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RESUMO 

 

 

O desenvolvimento embrionário inicial é dependente de assinaturas moleculares trazidas pelos 

gametas, expressão gênica e interações materno-embrionárias. O proteoma do embrião reflete 

seus estado e capacidade de desenvolvimento. O presente estudo teve como objetivo decifrar o 

proteoma de blastocistos equinos de 8 (oito) dias de idade produzidos in vivo. A dinâmica 

folicular de 8 (oito) éguas foi monitorada por ultrassonografia. Na presença de um folículo pré- 

ovulatório, as éguas receberam GnRH e foram inseminadas. Após 8 (oito) dias, 4 (quatro) 

embriões foram recuperados. As proteínas foram extraídas dos embriões (pool) e foram 

submetidas à técnica de espectrometria de massa. Diferentes mecanismos de busca foram 

usados para identificação das proteínas: Peaks, Proteome Discoverer, SearchGUI e 

PepExplorer. A espectrometria de massa e ferramentas de bioinformática permitiram a 

identificação de 1.977 (mil, novecentas e setenta e sete) proteínas nos embriões. Os processos 

biológicos das proteínas embrionárias foram processos celulares e metabólicos. Os 

componentes celulares foram células, organelas e complexos contendo proteínas. As funções 

moleculares das proteínas embrionárias estão envolvidas na ligação, atividades catalíticas e 

atividade estrutural da molécula. Seis vias relevantes para o desenvolvimento embrionário 

(FDR < 0,05, plataforma Panther) foram relacionadas ao ciclo do TCA, metabolismo do 

piruvato, glicólise, metabolismo das purinas e via das pentose fosfato. Foram identificadas vias 

envolvidas na comunicação célula-célula e no remodelamento da matriz extracelular (MEC), 

além de vias relacionadas ao remodelamento intracelular, como, por exemplo, a regulação do 

citoesqueleto pela Rho GTPase. As análises foram realizadas em um pool de embriões de 

diferentes éguas, fornecendo uma visão abrangente sobre o proteoma de embriões de 8(oito) 

dias de idade. No entanto, não foi possível fazer comparações entre as sínteses de proteínas nas 

fases iniciais do desenvolvimento do embrião equino. O presente estudo utilizou espectrometria 

de massa e uma combinação de mecanismos de busca para a identificação de 1.977 (mil, 

novecentas e setenta e sete) proteínas em embriões equinos de 8(oito) dias de idade produzidos 

in vivo. Este é o maior atlas de proteínas de embriões da espécie equina. O conhecimento da 

expressão de proteínas pelo embrião ajuda a entender sua fisiologia e eventos metabólicos. 

Palavras-chave: proteína; embrião; equino. 



 

 

ABSTRACT 

 

 

Early embryo development is dependent on molecular signatures brought by the gametes, gene 

expression and maternal-embryo interactions. The proteome of the embryo reflects its 

development state and defines its fate. The present study aimed to describe the proteome of 8- 

day old equine blastocysts produced in vivo. Follicular dynamics of eight mares were monitored 

by ultrasonography. When a preovulatory follicle was confirmed, mares received GnRH and 

were inseminated. After eight days, four embryos were recovered. Proteins were extracted from 

the embryos (pool) and subjected to mass spectrometry. Different search engines were used for 

protein identification: Peaks, Proteome Discoverer, SearchGUI and PepExplorer. Mass 

spectrometry and tools of bioinformatics allowed the identification of 1,977 proteins in the 

embryos. Biological processes of embryo proteins were cellular and metabolic processes. 

Cellular components were cell, organelle and protein-containing complex. Molecular functions 

of embryo proteins were involved in binding, catalytic activities and structural molecule 

activity. Six pathways relevant to embryo development (FDR < 0.05, Panther platform) related 

to TCA cycle, pyruvate metabolism, glycolysis, purine metabolism, and pentose phosphate 

pathway. There were pathways involved in cell-cell communication and extracellular matrix 

(ECM) remodeling and pathways related to intracellular remodeling, like cytoskeleton 

regulation by Rho GTPase. Analyses were conducted in a pool of embryos from different mares, 

providing a comprehensive view about the proteome of 8-day old embryos. However, 

comparisons could not be made among protein syntheses in the phases of early developmental 

states of the equine embryo. The current study used mass spectrometry and a combination of 

search engines for the identification of 1,977 proteins in 8-day-old equine embryos generated 

in vivo. This is the largest atlas of proteins from embryos of the equine species. Knowledge of 

protein expression by the embryo helps to understand its physiology and metabolic events. 

