P↓(t j) terms because the BSB

pulse interacts with spin down states only. Since the ion is expected to be at the spin down state

at t1 = 0 with probability 1, the previous equation results in

L(n̄,Ω,γ) = K1↓×0+K1↑× (−∞)+
nt

∑
j=2

K j↓× log
[
P↓(t j)

]
. (4.21)
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Figure 11 – |n̄MLE - n̄LSE | as a function of pulse duration. n̄MLE was obtained using MLE and
disconsidering one pulse duration at a time and n̄LSE was obtained using LSE and
all data points.

Since our objective is to obtain the set of estimates that maximizes Eq. (4.21), the −∞ term can

be disconsidered and we write

Max [L(n̄,Ω,γ)] = Max

[
K1↓×0+K1↑× (−∞)+

nt

∑
j=2

K j↓× log
[
P↓(t j)

]]

= Max

[
nt

∑
j=2

K j↓× log
[
P↓(t j)

]]
.

(4.22)

This tells us that we can completely ignore t1 = 0 data when trying to maximize the log-likelihood

function. That conclusion agrees with the results shown in Fig. 11, since it has no effect on

the location of the maximum likelihood point. For pulse duration t = 0, the probability of

measuring the spin down state is given by P↓(t = 0) = 1/2+∑
∞
n=0 P(n)/2, and that must be 1.

Since we set a size for the Fock population, that truncation may result in ∑
nmax
n=0 P(n) < 1 and,

consequently, P↓(t = 0) will depend on n̄ and have some influence in the final result. This explain

why considering P↓(t = 0) gives unexpected results.

According to the model, the probability of detecting a spin down state for t = 0 is

100%. However, the dataset provided presents f1 = 0.99. That difference may be associated to

some experimental error source. We present here two modifications to the model given by Eq.

(4.2) that fits the requirement P↓(t = 0)< 1. The first one considers a decay parameter in the

exponential e−γnt , which implies a dependence of the error source on the Fock population. The

second one considers that P↓(t = 0) takes the form P↓(t = 0) = B/2+A∑
∞
n=0 P(n)/2, where A
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and B are associated to probabilities of the spin flipping from down to up and from up to down,

decreasing the probability of detecting the spin down state. A particular case where B = 0 is

considered, resulting in a total of three models analysed in the next subsections.

The analysis consists on the comparison of the mean and mean squared error (MSE)

of the estimates obtained from fitting the same set of simulated datasets using LSE and MLE.

Each estimator consider all proposed models. The smaller the bias presented by one model the

better it describes the experiment. The estimators based on the Std model provides the reference

estimates needed to the analysis. The direct comparison between Std results and the proposed

model results indicates which one is more adequate. We simulate 100 experiments for each of

the proposed model and fit each set with both LSE and MLE using Std model and at least one of

the proposed models.

4.3.1 t0 Model

The model proposed in this subsection is given by the equation

P↓(t) =
1
2
+

1
2

∞

∑
n=0

P(n)e−γn(t+t0) cosΩnt, (4.23)

where the parameter that models the error source in the experiment is t0. For pulse duration t = 0

the probability function becomes P↓(0) = 1
2 +

1
2 ∑

∞
n=0 P(n)e−γnt0 .

To test this model we consider an initial state with true parameters n̄true = 0.060,

Ωtrue = 14.491 and γtrue = 0.549, that are the point estimates presented in Table 11. For

the true value of t0 we consider the result of the solution of the equation 0.99041 = 1
2 +

1
2 ∑

∞
n=0 P(n|n̄)e−γnt0 for t0, where 0.99041 is the measurement data for t = 0 for the calibra-

tion step and P(n|n̄) is the probability function of finding the thermal state with average Fock

number n̄. The result provides t0 = 0.0357. Thus, all the true values considered in the simulations

are {n̄true, t0true,Ωtrue,γtrue}= {0.060,0.0357,14.491,0.549}.

The results can be found in Table 13 for estimators based on the standard model and

on Eq. (4.23). The results for t0 model estimators presents almost no bias. On the other hand,

both LSE and MLE present bias similar to the standard deviation when fitting data considering

the standard model, showing a consistent error associated to fitting data from a more restricted

model.

