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RESUMO

Problemas de aprendizado de máquina com dados incompletos são constantemente abor-

dados em diversos domínios do mundo real. Métodos estatísticos que lidam com atributos

ausentes caracterizam-se por suposições sobre a distribuição de dados através de uma

função de densidade. Diante desse contexto, abordagens para utilização de métodos

baseados em medidas de similaridade, tornam-se objetos de pesquisa bastante promissores,

uma vez que esses métodos geralmente assumem que os dados são totalmente observados

e não são equipados naturalmente para lidar com dados incompletos. Neste trabalho,

serão propostos métodos para estimar o valor esperado do Kernel Matérn na presença

de vetores de dados incompletos sem nenhuma etapa de pré-processamento. Os métodos

Expected Matérn Kernel via Monte Carlo Method (EMK-MC) e Expected Matérn Kernel

via Unscented Transform (EMK-UT) apresentam a capacidade de abordar o problema

de estimativa do kernel estimando a transformação de interesse, ao invés de lançá-la em

uma estrutura de pré-processamento. Para obter tais estimativas, os vetores incompletos

são tratados como variáveis aleatórias contínuas e, a partir da suposição que a distância

Euclidiana entre pontos de interesse seguem uma distribuição Nakagami, métodos de

amostragem são utilizados para gerar pontos que dependem apenas da distribuição de

interesse. Por meio de um modelo de mistura de Gaussianas, a distribuição dos dados é

aproximada a partir da estimativa de máxima verossimilhança via algoritmo Expectation-

Maximization, e ao mesmo tempo, estima os valores ausentes de forma iterativa. Isso

permite que o modelo seja ajustado aos dados observados, levando em consideração a

incerteza dos valores ausentes e as relações entre as variáveis. Os desempenhos dos métodos

propostos são comparados à três métodos em conjuntos de dados reais e sintéticos. Em

função da raiz do erro médio quadrático obtido ao computar a diferença entre o valor

estimado do kernel e o valor real, a consistência do desempenho alcançado se mantém

evidente na maioria dos cenários avaliados para bases do mundo real, sendo os métodos

propostos EMK-MC e EMK-UT, melhores em cerca de 43% e 38% dos cenários avaliados,

respectivamente. No que se refere aos cenários avaliados em conjuntos de dados sintéticos,

as abordagens propostas são melhores em todos os cenários avaliados.

Palavras-chave: Dados Ausentes; Modelo de Mistura de Gaussianas; Métodos de Aproxi-

mação de Funções; Kernel Matérn.



ABSTRACT

Machine learning problems with incomplete data are constantly addressed in various

real-world domains. Statistical methods dealing with missing attributes are characterized

by assumptions about data distribution through a density function. In this context,

approaches that utilize similarity-based methods, become very promising research objects

since these methods generally assume that data is fully observed and are not naturally

equipped to handle incomplete. In this work, methods will be proposed to estimate

the expected value of the Matérn Kernel in the presence of incomplete data vectors

without any preprocessing steps. The EMK-MC and EMK-UT methods demonstrate the

capability to address the kernel estimation problem directly, meaning they estimate the

transformation of interest instead of embedding it within a preprocessing framework. To

obtain such estimates, incomplete vectors are treated as continuous random variables, and

based on the assumption that the Euclidean distance between points of interest follows a

Nakagami distribution, sampling methods are used to generate points that depend only

on the distribution of interest. Through a Gaussian mixture model, the data distribution

is approximated by maximum likelihood estimation via the Expectation-Maximization

algorithm, while simultaneously iteratively estimating the missing values. This allows

the model to be fitted to the observed data, considering the uncertainty of the missing

values and the relationships between variables. The performances of the proposed methods

are compared to three methods on real and synthetic datasets. Considering the root

mean square error obtained by computing the difference between the estimated kernel

value and the true value, the consistency of the achieved performance remains evident in

the majority of the scenarios evaluated for real-world datasets. The proposed methods,

EMK-MC and EMK-UT, are superior in approximately 43% and 38% of the evaluated

scenarios, respectively. As for the scenarios evaluated in synthetic datasets, the proposed

approaches outperform all evaluated scenarios.

Keywords: Missing Data; Gaussian Mixture Model; Approximation Methods for Func-

tions; Matérn Kernel.
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1 INTRODUCTION

One of the most important premises in machine learning is related to data

integrity. Depending on the complexity of the problem, missing attributes can signifi-

cantly affect the performance of a model due to bias in the dataset. Incomplete data is

characterized as records that contain unobserved or missing information, which can result

from measurement errors, device or operator failure (EIROLA et al., 2013), non-response,

deliberate data withholding or errors in database files (LITTLE; RUBIN, 2002).

However, one of the most common problems in the real world is the missing

of data. This situation can be observed in various domains, such as the financial market

(ZHOU; LAI, 2017), clinical data analysis (GULER et al., 2020; MADHU et al., 2019),

biomedical research (LUO et al., 2020), genetic data interactions (LIU et al., 2020), time

series analysis (TANG et al., 2020; DU et al., 2019; ZHANG et al., 2019). The missing

data problem it happens for one or more attributes, or even for complete samples in a

dataset (De Souto et al., 2015; SILVA-RAMÍREZ et al., 2015).

Once there are irregularities in the information, the ability of the final model of

machine learning methods will be directly affected, as they adjust their models to the data

used in the training step. A simple yet controversial strategy involves ignoring samples

that contain missing data, so that the dataset is reduced only to fully observed samples.

According to Fernstad and Glen (2014), missing records can be considered potentially

important information; therefore, several problems can be related to discarding samples

with such records, namely (KANG, 2013): reduction in statistical power, in terms of

the probability of the test rejecting the null hypothesis when it is false; complications

in the study’s analysis; bias in parameter estimation; or even a reduction in sample

representativeness.

A class of methods that has been widely used for data analysis, including

incomplete data, is kernel methods. With this technique, kernel functions are used to

estimate probability density or perform other types of analysis, such as classification or

regression. These methods have the advantage of being flexible and capable of handling

complex structures in the data. The kernel functions, used to calculate inner products

between attribute vectors in the input feature space, implicitly define the mapping of

the data to a high-dimensional feature space. As a consequence of the mapping, it is

possible to use machine learning algorithms to find linear patterns from nonlinear problems
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by increasing the dimensionality of the data used, enabling them to be separated by a

hyperplane (SCHÖLKOPF et al., 2002; SHAWE-TAYLOR; CRISTIANINI, 2004) 1. There

are several types of kernels, and among the most commonly used in machine learning

are: Linear Kernel, Polynomial Kernel, and Gaussian Kernel. Another class of kernel

functions, more popularly used in Gaussian processes, is the Matérn Kernel (see Murphy

(2012)), which specifies the covariance between measurements as a function of the Euclidean

distance between points of interest.

Although widely used, kernel functions have limitations when applied directly

to datasets with missing values. Traditionally, in a preprocessing step, two approaches

are considered to handle missing data (FARHANGFAR et al., 2007). The first approach

involves excluding samples that have one or more missing attributes, retaining only the

samples with fully observed data. As discussed earlier, this approach can disregard

potentially important information in the dataset. The second approach is to impute the

missing data by replacing it with a plausible value (MADHU et al., 2019), allowing for the

use of any conventional learning method after filling in the missing entries.

Such techniques can be divided into two groups: single imputation and multiple

imputation. In the first group, the missing value is replaced with a single value, while in

the second group, multiple values are imputed for each missing data point. Thus, multiple

imputation transforms the originally incomplete dataset into multiple complete observed

datasets. Finally, a point estimate of the missing attribute can be obtained by averaging

the imputations, and the standard error can be calculated from the variance of the multiple

imputations.

However, it is worth noting that imputation is an estimation process, and as

such, there is uncertainty associated with the values that will be imputed. When comparing

the characteristics of imputation methods, it can be inferred that single imputation methods

do not account for uncertainty because they use point estimates. On the other hand,

dealing with multiple complete observed datasets generated by multiple imputation in a

preprocessing step is computationally demanding.

Studies explicitly aiming to estimate kernel functions when dealing with in-

complete datasets are scarce. The multiple imputation process is used as a preprocessing

step in two kernel-based imputation models: a non-parametric stochastic imputation
1 This characteristic is associated with any model that uses a kernel function.
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model based on Gaussian Kernel (ZHANG et al., 2006) and a semi-parametric random

imputation model based on Polynomial Kernel (ZHANG et al., 2009).

Although Belanche et al. (2014) present two proposals for handling missing

values in kernel methods without any preprocessing step, the contribution is limited to

datasets with exclusively binary attributes. In other words, the extended kernels presented

are adapted to accommodate the discrete nature of binary data.

In Jafrasteh et al. (2023), a hierarchical composition of sparse Gaussian Pro-

cesses (GPs) is proposed to obtain the predictive distribution for missing values. In this

approach, each dimension of the hierarchy uses the dataset from the previous dimension

to make predictions. However, it should be noted that the covariance function computed

by each sparse Gaussian Process (GP) is not estimated directly. Initially, the inducing

points are estimated based on the mean value of the corresponding dimension. Then, the

missing values of the first attribute are replaced with the prediction from the corresponding

GP, which is a random variable determined by the predictive distribution. This updated

dataset is used to feed a second GP, and the process is iterated until all dimensions with

missing values have an associated GP predicting their values.

The method called Expected Gaussian Kernel (EGK) (MESQUITA et al., 2019),

obtains the expected value of the Gaussian kernel function through a simple closed-form

solution based on the moment generating function. This solution only depends on the

parameters of the distribution that represents the squared distances between the possibly

incomplete data vectors. While the EGK method provides a closed-form solution for

the expected value of the Gaussian kernel function, it focuses on the Gaussian kernel

specifically and does not extend to the Matérn kernel.

This work presents two novel methods for directly estimating the Matérn Kernel,

that is, without any preprocessing step, namely: EMK-MC estimation and EMK-UT

estimation. Under the assumption that the Euclidean distances in the kernel function

follow a specific probability distribution, approximation methods can be used to estimate

the value of the Matérn Kernel for two potentially incomplete data vectors. The need to

resort to approximation methods arises from the infeasibility of analytically solving the

formulated problem.

For the estimation to be possible, it is necessary to approximate the data set’s

distribution. A commonly used approach is parametric density estimation, where an
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underlying probabilistic distribution of the data is assumed to estimate the parameters

of that distribution, resulting in density modeling. In this specific work, a Gaussian

mixture distribution is considered as the parametric model. This distribution is a weighted

combination of several individual Gaussian distributions (each with its own parameters),

and the estimation of the mixture’s parameters is performed using the maximum likelihood

method.

However, the conventional expectation-maximization approach to estimate

the parameters of the Gaussian mixture distribution assumes that all data is completely

observed, which is different from the scope addressed here. To deal with this issue, a

modification of this method will be used to specifically handle incomplete data (further

details are discussed in Hunt and Jorgensen (2003)). This modification takes into account

the presence of missing values during the parameter estimation process, making it suitable

for dealing with incomplete data sets. Given the formulation, the proposed models can be

easily incorporated into methods based on the Matérn Kernel.

1.1 Objectives

The main objective of this work is to perform a comparative study of similarity

estimation methods that take into consideration the uncertainty of the imputation process.

The aim is to enable the use of machine learning methods based on the Matérn Kernel in

incomplete data sets. Additionally, this study seeks to propose and evaluate the use of

approximation methods as an alternative to explicitly represent the formulated estimation

models.

In a more specific sense, this thesis has the following specific objectives:

1. To propose and evaluate two new methods for estimating the expected value of the

Matérn Kernel for classification and regression problems using:

– Monte Carlo Method

– Unscented Transform

2. To evaluate the use of approximation techniques as an alternative to an explicit

representation of the formulated estimation models for incomplete data sets

3. To incorporate the uncertainty of the imputation process intrinsically into the

resolution of the estimation model

4. To perform the estimation of the Matérn Kernel in a way that is arbitrarily more
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accurate even in the presence of a large number of missing attributes

1.2 Contributions of the Author

This work presents two new approaches to estimate the Matérn Kernel in the

presence of incomplete datasets. The proposed methods, Expected Matérn Kernel via

Monte Carlo Method (EMK-MC) e Expected Matérn Kernel via Unscented Transform

(EMK-UT), directly handle missing data and consider the uncertainty associated with the

estimation process. By formulating the estimation problem under the assumption that

the Euclidean distances in the kernel function follow a Nakagami distribution, it becomes

possible to use approximation techniques to address the intractability of the problem. From

the Relative Success Rate (RSR), obtained from a comprehensive comparative performance

analysis between the proposed approaches and existing methods (considering both synthetic

and real datasets), the EMK-MC e EMK-UT methods consistently outperform in most of

the evaluated test scenarios, even in the presence of significant amounts of missing data.

It is worth noting that the estimates of the Matérn Kernel’s expectation resulting from

the proposed approaches are computed directly, depending solely on the parameters of the

Euclidean distance distribution between the incomplete data vectors.

1.3 Thesis Structure

The rest of this work is organized as follows: Theoretical Foundation; Matérn

Kernel Expectation; Computational Simulations; and finally, Conclusions and Future

Work.

Chapter 2 explores the necessary concepts and prerequisites for a proper

understanding of the proposed approaches. It begins by presenting terminology related to

missing data. Then, it discusses data modeling using a Gaussian Mixture Model and the

Expectation-Maximization technique extended to handle missing data. Lastly, traditional

techniques for approximating integrals are briefly presented.

Chapter 3 introduces relevant techniques found in the literature related to

methods based on similarity measures, such as distances or kernel functions. It then

presents the formulation of the estimation problem for the Matérn Kernel from incomplete

data.
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Also in Chapter 3, the proposed methods EMK-MC e EMK-UT are described.

The main difference between the techniques lies in the approximation method used as an

alternative to the intractability of the formulated estimation problem. While the EMK-MC

method requires sampling from a distribution generated by the Monte Carlo Method, the

EMK-UT method uses a small set of transformed points to estimate the Matérn Kernel’s

expectation, resulting from the Unscented Transform.

A comprehensive experimental evaluation of the proposed method’s capability

is presented in Chapter 4, considering both synthetic and real-world datasets. Tables and

graphs with the obtained results are presented.

Finally, the conclusions and future work are discussed in Chapter 5.
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2 THEORETICAL BACKGROUND

In this chapter, basic concepts necessary for a better understanding of the

techniques and developments in the following chapters are introduced. For a more in-depth

understanding of each subject, it is recommended for the reader to consult the references

cited throughout the text.

In Section 2.1, the mechanisms that lead to missing data are explored and

analyzed. Understanding the nature of these mechanisms allows for the development of

effective strategies to deal with this situation. In Section 2.2, a statistical technique used

to model complex datasets is presented. The basic principles of a Gaussian Mixture Model

are discussed, including parameter estimation and inference of latent components. In

Section 2.3, the Expectation-Maximization algorithm applied to datasets with missing

values is investigated. Details of the algorithm, such as handling uncertainty in missing

data and parameter estimation for the Gaussian Mixture Model, are addressed. Finally, in

Section 2.4, two approximation methods frequently used as an alternative to infeasible

exact analytical solutions for complex problems are discussed.

2.1 Missing Data Mechanism

One issue to be considered relates to the mechanisms that lead a certain data

point to be missing and, in particular, to the question of whether the missingness is related

to the underlying values of the dataset attributes. Such mechanisms are of great importance,

as the properties of imputation methods are related to the nature of dependencies of these

mechanisms. In Little and Rubin (2002), three classification categories for missing data

are presented: Missing Completely at Random (MCAR), Missing at Random (MAR) and

Missing Not at Random (MNAR).

