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“You’re unlikely to discover something new

without a lot of practice on old stuff, but further,

you should get a heck of a lot of fun out of wor-

king out funny relations and interesting things.”

(Richard Feynman)



RESUMO

"Mesmo com mais de 80% da população vacinada contra a COVID-19, a doença continua

causando vítimas. Por isso, é crucial na luta contra essa epidemia ter um sistema de auxílio ao

diagnóstico por computador que possa ajudar de forma eficiente na identificação da COVID-19

em exames de tomografia computadorizada e determinar o nível de cuidado necessário, bem

como se a doença está progredindo ou regredindo, especialmente na Unidade de Terapia Intensiva.

Para criar tal ferramenta, combinaram-se bancos de dados públicos da literatura para treinar

modelos de segmentação de pulmão e lesões de diferentes distribuições. Em seguida, foram

treinados oito modelos de CNN para classificação de COVID-19 e pneumonia comum. Por

fim, se o exame for classificado como COVID-19, as lesões são quantificadas e a severidade

da TC é avaliada. Para validação externa utilizou-se o banco de dados SPGC, com Resnext101

Unet++ e MobileNet Unet para segmentação de pulmão e lesão, respectivamente, obtendo uma

acurácia de 98,05%, um F1-Score de 98,70%, uma precisão de 98,7%, uma recall de 98,7% e

uma especificidade de 96,05%, precisando de apenas 19,70 segundos por varredura completa do

CT. Finalmente, para classificar as lesões detectadas como COVID-19 ou pneumonia comum,

o Densenet201 alcançou uma precisão de 90,47%, um F1-Score de 93,85%, uma precisão de

88,42%, uma recall de 100,0% e uma especificidade de 65,07%. Os resultados mostraram que

nosso sistema detectou e segmentou lesões de COVID-19 e de pneumonia adquirida comum em

varreduras de CT corretamente, diferenciando essas duas classes de exames normais."

Palavras-chave: COVID-19; Sistema de auxilio ao diagnóstico por computador; CNN; Segmen-

tação; Classificação; Imagens médicas; exame TC; Validação externa.



ABSTRACT

Even with more than 80% of the population wholly vaccinated for COVID-19, the disease still

claims victims. Thus, having a Computer Aided Diagnostic system that can securely assist in

identifying COVID-19 and determining the level of care required and if the disease is progressing

or digressing, particularly in the Intensive Care Unit, is crucial in the fight against this epidemic.

To create such tool, we first merged public datasets from the literature to train Lung and Lesion

segmentation models from different distributions. Then we trained eight CNN models for

COVID-19 and Common Acquired Pneumonia classification. Finally, if the exam is classified

as COVID-19, we quantified the lesions and evaluated the severity of the full CT Scan. For

external validation on SPGC Dataset, using Resnext101 Unet++ and MobileNet Unet for lung

and lesion segmentation, respectively, we achieved an accuracy of 98.05%, an F1-score of

98.70%, a precision of 98.7%, a recall of 98.7%, and a specificity of 96.05%, needing only 19.70

seconds per full CT scan. Finally, when classifying these detected lesions, Densenet201 reached

an accuracy of 90.47%, an F1-score of 93.85%, a precision of 88.42%, a recall of 100.0%, and a

specificity of 65.07%. The results showed that our pipeline correctly detected and segmented

lesions from COVID-19 and Common Acquired Pneumonia in CT scans, differentiating these

two classes from Normal exams.

Keywords: COVID-19; Computer Aided Diagnostic; CNN; Segmentation; Classification;

Medical image; CT Scan; External validation.
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1 INTRODUCTION

Even with more than 80% of the population wholly vaccinated for Coronavirus

Disease 2019 (COVID-19) and the development of knowledge for treating it, this disease still

claims victims (DONG et al., 2020; NIH, 2023). Moreover, the COVID-19 pandemic has caused

several global economic, social, environmental, and healthcare impacts (RUME; ISLAM, 2020;

MATTIOLI et al., 2020).

Computed Tomography (CT) scans of the chest can effectively aid in diagnosing

individuals suspected of having COVID-19, as pneumonia is a frequently observed symptom of

COVID-19 (ZHAO et al., 2020a). In the CT analysis, the main characteristics present in patients

with COVID-19 are: Ground-Glass Opacity (GGO) (88.0%), bilateral involvement (87.5%),

peripheral distribution (76.0%), and multilobar involvement (78.8%) (SALEHI et al., 2020).

GGO, seen on CT images as increased density in lung tissue, can be caused by various factors,

including partial filling of the alveoli, increased blood flow, or a combination of both. While it

is a common finding in CT scans of individuals diagnosed with COVID-19, it is not exclusive

due to the virus. Other conditions, such as influenza, cytomegalovirus, Community Acquired

Pneumonia (CAP), and pulmonary edema, can also cause it, as is shown in Figure 1. Therefore,

relying solely on detecting and segmenting ground-glass opacity is insufficient for diagnosing

COVID-19 (MATOS MARINA JUSTI ROSA DE; ROSA, 2021).

Figure 1 – (a) CT slice without COVID-19 nor CAP. (b) CT slice with COVID-19. (c) CT slice
with CAP
a) b) c)

Source: Author (2023)

Computer Aided Diagnostic (CAD) systems, which may use machine learning

methods to aid in the diagnostic process, can assist medical doctors in pinpointing specific areas

of concern in medical images. These identified regions can then be used to detect illnesses and
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provide numerical data. Physicians can analyse this data to assess the progression or regression

of the disease (VALENTE et al., 2016).

Using a CAD system mainly indicates an improvement in at least medical doctors’

sensitivity, specificity, or speed of diagnosis. This improvement is most noticeable for junior and

resident radiologists. Additionally, providing class activation maps for the experts’ radiologists

can help them examine the involved regions (YOUSEFZADEH et al., 2021).

Thus, having a CAD system that can securely assist physicians in identifying COVID-

19 and determining the level of care required by the patient and if the disease is progressing

or digressing, particularly in the Intensive Care Unit (ICU), is crucial in the fight against this

disease (PARAH et al., 2021).

1.1 Objectives

The main objective of this work is to develop a ready-to-use system that segments

ground-glass opacity and consolidation lesions on full CT scans, classifies exams with COVID-19

or CAP, and quantifies the severity of lesions on full COVID-19 CT scans.

1.2 Specific Objectives

The specific objectives of this work are listed below:

– to develop a system for segmenting lungs and lesions, detecting COVID-19 and CAP, and

calculating COVID-19 severity using machine learning;

– to realise an extensive segmentation architecture statistical analysis on a combination

of datasets with Healthy, COVID-19, and Other Diseases patients for lung and lesion

detection;

– to validate with a cross-dataset approach, aiming for a better model generalisation through

an external validation dataset;

This work is organised as follows. Chapter 2 provides a theoretical foundation and a

revision of related works in the literature. In Chapter 3, we describe our applied methodology.

The results and discussions are presented in Chapter 4. Finally, the conclusions of this work are

detailed in Chapter 5.
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1.3 Scientific Contributions

Currently, the content of this dissertation is published or is under review with the

following bibliographic information:

Journal Papers

JP1. MOTTA, PEDRO CROSARA; CORTEZ, PAULO CÉSAR ; SILVA, BRUNO R. S. ;

YANG, GUANG ; ALBUQUERQUE, VICTOR HUGO C. DE. Automatic COVID-19 and

Common-Acquired Pneumonia Diagnosis Using Chest CT Scans. Bioengineering-Basel,

v. 10, p. 529, 2023 Disponível em: http://dx.doi.org/10.3390/bioengineering10050529.

Book Chapters

BC1. MOTTA, P. C.; CORTEZ, P. C. ; MARQUES, J. A. L. COVID-19 Classification Using CT

Scans with Convolutional Neural Networks. In: Joao Alexandre Lobo Marques; Simon

James Fong. (Org.). Computerized Systems for Diagnosis and Treatment of COVID-

19. 1ed.Cham: Springer International Publishing, 2023, v., p. 99-116. Disponível em:

http://dx.doi.org/10.1007/978-3-031-30788-1_7.

BC2. MARQUES, J. A. L. ; MACEDO, D. S. ; MOTTA, P. C. ; SILVA, B. R. S. ; CARVA-

LHO, F. H. C. ; KEHDI, R. C. ; CAVALCANTE, L. R. L. ; VIANA, M. S. ; LOS, D. ;

FIORENZA, N. G. Exploratory Data Analysis on Clinical and Emotional Parameters of

Pregnant Women with COVID-19 Symptoms. In: Joao Alexandre Lobo Marques; Simon

James Fong. (Org.). Computerized Systems for Diagnosis and Treatment of COVID-

19. 1ed.Cham: Springer International Publishing, 2023, v., p. 179-209. Disponível em:

http://dx.doi.org/10.1007/978-3-031-30788-1_11.

BC3. SILVA, B. R. S. ; CORTEZ, P. C. ; MOTTA, P. C. ; MARQUES, J. A. L. Covid-19

Detection Based on Chest X-Ray Images Using Multiple Transfer Learning CNN Models.

In: João Alexandre Lobo Marques; James Fong. (Org.). Computerized Systems for

Diagnosis and Treatment of COVID-19. 1ed.Cham: Springer International Publishing,

2023, v., p. 45-63. Disponível em: http://dx.doi.org/10.1007/978-3-031-30788-1_4.
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2 THEORETICAL FOUNDATION AND RELATED WORKS

In this chapter, we will present concepts incrementally, starting with basic Convo-

lutional Neural Network (CNN) for classification, then showing novel CNN architectures for

optimization, and finally, the modifications made in CNNs for image segmentation. Then, we

summarize novel works published in journals of relevant impact that presented similarity to our

work in materials, such as datasets and architectures, or scope and methodology.

2.1 Theoretical foundation

2.1.1 Chest Computed Tomography

In radiography exams, subtle differences in subject contrast below about 5 percent

are not visible in the image due to several limitations. These include the projection of 3D anatomy

onto a 2D image receptor, which obscures differences in X-ray transmission for structures parallel

to the beam, and the inability of traditional image receptors to resolve minor intensity differences

in incident radiation. Large-area X-ray beams also produce significant scattered radiation, further

hindering the display of subtle contrast differences. Computed tomography (CT) overcomes

these limitations, revealing slight differences in subject contrast. While CT has lower spatial

resolution than conventional radiography, it excels in visualizing subject contrast and allows for

cross-sectional imaging, making it highly valuable for anatomical visualization in various body

regions (HENDEE; RITENOUR, 2002).

The CT produces a series of images by a tomographic method. Each image is derived

from a particular slice. It involves a rotating X-ray source and a detector array that synchronizes

with the X-ray source. As they rotate around the patient, these components capture various X-ray

images from various angles. A computer then processes these images to reconstruct detailed

cross-sectional slices of the body (HOUNSFIELD, 1973).

Hounsfield Units (HU) is a standardized measurement scale used in CT imaging to

assess the density of materials within the human body. They help distinguish between different

tissues based on density, with reference points of -1000 HU for air and 0 HU for water. HU values

are crucial in clinical practice, aiding in identifying various structures, diagnosis of medical

conditions, and treatment planning (HOUNSFIELD, 1973).
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2.1.2 COVID-19

In December 2019, an outbreak of pneumonia cases with an unknown cause occurred

in Wuhan, Hubei, China, attracting global attention. Then, a new coronavirus originating from

bats, called the 2019 novel coronavirus, was identified through deep sequencing analysis (WHO,

2020c; REN et al., 2020). This virus, named Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2) (WHO, 2020a), is genetically similar to the bat SARS-like coronavirus but

belongs to a distinct clade, indicating the spread of a novel coronavirus (REN et al., 2020). On

January 31, 2020, the World Health Organization (WHO) declared the outbreak of COVID-19

a Public Health Emergency of International Concern (WHO, 2020b). Moreover, the COVID-

19 pandemic caused several global economic, social, environmental, and healthcare impacts

(RUME; ISLAM, 2020; MATTIOLI et al., 2020).