Keywords: protein; embryo; equine. 
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1 INTRODUCTION 

 

 

Early embryo development is highly dependent on molecular signals brought 

by the male and female gametes, gene expression in the newly formed being and 

interactions between the embryo and the environment in which it is inserted (Ginther, 

1992; Allen, 2000). Genomic activation and protein synthesis start during oviduct transit, 

and it is intensified when the embryo enters the uterus (Latham & Schultz, 2001). Thus, 

the proteomic signature of the embryo certainly reflects its development states and defines 

its fate as well. In the equine species, the first stages of embryonic development are not 

completely understood (Swegen et al., 2017) and the equine embryo itself has peculiar 

characteristics, such as the presence of an acellular glycoproteic capsule, late entry into 

the uterus and the migration on the endometrial surface, and complex maternal-fetal 

recognition (Ginther, 1992). In recent decades, transcriptomics studies have enabled 

important discoveries about molecular events of embryo’s life (Swegen et al., 2017; 

Demant et al., 2015). Despite great results achieved, studies focused solely on mrna 

expression have limitations, once a single gene can encode different proteins which, in 

turn, may undergo post-translational modifications, each associated with diverse 

biological functions. 

The characterization of the equine embryo proteome sets the foundation for 

discovery of markers of their developmental competence and viability (Katz-Jaffe & 

McReynolds, 2013; Katz-Jaffe et al., 2006). Also, it allows a better comprehension about 

the physiology of early embryo development is determinant for successful application of 

assisted reproductive technologies (ARTs), such as artificial insemination and embryo 

transfer (ET) (Ginther, 1992; Allen, 2000). In commercial et programs, embryos are 

typically collected from donor mares on day 8 after ovulation (Galli et al., 2013). Equine 

embryos can be transferred with a significant degree of uterine assyncrony, however, this 

assyncrony is not balanced. Transferring embryos into recipients that ovulated up to 5 

days after the donor do not reduce pregnancy rates (Jacob et al., 2012). On the other hand, 

transferring embryos into mares that ovulated more than 2 days earlier the donor does 

negatively affect embryo survival (Wilsher et al., 2012). These data suggests that the 

crosstalk between embryo and the endometrium is tightly controlled, and a precisely 

orchestrated interaction embryo and the uterine environment, if successful, guarantees the 

continuous progestin support, resulting in a uterine environment adequate for embryo 
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development (Klein, 2011). 

As expected, the proteins expressed by the equine embryo have pivotal role 

in the events involved in maternal recognition of pregnancy (Camacho, 2020; Camacho, 

2018; Camozzato, 2018). Recently, Swegen et al. (2017) reported 732 proteins in the 

equine blastocoel fluid and 11 proteins in the embryo capsule. It is clear, thus, that 

mammalian embryos go through remarkable changes in protein synthesis in their early 

development and that such proteins probably define their functional status and survival. 

However, there is a gap in our understanding of the global proteome of the equine embryo. 

In this regard, the present study aimed to describe the global proteomic pattern of 8-day 

old equine blastocysts produced in vivo. 

 

2 LITERATURE REVIEW 

 

 

The horse is an animal widely used in Brazil and in the world due to its ability 

to perform various activities (URTIGA, 2022). The main ones stand out: sport 

(equestrian, running and vaquejada), leisure (walking animals) and work, these being 

responsible for containing about 5,850,154 horses in Brazil in 2019 (IBGE, 2019). 

With the advancement of the technique of embryo transfer in horses, a 

growing increase in the number of animals has been observed over the last decades, 

evidenced mainly by the size of the equine herd in Brazil. According to the Ministry of 

Agriculture, Livestock and Supply (MAPA) the country has the largest herd in Latin 

America and the third worldwide. Being highlight for the movement of R $ 7,3 billion 

only with the production of horses. According to data from the International Society for 

Embryo Transfer, Brazil recovered around 12,000 embryos in the period 2008-2009 and 

the market has been increasing at an average rate of 20% per year in the last 5 years. The 

country has about 40 centers specialized in embryo transfer, located mainly in the 

Southeast region (ALVARENGA, 2010) and together with the United States and 

Argentina leads the production of embryos in the world. The so-called Horse 

Agribusiness Complex is responsible for the generation of approximately 3.2 million 

direct and indirect jobs reaching more than 30 different segments between inputs, 

breeding and final destination. 
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2.1 Early embryonic development in mammals 

 

 

The preimplantation embryonic period in mammals involves the free life 

period of the embryo in the oviduct and uterus, where the development of the zygote to 

the blastocyst stage (Watson & Barcroft, 2001). This period is characterized by successive 

cleavages, embryonic genome activation and morphogenetic events, such as compaction 

and cavitation, which culminate in blastocyst (Watson et al., 2004). 