Let Xobs and Xmis represent the observed and missing entries, respectively, of

a D−dimensional random vector X. Also let M a probability model. Different attributes

in the dataset may be missing for different reasons, and the question is to identify why

they are missing. The mechanism of missing data is characterized by the distribution

P (M |X, ξ) where ξ is a vector of unknown parameters.

In the MCAR mechanism, the missing data is independent, i.e., completely

random. There is no relationship between the values of Xobs or Xmis and the probability
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of an entry being missing in X. This can be expressed as follows:

P (M |Xobs,Xmis, ξ) = P (M |ξ) ∀ X, ξ.

In the MAR category, the probability of a component Xn of X being missing

is related to other attributes in the dataset, so that the propensity for missingness is not

related to other values of Xmis, but rather to some data in Xobs. This can be expressed

as follows:

P (M |Xobs,Xmis, ξ) = P (M |Xobs, ξ) ∀ Xmis, ξ.

Finally, in the MNAR mechanism, the data is not randomly missing but is

related to the values of Xmis. In other words, the probability of missingness is intrinsically

related to the value itself. More comprehensive details about mechanisms of missing data

are discussed in Molenberghs et al. (2014).

Example 1 Consider a survey about vehicle owners satisfaction with the quality of the

sound system operated through a touch screen. Participants between 18 and 72 years of age

took part in the survey. For this purpose, additional information such as age and monthly

income is collected. However, during the data collection, some survey participants did not

respond to all questions.

The MCAR situation is depicted in Figure 1. For instance, participants who did

not respond to the age question might have skipped it by chance, without any relation to

the sound system quality or monthly income. The missing responses about the participant’s

age have no specific relationship with age itself or any other collected information. In other

words, the missingness is completely random and not related to any specific information.

When analyzing the information presented in Figure 1, through the distribution

that relates the quantity of missing responses by age group, it can be observed that it is

not possible to associate the absence of responses with any other collected information,

whether it be monthly income or the quality of the sound system.
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Figure 1 – Hypothetical situation illustrating the missing data mechanism MCAR.
Source: elaborated by the author.

On the other hand, the situation of MAR is depicted in Figure 2. Suppose

now that owners over 50 years of age simply do not frequently use the sound system due

to personal reasons, which could range from difficulty concentrating while driving and

listening to music to a lack of ability to operate a touch screen with multiple options.
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Figure 2 – Hypothetical situation illustrating the missing data mechanism MAR.
Source: elaborated by the author.

Analyzing the above figure, it is possible to identify that participants over

50 years old are less likely to respond about the quality of the sound system. Through

the distribution that relates the quantity of missing responses about the sound system’s
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quality, it becomes clear that the lack of responses is directly associated with the collected

information about the participant’s age. In this case, the missing responses are related to

the age variable, but not directly to the quality of the sound system.

Finally, the situation of MNAR is presented in Figure 3. For instance, suppose

that participants with higher income are less likely to respond to the question about their

monthly income. This occurs because they may consider personal income information and

prefer not to share it, regardless of age or sound system quality.
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Figure 3 – Hypothetical situation illustrating the missing data mechanism MNAR.
Source: elaborated by the author.

When analyzing Figure 3, the distribution of the quantity of missing responses

about income clearly shows the absence of responses for monthly incomes exceeding $2.000.

In other words, the missing responses about monthly income are directly related to the

actual value of income.

The characterization of the MCAR mechanism is very restrictive, to the point

that its occurrence is unlikely. In this case, the reasons for absence can be neglected or

treated as a special case of MAR mechanism. On the other hand, in the MNAR mechanism,

there is no general method to handle this situation (GARCÍA-LAENCINA et al., 2010),

and unbiased estimates of missing values can be obtained by constructing an absence

model (YU et al., 2013). As presented in Little and Rubin (2019), MAR is a sufficient

condition for likelihood-based and Bayesian inferences to be valid without the need to

model the mechanism of missing data. Throughout this work, missing data is considered
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according to the MAR mechanism.

2.2 Modeling the Data with a Gaussian Mixture Model (GMM)

One powerful and flexible approach for modeling complex data distributions

is the use of Gaussian Mixture Models (GMMs). Originally proposed by Dempster et al.

(1977), GMMs are widely employed due to their ability to capture features and patterns

present in the data, even when they originate from multimodal distributions or when

there is overlap between different groups of data. A Gaussian Mixture Model (GMM) is

composed of a set of Gaussian components, each representing a subpopulation or group

within the observed data. Each component is described by its mean, covariance matrix,

and mixture weight. The weighted combination of these components allows for modeling

the joint probability distribution of the observed data, even capturing the underlying

latent structure in the data.

The probability distribution of the mixture model for a vector Xn ∈ X with N

samples, where Xn,obs are the observed values and Xn,mis are the missing values, where

obs and mis are the sets of indices of the observed and missing components, respectively,

is given by:

p(Xn|Θ) =
C
∑

c=1

π(c)N (Xn|µ(c),Σ(c)), (2.1)

where Θ = {π(c),µ(c),Σ(c)}C
c=1 represents the set of model parameters, π(c) represents

the mixture weight associated with the cth component, µ(c) is the mean vector of the cth

component, Σ(c) is the covariance matrix of the cth component and C is the number of

Gaussian components.

In the absence of information about the distributions of the random variables

representing the missing components, it is necessary to make inferences based on the

available observations. When deriving statistical estimates, the set of observed data is used

to calculate estimates of the unknown parameters. Thus, by partitioning the mean vector

and covariance matrix according to the indices of the observed and missing components, it

follows

µ(c) =















µ
(c)
obs

µ
(c)
mis















, Σ(c) =















Σ
(c)
obs/obs Σ

(c)
obs/mis

Σ
(c)
mis/obs Σ

(c)
mis/mis















, (2.2)
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the conditional distribution of the missing values given the observed values is normally dis-

tributed with mean µ̃(c)
n = E

(c)[Xn,mis|Xn,obs] and covariance Σ̃
(c)

n = Var(c)[Xn,mis|Xn,obs].

This can be expressed as:

µ̃(c)
n = µ

(c)
mis + Σ

(c)
mis/obs(Σ

(c)
obs/obs)

−1(Xn,obs − µ
(c)
obs), (2.3)

Σ̃
(c)

n = Σ
(c)
mis/mis − Σ

(c)
mis/obs(Σ

(c)
obs/obs)

−1Σ
(c)
obs/mis, (2.4)

and the moments of a specific component xn,d of Xn,mis are given by

E[xn,d] =
C
∑

c=1

π(c)µ̃
(c)
n,d, (2.5)

E[x2
n,d] =

C
∑

c=1

π(c)
(

[µ̃
(c)
n,d]2 + Σ̃

(c)

n,d

)

, (2.6)

where µ̃
(c)
n,d represents the dth element of the vector µ̃(c)

n and Σ̃
(c)

n,d is the dth element of

the diagonal of the matrix Σ̃
(c)

n .

Treating the missing values as latent variables, the objective is to find the

parameters Θ of the model that maximize the likelihood function conditioned on the

observed data. This can be expressed as:

L(Θ|Xobs) =
N
∏

n=1

(

C
∑

c=1

π(c)N (Xobs|µ(c)
obs,Σ

(c)
obs)

)

. (2.7)

Therefore, the Expectation-Maximization (EM) algorithm in its extended form for handling

missing data (HUNT; JORGENSEN, 2003) is used.

2.3 Expectation-Maximization (EM) with missing data

EM is an iterative technique that maximizes the likelihood of the data. EM

alternates between the Expectation step (E-step), where the probabilities of data points

belonging to each component are estimated, and the Maximization step (M-step), where

the GMM parameters are updated based on the estimated probabilities. When using a

GMM to model missing data, the EM algorithm estimates the model parameters and

simultaneously imputes the missing values iteratively. This allows the model to be fitted

to the observed data, taking into account the uncertainty of the missing values and the

relationships between variables.

After initializing the number of components C in the mixture model and the

parameters Θ, the initial value of the data likelihood in the form presented in Equation
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2.7 should be computed. It is worth noting that an initial imputation strategy for Xmis

should be used.

Next, in the E-step, for each sample n, the membership probability τ for each

component c must be computed

τn,c =
π(c)N (Xn,obs|µ(c)

obs,Σ
(c)
obs/obs)

∑

l π(l)N (Xn,obs|µ(l)
obs,Σ

(l)
obs/obs)

, (2.8)

and calculate the conditional mean and covariance according to Equations 2.3 and 2.4.

In the M-step, the parameters Θ are updated using the probabilities from the

previous step as follows:

π(c) =

∑N
n=1 τn,c

N
, (2.9)

µ(c) =

∑N
n=1 τn,cX̃

(c)

n
∑N

n=1 τn,c

, (2.10)

Σ(c) =

∑N
n=1 τn,c(X̃

(c)

n − µ(c))(X̃
(c)

n − µ(c))T +
∑N

n=1 τn,cΣ
(c)
n

∑N
n=1 τn,c

, (2.11)

where

X̃
(c)

n =















Xn,obs

µ̃(c)
n















, Σ(c)
n =















0obs/obs 0obs/mis

0mis/obs Σ̃
(c)

n















. (2.12)

In simpler terms, X̃
(c)

n refers to the vector Xn after filling in its missing entries

with the values from µ̃(c)
n , while Σ(c)

n represents the conditional covariance matrix Σ̃
(c)

n

with zero-padding.

The E-step and M-step are repeated until the parameters of the GMM con-

verge. Common approaches for convergence include analyzing the difference between the

parameters based on predefined thresholds or reaching a maximum number of iterations.

2.4 Approximation Methods

Approximation methods play a crucial role in various situations, e.g., when

estimating unknown parameters, adjusting theoretical models to observed data, or dealing

with problems where exact solutions are difficult or impossible to obtain. Next, the

theoretical foundations and the necessary mathematical formulation for using the Monte

Carlo Method and the Unscented Transform are presented. These techniques allow for
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obtaining arbitrarily more precise estimates in complex statistical models, even considering

problems where uncertainty plays a significant role.

2.4.1 Monte Carlo (MC)

A wide variety of numerical problems in fields such as science (M. Al Luhayb,

2023; LUENGO et al., 2020), engineering (MORALES-RODRIGUEZ et al., 2011; CUI;

HASHEMI, 2023) and finance (LAI; SPANIER, 2000; MCLEISH, 2011) are handled

using Monte Carlo (MC) methods. These methods belong to a class of statistical and

computational techniques widely used to solve complex numerical problems, based on the

idea of conducting random experiments on a computer to obtain approximate estimates of

quantities of interest.

As mentioned earlier, calculating the distribution of a function of a random

variable f(x) for certain models can be quite challenging. A powerful yet simple alternative

is to generate a set of samples X = {x1, x2, ..., xD} from the distribution and approximate

f(x) using the empirical distribution f(xi)
D
i=1. This approximation is called the Monte

Carlo method and can be used to approximate the expected value of any function of a

random variable (MURPHY, 2012), which can be expressed as follows:

E[f(x)] =
∫

X
f(x)p(x)dx, (2.13)

equivalent to the empirical mean

he =
1

D

D
∑

i=1

f(xi). (2.14)

When f(x) has finite variance, according to the Central Limit Theorem, the error can be

expressed as:

he − E[f(x)]
√

DV ar[f(x)]
∼ N (0, 1), (2.15)

and the term V ar[f(x)] can be approximated by the sample variance

1

D − 1

D
∑

i=1

(

f(xi) − he

)2
. (2.16)

Among the families of MC methods, the following methods can be highlighted:

Importance Sampling (IS); Rejection Sampling (RS) and Markov Chain Monte Carlo

(MCMC).
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2.4.1.1 Importance Sampling (IS)

It can be divided according to the number of proposed densities to extract the

samples and the temporal evolution (in which the parameters are adaptive or stationary)

(LUENGO et al., 2020), this approach accepts all the samples and assigns weights to each

of them, based on their quality in approximating the desired distribution, which can be

expressed as:

E[f(x)] =
1

D

D
∑

i=1

ωif(xi), (2.17)

where ωi is the associated weight.

From Equation 2.13, the function p(x) is not necessarily the best Probability

Density Function (PDF) to use even though it appears in the integrand. Therefore, a

different PDF g(x) can be introduced as follows:

E[f(x)] =
∫

X
f(x)

p(x)

g(x)
g(x)dx, (2.18)

where g(x) ≥ 0,
∫

g(x)dx = 1 and f(x)p(x)/g(x) < ∞. This suggests that samples from

probability density functions other than p(x) can also be used in the approximation, where

for each i = 1, ..., D, xi is assigned a weight ωi = p(x)/g(x).

The reduction in variance occurs because it is possible to choose a density that

is more similar to the function f(x) being integrated. In other words, it allows determining

the most important regions for integration, resulting in a reduction in the variance of the

estimator.

2.4.1.2 Rejection Sampling (RS)

Another classical approach of the Monte Carlo Method is to accept or reject a

sample based on a suitable test of the densities f(x) and p(x) (KALOS; WHITLOCK,

2008), and it can be proven that the accepted samples are indeed distributed according to

the target density f(x) (DEVROYE, 1986). Originally, a single uniform PDF is considered,

but the sampling can be performed from any density function for which sampling is direct

(LUENGO et al., 2020).

Samples x′
i are obtained from p(x) and accepted with probability

f(x′
i)

p(x′
i)wf

≤ 1, (2.19)
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where wf is a constant such that p(x)wf represents an enveloping function for f(x),

meaning that, p(x)wf > f(x) for all xi ∈ X . In summary: the RS is an iterative method

where, in the tth iteration, the samples x(t) ∼ p(x) and u ∼ U(0, 1); If

u ≤ f(x(t))

Kp(x(t))
, (2.20)

x(t) will be accepted, otherwise, it will be rejected.

2.4.1.3 Markov Chain Monte Carlo (MCMC)

Basically, the MCMC technique extracts samples from a proposed PDF by

constructing a Markov chain, whose stationary distribution is the desired distribution f(x).

It accepts or rejects these candidate samples as the new state of the chain. There are

various MCMC approaches, and details of algorithms such as Metropolis-Hastings (MH),

Gibbs sampler, MH-within-Gibbs, and other classical techniques are thoroughly explored in

(LUENGO et al., 2020), as well as in other references such as (MURPHY, 2012; KROESE

et al., 2011; HASTIE et al., 2009; KALOS; WHITLOCK, 2008; ROBERT; CASELLA,

2005).

2.4.2 Unscented Transform (UT)

The approach known as Unscented Transform (UT) (JULIER; UHLMANN,

1996), was developed to handle uncertainty propagation in nonlinear systems in search of

a more precision approximation. Its conception is based on the assumption that, given

a fixed number of points (called sigma points), it is easier to approximate a Gaussian

distribution than it is to approximate a nonlinear function or an arbitrary transformation.

According to the theory presented in Subsection 2.4.1, it can be concluded

that MC techniques require several orders of magnitude more sample points to obtain

a satisfactory estimation result (especially when considering non-Gaussian models), in-

creasing the computational cost in specific cases. In this sense, the UT has advantages

in terms of its usage. The number of sigma points required by the UT can be divided

into two categories (EBEIGBE et al., 2021): in the first category, only (2D + 1) sigma

points are used, while in the second category, more than (2D + 1) sigma points can be

used. Additionally, with the UT, it is possible to consider information about higher-order

moments, such as skewness and kurtosis.
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Let x be a multivariate random vector uniformly distributed with mean E[x]

and covariance matrix Σx. The sample mean E[ϕ] and sample covariance Σϕ of the

nonlinear transformation δ = h(x) can be calculated as follows.