The rapid transmission of the virus reminded the previous outbreaks of SARS-CoV

and MERS-CoV in the 21st century. SARS-CoV-2 has efficient human-to-human transmission

capability. As a result, the number of confirmed COVID-19 cases surged, although the mortality

rate of COVID-19 is lower than SARS-CoV and Middle East Respiratory Syndrome Coronavirus

(MERS-CoV) (ZHAO et al., 2020b).

COVID-19 symptoms mainly include fever, chills, cough, sore throat, breathing

difficulty, myalgia or fatigue, nausea, vomiting, and diarrhoea. More severe cases can lead to

cardiac injury, respiratory failure, acute respiratory distress syndrome, and even death. Older

people along with people with other medical conditions have a high risk of mortality (RUME;

ISLAM, 2020; HUANG et al., 2020; WANG et al., 2020a; HOLSHUE et al., 2020; CHEN et al.,

2020).

Real-time Reverse Transcriptase-PCR (RT-PCR) is the primary method to detect

SARS-CoV-2 as it is a specific and straightforward qualitative assay and adequate sensitivity to

early diagnosis. However, an issue with the real-time RT-PCR test is the risk of false negatives

(TAHAMTAN; ARDEBILI, 2020). Some patients had CT findings even when the RT-PCR

results were negative (SALEHI et al., 2020; HUANG et al., 2020; XIE et al., 2020) Thus, an

RT-PCR negative result does not exclude the possibility of COVID-19 infection and should

not be used as the only criterion for treatment or patient management decisions (TAHAMTAN;

ARDEBILI, 2020).

In the CT analysis, the main characteristics present in patients with COVID-19 are:

GGO (88.0%), bilateral involvement (87.5%), peripheral distribution (76.0%), and multilobar
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involvement (78.8%). Isolated GGO or a combination of GGO and consolidated opacities were

some of the most common CT findings. Other CT findings as interlobular septal thickening,

bronchiectasis, pleural thickening, and subpleural involvement Pleural effusion, pericardial

effusion, lymphadenopathy, cavitation, CT halosign, and pneumothorax were less common or

rare. (SALEHI et al., 2020).

However, GGO is a non-specific finding that can represent thickening of the inters-

titium, partial filling of the alveoli, or partial collapse of the alveoli, increased blood supply,

or even a combination of these findings. Radiographically, it is defined as an increase in the

density of the lung parenchyma while preserving the bronchovascular markings, which differs

from consolidation. While it is a common finding in CT scans of individuals diagnosed with

COVID-19, it is not exclusive due to the virus. Other conditions, such as influenza, cytome-

galovirus, CAP, and pulmonary edema, can also cause it, as is shown in Figure 1. Therefore,

relying solely on detecting and segmenting ground-glass opacity is insufficient for diagnosing

COVID-19 (MATOS MARINA JUSTI ROSA DE; ROSA, 2021).

2.1.3 Convolutional Neural Networks - CNNs

Artificial Neural Network (ANN) for classification were designed to receive a 1-D

input data vector from a sample, perform computations, and determine which class the sample

belongs to. Therefore, if one wishes to use an ANN to classify a 2-D image, the image must first

be represented as a vector by extracting only the most essential characteristics from the image.

With these characteristics (in a 1-D vector), it is possible to feed the ANN and classify the image.

However, this feature selection and extraction process occurs before the ANN learning step,

needing a human to discover which characteristics are most important in representing a group of

images. This human dependency can be a time-consuming and tedious activity, and in the end,

even with good results, there may be another combination of characteristics that better represents

the classes of an image that humans have not tested. The advantage of the CNN is that a 2-D

image can be directly provided as input to the CNN, automatically learning which features to

use and classifying the image.

Unlike an ANN, which have all its neurons fully connected (Figure 2.a), meaning

the output of each neuron in a layer is connected to the input of all neurons in the next layer, in

the CNN. In the CNN, it is possible to analogize that a neuron receives as input only a single

value, calculated by the convolution of a mask with a neighbourhood of pixels from the output
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image of the previous layer (Figure 2.b) (GONZALEZ; WOODS, 2018).

Figure 2 – a) ANN neurons. a) CNN neurons.

     

 

 

a) b)

Source: Author (2023)

This pixel neighbourhood is called a receptive field and represents where the CNN

is "looking at"each moment (the part of the image that will be convoluted with the mask). The

receptive field walks through the entire image, being able to move from pixel to pixel or even

"skip"some pixels, reducing the number of convoluted values and consequently reducing the

output image dimension (subsampling). The stride defines the number of pixels the receptive

field will skip (GONZALEZ; WOODS, 2018).

In each convolution result, a bias is added, which goes through an activation function

and returns a value. This value is placed in its corresponding position (x,y) in the next layer’s

input (which we previously called a neuron). By repeating this process, using the same mask and

the same bias for all input image pixels (except those skipped depending on the stride), a 2-D

image called a feature map is obtained. Applying different masks and biases, we obtain several

feature maps that ideally enhance essential image features. It is these masks and biases that the

CNN will learn (GONZALEZ; WOODS, 2018).

Also, to reduce the dimension of the feature maps, one can use a pooling layer, where

either a maximum filter (max-pooling) or an average filter (mean-pooling), usually of size 2x2,

is applied to the image. For each 2x2 neighbourhood of the image, the maximum pixel value

of the neighbourhood is calculated, for example, in max-pooling, which will represent it in the

resulting feature map (Figure 3) (ROSEBROCK, 2018).

Finally, we convert the feature maps generated by the last pooling layer into vectors

and feed them into a fully connected neural network. As usual, the fully connected network has

one output for each class to which the image can belong. The class with the highest output value
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Figure 3 – Left: 4x4 input image. Right: subsampled
output with a pooling of 2x2 and stride of 1 and 2.

Source: (ROSEBROCK, 2018).

is assigned to the image (GONZALEZ; WOODS, 2018). All of this process is shown in Figure

4, where:

– it starts with an image of the handwritten number 6;

– the image goes through a convolutional layer and an activation layer, forming several

feature maps;

– the feature maps are reduced (subsampling) and forwarded to the next convolutional layer,

which will form new feature maps;

– these feature maps are reduced again, vectorized, and fed into the fully connected neural

network;

– the fully connected network returns one value for each class (in this case, the numbers

from 0 to 9). As the class with the highest value is "6", the image is classified as "6".

Figure 4 – Usual CNN architecture.

Source: (GONZALEZ; WOODS, 2018).
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2.1.3.1 MobileNetV2

MobileNetV2 is a CNN architecture designed for mobile and resource-constrained

environments, such as limited computational resources and memory. Their paper presents two

main contributions that improve the original MobileNet architecture:

1. Inverted Residuals: The inverted residual block reverses the traditional residual block.

Instead of increasing the number of channels in the middle of the block, as in a traditional

residual block, the inverted residual block first reduces the number of channels and then

increases them. This is done by applying a 1x1 convolution layer with fewer channels

before the main 3x3 depthwise convolution layer, followed by another 1x1 convolution

layer that expands the channels to the original size. This design significantly reduces

computation and memory usage while maintaining accuracy;

2. Linear Bottlenecks: MobileNetV2 also introduces linear bottlenecks, which refers to using

a linear activation function in the bottleneck layers of the network. The authors found that

non-linear activation functions such as ReLU in the bottleneck layers caused information

loss and reduced accuracy. Using a linear activation function, MobileNetV2 can preserve

information and improve accuracy.

MobileNetV2 also includes other optimizations, such as using a width multiplier to adjust the

number of channels in the network based on the available computational resources and using

a new type of batch normalization that reduces the number of parameters and computations

(SANDLER et al., 2018a).

2.1.3.2 ResNet50

The ResNet architectures have a new type of residual block called a bottleneck

block, which enables the construction of very deep convolutional neural networks with improved

accuracy.

A residual block is a building block in a CNN that allows the network to learn a

residual mapping instead of directly trying to fit a desired mapping. This is achieved by adding

a shortcut connection that bypasses one or more layers in the block. The bottleneck block is a

residual block that includes three layers: a 1x1 convolution layer that reduces the number of

input channels, a 3x3 convolution layer that performs the main computation, and another 1x1

convolution layer that increases the number of output channels back to the original size. The
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authors found that this bottleneck structure reduces the parameters and computation required to

train the network while maintaining or improving accuracy.

The authors also found that as the depth of the network increases, the accuracy first

improves but then saturates and eventually degrades. To address this issue, they introduced a

new training method called deep residual learning, which includes residual connections between

layers several hops away from each other. This allows the network to learn more effective

features and reduces the vanishing gradient problem, which can occur in very deep networks

(HE et al., 2016a).

2.1.3.3 DenseNet201

The Densely Connected Convolutional Networks (DenseNet) is a new type of CNN

architecture connecting all layers directly. In a traditional CNN, the output of each layer is fed

only to the next layer. In contrast, a DenseNet connects each layer to every subsequent layer.

Feature maps of all previous layers are concatenated as inputs to the current layer. This design

creates a dense connectivity pattern, hence the name DenseNet.

The authors found that the dense connectivity pattern reduces the number of parame-

ters required to achieve a certain level of accuracy and improves gradient flow, which can help

alleviate the vanishing gradient problem in deep networks. The dense connectivity pattern also

promotes feature reuse and enhances the flow of information through the network. DenseNet

comprises several dense blocks, a series of dense layers followed by a transition layer that

reduces the number of channels. The authors found that this design leads to better performance

than traditional CNNs with a similar number of parameters (HUANG et al., 2017a).

2.1.3.4 ResNeXt101

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt) intro-

duce a new CNN architecture that achieves state-of-the-art performance on image classification

tasks. The main idea behind ResNeXt is to create a network that combines the benefits of two

popular techniques in deep learning: residual connections and cardinality.

Residual connections are a way to make it easier for a neural network to learn by

allowing information from earlier layers to bypass some of the later layers. On the other hand,

cardinality refers to the number of paths that information can take through the network. ResNeXt

uses both techniques by creating a block consisting of multiple paths through the network, each



24

with its own set of weights. These paths are then aggregated by concatenation to produce the

output of the block.

ResNeXt can achieve state-of-the-art performance with a relatively small number of

parameters compared to other models, making it more efficient to train and use in practice (XIE

et al., 2016).

2.1.3.5 SqueezeNet

SqueezeNet introduces a new CNN architecture that achieves high accuracy on

image classification tasks while using significantly fewer parameters than previous state-of-the-

art models. It achieves this by focusing on "squeeze"operations, which reduce the number of

input channels to a convolutional layer. SqueezeNet uses a combination of three main techniques

to achieve its efficiency:

1. It replaces 3x3 filters with 1x1 filters, which reduces the number of parameters in the

model.

2. It uses a technique called "fire modules", which consist of a squeeze layer followed by an

expand layer. The squeeze layer has 1x1 filters and reduces the number of input channels,

while the expand layer has 1x1 and 3x3 filters to increase the number of output channels.