However, depending on the experiment, the error source may be associated to spin

flip in the state preparation instead of changes in the Fock population. In this case it is physically
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n̄ Ω γ t0
LSE
Std Model
Mean 0.067 14.492 0.552
MSE 0.00021 0.00024 0.00029 -
t0 Model
Mean 0.061 14.492 0.545 0.024
MSE 0.00019 0.00035 0.00024 0.00032
MLE
Std Model
Mean 0.071 14.492 0.557 -
MSE 0.00028 0.00024 0.00035 -
t0 Model
Mean 0.063 14.492 0.548 0.033
MSE 0.00020 0.00024 0.00031 0.00029

Table 13 – Results for simulated data considering t0 model fitted using LSE and MLE. Both
estimators consider the standard model (Std) and A model for P↓(t). The true values
are {n̄true, t0true,Ωtrue,γtrue}= {0.060,0.0357,14.491,0.549}.

incompatible the use of the t0 model and a new one is needed.

4.3.2 p1 p2 Model

Let us consider that when preparing the ion in the spin down state there is a probability

p1 of the spin down state to flip to up. On the other hand, when the preparation results in a spin

up state there is also a probability p2 of that state flipping to down. Thus, the probability of

preparing the state with spin down, that we represent by P|↓⟩, is given by

P|↓⟩ = (1− p1)P↓(t)+ p2 P↑(t)

= (1− p1)P↓(t)+ p2 (1−P↓(t))

= P↓(t)− p1 P↓(t)+ p2 − p2 P↓(t)

= p2 +P↓(t)(1− p1 − p2),

(4.24)

that depends now on the probability of measuring the ion’s state when it is down, P↓(t), and on

the probability of measuring it when it is up, P↑(t). Replacing Eq. (4.2) in the last equation, we

obtain

P|↓⟩ = p2 +

(
1
2
+

1
2

∞

∑
i=0

P(n)e−γnt cosΩnt

)
(1− p1 − p2)

= p2 +
(1− p1 − p2)

2
+

(1− p1 − p2))

2

∞

∑
i=0

P(n)e−γnt cosΩnt

(4.25)
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n̄ Ω γ A
LSE
Std Model
Mean 0.068 14.491 0.554 -
MSE 0.00022 0.00015 0.00023 -
A Model
Mean 0.061 14.491 0.547 0.986
MSE 0.00018 0.00011 0.00015 0.00023
MLE
Std Model
Mean 0.071 14.491 0.561 -
MSE 0.00037 0.00015 0.00044 -
A Model
Mean 0.063 14.491 0.549 0.981
MSE 0.00018 0.00008 0.00015 0.00022

Table 14 – Results for simulated data considering the A model fitted using LSE and MLE. Both
estimators considered the standard model (Std) and the A model for P↓(t). The true
values are {n̄true,Atrue,Ωtrue,γtrue}= {0.060,0.0980,14.491,0.549}.

Finally

P|↓⟩ =
(1− p1 + p2)

2
+

(1− p1 − p2)

2

∞

∑
i=0

P(n)e−γnt cosΩnt. (4.26)

When p1 = p2 the model becomes

P|↓⟩ =
1
2
+

A
2

∞

∑
i=0

P(n)e−γnt cosΩnt, (4.27)

where A = 1− p1 − p2. It is called the A model. The most general one, given by Eq. (4.26) is

referred to in our analysis as the p1 p2 model. The procedure to test both A and p1 p2 models is

the same used to test the t0 model.

Let us begin with the A model. Some of the true values used to simulate data are the

same used in the previous section. The only change is that now there is no t0 but A. From Eq.

(4.26), for t = 0, we obtain that A = 2P↓(0)−1. Using the experiment’s data point for t = 0 as

P↓(0) A = 0.980, we get the true value for A that will be considered in the simulation. Therefore,

the true parameters considered are {n̄true,Atrue,Ωtrue,γtrue}= {0.060,0.980,14.491,0.549}.

The results are presented in Table 14 for the standard model and the A model based

estimators. Both estimators for the standard model present significant bias, specially for MLE,

for which the bias presented is bigger than the standard deviation.

The p1 p2 model considers different probabilities for p1 and p2. We guess these

probabilities to be p1 = 2% and p2 = 3% in our test. Smaller spin flip probabilities may occur
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n̄ Ω γ A p1 p2

LSE
Std Model
Mean 0.079 14.492 0.574 - - -
MSE 0.00048 0.00017 0.00086 - - -
A Model
Mean 0.061 14.493 0.555 0.964 - -
MSE 0.00019 0.00018 0.00037 0.00038 - -
p1p2 Model
Mean 0.059 14.493 0.550 - 0.016 0.026
MSE 0.00018 0.00018 0.00034 - 0.00006 0.00007
MLE
Std Model
Mean 0.084 14.492 0.579 - - -
MSE 0.00074 0.00018 0.00114 - - -
A Model
Mean 0.063 14.493 0.556 0.956 - -
MSE 0.00019 0.00018 0.00037 0.00021 - -
p1p2 Model
Mean 0.060 14.493 0.551 - 0.020 0.030
MSE 0.00018 0.00018 0.00033 - 0.00004 0.00005