1. Calculate the (2D + 1) sigma points γ [i]:

γ [0] = E[x], (2.21)

γ [i] = γ [0] +
(

√

(D + λ)Σx

)

[i]
,∀i ∈ {1, ..., D}, (2.22)

γ [i] = γ [0] −
(

√

(D + λ)Σx

)

[i−D]
,∀i ∈ {D + 1, ..., 2D}, (2.23)

where
(√

(D + λ)Σx

)

[i]
denotes the ith column of the square root matrix of (D+λ)Σx

and λ is a scaling parameter, such that

λ = α̂2(D + κ) −D, (2.24)

where α̂ determines the spread of the sigma points around E[x] (typically set to a small

positive value), and κ is a secondary scaling parameter (usually κ = D − 3) (WAN;

MERWE, 2001). The first, second, and third-order moments of the distribution of

γ [i] remain unchanged for any value of κ. However, both the kurtosis (fourth-order

moment) and higher-order moments are scaled by (D + κ) and geometrically with

(D + κ), respectively (JULIER et al., 1995). Thus, κ can be adjusted based on the

higher-order moments of the prior distribution in order to reduce errors in these

terms.

2. Calculate the weight associated with the ith-γ [i]:

ω
(m)
[0] =

λ

D + λ
, (2.25)

ω
(c)
[0] =

λ

D + λ
+ (1 − α̂2 + β̂), (2.26)

ω
(m)
[i] = ω

(c)
[i] =

1

2(D + λ)
,∀i ∈ {1, ..., 2D}, (2.27)

where β̂ is used to incorporate prior knowledge of the distribution of x (such that

β = 2 is considered ideal for Gaussian distributions (WAN; MERWE, 2001)).

3. Apply the known nonlinear function to the γ [i] points, obtaining the transformed

points δ[i]:

δ[i] = h(γ [i]). (2.28)
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4. Evaluate the sample mean from δ[i]:

E[ϕ] ≈
2D
∑

i=0

ω
(m)
[i] δ[i]. (2.29)

5. Evaluate the sample covariance from δ[i]:

Σϕ ≈
2D
∑

i=0

ω
(c)
[i] (δ[i] − E[ϕ])(δ[i] − E[ϕ])T . (2.30)

2.5 Conclusion

This chapter provides the reader with a thorough understanding of fundamental

knowledge required for the development of the strategies presented in the following chapters.

Cases of missing data, MCAR, MAR, and MNAR, are discussed through practical examples

that clearly illustrate each type of mechanism. The theory and mathematical formulation to

fit a Gaussian Mixture Model to incomplete datasets are presented in an objective manner.

Since the general approach to estimate the model parameters from the data is maximum

likelihood estimation, the iterative nature of the EM algorithm, involving the Expectation

(E-step) and Maximization (M-step) stages (enabling robust estimation in datasets with

missing values), is explored. Next, the approximation techniques, Monte Carlo Method,

and Unscented Transform, are introduced. These methods provide acceptable approximate

solutions, balancing precision and computational efficiency.
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3 EXPECTED MATÉRN KERNEL

Many machine learning algorithms are based on the relative differences between

samples rather than their specific values. In this sense, a useful approach is to estimate

distances directly between pairs of samples across the dataset. This allows capturing

the proximity relationships between samples, which is beneficial in various applications,

assisting in analysis, classification, clustering, and comparison of information in different

domains.

In this chapter, some techniques that compute the expectation of the distance

between instances of possibly incomplete data are presented. From the distance estimation,

it is possible to obtain the estimation of the Matérn Kernel function, the subject of study

in this work; therefore, the methods presented are used for comparison purposes with the

proposed approaches. Next, the mathematical formulation of the problem of estimating

the Matérn Kernel is presented. Finally, two new methods to estimate the Matérn Kernel

when subjected to incomplete datasets directly are proposed. Both solutions are based

on the assumption that the Euclidean distances of the Matérn Kernel function follow a

Nakagami probability distribution.

To better elucidate the methods to follow, consider a dataset X = {Xn}N
n=1

consisting of N samples, such that Xn,obs represents the observed values and Xn,mis

represents the missing values, where obs and mis are sets of indices of the observed

and missing components, respectively. Also, consider X i = (xi,1, ..., xi,D)T and Xj =

(xj,1, ..., xj,D)T , D-dimensional vectors in which one or more of their components are not

observed, following the MAR mechanism and being independent. Thus, it is possible to

model X i and Xj as random variables.

3.1 Methods for Estimating Similarity Measures

3.1.1 Conditional Mean Imputation (CMI)

The method described by Hunt and Jorgensen (2003), called Conditional

Mean Imputation (CMI), fills in the missing entries in Xn based on the mean value of a

probability distribution estimated for the missing entries. The usual approach to obtain

this distribution consists of first obtaining a model for the distribution from which the
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feature vectors of the dataset were generated, and then conditioning the observed values

of each incomplete vector. This can be expressed as:
∫ ∞

−∞
Φp(Φ|xn,obs)dΦ, (3.1)

where p(·|xn,obs) is the PDF p conditioned on Xn,obs.

Once a Gaussian Mixture Model is used to model the data, the probability

density function in its general form is given by Equation 2.1. The parameters of p(·|xn,obs)

are the mixture weight π(c), the mean vector µ(c), and the covariance matrix Σ(c), such

that c = 1 . . . C is the number of components. Thus, Equation 3.1 then becomes a

weighted sum of the conditioned components of the GMM. This process can be obtained

as described in Section 2.2.

3.1.2 Expected Square Distance (ESD)

The Expected Square Distance (ESD) method (EIROLA et al., 2013) calcu-

lates the expected value of the squared distance between vectors X i and Xj under the

assumption that they are normally distributed. The proposed solution consists of finding

the expectation, conditioned on the observed values, and the variance of each missing

component separately, without the need to determine the total probability density.

Under the assumption of independence between the missing entries, the expected

squared distance E[||X i − Xj||2] can be expressed in terms of four parts, depending on

which attributes are missing for the two samples:

E

[

||X i − Xj||2
]

=
∑

d /∈ misi ∪ misj

(xi,d − xj,d)2 +
∑

d ∈ misj \ misi

E

[

(xi,d − xj,d)2
]

+
∑

d ∈ misi \ misj

E

[

(xi,d − xj,d)2
]

+
∑

d ∈ misi ∩ misj

E

[

(xi,d − xj,d)2
]

, (3.2)

where misi, misj ⊆ {1 · · · D} denote the sets of indices of missing components in X i

and Xj, respectively. The fact is that all terms of Equation 3.2 can be expanded. For

illustration, the expansion of the term (d ∈ misi ∩misj) is shown below:

E

[

(xi,d − xj,d)2
]

= E

[

x2
i,d − 2xi,dxj,d + x2

j,d

]

= E

[

x2
i,d

]

− 2E [xi,d]E [xj,d] + E

[

x2
j,d

]

= E

[

x2
i,d

]

− 2E [xi,d]E [xj,d] + E

[

x2
j,d

]

− E [xi,d]2 + E [xi,d]2 − E [xj,d]2 + E [xj,d]2

= E [xi,d]2 − 2E [xi,d]E [xj,d] + E [xj,d]2 + E

[

x2
i,d

]

− E [xi,d]2 + E

[

x2
j,d

]

− E [xj,d]2
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= (E [xi,d] − E [xj,d])2 + Var [xi,d] + Var [xj,d] . (3.3)

In a similar way, the expression (xi,d − E [xj,d])2 + Var [xj,d] is obtained for the term

(d ∈ misj \misi), while the expression (E [xi,d] − xj,d)2 + Var [xi,d] is obtained for the term

(d ∈ misi \ misj). The term (d /∈ misi ∪ misj) is a sum over the known components in

both samples, so the expectation involves calculating the distance directly.

Let x̃i,d be the imputed version of xi,d, where each missing value is replaced by

its conditional mean

x̃i,d =















E[xi,d|xi,obs] if d ∈ misi,

xi,d otherwise,
(3.4)

and σ2 corresponds to the conditional variance

σ2
i,d =















Var[xi,d|xi,obs] if d ∈ misi,

0 otherwise,
(3.5)

the expected squared distance can be written in its compact form as follows:

E

[

||X i − Xj||2
]

=
D
∑

d=1

(E [xi,d] − E [xj,d])2 + Var [xi,d] + Var [xj,d] . (3.6)

As presented by Eirola et al. (2013), the Equation 3.6 emphasizes how the uncertainty of

missing values is taken into account.

The means and conditional covariances are obtained in a similar manner to

what was presented in Section 2.2. Given that X = [Xmis,Xobs], the mean and covariance

matrix can be partitioned as follows:

µ =







µmis

µobs





 and Σ =







Σmis/mis Σmis/obs

Σobs/mis Σobs/obs





 . (3.7)

Therefore, the conditional distribution of the missing values given the observed

values is normally distributed with mean

µ̃mis = µmis + Σmis/obs(Σobs/obs)
−1(Xn,obs − µobs) (3.8)

and covariance

Σ̃mis = Σmis/mis − Σmis/obs(Σobs/obs)
−1Σobs/mis, (3.9)
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where the mean and variance of each missing value are found by extracting the correspond-

ing element from µ̃mis or from the main diagonal of Σ̃mis. The initial estimate of the

mean and covariance matrix is obtained using the Expectation Conditional Maximization

(ECM) (MENG; RUBIN, 1993).

Later on, an improved version of the ESD method is presented by modeling

the dataset with a Gaussian mixture model (EIROLA et al., 2014).

3.1.3 Expected Euclidean Distance (EED)

The Expected Euclidean Distance (EED) method (MESQUITA et al., 2017), is

based on the assumption that the Euclidean distance between two potentially incomplete

vectors follows a Nakagami distribution. Therefore, the expected distance can be obtained

in a closed-form manner, depending only on the parameters of the distribution.

Let η be the Euclidean distance between X i and Xj, such that

η = z1/2 =

√

√

√

√

D
∑

d=1

(xi,d − xj,d)2, (3.10)

where z = ‖ X i − Xj ‖2 =
∑D

d=1(xi,d − xj,d)2. As η is the result of a non-negative

transformation of X i and Xj, it can also be considered as a random variable. Therefore,

computing its expected value involves solving the following equation:

E[η] =
∫ ∞

0
p(η)η dη. (3.11)

In order to define a statistical model for p(η), some assumptions can be made

based on z. By definition, z can be characterized as the sum of squares of random variables.

In Roberts and Geisser (1966), sufficient conditions are presented for a squared random

variable to follow a Gamma distribution. Furthermore, (COVO; ELALOUF, 2014) provides

proofs that, under moderate conditions of independence, the distribution of a sum of

several Gamma-distributed variables can be approximated by a Gamma distribution itself.

Therefore, it is reasonable to assume that z ∼ Gamma (α, β).

As further presented in (NAKAGAMI, 1960), a Nakagami random variable can

be obtained by taking the square root of a Gamma-distributed random variable. Hence, it

is appropriate to choose a Nakagami distribution for η. Thus, under the assumption that

η ∼ Nakagami (m,Ω), the expected value of η is directly obtained by:

E[η] =
Γ
(

m+ 1
2

)

Γ(m)

(

Ω

m

)1/2

, (3.12)
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while its variance is obtained by

Var[η] = Ω





1 − 1

m





Γ
(

m+ 1
2

)

Γ(m)





2




 , (3.13)

where m and Ω represent, respectively, the shape and scale parameters of the Nakagami

distribution. These parameters, in turn, can be expressed in terms of the expected squared

distance between the data vectors. Thus,

m =
(E[z])2

Var[z]
, Ω = E[z]. (3.14)

The estimation of E[z] can be explicitly addressed based on the exposition in

Subsection 3.1.2. As also presented in Mesquita et al. (2017), the estimate of the expected

value and the variance of z can be expressed in terms of non-central moments of X i and

Xj. Consequently, the variance, in its simplified form, can be obtained using Equation

3.15.

Var[z] =
D
∑

d=1

4(E[xi,d] − E[xj,d])2 + (Var[xi,d] + Var[xj,d]) + 2(Var[xi,d] + Var[xj,d])2.

(3.15)

As in the ESD method, the dataset in EED is modeled according to a Gaussian

mixture model.

3.2 Expected Matérn Kernel

The Matérn kernel function, in its general definition, is given by:

Cν(η) = σ2 21−ν

Γ(ν)

(√
2ν η

ρ

)ν

Kν

(√
2ν η

ρ

)

, (3.16)

where η = ||X i − Xj|| it is the Euclidean distance between X i and Xj, Γ(·) is a Gamma

function, σ2 and ρ are kernel parameters (where ρ > 0) and Kν is a modified Bessel

function of the second kind with order ν (where ν > 0).

It is interesting to note that the smoothness of the function can be controlled

through ν. The Matérn kernel reduces to the Exponential kernel for ν = 0.5 and to the

Gaussian kernel as ν → ∞, making it very useful for applications due to its flexibility.
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It is also worth noting that for values of ν ∈
{

1
2
, 3

2
, 5

2

}

, the kernel is simplified

respectively to:

C1/2(η) = σ2 exp

{

−η

ρ

}

, (3.17)

C3/2(η) = σ2

(

1 +

√
3η

ρ

)

exp

{

−
√

3η

ρ

}

, (3.18)

C5/2(η) = σ2

(

1 +

√
5η

ρ
+

5η2

3ρ2

)

exp

{

−
√

5η

ρ

}

. (3.19)

3.2.1 Formulation of the Estimation Problem

Let kCν(η)(X i,Xj) be the symmetric function of the Matérn kernel Cν(η) that

represents the similarity between X i and Xj, given the vector X ∈ X without repetition,

the elements resulting from kCν(η)(X i,Xj) are positive semi-definite. As mentioned earlier,

X i and Xj are characterized as random variables, and similarly ηij 6=i > 0 is a random

variable. Therefore, the goal is to estimate the expected Matérn Kernel Cν(η). This can

be mathematically expressed in a general form as follows:

E[kCν(η)(X i,Xj)] = E[Cν(η)]. (3.20)

Considering that the function kCν(η)(X i,Xj) = f(η) is a measurable function,

the estimation problem is equivalent to estimating the expected value of the function f(η)

under a probability distribution p(η),

E[f(η)] =
∫ ∞

−∞
p(η)f(η)dη. (3.21)

To solve the above problem, once again, a statistical model for p(η) is required.

Based on the theory presented in Subsection 3.1.3, it is possible to assume that η ∼
Nakagami(m,Ω). Therefore, the PDF for η is given by:

p(η|m,Ω) =
2mm

Γ(m)Ωm
η2m−1exp

{

−m

Ω
η2
}

, (3.22)

thus, the expected value of the C1/2(η) can be obtained by solving the following equation:

∫ ∞

0
σ2 exp

{

−η

ρ

}

2mm

Γ(m)Ωm
η2m−1exp

{

−m

Ω
η2
}

dη. (3.23)
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Similarly, the expected value of C3/2(η) can be obtained by solving

∫ ∞

0
σ2

(

1 +

√
3 η

ρ

)

exp

{

−
√

3 η

ρ

}

2mm

Γ(m)Ωm
η2m−1exp

{

−m

Ω
η2
}

dη, (3.24)

and finally, the expected value of the Matérn kernel C5/2(η) can be obtained by solving

∫ ∞

0
σ2

(

1 +

√
5η

ρ
+

5η2

3ρ2

)

exp

{

−
√

5η

ρ

}

2mm

Γ(m)Ωm
η2m−1exp

{

−m

Ω
η2
}

dη. (3.25)

So far, no analytical or closed-form solutions using moment generating functions

are known for solving Equations 3.23-3.25. In situations where the complexity of the

model makes it very challenging to obtain an explicit representation, such as in latent

variable model structures (ROBERT; CASELLA, 2005), it is entirely appropriate to resort

to approximation methods.