 

2.1.1 Embryonic genome activation 

 

 

After fertilization, the zygote goes through successive cleavages, which are 

crucial for the subsequent development of the embryo. In ruminants, the first cleavages 

still occur in the oviduct and under the influence of maternal transcripts and proteins 

accumulated during oogenesis (Memili et al., 1998). The transition from oocyte control 

to embryonic control is known as zygotic maternal transition (MZT), in which the 

majority of maternal mRNA accumulated during oogenesis is degraded and replaced by 

new embryonic mRNA. In ruminants, in the 8-16 cell phase, the embryo begins to 

produce its own transcripts and proteins in a process called embryonic genome activation 

(AGE) (Crosby et al., 1988). 

 

2.1.2 Embryonic compaction and cavitation 

 

 

As cleavages happen, the number of blastomeres increases, which in turn 

decrease in size along the cleavages, forming a cell mass called the morula. Compaction 

is characterized by increased adement and the beginning of cell polarization, which 

initiates the first event of cell differentiation in embryonic development (Jedrusik, 2015). 

During compaction, dramatic changes occur in the shape of blastomeres, which gain more 

contact with each other and lose their spherical shape to acquire a flattened shape, which 

makes it difficult to distinguish their cellular contour (Watson & Barcroft, 2001). 

Additionally, the embryo's external cells begin to develop its junctional complexes, 

consisting of occlusive zonulas (tight junctions), adherent zonulas (adherent junctions), 

adherent macules (desmosomes) and connecting junctions (gap junctions) (Fleming et al., 

2000). 

The E-cadherin protein is the main component of adherent joints and is 
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responsible for cell adherent during compaction (Eckert & Fleming, 2008; Modina et al., 

2010). E-cadherin interacts with other proteins, forming a complex with catenine proteins 

and binding to the actin cytoskeleton (Aberle et al., 1996). Thus, catenins act by forming 

a plate of proteins that reinforce cell adeation during the compaction process (Watson & 

Barcroft, 2001). The importance of the role of E- cadherin during compaction processes 

has been widely demonstrated since embryos of mice treated with Antibodies to E- 

cadherin showed flaws in the compaction and cavitation process (Watson, 1992). 

Another important event during compaction is the beginning of cell 

polarization, an event characterized by the reorganization of blastomeres, which results 

in the establishment of the apical and basolateral domains (Fleming & Pickering, 1985). 

Occlusion joints are an important component of epithelial polarity located on the basal 

lateral surface consisting of a complex of at least five proteins: occlusive zonula protein 

1 and 2 (ZO-1, ZO-2), 7H6, cingulin and ocludine. Ocludine is a transmembrane protein 

that interacts with ZO-1, ZO-2 and cingulin to form a bridge between the tight joints and 

the actin cytoskeleton (Barcroft et al., 1998). 

Following compaction, the reorganization of blastomeres is initiated, and 

external cells develop into trophectoderm (ET) cells. A group of internal cells forms the 

internal cell mass (ICM), and develops a fluid-filled cavity called blastocele. These 

events form a structure called blastocyst (Watson & Barcroft, 2001). Trophectoderm is 

the blastocyst wall and is required for the transport of fluids that carry blastocele 

formation in a process known as cavitation (Barcroft et al., 1998). In particular, the 

enzyme Na+/K+-ATPase, located in the basolateral membranes of the trophectoderm, is 

responsible for establishing an ionic gradient through the trophectoderm, promoting 

osmatic accumulation of water. This enzyme promotes the active transport of Na+ into 

the blastocele, thus allowing the entry of water by osmotic processes (Watson &Barcroft, 

2001). 

 

2.1.3 Proteomics applied to the study of physiology and molecular markers in embryos 

 

 

Despite advances in proteomics in the study of embryonic physiology and in 

the identification of molecular markers, studies in this field still remain scarce. This may 

be due to the limited amount of protein present in embryos, which may contain only 100 

ng of protein (Thompson et al., 1988). 

In cattle, a study conducted by Demant et al. (2015) analyzed the protein 
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profile during the transition of in vitro-produced grinding stones and blastocysts using an 

LC-MS/MS iTRAQ-based approach. The authors identified a total of 560 proteins, of 

which 140 were significantly different between the stages of morula and blastocysts. In 

particular, the proteins anexin A6 (ANXA6) and aldose reductase (AKR1B1) were more 

expressed in blastocysts and can be considered important markers of morphula-blastocyst 

transition. These proteins can play important roles by regulating transient interactions of 

the cytoskeleton. 

Gupta et al. (2009) compared the proteome of swine zygotes activated 

nathenogenetically (NG) and fertilized in vitro (IVF) using SDS-PAGE 1-D, combined 

with LC-MS/MS. In this study, proteins of 6000 IVF zygotes and 6000 parthenogenetic 

zygotes (AP) were analyzed. A total of 735 proteins were identified, of which only 51.3% 

(377) were observed in both groups, indicating major changes in their protein 

composition. The authors report that these differences may be related to the 

electroactivation process in the case of nathenogenetic zygotes, in which there are no 

spermatic factors. These results identified potential marker proteins of embryonic quality 

and reinforced the hypothesis that aberrant expression of proteins in AP embryos could 

be a reason for their failure in development. 

