

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA CURSO DE ENGENHARIA CIVIL DEPARTAMENTO DE ENGENHARIA ESTRUTURAL E CONSTRUÇÃO CIVIL

IDENTIFICAÇÃO DE PADRÕES DE INDICADORES DE CONSUMO DE SISTEMAS ESTRUTURAIS

FORTALEZA

SAMUEL RODRIGUES UNIAS

IDENTIFICAÇÃO DE PADRÕES DE INDICADORES DE CONSUMO DE SISTEMAS ESTRUTURAIS

Projeto de Graduação apresentado ao Curso de Engenharia Civil da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Engenheiro Civil.

Orientador: Prof. Dr. Augusto Teixeira de Albuquerque

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Sistema de Bibliotecas Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

U1i Unias, Samuel Rodrigues.

Identificação de padrões de indicadores de consumo de sistemas estruturais / Samuel Rodrigues Unias. – 2021.

49 f.: il. color.

Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Centro de Tecnologia, Curso de Engenharia Civil, Fortaleza, 2021.

Orientação: Prof. Dr. Augusto Teixeira de Albuquerque.

1. Estrutura de concreto. 2. Indicador. 3. Análise comparativa. I. Título.

CDD 620

SAMUEL RODRIGUES UNIAS

IDENTIFICAÇÃO DE PADRÕES DE INDICADORES DE CONSUMO DE SISTEMAS ESTRUTURAIS

Projeto de Graduação apresentado ao Curso de Engenharia Civil da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Engenheiro Civil.

Aprovada em: 15/09/2021.

BANCA EXAMINADORA

Prof. Dr. Augusto Teixeira de Albuquerque (Orientador) Universidade Federal do Ceará (UFC)

> Profa. Dra. Magnólia Maria Campêlo Mota Universidade Federal do Ceará (UFC)

Profa. Msc. Marcela Moreira da Rocha Almeida Instituto Federal do Ceará (IFCE)

A Deus.

Aos meus pais.

RESUMO

Este trabalho consiste na identificação das diferenças apresentadas entre edificações em relação ao sistema estrutural adotado, cujo enfoque se dá nas diferenças de consumo entre três sistemas determinados: laje lisa protendida, laje nervurada com vigas-faixa protendidas e Pavplus. O método adotado é a aferição de indicadores em um conjunto determinado de projetos de edificações de uso residencial ou comercial que adotaram os sistemas escolhidos. Esses indicadores são baseados em dados relativos ao consumo e custo para a execução do pavimento tipo desses edificios, tais como: massa de armadura empregada, consumos de concreto e formas, área e perímetro. Padrões estatísticos são obtidos dos cálculos dos indicadores desenvolvidos para representar os aspectos pertinentes à descrição de projetos estruturais. Após a comparação entre os resultados obtidos para os indicadores de cada sistema, determina-se qual a magnitude das diferenças encontradas em cada aspecto descrito. Obteve-se que o sistema de laje lisa apresentou maiores valores para a maioria dos indicadores, assim como maior custo por área médio (R\$ 171,36). O sistema laje nervurada com vigas-faixa protendidas apresentou menores valores para os indicadores e menor custo por área médio (R\$ 146,59). O sistema Pavplus apresentou valores intermediários, tendo R\$ 164,52 como custo por área médio.

Palavras-chave: Estrutura de concreto; indicador; análise comparativa.

ABSTRACT

This work consists in identifying the differences presented between buildings in relation to the adopted structural system, which focus is on the consumption differences between three determined systems: prestressed flat slab, ribbed slab with prestressed slab beams and Pavplus. The method adopted is the measurement of indicators in a given set of building projects for residential or commercial use that have adopted the chosen systems. These indicators are based on consumption and cost data for the execution of the typical pavement of these buildings, such as: mass of reinforcement used, consumption of concrete and shapes, area and perimeter. Statistical standards are obtained from the calculations of the indicators developed to represent aspects relevant to the description of structural projects. After comparing the results obtained for the indicators of each system, the magnitude of the differences found in each aspect described is determined. It was found that the flat slab system had higher values for most indicators, as well as higher cost per average area (R\$ 171.36). The ribbed slab system with prestressed beam beams presented lower values for the indicators and lower cost per average area (R\$ 146.59). The Pavplus system presented intermediate values, with R\$ 164.52 as the average cost per area.

Keywords: Concrete structures; indicator; comparative analysis.

LISTA DE FIGURAS

Figura 1	- Forma estrutural do pavimento tipo do modelo 1 de Giroldo	17
Figura 2	- Forma estrutural do pavimento tipo do modelo 2 de Giroldo	17
Figura 3	– Detalhes da laje do pavimento tipo do modelo 2 de Giroldo	18
Figura 4	- Forma estrutural do pavimento tipo do modelo 3 de Giroldo	18
Figura 5	- Detalhes da laje do pavimento tipo do modelo 3 de Giroldo	19
Figura 6	- Forma estrutural do pavimento tipo do modelo 4 de Giroldo	19
Figura 7	- Detalhes da laje do pavimento tipo do modelo 3 de Giroldo	20
Figura 8	– Forma estrutural do pavimento tipo do modelo 5 de Giroldo	20
Figura 9	– Detalhes da laje do pavimento tipo do modelo 5 de Giroldo	21
Figura 10	– Forma estrutural do pavimento tipo do modelo 6 de Giroldo	21
Figura 11	- Comparativo de custo entre os modelos de Giroldo	22
Figura 12	- Custo total dos sistemas estruturais por Spohr	22
Figura 13	- Custo total para diversos sistemas estruturais por Silva	23
Figura 14	- Delimitação de pavimento tipo	24
Figura 15	- Solução laje lisa protendida	25
Figura 16	- Exemplo 1 de laje lisa protendida	25
Figura 17	– Exemplo 2 de laje lisa protendida	26
Figura 18	- Exemplo 3 de laje lisa protendida	26
Figura 19	Fotografia laje nervurada com vigas-faixa protendidas	27
Figura 20	- Exemplo 1 de laje nervurada com vigas-faixa protendidas	27
Figura 21	– Exemplo 2 de laje nervurada com vigas-faixa protendidas	27
Figura 22	- Exemplo 3 de laje nervurada com vigas-faixa protendidas	28
Figura 23	- Figura das formas do sistema Pavplus	28
Figura 24	- Preenchimento da geometria da região nervurada do sistema Pavplus	29

Figura 25	- Solução em sistema Pavplus	29
Figura 26	- Esquema estrutural 1 Pavplus	30
Figura 27	- Esquema estrutural 2 Pavplus	30
Figura 28	- Exemplo 1 de laje nervurada Pavplus protendida	31
Figura 29	- Exemplo 2 de laje nervurada Pavplus protendida	31
Figura 30	- Exemplo 3 de laje nervurada Pavplus protendida	31
Figura 31	- Exemplo de quadro de consumo	32
Figura 32	- Histograma área de pavimentos tipo	32
Figura 33	- Composição de custo unitário de concreto	33
Figura 34	- Composição de custo unitário de armadura passiva	33
Figura 35	- Composição de custo unitário de armadura ativa	34
Figura 36	- Composição de custo unitário de forma	34
Figura 37	- Pavimento com menor valor de retangularidade	39
Figura 38	- Pavimento com maior valor de retangularidade	39
Figura 39	Pavimento com maior valor de dificuldade	40
Figura 40	Pavimento com menor valor de dificuldade	40

LISTA DE GRÁFICOS

Gráfico 1 – Dispersão dos edificios por relação entre custo e retangularidade	38
Gráfico 2 – Dispersão dos edificios por relação custo e dificuldade	39
Gráfico 3 – Histograma de custo por área médio dos sistemas	41

LISTA DE TABELAS

Tabela 1	_	Valores médios dos indicadores de consumo	37
Tabela 2	_	Valores de desvio padrão amostral dos indicadores de consumo	38

LISTA DE SÍMBOLOS

C Custo por área

D_c Custo unitário de concreto

V_{conc} Volume de concreto

D_p Custo unitário de armadura passiva

M_{pass} Massa de armadura passiva

D_a Custo unitário de armadura ativa

Mativ Massa de armadura ativa

D_f Custo unitário de forma

S_{form} Área de forma

A Área do pavimento tipo

Ca Volume de concreto por área

Pa Massa de armadura passiva por área

A_a Massa de armadura ativa por área

F_a Área de forma por área

R_t Área de forma por perímetro

P Perímetro

D_f Área de formas de viga e pilar por área

S_{fvg} Área de forma de vigas

S_{fpl} Área de forma de pilares

SUMÁRIO

1	INTRODUÇÃO	14
2	REVISÃO DA LITERATURA	16
3	METODOLOGIA	24
3.1	Definições	24
3.1.1	Sistema laje lisa protendida	25
3.1.2	Sistema laje nervurada com vigas-faixa protendidas	26
3.1.3	Sistema Pavplus	28
3.2	Base de dados	31
3.3	Custos	33
3.4	Indicadores	35
3.4.1	Volume de concreto por m² (Ca)	35
3.4.2	Massa de armadura passiva por m² (Pa)	35
3.1.1	Massa de armadura ativa por m² (Aa)	36
3.4.4	Área de forma por m 2 (S_a)	36
3.4.5	Retangularidade (R _t)	36
3.4.6	Dificuldade (D_f)	36
3.5	Análise estatística	37
4	RESULTADOS	37
5	CONCLUSÃO	41
	REFERÊNCIAS	43
	ANEXO A	44
	ANEXO B	47

1 INTRODUÇÃO

O processo no qual se transforma o projeto de um empreendimento em um edifício inclui uma larga variedade de etapas e decisões a serem tomadas. A escolha de qual sistema estrutural será utilizado é um dos pontos nevrálgicos que compõem esse processo. Essa escolha é a origem de uma série de implicações no processo produtivo e em seu custo.

Há um considerável conjunto de estudos que visam contribuir para uma tomada de decisão mais efetiva, fornecendo enfoques em diversos tipos de estruturas e adotando-se diferentes métodos, tais como as contribuições de Giroldo (2007) e Spohr (2008). Estes exemplificam estudos que formulam o dimensionamento de um dado edifício projetado em diferentes sistemas estruturais e fornecem comparações de consumo e custos. Coelho (2010) também aborda diferenças de sistemas, mas delimitado à demanda de insumos, lançando-se luz sobre os impactos que um modelo estrutural pode exercer sobre um determinado projeto arquitetônico.

Este trabalho está incluso nesse contexto, oferecendo mais uma perspectiva sobre as potenciais diferenças entre sistemas estruturais dentro do cenário construtivo, especialmente para sistemas que tomam partido da protensão.

Portanto, o objetivo geral deste trabalho é identificar tendências de consumo atreladas ao pavimento tipo de edifícios residenciais e comerciais, delineadas em três sistemas estruturais diferentes: laje lisa protendida, laje nervurada com vigas-faixa protendidas e sistema Pavplus.

Como desdobramentos desse objetivo se desenvolvem a descrição das características de consumo dos pavimentos tipo, abrangendo as demandas de concreto, armaduras ativa e passiva e formas. Assim como, a descrição das propriedades geométricas dos projetos a partir dos valores de área e perímetro.