In this work, the approximation techniques Monte Carlo Method and Unscented

Transform (UT) are used in the direct estimation process of the Matérn kernel Cν(η),

without any preprocessing step. The basic idea is to obtain the estimation of Equation

3.20 by approximating the distribution of the Euclidean distance between X i and Xj after

the imputation process of missing values. In other words, given that η ∼ Nakagami(m,Ω),

with known parameters m and Ω, it is possible to estimate E[kCν(η)(X i,Xj)] using the

mentioned approximation methods.

3.2.2 Expected Matérn Kernel via Monte Carlo Method (EMK-MC) - Pro-

posal 1

After obtaining the values of m and Ω, it is possible to generate samples via MC

simulation from the distribution ψ ∼ Nakagami(m,Ω), which represents the distribution

of the Euclidean distance between X i and Xj after the process of imputing missing values

(see Section 2.2). Then, based on a sampling of the generated ψ distribution, the estimation

of the Matérn Kernel Cν(η) can be directly obtained through E[Cν(ψ)]. This estimation

process constitutes the proposed method called Expected Matérn Kernel via Monte Carlo

Method (EMK-MC). This approach can be implemented based on the procedure described

in Figure 4, namely:

1. Estimate the parameters of the Gaussian mixture distribution in X : The method

starts by estimating the parameters of the mixture model distribution (Equation
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Figure 4 – Estimation process of the Matérn Kernel performed through the EMK-MC
method: the implementation process of the method is detailed through the steps to be
executed, containing all equations involved in the estimation.
Source: elaborated by the author.

2.7) using the maximum likelihood method. The likelihood function is maximized

using the EM algorithm extended for incomplete data described in Section 2.3.

2. Calculate the mean and conditional covariance of each missing component: For each

missing component X i,mis and Xj,mis, their mean and conditional covariances are

computed for each model component c (Equations 2.3 and 2.4).

3. Compute the first and second moments of each missing component: The first and

second moments of each missing component X i,mis and Xj,mis are computed using

Equations 2.5 and 2.6.

4. Compute the mean and variance of the squared distance: The mean E[z] and variance

Var[z] of the squared distance z between the components X i and Xj are calculated

(Equations 3.6 and 3.15).

5. Obtain the parameters m and Ω of the η distribution: The parameters m and Ω of

the η distribution, which is a Nakagami distribution, are obtained (Equation 3.14).
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6. Generate samples via MC simulation from the ψ distribution: Samples are generated

using Monte Carlo simulation from the ψ distribution, which follows a Nakagami

distribution with the parameters m and Ω obtained earlier.

7. Perform a sampling of the generated ψ distribution: A sampling of the generated ψ

distribution from the previous step is done. This involves selecting random values

from this distribution.

8. Compute the expected value of the Matérn Kernel: Finally, the expected Matérn

Kernel, denoted by Cν(η), is calculated through E[Cν(ψ)]. This calculation is per-

formed to obtain an estimation of the expected value of the Matérn kernel using the

distribution that represents η after the imputation process.

3.2.3 Expected Matérn Kernel via Unscented Transform (EMK-UT) - Pro-

posal 2

On the other hand, through the UT, it is possible to select a deterministic set

of samples from the original distribution and obtain estimates of the statistical moments

of a probability distribution. In this case, the proposed method called Expected Matérn

Kernel via Unscented Transform (EMK-UT), is capable of directly estimating the Matérn

Kernel function Cν(η) through the sample mean E[Cν(ϕ)], which results from summing a

set of transformed points weighted by their respective weights.

Similar to what was presented in Subsection 3.2.2, this approach can be

implemented based on the information provided in Figure 5, namely:

1. Estimate the parameters of the Gaussian mixture distribution in X : The method

starts by estimating the parameters of the mixture model distribution (Equation

2.7) using the maximum likelihood method. The likelihood function is maximized

using the EM algorithm extended for incomplete data described in Section 2.3.

2. Calculate the mean and conditional covariance of each missing component: For each

missing component X i,mis and Xj,mis, their mean and conditional covariances are

computed for each model component c (Equations 2.3 and 2.4).

3. Compute the first and second moments of each missing component: The first and

second moments of each missing component X i,mis and Xj,mis are computed using

Equations 2.5 and 2.6.

4. Compute the mean and variance of the squared distance: The mean E[z] and variance
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Figure 5 – Estimation process of the Matérn Kernel performed through the EMK-UT
method: the implementation process of the method is detailed through the steps to be
executed, containing all equations involved in the estimation.
Source: elaborated by the author.

Var[z] of the squared distance z between the components X i and Xj are calculated

(Equations 3.6 and 3.15).

5. Obtain the parameters m and Ω of the η distribution: The parameters m and Ω of

the η distribution, which is a Nakagami distribution, are obtained (Equation 3.14).

6. Compute the mean E[η] and variance Var[η] of the Euclidean distance η between

X i and Xj (Equations 3.12 and 3.13).

7. Select a set of (2D+ 1) sigma points γ [d] from the distribution η ∼ Nakagami(m,Ω),

such that:

γ [0] = E[η], (3.26)

γ [d] = γ [0] +
(

√

(D + κ)Var[η]
)

[d]
,∀d ∈ {1, ..., D}, (3.27)

γ [d] = γ [0] −
(

√

(D + κ)Var[η]
)

[d−D]
,∀d ∈ {D + 1, ..., 2D}, (3.28)

where κ is a scaling parameter.



45

8. Compute the weights ω[d] associated with the sigma points γ [d]:

ω[0] =
κ

D + κ
, (3.29)

ω[d] =
1

2(D + κ)
,∀d ∈ {1, ..., 2D}. (3.30)

9. Compute the expected value of the Matérn Kernel Cν(η) through E[Cν(ϕ)]: Finally,

the estimation of the Matérn Kernel Cν(η) via UT can be obtained directly, resulting

from the sum of the transformed points Cν(γ [d]) weighted by their respective weights

ω[d]:

E[Cν(ϕ)] ≈
2D
∑

d=0

ω[d]Cν(γ [d]). (3.31)

3.2.4 Specificities of the employed approaches

It is important to highlight a common characteristic among the methods used

in the comparison: the calculation of the kernel is performed a posteriori, based on the

estimated Euclidean distance. Given two arbitrary instances:

a) The CMI method fills in the missing entries with the conditional expected value

given the observed entries, then calculates the squared distance based on the imputed

values, and finally, the kernel is obtained from the square root of the calculated

distance:

kCν(ηCMI)(X i,Xj) = Cν

(

√

‖ E[X i] − E[Xj] | X i,obs,Xj,obs ‖2

)

(3.32)

b) The ESD method first estimates the expected squared distance given the observed

entries. Taking the square root of the estimated value allows obtaining the Euclidean

distance between the data vectors, which is then used to obtain the kernel:

kCν(ηESD)(X i,Xj) = Cν

(

√

E [ ‖ X i − Xj ‖2 | X i,obs,Xj,obs]
)

(3.33)

c) Similarly, the EED method estimates the Euclidean distance between possibly

incomplete data vectors, and then uses the estimate to obtain the kernel:

kCν(ηEED)(X i,Xj) = Cν

(

E

[

√

‖ X i − Xj ‖2

∣

∣

∣

∣

X i,obs,Xj,obs

])

(3.34)

However, the estimation of the Matérn Kernel function by the EMK-MC and

EMK-UT method is obtained directly from the points obtained in ψ and ϕ, respectively.
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This can be expressed as:

kCν(ηEMK−MC)(X i,Xj) = E[Cν(ψ)] (3.35)

kCν(ηEMK−UT )(X i,Xj) = E[Cν(ϕ)]. (3.36)

3.3 Conclusion

Kernel methods are widely used in machine learning to perform tasks such

as classification, regression, and clustering. These methods rely on calculating similarity

measures between pairs of samples using a kernel function. One example of a kernel

function popularly used in Gaussian processes is the Matérn Kernel. Characterized by a

covariance function based on the Euclidean distance between samples, the Matérn Kernel

assumes that the data is fully observed and thus cannot naturally handle incomplete data.

In this chapter, robust techniques for estimating similarity measures were

presented. Once the Euclidean distance between two data instances with missing or

unobserved attributes is estimated, the Matérn Kernel can be successfully computed.

However, the computation of the kernel is performed a posteriori. Two new approaches

to deal with this situation were introduced. The EMK-MC and EMK-UT methods

estimate the Matérn Kernel function directly, depending only on the parameters of the

distribution that represents the Euclidean distance between possibly incomplete data

vectors. These parameters are obtained from the estimation of the squared distance

between the incomplete data vectors. It is also worth noting that the proposed EMK-UT

method requires O(1) samples, precisely three, regardless of the size of the dataset or the

number of missing attributes involved.
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4 EXPERIMENTS AND RESULTS

In this chapter, the entire methodology used in the experiments is presented.

The characteristics of the selected databases to evaluate the performance of the methods

proposed in this thesis, as well as the results obtained from the computational simulations

for the other methods used, are presented throughout this chapter.

4.1 Methodology

To analyze the efficiency of the proposed approaches, experiments were con-

ducted on synthetic (Xsint) and real (Xreal) datasets for estimating the Matérn Kernel

C1/2(η), C3/2(η) and C5/2(η). All datasets used are completely observed, so an initial step

involves assigning missing data to the original dataset. Initially, the data is normalized

with zero mean and unit standard deviation, and then missing data is generated according

to the Missing At Random mechanism to simulate missing attributes, such that the Rate

of Missing Instances (rMiss) varies from 10% to 80%, with each instance containing 70%

of its attributes missing.

For each rMiss, all methods (CMI, ESD, EED, EMK-MC e EMK-UT) perform

the estimation of the Matérn Kernel Cν(·), where ν ∈
{

1
2
; 3

2
; 5

2

}

. The performance analysis

is verified based on the Average Root Mean Square Error (ARMSE) for 30 independent

runs. The error is obtained by computing the difference between the estimated value of

the kernel E[Cν(·)] from the imputed versions of X i and Xj, and the actual value of Cν(·)
considering the vectors X i and Xj completely observed.

In Section 4.2, X i and Xj are drawn from multivariate normal distributions

with known parameters. Both X i and Xj may contain missing entries. The aim of this

experiment is to analyze the performance of the methods without the influence of the

dataset’s distribution estimation. In Section 4.3, the results obtained for real datasets are

presented. The Section 4.4 presents a case study in which the estimated Matérn Kernel is

integrated into a Machine Learning algorithm.

4.2 Multivariate normal data with known parameters

Three sets of synthetic data were created, each containing 100 samples and

3 attributes (data type: real). Each dataset was generated from a multivariate normal



48

distribution {N (c)}3
c=1, where c represents the number of normal components used to

generate the data. The parameters µ(c) and Σ(c) for each distribution, as well as the

probability (prob) of a generated data belonging to the respective component c, are

presented in Tables 1, 2 and 3, respectively, for distributions N (1), N (2) and N (3).

Table 1 – Distribution Parameters N (1).
µ Σ







−0.30

0.10

2













0.40 0.15 0.25

0.15 0.25 0.10

0.25 0.10 0.30







Source: elaborated by the author.

Table 2 – Distribution Parameters N (2).
#Component 1 (prob = 0.6) #Component 2 (prob = 0.4)

µ(1) Σ(1) µ(2) Σ(2)







−0.30

0.10

0.20













0.40 0.15 0.25

0.15 0.25 0.10

0.25 0.10 0.30













−0.45

1.00

0.40













0.79 0.58 0.69

0.58 0.53 0.40

0.69 0.40 0.85







Source: elaborated by the author.

Table 3 – Distribution Parameters N (3).
#Component 1 (prob = 0.4) #Component 2 (prob = 0.3) #Component 3 (prob = 0.3)

µ(1) Σ(1) µ(2) Σ(2) µ(3) Σ(3)







−0.10

0.50

0.35













0.79 0.59 0.71

0.59 0.64 0.47

0.71 0.47 0.72













−0.30

0.10

0.20













0.40 0.15 0.25

0.15 0.25 0.10

0.25 0.10 0.30













−0.45

1.00

0.40













0.79 0.58 0.69

0.58 0.53 0.40

0.69 0.40 0.85







Source: elaborated by the author.

As mentioned earlier, the estimation of the dataset’s distribution has no impact

on the performance of the evaluated methods in this experiment, as the components used

to generate the datasets are known. Thus, it is possible to make a percentage-based

comparison to highlight the improvement of a specific method compared to others. Let

M1 and M2 be any two methods. The Percentage of Improvement (pimp) of method M1

compared to method M2 can be obtained through the following calculation:

pimp =
ARMSE(M2) − ARMSE(M1)

ARMSE(M2)
× 100. (4.1)

The Table 4 presents the ARMSE’s obtained along with the associated standard

deviation for each type of estimated kernel, considering the dataset Xsint ∼ N (1).
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By analyzing the obtained data, it can be concluded that the EMK-UT method

shows the best performance in estimating the Matérn kernel C1/2(·), followed by the

EMK-MC, EED, CMI and ESD methods. Regarding the estimation of the Matérn kernel

C3/2(·) and C5/2(·), the proposed EMK-MC approach presents the best results, followed by

the EMK-UT, CMI, EED and ESD methods.

In addition to the previous results, Figure 6 presents the percentage of improve-

ment of the proposed approaches compared to the other methods based on the results

presented in Table 4.

Table 4 – Synthetic dataset - ARMSE for Xsint ∼ N (1).