A study conducted in cattle by Jensen et al. (2014) described blastocele fluid 

proteome and expanded blastocyst cell material, evidencing 23 proteins identified in 

blastocele fluid, while 803 were identified in the rest of the cellular material. Some 

functions of these proteins were related to cytoskeletal reorganization processes involving 

cell support. Examples of these proteins were drebrin, desmoplakin, fibronectin, filamin- 

A, integrin beta-1, placoglobin, lactaderin, transgelin-2. 

Swegen et al. (2017) evaluated the perfil of proteins secreted after 24h and 

48h of cultivation together with blastocele and embryonic capsule proteins in the equine 

species. The analyses revealed 72 proteins in 24 hours and 97 proteins in 48 hours of 

cultivation. 732 were also found in blastocele fluid and 11 in the embryonic capsule. 

Some found only in the embryonic capsule were transglutaminase 3, chitobiase, 

uterocalin, phospholipase A2 and amino oxidase. Among them, chitobiase and 

phospholipase A2 were associated with capsule degradation events, while uterocallin was 

associated with its formation. 
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3 MATERIAL AND METHODS 

 

3.1 Experimental animals and local of experiment 

 

The experiment was conducted at the Cavalry of the Ceará State Police 

Department, in Fortaleza, Brazil (3°49'08.3"S 38°29'05.6"W) from September to 

November of 2018. The weather in that region is defined as Aw (Köppen & Geiger, 1928) 

and at that latitude, there are no changes in day length throughout the year. Eight adults, 

healthy and cycling crossbred mares (423.3 ± 35.3 kg) with proven fertility and optimal 

body condition were used in this study. The mares were fed Tifton hay (Cynodon 

dactylon) and Elephant grass (Pennisetum purpureum) and supplemented with 

concentrate (18% of crude protein), with free access to water. 

 

3.2 Follicular monitoring and artificial insemination 

 

The estrous cycles of mares were monitored by transrectal ultrasonography 

(DP4900 Vet, Mindray®️, Shenzhen, China). When a preovulatory follicle (35-38 mm) and 

uterine edema were detected, ovulations were induced using 0.075 mg deslorelin acetate 

i. m. (Sincrorrelin, Ourofino®️, Brazil). Twenty-four hours after ovulation was induced, 

mares were inseminated, placing semen in the middle of the uterine body with a flexible 

pipette (Minitub®️, Porto Alegre, Brazil). 

 

Figure 1. Artificial insemination 

Fonte: Author, 2022. 
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Then, mares were monitored every 6 hours by ultrasonography to detect the 

exact moment of ovulation (D0). For inseminations, sperm was collected from a single 

fertile “Brasileiro de Hipismo” stallion using artificial vagina and diluted (1:1) in 

Botusemen®️ milk-based extender (Botupharma®️; Botucatu, Brazil). Each inseminating 

dose had at least 109 motile sperm. 

 

Figure 2. Follicular monitoring 
 

Fonte: Author, 2022. 

 

 

 

3.3 Embryo recovery 

 

Mares were submitted to uterine flushing eight days after insemination (D8) 

using Ringer Lactate solution (JP®; Ribeirão Preto, Brazil) and a uterine catheter 

(Bioniche®; Washington, USA) [10]. Right after the flushing, the content of the 

collection filter (WTA®; Cravinhos, Brazil) was placed in a Petri dish for embryo search 

and evaluation in stereomicroscope (Bel-photonics®; Piracicaba, Brazil). All eight mares 

ovulated (based on ultrasound analysis) but only four expanded blastocysts were 

recovered after the flushings (one per mare). These embryos were graded (GI-3; GII-1) 

based on quality and viability (Stringfellow & Givens, 2009), gently rinsed in ringer 

lactate solution in a sterile Petri dish, had their size measured, placed in sterile cryovials 

containing 50 uL ringer lactate solution and frozen in liquid nitrogen. 
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Figure 3. Visualization and packaging of the recovered embryo. A) Equine recovered 

embryo; B) Packaging of the recovered embryo. 
 

Fonte: Author, 2022. 