Table 15 – Results for simulated data considering p1 p2 model fitted using LSE and MLE.
Both estimators considered the standard model (Std), the A model and the
p1 p2 model for P↓(t). The true values are {n̄true, p1true, p2true,Ωtrue,γtrue} =
{0.060,0.02,0.03,14.491,0.549}.

and consequently it may be harder to distinguish between p1 and p2. For this simulation, the

true values considered are {n̄true, p1true, p2true,Ωtrue,γtrue}= {0.060,0.02,0.03,14.491,0.549}.

We present next the results from fitting the 100 simulated datasets considering estimators for the

standard model and the p1 p2 model. We add the results for estimators for A model in order to be

able to compare how different its results are from those for p1 p2 model.

Table 15 presents the results of the tests for p1 p2 model. The first table presents the

results for the standard model fit, the second one for A model fit and the last one for p1 p2 fit. The

best results are those for p1 p2 model. For the standard one there is significant bias and big mean

squared error compared to the other two models. The A and p1 p2 models results differ by a small

difference. The estimates for A in table 15 may be compared to 1− p1 − p2 = 0.95. Even being

considered as an approximation, the A model presents close results to the more general one.
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n̄ Ω γ A p1 p2

LSE
Std Model
LSE Fit 0.06043 14.49100 0.54942 - - -
MLE Fit 0.06431 14.49300 0.56250 - - -
A Model
LSE Fit 0.05629 14.49100 0.54461 0.99108 - -
MLE Fit 0.05659 14.49300 0.55353 0.98343 - -
p1p2 Model
LSE Fit 0.04172 14.49300 0.53655 - 0.04190 8.63340 × 10-15
MLE Fit 0.02733 14.49600 0.55437 - 0.05069 1.44840 × 10-15

Table 16 – Estimates obtained from fitting experimental data for calibration step using least
squares estimator(LSE) and maximum likelihood estimator(MLE) considering the
three models tested: Std, A model and p1 p2 model.

4.3.3 Real Data Tests

In this section we apply our estimators based on each new model functions to the

data. The results are presented in Table 16. Results are for fitting the data considering an

estimator based on the standard model (Std), the A model and the p1 p2 model. We also have

Table 17 to check if the estimates obtained are really the best for each model. Since the LSE

minimizes the sum of squared residuals, the sum for its estimates must be smaller than the sum of

squared residuals for the estimates obtained from MLE. In the other hand, the estimates obtained

from MLE must present bigger likelihood than those obtained from LSE.

As we can see in table 16, the estimates for temperature when using the A model are

smaller, but close to 0.06. There is a significant change in the estimates for Ω and γ . Estimates

for n̄ using the p1 p2 model indicates that the data provided does not allows us to obtain good

estimates considering spin flip probabilities, since the values are a lot smaller and the estimates for

p2 seems unrealistic. Table 17 presents the sum of the squared residuals and the log-likelihoods

for each set of estimates obtained from all the models considered. The A model and p1 p2 model

estimates present smaller sum of residuals than those obtained from Std model when using LSE.

On the other hand, their likelihoods are also bigger than the likelihoods for Std model estimates

when using MLE.

4.3.4 Amplification Analysis

In this section we present results of individual and joint fitting datasets in order to

detect amplitude amplification after squeezing and then reversing the squeezing of a displaced
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LSE Fit MLE Fit
Squared Residuals
Std Model 507.859 509.702
A0 Model 507.178 509.536
p1p2 Model 377.86 385.42
Likelihoods
Std Model -53.237 -53.2322
A0 Model -53.1216 -53.1186
p1p2 Model -52.9735 -52.9716

Table 17 – Weighted sum of squared residuals and likelihoods of the point estimates presented
in table 16.

thermal state (DTS). It means we need to estimate the amplitude before the squeezing operations,

and to estimate the amplitude of the final state. The final state is considered to be in a squeezed

displaced thermal state (SDTS) because we consider some residual squeezing. It is shown in

Table 12 that squeezing and reversing of squeering (STS2) results in a residual squeezing around

r = 0.3.