3. SqueezeNet uses aggressive down-sampling to reduce the spatial size of the feature maps

and further reduce the number of parameters. Despite its small size, SqueezeNet achieves

accuracy comparable to AlexNet, a much larger and more complex model. In addition,

SqueezeNet has a model size of less than 0.5 MB, making it well-suited for deployment

on resource-constrained devices such as smartphones and IoT devices.

SqueezeNet demonstrates that high accuracy on image classification tasks can be achieved with

significantly fewer parameters than previous state-of-the-art models, making it a promising

architecture for efficient deep learning (IANDOLA et al., 2016).

2.1.3.6 EfficientNet

EfficientNet proposes a new approach to model scaling for CNNs. The authors argue

that previous approaches to model scaling have been ad hoc and that there is a need for a more

principled approach that balances accuracy and computational efficiency.

To achieve this, a compound scaling method is introduced that systematically scales

the depth, width, and resolution of the CNN. Specifically, a scaling formula that allows them
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to scale up the CNN balanced while keeping the number of parameters and computational cost

under control is proposed.

A family of CNN models, called EfficientNets, that achieve state-of-the-art accuracy

on the ImageNet dataset while using fewer parameters and less computation than previous

state-of-the-art models, is developed. They also show that EfficientNets generalize well to

other computer vision tasks, such as object detection and segmentation. EfficientNet models

achieve this efficiency by incorporating several design choices, such as a new convolutional layer

called a "swish"activation function and a new type of scaling called "compound scaling"that

systematically balances depth, width, and resolution (TAN; LE, 2019).

2.1.3.7 ShuffleNet

ShuffleNet is a new CNN architecture designed for mobile devices with limited com-

putational resources. The authors argue that existing CNN architectures are too computationally

expensive for use on mobile devices and that there is a need for a more efficient architecture.

ShuffleNet achieves its efficiency by using several techniques. First, it uses group

convolutions, which divide the input and output channels into groups and perform convolution

separately in each group. This reduces the number of parameters in the model and improves

its efficiency. Second, ShuffleNet uses a channel shuffle operation that exchanges information

between groups. This operation is designed to enhance the model’s accuracy and maintain its

efficiency. The authors show that ShuffleNet achieves state-of-the-art accuracy on the ImageNet

dataset using significantly fewer parameters and less computation than previous state-of-the-art

models (ZHANG et al., 2017).

2.1.3.8 GhostNet

GhostNet is a new CNN designed to be efficient and accurate. The authors argue

that existing models design approaches have focused too heavily on increasing the number of

parameters while neglecting the importance of efficient computation. To address this, GhostNet

introduces a new type of block called a "ghost bottleneck", designed to extract more features

from cheap operations. The ghost bottleneck consists of a combination of cheap operations, such

as depthwise separable convolutions, and a new operation called a "ghost module", which creates

a low-rank approximation of the input feature maps.

The authors show that GhostNet achieves state-of-the-art accuracy on the ImageNet
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dataset using fewer parameters and less computation than previous state-of-the-art models. In

addition to its efficiency, GhostNet introduces several other novel ideas, such as a new activation

function called "SiLU", which outperforms existing activation functions on various tasks (HAN

et al., 2019).

2.1.4 CNNs for Segmentation

For some analyses, image classification is insufficient and additional information is

necessary. For example, spatial information about COVID-19 lesions, such as the size of the

lesion or in which lung lobe it is located, can aid in the prognosis of the disease. Therefore,

segmenting the object after detecting it is often a necessary step.

In addition to traditional image segmentation techniques such as thresholding and

edge detection, CNNs have been adapted to perform more robust and complex segmentations,

allowing for efficient segmentation of objects even in low-quality images or images with variati-

ons in lighting or camera position. As a result, several CNN architectures are being developed

for medical image segmentation and analysis. Classification CNNs take fixed-size input images

and produce output without dimensionality, since fully connected layers do not return spatial

information. However, replacing these layers with other convolutional layers is possible. This

converts the output into a classification map (Figure 5), where each pixel is assigned to a class,

such as "background"or "tabby cat"(LONG et al., 2014).

Figure 5 – CNN for segmentation.

Source: https://www.jeremyjordan.me/semantic-segmentation

Single-stage decoding (Figure 6) from small feature maps to a classification map of
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the original image size, can provide inaccurate segmentation. Long et al. (2014) addressed this

issue by decoding the image in stages with skip connections (Figure 7) from earlier layers, where

feature maps are not as small, to deeper layers. These skip connections provide the necessary

details to form more refined segmentation boundaries.

Figure 6 – Fully Convolutional Network.

Source: (LONG et al., 2014)

Figure 7 – Network with skip connections.

Source: (LONG et al., 2014)

2.1.4.1 Unet

To improve segmentation architectures, Ronneberber et al. (2015) enhanced the

decoder, making it approximately symmetric to the encoder. In other words, in the encoding

step of the architecture shown in Figure 8, each block consists of two 3x3 convolutions, each

followed by an activation function and a 2x2 max pooling operation with stride 2. In the decoding
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step, each block expands the feature maps, applies a 2x2 convolution, concatenates it with the

corresponding reduced feature map, and applies two 3x3 convolutions followed by an activation

function. Finally, a 1x1 convolution is used to map the feature vectors to the desired number of

classes (RONNEBERBER et al., 2015).

Figure 8 – U-Net architecture.

Source: (RONNEBERBER et al., 2015)

2.1.4.2 Unet++

Zhou et al. (2018) formulated a new architecture, arguing that the model could

capture finer details of objects more efficiently if the high-resolution feature maps from the

encoding part were gradually enriched before being combined with the semantically rich feature

maps from the decoding part. The difference between U-Net and U-Net++ is shown in Figure 9.

The skip pathways (in green and blue) that connect the encoding and decoding networks have

been reformulated, and deep supervision is applied (red connections) (ZHOU et al., 2018).

In UNet, the encoder’s feature maps are sent directly to the decoder, while in U-

Net++, they first go through a dense convolution block where the number of convolutions

depends on their level in the pyramid. For example, the skip pathway between nodes X0,0 and
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Figure 9 – U-Net++ architecture.

Source: (ZHOU et al., 2018)

X0,3 consists of a convolution block with three convolution layers, with a concatenation layer to

combine the outputs of the previous convolution layers with the expanded output of the dense

block below in the pyramid. These operations bring the semantic level of the encoder’s feature

maps closer to the level of the feature maps in the decoder. For example, xi, j is the output of

node X i, j, where i determines the down-sampling layer in the encoder and j the convolution

layer of the dense block in the skip pathway. The set of feature maps represented by the output

xi, j is computed by

xi, j =


H(xi−1, j), j = 0.

H
([

[xi,k]
j−1
k=0,U(xi+1, j−1)

])
, j > 0.

(2.1)

Where H(.) is a convolution operation followed by an activation function, U(.) is

an up-sampling layer, and [.] is the concatenation layer. As shown in Figure 10, nodes at level

j = 0 receive only one input from the previous layers; nodes at level j = 1 receive two inputs;

and nodes at levels j > 1 receive j+1 inputs, where j are the outputs of the previous j nodes in

the same skip pathway. The last input is the up-sampled output from the skip pathway below in

the pyramid (ZHOU et al., 2018).
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Figure 10 – Skip pathway example.

Source: (ZHOU et al., 2018)

In deep supervision, multiple segmentation maps are formed at different levels

of resolution, and then either an average of all maps is taken or one of the maps is selected

and designated as the final map. For example, figure 11 shows the difference in architecture

depending on which map is selected.

2.1.5 FPN

Feature Pyramid Network (FPN) is a novel approach to improve the performance of

object detection algorithms. It aims to leverage multiscale features from deep CNNs for object

detection.

FPN builds on top of a base network, which consists of a backbone network that

produces a rich hierarchy of features at different spatial resolutions. The FPN architecture

introduces a top-down pathway and lateral connections to the backbone network, which enables

the fusion of high-level semantic information with fine-grained features. The resulting multiscale

feature pyramid detects objects of different sizes and scales (LIN et al., 2017a).

2.1.5.1 MAnet

Multi-Scale Attention Network (MAnet) is a novel deep-learning architecture for

segmenting liver and liver tumours from CT scans. The model is based on the encoder-decoder

architecture with attention mechanisms to capture multiscale contextual information from the

input image.

MAnet consists of a multiscale feature extraction module and an attention-guided

decoder module. The feature extraction module extracts multiscale features using convolutional

layers with different dilation rates. The attention-guided decoder module generates segmen-
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Figure 11 – Different architectures examples depen-
ding on deep supervision.

Source: (ZHOU et al., 2018)

tation masks by fusing multiscale features with attention maps highlighting the input image’s

informative regions (FAN et al., 2020a).

2.1.6 Related Works

Because of the rapid manifestations of COVID-19 and the significant number of dise-

ase cases, many Artificial Intelligence (AI) studies have been conducted to aid medical diagnosis

with medical data in the areas of disease classification, and lung and lesion segmentation. We

selected novel works published in journals of relevant impact that presented similarity to our

work in materials, such as datasets and architectures, or scope and methodology.

Natural Language Processing (NLP) models can efficiently extract information from
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clinical reports, providing a comprehensive view of a patient’s symptoms and medical history.

NLP models can be helpful in scenarios where radiographic images are unavailable or difficult

to obtain. Moreover, NLP models can be trained on relatively small datasets, which may be

beneficial when data availability is limited. On the other hand, image analysis with CNNs can

provide more direct and accurate information about the presence of COVID-19 in radiographic

images. CNNs have shown great promise in accurately detecting COVID-19 in chest X-rays and

CT scans. However, CNNs require large datasets to be trained effectively, and interpreting the

results may not always be straightforward.

Some authors applied NLP methods to extract text information from medical reports

to identify evidence of COVID-19 (MALDEN et al., 2022) by analysing symptoms such as

fever, cough, headache, fatigue, dyspnea, and others in 359,938 patients with laboratory tests

positive for SARS-CoV-2. Others performed text classification based on radiology or CT scan

reports (QOMARIYAH et al., 2022; LÓPEZ-ÚBEDA et al., 2020) to classify COVID-19 and

non-COVID-19 patients.

The use of machine learning in COVID-19 detection with X-ray imaging has been

explored in scientific research. Many papers have proposed using algorithms, such as traditional

machine learning, Convolutional Neural Networks (CNNs), and transfer learning, to analyse

X-rays to detect the disease. These studies have shown promising results, demonstrating the

potential of machine learning in aiding clinicians in their screening process and improving the

speed and accuracy of COVID-19 diagnosis.

Some works have proposed different methods to detect COVID-19 using X-ray

images. For example, while Ohata et al. (OHATA et al., 2021) and Basha et al. (BASHA et al.,

2022) used machine learning methods for feature extraction and classification, Hu et al. (HU

et al., 2022) employed transfer learning and pre-trained models. Despite the promising results

obtained by these studies, some limitations could still be addressed. For example, the studies

employed relatively small datasets, which may limit their generalizability. Nonetheless, all three

papers are limited by the resolution of the X-ray images, which can affect detection accuracy.

Machine learning has also been used to detect COVID-19 in CT images. This

approach is considered more sensitive than traditional methods such as X-rays and PCR, as

CT scans provide high-resolution images more suited to analysis using machine learning al-

gorithms (ZHAO et al., 2020a; NG et al., 2020). Furthermore, using machine learning in CT

images also aids human interpretation, which can be prone to errors and subjectivity. Hence,
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combining machine learning to assist in COVID-19 diagnosis with CT images is a promising

development in the fight against the pandemic.