 

3.4 Extraction of embryo proteins 

 

For protein extraction, all four embryos were pooled and sonicated in cold 

water bath for 30 min (Velez et al., 2016). Then, embryos were frozen in liquid nitrogen 

and macerated (this procedure was repeated four times). Afterwards, proteins were 

precipitated with cold acetone and 0.1 M NaCl (1:4), incubated overnight at −20 ºC and 

then centrifuged (16,000 x g, 70 min, 4 °C) (Crowell et al., 201). The supernatant was 

pipetted out and the residual acetone was dried under vacuum (SpeedVac® Concentrator, 

Thermo Fisher Scientific™, EUA). 

 

3.5 Protein digestion and desalinization 

 

Proteins were alkylated with a volume of iodoacetamide to reach a final 

concentration of 0.014 M. The mixture was maintained at 21 °C and 400 rpm for 40 min 

in a dark room. For protein reduction, a volume of dithiothreitol was added to reach a 

final concentration of 0.005 M and a volume of CaCl2 solution was added to the samples 

to reach a final concentration of 0.001 M. Following this, 0.02 M TEAB was added to 

reach a 75 µl final volume. Samples were digested with trypsin (Promega®, Madison, 

USA) with a proportion of 1/50 (enzyme/substrate) and incubated at 37 °C for 18 h. 

Trifluoroacetic acid (1%) was added to block trypsin digestion (VIANA et al., 2018). 

A B 
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Finally, peptides were added to stage-tip C18 columns for desalting and centrifuged (900 

x g, 5 min), followed by two washings with 0.5% acetonitrile (1,000 x g, 3 min). To elute 

peptides, columns were centrifuged (600 x g, 3 min) with 0.5% acetic acid and increasing 

acetonitrile concentrations (25% to 80%) (Viana et al., 2018). 

 

3.6 Liquid chromatography and mass spectrometry 

 

 

Chromatographic and mass spectrometry analyzes were performed as 

previously described (Viana et al., 2018). Briefly, digested peptides were injected into a 

chromatographic system (Dionex Ultimate 3000 RSLC nano UPLC, Thermo Fisher 

ScientificTM, USA), configured with a 3 cm x 100 µm trap column containing 5 µm C18 

particles, serially connected to the 24 cm x 75 µm analytical column containing C18 3 

µm particles. The samples were injected to obtain 1µg in the column, subjected to linear 

gradient elution between solvents A (0.1% formic acid in water) and B (0.1% formic acid 

in acetonitrile) from 2% B to 35% B over 155 min. Peptide fractions were eluted directly 

into the ionization source of an Orbitrap Elite mass spectrometer (Thermo Fischer 

ScientificTM, USA), configured to operate in data-dependent acquisition (DDA) mode. 

MS1 spectra were acquired at 120,000 resolutions ranged between 300 and 1,650 m/z. 

The 15 most intense ions above 3,000 intensity limits were conducted to the higher- 

energy collisional dissociation (HCD) fragmentation chamber and their fragments were 

also analyzed in the Orbitrap analyzer, generating spectra of MS2 with 15,000 resolutions 

(Kalli et al., 2013). Reanalysis of already fragmented ions was inhibited by dynamic 

exclusion (Andrews et al., 2016), favoring the identification of less abundant peptides. 

 

3.7 Data analysis and protein identification 

 

 

The complete set of spectra generated by mass spectrometry were 

analyzed using Peaks 7.0 software (BSI, USA), searching in Uniprot and NCBI 

repositories in September 2019, filtered for Equus caballus species (Tanca et al., 2013). 

The search was performed based on de novo sequencing and peptide-spectrum matches 

(PSM), with precursor ion mass error tolerance of 10 ppm, MS/MS mass tolerance of 

0.05 Da, up to 2 missed cleavages, cysteine carbamidomethylation as fixed modification 

and oxidation of methionine as variable modification. Unimod database modification 

search modules based on fragmentation patterns and point mutation search were activated 



20 
 

 

 

 

(Zhang et al., 2012). As the combination of search algorithms yields more comprehensive 

and robust results (Kremer et al., 2016), itegrative searches were also performed using 

SEQUEST, OMSSA, X! Tandem, Myrimatch, MS Amanda, MS-GF+, Comet, Tide, and 

Andromeda mechanisms, including Uniprot database, obtained on the same date and 

filtered to the same taxonomic classification and settings as described above. Additional 

searches were performed using Proteome Discoverer and SearchGui and consolidated by 

Peaks InChorus module and SearchGUI (Barsnes et al., 2018). Sequences obtained again 

by Peaks, but not identified in the database, were submitted to additional search for 

similarity, using PepExplorer (Leprevost et al., 2014) and the same database. The results 

were consolidated by excluding protein and peptide redundancies. 