Além disso quantificar os valores de custo dos pavimentos tipo, detalhar as relações entre custo e propriedades dos projetos analisados, descrever diferenças de consumo encontradas a partir dos cálculos estatísticos realizados, e avaliar as características de consumo do um novo sistema, o sistema Pavplus.

Neste trabalho é feita uma comparação estatística de indicadores em três sistemas: laje lisa protendida, laje nervurada com vigas-faixa protendidas e Pavplus. Esses indicadores são aferidos em um conjunto de projetos de pavimentos tipo de edificios de usos residencial e comercial.

A análise proposta compreende parâmetros estatísticos a partir da elaboração de

indicadores de consumo e custo que possibilitam a comparação de aspectos relevantes entre os sistemas.

A estrutura deste trabalho consiste numa divisão em quatro partes que compreendem, respectivamente: revisão da literatura, metodologia, resultados e conclusão.

2 REVISÃO DA LITERATURA

A escolha de qual sistema estrutural será adotado na concepção de um empreendimento traz consigo múltiplos fatores para a compreensão do problema enfrentado. Determinar quais fatores são determinantes para uma abordagem adequada não é algo necessariamente simples.

O carácter multifatorial desse problema comporta diferentes perspectivas na tentativa de encontrar boas soluções. Uma abordagem que fornece significativa adaptabilidade à realidade dinâmica da construção civil foi adotada por Silva (2018) e Tabosa (2019). Essa consiste na adoção de padronizar os aspectos a serem analisados de uma estrutura em relação ao pavimento tipo.

Silva (2018) fez duas análises referentes aos custos relativos à mão de obra: identificar qual porcentagem dos custos em um empreendimento provém da mão de obra, e quais fatores contribuem para menores custos de mão de obra. Em seu trabalho Silva (2018) parametrizou os custos em função do pavimento tipo, estabelecendo um padrão que tornou possível fazer comparações entre construções de características distintas. Essa parametrização se mostrou significativamente adequada para o segundo objetivo citado.

Na monografía de Tabosa (2019), o objetivo era o desenvolvimento de um aplicativo que mensura os custos de um empreendimento. Para a elaboração dos cálculos necessários para a implementação do aplicativo também foram estabelecidos parâmetros que correlacionam características do edifício com informações do pavimento tipo.

Visando contribuir através da comparação entre sistemas estruturais, Giroldo (2007) e Spohr (2008) lançaram mão de estudos sobre os custos provenientes de diferentes sistemas construtivos para um mesmo projeto arquitetônico de exemplo.

Giroldo (2007) estudou, em um edifício residencial de 12 pavimentos, a aplicação de seis modelos: modelo 01 no qual há lajes lisas e vigas, quatro variações de lajes nervuradas sem o uso de vigas e modelo 06 de laje lisa, ou seja, sem uso de vigas e com emprego de protensão. As variações entre os modelos de laje nervurada, que compreendem os modelos 02, 03, 04 e 05, se dão basicamente no material utilizado para preencher os espaços que não são ocupados por concreto.

Segue abaixo as formas estruturais e detalhes das lajes nervuradas dos modelos utilizados por Giroldo (2007):

| 1 | 12/60 | 374 | 375 | 376

Figura 1 – Forma estrutural do pavimento tipo do modelo 1 de Giroldo

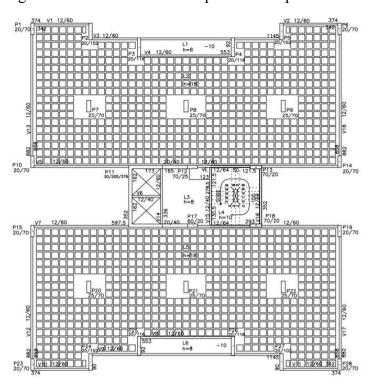


Figura 2 – Forma estrutural do pavimento tipo do modelo 2 de Giroldo

Fonte: Giroldo (2007).

O modelo 2 faz uso de blocos de concreto como material de enchimento.

Figura 3 – Detalhes da laje do pavimento tipo do modelo 2 de Giroldo

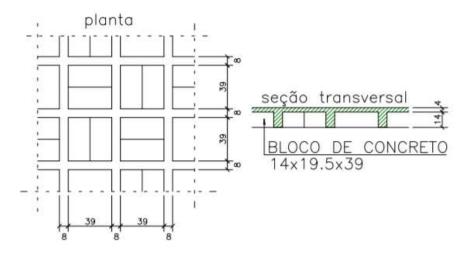
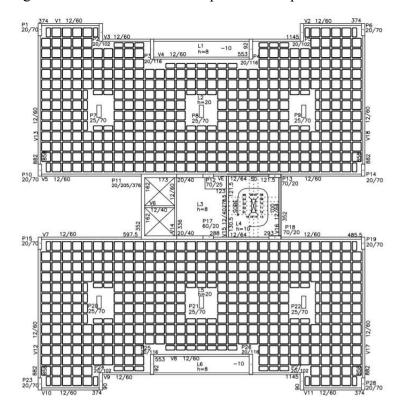



Figura 4 – Forma estrutural do pavimento tipo do modelo 3 de Giroldo

Fonte: Giroldo (2007).

O modelo 3 faz uso de formas plásticas como material de enchimento.

planta

seção transversal

función de la companyación de la companyaci

Figura 5 – Detalhes da laje do pavimento tipo do modelo 3 de Giroldo

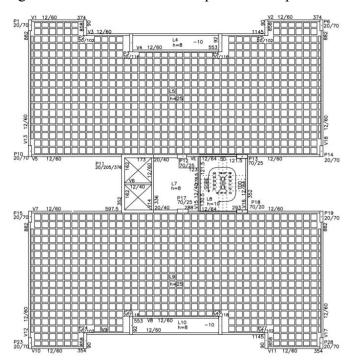


Figura 6 – Forma estrutural do pavimento tipo do modelo 4 de Giroldo

Fonte: Giroldo (2007).

O modelo 4 faz uso de poliestireno expandido como material de enchimento.

Figura 7 – Detalhes da laje do pavimento tipo do modelo 4 de Giroldo

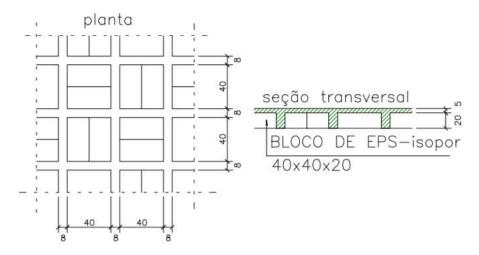
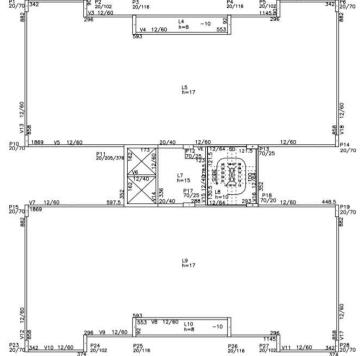


Figura 8 – Forma estrutural do pavimento tipo do modelo 5 de Giroldo


Fonte: Giroldo (2007).

O modelo 5 é similar ao 4, mas há pequenas diferenças no quantitativo de aço e comprimento das estacas pré-moldadas de fundação.

planta 58 seção transversal 58 58

Figura 9 – Detalhes da laje do pavimento tipo do modelo 5 de Giroldo

Figura 10 – Forma estrutural do pavimento tipo do modelo 6 de Giroldo

Fonte: Giroldo (2007).

A análise feita incorporou o dimensionamento de toda a superestrutura e estimativas de custo que incluíram despesas do processo construtivo. Os custos dos projetos que empregaram lajes nervuradas se mostraram como os mais econômicos dentre os resultados obtidos. Abaixo segue o comparativo entre os modelos feiro por Giroldo (2007).

R\$ 1.000.000,0

R\$ 900.000,0

R\$ 900.000,0

R\$ 700.000,0

R\$ 700.000,0

R\$ 600.000,0

R\$ 500.000,0

R\$ 400.000,0

R\$ 200.000,0

R\$ 200.000,0

R\$ 200.000,0

R\$ 100.000,0

R\$ 200.000,0

Figura 11 – Comparativo de custo entre os modelos de Giroldo

Observa-se que os modelos que priorizaram o uso propriedades geométricas para reduzir o consumo de material se mostraram mais vantajosos.

Spohr (2008) adotou a comparação de três sistemas para um edifício de dez pavimentos: estrutura convencional que contem lajes lisas e vigas, estrutura de lajes nervuradas pré-moldadas apoiadas sobre vigas e estrutura de lajes nervuradas apoiadas sobre pilares.

Neste trabalho o enfoque também foi na determinação de custos para a construção de um mesmo projeto arquitetônico, incluindo-se a fundação. E assim como no trabalho citado anteriormente, o sistema de laje nervurada se mostrou mais econômico.

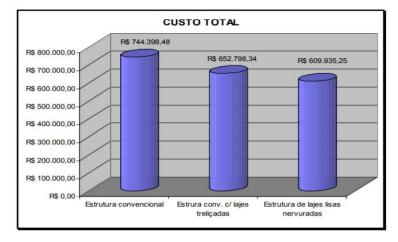


Figura 12 – Custo total dos sistemas estruturais por Spohr

Fonte: Spohr (2008).

Este mesmo padrão também foi observado em Silva (2002). Em sua análise de custos em sistemas estruturais a laje nervurada lisa apresentou os menores valores de custos.

Figura 13 – Custo total para diversos sistemas estruturais por Silva

Fonte: Silva (2002).

Em Sustentabilidade em Projeto de Estrutura de Concreto Armado (2014), foram abordadas três soluções tecnológicas diferentes: lajes maciças, lajes nervuradas e lajes prémoldadas. Foram desenvolvidas tipologias para uma edificação residencial multifamiliar de 12 pavimentos, cuja análise interativa possibilitou valores mais econômicos. Os resultados obtidos após a otimização dos projetos foram levemente distintos dos trabalhos citados anteriormente. O sistema de lajes pré-moldadas apresentou os menores valores e o sistema de lajes nervuradas os segundos menores valores.

Prá (2012), por sua vez, fez um estudo de sistemas estruturais que não utilizam vigas. Em seu trabalho foram destacados quais sistemas se demonstravam mais econômicos para diferentes consumos. O sistema de laje nervurada apresentou menor consumo de aço, enquanto sistema de laje lisa obteve melhores resultados para o consumo de formas. E também destaca que alguns tendem a se encaixar melhor a determinadas soluções, apesar das desvantagens que o sistema em questão possa apresentar.

3 METODOLOGIA

3.1 Definições

O material utilizado no estudo são projetos estruturais de pavimento tipo de edifícios residenciais e comerciais disponibilizados pelo Centro de Consultoria em Protensão (CCP). São considerados como componentes de um pavimento tipo lajes, vigas e trechos de pilar, compreendidos entre cotas de dois pavimentos consecutivos, conforme demonstrado na figura abaixo.

Outros elementos que podem compor um pavimento tipo, mas que não foram citados previamente são desconsiderados, tais como escadas e espaços vazios.