Overall, previous papers demonstrated the potential of deep learning models for detec-

ting and classifying COVID-19 using CT scans. They used different architectures, pre-processing

techniques, and datasets to achieve their results, showing promising results in distinguishing

COVID-19 from healthy or CAP patients. Some developed new architectures, such as AH-Net,

ReCOV-101, and COVNet (HARMON et al., 2020; ROHILA et al., 2021; LI et al., 2020), while

others used transfer learning techniques (HASAN et al., 2021; ABDEL-BASSET et al., 2021).

However, these studies also had limitations, as they only classified CT scans, or even single

slices, in classes such as normal and COVID-19; normal, COVID-19, and CAP; COVID-19

and non-COVID-19; and normal and COVID-19 severity. They lacked the usage of an external

validation dataset. In addition, some used explainability algorithms to interpret the classifications

made by the models (HARMON et al., 2020; LI et al., 2020), which are still unreliable according

to medical doctors (NAUDÉ, 2020; LI et al., 2023), and none returned quantitative values.

Several papers proposed deep learning techniques to segment and classify COVID-19

pneumonia lesions in CT scans. Zhang et al. (ZHANG et al., 2020) adapted 3D ResNet-18 to

segment lesions. Amyar et al. (AMYAR et al., 2020) developed a Multi-Task Learning (MTL)

architecture based on COVID-19 classification, lesion segmentation, and image reconstruction.

Qiblawey et al. (QIBLAWEY et al., 2021) used encoder–decoder CNNs, UNet, and FPN to

segment the lungs and COVID-19 lesions, achieving high COVID-19 detection performance.

Wang et al. (WANG et al., 2020b) proposed a noise-robust Dice loss function and a self-

ensembling framework for COVID-19 lesion segmentation. Finally, Zhou et al. (ZHOU et al.,

2020) used a CT scan simulator for COVID-19 and a deep learning algorithm to segment and

quantify the infection regions.

These works mainly segmented lesions and classified exams as COVID-19 or normal,

providing more quantitative results than classification models and explainability algorithms.

However, if CAP exams were provided to their models, these exams were wrongfully classified

as COVID-19 (QIBLAWEY et al., 2021; WANG et al., 2020b; ZHOU et al., 2020). Amyar et

al. conducted lesion segmentation and classification, but did not validate their methods on an

external dataset (AMYAR et al., 2020).

Zhang et al. (ZHANG et al., 2020) segmented the whole CT scan for both lungs and

lesions and then forwarded the full CT scan to a 3D ResNet, a 3D network that takes longer to
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train and evaluate than our 2D approach, which selects one slice from the full CT scan to classify.

Moreover, they did not make their full dataset publicly available, which makes validation and

comparison difficult.

Diagnosis involves identifying a disease or condition based on signs, symptoms, and

diagnostic tests, while prognosis involves predicting the likely course of a disease or condition

and its possible outcomes. In various medical applications, deep learning models have been

used in diagnosis and prognosis tasks. Some works focused on developing deep learning models

for accurate disease diagnosis (OHATA et al., 2021; BASHA et al., 2022; HU et al., 2022;

HARMON et al., 2020; LI et al., 2020; AMYAR et al., 2020; WANG et al., 2020b). In contrast,

other works focused on predicting the prognosis of a disease (ROHILA et al., 2021; ZHANG et

al., 2020; QIBLAWEY et al., 2021; ZHOU et al., 2020), such as estimating the likelihood of

survival or disease progression. Finally, some papers combined both diagnosis and prognosis

tasks. Our work aims to do both, i.e., diagnosing the disease as COVID-19 or CAP, and if the

disease is classified as COVID-19, giving the prognosis of the severity of the disease. While

deep learning models have shown promise in both diagnosis and prognosis tasks, it is essential

to recognise the limitations of these models and use them in conjunction with other clinical

information and expertise (ROBERTS et al., 2021; DRIGGS et al., 2021).

A brief comparison between CT scan-related papers and this work can be found in

Table 1.
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Tabela 1 – Related works summary.
Work Segmentation Classification Datasets External

validation
Metrics

(HARMON et
al., 2020)

AH-Net Densenet121-
based

private X Accuracy,
Sensitivity and

Specificity

(ROHILA et al.,
2021)

Threshhold,
Region growing

ResNet50,
ResNet101,

DenseNet169,
DenseNet201

MosMedData X Accuracy

(LI et al., 2020) U-net Resnet50-based private X Sensibility,
Specificity and

AUC

(HASAN et al.,
2021)

Threshhold,
Morphological

operations

3D CNN-based
proposed

MosMedData X AUC

(ABDEL-
BASSET et al.,

2021)

U-net-based EfficientNet-
B7-based

COVID-CT-
MD

X Accuracy, DSC
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– (.25,.15) –
cycle;
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(DSC), HD,
Precision,

Recall,
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Source: author (2023).
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3 MATERIALS AND METHODS

This chapter provides a description of the workflow for this work. We first merged

public datasets from the literature to train Lung and Lesion segmentation models from different

distributions. Then we trained classification CNN models on a subset of the COVIDxCT dataset,

containing only COVID-19 and CAP classes. Finally, if the exam is classified as COVID-19, we

quantified the lesions and evaluated the severity of the exam using MosMedData. We applied

our system to the SPGC dataset, dividing it into Normal and Lesion exams and secondly into

Covid-19 and Common Acquired Pneumonia Lesions. The workflow flowchart can be seen in

Figure 12.

Figure 12 – Fluxogram of proposed system employed in this work. We first train models for lung
and lesion segmentation and for COVID-19 or CAP classification. Then, we externally validate
our models.
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As CT scans can have n different numbers of slices, we apply our segmentation

models to all slices. First, the exam is classified as Normal if no lesion is detected on the slices.

Next, the exam is classified as with Lesion if lesions are detected. Then, the slice with the biggest

lesion area is used to classify the whole exam as COVID-19 or CAP.
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3.1 Datasets

We employed a combination of three public datasets for the Lung Segmentation task,

resulting in a total of 3677 images from Chest CT scans and their corresponding lung masks

(JUN et al., 2020; SEGMENTATION, 2020; KAGGLE, 2017). For the Lesion Segmentation

task, we utilized a combination of four public datasets, yielding 6493 images from Chest CT

scans and their lesion masks (JUN et al., 2020; SEGMENTATION, 2020; KAGGLE, 2017;

MOROZOV et al., 2020). Both tasks employed 10-fold cross-validation, with an 80% split for

training and a 20% split for testing, and 10% of the training data was allocated for validation.

To ensure consistency, we transformed all images from Digital Imaging and Communications

in Medicine (DICOM) or Neuroimaging Informatics Technology Initiative (NIFTI) format to

Portable Network Graphics (PNG) in the Hounsfield Unit range of 0-255 using a window of

-500 and a width of 750.

For the Classification task, we utilized the COVIDxCT dataset, which included

294,552 images from COVID-19 positive cases and 62,966 images from Common Acquired

Pneumonia cases for training, 8147 and 8008, respectively, for validation, and 7965 and 7894 for

testing. As the COVIDxCT dataset already provided a set train/validation/test split, we did not

use k-fold cross-validation to allow comparison with benchmarks (GUNRAJ et al., 2022).

MosMedData provided 50 COVID-19-positive CT scans with lesions segmentation

golden standard. We randomly selected 50 COVID-19 negative exams to add 100 MosMedData

exams to our training set. Then, we used the remaining 1010 exams to validate our lesion

quantification and disease severity step. MosMedData has an average of 42 slices per exam.

COVID-19 scans are divided into four classes: CT -1 to CT-4, with increasing severity, and CT-0,

the COVID-19 negative class. Samples are distributed as CT-0 –254, CT-1 –684, CT-2 – 125,

CT-3 – 45, CT-4 – 2 (MOROZOV et al., 2020).

Finally, we employed the SPGC dataset for external validation, which included

307 full CT scans, 76 from normal patients, 60 from Common Acquired Pneumonia, and 171

from COVID-19. Each exam has an average of 150 slices. (AFSHAR et al., 2021). Table 2

summarizes all datasets used in this work and the task they are used for.
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Tabela 2 – Datasets used for each task.
Database Task # COVID-19

Exams
# CAP Exams # No

COVID-19 nor
CAP Exams

# Total Images

Coronacases Lung
Segmentation

10 0 0 2581

Kaggle Lung/Lesion
Segmentation

0 0 n/a 267

Medical Seg. Lung
Segmentation

9 0 0 829

Coronacases Lesion
Segmentation

10 0 0 2156

Medical Seg Lesion
Segmentation

9 0 0 713

Mosmed Seg Lesion
Segmentation

50 0 50 3357

Mosmed Seg Validation 806 0 50 42,224
COVIDxCT Image

Classification
3731 932 0 353,536

SPGC External
Validation

171 60 71 46,024

Source: author (2023).

3.2 Data Augmentation

To expand the generalization capabilities of our models and produce more images

with lesions, we used Data Augmentation methods on our training sets such as: randomly flipping

the image horizontally; randomly translating, scaling, and rotating the image; randomly shifting

values for each channel of the input RGB image; and randomly change brightness and contrast of

the image (BUSLAEV et al., 2020). Table 3 shows a summary of the techniques and parameters.

Tabela 3 – Data Augmentation techniques and parameters.
Method Task Parameters

HorizontalFlip Lung/Lesion Segmentation p=0.5
ShiftScaleRotate Lung/Lesion Segmentation shift limit=0.05, scale limit=0.1,

rotate limit=15, p=0.5
RGBShift Lung Segmentation r shift limit=25, g shift limit=25, b

shift limit=25, p=0.5
RandomBrightnessContrast Lung/Lesion Segmentation brightness limit=0.3, contrast

limit=0.3, p=0.5

Source: author (2023).

3.3 Grid Search

As lesion segmentation is more complex than lung segmentation, we used Grid

Search for 200 runs to optimize our hyperparameters and obtain better results for each architecture
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(BIEWALD, 2020). Table 4 summarizes optimized hyperparameters and their parameters.

Tabela 4 – Grid Search Parameters.
Hyperparameters Task Parameters

Batch Size Lesion Segmentation [8, 16, 32, 64]
Epochs Lesion Segmentation [25,50,75]

Learning Rate Lesion Segmentation [0.001, 0.0001, 0.00001]
Encoder Lesion Segmentation [mobilenet, resnet50, densenet201,

resnext101]
Decoder Lesion Segmentation [FPN, Unet, Unet++, MAnet]
Patience Lesion Segmentation [5, 10, 15]

Loss Lesion Segmentation [Lovasz, Dice, Tversky]
Tversky Beta Lesion Segmentation [0.3, 0.4, 0.6, 0.7, 0.8, 0.9]

Optimizer Lesion Segmentation [Adam, RMSprop]

Source: author (2023).

3.4 Segmentation models

We utilized well-known state-of-the-art and novel encoders and decoders to analyse

various structures for lung, and lesion segmentation (IAKUBOVSKII, 2019). We tested sixteen

combinations of encoders and decoders, combining methods with different sizes and techniques,

as displayed in Table 5. The encoders utilized in this evaluation were MobilenetV2, Resnet50,

Densenet201, and Resnext101 (SANDLER et al., 2018b; HE et al., 2016b; HUANG et al., 2017b;

XIE et al., 2017). The decoders used were Unet, FPN, Unet++, and MAnet (RONNEBERGER

et al., 2015; LIN et al., 2017b; ZHOU et al., 2020; FAN et al., 2020b).