 

3.8 In silico analysis of equine embryo proteins 

 

 

Proteins identified in the equine embryos were analyzed as regard to pathways 

and GO terms. The combination of Blast2GO, Revigo (Supek et al., 2011) and g:Profiler 

(Reimand et al., 2016) platforms were used to calculate significant overrepresentation of 

grouped terms. To conduct a proper analysis of pathway representation, protein access 

codes were matched to gene codes in databases of the prediction programs. A workflow 

using Uniprot (UNIPROT CONSORTIUM, 2019), DB2DB in BioDBnet (Mudunuri et 

al., 2009), and BLAST Koala (Kanehisa et al., 2016) mapping platforms were used 

iteratively. The representation of component and pathways were analyzed using Panther 

(Kanehisa et al., 2016), BlastKoala (MI et al., 2017) and String (Szklarczyk, et al., 2017) 

platforms. 

 

4 RESULTS 

 

 

The combination of four different search engines allowed the identification 

of 4,014 proteins. After elimination of redundancies (at 3 levels, based on identifiers, 

peptides and cross-bank mapping), 1,977 proteins were reliably identified in the 8-day 

old equine embryos, with 1,413 proteins identified by Peaks, 316 by Proteome 

Discoverer, 165 by SearchGUI and 83 by PepExplorer. The low number of overlaps 

observed for PepExplorer is due to the nature of that particular search, which used 

peptides sequenced not identified by Peaks program. 

As determined by Panther platform, biological processes of equine embryo 
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proteins were cellular (32.2%) and metabolic (31%) processes, followed by localization 

(10.8%) and reproduction (9.9%). Prominent cellular components were cell (49.4%), 

organelle (28.5%) and protein-containing complex (13.8%). Regarding molecular 

function, proteins were mainly involved in binding (39.0%), catalytic activities (37.7%) 

and structural molecule activity (9.6%). 

 

Table 1. Results from PANTHER GO-Slim A) Biological Process; B) Cellular 

Component; C) Molecular Function 

Panther 

Pathways 

Equus 
Caballus 

(Ref) 

# Expected 
Fold 

Enrichment 
P Value Fdr 

Unclassified 17982 888 962.4 0.92 4.42e-10 3.62e-08 

Tca Cycle 8 6 0.43 14.01 3.58e-05 1.47e-03 

ATP 
Synthesis 

7 5 0.37 13.35 1.97e-04 5.38e-03 

Asparagine 

And 

Aspartate 

Biosynthesis 

 

6 
 

4 
 

0.32 
 

12.46 
 

1.09e-03 
 

1.78e-02 

Pentose 

Phosphate 

Pathway 

9 5 0.48 10.38 4.57e-04 1.07e-02 

Pyruvate 

Metabolism 
10 5 0.54 9.34 6.56e-04 1.35e-02 

Glycolysis 25 10 1.34 7.47 6.30e-06 3.44e-04 

De Novo 

Purine 

Biosynthesis 

 

28 

 

7 

 

1.5 

 

4.67 

 

1.65e-03 

 

2.08e-02 

Cytoskeletal 

Regulation 

By Rho 

Gtpase 

 

83 
 

16 
 

4.44 
 

3.6 
 

3.74e-05 
 

1.23e-03 

Integrin 

Signalling 

Pathway 

186 22 9.95 2.21 1.17e-03 1.74e-02 

http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=1&sortList=categories
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=1&sortList=categories
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Equus%20caballus
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Equus%20caballus
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Equus%20caballus
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Client%20Text%20Box%20Input&sortField=exp
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Client%20Text%20Box%20Input&sortField=foldEnrich
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Client%20Text%20Box%20Input&sortField=foldEnrich
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=1&sortList=Client%20Text%20Box%20Input&sortField=pval
http://www.pantherdb.org/tools/compareToRefList.jsp?sortOrder=2&sortList=Client%20Text%20Box%20Input&sortField=fdr
http://www.pantherdb.org/tools/gxIdsList.do?acc=UNCLASSIFIED&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=UNCLASSIFIED&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P00051&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=P00051&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02721&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02721&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02730&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02730&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02762&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02762&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02772&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02772&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P00024&reflist=1
http://www.pantherdb.org/tools/gxIdsList.do?acc=P00024&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
http://www.pantherdb.org/tools/gxIdsList.do?acc=P02738&reflist=1
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http://www.pantherdb.org/tools/gxIdsList.do?acc=P00016&reflist=1
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http://www.pantherdb.org/tools/gxIdsList.do?acc=P00034&list=Client%20Text%20Box%20Input&organism=Equus%20caballus
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Figure 4. Identification of significantly enriched pathways (FDR <0.05, Panther 

platform) in equine D8 embryo. 
 