As informações retiradas desses projetos são referentes aos consumos de concreto, armadura passiva, armadura ativa e área de forma. Além disso foram coletados os valores de área e perímetro, sendo estes tomados a partir do polígono formado pelas linhas que representam as faces externas de pilares, vigas e lajes nos projetos estruturais.

As coletas foram feitas nos dias 14 de dezembro de 2020 e 26 de julho de 2021, de projetos estruturais feitos em 2019 e 2020.

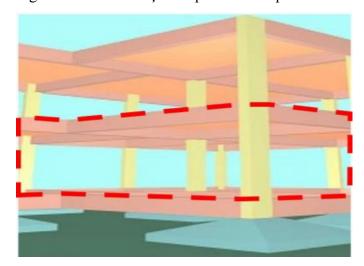


Figura 14 – Delimitação de pavimento tipo

Fonte: Silva (2018).

Esses projetos se enquadram em um dentre três sistemas estruturais: laje lisa protendida, laje nervurada com vigas-faixa protendidas e sistema Pavplus.

3.1.1 Sistema laje lisa protendida

O Sistema laje lisa protendida apresenta uma laje laminar maciça ligada diretamente aos pilares que possui cabos de armadura ativa que auxiliam na distribuição das cargas. Segue abaixo exemplo da distribuição dos cabos de protensão do sistema laje lisa, na qual são selecionadas linhas para concentração de cabos e cargas.

Figura 15 – Solução em laje lisa protendida

Fonte: Impacto Protensão LTDA

Abaixo segue-se três exemplos de projetos de pavimento tipo coletados deste sistema.

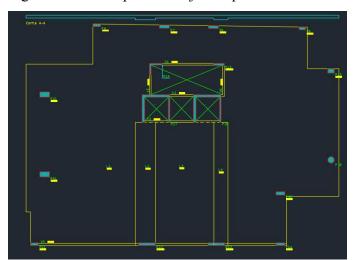


Figura 16 – Exemplo 1 de laje lisa protendida

Fonte: Centro de Consultoria em Protensão

Figura 17 – Exemplo 2 de laje lisa protendida

Fonte: Centro de Consultoria em Protensão

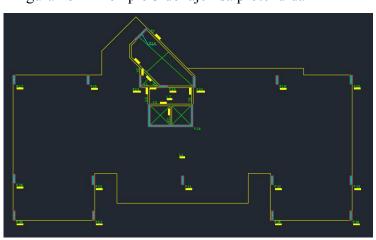
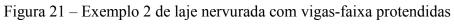


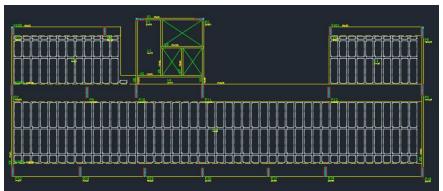
Figura 18 – Exemplo 3 de laje lisa protendida

Fonte: Centro de Consultoria em Protensão

3.1.2 Sistema laje nervurada com vigas-faixa protendidas

O sistema de laje nervurada com vigas-faixa protendidas apresentam a composição de lajes nervuradas que se apoiam em vigas-faixa protendidas que transmitem as cargas para os pilares. Segue abaixo a distribuição das formas desse sistema em obra, na qual se destaca as regiões das vigas-faixa protendidas.


Figura 19 – Solução em laje nervurada com vigas-faixa protendidas


Fonte: Impacto Potensão LTDA

Abaixo segue-se três exemplos de projetos de pavimento tipo coletados deste sistema.

Figura 20 – Exemplo 1 de laje nervurada com vigas-faixa protendidas

Fonte: Centro de Consultoria em Protensão

Fonte: Centro de Consultoria em Protensão

Figura 22 – Exemplo 3 de laje nervurada com vigas-faixa protendidas

Fonte: Centro de Consultoria em Protensão

3.1.3 Sistema Pavplus

O sistema Pavplus é um sistema desenvolvido para agregar características presentes nos sistemas tratados anteriormente: a continuidade das formas, que é característica das lajes lisas, e a redução de volume de concreto que não contribui estruturalmente do sistema de laje nervurada.

Nesse sistema a distribuição de cargas é feita diretamente da laje para os pilares e segue também outros princípios pertinentes às lajes lisas. Há uma divisão entre cabos concentrados e distribuídos na qual estes são dispostos ortogonalmente e utilização de cubas em regiões de momento fletor positivo.

Neste sistema todo o pavimento é analisado como um único elemento estrutural e há emprego de protensão.

A composição desse sistema é feita por tela soldada modularizada, monocordoalhas engraxadas e moldes plásticos quadrados em formatos de placas e cubetas com 61 cm de aresta. A espessura das regiões de laje maciça é igual à distância entre a base da nervura da região nervurada à superfície superior da laje.

PLASTERIT

PLASTERIT

Fórmas plásticas em

Polingopileno

Figura 23 – Figura das formas do sistema Pavplus

Fonte: Impacto Protensão LTDA

Abaixo segue, em mais detalhe, as informações referentes à geometria das regiões de laje nervurada do sistema Pavplus a serem selecionadas na modelagem do sistema pelo *Software* TQS.

Figura 24 – Preenchimento da geometria da região nervurada do sistema Pavplus

Fonte: Impacto Protensão LTDA

Apresenta-se abaixo a montagem em obra dos elementos que compõem o sistema Pavplus:

Figura 25 – Solução em sistema Pavplus

Fonte: Impacto Protensão LTDA

Abaixo segue-se demonstrações de exemplo de distribuição de regiões de protensão uniforme (RPU) e suas respectivas regiões de transferência de esforços (RTE) empregadas no desenvolvimento de um projeto que emprega o sistema Pavplus.

Figura 26 – Esquema estrutural 1 Pavplus

Fonte: Impacto Protensão LTDA

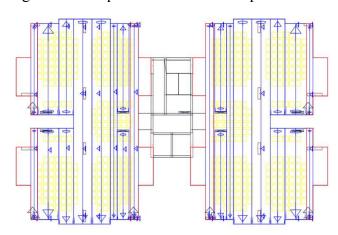
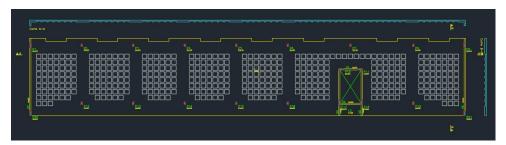


Figura 27 – Esquema estrutural 2 Pavplus


Fonte: Impacto Protensão LTDA

Abaixo segue-se três exemplos de projetos de pavimento tipo coletados deste sistema.

Figura 28 – Exemplo 1 de laje Pavplus

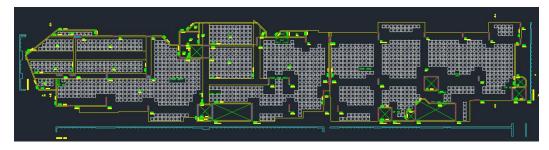

Fonte: Centro de Consultoria em Protensão

Figura 29 – Exemplo 2 de laje Pavplus

Fonte: Centro de Consultoria em Protensão

Figura 30 – Exemplo 3 de laje Pavplus

Fonte: Centro de Consultoria em Protensão

3.2 Base de dados

Ao todo, foram coletados 128 projetos, no formato DWG, distribuídos entre: 45 projetos de laje lisa protendida; 30 projetos de laje nervurada com vigas-faixa protendidas e 53

projetos que utilizam o sistema Pavplus. Esses projetos são opções fornecidas pelo Centro de Consultoria em Protensão, portanto alguns dos projetos analisados foram executados, havendo possibilidade de serem implementadas modificações antes de sua execução. Outros não foram executados.

Esse conjunto foi analisado coletando-se as informações relativas aos consumos das estruturas e fazendo-se as medições geométricas no *Software* AutoCad 2020. Abaixo segue exemplo de quadro de consumo fornecido nos projetos estudados.

Figura 31 – Exemplo de quadro de consumo

Fonte: Centro de Consultoria em Protensão

Feitas as medições, foi analisada a composição da base de dados para se ter medida de qual faixa de edificações foi representada na amostra obtida. Abaixo o histograma da distribuição dos projetos em relação à área do pavimento tipo em metros quadrados:

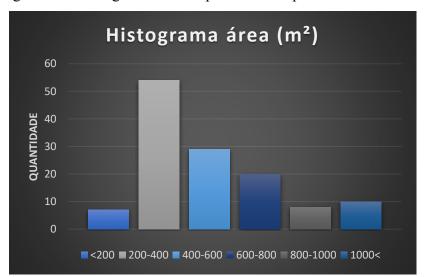


Figura 32 – Histograma área de pavimentos tipo

Fonte: Autor (2021)

3.3 Custos

Uma estimativa precisa dos custos relativos a um empreendimento exige uma abordagem abrangente dos fatores que os compõem, tais como mão de obra e processo construtivo, por exemplo. Portanto, foram adotados valores de referência para o custo dos insumos a partir da Secretaria de Infraestrutura do Ceará (SEINFRA/CE), tabela sem desoneração. Abaixo estão as composições de custo unitário adotadas:

Figura 33 – Composição de custo unitário de concreto

reço Ad	otado: 467,9600				Unid: M3
Código	Descrição	Unidade	Coeficiente	Preço	Total
	MAO	DE OBRA			
12543	SERVENTE	Н	6,0000	17,1400	102,8400
			TOTAL MAO	DE OBRA	102,8400
	MAT	TERIAIS			
10280	BRITA	M3	0,6270	76,1900	47,7711
11605	PEDRISCO	M3	0,2090	73,9000	15,4451
10805	CIMENTO PORTLAND	KG	396,0000	0,5600	221,7600
10109	AREIA MEDIA	M3	0,9290	67,5000	62,7075
			TOTAL M	ATERIAIS	347,6837
	EQUIPAMENT	TOS (CHORARI	O)		
10682	BETONEIRA ELÉTRICA 580L (CHP)	Н	0,7140	24,4208	17,4364
		TOTAL EQU	IPAMENTOS (CH	IORARIO)	17,4364
			Tota	al Simples	467,96
				Encargos	INCLUSOS
				BDI	0,00
			TOTA	L GERAL	467,96

Fonte: SEINFRA (2021)

Figura 34 – Composição de custo unitário de armadura passiva

reço Ad	otado: 15,4100				Unid: KG
Código	Descrição	Unidade	Coeficiente	Preço	Total
	MAO DE	OBRA			
10040	AJUDANTE DE ARMADOR/FERREIRO	Н	0,1000	18,6300	1,8630
10121	ARMADOR/FERREIRO	Н	0,1000	23,1700	2,3170
			TOTAL MAO	DE OBRA	4,1800
	MATE	RIAIS			
10103	ARAME RECOZIDO N.18 BWG	KG	0,0300	10,0500	0,3015
10163	AÇO CA-50	KG	1,1500	9,5000	10,9250
			TOTAL MA	ATERIAIS	11,2265
			Tota	I Simples	15,41
				Encargos	INCLUSOS
				BDI	0,00
			TOTA	L GERAL	15,41

Fonte: SEINFRA (2021)