The chosen loss function for lung segmentation was Lovasz, and the learning rate

was set to 0.001 with Adam optimization. The batch size was 64, and the maximum number of

epochs was 50. For lesion segmentation, we optimized each hyperparameter for the F1-Score

metric with the grid search, presented the values in Table 5.

Tversky loss is a loss function that is commonly used in machine learning for binary

classification problems where the classes may not be balanced, such as our lesion segmentation

task. It is a generalization of the Dice loss. It is the only loss from the selected ones with the

possibility of defining a β value choice to tune a desired trade-off between false positives and

false negatives (FAWCETT, 2006).



40

Tabela 5 – Lesion Segmentation Optimized Hyperparameters.
Architecture Batch size Epochs Loss Beta LR Optimizer Patience

MobilenetV2
FPN

16 75 Dice n/a 0.0001 Adam 15

Resnet50
FPN

64 50 Dice n/a 0.0001 RMSprop 15

Densenet201
FPN

16 75 Dice n/a 0.0001 RMSprop 15

Resnext101
FPN

64 75 Tversky 0.9 0.001 Adam 10

MobilenetV2
Unet

64 50 Tversky 0.3 0.001 Adam 15

Resnet50
Unet

64 50 Tversky 0.7 0.0001 RMSprop 10

Densenet201
Unet

32 75 Tversky 0.3 0.00001 Adam 15

Resnext101
Unet

64 75 Lovasz n/a 0.0001 Adam 10

MobilenetV2
Unet++

32 50 Dice n/a 0.0001 Adam 15

Resnet50
Unet++

32 75 Lovasz n/a 0.00001 RMSprop 10

Densenet201
Unet++

32 75 Tversky 0.3 0.00001 Adam 15

Resnext101
Unet++

16 50 Lovasz n/a 0.0001 Adam 15

MobilenetV2
MAnet

32 25 Tversky 0.7 0.0001 RMSprop 5

Resnet50
MAnet

64 50 Lovasz n/a 0.00001 RMSprop 5

Densenet201
MAnet

32 75 Dice n/a 0.00001 RMSprop 15

Resnext101
MAnet

16 75 Lovasz n/a 0.0001 Adam 15

Source: author (2023).

3.5 Lesion quantification

MosMedData does not provide a quantified computed approach for pulmonary

commitment analysis; expert physicians qualitatively evaluate COVID-19 severity. First, we

calculate the area of the left and right lungs and lesions to approximate the disease severity

analysis. Then, we divided the area of the lesions by the area of the lung they are inside to obtain

a percentage of parenchymal involvement for each lung. Lungs with lesion/lung percentage

of ≤ 25 are categorized as CT-1. Percentages between > 25 and ≤ 50 are categorized as CT-

2. Percentages between > 50 and ≤ 75 are categorized as CT-2. And, percentages ≥ 75 are

categorized as CT-4.
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3.6 Classification models

We tested eight state-of-the-art models, including MobilenetV2, Resnet50, Dense-

net201, Resnext101, SqueezeNet, EfficientNet, ShuffleNet, and GhostNet, all pre-trained on

ImageNet. The loss function utilized was Cross Entropy, the learning rate was set at 0.0001, and

Adam optimization was used. The batch size was 64, the maximum number of training epochs

was 20, and patience of 5 epochs.

3.7 Evaluation Metrics

Segmentation models were evaluated using Accuracy, F1-Score (DSC score), Haus-

dorff Distance (HD), and training and testing time. Classification models were evaluated using

Accuracy, F1-Score, Precision, Recall, Specificity, and Confusion Matrix.

For the segmentation tasks, True Positive (TP) refers to correctly segmented lesion

pixels, True Negative (TN) to correctly segmented background pixels, False Positive (FP) to

background pixels wrongfully classified as lesion pixels, and False Negative (FN) to lesion pixels

wrongfully classified as background pixels.

For the classification tasks, TP refers to correctly classified exams with lesions, TN

to correctly classified exams without lesions, FP to exams without lesions wrongfully classified

as with lesions, and FN to exams with lesions wrongfully classified as without lesions.

Acc =
T P+T N

T P+T N +FP+FN
(3.1)

A higher accuracy mainly indicates better performance. However, accuracy is not

always the best metric to evaluate a model, mainly because we are dealing with unbalanced

data, and misclassifications have different consequences. For example, it is worse to classify a

COVID-19 exam as a non-COVID-19 exam than the other way around.

F1 = DSC =
2T P

2T P+FP+FN
(3.2)

F1-score, on the other hand, is a metric that considers both Precision, where a high

precision indicates that the model is accurately identifying positive cases:

P =
T P

T P+FP
(3.3)
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and Recall, where a high Recall indicates that the model is accurately identifying

most positive cases, even if it also misclassifies some negative cases as positives:

R =
T P

T P+FN
(3.4)

F1-score is the harmonic mean of Precision and Recall, and provides a balance

between the two metrics. In cases where the data is imbalanced, F1-score can provide a more

informative evaluation of the model’s performance because it penalizes models that only predict

the majority class. Therefore, as our goal is to identify COVID-19-positive cases with high

precision, F1-score may be a more appropriate metric than accuracy.

Specificity refers to the ability of a model to correctly identify the negative cases,

i.e., those that do not have COVID-19. A high specificity indicates that the model can accurately

identify people who do not have the virus, which is essential to avoid false positives:

S =
T N

T N +FP
(3.5)

It is important to note that a model with low specificity, but high recall, identifies

many true positive cases but also has many false positives. Finally, segmentation models were

also evaluated by the Hausdorff Distance (HD):

d(X ,Y ) = sup

{
sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)

}
. (3.6)

The Hausdorff Distance is a metric on the space of compact, non-empty sets. The

Hausdorff metric between two sets, X and Y, is defined as the maximum of two values: the

Hausdorff distance from X to Y and the Hausdorff distance from Y to X. The Hausdorff metric

is commonly used in computer vision, image processing, and pattern recognition. It compares

the similarity of shapes, images, or other data types. For this work, X and Y are the segmented

images returned by our architectures and the ground truth images, respectively.

3.8 Statistical Tests

We used boxplots for visualizing and comparing the distributions of numerical data.

They provide a quick summary of the data’s central tendency, spread, and skewness and can be

particularly useful for identifying outliers and skewness in the data.
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To better understand the significance of our results and meaningfully analyse the

best models, we used the following steps (Figure 13) for statistical analysis:

1. All columns are checked with the Shapiro-Wilk test for normality;

2. If all columns are normal, we use Bartlett’s test for homogeneity, otherwise we use

Levene’s test;

3. If all populations are normal and homoscedastic, we use repeated measures ANOVA with

Tukey’s HSD as post-hoc test;

4. If at least one population is not normal or the populations are heteroscedastic, we use

Friedman’s test with the Nemenyi post-hoc test.

We used the Shapiro-Wilk test to test the normality assumption (SHAPIRO; WILK,

1965). Then, we applied the Bartlett or Levene test, depending on Shapiro-Wilk’s results.

Bartlett’s test is a homogeneity test of variances to determine if the variances of the

metrics of the architectures are equal. It tests the null hypothesis that the variances of all groups

are similar (BARTLETT; FOWLER, 1937).

Levene test assesses the assumption of equal variances before conducting a test

to compare the means of the metrics of the architectures. It provides a way to determine if

the variances of the groups (each group is a 10-fold result for a metric) are equal, which is an

essential assumption for the ANOVA test (BROWN; FORSYTHE, 1974).

We conducted the repeated measures ANOVA test to determine if there was a

significant difference in means between the metrics of the architectures. The repeated measures

ANOVA test calculates a statistic and provides a p-value, which can be used to determine if the

differences between the group means are significant (GREENHOUSE; GEISSER, 1959).

We performed the Friedman non-parametric test to determine if there is a significant

difference between the metrics of the architectures. It tests the null hypothesis that the population

medians of all groups are equal. The Nemenyi posthoc test is a multiple comparison test that we

used to identify which groups are significantly different from each other after a significant result

from the Friedman test. Every group pair has its difference between the medians calculated, and

if this difference is bigger than a critical distance (CD), the groups are significantly different.

The CD is a threshold that helps determine which group comparisons are statistically significant,

and it is calculated based on the number of groups being compared and the overall significance

level chosen (α = 0.05 in our case) (FRIEDMAN, 1937; NEMENYI, 1963).

The Tukey HSD test is a multiple comparison test used to compare all possible pairs
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Figure 13 – Fluxogram of the statistical tests used to understand the significance of our results.
These steps are repeated for Accuracy, F1-Score, and HD. Each column is the 10-fold metric
output for each segmentation metric.
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of means in the set of metrics of the architectures. We used the Tukey HSD test to identify which

specific pairs of metrics are significantly different from each other, considering the multiple

comparisons. We utilized the Bartlett test to assess the assumption of equal variances before

conducting the Tukey HSD test. If the Bartlett test shows that the variances are equal, then the

Tukey HSD test can be used to compare the means of the metrics of the architectures (TUKEY,

1949).
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3.9 Development Environment

For the development of this work, we utilized several cutting-edge tools and techno-

logies to ensure the best possible outcome. We employed open-source libraries such as PyTorch,

Pytorch Lightning, Segmentation Models Pytorch (SMP), Autorank, and WandB. Our hardware

setup included an NVIDIA GeForce RTX 3060 12 GB graphics card and a 12th Gen Intel Core

i7-12700KF x 20 processor, along with 64 GB of memory.
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4 RESULTS AND DISCUSSION

This section presents the results concerning the methodology employed for lung and

lesion segmentation, COVID-19 and CAP classification in CT exams. We compared state-of-the-

art models through Accuracy, Precision, Recall, F1-Score, Specificity, Hausdorff Distance, and

processing time.

4.1 Lung segmentation

The first task was to segment the lungs from the background on raw CT slices to

remove artefacts for COVID-19 and CAP detection. We summarize the results for this step in

Table 6.

Tabela 6 – Lung Segmentation Results.
Architecture Acc (%) F1 (DSC) (%) HD

MobilenetV2 FPN 99.55 ± 0.05 97.9 ± 0.16 4.4 ± 0.1
Resnet50 FPN 99.62 ± 0.04 98.25 ± 0.15 4.19 ± 0.15

Densenet201 FPN 99.61 ± 0.06 98.21 ± 0.2 4.2 ± 0.14
Resnext101 FPN 99.63 ± 0.06 98.29 ± 0.2 4.18 ± 0.12

MobilenetV2 Unet 99.63 ± 0.08 98.29 ± 0.31 4.1 ± 0.21
Resnet50 Unet 99.7 ± 0.05 98.59 ± 0.17 3.92 ± 0.15

Densenet201 Unet 99.69 ± 0.06 98.56 ± 0.21 3.96 ± 0.17
Resnext101 Unet 99.7 ± 0.05 98.61 ± 0.17 3.92 ± 0.15

MobilenetV2 Unet++ 99.67 ± 0.05 98.46 ± 0.2 4.0 ± 0.12
Resnet50 Unet++ 99.69 ± 0.05 98.58 ± 0.18 3.95 ± 0.14

Densenet201 Unet++ 99.7 ± 0.05 98.63 ± 0.19 3.93 ± 0.18
Resnext101 Unet++ 99.71 ± 0.05 98.64 ± 0.19 3.9 ± 0.16
MobilenetV2 MAnet 99.66 ± 0.05 98.41 ± 0.17 4.01 ± 0.12

Resnet50 MAnet 99.68 ± 0.05 98.51 ± 0.18 3.99 ± 0.14
Densenet201 MAnet 99.66 ± 0.05 98.42 ± 0.17 4.03 ± 0.13
Resnext101 MAnet 99.69 ± 0.05 98.54 ± 0.17 3.96 ± 0.14

Source: author (2023).