Font: Author, 2022 

 

 

The combination of Blast2GO, Revigo and g: Profiler platforms showed 

significant overrepresentation of the displayed and grouped terms. Revigo allowed us to 

employ a multidimensional view, where GO terms’ semantic similarities and their 

closeness are played in two-dimensional space: x and y. The representation of 

components and pathways analyzed using Panther, BlastKoala and String platforms 

showed 13 overrepresented pathways. After exclusion of seven pathways related to 

human behavior, the six pathways relevant to embryo development (FDR < 0.05, Panther 

platform) related to TCA cycle, pyruvate metabolism, glycolysis, purine metabolism, and 

pentose phosphate pathway. Also, there were pathways involved in cell-cell 

communication and extracellular matrix (ECM) remodeling and pathways related to 

intracellular remodeling, like cytoskeleton regulation by Rho GTPase. 

All data from the early stages of chromatography, mass spectrometry, protein 

quantitation, protein identification, statistical and bioinformatics were deposited in the 

Spectrometry Center of Mass Computing (University of California, San Diego) using the 

Virtual Environment Interactive Platform Spectrometry (MassIVE), with MassIVE ID = 

MSV000083725. 
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5 DISCUSSION 

 

 

In the present study, a strategy based on chromatography coupled to mass 

spectrometry and an interactive database search using four different platforms (Proteome 

Discoverer, SearchGui and PepExplorer, Peaks 7.0 software) allowed the identification 

of 1,977 proteins in 8-day old equine embryos produced in vivo. The search engine 

currently employed allowed us to describe 28.5% more proteins than using only one 

method. To our knowledge, this is the first comprehensive description of the proteome of 

pre-implantation equine embryos. The number of proteins identified in our experiment 

exceeds that reported in other studies focused on embryonic structures of the equine 

species. In fact, Swegen et al. described 72 and 97 proteins in D9 and D10 embryo 

secretomes, respectively, 732 proteins in blastocoel fluid and 11 proteins in the acellular 

capsule of the equine. 

Gene ontology terms related to equine embryo proteins were analyzed by 

REVIGO and Panther platforms. Such analysis was possible as whole-genome sequences 

from several organisms become available, contributing to the evolution of biological 

research. It also allows us to comprehend the data generated beyond individual genes or 

proteins and assimilate how multiple proteins act together in a complex biological system 

(Zhou et al., 2015; Gardner, 2015). The analytical tools and interpretation of high- 

throughput biological experiments have significantly increased with the advance of 

computational engines and algorithms. Based on the list of equine embryo proteins, the 

two biological processes with the highest number of genes were cellular and metabolic 

processes. Most genes of cellular process are related to cellular metabolic process, 

followed by cellular component organization, secretion, and signal transduction. As 

regard to cellular processes, our study identified several ribosomal proteins such as S12, 

S21, L19, L15, L6, L27, L29, S3A, S4, S8 and acidic ribosomal protein P2. These 

ribosome proteins are crucial for cell growth and differentiation (Zhou et al., 2015) and 

studies indicate that the number of ribosomes increases remarkably during cell division 

of the bovine blastocyst (Bilodeau-Goeseels & Schultz, G.A., 1997). 

A detailed overview of genes indicated that most of them were related to 

cellular metabolic processes and organic substance metabolic processes. The latter 

involved molecular entities containing carbon, such as those molecules presented in the 

pathways overrepresented involved in embryo energy supply. Regarding molecular 

functions of equine embryo components, most genes are involved in binding and catalytic 
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activity, followed by structural molecule activity. The main GO terms detailed in binding 

activity are heterocyclic compound binding and protein binding, while GO terms related 

to the catalytic activity are mainly hydrolase activity, followed by transferase and 

oxidoreductase activities. Panther GO-Slim analysis of cellular process indicates a high 

number of proteins found in the cell (cell surface, cell division site, and cell periphery), 

followed by organelle and protein-containing complex localization. 

According to Panther pathway analysis, most of the overrepresented 

pathways are involved in energy supply for biomolecule synthesis and cell proliferation 

(TCA cycle, ATP synthesis, asparagine and aspartate biosynthesis, pentose phosphate 

pathway, pyruvate metabolism, glycolysis, and de novo purine biosynthesis). The major 

energy source of living cells is glucose, which is converted to ATP, NADH and pyruvate. 

In the presence of oxygen, pyruvate is converted to Acetil-CoA and metabolized in the 

tricarboxylic acid (TCA) cycle. The final products, electrons carriers NADH and FADH2 

will be delivered to the electron transport chain (ETC) that contains an ATP synthase that 

converts ADP to ATP. In the other hand, without oxygen, pyruvate is converted to lactate. 

While preimplantation stem cell requires a huge amount of energy substrate, the post- 

implanted embryo will generate energy using less mitochondrial activity and use more 

glucose (Mathieu & Ruohola-Baker, 2017). In fact, Gardner and Leese (1989) 

demonstrated signs of switch of ATP generation from oxidation of TCA cycle to 

glycolysis in mitochondria of mouse blastocysts. 