Kernel rMiss CMI ESD EED EMK-MC EMK-UT

E[C1/2(·)] 0.10 0.2395 ±0.04 0.2762 ±0.05 0.2282 ±0.04 0.1814 ±0.03 0.1738 ±0.03

0.20 0.2561 ±0.03 0.2805 ±0.03 0.2361 ±0.03 0.1914 ±0.02 0.1841 ±0.02

0.30 0.2482 ±0.03 0.2955 ±0.04 0.2450 ±0.03 0.1933 ±0.03 0.1846 ±0.02

0.40 0.2480 ±0.02 0.2856 ±0.02 0.2368 ±0.02 0.1874 ±0.02 0.1794 ±0.02

0.50 0.2482 ±0.02 0.2904 ±0.03 0.2413 ±0.03 0.1924 ±0.03 0.1845 ±0.03

0.60 0.2401 ±0.03 0.2941 ±0.02 0.2445 ±0.02 0.1928 ±0.02 0.1842 ±0.02

0.70 0.2429 ±0.03 0.2874 ±0.02 0.2376 ±0.02 0.1872 ±0.02 0.1790 ±0.02

0.80 0.2439 ±0.02 0.2857 ±0.02 0.2365 ±0.02 0.1868 ±0.02 0.1788 ±0.02

E[C3/2(·)] 0.10 0.2729 ±0.05 0.3743 ±0.05 0.3027 ±0.05 0.2431 ±0.04 0.2522 ±0.04

0.20 0.2735 ±0.04 0.3593 ±0.04 0.2880 ±0.04 0.2345 ±0.03 0.2437 ±0.03

0.30 0.2890 ±0.04 0.3562 ±0.04 0.2909 ±0.04 0.2406 ±0.03 0.2474 ±0.03

0.40 0.2734 ±0.03 0.3720 ±0.03 0.2997 ±0.03 0.2423 ±0.02 0.2516 ±0.02

0.50 0.2724 ±0.03 0.3632 ±0.03 0.2940 ±0.03 0.2401 ±0.02 0.2488 ±0.02

0.60 0.2788 ±0.03 0.3695 ±0.03 0.2990 ±0.03 0.2413 ±0.02 0.2494 ±0.02

0.70 0.2754 ±0.04 0.3650 ±0.03 0.2964 ±0.03 0.2397 ±0.03 0.2475 ±0.03

0.80 0.2737 ±0.03 0.3729 ±0.03 0.3013 ±0.03 0.2436 ±0.03 0.2526 ±0.03

E[C5/2(·)] 0.10 0.2710 ±0.03 0.3859 ±0.06 0.3083 ±0.05 0.2541 ±0.03 0.2679 ±0.04

0.20 0.2722 ±0.03 0.3836 ±0.04 0.3046 ±0.03 0.2498 ±0.02 0.2628 ±0.02

0.30 0.2779 ±0.03 0.3781 ±0.05 0.3025 ±0.04 0.2498 ±0.03 0.2621 ±0.03

0.40 0.2787 ±0.03 0.3937 ±0.03 0.3143 ±0.03 0.2552 ±0.02 0.2687 ±0.02

0.50 0.2754 ±0.03 0.3899 ±0.04 0.3105 ±0.03 0.2525 ±0.02 0.2661 ±0.02

0.60 0.2657 ±0.03 0.3865 ±0.03 0.3050 ±0.03 0.2498 ±0.02 0.2645 ±0.02

0.70 0.2777 ±0.03 0.3974 ±0.03 0.3175 ±0.03 0.2595 ±0.02 0.2736 ±0.02

0.80 0.2746 ±0.03 0.3874 ±0.02 0.3087 ±0.03 0.2523 ±0.02 0.2659 ±0.02

Source: elaborated by the author.
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(b) pimp for E[C1/2(·)] - EMK-UT vs. other methods
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(c) pimp for E[C3/2(·)] - EMK-MC vs. other methods
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(d) pimp for E[C3/2(·)] - EMK-UT vs. other methods
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(e) pimp for E[C5/2(·)] - EMK-MC vs. other methods
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(f) pimp for E[C5/2(·)] - EMK-UT vs. other methods

Figure 6 – pimp between the evaluated methods on Xsint ∼ N (1).
Source: elaborated by the author.
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Considering the estimation of the Matérn Kernel C1/2(·) (Figures 6a and 6b),

the proposed approach EMK-UT shows the best results. On average, this method presents

an improvement of 24% compared to EED, about 26% compared to CMI and almost 37%

compared to ESD method.

Analyzing the results obtained for the estimation of the Matérn Kernel C3/2(·)
(Figures 6c and 6d), the EMK-MC method proves to be superior. On average, the proposed

approach presents an improvement of almost 13% compared to CMI, about 19% compared

to EED and over 34% compared to ESD method.

Finally, considering the estimation of the Matérn Kernel C5/2(·) (Figures 6e

and 6f), once again the proposed EMK-MC approach shows the best results. On average,

this approach presents an improvement of 7.74% compared to CMI, approximately 18%

compared to EED and almost 35% compared to ESD method.

The Table 5 presents the results related to the methods CMI, ESD, EED,

EMK-MC and EMK-UT when applied to the dataset Xsint ∼ N (2). The Figure 7, shows

the percentage of improvement of the proposed approaches compared to the other methods

based on the results presented in Table 5.

Once again, the EMK-UT method presents the lowest ARMSE’s in estimating

the kernel C1/2(·), followed by the EMK-MC, EED, ESD and CMI methods. Regarding

the estimation of the Matérn Kernel C3/2(·) and C5/2(·), the proposed EMK-MC approach

shows the best results, followed by the EMK-UT, EED, CMI, and ESD methods.

Regarding the estimation of the Matérn Kernel C1/2(·) (Figures 7a and 7b), the

proposed approaches EMK-UT and EMK-MC can be considered equivalent. Taking into

account the slight advantage of the EMK-UT method, on average, this approach presents

an improvement of 6.35% compared to EED, almost 20% compared to ESD, and over 25%

compared to the CMI method.

For the estimation of the Matérn Kernel C3/2(·) (Figures 7c and 7d), once

again, the proposed approaches are equivalent. Analogously, due to the slight advantage

of the EMK-MC method, on average, this approach presents an improvement of almost

7% compared to EED, about 17% compared to CMI, and 21.4% compared to the ESD

method.
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Table 5 – Synthetic dataset - ARMSE for Xsint ∼ N (2).

Kernel rMiss CMI ESD EED EMK-MC EMK-UT

E[C1/2(·)] 0.10 0.1986 ±0.04 0.1912 ±0.03 0.1641 ±0.03 0.1530 ±0.02 0.1521 ±0.02

0.20 0.1988 ±0.03 0.1782 ±0.02 0.1521 ±0.02 0.1443 ±0.02 0.1441 ±0.02

0.30 0.1988 ±0.02 0.1771 ±0.02 0.1519 ±0.02 0.1451 ±0.02 0.1450 ±0.02

0.40 0.1926 ±0.03 0.1770 ±0.03 0.1505 ±0.02 0.1417 ±0.01 0.1414 ±0.01

0.50 0.2008 ±0.03 0.1881 ±0.02 0.1590 ±0.02 0.1465 ±0.02 0.1456 ±0.02

0.60 0.1962 ±0.02 0.1858 ±0.02 0.1597 ±0.01 0.1494 ±0.01 0.1488 ±0.01

0.70 0.1966 ±0.02 0.1827 ±0.02 0.1566 ±0.01 0.1476 ±0.01 0.1473 ±0.01

0.80 0.2002 ±0.03 0.1851 ±0.02 0.1592 ±0.02 0.1493 ±0.02 0.1489 ±0.02

E[C3/2(·)] 0.10 0.2085 ±0.04 0.2152 ±0.05 0.1851 ±0.03 0.1729 ±0.03 0.1756 ±0.02

0.20 0.2025 ±0.04 0.2117 ±0.04 0.1775 ±0.03 0.1649 ±0.03 0.1675 ±0.03

0.30 0.1946 ±0.02 0.2191 ±0.02 0.1817 ±0.01 0.1684 ±0.01 0.1723 ±0.01

0.40 0.1989 ±0.03 0.2133 ±0.03 0.1792 ±0.02 0.1681 ±0.02 0.1711 ±0.02

0.50 0.2014 ±0.02 0.2140 ±0.02 0.1799 ±0.02 0.1678 ±0.02 0.1708 ±0.02

0.60 0.2029 ±0.02 0.2089 ±0.02 0.1760 ±0.02 0.1642 ±0.01 0.1667 ±0.01

0.70 0.2025 ±0.02 0.2089 ±0.02 0.1762 ±0.02 0.1656 ±0.02 0.1682 ±0.02

0.80 0.2051 ±0.02 0.2196 ±0.02 0.1850 ±0.02 0.1722 ±0.02 0.1755 ±0.02

E[C5/2(·)] 0.10 0.1935 ±0.04 0.2158 ±0.04 0.1786 ±0.03 0.1660 ±0.02 0.1709 ±0.02

0.20 0.2013 ±0.03 0.2152 ±0.04 0.1840 ±0.03 0.1731 ±0.02 0.1769 ±0.02

0.30 0.1968 ±0.03 0.2164 ±0.03 0.1814 ±0.03 0.1708 ±0.02 0.1752 ±0.02

0.40 0.1889 ±0.03 0.2110 ±0.03 0.1746 ±0.02 0.1649 ±0.02 0.1702 ±0.02

0.50 0.1920 ±0.03 0.2200 ±0.02 0.1805 ±0.02 0.1695 ±0.02 0.1748 ±0.02

0.60 0.1855 ±0.03 0.2175 ±0.02 0.1780 ±0.02 0.1660 ±0.02 0.1717 ±0.02

0.70 0.1915 ±0.03 0.2125 ±0.02 0.1766 ±0.02 0.1667 ±0.02 0.1715 ±0.02

0.80 0.1937 ±0.02 0.2169 ±0.02 0.1808 ±0.02 0.1699 ±0.02 0.1748 ±0.02

Source: elaborated by the author.
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(f) pimp for E[C5/2(·)] - EMK-UT vs. other methods

Figure 7 – pimp between the evaluated methods on Xsint ∼ N (2).
Source: elaborated by the author.
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Finally, for the estimation of the Matérn Kernel C5/2(·) (Figures 7e and 7f), the

proposed EMK-MC approach shows the best results. On average, this approach presents

an improvement of 6.09% compared to EED, about 12% compared to CMI, and almost

22% compared to the ESD method.

The ARMSE’s obtained considering Xsint ∼ N (3) are shown in Table 6. The

Figure 8 illustrates the percentage of improvement of the proposed approaches compared

to the other methods based on the results presented in the following table.

Table 6 – Synthetic dataset - ARMSE for Xsint ∼ N (3).

Kernel rMiss CMI ESD EED EMK-MC EMK-UT

E[C1/2(·)] 0.10 0.1800 ±0.03 0.1957 ±0.03 0.1582 ±0.02 0.1371 ±0.02 0.1356 ±0.02

0.20 0.1948 ±0.03 0.1819 ±0.03 0.1543 ±0.02 0.1440 ±0.02 0.1436 ±0.02

0.30 0.1893 ±0.03 0.1855 ±0.03 0.1549 ±0.02 0.1419 ±0.02 0.1413 ±0.02

0.40 0.1896 ±0.02 0.1845 ±0.02 0.1555 ±0.02 0.1432 ±0.02 0.1427 ±0.02

0.50 0.1894 ±0.02 0.1838 ±0.03 0.1536 ±0.02 0.1413 ±0.02 0.1409 ±0.02

0.60 0.1871 ±0.02 0.1904 ±0.02 0.1587 ±0.02 0.1446 ±0.02 0.1437 ±0.02

0.70 0.1915 ±0.02 0.1879 ±0.02 0.1579 ±0.02 0.1448 ±0.01 0.1443 ±0.01

0.80 0.1896 ±0.02 0.1872 ±0.02 0.1581 ±0.02 0.1459 ±0.02 0.1453 ±0.02

E[C3/2(·)] 0.10 0.1802 ±0.04 0.2202 ±0.05 0.1762 ±0.04 0.1626 ±0.03 0.1677 ±0.03

0.20 0.1784 ±0.02 0.2090 ±0.03 0.1677 ±0.02 0.1561 ±0.02 0.1608 ±0.02

0.30 0.1904 ±0.03 0.2192 ±0.03 0.1795 ±0.02 0.1654 ±0.02 0.1697 ±0.02

0.40 0.1816 ±0.03 0.2146 ±0.03 0.1725 ±0.03 0.1588 ±0.03 0.1636 ±0.03

0.50 0.1968 ±0.03 0.2160 ±0.02 0.1788 ±0.02 0.1659 ±0.02 0.1696 ±0.02

0.60 0.1858 ±0.02 0.2216 ±0.03 0.1798 ±0.02 0.1663 ±0.02 0.1713 ±0.02

0.70 0.1879 ±0.02 0.2167 ±0.02 0.1777 ±0.01 0.1637 ±0.01 0.1679 ±0.01

0.80 0.1818 ±0.02 0.2185 ±0.02 0.1757 ±0.02 0.1613 ±0.01 0.1668 ±0.01

E[C5/2(·)] 0.10 0.1745 ±0.04 0.2211 ±0.05 0.1757 ±0.04 0.1582 ±0.03 0.1652 ±0.03

0.20 0.1821 ±0.03 0.2168 ±0.03 0.1767 ±0.03 0.1646 ±0.02 0.1704 ±0.02

0.30 0.1793 ±0.02 0.2208 ±0.02 0.1779 ±0.02 0.1656 ±0.02 0.1719 ±0.02

0.40 0.1786 ±0.02 0.2214 ±0.03 0.1756 ±0.02 0.1648 ±0.02 0.1710 ±0.02

0.50 0.1886 ±0.02 0.2172 ±0.03 0.1777 ±0.02 0.1660 ±0.02 0.1714 ±0.02

0.60 0.1882 ±0.02 0.2228 ±0.03 0.1806 ±0.02 0.1677 ±0.02 0.1738 ±0.02

0.70 0.1789 ±0.02 0.2194 ±0.02 0.1765 ±0.02 0.1638 ±0.01 0.1699 ±0.01

0.80 0.1823 ±0.02 0.2248 ±0.02 0.1807 ±0.02 0.1671 ±0.02 0.1735 ±0.02

Source: elaborated by the author.
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(f) pimp for E[C5/2(·)] - EMK-UT vs. other methods

Figure 8 – pimp between the evaluated methods on Xsint ∼ N (3).
Source: elaborated by the author.
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From Table 6, it can be observed once again that the EMK-UT method presents

the best performance in estimating the Matérn Kernel C1/2(·), followed by the methods

EMK-MC, EED, ESD, and CMI. As for the estimation of the Matérn Kernel C3/2(·) and

C5/2(·), the proposed EMK-MC approach shows the best results, followed by the methods

EMK-UT, EED, CMI, and ESD.

Regarding Figures 8a and 8b, similar to the results observed for the estimation

of the Matérn Kernel C1/2(·) from Xsint ∼ N (2), the proposed methods EMK-MC and

EMK-UT are again equivalent in terms of percentage of improvement. Considering the

slight advantage of the EMK-UT method, on average, this approach shows an improvement

of 9.08% compared to the EED method, nearly 24% compared to the ESD method, and

about 25% compared to the CMI method.

A larger margin of difference between the proposed approaches for the estimation

of the Matérn Kernel C3/2(·) (Figures 8c and 8d) gives the EMK-MC method an advantage.

Thus, on average, the proposed approach presents an improvement of 7.65% compared to

the EED, about 12% compared to the CMI, and 25.1% compared to the ESD method.

Finally, for the estimation of the Matérn Kernel C5/2(·) (Figures 8e and 8f), the

proposed EMK-MC approach shows the best results. On average, this approach presents

an improvement of over 7% compared to the EED, about 9% compared to the CMI, and

slightly over 25% compared to the ESD method.

In summary, concerning the synthetic data, the superiority of the proposed

EMK-MC and EMK-UT methods is evident, as they achieve the best performance in all

evaluated situations. From the results presented in Tables 4-6, it can be noticed that

the largest performance differences are obtained in estimating the Matérn Kernel C1/2(η).

However, contrary to expectations, the ARMSE does not follow a trend of increasing with

the number of samples with missing data for any evaluated method, regardless of the type

of estimated kernel.

4.3 Experiments on real-world data

A total of 22 datasets from the UCI Machine Learning repository (KELLY et

al., 2013) were evaluated. The specific characteristics of each dataset are presented in

Table 7.
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Table 7 – Datasets description.