In general, all architectures presented state-of-the-art results regarding Accuracy, F1-

Score (DSC), and Hausdorff Distance. Resnext101 Unet++ outperforms the other architectures

for all metrics, achieving 99.71 ± 0.05%, 98.64 ± 0.19%, and 3.9 ± 0.16 for Accuracy, F1-Score

(DSC), and Hausdorff Distance, respectively. However, all architectures presented a similar

performance for the three metrics. In the following sections, we analyse the significance of our

results through statistical tests, aiming to confirm their relevance.

Figure 14 illustrates the segmentation metrics boxplots applied for lung segmentation:

Accuracy, F1-Score (DSC), and Hausdorff Distance.
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Figure 14 – Boxplots of segmentation metrics applied in this work. a) Accuracy, b) F1-Score
(DSC) and c) Hausdorff Distance.
a)

b)

c)

Source: Author (2023)
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Concerning the accuracy metric, we can see by the y-axis that all algorithms per-

form similarly, as accuracy variates from 0.994 to 0.997. First, however, we remark on some

important aspects when comparing our segmentation architectures. For instance, Resnet50 Unet,

Densenet201 Unet, Resnext101 Unet, Densenet201 Unet++, and Resnext101 Unet++ presented

the best accuracy medians (Figure 14.a), lying higher than other algorithm boxes. Moreover, the

interquartile ranges of these algorithms are smaller than the others, indicating that the accuracy

values are less dispersed with a left-skewed distribution. On the other hand, MobilenetV2 FPN

presented the lowest accuracy with more dispersed data and a soft left-skewed distribution. The

remaining algorithms presented competitive accuracies but with dispersed and skewed values. In

addition, only MobilenetV2 FPN, MobilenetV2 Unet++, Resnet50 Unet++, and MobilenetV2

MAnet have no outliers.

In general, F1-Score behaviour is similar. For example, Resnet50 Unet, Densenet201

Unet, Resnext101 Unet, Densenet201 Unet++, and Resnext101 Unet++ again presented the best

median values (Figure 14.b), with the left-skewed distribution. However, Resnet101 Unet++ had

a more dispersed data distribution.

The architectures had more dispersed data for the Hausdorff metric (Figure 14.c).

For example, Resnext101 Unet++ had the lowest median, with a right-skewed distribution, and

MobilenetV2 FPN presented the highest Hausdorff median.

Because one accuracy population is not normal (Densenet201 Unet), we applied

Friedman’s test with the Nemenyi post-hoc test to analyse whether the accuracies’ distributions

differ. We presented the test results in Figure 15.a. Remembering that differences are significant

if the distance between the mean ranks is greater than the CD.

We failed to reject the null hypothesis that the population is normal for all F1-Score

populations. Therefore, we assume that all F1-Score populations are normal. We applied Bar-

tlett’s test for homogeneity and failed to reject the null hypothesis that the data is homoscedastic.

Thus, we assume that our data is homoscedastic. Because we have more than two populations

and all populations are normal and homoscedastic, we use repeated measures ANOVA as an

omnibus test to determine any significant differences between the mean values of the populations.

As results from the ANOVA test were significant, we used the post-hoc Tukey HSD test to

infer which differences are significant. Populations are significantly different if their confidence

intervals are not overlapping in Figure. 15.b.

None of the architectures significantly differed in accuracy, as they had a mean rank
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Figure 15 – Statistical tests for our metrics for the lung segmentation task. a) Accuracy, b)
F1-Score (DSC), and c) Hausdorff Distance..

b)

a)

c)

Source: Author (2023)

distance smaller than the critical distance for at least one other evaluated architecture (Figure

15.a). Nonetheless, the architecture that had the most different accuracy from the others was

MobilenetV2 FPN.
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Most confidence maps overlap (Figure 15.b), except for MobilenetV2 FPN, the

fastest architecture for training and testing (Figure 16). When selecting an architecture, we can

choose MobilenetV2 FPN for a fast architecture with a slight loss in F1-Score. On the other

hand, suppose we decide on an architecture with a higher F1-Score. In that case, we can choose

any other architecture because F1-Score differences are insignificant. Thus, the best choice

would be Resnet50 Unet++, the second-fastest architecture and, as shown by the test, does not

significantly differ F1-Score from other slower architectures.

Hausdorff Distance results are generally similar (Figure 15.c). Again, MobilenetV2

FPN had the most significant difference, while other architectures had no significant difference

for Hausdorff Distance.

The fastest model for training and testing was MobilenetV2 FPN, and the slowest

was Resnext101 Unet++. However, even if the difference for the shortest training time (513.5

seconds) was more than ten times faster than the longest (5304.3 seconds), the fastest test time

was of 1.9 seconds, and the slowest was 8.5 for evaluating on 3677 images, or an average of

0.51×10−3 and 2.3×10−3 seconds per image, respectively. As complexity rose, other models

followed a linear training and testing time growth. We present this behaviour in Figure 16.

4.2 Lesion Segmentation

The second task was to segment lesions inside the lungs from the previously segmen-

ted CT slices for COVID-19 and CAP detection. We summarize the results for this step in Table

7.

All architectures presented excellent results regarding Accuracy, F1-Score (DSC),

and Hausdorff Distance. Densenet201 Unet, Resnet50 Unet++, and Resnext101 Unet++ out-

perform the other architectures for Accuracy, achieving 99.87±0.01%. Densenet201 Unet++

obtains the highest F1-Score (DSC) for all architectures, achieving 85.16±1.13%. However, all

architectures presented a similar performance for the three metrics. In the following sections, we

analyse the significance of our results through statistical tests, aiming to confirm their relevance.

However, MobilenetV2 FPN, the fastest architecture, obtained the smallest HD of 2.86±0.12.

The accuracies are high because most of the Ground Truth image is mainly composed

of black pixels, with only a small percentage of the image being white lesions pixels. When we

calculate the Accuracy of our models, these black pixels raise all accuracies, reducing the metric

credibility.
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Figure 16 – Training and Testing time for lung segmentation.

Source: Author (2023)

Tabela 7 – Lesion Segmentation Results.
Architecture Acc (%) F1 (DSC) (%) HD

MobilenetV2 FPN 99.85 ± 0.01 82.95 ± 1.45 2.86 ± 0.12
Resnet50 FPN 99.86 ± 0.01 83.84 ± 1.13 4.0 ± 0.2

Densenet201 FPN 99.86 ± 0.01 83.47 ± 1.01 2.87 ± 0.1
Resnext101 FPN 99.84 ± 0.02 82.17 ± 1.71 4.28 ± 0.25

MobilenetV2 Unet 99.86 ± 0.01 82.59 ± 1.32 4.1 ± 0.21
Resnet50 Unet 99.87 ± 0.02 84.55 ± 1.32 4.06 ± 0.26

Densenet201 Unet 99.87 ± 0.01 84.8 ± 1.1 3.88 ± 0.22
Resnext101 Unet 99.85 ± 0.02 82.75 ± 2.1 4.21 ± 0.2

MobilenetV2 Unet++ 99.87 ± 0.02 84.51 ± 1.08 3.95 ± 0.26
Resnet50 Unet++ 99.87 ± 0.01 84.41 ± 1.32 3.48 ± 0.12

Densenet201 Unet++ 99.87 ± 0.01 85.16 ± 1.13 3.4 ± 0.13
Resnext101 Unet++ 99.86 ± 0.01 83.72 ± 1.26 2.87 ± 0.14
MobilenetV2 MAnet 99.83 ± 0.02 80.9 ± 1.34 3.77 ± 0.13

Resnet50 MAnet 99.85 ± 0.01 82.37 ± 1.14 4.11 ± 0.27
Densenet201 MAnet 99.86 ± 0.01 83.81 ± 1.01 3.52 ± 0.19
Resnext101 MAnet 99.86 ± 0.01 83.18 ± 1.16 2.86 ± 0.13

Source: author (2023).
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Figure 17 illustrates the segmentation metrics boxplots applied for lesion segmenta-

tion: Accuracy, F1-Score (DSC), and Hausdorff Distance.

Figure 17 – Boxplots of segmentation metrics applied in this work for lesion segmen-
tation. a) Accuracy, b) F1-Score(DSC) and c) Hausdorff Distance.
a)

b)

c)

Source: Author (2023)

Concerning the accuracy metric, we can see by the y-axis that all algorithms per-
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formed very similarly, as accuracy variates from 0.9980 to 0.9990. First, however, we remark

on some important aspects when comparing our segmentation architectures for this metric. For

instance, Resnet50 Unet, Densenet201 Unet, Densenet201 Unet++, and Resnext101 Unet++

presented higher accuracy medians (Figure 17.a). Moreover, the interquartile ranges of these

algorithms are smaller than the others, indicating that the accuracy values are less dispersed with

a left-skewed distribution.

On the other hand, MobilenetV2 MAnet presented the lowest accuracy with more

dispersed data and a soft left-skewed distribution. The remaining algorithms presented com-

petitive accuracies but with more dispersed and skewed values. In addition, only Densenet201

FPN, Resnext101 Unet, Resnet50Unet++, DenseNet 201 Unet++, Resnext101 Unet++, and

Densenet201 MAnet have no discrepant values.

Concerning F1-Score, the Unet decoders (ResNet 50 Unet, Densenet201 Unet,

MobilenetV2 Unet++, Resnet50 Unet++, and Densenet201 Unet++) presented higher median

values with lower dispersion (Figure 17.b). On the other hand, Resnext101 Unet had a more

dispersed data distribution. Moreover, only Resnet50 Unet, Resnext101 Unet++, and Resnet50

MAnet architectures presented discrepant values.

In general, the architectures had less dispersed data for the Hausdorff metric (Figure

17.c). For example, Resnext101 Unet++ had the lowest median, with a right-skewed distribu-

tion, and MobilenetV2 FPN, Densenet201 FPN, Resnext101 Unet++, and Resnext101 MAnet

presented the lowest Hausdorff median.

We failed to reject the null hypothesis that the population is normal for all Accuracy

populations. Therefore, we assume that all Accuracy populations are normal. We applied Bar-

tlett’s test for homogeneity and failed to reject the null hypothesis that the data is homoscedastic.

Thus, we assume that our data is homoscedastic. Because we have more than two populations

and all populations are normal and homoscedastic, we use repeated measures ANOVA as an

omnibus test to determine any significant differences between the mean values of the populations.

As results from the ANOVA test were significant, we used the post-hoc Tukey HSD test to

infer which differences are significant. Populations are significantly different if their confidence

intervals are not overlapping in Figure 18.a.

Because one F1-Score and one HD population is not normal (Resnext101 Unet++),

we applied Friedman’s test with the Nemenyi post-hoc test to analyse if there is a difference

between the accuracies’ distributions. We presented the test results in Figure 18.b-c. Differences
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are significant if the distance between the mean ranks is greater than the critical distance (CD).