It may be difficult to distinguish between displacement and temperature when fitting

a SDTS depending on the displacement applied and the amount of data provided, resulting in

estimates with big confidence intervals and/or unrealistic point estimates. One way to overcome

it is, besides the option of fixing it with more data, fixing the value for temperature estimate. It

means that there is no significant change in the temperature when the amplification protocol is

applied. The results presented in this section assumes that restriction.

To do so we choose the point estimate for n̄ presented in Table 11 for MLE, consid-

ering the standard model for the pulse duration data. The results consists on point estimates and

confidence intervals obtained from fitting a DTS data and joint fitting SDTS data for a set of

relative phases after the amplification protocol. In order to better identify the amplification we

estimate confidence intervals for the results.

We joint fit 10 datasets for the ten different relative phases 2π×{0.1,0.2,0.3,0.4,0.5,

0.6,0.7,0.8,0.9}. Since there are 10 relative phases, the number of parameters to be estimated

when joint fitting the data is 10+2 = 12; 10 amplitudes, the residual squeezing and the offset δ .

The temperature is fixed. We use here MLE only, since the temperature chosen was obtained

from fitting the calibration data using MLE.

The ratio |α f |/|αi| depends on the amplitude point estimates before squeezing (|αi|)

and after reversing the squeezing (|α f |). To obtain the first, we fit the data for the DTS obtained

before squeezing it. The result is |αi|= 0.496 with confidence interval {0.48,0.52}.
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Estimates Confidence Intervals
|α1| 0.919 {0.89, 0.95}
|α2| 0.923 {0.89, 0.96}
|α3| 1.227 {1.20, 1.27}
|α4| 1.306 {1.26, 1.35}
|α5| 1.068 {1.03, 1.10}
|α6| 0.807 {0.78, 0.84}
|α7| 0.589 {0.56, 0.61}
|α8| 0.668 {0.65, 0.69}
|α9| 0.769 {0.75, 0.80}
|α10| 0.919 {0.89, 0.95}
r 0.582 {0.56, 0.60}
δ 1.912 {1.85, 1.97}

Table 18 – Estimates obtained from joint fitting a set of 10 datasets for different relative phases.
All the datasets were obtained from measuring the ion on a SDTS after the amplifica-
tion protocol. We used MLE with fixed temperature at n̄ = 0.094.

Table 18 presents the results for joint fitting the 10 datasets. All of them present

small confidence intervals. Some of the estimates are more than two times the value of |αi|. In

order to better characterize the amplification it is important to know the uncertainty associated

to each value |α f |/|αi|. To do so we use our bias-corrected percentile method with a set of

bootstrap replicates obtained from |α fBS |/|αiBS |, the ratio between the corresponding bootstrap

replicates, for each relative phase. Fig. 12 presents a plot of the point estimates for the final states

and its confidence interval bars. It is interesting to see that all bars are above the region defined

by the confidence interval limits of the DTS state. The second plot presents the amplitude ratios

and its confidence interval bars. All red points in that plot together with their bars are above one,

indicating amplification for all points. It also shows the dependence of the amplification on the

relative phase.
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Figure 12 – Estimates of the final states for each relative phase with confidence interval bars of 1
standard deviation(above plot) and amplification ratio with confidence interval bars
for 1 standard deviation(plot below) for different relative phases.
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5 CONCLUSION

In this work we presented a method of inference for any single mode squeezed

displaced thermal state based on the weighted least-squares and maximum likelihood estimators.

The results of our tests using simulated data for a squeezed thermal state showed high fidelity

results. The use of bias-correcting confidence intervals mitigates the bias present in the point

estimates from smaller data sets of highly-squeezed, low temperature states. Also, when dealing

with trapped ion’s fluorescence measurements good estimates for displacement were obtained

and joint fitting datasets with different relative phases allows better point estimates and less

uncertainty associated.

These tools allow one to learn key properties of squeezed thermal states with-

out the need for a phase reference (such as a local oscillator) in systems such as trapped

ions (Burd et al. 2019) or integrated quantum optics (Sahin et al. 2013; Höpker et al. 2019),

where performing Fock measurements is convenient. Errors related to the preparation of a

trapped ion state must be considered in order to correctly estimate its motional state parameters.

The analysis also presented a method to estimate amplification of an ion’s motional state. As a fu-

ture work we want to apply this method and the new model for pulse duration probabilities to real

data obtained from a single trapped ion state. It would allow us to check the estimates for p1 and

p2 and its uncertainty and to check how does the system’s temperature behave when displacing

and squeezing the initial thermal state, since we considered it fixed in the final analysis.
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