Figura 35 – Composição de custo unitário de armadura ativa

Preço Ado	otado: 34,7900				Unid: KG
Código	Descrição	Unidade	Coeficiente	Preço	Total
	MAO D	E OBRA			
10040	AJUDANTE DE ARMADOR/FERREIRO	Н	0,1000	18,6300	1,8630
10121	ARMADOR/FERREIRO	Н	0,1000	23,1700	2,3170
			TOTAL MAO	DE OBRA	4,1800
	MATE	RIAIS			
10861	CORDOALHA CP-190 RB D=12,7 MM	KG	1,0300	9,3100	9,5893
10178	BAINHA METALICA D=35mm	M	1,3000	16,1700	21,0210
			TOTAL MA	ATERIAIS	30,6103
			Tota	al Simples	34,79
				Encargos	INCLUSOS
				BDI	0,00
			TOTA	L GERAL	34,79

Fonte: SEINFRA (2021)

Figura 36 – Composição de custo unitário de forma

Preço Ad	dotado: 101,6600				Unid: M2
Código	Descrição	Unidade	Coeficiente	Preço	Total
	MATERIAIS				
11916	TABUA DE 1" DE 3A L = 30cm	M	1,1700	10,0100	11,7117
11846	SARRAFO DE 1"X4"	M	1,5300	4,7400	7,2522
10526	CHAPA COMPENSADO PLASTIFICADO 12MM (1.22 X 2.44M)	M2	0,2600	29,5700	7,6882
11691	PONTALETE / BARROTE DE 3"x3"	M	1,2000	12,6100	15,1320
11728	PREGO 18X27 (2.1/2" X 10) (APROXIMADAMENTE 198UN/KG)	KG	0,2500	13,8000	3,4500
			TOTAL MA	TERIAIS	45,2341
	MAO DE OBR	A			
10041	AJUDANTE DE CARPINTEIRO	Н	1,3500	18,6300	25,1505
10498	CARPINTEIRO	H	1,3500	23,1700	31,2795
			TOTAL MAO D	E OBRA	56,4300
			Tota	I Simples	101,66
			I	Encargos	INCLUSOS
				BDI	0,00
			TOTAL	GERAL	101,66

Fonte: SEINFRA (2021)

O valor de custo utilizado nas análises deste trabalho é o valor de custo por área, utilizando-se os valores previamente utilizados na equação:

$$C = \frac{D_c V_{conc} + D_p M_{pass} + D_a M_{ativ} + D_f S_{form}}{A}$$

Onde:

C é o custo em R\$/m².

D_c é o custo unitário concreto em R\$/m³.

V_{conc} é o volume de concreto de lajes, vigas e pilares em m³.

D_p é o custo unitário armadura passiva em R\$/Kg.

M_{pass} é a massa de armadura passiva em Kg.

Da é o custo unitário armadura ativa em R\$/Kg.

Mativ é a massa de armadura ativa em Kg.

D_f é o custo unitário de área de forma em R\$/m².

S_{form} é área de forma para lajes, vigas e pilares em m².

A é o valor de área do pavimento tipo em m².

3.4 Indicadores

Em seguida foram formulados indicadores que relacionam os quatro tipos de insumos empregados e as propriedades geométricas de área e perímetro de um pavimento, compreendendo um total de oito indicadores. Estes indicadores são razões entre as quantidades de insumos e as propriedades citadas.

3.4.1 Volume de concreto por m^2 (C_a)

Este indicador relaciona o volume de concreto (V_{conc}) em m³ que compõe lajes, vigas e pilares do pavimento tipo com a área do mesmo (A) em m²:

$$C_a = \frac{V_{conc}}{A}$$

3.4.2 Massa de armadura passiva por $m^2 (P_a)$

Este indicador relaciona a massa de armadura passiva (M_{pass}) em Kg utilizadas em lajes, vigas e pilares do pavimento tipo com a área do mesmo (A) em m²:

$$P_a = \frac{M_{pass}}{A}$$

3.4.3 Massa de armadura ativa por $m^2(A_a)$

Este indicador relaciona a massa de armadura ativa (M_{ativ}) em Kg utilizada em lajes e vigas do pavimento tipo com a área do mesmo (A) em m^2 :

$$A_a = \frac{M_{ativ}}{A}$$

3.4.4 Área de forma por m^2 (S_a)

Este indicador relaciona a área de forma (S_{form}) em m² empregada para lajes, vigas e pilares do pavimento tipo com a área do mesmo (A) em m²:

$$S_a = \frac{S_{form}}{A}$$

3.4.5 Retangularidade (R_t)

Este indicador relaciona é a razão área por perímetro do pavimento tipo, em m²/m, é utilizado como um parâmetro para a dispersão do custo por área dos edifícios.

$$R_t = \frac{A}{P}$$

P é o valor de perímetro em m.

3.4.6 Dificuldade (D_f)

Este indicador relaciona é a razão entre a soma das áreas de forma de vigas e pilares em m² e a área do pavimento tipo em m². O indicador Dificuldade é utilizado como um parâmetro para a dispersão do custo por área dos edificios.

$$D_f = \frac{S_{fvg} + S_{fpl}}{\Delta}$$

 $S_{fvg} \, \acute{e} \, o \, valor \, de \, \acute{a}rea \, de \, forma \, para \, vigas \, em \, m^2 \, e \, S_{fpl} \, \acute{e} \, o \, valor \, de \, forma \, para \, pilares \, em \, m^2.$

3.5 Análise estatística

O conjunto dos valores obtidos dos indicadores para os pavimentos da base de dados compõe um novo conjunto de dados. A esse conjunto foram aplicados cálculos estatísticos para determinar os padrões de consumo dos sistemas estruturais escolhidos. Os cálculos realizados se deram na determinação de média e desvio padrão amostral.

4 RESULTADOS

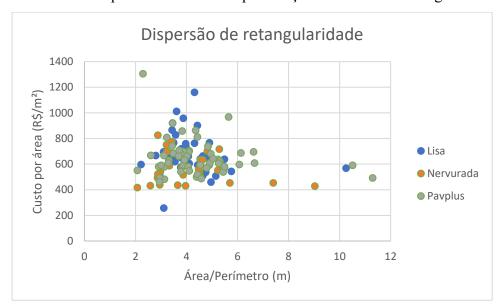
Seguem a baixo tabelas contendo os valores obtidos para os parâmetros estatísticos divididos em conjunto, para uma melhor compreensão das diferenças entre os sistemas estruturais. Os valores obtidos para consumo e para os indicadores de cada pavimento se encontram nos anexos A e B, respectivamente.

Tabela 1 – Valores médios dos indicadores

Indicador	Lisa	Nervurada	Pavplus
C_a	0,2601	0,2188	0,2403
P_a	15,1203	14,2928	14,7461
A_a	4,7857	2,4126	4,3023
F_a	1,5064	1,5417	1,6143
Retangularidade	4,1799	4,2504	4,4404
Dificuldade	0,6174	0,7734	0,6888

Fonte: elaborada pelo autor

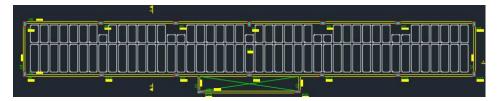
As duas próximas tabelas se referem aos valores de desvio padrão amostral dos indicadores calculados.


Tabela 2 – Valores de desvio padrão amostral dos indicadores de consumo

Indicador	Lisa	Nervurada	Pavplus
C_a	0,0758	0,1240	0,0458
P_a	4,4441	4,7273	5,3453
A_a	1,8261	0,7703	1,1623
F_a	0,3114	0,2056	0,3176
Retangularidade	1,1921	1,4836	1,6532
Dificuldade	0,2485	0,2168	0,2628

Fonte: elaborada pelo autor

Abaixo estão os gráficos de dispersão que relacionam os dois fatores que compõem cada indicador.


Gráfico 1 – Dispersão dos edificios por relação entre custo e retangularidade

Fonte: elaborada pelo autor

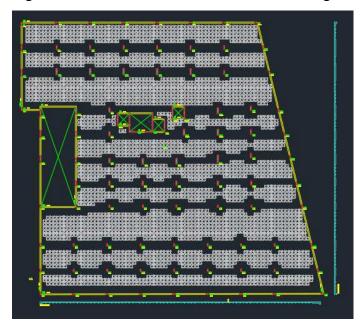

Seguem a baixo os pavimentos tipo, respectivamente, com o menor e o maior valor obtidos para a retangularidade.

Figura 37 – Pavimento com menor valor de retangularidade

Fonte: Centro de Consultoria em Protensão

Figura 38 – Pavimento com maior valor de retangularidade

Fonte: Centro de Consultoria em Protensão

Gráfico 2 – Dispersão dos edificios por relação custo e dificuldade

Fonte: elaborada pelo autor

Seguem a baixo os pavimentos tipo, respectivamente, com o menor e o maior valor obtidos para a dificuldade.

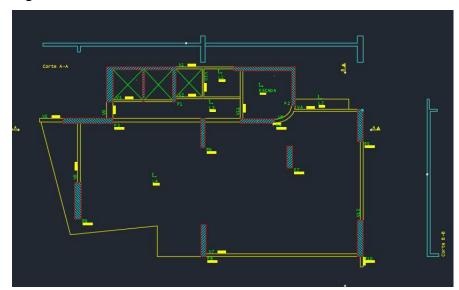


Figura 39 – Pavimento com maior valor de dificuldade

Fonte: Centro de Consultoria em Protensão

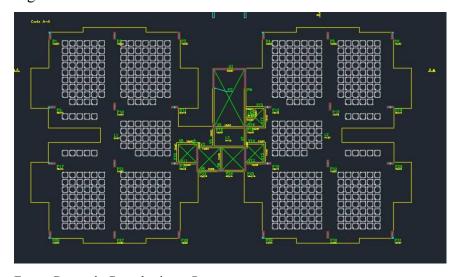


Figura 1 – Pavimento com menor valor de dificuldade

Fonte: Centro de Consultoria em Protensão

Segue a relação do custo por área médio de cada um dos sistemas estruturais:

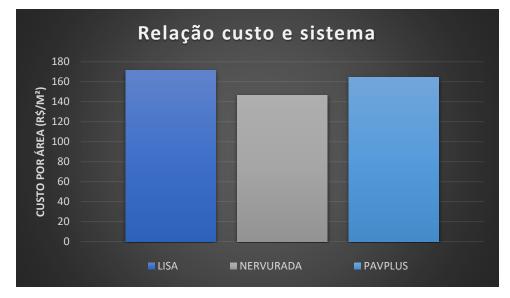


Gráfico 3 – Histograma de custo por área médio dos sistemas

Fonte: elaborada pelo autor

5 CONCLUSÃO

Ao se comparar os valores obtidos para os indicadores de cada sistema estrutural pode-se observar que o sistema de laje lisa se demonstrou como o mais oneroso na maioria dos indicadores, e sistema de lajes nervuradas com vigas-faixa protendidas como o menos oneroso.