Figure 18 – Statistical test results for our metrics for the lesion segmentation task. a) Accuracy,
b) F1-Score, and c) Hausdorff Distance.

a)

b) c)

Source: Author (2023)

Most confidence maps overlap (Figure 18.a), except for MobilenetV2 MAnet, that

overlaps mainly with Resnext101 FPN and Resnet50 MAnet. Resnext101 FPN and Resnet50

MAnet have similar results for all metrics and similar training and testing times. However,

MobilenetV2 MAnet is faster in training and testing with a small decrease in Accuracy (Figure

19). Thus, when selecting an architecture, we can choose MobilenetV2 MAnet for a fast

architecture with a slight loss in Accuracy. On the other hand, suppose we decide on an

architecture with a higher Accuracy. In that case, we can choose any other architecture because

F1-Score differences are insignificant. Thus, the best choice would be Resnet50 Unet++ again,

the second-fastest architecture and, as shown by the test, does not significantly differ F1-Score
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from other slower architectures.

None of the architectures significantly differed from the others for F1-Score, as

they had a mean rank distance smaller than the critical distance for at least one other evaluated

architecture (Figure 18.b). Nonetheless, the architecture that had the most different F1-Score

from the others was MobilenetV2 MAnet.

In general, Hausdorff Distance results are similar (Figure 18.c). MobilenetV2 FPN,

Resnext101 Unet++, and Resnext101 MAnet had the most significant difference, while other

architectures had no significant difference for Hausdorff Distance.

The fastest model for training was MobilenetV2 MAnet, and for testing was Mobi-

lenetV2 FPN. However, MobilenetV2 MAnet converged faster, needing only 25 epochs. The

slowest for the train were Densenet201 Unet++ and Resnext101 Unet++, and the slowest for

the test was Resnext101 Unet++. However, even if the difference for the fastest training time

(573.0 seconds) was more than thirty times faster than the slowest (19164.5 seconds), the fastest

test time was of 2.8 seconds, and the slowest was 12.6 for evaluating on 6493 images, or an

average of 0.43× 10−3 and 1.9× 10−3 seconds per image, respectively. As complexity rose,

other models followed a linear training and testing time growth. We present this behaviour in

Figure 18.

4.3 Lesion detection

We first applied our architectures on the other 1010 full CT scans of MosMedData

to validate our system in a 3D scenario to detect and segment all lesions in an exam and then

classify the exam as "with lesion"if any lesion is found or "without lesion"otherwise. The results

are summarized in Table 8.

All architectures had similar and competitive results for MosMedData. MobileNet

Unet had the highest Accuracy, F1-Score, and Recall with 94.36%, 96.5%, and 97.39%, respec-

tively. However, it only achieved a specificity of 82.35%. Densenet201 MAnet obtained the

highest Precision and Specificity, with 97.23% and 90.2%, respectively. But it achieved a lower

accuracy of 87.82% and recall of 87.22%.

These metrics indicate that MobileNet Unet had the smallest number of false negati-

ves (21 exams or 2.60%) but a higher number of false positives (36 exams or 17.65%). Therefore,

as losing a positive exam over a negative is more critical, MobileNet Unet might be an efficient

option to detect COVID-19 on MosMedData.
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Figure 19 – Training and Testing time for lesion segmentation.

Source: Author (2023)

Then, to evaluate our architecture’s robustness, we performed an external validation

on the SPGC Dataset, which was not on the training/validation/test sets, thus having a different

distribution from our original images. Furthermore, SPGC Dataset has CAP exams, which were

added to the "with lesion"class. Table 9 presents the results of all evaluated architectures in this

work.

All architectures had similar and competitive results for external validation on the

SPGC dataset. MobileNet Unet had the highest Accuracy and F1-Score, with 98.05% and 98.7%,

respectively.

MobileNet Unet is an intermediate architecture with a small encoder of only 3.4

million parameters and a decoder of 32 million parameters. Its size might have aided it in

learning the task without overfitting samples with the same distribution from train/validation/test

sets.

It is worth mentioning that external validation plays a vital role when comparing
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Tabela 8 – COVID-19 Lesion detection external validation on Mos-
MedData.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%) Time per
exam (s)

MobilenetV2
FPN

91.88 94.94 94.36 95.53 77.45 12.69

Resnet50
FPN

90.40 94.0 93.71 94.29 75.0 12.42

Densenet201
FPN

90.89 94.43 92.20 96.77 67.65 15.05

Resnext101
FPN

91.39 94.68 93.37 96.03 73.04 14.68

MobilenetV2
Unet

94.36 96.5 95.62 97.39 82.35 12.88

Resnet50
Unet

92.48 95.31 94.84 95.78 79.41 12.79

Densenet201
Unet

90.40 94.08 92.56 95.66 69.61 13.61

Resnext101
Unet

91.09 94.55 92.32 96.9 68.14 12.54

MobilenetV2
Unet++

92.18 95.05 95.95 94.17 84.31 12.44

Resnet50
Unet++

90.40 93.87 95.62 92.18 83.33 13.03

Densenet201
Unet++

91.78 94.94 93.40 96.53 73.04 12.98

Resnext101
Unet++

91.88 94.99 93.61 96.40 74.02 14.94

MobilenetV2
MAnet

90.99 94.38 93.97 94.79 75.98 14.05

Resnet50
MAnet

87.92 92.49 91.81 93.18 67.16 14.34

Densenet201
MAnet

87.82 91.96 97.23 87.22 90.2 17.43

Resnext101
MAnet

91.88 94.94 94.47 95.41 77.94 16.87

Source: author (2023).

CNNs, because it simulates real-world situations, allowing us to choose the architecture that best

generalizes for new samples.

4.4 COVID-19 and CAP Classification

We trained eight deep-learning models on COVIDxCT to differentiate between

COVID-19 and CAP CT slices. This classification distinguishes previously segmented lesions

from these two diseases, as our segmentation models can not distinguish between COVID-19

and CAP lesions. We present our results in Table 10.

Our results for classifying CT slices as COVID-19 or CAP from COVIDxCT using

eight different deep-learning models are competitive. All the models have achieved high accuracy,
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Tabela 9 – Lesion detection external validation on SPGC Dataset.
Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%) Time per

exam (s)

MobilenetV2
FPN

97.39 98.28 97.85 98.70 93.42 19.03

Resnet50
FPN

95.11 96.82 95.0 98.7 84.21 19.49

Densenet201
FPN

96.42 97.64 96.61 98.70 89.47 21.71

Resnext101
FPN

97.39 98.28 97.85 98.70 93.42 21.45

MobilenetV2
Unet

98.05 98.70 98.7 98.7 96.05 19.70

Resnet50
Unet

97.39 98.28 97.45 99.13 92.11 21.45

Densenet201
Unet

94.79 96.61 94.61 98.70 82.89 21.71

Resnext101
Unet

91.53 94.63 90.51 99.13 68.42 22.72

MobilenetV2
Unet++

97.72 98.47 99.12 97.84 97.37 19.22

Resnet50
Unet++

95.77 97.12 99.55 94.81 98.68 23.01

Densenet201
Unet++

97.39 98.28 97.45 99.13 92.11 23.29

Resnext101
Unet++

94.79 96.61 94.61 98.70 82.89 23.29

MobilenetV2
MAnet

95.11 96.82 95.0 98.70 84.21 20.26

Resnet50
MAnet

96.42 97.58 99.11 96.10 97.37 22.93

Densenet201
MAnet

94.14 96.22 93.47 99.13 78.95 25.33

Resnext101
MAnet

95.44 97.03 95.02 99.13 84.21 21.45

Source: author (2023).

Tabela 10 – COVID-19 and CAP Classification Results for CO-
VIDxCT.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%)

Mobilenet 95.85 95.91 94.12 97.78 93.94
Resnet50 95.79 95.90 93.09 98.88 92.73

Densenet201 96.43 96.48 94.66 98.37 94.50
Resnext101 96.79 96.84 94.71 99.07 94.52
Squeezenet 94.84 95.00 91.75 98.49 91.22
Efficientnet 96.18 96.20 95.36 97.04 95.32
Shufflenet 95.69 95.78 93.35 98.35 93.05
Ghostnet 96.18 96.28 93.42 99.32 93.06

Source: author (2023).

F1-score, precision, recall, and specificity. Among the models, Resnext101 has achieved the

highest overall performance, with an accuracy of 96.79%, F1-score of 96.84%, precision of

94.71%, recall of 99.07%, and specificity of 94.52%. The performance of the other models is
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also noteworthy, with accuracy ranging from 94.84% to 96.79%. Finally, it is worth pointing out

that the models’ specificity varies considerably, ranging from 91.22% to 95.32%.

Then, we externally validate these eight deep-learning models on the slices with the

most extensive lesions detected on SPGC Dataset, which can have lesions caused by COVID-19

or CAP. Finally, we summarize the results in Table 11.

Tabela 11 – COVID-19 and CAP Classification external validation
on SPGC Dataset.

Architecture Acc (%) F1 (%) Prec (%) Rec (%) Spec (%)

Mobilenet 87.44 91.87 86.77 97.61 60.31
Resnet50 86.58 91.50 84.77 99.40 52.38

Densenet201 90.47 93.85 88.42 100.0 65.07
Resnext101 88.31 92.43 87.30 98.21 61.90
Squeezenet 86.14 91.20 84.69 98.80 52.38
Efficientnet 89.17 93.03 87.43 99.40 61.90
Shufflenet 87.87 92.26 86.08 99.40 57.14

Source: author (2023).

These results indicate that the eight deep-learning models we evaluated have promi-

sing potential for distinguishing COVID-19 and CAP using CT images. Overall, Densenet201

achieved the best performance with the highest accuracy, F1-score, and specificity. However, it

is worth noting that the relatively low specificity for CAP means that the models may be more

prone to false negatives for this class. This is an important consideration, as accurate detection

of Common Acquired Pneumonia is also critical for the appropriate treatment and management

of patients. It is important to note that these results were obtained by externally validating the

models on a single slice from each CT scan from the SPGC dataset. Because the SPGC Dataset

has a smaller sample size than the COVIDxCT dataset used for model training, further evaluation

on larger and more diverse datasets is needed to fully assess the generalizability and robustness

of the models. Furthermore, to use these 2D deep-learning models and gain processing time,

the three-dimensionality of SPGC Dataset CT scans is discarded, which also causes a loss of

information.

When merging the segmentation, detection, and classification tasks, we obtained

the confusion matrix in Figure 20. For lung segmentation, we applied Resnext101 Unet++; for

lesion segmentation, we applied MobilenetV2 Unet; and for COVID-19 or CAP classification,

we used Densenet201. These architectures were selected by their overall results, focusing mainly

on a low false negative rate.

The confusion matrix shows that the classifier performed well in the COVID-19 class,
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Figure 20 – Final results using MobilenetV2 Unet for lesion detection and Densenet201 for
COVID-19 or CAP classification.

Source: Author (2023)

with a high number of true positives (168) and a low number of false positives (3). However,

there are some misclassifications, as 35% of CAP exams were classified as COVID-19. These

results suggest that our classification models could not differentiate between the two classes, or

that there was insufficient information on the CT slice to differentiate.

4.5 COVID-19 Severity

In order to provide numerical data about the segmented COVID-19 lesions, we

calculated the severity of the disease based on the compromised area of the lungs. Then, we

applied this methodology on MosMedData and compared results. A summary is presented at
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Table 12.