Oxidative phosphorylation is still functional during early embryo 

development, but primarily utilizes fatty acids rather than glucose to provide ATP 

(Krisher & Prather, 2012). This metabolic adaptation is known as the Warburg Effect and 

supports rapid cell proliferation (Warburg, 1956). Although this is typically an anaerobic 

process and less efficient way to generate ATP, it is commonly used for proliferating cell 

types, such as cancer (López-Lázaro, 2008) and embryo cells (Mathieu & Ruohola-Baker 

2017). 

When embryonic cells decrease mitochondrial activity to produce energy, 

they can ensure mitochondrial quality control, eliminating damaged mitochondria to 

guarantee cell proliferation (Khacho et al., 2016). “The quiet embryo hypothesis” 

mentioned by Leese (2012) states that preimplantation embryos keep a quiet metabolism 

from zygote to morula stage, limiting the formation of reactive oxygen species. Such a 

hypothesis is supported by the facT (Houghton et al., 1996) that oxygen consumption is 

low during cleavage but increases with blastocyst formation. The same authors associated 
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the requirement of high ATP levels of post-implantation mouse embryos for proper 

functionality of Na+, K+ ATPase activity during blastocoel cavity formation. Most of the 

glucose is converted to lactate, which decreases the pH around the embryo, supporting 

the endometrium digestion for embryo implantation (Gardner, 2015). A sharp increase in 

glucose consumption of viable human embryos also occurs at the blastocyst stage 

(Gardner, 20). 

Proliferating cells have critical metabolic requirements for synthesis of 

proteins and lipids. Pentose phosphate pathway (PPP) was enriched in 8-day equine 

embryo and, according to Varum et al. (Varum, 2011), PPP generates metabolites for 

biosynthesis of nucleotides and lipids. Pathways associated with the equine embryo 

proteins were involved in cell-cell communication, intra and extracellular matrix 

remodeling, integrin signaling pathway and cytoskeleton regulation by Rho GTPase. 

Integrins are cell surface receptors, mediating adhesion between extracellular matrix 

(ECM) and the cytoskeleton (Hynes, 1992). In addition, integrins interact with ECM and 

mediate intracellular signals, changing cellular morphology and cell cycle progression 

(Schwartz & SHATTIL, 2000). Both integrin signaling pathway and cytoskeleton 

regulation by Rho GTPase pathways contribute to regulation of gene expression, 

cytoskeletal organization, cell growth and migration. This close relationship explains how 

ECM, growth factors or other extracellular stimuli control cell functions and proliferation 

(Saoncella et al., 1999). In the present work, the behavior of the cytoskeleton, as well as 

cell growth and migration were visualized as described as well in the literature. 

The extracellular matrix comprises a variety of glycoproteins, collagens, 

glycosaminoglycans and proteoglycans (Adams & Watt, 1993). In the embryo, cell-ECM 

interactions regulate migration, adhesion, cell proliferation, differentiation and 

morphogenesis (Zagris, 2001), as well as the activity of growth factors (Zagris, 2001). 

ECM glycoproteins include collagens and non-collagenous proteins such as fibronectin 

(Rozario & Desimone, 2010) which have important roles during embryonic development 

(Rozario & Desimone, 2010; Gomes de Almeida et al., 2016). In fact, bovine embryos 

cultivated in collagen gel substrates show better hatching and blastocysts development 

(Rivera & Rinaudo, 2013) and studies show that almost all types of collagens are 

important for embryo survival in the mouse (Liu et al., 1995; Wenstrup et al., 2004). In 

addition, absence of certain types of collagens causes postnatal death in mice (Sumiyoshi 

et al., 2004) and damages in zebrafish embryo (Gansner & Gitlin, 2008). Fibronectin, in 

turn, is an ECM glycoprotein found in early embryonic stages (Gomes de Almeida et al., 
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2016; Richoux et al., 1989) and play roles in cell migration (Richoux et al., 1989; 

Kurosaka, & Kashina, 2008) Fibronectin binds to integrins, helping to connect ECM 

adhesion proteins to cytoskeletal components (Shiokawa et al., 1996). Several authors 

described death of embryonic in mice (George et al., 1993), zebrafish (Trinh & Stainier, 

2004) and chicken (Linas & Lash, 1988) due to absence of fibronectin. 
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6 CONCLUSION 

 

 

In summary, the current study used mass spectrometry and a combination of 

search engines for the identification of 1,977 proteins in 8-day-old equine embryos 

generated in vivo. This is, to date, the largest atlas of proteins from embryos of the equine 

species. Moreover, knowledge of protein expression by the embryo helps to understand 

its physiology, metabolic events and future identification of potential biomarkers of its 

health. 
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