O sistema de laje lisa apresentou os índices médios mais elevados em três dos indicadores de consumo. A maior diferença em relação ao segundo maior índice se deu no indicador A_a, 11,24% maior, e a menor diferença no indicador P_a 2,54% maior. O sistema de laje lisa é o sistema dentre os analisados que possui menos mecanismos para melhorar sua capacidade estrutural, demonstrou-se menos vantajoso.

O sistema laje nervurada com vigas-faixa protendidas apresentou os índices médios mais baixos nos mesmos indicadores de consumo. A maior diferença em relação ao segundo menor índice se deu no indicador Aa, 43,92% menor, e a menor diferença no indicador Pa 3,07% menor.

O sistema Pavplus, que possui elementos dos sistemas estruturais anteriores, apresentou a posição intermediária nesses indicadores. Pode-se observar que esse sistema apresentou valores mais próximos do sistema de laje lisa, como descrito pelas porcentagens anteriores e na comparação no indicador C_a. Nesse indicador o sistema de laje lisa obteve um índice 8,26% maior, e o sistema de laje nervurada com vigas-faixa protendidas um índice 8,92% menor.

Os resultados do indicador S_a destoaram significativamente dos demais. Esses resultados são, no entanto, esperados uma vez que o sistema de laje lisa provavelmente seria aquele que apresentaria o menor valor para esse indicador dado sua geometria mais simples.

A disposição dos sistemas foi similar ao observado nos indicadores de consumo, e na literatura, quando analisado o custo por área médio de cada sistema: sistema de laje lisa 4,16% maior em relação ao sistema Pavplus, sistema laje nervurada com vigas-faixa protendidas 10,90% menor em relação ao mesmo sistema.

Há, todavia, diversos aspectos que influem positivamente na adoção de um determinado sistema estrutural, além da perspectiva do consumo analisada neste trabalho. O sistema Pavplus, por exemplo, tem como características a uniformidade da espessura da laje assim como o sistema de laje lisa, que permite uma execução mais rápida, e utiliza cubas, assim como o sistema de laje nervurada com vigas-faixa protendidas. No entanto, sua concepção de distribuição de esforços diverge deste e apresenta menor custo por área médio em relação a aquele. Portanto, é necessário avaliar caso a caso a adequação de cada sistema a novos projetos.

Este trabalho não encerra a totalidade dos aspectos relevantes para a compreensão das diferenças entre estes sistemas estruturais, mas afere diferenças significativas entre estes no que se refere a consumo.

Nas distribuições de custo por área pode-se observar tendências claras.

A distribuição em relação à retangularidade demonstra a relação entre área e perímetro influi nos custos de uma estrutura, de modo que quanto maiores razões tendem para menores valores de custo.

Na distribuição em relação à dificuldade, por sua vez, pode-se observar que um maior número de vigas e pilares contribui para maiores custos do pavimento tipo.

Este trabalho aborda três sistemas estruturais determinados, portanto há, como sugestão para trabalhos futuros, a comparação de custo analisando-se outros sistemas estruturais. Há também a possibilidade de abordar estes sistemas descrevendo em mais detalhe a considerações referentes aos custos.

REFERÊNCIAS

COELHO, E. L et AL Estudo Comparativo entre Sistemas Estruturais com Lajes Lisas, Nervuradas e Lajes Lisas. 90. Simpósio de Mecânica Computacional - São João Del Rei, 2010.

GIROLDO, Luiz Carlos. Edifício residencial de múltiplos pisos: análise comparativa de custos de sistemas estruturais em concreto para o pavimento tipo. 2007.

PRÁ, Artur Antônio dal. **Análise de alternativas de projeto para pavimentos sem vigas em concreto armado**. 2012. 129 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, 2012.

SEINFRA. **Tabela de custos. Fortaleza**, 2021. Disponível em: <www.seinfra.ce.gov.br/tabela-de-custos/>. Acesso em: 22 ago. 2021.

SILVA, Andréia Rodrigues da. **Análise comparativa: sistemas estruturais convencionais e estruturas de lajes nervuradas**. 2002. 211 f. Dissertação (Mestrado) - Curso de Engenharia de Estruturas, Universidade Federal de Minas Gerais, Belo Horizonte, 2002.

SILVA, Carlos Henrique de Andrade. **Análise do impacto e da variabilidade dos custos da mão-de-obra na execução de estruturas de concreto**. 2018. 80 f. TCC (Graduação) — Curso de Engenharia Civil, Universidade Federal do Ceará — UFC, Fortaleza, 2018

SPOHR, Valdi Henrique. **Análise comparativa: sistemas estruturais convencionais e estruturas de lajes nervuradas**. 2008. 107 f. Dissertação (Mestrado) - Curso de Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, 2008.

SUSTENTABILIDADE EM PROJETO DE ESTRUTURA DE CONCRETO ARMADO, 56., 2014, Natal. **Congresso Brasileiro do Concreto:** Um estudo de caso. Natal: Ibarcon, 2014. 13 p.

TABOSA, Diego Alves. **Desenvolvimento de aplicativo para avaliação de custos de projetos estruturais para edifícios em concreto**. 2019. 56 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade Federal do Ceará, Fortaleza, 2019.

ANEXO A – MEDIÇÕES DOS PAVIMENTOS TIPO

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		3927	3928	3929	3974	3979	3986	4014	4015	4019	4021	4033	4034	4043	4057	4059
GEOMETRIA	PERÍMETRO (M)	109,1839	65,7597	160,8020701	72,24595	131,9493737	118,2884615	96,07	75,96	154,351	78,2462	153,8842721	69,07747694	225,5341	153,8842721	185,507
GEOWETKIA	ÁREA (M²)	536,1481	145,814525	781,5215068	280,03975	569,2917955	608,959645	470,1613292	327,2976	585,4218	295,006825	751,8630552	238,3918819	2312,3898	751,8630552	841,973
	VIGA medida	12,01	1,84	8,84	5,06	1,5	4,94	5,64	5,61	12,27	2,22	9,06	7,57	30,9	15,79	25,26
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONCRETO (M3)	VIGA	12,01	1,84	8,84	5,06	1,5	4,94	5,64	5,61	12,27	2,22	9,06	7,57	30,9	15,79	25,26
	PILAR	15,61	5,1	31,2	19,36	27,18	29,52	37,48	21,76	43,09	9,24	28,07	34,63	39,75	29,25	38,25
	LAJE	99,06	23,31	149,16	48,14	110,08	109,08	80,38	184,03	96,37	48,55	170,1	39,26	512,08	147,78	131,99
	VIGA medida	1287	359	1246	496	3061	650	2248	744	2350	504	1376	1577	2474	2585	1935
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	VIGA	1287	359	1246	496	3061	650	2248	744	2350	504	1376	1577	2474	2585	1935
	PILAR	1929	497	5003	1231,44	3865	2944,86	4009	2493	4297,48	1196,57	4848,73	1851	3539	4610	5207
	LAJE	3469,86	964,3	5272	1981	4483	4931	3003	3534	5306,78	2058,468	4480	2336,004	17816	4694	5786
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	2716	619	3763	837	3061	1982	2361	3672,98	1795	1240	3195	1116	10310	2781	3477
	VIGA medida	131,13	27,05	96,85	55,98	20,26	63,1	68,23	32,29	139,92	32,58	114,46	81,26	310,82	201,19	234,34
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REA DE FÔRMA (M2)	VIGA	131,13	27,05	96,85	55,98	20,26	63,1	68,23	32,29	139,92	32,58	114,46	81,26	310,82	201,19	234,34
REA DE FORMA (MZ)	PILAR	190,77	76,41	312,31	170,75	289,02	289,13	287,22	139,81	363,23	93,6	289,56	240,58	470,22	291,36	319,68
	LAJE LISA	493,16	126,26	722,43	428,36	550,33	55,64	408,19	306,71	512,1	269,75	684,71	205,02	2321,29	0	699,27
	LAJE NERVURADA	0	0	0	0	0	0	0	0	0	0	0	0	0	674,7	0
	CLASSIFICAÇÃO	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
		4073	4077	4100	4109	4140	4142	4150	4151	4177	4179	4215	4225	4228	4243	4247
CECULETTO	PERÍMETRO (M)	189,1625	135,105678	101,3864097	71,36155	85,8121203	87,9001	69,48165	83,98375	120,1998	58,40175	131,749	117,4515863	195,53625	109,62715	153,194
GEOMETRIA	ÁREA (M²)	1088,637	447,094036	354,5947233	290,37968	396,1755648	417,6213	215,4466	389,3467	412,8692	162,98515	388,76345	446,5897855	803,18895	364,50235	609,0786
	VIGA medida	5,84	9,51	7,76	0,82	0,91	2,13	4,85	11,83	10,2	4,53	4,85	6,52	4,2	9,31	19,5
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
CONCRETO (M3)	VIGA	5,84	9,51	7,76	0,82	0,91	2,13	4,85	11,83	10,2	4,53	4,85	6,52	4,2	9,31	19,5
	PILAR	28,3	26,3	16,61	9,49	6,44	15,44	19,82	11,85	48,67	7,33	9,03	17,6	14,42	22,54	32,76
	LAJE	192,74	77,1	61,65	68,08	75,87	75,49	36,69	58,49	86,44	24,94	64,74	80,64	165,81	66,86	123,94
	VIGA medida	846	943	1544,29	57	54	262	722	868	2722	674	345	670	427	1229	2876
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AÇO PASSIVO (KG)	VIGA	846	943	1544,29	57	54	262	722	868	2722	674	345	670	427	1229	2876
	PILAR	5031,73	1387,61	1995,06	1282	713	1208	1491	1152	4308,96	840	1150	1488	3418,25	1877	3997
	LAJE	6283,775	3617	3177,44	2311	3054,06	2650	1101	1906,8	2778	1350	2556	3367	5480,4	2717	4264
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	4581,38	1988	2033,7	1732	1672	1768	825	1119	1558	538	1326	1661	4481	1353	2550
	VIGA medida	72,82	110,97	93,17	10,63	13,42	30,84	63,98	144,33	121,08	55,68	61,84	67,51	44,57	100,37	222,51
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REA DE FÔRMA (M2)	VIGA	72,82	110,97	93,17	10,63	13,42	30,84	63,98	144,33	121,08	55,68	61,84	67,51	44,57	100,37	222,51
IKEA DE FURIMA (MZ)	PILAR	327,98	215,51	161,76	98,32	89,18	145,8	160,04	160,44	354,53	79,97	152,35	181,54	176	217,26	283,81
	LAJE LISA	963,71	405,94	310,23	272,32	379,36	372,94	184,04	292,47	351,24	145,06	359,68	408,87	755,37	333,23	541,81
	LAJE NERVURADA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIPO	CLASSIFICAÇÃO	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA

		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
		4256	4260	4261	4265	4272	4276	4279	4298	4280	4314	4325	4350	4466	4490	4269
GEOMETRIA	PERÍMETRO (M)	94,27676	79,00575	84,9	120,0368	98,00247506	74,86	99,51571289	106,4368	166,3459	128,678692	190,6987925	88,7058	121,03158	73,03375084	98,77147
GEOMETRIA	ÁREA (M²)	324,3175	282,252875	375,71	532,3794	388,8999385	289,914	328,3009773	392,501	634,7158	399,985174	945,982286	320,2593	663,81447	259,0391393	458,0993
	VIGA medida	4,55	3,8	4,5	2,33	7,16	11,95	6,2	2,38	1,91	2,54	0	0,5	8,5	4,44	6,36
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONCRETO (M3)	VIGA	4,55	3,8	4,5	2,33	7,16	11,95	6,2	2,38	1,91	2,54	0	0,5	8,5	4,44	6,36
	PILAR	13,68	23,77	37,44	16,26	14,33	7,28	18,26	12,83	30,33	4,62	21,92	3,97	38,68	13,11	17,23
	LAJE	59,06	54,94	68,55	100,06	84,81	80,61	57,56	79,25	120,95	32,45	165,92	124,73	123,28	46,11	88,44
	VIGA medida	145	930	1157	417	1366	1434	713	345	462	266	0	250	826	516	725
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AÇO PASSIVO (KG)	VIGA	145	930	1157	417	1366	1434	713	345	462	266	0	250	826	516	725
	PILAR	1900	2928,84	5609	1543	1978	1292	1814	2270	3928	350	2450	2042	3530	980	2182
	LAJE	2415	2095	2776,33	3847	3246	3421	2565	2962	4566	1324	7140	4369	5289	1707	3156
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	1715	1560	2006	2868	2461	2515	1226	2530	3032	813	2603	3565	2543	1152	2744
	VIGA medida	22,08	46,48	52,54	32,64	76,86	116,44	84,85	26,69	28,67	34,38	0	5,73	89,21	50,03	59,33
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REA DE FÔRMA (M2)	VIGA	22,08	46,48	52,54	32,64	76,86	116,44	84,85	26,69	28,67	34,38	0	5,73	89,21	50,03	59,33
REA DE FURIMA (MZ)	PILAR	145,45	183,71	292,36	166,08	142,76	96,32	188,35	144	306,32	60,68	235,12	45,99	344,05	126,03	146,33
	LAJE LISA	296,77	250,82	343,92	500,28	354,84	267,97	287,78	365,17	604,76	162,25	829,58	311,84	617,66	230,54	406,51
	LAJE NERVURADA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIPO	CLASSIFICAÇÃO	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA	LISA

		46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
		3933	3497	3963	3977	3993	3994	3995	3996	3998	4006	4007	4011	4018	4020	4038
GEOMETRIA	PERÍMETRO (M)	72,1	72,2327	109,5008	76,71	84,53785	153,8804	214,1503	207,7471	100,2059	143,9088	69,03185	275,6284	81,5611	192,3367	95,10238
	ÁREA (M²)	316,92	279,751475	664,5232	240,46953	279,577775	751,8254	879,2348	1028,923	436,7103	953,1847	238,487775	2897,3136	333,0246	2172,8164	460,8316
	VIGA medida	1,8	5,06	12,03	3,07	2,56	9,06	25,69	60,09	13,59	32,58	7,57	57,93	5,72	3,12	5,64
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONCRETO (M3)	VIGA	1,8	5,06	12,03	3,07	2,56	9,06	25,69	60,09	13,59	32,58	7,57	57,93	5,72	3,12	5,64
	PILAR	8,56	19,36	39,12	4,82	19,7	28,07	45,58	56,78	33,88	84,25	33,85	59,49	27,9	85,99	37,48
	LAJE	47,62	41,42	101,2	36,32	55	142,07	161,01	137,55	77,04	150,27	36,99	547,28	50,84	330,59	68,3
	VIGA medida	250	502	1907	378	255	1376	1765	4535	3246	3585	1577	3437	1331	260	2306
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AÇO PASSIVO (KG)	VIGA	250	502	1907	378	255	1376	1765	4535	3246	3585	1577	3437	1331	260	2306
	PILAR	747,12	1577	3802,9	598	1480	4848,73	6173	5692	5371	6067	2933	5997	3087	6527	3962
	LAJE	1617	1507,848	4096	1099,224	1593	4081,61	5106	5740,456	2315	5521	1612	17960	1973,954	11563	2449,952
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	1397	909	1953	903	1286	2635,166	4439	4336	2120	3722	995	17050	1041	8069	2228
	VIGA medida	25,68	55,98	131,74	42,61	32,67	114,36	307,09	420,41	120,61	330,41	81,3	451,24	79,24	37,03	68,23
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ÁREA DE FÔRMA (MZ)	VIGA	25,68	55,98	131,74	42,61	32,67	114,36	307,09	420,41	120,61	330,41	81,3	451,24	79,24	37,03	68,23
AREA DE FORMA (M2)	PILAR	95,58	170,75	332,33	53,86	150,3	289,56	414,65	543,83	250,48	515,45	239,68	529,88	205,96	1000,7	287,22
	LAJE LISA	1,95	15,33	47,43	4,09	0	21,54	0	15,22	47,17	44,32	28,89	0	26,45	0	15,72
	LAJE NERVURADA	291,44	233,03	535,65	212,64	247,23	663,17	802,36	836,44	330,83	829,1	176,38	2802,57	245,46	1989,6	392,48
TIPO	CLASSIFICAÇÃO	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS

		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
		4055	4056	4060	4075	4081	4083	4108	4114	4115	4130	4132	4133	4147	4163	4176
GEOMETRIA	PERÍMETRO (M)	136,4148	94,52625	185,5024	158,22951	180,9635	116,9	71,36155	133,1034	99,7043	69,314	136,2551	95,12240306	91,21305	84,41215	120,1998
GEOMETRIA	ÁREA (M²)	528,6327	295,240975	841,727	1053,9823	1109,5655	611,76	290,379675	590,0202	399,7796	215,6293	447,6472	460,5514523	349,21125	293,28025	412,8692
	VIGA medida	16,56	3,35	25,07	55,24	12,93	6,15	0,82	3,62	2,18	4,95	9,51	5,96	10,48	4,85	9,81
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONCRETO (M3)	VIGA	16,56	3,35	25,07	55,24	12,93	6,15	0,82	3,62	2,18	4,95	9,51	5,96	10,48	4,85	9,81
	PILAR	42,06	12,81	47	30,06	91,49	24,83	9,49	12,87	37,74	19,82	26,3	35,22	38,3	18,29	48,67
	LAJE	70,63	52,73	116,92	172,07	169,32	115,6	55,99	102,81	62,57	30,34	66,49	70,85	49,92	43,9	73,66
	VIGA medida	2315	360	2015	5471	4446	706	57	432	1024	681	1324	1921	2076	982	0
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	VIGA	2315	360	2015	5471	4446	706	57	432	1024	681	1324	1921	2076	982	2423
	PILAR	5663	1082	4472	6006	11400	2412,36	1312	1430,2	1966,55	1442	1982	4199	5135	2037	2982,75
	LAJE	1754	1805,704	4191,6	2928	5841,928	4926,486	1630	4501,96	2538,522	1057	1909,11	2744	1634	1752	2079,626
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	1654	1260	3319	3906	3010	3044	1498	2165	1822	788	2014	1915	1387	1295	1309
	VIGA medida	168,79	44,88	231,7	346	131,82	75,32	10,63	47,36	24,49	65,08	110,97	71,66	114,74	56,22	0
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ÁREA DE FÔRMA (M2)	VIGA	168,79	44,88	231,7	346	131,82	75,32	10,63	47,36	24,49	65,08	110,97	71,66	114,74	56,22	121,74
AREA DE FORIVIA (IVIZ)	PILAR	308,94	130,9	355,68	351,04	770,51	257,52	98,32	159,6	285,06	160,04	215,51	345,81	272,71	177,93	354,53
	LAJE LISA	28,22	0	104,04	37,55	0	15,37	0	16,78	17,79	3,49	12,11	15,72	14,82	9,37	0
	LAJE NERVURADA	485,26	263,21	592,75	862,26	1013,22	547,44	272,32	539,51	343,13	180,3	392,4	391,97	274,48	252,8	341,74
	CLASSIFICAÇÃO	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS

		76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
		4191	4203	4214	4223	4229	4248	4252	4254	4255	4257	4259	4262	4290	4291	4292
GEOMETRIA	PERÍMETRO (M)	70,1078	94,24195	131,75805	139,68	195,53625	204,2535	141,479787	111,2861	84,19745	62,8496	122,9999	84,9	139,31178	101,8853971	99,0627
GEOMETRIA	ÁREA (M²)	226,2176	354,956375	388,75695	686,6405	803,18895	1082,7522	768,4949305	560,9255	385,3285	144,133925	694,4895	375,71	517,16113	295,9288338	297,558
	VIGA medida	5,67	7,01	4,85	2,97	4,2	6,62	15,35	3,15	1,69	1,55	20,43	2,08	11,92	4,51	5,12
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONCRETO (M3)	VIGA	5,67	7,01	4,85	2,97	4,2	6,62	15,35	3,15	1,69	1,55	20,43	2,08	11,92	4,51	5,12
	PILAR	21,14	22,19	9,42	38,92	14,42	32,76	11,63	19,33	5,93	13,68	80,24	37,44	42,44	17,41	16,17
	LAJE	32,08	54,75	48,1	108,96	137,34	188,45	156,91	88,83	68,32	49,69	101,55	73,14	93,45	44,5	44,79
	VIGA medida	1024	1246	346	369	334	724	577	274	113	145	686	695	1974	501	626
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AÇO PASSIVO (KG)	VIGA	1024	1246	346	369	334	724	577	274	113	145	686	695	1974	501	626
	PILAR	2208,8	2050	1039	4066	2859,88	2568	1179	6003	1190,5	1900	16817	4435,17	3082	1385	1129
	LAJE	1794	1882	2406,8	3305	4744	7391,614	4786	4002,344	2172	1915	5097	2863,748	2752	1738,04	1771,312
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	941	1836	1280	3545	4163	7097	3362	2137	1434	1425	2739	1776	2451	1020	1135
	VIGA medida	56,86	74,64	64,12	35,87	44,57	82,91	197,43	48,46	20,14	22,08	208,21	26,9	158,79	52,25	55,74
	FAIXA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
REA DE FÔRMA (M2)	VIGA	56,86	74,64	64,12	35,87	44,57	82,91	197,43	48,46	20,14	22,08	208,21	26,9	158,79	52,25	55,74
REA DE FORMA (MZ)	PILAR	191,88	185,98	160,13	353,04	176	283,81	140,45	176,83	89,16	145,45	498,84	292,36	268,36	168,59	178,14
	LAJE LISA	15,43	7,27	20,11	0	750,05	0	0	4,52	4,59	296,8	109,47	7,02	10,37	0	0
	LAJE NERVURADA	178,14	306,45	339,44	645,07	5,33	1169,76	736,71	517,19	362,3	0	503,14	336,52	452,08	264,6	266,38
TIPO	CLASSIFICAÇÃO	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS

		91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
		4297	3	4	4315	4372	4384	4467	4066	1	3813	3953	3987	4008	4009	4012
GEOMETRIA	PERÍMETRO (M)	106,4368	78,4538363	99,58831471	85,7837	120,1068027	92,71	121,0315758	104,1026	154,4094	157,2253	162,5309	204,514	107,3802	130,0234006	142,1923
	ÁREA (M²)	392,501	204,039696	523,8982508	177,7627	453,8793062	363,03305	663,8144653	498,7849	453,8382	1163,2975	1467,4691	584,9427	319,2957	585,8259034	751,1176
	VIGA medida	2,23	7,27	9,14	2,54	4,4	7,03	8,5	2,52	2,23	4,5	13,51	4,26	3,03	15,7	40,41
	FAIXA	0	0	0	0	0	0	0	0	1,33425	52,23	40,35	41,06	23,35	33,67	19,74
CONCRETO (M3)	VIGA	2,23	7,27	9,14	2,54	4,4	7,03	8,5	2,52	3,56425	56,73	53,86	45,32	26,38	49,37	60,15
	PILAR	12,18	16,05	31,96	4,62	11,99	17,13	38,68	15,04	4,11	28,03	31,73	11,23	8,98	16,63	57,09
	LAJE	62,12	26,57	79,94	27,94	70,98	66,4	102,69	94,2	72,44	107,93	121,03	46,62	26,92	57,27	78,34
	VIGA medida	397	977	922	266	529	936	709	274	198	1141	1089	320	204	1121	3451
	FAIXA	0	0	0	0	0	0	0	0	0	3219	3210	2669	1523	1996	2552
	VIGA	397	977	922	266	529	936	709	274	198	4360	4299	2989	1727	3117	6003
	PILAR	2169	1379,5	2345	350	1817	1822	3314	1658,6	2131	1041	2177	1164	1013,5	1035,25	5281
	LAJE	2185,3	978	3462	1298	3006	1841	4158,568	3226,4	2818	4231,5	6091	2451	1547	2308	5437
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	2757	749	1919	739	1613	1777	2356	2435	1245	4259	4453	1563	901	1958	1322
	VIGA medida	24,59	49,95	134,12	34,38	59,01	76,23	89,21	37,02	33,2	59,38	164,53	54,46	37,24	157,66	354,26
	FAIXA	0	0	0	0	0	0	0	0	0	196,23	169,86	189,86	113,29	114,77	98,91
REA DE FÔRMA (M2)	VIGA	24,59	49,95	134,12	34,38	59,01	76,23	89,21	37,02	33,2	255,61	334,39	244,32	150,53	272,43	453,17
REA DE FORIVIA (IVIZ)	PILAR	148,66	135,34	255,73	60,68	155,34	134,05	344,05	158,14	31,04	277,16	310,91	183,27	100,8	136,68	364,15
	LAJE LISA	9,05	9,71	24,47	0	13,62	4,5	3,16	0	3,76	4,98	0	1,63	0	0	81,78
	LAJE NERVURADA	356,62	155,08	471,63	162,25	421,01	320,96	617,66	473,92	417,16	846,29	1150,21	394,79	211,46	499,61	509,2
TIPO	CLASSIFICAÇÃO	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	PAVPLUS	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA

		106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
		4026	4047	4052	4061	4082	4097	4116	4125	4137	4183	4192	4216	4277	2	4313
GEOMETRIA	PERÍMETRO (M)	83,85247	135,049501	136,2196	185,5024	116,9251	76,0574	87,40936023	116,0096	54,64995	100,4618	70,1078	131,749	121,903848	111,5832	85,78365
GEUMETRIA	ÁREA (M²)	381,6423	449,490574	609,8026	841,727	611,5146	289,972525	337,6850153	629,1955	186,6633	367,265925	226,217625	388,76345	586,845598	635,9079	177,7623
	VIGA medida	31,31	15,62	13,21	25,25	15,05	6,38	18,94	12,7	4,63	10,26	5,67	5,56	2,72	22,5	7,77
	FAIXA	0	0	16,79	36,25	31	15,84	0	25,66	6,84	2,34	5,75	9,93	23,39	0	0
CONCRETO (M3)	VIGA	31,31	15,62	30	61,5	46,05	22,22	18,94	38,36	11,47	12,6	11,42	15,49	26,11	22,5	7,77
	PILAR	5,72	26,3	18,92	38,25	22,08	7,74	5,53	27,31	17,72	1,32	25,67	9,78	60,14	33,3	4,62
	LAJE	43,92	50,27	60,09	62,01	56,34	26,53	43,71	75,44	12,49	40,57	24,51	37,64	56,24	71,22	17,11
	VIGA medida	2378	2090	2252	1946	667	1076	1293	2017	1130	783	402	407	651	1195	555
	FAIXA	0	0	2328	5118	2959	1261	0	1726	604	166	458	556	1038	474	0
AÇO PASSIVO (KG)	VIGA	2378	2090	4580	7064	3626	2337	1293	3743	1734	949	860	963	1689	1669	555
	PILAR	1021	2866	2085,36	5206	2304	764	588	1717,27	1292	715	2151	1108	6280	2026	322
	LAJE	2059,653	2226	4901,98	4206,8592	2500,63	1168,3	1931	3995,541	1332	2168	1602,86	1301	3504,4592	2453	619
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	1503	918	565	2169	1665	885	870	1483	612	606	372	798	1732	687	162
	VIGA medida	133,46	147,97	122,79	231,31	84,08	72,07	151,86	110,04	61,41	96,52	55,21	70,77	34,72	241,11	97,43
	FAIXA	0	0	68,36	149,78	155,53	56,92	0	70,06	29,81	9,4	23,63	53,16	97,93	0	0
REA DE FÔRMA (M2)	VIGA	133,46	147,97	191,15	381,09	239,61	128,99	151,86	180,1	91,22	105,92	78,84	123,93	132,65	241,11	97,43
READE FORIVIA (IVIZ)	PILAR	71,17	213,8	215,91	319,68	227,62	88	71,4	217,56	143,98	113,28	191,88	169,23	488,59	339,48	60,69
	LAJE LISA	0	12,07	6,61	104,52	37,47	4,05	300,05	0	0	0	20,62	19,89	4,04	51,31	0
	LAJE NERVURADA	294,26	393,71	489,83	449,89	394,24	203,93	0	480,11	127,38	317,99	150,67	289,94	438,64	451,15	153,53
TIPO	CLASSIFICAÇÃO	ERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURAD.	ERVURAD	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA

		121	122	123	124	125	126	127	128
		4323	4365	4464	3708	3731	3800	4287	4303
GEOMETRIA	PERÍMETRO (M)	83,5661	111,668192	121,0315758	86,4501	86,4503	96	135,7478	57,2213
GEOWETRIA	ÁREA (M²)	379,1143	517,52447	663,8144653	248,6198	248,596	380	436,0174	147,5207
	VIGA medida	7,19	3,26	8,22	6,13	6,35	7,4	8,19	0,75
	FAIXA	11,82	27,29	27,18	11,07	13,35	0	28,47	8,3
CONCRETO (M3)	VIGA	19,01	30,55	35,4	17,2	19,7	7,4	36,66	9,05
	PILAR	9,03	33,21	38,68	6,49	4,17	7,3	42	2,07
	LAJE	38,15	56,55	55,24	184,48	21,4	39,35	34,08	10,84
	VIGA medida	820	346	788	411	428	619	1486	75
	FAIXA	825	1679	2510	950	820	0	2500	582
AÇO PASSIVO (KG)	VIGA	1645	2025	3298	1361	1248	619	3986	657
	PILAR	1037,7	3700	3222	414	395,75	626	3886	564
	LAJE	2225	3333	3993,344	1484	1536	1609	2526,7296	543
AÇO ATIVO (KG)	VIGA, LAJE E FAIXAS	932	1447	1500	528	667	1110	965	215
	VIGA medida	68,75	38,01	78,05	77,13	70,22	85,64	73,79	8,74
	FAIXA	44,69	86,6	109,72	44,41	50,53	0	117,15	42,32
ÁREA DE FÔRMA (M2)	VIGA	113,44	124,61	187,77	121,54	120,75	85,64	190,94	51,06
AREA DE FORIVIA (IVIZ)	PILAR	98,32	275,2	344,05	79,6	52,53	96	323,44	39,62
	LAJE LISA	19,61	1,15	3,16	184,48	184,48	365,32	269,32	93,95
	LAJE NERVURADA	281,18	407,43	494,8	0	0	0	9,19	0
TIPO	CLASSIFICAÇÃO	IERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA	NERVURADA

ANEXO B – MEDIÇÕES DOS INDICADORES

			Indica	dores			Lisa	
		Ca	Pa	Aa	Sa	Custos	Retangularidade	Dificuldade
1	3927	0,23628	12,4702	5,06576	1,52021	339658,915	4,91050512	0,60039381
2	3928	0,20746	12,4837	4,24512	1,57543	87094,9582	2,217384279	0,70953151
3	3929	0,24209	14,7418	4,81497	1,44793	512028,851	4,860145809	0,52354285
4	3974	0,25911	13,2425	2,98886	2,33928	186817,917	3,876199981	0,80963506
5	3979	0,24374	20,0407	5,37686	1,50996	434626,962	4,314471372	0,54327149
6	3986	0,23571	14,0007	3,25473	0,66978	308972,325	5,148089992	0,57841271
7	4014	0,26268	19,6954	5,02168	1,62421	360260,492	4,893945344	0,75601709
8	4015	0,6459	20,6876	11,2221	1,46292	379726,653	4,308815166	0,52582115
9	4019	0,25918	20,4199	3,06617	1,73422	420877,082	3,792795641	0,85946577
10	4021	0,20342	12,7422	4,20329	1,3421	169398,899	3,770238363	0,42771892
ा	4033	0,27562	14,2376	4,24944	1,44804	483769,582	4,885899286	0,5373585
12	4034	0,34171	24,1787	4,68137	2,21006	219329,551	3,451079752	1,35004597
13	4043	0,252	10,3049	4,45859	1,34161	1313966,99	10,25294978	0,33776312
14	4057	0,25646	15,8127	3,69881	1,55248	488855,162	4,885899286	0,655106
15	4059	0,23219	15,3544	4,12959	1,48852	539080,951	4,538758023	0,65800194
16	4073	0,20841	11,1713	4,20836	1,25341	591681,854	5,755034527	0,36816689
17	4077	0,25254	13,3028	4,44649	1,63818	288110,371	3,309217225	0,73022669
18	4100	0,24259	18,9422	5,73528	1,59382	271966,242	3,497458135	0,71893343
19	4109	0,26996	12,5698	5,9646	1,31301	191946,073	4,069133518	0,37519844
20	4140	0,21006	9,64487	4,22035	1,21653	204991,099	4,616778648	0,25897609
21	4142	0,22283	9,8654	4,2335	1,31598	224416,58	4,751090158	0,42296693
22	4150	0,2848	15,382	3,82926	1,89402	149967,895	3,100769772	1,03979362
23	4151	0,21105	10,0856	2,87405	1,53395	198609,69	4,635976007	0,78277288
24	4177	0,35195	23,758	3,77359	2,00269	357415,732	3,434857533	1,15196288
25	4179	0,22579	17,5722	3,30091	1,7223	108609,167	2,790757982	0,83228441
26	4215	0,20223	10,4202	3,41081	1,47614	203688,089	2,950788621	0,550952
27	4225	0,23458	12,3715	3,7193	1,47321	258834,077	3,802330812	0,55767061
28	4228	0,22962	11,6108	5,57901	1,21508	485122,18	4,107621733	0,27461782
29	4243	0,27081	15,9752	3,71191	1,78561	249162,059	3,324927721	0,87140728
30	4247	0,28929	18,285	4,18665	1,72085	449343,118	3,97586554	0,83128849
31	4256	0,23832	13,752	5,28803	1,43162	211762,816	3,440058372	0,51656163
32	4260	0,29233	21,094	5,52696	1,70418	233531,931	3,572561174	0,81554528
33	4261	0,29408	25,3981	5,33922	1,83338	338566,387	4,42532391	0,91799526
34	4265	0,22287	10,9076	5,38714	1,31297	315847,384	4,435134892	0,37326764
35	4272	0,27334	16,9452	6,32811	1,47714	295313,842	3,968266498	0,5647211