Dataset Size Features Task Attribute Type

Iris 150 4 Classification Real
Servo 167 4 Regression Categorical, Integer
Concrete Slump 103 7 Regression Real
Haberman 306 3 Classification Integer
Breast tissue 106 9 Classification Real
Coluna 310 6 Classification Real
Glass 214 9 Classification Real
Wine 178 13 Classification Integer, Real
Ecoli 336 7 Classification Real
Auto MPG 392 7 Regression Categorical, Real
Monk 1 556 6 Classification Categorical
Monk 2 601 6 Classification Categorical
Monk 3 554 6 Classification Categorical
Pima Indians Diabetes 768 8 Classification Integer, Real
Energy 768 8 Classification, Regression Integer, Real
Forest Fires 517 12 Regression Real
Boston Housing 506 13 Regression Integer, Real
Concrete Compression 1030 8 Regression Real
Liver Disorders BUPA
Medical Research

345 5 Classification Categorical, Integer, Real

Computer Hardware 209 6 Regression Integer
Statlog (vehicle silhou-
ettes)

846 18 Classification Integer

Heart Disease (Cleve-
land)

303 13 Classification Categorical, Integer, Real

Source: elaborated by the author.

To estimate the probabilistic model for the data, a GMM with up to 10

components is used. The best model is selected after 10 runs based on the Bayesian

Information Criterion (BIC). Due to the various situations when estimating the Matérn

Kernel C1/2(η), C3/2(η), and C5/2(η) with rMiss ∈ {0.1 ... 0.8} for 22 datasets, the Relative

Success Rate (RSR) is used as a performance measure for the methods. This rate measures

how many times a method outperforms the others considering the number of evaluated

configurations, defined as:

RSR =
#sms

#tcs
, (4.2)

where #sms is the number of times a method outperformed the others considering the

ARMSE for the estimated kernel value and #tcs is the total number of evaluated

configurations. It is worth mentioning that for this metric, for the purpose of fair

comparison, the EMK-MC and EMK-UT methods are compared separately to the other

methods considered.
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The results in terms of RSR are divided into 3 groups according to the percentage

of instance removal, namely:

1. Overall removal rate (G1): rMiss ∈ {0.1 ... 0.8};

2. Low/Medium removal rate (G2): rMiss ∈ {0.1 ... 0.4};

3. Medium/High removal rate (G3): rMiss ∈ {0.5 ... 0.8}.

Example 2 Considering the complete scenario of the experiment, there are 528 evaluated

configurations (3 kernel types × 8 instance removal percentages × 22 datasets). If a certain

method obtained the lowest ARMSE’s values in 250 cases, it means its relative success rate

is approximately 0.47.

Example 3 Considering a scenario where only the estimation of the Matérn Kernel C1/2(·)
is performed based on G1, there are 88 evaluated configurations (1 kernel type × 4 instance

removal percentages × 22 datasets). If a certain method obtained the lowest ARMSE’s

values in 34 cases, it means its relative success rate is approximately 0.38.

It is worth noting that all results obtained in terms of ARMSE (along with

the associated standard deviation) comparing the methods CMI, ESD, EED, EMK-MC,

and EMK-UT when applied to each dataset from the UCI Machine Learning repository,

considering each type of estimated kernel, are provided additionally in Appendix B.

Additionally, for each group, the RSR is computed for the estimation of all

kernels together and considering each individual kernel. The results obtained in terms

of RSR are presented in Tables 8 and 9, respectively, for the EMK-MC and EMK-UT

methods.

When considering the Tables 8 and 9, it can be inferred that the RSR of the

CMI method is consistently the lowest. This indicates that the CMI method had inferior

performance compared to the other methods, regardless of the kernel used. Among the

ESD, EED, and CMI methods, there is no clear differentiation in performance based on

the estimated kernel type, considering only the RSR.

Similar to the synthetic data, the ARMSE for the proposed methods does not

increase with the amount of missing data. This can be inferred from the relative success

rates in both the overall context (G1) and the specific cases represented by groups G2 and

G3. However, once again, the proposed EMK-MC and EMK-UT methods consistently

outperform the other methods in most evaluated scenarios, providing evidence that the
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assumptions about their formulations do not degrade their performance for real-world

datasets. Additionally, in Appendix A, Figures 9, 10, 11, and 12 directly illustrate the

comparison between the number of times a particular method outperformed the others in

each group Gn.

Table 8 – UCI dataset - RSR considering the EMK-MC method.

Group Kernel CMI ESD EED EMK-MC

G1 E[Cν(·)] 0.0947 0.1667 0.3030 0.4356

E[C1/2(·)] 0.0852 0.1648 0.3409 0.4091

E[C3/2(·)] 0.0966 0.1647 0.2898 0.4489

E[C5/2(·)] 0.1023 0.1704 0.2784 0.4489

G2 E[Cν(·)] 0.1023 0.1780 0.2803 0.4394

E[C1/2(·)] 0.1023 0.1704 0.3523 0.3750

E[C3/2(·)] 0.1023 0.1818 0.2386 0.4773

E[C5/2(·)] 0.1023 0.1818 0.2500 0.4659

G3 E[Cν(·)] 0.0871 0.1553 0.3258 0.4318

E[C1/2(·)] 0.0682 0.1591 0.3295 0.4432

E[C3/2(·)] 0.0909 0.1477 0.3409 0.4205

E[C5/2(·)] 0.1023 0.1591 0.3068 0.4318

Source: elaborated by the author.

Table 9 – UCI dataset - RSR considering the EMK-UT method.

Group Kernel CMI ESD EED EMK-UT

G1 E[Cν(·)] 0.1230 0.1667 0.3239 0.3864

E[C1/2(·)] 0.0909 0.1648 0.4375 0.3068

E[C3/2(·)] 0.1250 0.1648 0.2898 0.4204

E[C5/2(·)] 0.1534 0.1705 0.2443 0.4318

G2 E[Cν(·)] 0.1250 0.1780 0.3106 0.3864

E[C1/2(·)] 0.0909 0.1705 0.4659 0.2727

E[C3/2(·)] 0.1364 0.1818 0.2500 0.4318

E[C5/2(·)] 0.1477 0.1818 0.2160 0.4545

G3 E[Cν(·)] 0.1212 0.1553 0.3371 0.3864

E[C1/2(·)] 0.0909 0.1591 0.4091 0.3409

E[C3/2(·)] 0.1136 0.1477 0.3296 0.4091

E[C5/2(·)] 0.1591 0.1591 0.2727 0.4091

Source: elaborated by the author.
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Considering the performance in terms of ARMSE for both small and large

amounts of missing samples, the proposed approaches outperform the other methods

in most evaluated scenarios. As expected, the performance differences between EMK

and EED are smaller than the differences when any other method is considered. It is

worth noting that the EED method was designed to estimate the Euclidean distance

between incomplete data vectors. Since the Matérn Kernel specifies the covariance between

measurements based on the Euclidean distance between points of interest, the estimation

error of the kernel should be reduced if the distance estimation is made with arbitrarily

better precision.

However, it is important to highlight the difference in the level at which the

estimation problem is addressed by the approaches developed in this thesis. The EMK-MC

and EMK-UT methods have the capacity to directly address the kernel estimation problem,

estimating the transformation of interest rather than embedding it in a lower-level structure.

From the results obtained in MESQUITA (2017), a statement can be made by applying

Jensen’s inequality directly. Formally, Jensen’s inequality states that for a convex function

f and a random variable X with probability density function p(x), it holds that:

f(E[X]) ≤ E[f(X)], (4.3)

in other words, for convex functions, the function of the mean is less than or equal to the

mean of the function.

Given that η is a random variable and follows a Nakagami distribution, the

following statement can be obtained:

kCν(ηEED)(X i,Xj) ≤ kCν(ηEMK−MC)(X i,Xj), (4.4)

in the same way that

kCν(ηEED)(X i,Xj) ≤ kCν(ηEMK−UT )(X i,Xj). (4.5)

Therefore, from the inequalities presented earlier, it is possible to conclude that

estimating the Euclidean distance between incomplete data vectors to only then obtain

the kernel tends to underestimate the expected value of the desired kernel. On the other

hand, in the proposed approaches, the kernel function estimates are obtained directly from

the approximated functions represented in ψ and ϕ.
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4.4 Case-study: LSSVR with Matérn Kernel for Incomplete Data

A more comprehensive evaluation of the proposed approaches involves applying

the estimated Matérn Kernel to a Machine Learning algorithm, specifically, the Least

Squares Support Vector Regression (LSSVR) model (SUYKENS; VANDEWALLE, 1999;

SUYKENS et al., 2001). This way, the proposed EMK-MC and EMK-UT approaches are

integrated into a state-of-the-art kernel machine designed for regression tasks, rather than

being limited exclusively to isolated estimation techniques.

4.4.1 Least Squares Support Vector Regression (LSSVR)

Two modifications were made to create the LSSVR model from the Support

Vector Regression (SVR) (VAPNIK, 1995). These modifications are present in the primal

optimization formulation. The first modification involves using equality constraints instead

of inequalities. Consequently, the solution is obtained by solving a set of linear equations

instead of a quadratic problem. The second change is in the cost function, achieved by

incorporating the sum of squared approximation errors, weighted by a regularization term.

Let X = {(X1, Y1), . . . , (XN , YN)} be a dataset, where X ∈ R
D and Y ∈ R.

The goal is to estimate the parameters of the nonlinear regression model

f(X) = 〈ω, ̺(X)〉 + b, (4.6)

where 〈·, ·〉 denotes the dot-product, ω ∈ R
D is the weight vector, b ∈ R is the bias, and

̺(X) represents the nonlinear mapping from the input feature space to a higher-dimensional

space. The goal is to minimize the following cost function:

min JP (ω, e) =
1

2
ωT ω + ζ

1

2

N
∑

i=1

e2
i , (4.7)

subject to Yi = 〈ωT , ̺(X i)〉 + b+ ei, i = 1, . . . , N,

where ei = Yi − f(X i) is the error in the ith observation, and ζ > 0 is the regularization

parameter. By proceeding with the solution using the method of Lagrange multipliers, the

problem given in Equation 4.7 can be rewritten in its dual form as follows:

L(ω, b, e, ι) =
1

2
ωT ω + ζ

1

2

N
∑

i=1

e2
i −

N
∑

i=1

ιi{ωT̺(X i) + b+ ei − Yi}, (4.8)
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where {ιi}N
i=1 ∈ R are the Lagrange multipliers.

Given the optimality conditions, the solution can then be directly found by

solving the following linear system:

Az = l, (4.9)

such that:

A =







0 1
T

1 Ψ + ζ−1
I





 , z =







b

ι





 , l =







0

Y





 , (4.10)

where Ψ ∈ R
N×N is the kernel matrix whose entries are given by Ψi,j = 〈̺(X i), ̺(Xj)〉,

i, j = 1, . . . , N . Additionally, Y = [Y1 · · · YN ]T and the symbol 1 represents a vector of

1’s with dimension N .

Applying the kernel trick to Ψi,j, it is obtained:

Ψi,j = 〈̺(X i), ̺(Xj)〉

= k(X i,Xj), i, j = 1, . . . , N, (4.11)

where k(·, ·) is the kernel function.

Effectively, the LSSVR model is defined in terms of the coefficients ι, b and the

kernel function k(·, ·). Therefore, the resulting model for nonlinear regression is given by:

f(x) =
N
∑

i=1

ιik(X i,Xj) + b, (4.12)

where ιi and b are the solution of the linear system presented in Equation 4.9. For further

details, refer to Suykens et al. (2002).

4.4.2 Experiments and Results

Considering the absence of attributes in the training observations, the direct

estimation of the kernel matrix Ψ becomes a challenge. In the following experiments,

the CMI, ESD, and EED methods were used to complete the data matrix, which was

then subjected to the LSSVR model for the regression task. However, it should be noted

that the proposed methods EMK-MC and EMK-UT were applied to directly estimate the

kernel matrices Ψi,j.

The Concrete Slump dataset was considered for conducting the experiments,

so that the performance analysis is evaluated in terms of ARMSE for 30 independent runs
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when estimating each of the three output variables of the dataset (Output(1): Slump (cm);

Output(2): Flow (cm); Output(3): 28-day Compressive Strength (Mpa)). For simplification,

the regularization parameter ζ was fixed at 0.05. The results obtained in terms of ARMSE

along with their standard deviation for each missing instance rate while also considering

the application of the Matérn kernels C1/2, C3/2, and C5/2, are detailed in Appendix C.

The following tables relate the results obtained in terms of the Relative Success Rate,

considering the estimation of the three kernels for group G1.

Table 10 – Case-Study - RSR for Concrete Slump dataset considering the EMK-MC
method.

Output(1) Output(2) Output(3)

CMI 0.0417 0.0000 0.1667

ESD 0.4583 0.5000 0.1250

EED 0.0417 0.0000 0.0000

EMK-MC 0.4583 0.5000 0.7083

Source: elaborated by the author.

Table 11 – Case-Study - RSR for Concrete Slump dataset considering the EMK-UT method.

Output(1) Output(2) Output(3)

CMI 0.0417 0.0000 0.2083

ESD 0.3750 0.3333 0.1250

EED 0.0000 0.0000 0.0000

EMK-UT 0.5833 0.6667 0.6667

Source: elaborated by the author.

From the results presented in Tables 10 and 11, it can be observed that the

proposed methods achieve the best results for all three output types of the evaluated

dataset. Furthermore, a substantial difference margin is notable between the frequency at

which the EMK-UT approach attains the lowest mean squared error in comparison to the

other methods.
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4.5 Conclusion

In this chapter, the methodology used to evaluate the proposed methods, as

well as the characteristics of the datasets used, were described. A total of 22 datasets

from the UCI Machine Learning repository, along with 3 synthetic datasets, were included.

The performance metrics used to compare the proposals in this thesis with three other

methods when applied to the datasets used in the simulations were also presented.

Comparative tables that highlight the performance of the methods under differ-

ent scenarios are provided, as well as figures illustrating the improvements of the proposed

approaches over other methods. The tests were performed under various conditions, in

addition to applying the estimated Matérn Kernel in the LSSVR method, to demonstrate

the robustness of the proposed methods and provide consistent evidence for the conclusions

presented in Chapter 5.
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5 CONCLUSIONS AND FUTURE WORKS

The purpose of this chapter is to provide the conclusions and final considerations

regarding the proposed methods developed in this thesis. Additionally, final remarks about

the achievement of the objectives described in the introduction will be discussed, as well

as suggestions for future research in this area.

5.1 Conclusions

In this work, two new methods for estimating the Matérn Kernel in the presence

of incomplete datasets are presented. Typically, these methods assume that the dataset is

fully observed; however, incomplete data is a common occurrence in various domains.

For modeling the data considering the existence of missing attributes, a Gaussian

Mixture Model is used. As presented in Chapter 2, the parameters of the model that

maximize the likelihood function, conditioning on the observed data, are estimated using

the Expectation-Maximization algorithm in its extended form to deal with incomplete

data. At the same time, the EM algorithm iteratively estimates the missing values.

In Chapter 3, the estimation problem is formulated under the assumption that

the Euclidean distances of the kernel function follow a Nakagami probability distribution.

Once the distribution parameters are known, approximation techniques are used as an

alternative to the infeasibility of solving the problem analytically.

The method Expected Matérn Kernel via Monte Carlo (EMK-MC), generates

samples through MC simulation that represent the distribution of the Euclidean distance

between two vectors; then, the kernel estimation is directly obtained through the expected

value of the generated distribution. On the other hand, the method Expected Matérn

Kernel via Unscented Transform (EMK-UT), can estimate the Matérn Kernel function by

summing a set of transformed points, weighted by their respective weights.