Tabela 12 – COVID-19 severity for MosMedData.
Architecture Acc (%) F1 (%) Prec (%) Rec (%)

MobilenetV2 FPN 69.9 69.95 70.27 69.9
Resnet50 FPN 71.98 70.77 70.52 71.98

Densenet201 FPN 67.13 67.81 69.07 67.13
Resnext101 FPN 69.5 69.68 70.27 69.5

MobilenetV2 Unet 75.05 73.26 72.67 75.05
Resnet50 Unet 72.67 71.08 70.25 72.67

Densenet201 Unet 66.93 67.49 68.42 66.93
Resnext101 Unet 69.41 69.07 69.58 69.41

MobilenetV2
Unet++

72.97 71.09 70.3 72.97

Resnet50 Unet++ 69.21 68.7 68.79 69.21
Densenet201

Unet++
72.18 70.86 70.83 72.18

Resnext101 Unet++ 70.89 70.4 70.44 70.89
MobilenetV2

MAnet
70.89 70.25 70.29 70.89

Resnet50 MAnet 66.93 66.26 65.99 66.93
Densenet201

MAnet
66.44 66.12 67.28 66.44

Resnext101 MAnet 71.09 70.58 70.47 71.09

Source: author (2023).

Again, Mobilenet Unet obtained the highest results, with an accuracy of 75.05%, an

F1-Score of 73.26%, a Precision of 72.67%, and a Recall of 75.05%. Even if metrics are not

as high as for binary classification ("without lesion"or "with lesion"), Figure 21 shows for four

architectures (Resnet50 FPN, MobileNet FPN, MobileNet Unet, and DenseNet MAnet) that our

system correctly segmented most lesions presented on the CT scans. The lower metrics might

happen because of the qualitative analysis made when labelling MosMedData, which we could

not replicate with quantitative values.

We presented the images where each model found the most extensive lesion area

for that specific exam. The experiment found that all architectures could locate lesions in the

same lung areas, indicating consistent performance. However, some architectures were unable to

identify certain lesion areas accurately. Specifically, the MobilenetV2 FPN architecture failed

to locate a small lesion in the right lung in the presented image (21.a), while the other three

architectures correctly identified it. These findings suggest that while all architectures performed

similarly overall, there were still differences in their ability to accurately identify certain lesion

areas, highlighting the importance of selecting the most suitable architecture for a specific

task. These difficulties in detecting certain lesion areas could have been one of the factors that
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Figure 21 – Segmentation results for Resnet50 FPN, Mobilenet FPN, Mobilenet Unet, and
Densenet MAnet on MosMedData. Lungs segmentation is represented as the red contours, and
lesion segmentation is represented as the green contours; a) Image from an exam of class 1. b)
Image from an exam of class 2. c) Image from an exam of class 3. d) Image from an exam of
class 4.
a) Original Image

b)

c)

d)

MobilenetV2 FPN Resnet50 FPN MobilenetV2 Unet Densenet201 MAnet

Source: Author (2023)

worsened the results presented in the confusion matrices in Table 13. Returning a segmentation

smaller than the actual lesion might compromise medical analysis, as the lung commitment

might be worse than our system informs. However, our system correctly detected lesions, and

doctors could analyze each slice and notice that lesions were more extensive than it seemed.

Despite the success of our models in differentiating COVID-19 from non-COVID-19

cases (as shown in Table 8), we still observe a high degree of error when it comes to distinguishing

between different severity classes of COVID-19 on MosMedData. This error may be due to

several factors, such as incorrect segmentation of lesions on CT scans by our models or the lack

of a quantified evaluation on MosMedData, as specialists qualitatively evaluated severity. This

may have affected our results even when lesions were correctly segmented.

According to our results, Resnet50 FPN was the fastest architecture for MosMedData
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Tabela 13 – Confusion Matrix results for Resnet50 FPN, Mobilenet
FPN, Mobilenet Unet, and Densenet MAnet on MosMedData.

True Class Classified as MobilenetV2
FPN

Resnet50 FPN MobilenetV2
Unet

Densenet201
MAnet

CT-0
CT-0 158 (77%) 153 (70%) 168 (82%) 184 (90%)
CT-1 46 (23%) 50 (25%) 36 (18%) 20 (10%)
CT-2 0 1 0 0
CT-3 0 0 0 0
CT-4 0 0 0 0

CT-1
CT-0 35 (6%) 45 (7%) 21 (3%) 100 (16%)
CT-1 506 (80%) 534 (84%) 559 (88%) 452 (71%)
CT-2 59 (9%) 37 (6%) 36 (6%) 52 (52%)
CT-3 14 (2%) 5 (1%) 8 (1%) 12 (2%)
CT-4 20 (3%) 13 (2%) 10 (2%) 18 (3%)

CT-2
CT-0 1 (1%) 1 (1%) 0 2 (1%)
CT-1 80 (63%) 82 (65%) 94 (74%) 83 (66%)
CT-2 34 (28%) 35 (28%) 26 (21%) 25 (20%)
CT-3 8 (6%) 5 (4%) 4 (3%) 10 (8%)
CT-4 3 (2%) 3 (2%) 2 (2%) 6 (5%)

CT-3
CT-0 0 0 0 1 (2%)
CT-1 21 (48%) 18 (41%) 22 (50%) 18 (41%)
CT-2 9 (20%) 15 (34%) 13 (30%) 10 (23%)
CT-3 7 (16%) 3 (7%) 4 (9%) 9 (20%)
CT-4 7 (16%) 8 (18%) 5 (11%) 6 (14%)

CT-4
CT-0 0 0 0 0
CT-1 0 0 0 0
CT-2 0 0 1 (50%) 1 (50%)
CT-3 1 (50%) 0 0 0
CT-4 1 (50%) 2 (100%) 1 (50%) 1 (50%)

Source: author (2023).

while Densenet201 MAnet was the slowest. Specifically, the average time taken by Resnet50

FPN to segment lesions from all slices in MosMedData was 12.42 seconds. On the other hand,

Resnext101 Unet++ took 17.43 seconds to segment lesions. For the SPGC Dataset, the fastest

architecture was MobileNet FPN, with an average time of 12.42 seconds to segment lesions.

On the other hand, Densenet MAnet was the slowest, with an average time of 25.33 seconds

to segment lesions. However, despite the speed difference, both models are viable for real-life

usage. This means highlighted models can be used effectively in clinical settings, where speed

and accuracy are essential and computational resources might be limited. The choice of model

will depend on the user’s specific needs, such as the available computational resources.
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4.6 Results Summary

Our lung segmentation results presented a statistically similar performance for all

architectures evaluated. The main difference between the architectures was training and testing

time, where MobilenetV2 FPN was the fastest with an Accuracy of 99.55±0.05, DSC Score

of 97.9±0.16, and HD of 4.4±0.1. Resnext101 Unet++ obtained the highest metrics, with an

accuracy of 99.71 ± 0.05%, a DSC Score of 98.64 ± 0.19%, and an HD of 3.9 ± 0.16%.

We also obtained a statistically similar performance for lesion segmentation for all

architectures. Now, the fastest architecture for training was MobilenetV2 MAnet, and for testing

was MobilenetV2 FPN. MobilenetV2 MAnet obtained an Accuracy of 99.83± 0.02, a DSC

Score of 80.9±1.34, and an HD of 3.77±0.13. MobilenetV2 FPN obtained an Accuracy of

99.85± 0.01, a DSC Score of 82.95± 1.45, and an HD of 2.86± 0.12. Densenet201 Unet++

achieved the highest metrics, with an accuracy of 99.87 ± 0.01%, a DSC Score of 85.16 ± 1.13%,

and an HD of 3.4 ± 0.13%.

Then, we used our lesion segmentation architectures for COVID-19 lesion detection

on MosMedData and lesion (COVID-19 or CAP) detection on SPGC Dataset.

For MosmedData, Mobilenet Unet had the highest Accuracy, F1-Score, Recall, and

Specificity with 94.36%, 96.5%, and 97.39% of 82.35%. It also had the smallest number of

false negatives (21 exams or 2.60%) but a high number of false positives (36 exams or 17.65%).

Therefore, as losing a positive exam over a negative is more critical, MobileNet Unet might be

an efficient option to detect COVID-19 on MosMedData.

Then, we performed an external validation on SPGC Dataset. All architectures had

similar and competitive results. MobileNet Unet had the highest Accuracy and F1-Score, with

98.05% and 98.7%, respectively. It also obtained competitive values for Precision, Recall, and

Specificity, such as 98.7%, 98.7%, and 96.05%, respectively.

For the classification between COVID-19 or CAP task on COVIDxCT Dataset,

Resnext101 achieved the highest overall performance, with an Accuracy of 96.79%, F1-score of

96.84%, Precision of 94.71%, Recall of 99.07%, and Specificity of 94.52%. When externally

validating on the SPGC Dataset, Densenet201 had the highest overall performance, reaching an

accuracy of 90.47%, an F1-score of 93.85%, a precision of 88.42%, a recall of 100.0%, and a

specificity of 65.07%.

Finally, for analysing COVID-19 severity based on lung and lesion segmentation,

Mobilenet Unet obtained the highest results, with an accuracy of 75.05%, an F1-Score of 73.26%,
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a Precision of 72.67%, and a Recall of 75.05%.

4.7 Limitations

The first limitation of this work is that all the architectures evaluated in this study

were based on 2D images, whereas CT scans provide 3D information. Although using 2D

images simplifies the computational complexity and reduces the training time required for the

models, it may not fully capture the complexity and variations of the 3D structures. Consequently,

the accuracy of the models in predicting and diagnosing various medical conditions using a

2D approach may be lower than with a 3D approach. Another limitation of this study is that

analysing only the CT Scan of a patient may not be sufficient for a diagnosis. CT scans provide

useful information about the body’s internal structures, but they do not provide information about

the patient’s symptoms or medical history. Therefore, integrating the CT Scan analysis with

clinical data processed by natural language models could improve the accuracy of the diagnosis.

By combining image and language models, physicians can make more informed decisions and

provide better patient treatment options.

While our approach showed encouraging results, other CT scan factors that may

contribute to the differentiation between CAP and COVID-19 might not be captured when

analysing only 2D slices separately. Moreover, it is known that there is a significant overlap in

the imaging features of COVID-19 and other respiratory diseases, which makes differentiation

challenging even with the use of advanced imaging techniques.

Despite these limitations, the findings of this study provide valuable insights into

the potential applications of deep learning and computer vision techniques for medical image

analysis. Future studies can build upon these findings and further explore using 3D imaging and

language models to improve medical diagnosis and treatment accuracy and efficiency.
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5 CONCLUSIONS

In this work, we proposed a Deep Learning-based approach for lung and lesion

detection and segmentation, and COVID-19 and CAP classification using full CT scans. The

results showed that our system correctly detected and segmented lesions from COVID-19 and

CAP in CT scans, differentiating these two classes from Normal exams. For the classification

task, we achieved competitive results for accuracy, precision, recall, F1-score, and specificity for

COVIDxCT dataset. However, our metrics dropped when externally validating on the SPGC

dataset, but are still competitive. From our results, our system can aid medical doctors in

analysing COVID-19 patients, mainly by providing quantitative values for lesion and lung sizes.

We also statistically demonstrated that most state-of-the-art CNN models for segmentation

achieve similar results, with insignificant differences between results from one or another.

Nevertheless, this work did not exhaust the possibilities of researching COVID-

19 and CAP detection, segmentation, and classification. In future works, one might evaluate

the tradeoff between processing time and accuracy using 3D segmentation and classification

architectures. In addition, clinical data can be used to aid in differentiating COVID-19 and CAP

CT exams.
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