		Indicadores				Lisa			
		Ca	Pa	Aa	Sa	Custos	Retangularidade	Dificuldade	
36	4276	0,34438	21,2028	8,67499	1,65818	277814	3,872749132	0,733872804	
37	4279	0,24983	15,5102	3,73438	1,70874	216532	3,298986339	0,832163225	
38	4298	0,24066	14,2089	6,44584	1,36524	272639	3,687643543	0,434877852	
39	4280	0,24135	14,1103	4,77694	1,48058	410717	3,81563843	0,527779485	
40	4314	0,09903	4,85018	2,03258	0,6433	102874	3,108402548	0,237658809	
41	4325	0,19857	10,1376	2,75164	1,1255	434479	4,960609733	0,24854588	
42	4350	0,40342	20,7988	11,1316	1,13521	324092	3,610353551	0,161494139	
43	4466	0,25679	14,5297	3,83089	1,58315	423705	5,484638707	0,652682372	
44	4490	0,24575	12,3649	4,4472	1,56965	160562	3,546841512	0,679665631	
45	4269	0,24455	13,2351	5,98997	1,33633	303553	4,637972273	0,44894193	

		Indicadores				Nervurada			
		Ca	Pa	Aa	Sa	Custos	Retangularidade	Dificuldade	
1	3813	0,16564	8,28034	3,66114	1,18976	527480,154	7,39892053	0,45798259	
2	3953	0,1408	8,56372	3,03448	1,22354	627798,782	9,028862204	0,43973669	
3	3987	0,17638	11,29	2,67206	1,4087	288192,7	2,860159696	0,73099468	
4	4008	0,19505	13,428	2,82184	1,44941	173607,945	2,973506289	0,78713869	
5	4009	0,21042	11,0276	3,34229	1,55118	317737,177	4,505542085	0,69834741	
6	4012	0,26039	22,2615	1,76004	1,87494	538354,385	5,282406994	1,08813853	
7	4026	0,21211	14,3031	3,93824	1,30722	225005,729	4,551354387	0,53618268	
8	4047	0,2051	15,9781	2,04231	1,7076	263782,205	3,328339388	0,80484446	
9	4052	0,17876	18,969	0,92653	1,48163	340771,189	4,476614232	0,66752749	
10	4061	0,19218	19,5751	2,57684	1,4912	532666,719	4,537553153	0,83253834	
11	4082	0,20354	13,7865	2,72275	1,47002	337474,58	5,229968587	0,76405371	
12	4097	0,19481	14,7231	3,05201	1,46555	166216,574	3,812548483	0,74831228	
13	4116	0,2019	11,2886	2,57637	1,5497	174115,427	3,863259202	0,66114867	
14	4125	0,22427	15,0284	2,35698	1,39507	352575,548	5,423648846	0,63201345	
15	4137	0,22329	23,3469	3,27863	1,94243	144812,716	3,415616117	1,26002306	
16	4183	0,14837	10,4339	1,65003	1,46267	160243,736	3,655776872	0,59684274	
17	4192	0,2723	20,3957	1,64443	1,95391	157802,535	3,226711222	1,19672373	
18	4216	0,16182	8,67365	2,05266	1,55105	170464,267	2,950788621	0,75408323	
19	4277	0,24281	19,5511	2,95137	1,81295	411900,014	4,814003903	1,05860895	
20	2	0,19975	9,66807	1,08035	1,70316	288184,552	5,69895737	0,91300957	
21	4313	0,16595	8,41573	0,91133	1,75318	74176,499	2,072216559	0,88950244	
22	4323	0,17459	12,9452	2,45836	1,35197	191132,042	4,53669999	0,55856502	
23	4365	0,23247	17,5026	2,796	1,56203	328406,105	4,634484196	0,77254318	
24	4464	0,19481	15,8378	2,25967	1,55131	379399,653	5,484638707	0,80115759	
25	3708	0,8373	13,1084	2,12372	1,55104	205207,672	2,875876373	0,80902647	
26	3731	0,1821	12,7908	2,68307	1,43912	129759,308	2,875594417	0,69703455	
27	3800	0,14224	7,51053	2,92105	1,43937	163494,232	3,958333333	0,478	
28	4287	0,25857	23,8493	2,21321	1,81848	327179,781	3,211966603	1,17972356	
29	4303	0,14886	11,9576	1,45742	1,25155	63708,9774	2,5780732	0,6146934	

		Indicadores			Pavplus			
		Ca	Pa	Aa	Sa	Custos	Retangularidade	Dificuldade
1	3933	0,18295	8,24852	4,40805	1,30837	158171	4,39556172	0,38262022
2	3497	0,23535	12,8216	3,24931	1,69826	166006	3,87292009	0,81046936
3	3963	0,22926	14,7563	2,93895	1,57579	396801	6,068660686	0,69835034
4	3977	0,18385	8,62988	3,75515	1,30245	115923	3,134787186	0,4011735
5	3993	0,27635	11,9037	4,59979	1,53875	175913	3,307131362	0,65445116
6	3994	0,23835	13,7084	3,50502	1,44798	445027	4,885777526	0,5372524
7	3995	0,26418	14,8356	5,04871	1,73344	619079	4,105690256	0,82087288
8	3996	0,24727	15,5186	4,21412	1,76486	700571	4,95276709	0,93713524
9	3998	0,28511	25,0326	4,85448	1,7153	376635	4,358131536	0,84973957
10	4006	0,28022	15,9182	3,9048	1,80372	663078	6,623533099	0,88740409
11	4007	0,32878	25,6701	4,17212	2,20661	219147	3,454749873	1,34589708
12	4011	0,22942	9,45497	5,88476	1,30593	1711014	10,51166571	0,33863093
13	4018	0,25361	19,1936	3,1259	1,67288	230876	4,083130316	0,85639319
14	4020	0,19316	8,44526	3,71361	1,39327	1067655	11,29694125	0,47759673
15	4038	0,24178	18,9179	4,83474	1,65711	341629	4,845636914	0,77132299
16	4055	0,2445	18,4098	3,12883	1,87504	368763	3,875184918	0,90370874
17	4056	0,23333	11,0002	4,2677	1,48689	170748	3,123375517	0,59537806
18	4060	0,22453	12,6865	3,94308	1,52564	499014	4,537553153	0,69782721
19	4075	0,24419	13,6672	3,70594	1,51506	640645	6,661098264	0,66133939
20	4081	0,24671	19,5463	2,71277	1,7264	761763	6,131432582	0,81322824
21	4083	0,2396	13,1503	4,97581	1,46405	389517	5,233190761	0,54406957
22	4108	0,22832	10,3279	5,15876	1,31301	168116	4,069133518	0,37519844
23	4114	0,2022	10,7863	3,66937	1,2936	306812	4,432797206	0,35076767
24	4115	0,25637	13,8303	4,55751	1,6771	264712	4,009652543	0,77430164
25	4130	0,25558	14,7475	3,65442	1,89636	143777	3,110905445	1,04401396
26	4132	0,22853	11,65	4,49908	1,63296	272617	3,285361062	0,72932434
27	4133	0,24325	19,2465	4,15806	1,79168	339528	4,841671756	0,90645681
28	4147	0,28264	25,3285	3,97181	1,93794	299541	3,828522892	1,10950034
29	4163	0,22859	16,2677	4,41557	1,69231	200402	3,474384316	0,79838312
30	4176	0,32005	18,1301	3,1705	1,98128	305885	3,434857533	1,15356145
31	4191	0,26032	22,2211	4,15971	1,95524	182724	3,226711222	1,09956066
32	4203	0,23651	14,5877	5,17247	1,61806	241340	3,76643708	0,73423107
33	4214	0,16043	9,75365	3,29255	1,50171	191499	2,950536609	0,57683856
34	4223	0,21969	11,2723	5,16282	1,50585	418310	4,91581114	0,56639537
35	4229	0,19418	9,88295	5,18309	1,21509	439352	4,107621733	0,27461782

		Indicadores			4	Pavplus		
		Ca	Pa	Aa	Sa	Custos	Retangularidade	Dificuldade
36	4248	0,21041749	9,867090549	6,554593008	1,419050453	674353,0053	5,301021525	0,338692454
37	4252	0,239285899	8,512743208	4,374784877	1,398304605	413072,1838	5,431835507	0,439664579
38	4254	0,198439906	18,3256855	3,809775207	1,331727693	360779,5686	5,040389782	0,401639802
39	4255	0,197078597	9,019576803	3,721499967	1,235802698	187392,6728	4,57648658	0,283654077
40	4257	0,450414432	27,47444781	9,886638416	3,221517766	188183,101	2,293314914	1,162321778
41	4259	0,291177908	32,54188868	3,94390412	1,900187116	672343,3168	5,646260688	1,018085947
42	4262	0,299858934	21,27683053	4,727050118	1,764126587	305073,938	4,42532391	0,849751138
43	4290	0,285810342	15,09780899	4,739335277	1,720160205	365197,4736	3,712256942	0,825951474
44	4291	0,224445855	12,24632272	3,446774642	1,640394394	171763,99	2,904526479	0,746260502
45	4292	0,222074373	11,8508403	3,814382772	1,681218613	175606,3463	3,003731389	0,785998099
46	4297	0,194980386	12,10519152	7,024185594	1,373041023	259733,149	3,687643543	0,441400128
47	3	0,244511245	16,34240823	3,670854329	1,715744571	136378,0122	2,600761226	0,908107608
48	4	0,231037229	12,84409709	3,662924999	1,691072644	317163,4554	5,260639789	0,744133044
49	4315	0,197454247	10,76716319	4,157227585	1,447491515	97788,0806	2,072220014	0,534757854
50	4372	0,192496108	11,79168102	3,5538082	1,429851485	245451,562	3,778964189	0,472262113
51	4384	0,249453872	12,66826808	4,894871142	1,475733408	229534,206	3,915791716	0,579231009
52	4467	0,225770916	12,32508243	3,549184483	1,587913574	385334,1409	5,484638707	0,652682372
53	4066	0,224064515	10,3431356	4,881863769	1,341419881	284531,7224	4,791281886	0,391270856
54	1	0,176526023	11,34104658	2,743268504	1,06901538	209440,45	2,939186875	0,141548248