The performances of the proposed methods are compared to three other methods

on 22 real-world datasets, as well as 3 synthetic datasets, as discussed in Chapter 4.

According to the results obtained, it is possible to infer that the EMK-MC and EMK-UT

methods are valid alternatives for estimating the Matérn Kernel function in incomplete

datasets, as the consistent performance is evident in the majority of the various scenarios

evaluated for real-world datasets and in all scenarios evaluated on synthetic datasets. The
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proposed approaches provide the possibility of working with the C1/2, C3/2, and C5/2 kernels

even in the presence of a large number of instances with missing attributes, where it would

be impossible to use the original formulation of the Matérn Kernel.

It is also worth noting that the EMK-UT approach is based on the UT. This

means that the asymptotic complexity requires only O(1) samples, or more precisely,

three samples. Another point to highlight is that both proposed methodologies inherently

consider the uncertain nature of missing entries. The use of direct imputation techniques

would result in the loss of this information, as discussed in Chapter 2.

As discussed at the end of Section 4.3, it was expected that the proposed

methods and EED would yield the two best results. Considering the general case for

real-world problems (where 528 test scenarios are evaluated in G1), the proposed method

EMK-MC outperformed in 230 scenarios, while the second-best model (EED) succeeded

in 160 scenarios. On the other hand, the EMK-UT method was superior in 204 scenarios,

while the EED method had an advantage in 171 scenarios.

When analyzing only the estimation of the Matérn Kernel C1/2(·) (totaling

176 test scenarios in G1), the difference between the two best methods was more subtle.

However, again, the EMK-MC method proved superior in 72 scenarios, while the EED

method achieved the best results in 60 scenarios. Regarding the EMK-UT approach, it

succeeded in 54 scenarios, while the EED method showed superiority in 77 evaluated

scenarios.

Regarding the estimation of the Matérn Kernel C3/2(·) and C5/2(·) (totaling

176 test scenarios in G1 for each kernel), the difference in performance between the two

methods increases again. In the case of E[C3/2(·)], the EMK-MC method achieves the best

results in 79 scenarios, and the EED method in 51 scenarios. On the other hand, the

EMK-UT method achieves the best results in 74 scenarios, compared to 51 for the EED

method.

Finally, in E[C5/2(·)], the EMK-MC approach has an advantage in 79 evaluated

scenarios, while the EED method achieves the best results in 49 scenarios. Meanwhile, the

proposed EMK-UT approach achieves the best results in 76 evaluated scenarios, compared

to 43 scenarios for the EED method.

When considering the results obtained regarding the application of the estimated

Matérn Kernel in a Machine Learning algorithm (presented in Appendix C), it is possible



67

to observe that the best results for the methods developed in this Thesis are achieved when

applying the Matérn Kernels C3/2 and C5/2, where the smallest errors in the evaluated

regression task are evident.

5.2 Future Works

As future work, the use of parametric and semi-parametric densities for modeling

the dataset is intended to be evaluated. The developments presented do not depend on the

specific assumption that the data distribution can be represented by a Gaussian mixture

model, therefore, it can be easily replaced.

Another suggested work is to model the squared distance present in the Matérn

Kernel C5/2 based on a specific distribution, instead of computing the distance from the

resulting distributions of the approximation processes. From the discussions conducted,

this measure can be considered a random variable following a Gamma distribution. Thus,

its modeling will depend only on the parameters of that distribution.

Additionally, it is also suggested to generalize the presented results to other

kernels constructed based on the standard Matérn Kernel C1/2(η), C3/2(η), and C5/2(η).

Suggestions for extensions are briefly presented in Appendix D.

Lastly, but not least, a clear extension of this study consists of the direct

application of the methods discussed in the previous chapters to Machine Learning

algorithms. An initial application was carried out as discussed in Section 4.4. Therefore,

the intention is to replicate the application to more regression problems with the aim of

confirming the initial conclusions obtained. The next step, will be to organize the results

in order to synthesize the study resulting from this thesis, with the aim of submitting

articles to scientific journals. It is worth noting that at least one article is already in an

advanced stage of writing and will be submitted for publication in the coming months.
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APPENDIX A – #SMS FOR EACH G GROUP (UCI DATASET)

Overall Analysis (E[Cν(·)])

The following figure shows the number of times each method was better than

the others. It considers the estimation of the 3 types of kernels
(

Cν(·) ∀ ν ∈ {1
2
; 3

2
; 5

2
}
)

evaluated on 22 datasets from UCI. Thus, 528 scenarios were evaluated in G1. Considering

groups G2 and G3, 264 scenarios were evaluated in each group.

Scenarios evaluated in G1:

(3 types of kernel) × (rMiss ∈ {0.1 · · · 0.8}) × (22 datasets) (A.1)

Scenarios evaluated in G2

(3 types of kernel) × (rMiss ∈ {0.1 · · · 0.4}) × (22 datasets) (A.2)

Scenarios evaluated in G3

(3 types of kernel) × (rMiss ∈ {0.5 · · · 0.8}) × (22 datasets) (A.3)

#
s
m
s

G1 G2 G3

(a) EMK-MC x other methods

#
s
m
s

G1 G2 G3

(b) EMK-UT x other methods

Figure 9 – UCI dataset - #sms for E[Cν(·)].
Source: elaborated by the author.
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Specific analysis for E[C1/2(·)]

The following figure shows the number of times each method was better than

the others. It considers only the estimation of the Matern kernel C1/2(·) evaluated on 22

datasets from UCI. Thus, 176 scenarios were evaluated in G1. Considering groups G2 and

G3, 88 scenarios were evaluated in each group.

Scenarios evaluated in G1:

(1 type of kernel) × (rMiss ∈ {0.1 · · · 0.8}) × (22 datasets) (A.4)

Scenarios evaluated in G2

(1 type of kernel) × (rMiss ∈ {0.1 · · · 0.4}) × (22 datasets) (A.5)

Scenarios evaluated in G3

(1 type of kernel) × (rMiss ∈ {0.5 · · · 0.8}) × (22 datasets) (A.6)

#
s
m
s

G1 G2 G3

(a) EMK-MC x other methods

#
s
m
s

G1 G2 G3

(b) EMK-UT x other methods

Figure 10 – UCI dataset - #sms for E[C1/2(·)].
Source: elaborated by the author.
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Specific analysis for E[C3/2(·)]

The following figure shows the number of times each method was better than

the others. It considers only the estimation of the Matern kernel C3/2(·) evaluated on 22

datasets from UCI. Thus, 176 scenarios were evaluated in G1. Considering groups G2 and

G3, 88 scenarios were evaluated in each group.

Scenarios evaluated in G1:

(1 type of kernel) × (rMiss ∈ {0.1 · · · 0.8}) × (22 datasets) (A.7)

Scenarios evaluated in G2

(1 type of kernel) × (rMiss ∈ {0.1 · · · 0.4}) × (22 datasets) (A.8)

Scenarios evaluated in G3

(1 type of kernel) × (rMiss ∈ {0.5 · · · 0.8}) × (22 datasets) (A.9)

#
s
m
s

G1 G2 G3

(a) EMK-MC x other methods

#
s
m
s

G1 G2 G3

(b) EMK-UT x other methods

Figure 11 – UCI dataset - #sms for E[C3/2(·)].
Source: elaborated by the author.
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Specific analysis for E[C5/2(·)]

The following figure shows the number of times each method was better than

the others. It considers only the estimation of the Matern kernel C5/2(·) evaluated on 22

datasets from UCI. Thus, 176 scenarios were evaluated in G1. Considering groups G2 and

G3, 88 scenarios were evaluated in each group.

Scenarios evaluated in G1:

(1 type of kernel) × (rMiss ∈ {0.1 · · · 0.8}) × (22 datasets) (A.10)

Scenarios evaluated in G2

(1 type of kernel) × (rMiss ∈ {0.1 · · · 0.4}) × (22 datasets) (A.11)

Scenarios evaluated in G3

(1 type of kernel) × (rMiss ∈ {0.5 · · · 0.8}) × (22 datasets) (A.12)

#
s
m
s

G1 G2 G3

(a) EMK-MC x other methods

#
s
m
s

G1 G2 G3

(b) EMK-UT x other methods

Figure 12 – UCI dataset - #sms for E[C5/2(·)].
Source: elaborated by the author.
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APPENDIX B – ARMSE FOR UCI DATASETS

Breast tissue

Table 12 – UCI dataset - ARMSE for E[C1/2(·)] (Breast tissue).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1399 ±0.03 0.2796 ±0.05 0.2341 ±0.04 0.1672 ±0.03 0.1597 ±0.03

0.20 0.1430 ±0.02 0.2737 ±0.04 0.2299 ±0.04 0.1649 ±0.03 0.1577 ±0.02

0.30 0.1389 ±0.02 0.2944 ±0.04 0.2497 ±0.04 0.1751 ±0.03 0.1617 ±0.02

0.40 0.1504 ±0.03 0.2975 ±0.04 0.2548 ±0.05 0.1786 ±0.03 0.1680 ±0.03

0.50 0.1598 ±0.04 0.3054 ±0.05 0.2627 ±0.05 0.1879 ±0.04 0.1702 ±0.02

0.60 0.1508 ±0.03 0.2784 ±0.05 0.2347 ±0.05 0.1689 ±0.04 0.1579 ±0.02

0.70 0.1469 ±0.02 0.2751 ±0.04 0.2319 ±0.04 0.1674 ±0.03 0.1566 ±0.02

0.80 0.1615 ±0.03 0.2743 ±0.05 0.2319 ±0.05 0.1741 ±0.03 0.1635 ±0.03

Source: elaborated by the author.

Table 13 – UCI dataset - ARMSE for E[C3/2(·)] (Breast tissue).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1525 ±0.04 0.3572 ±0.06 0.2864 ±0.06 0.2076 ±0.04 0.2273 ±0.04

0.20 0.1857 ±0.05 0.3663 ±0.05 0.3033 ±0.05 0.2226 ±0.04 0.2441 ±0.06

0.30 0.1760 ±0.03 0.3852 ±0.05 0.3206 ±0.05 0.2292 ±0.03 0.2430 ±0.03

0.40 0.1855 ±0.04 0.3938 ±0.07 0.3324 ±0.07 0.2384 ±0.05 0.2509 ±0.05

0.50 0.1986 ±0.03 0.4061 ±0.07 0.3480 ±0.07 0.2494 ±0.05 0.2592 ±0.04

0.60 0.1917 ±0.03 0.3712 ±0.06 0.3112 ±0.07 0.2296 ±0.05 0.2394 ±0.04

0.70 0.1901 ±0.04 0.3737 ±0.07 0.3114 ±0.07 0.2252 ±0.05 0.2360 ±0.04

0.80 0.1916 ±0.04 0.3504 ±0.07 0.2904 ±0.07 0.2137 ±0.04 0.2227 ±0.04

Source: elaborated by the author.

Table 14 – UCI dataset - ARMSE for E[C5/2(·)] (Breast tissue).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1709 ±0.04 0.3695 ±0.05 0.2990 ±0.05 0.2128 ±0.03 0.2291 ±0.04

0.20 0.1890 ±0.04 0.3948 ±0.05 0.3260 ±0.05 0.2344 ±0.04 0.2521 ±0.04

0.30 0.1948 ±0.04 0.4096 ±0.06 0.3425 ±0.06 0.2422 ±0.04 0.2588 ±0.04

0.40 0.1905 ±0.05 0.4139 ±0.08 0.3438 ±0.09 0.2532 ±0.06 0.2683 ±0.05

0.50 0.2057 ±0.04 0.4109 ±0.07 0.3455 ±0.07 0.2492 ±0.05 0.2623 ±0.05

0.60 0.1925 ±0.03 0.3868 ±0.06 0.3187 ±0.06 0.2306 ±0.04 0.2458 ±0.04

0.70 0.2092 ±0.04 0.3652 ±0.07 0.3033 ±0.07 0.2265 ±0.05 0.2377 ±0.04

0.80 0.2110 ±0.05 0.3743 ±0.07 0.3122 ±0.07 0.2294 ±0.05 0.2407 ±0.05

Source: elaborated by the author.
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Liver Disorders BUPA Medical Research

Table 15 – UCI dataset - ARMSE for E[C1/2(·)] (Liver Disorders BUPA Medical Research).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2214 ±0.03 0.2229 ±0.09 0.1962 ±0.08 0.1718 ±0.04 0.1582 ±0.02

0.20 0.2281 ±0.03 0.1868 ±0.06 0.1633 ±0.06 0.1633 ±0.03 0.1603 ±0.02

0.30 0.2233 ±0.03 0.1630 ±0.05 0.1390 ±0.04 0.1497 ±0.02 0.1537 ±0.02

0.40 0.2359 ±0.03 0.1505 ±0.02 0.1327 ±0.01 0.1536 ±0.02 0.1610 ±0.02

0.50 0.2271 ±0.03 0.1561 ±0.02 0.1329 ±0.02 0.1493 ±0.02 0.1566 ±0.02

0.60 0.2224 ±0.03 0.1554 ±0.02 0.1298 ±0.02 0.1444 ±0.02 0.1512 ±0.02

0.70 0.2263 ±0.02 0.1833 ±0.05 0.1559 ±0.05 0.1581 ±0.02 0.1599 ±0.02

0.80 0.2204 ±0.03 0.1838 ±0.04 0.1530 ±0.03 0.1529 ±0.01 0.1574 ±0.01

Source: elaborated by the author.

Table 16 – UCI dataset - ARMSE for E[C3/2(·)] (Liver Disorders BUPA Medical Research).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2588 ±0.05 0.3605 ±0.12 0.3251 ±0.12 0.2560 ±0.06 0.2525 ±0.06

0.20 0.2719 ±0.04 0.2708 ±0.11 0.2403 ±0.10 0.2138 ±0.05 0.2109 ±0.05

0.30 0.2778 ±0.03 0.2136 ±0.08 0.1887 ±0.07 0.1937 ±0.04 0.1897 ±0.04

0.40 0.2711 ±0.03 0.2035 ±0.03 0.1765 ±0.03 0.1857 ±0.02 0.1831 ±0.02

0.50 0.2658 ±0.03 0.2094 ±0.05 0.1777 ±0.05 0.1843 ±0.03 0.1823 ±0.03

0.60 0.2641 ±0.03 0.2101 ±0.04 0.1766 ±0.03 0.1834 ±0.02 0.1827 ±0.02

0.70 0.2777 ±0.03 0.2128 ±0.06 0.1865 ±0.05 0.1944 ±0.03 0.1915 ±0.03

0.80 0.2742 ±0.03 0.2468 ±0.05 0.2050 ±0.04 0.1945 ±0.02 0.1947 ±0.01

Source: elaborated by the author.

Table 17 – UCI dataset - ARMSE for E[C5/2(·)] (Liver Disorders BUPA Medical Research).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2836 ±0.05 0.3202 ±0.13 0.2918 ±0.12 0.2534 ±0.06 0.2501 ±0.06

0.20 0.2673 ±0.04 0.2739 ±0.12 0.2447 ±0.10 0.2185 ±0.05 0.2155 ±0.05

0.30 0.2585 ±0.02 0.2517 ±0.09 0.2108 ±0.08 0.2003 ±0.04 0.2014 ±0.04

0.40 0.2772 ±0.03 0.2405 ±0.09 0.2153 ±0.08 0.2119 ±0.05 0.2088 ±0.04

0.50 0.2732 ±0.03 0.2147 ±0.04 0.1880 ±0.04 0.1948 ±0.02 0.1926 ±0.02

0.60 0.2785 ±0.04 0.2066 ±0.02 0.1837 ±0.02 0.1941 ±0.03 0.1913 ±0.02

0.70 0.2716 ±0.03 0.2369 ±0.06 0.1993 ±0.05 0.1969 ±0.03 0.1979 ±0.03

0.80 0.2702 ±0.03 0.2496 ±0.07 0.2088 ±0.07 0.1991 ±0.04 0.1997 ±0.03

Source: elaborated by the author.



79

Heart Disease Cleveland

Table 18 – UCI dataset - ARMSE for E[C1/2(·)] (Heart Disease Cleveland).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2125 ±0.03 0.0748 ±0.01 0.0811 ±0.01 0.1656 ±0.01 0.1955 ±0.01

0.20 0.2071 ±0.02 0.0798 ±0.01 0.0809 ±0.01 0.1614 ±0.01 0.1909 ±0.01

0.30 0.2105 ±0.02 0.0768 ±0.01 0.0806 ±0.01 0.1633 ±0.01 0.1929 ±0.01

0.40 0.2005 ±0.02 0.0799 ±0.02 0.0788 ±0.01 0.1582 ±0.01 0.1882 ±0.01

0.50 0.2029 ±0.02 0.0731 ±0.01 0.0781 ±0.01 0.1623 ±0.01 0.1923 ±0.01

0.60 0.2065 ±0.02 0.0844 ±0.02 0.0834 ±0.01 0.1615 ±0.01 0.1912 ±0.01

0.70 0.2077 ±0.02 0.0752 ±0.01 0.0791 ±0.01 0.1615 ±0.01 0.1916 ±0.01

0.80 0.2014 ±0.01 0.0802 ±0.01 0.0770 ±0.01 0.1557 ±0.01 0.1863 ±0.01

Source: elaborated by the author.

Table 19 – UCI dataset - ARMSE for E[C3/2(·)] (Heart Disease Cleveland).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3046 ±0.04 0.1095 ±0.03 0.1219 ±0.02 0.2174 ±0.02 0.2017 ±0.02

0.20 0.3022 ±0.03 0.1123 ±0.02 0.1181 ±0.01 0.2109 ±0.01 0.1953 ±0.01

0.30 0.3028 ±0.02 0.1136 ±0.02 0.1188 ±0.01 0.2115 ±0.01 0.1957 ±0.01

0.40 0.3017 ±0.02 0.1129 ±0.02 0.1207 ±0.01 0.2138 ±0.01 0.1987 ±0.01

0.50 0.2908 ±0.02 0.1144 ±0.02 0.1144 ±0.01 0.2048 ±0.01 0.1901 ±0.01

0.60 0.2909 ±0.02 0.1071 ±0.02 0.1114 ±0.01 0.2062 ±0.01 0.1917 ±0.01

0.70 0.2840 ±0.02 0.1182 ±0.02 0.1159 ±0.01 0.2053 ±0.01 0.1919 ±0.01

0.80 0.2801 ±0.02 0.1205 ±0.02 0.1135 ±0.02 0.2019 ±0.01 0.1885 ±0.01

Source: elaborated by the author.

Table 20 – UCI dataset - ARMSE for E[C5/2(·)] (Heart Disease Cleveland).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3195 ±0.03 0.1258 ±0.02 0.1272 ±0.02 0.2180 ±0.02 0.1947 ±0.02

0.20 0.3221 ±0.03 0.1284 ±0.02 0.1303 ±0.01 0.2192 ±0.01 0.1961 ±0.01

0.30 0.3245 ±0.03 0.1225 ±0.02 0.1298 ±0.01 0.2227 ±0.02 0.1989 ±0.02

0.40 0.3220 ±0.03 0.1291 ±0.02 0.1324 ±0.01 0.2224 ±0.01 0.1996 ±0.01

0.50 0.3236 ±0.02 0.1286 ±0.02 0.1315 ±0.02 0.2208 ±0.02 0.1985 ±0.02

0.60 0.3181 ±0.02 0.1320 ±0.02 0.1319 ±0.02 0.2188 ±0.01 0.1966 ±0.01

0.70 0.3258 ±0.03 0.1251 ±0.02 0.1329 ±0.02 0.2238 ±0.02 0.2003 ±0.02

0.80 0.3082 ±0.02 0.1333 ±0.01 0.1263 ±0.01 0.2116 ±0.01 0.1901 ±0.01

Source: elaborated by the author.
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Coluna

Table 21 – UCI dataset - ARMSE for E[C1/2(·)] (Coluna).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1632 ±0.03 0.1625 ±0.02 0.1280 ±0.02 0.1292 ±0.02 0.1341 ±0.02

0.20 0.1746 ±0.03 0.1580 ±0.02 0.1287 ±0.02 0.1342 ±0.02 0.1389 ±0.02

0.30 0.1659 ±0.03 0.1800 ±0.05 0.1466 ±0.05 0.1398 ±0.03 0.1374 ±0.02

0.40 0.1708 ±0.02 0.1530 ±0.02 0.1223 ±0.02 0.1293 ±0.01 0.1352 ±0.01

0.50 0.1751 ±0.02 0.1706 ±0.03 0.1377 ±0.02 0.1380 ±0.02 0.1429 ±0.01

0.60 0.1727 ±0.02 0.1865 ±0.04 0.1529 ±0.03 0.1436 ±0.02 0.1468 ±0.02

0.70 0.1706 ±0.02 0.1839 ±0.05 0.1530 ±0.05 0.1462 ±0.03 0.1593 ±0.08

0.80 0.1658 ±0.02 0.1700 ±0.04 0.1381 ±0.04 0.1339 ±0.02 0.1364 ±0.02

Source: elaborated by the author.

Table 22 – UCI dataset - ARMSE for E[C3/2(·)] (Coluna).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1980 ±0.04 0.2195 ±0.05 0.1719 ±0.05 0.1691 ±0.03 0.1741 ±0.04

0.20 0.2088 ±0.03 0.2108 ±0.04 0.1665 ±0.03 0.1644 ±0.02 0.1669 ±0.02

0.30 0.2042 ±0.02 0.2257 ±0.06 0.1834 ±0.05 0.1768 ±0.03 0.1800 ±0.03

0.40 0.2014 ±0.03 0.2329 ±0.06 0.1850 ±0.05 0.1720 ±0.03 0.1756 ±0.03

0.50 0.2148 ±0.03 0.2155 ±0.05 0.1771 ±0.04 0.1768 ±0.03 0.1793 ±0.03

0.60 0.2154 ±0.03 0.2276 ±0.05 0.1834 ±0.03 0.1807 ±0.02 0.1829 ±0.02

0.70 0.1984 ±0.02 0.2477 ±0.06 0.1983 ±0.06 0.1768 ±0.03 0.1811 ±0.03

0.80 0.2145 ±0.03 0.2187 ±0.04 0.1766 ±0.03 0.1748 ±0.02 0.1764 ±0.02

Source: elaborated by the author.

Table 23 – UCI dataset - ARMSE for E[C5/2(·)] (Coluna).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2130 ±0.03 0.2224 ±0.05 0.1796 ±0.05 0.1798 ±0.03 0.1809 ±0.03

0.20 0.2015 ±0.03 0.2330 ±0.05 0.1806 ±0.05 0.1750 ±0.03 0.1770 ±0.02

0.30 0.2120 ±0.03 0.2631 ±0.06 0.2063 ±0.06 0.1899 ±0.04 0.1942 ±0.03

0.40 0.2124 ±0.04 0.2274 ±0.05 0.1810 ±0.04 0.1767 ±0.02 0.1802 ±0.02

0.50 0.2191 ±0.02 0.2315 ±0.04 0.1832 ±0.03 0.1806 ±0.02 0.1837 ±0.02

0.60 0.2145 ±0.03 0.2792 ±0.07 0.2257 ±0.08 0.1998 ±0.05 0.2014 ±0.04

0.70 0.2159 ±0.03 0.2448 ±0.05 0.1904 ±0.04 0.1791 ±0.02 0.1833 ±0.02

0.80 0.2152 ±0.03 0.2650 ±0.09 0.2181 ±0.08 0.1966 ±0.04 0.1980 ±0.04

Source: elaborated by the author.
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Computer Hardware

Table 24 – UCI dataset - ARMSE for E[C1/2(·)] (Computer Hardware).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2053 ±0.05 0.3034 ±0.05 0.2553 ±0.04 0.2012 ±0.03 0.1918 ±0.03

0.20 0.1986 ±0.03 0.3151 ±0.05 0.2646 ±0.04 0.2042 ±0.03 0.1927 ±0.03

0.30 0.2085 ±0.03 0.2870 ±0.05 0.2403 ±0.04 0.1962 ±0.03 0.1903 ±0.02

0.40 0.2111 ±0.03 0.2777 ±0.05 0.2314 ±0.04 0.1906 ±0.03 0.1857 ±0.02

0.50 0.2069 ±0.03 0.2793 ±0.03 0.2342 ±0.03 0.1911 ±0.02 0.1867 ±0.02

0.60 0.2039 ±0.03 0.2630 ±0.03 0.2162 ±0.03 0.1800 ±0.02 0.1778 ±0.02

0.70 0.2079 ±0.03 0.2484 ±0.03 0.2061 ±0.02 0.1778 ±0.02 0.1778 ±0.01

0.80 0.2110 ±0.03 0.2477 ±0.04 0.2073 ±0.04 0.1793 ±0.02 0.1771 ±0.02

Source: elaborated by the author.

Table 25 – UCI dataset - ARMSE for E[C3/2(·)] (Computer Hardware).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2535 ±0.07 0.3801 ±0.07 0.3127 ±0.06 0.2491 ±0.04 0.2604 ±0.04

0.20 0.2298 ±0.04 0.3795 ±0.05 0.3072 ±0.04 0.2439 ±0.03 0.2597 ±0.03

0.30 0.2413 ±0.04 0.3584 ±0.07 0.2939 ±0.06 0.2417 ±0.04 0.2557 ±0.04

0.40 0.2428 ±0.04 0.3668 ±0.06 0.3011 ±0.05 0.2443 ±0.03 0.2568 ±0.03

0.50 0.2385 ±0.04 0.3242 ±0.06 0.2652 ±0.05 0.2216 ±0.03 0.2327 ±0.03

0.60 0.2377 ±0.03 0.3270 ±0.04 0.2654 ±0.03 0.2247 ±0.02 0.2362 ±0.02

0.70 0.2469 ±0.03 0.3204 ±0.06 0.2646 ±0.05 0.2297 ±0.03 0.2397 ±0.03

0.80 0.2363 ±0.04 0.2962 ±0.03 0.2403 ±0.03 0.2149 ±0.02 0.2246 ±0.02

Source: elaborated by the author.

Table 26 – UCI dataset - ARMSE for E[C5/2(·)] (Computer Hardware).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2396 ±0.08 0.3947 ±0.07 0.3176 ±0.06 0.2584 ±0.05 0.2776 ±0.05

0.20 0.2386 ±0.05 0.3825 ±0.05 0.3079 ±0.04 0.2503 ±0.03 0.2677 ±0.03

0.30 0.2503 ±0.04 0.3916 ±0.07 0.3198 ±0.06 0.2571 ±0.03 0.2737 ±0.04

0.40 0.2413 ±0.05 0.3787 ±0.07 0.3062 ±0.06 0.2489 ±0.04 0.2658 ±0.04

0.50 0.2444 ±0.05 0.3414 ±0.06 0.2796 ±0.05 0.2393 ±0.03 0.2528 ±0.03

0.60 0.2562 ±0.04 0.3384 ±0.07 0.2816 ±0.06 0.2443 ±0.03 0.2563 ±0.04

0.70 0.2460 ±0.04 0.3098 ±0.06 0.2537 ±0.05 0.2274 ±0.03 0.2379 ±0.03

0.80 0.2300 ±0.04 0.3066 ±0.04 0.2437 ±0.04 0.2183 ±0.03 0.2313 ±0.02

Source: elaborated by the author.
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Concrete Compression

Table 27 – UCI dataset - ARMSE for E[C1/2(·)] (Concrete Compression).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2418 ±0.02 0.1833 ±0.03 0.1488 ±0.03 0.1436 ±0.02 0.1571 ±0.01

0.20 0.2397 ±0.02 0.1818 ±0.03 0.1482 ±0.03 0.1430 ±0.02 0.1583 ±0.01

0.30 0.2458 ±0.02 0.1841 ±0.03 0.1523 ±0.03 0.1465 ±0.01 0.1612 ±0.01

0.40 0.2394 ±0.02 0.1832 ±0.03 0.1530 ±0.03 0.1475 ±0.01 0.1609 ±0.01

0.50 0.2385 ±0.02 0.1784 ±0.03 0.1452 ±0.03 0.1411 ±0.02 0.1563 ±0.01

0.60 0.2401 ±0.02 0.1662 ±0.03 0.1371 ±0.02 0.1456 ±0.01 0.1637 ±0.01

0.70 0.2427 ±0.02 0.1775 ±0.03 0.1484 ±0.03 0.1510 ±0.02 0.1658 ±0.02

0.80 0.2480 ±0.02 0.1581 ±0.03 0.1304 ±0.03 0.1488 ±0.02 0.1661 ±0.02

Source: elaborated by the author.

Table 28 – UCI dataset - ARMSE for E[C3/2(·)] (Concrete Compression).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3166 ±0.02 0.2565 ±0.03 0.2087 ±0.03 0.1889 ±0.02 0.1824 ±0.02

0.20 0.3164 ±0.02 0.2659 ±0.04 0.2200 ±0.04 0.1906 ±0.02 0.1835 ±0.02

0.30 0.3194 ±0.02 0.2521 ±0.04 0.2076 ±0.04 0.1876 ±0.02 0.1795 ±0.02

0.40 0.3094 ±0.03 0.2557 ±0.04 0.2055 ±0.03 0.1785 ±0.02 0.1753 ±0.02

0.50 0.3104 ±0.02 0.2557 ±0.03 0.2078 ±0.03 0.1873 ±0.02 0.1809 ±0.02

0.60 0.3134 ±0.03 0.2614 ±0.04 0.2124 ±0.03 0.1872 ±0.01 0.1813 ±0.02

0.70 0.3159 ±0.02 0.2317 ±0.03 0.1905 ±0.03 0.1877 ±0.01 0.1787 ±0.01

0.80 0.3204 ±0.03 0.2285 ±0.04 0.1891 ±0.04 0.1908 ±0.02 0.1818 ±0.02

Source: elaborated by the author.

Table 29 – UCI dataset - ARMSE for E[C5/2(·)] (Concrete Compression).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3273 ±0.04 0.2721 ±0.05 0.2208 ±0.05 0.1948 ±0.03 0.1865 ±0.03

0.20 0.3295 ±0.02 0.2680 ±0.03 0.2156 ±0.03 0.1926 ±0.02 0.1861 ±0.02

0.30 0.3325 ±0.03 0.2819 ±0.05 0.2299 ±0.05 0.2012 ±0.02 0.1947 ±0.02

0.40 0.3302 ±0.03 0.2813 ±0.03 0.2260 ±0.03 0.1976 ±0.02 0.1924 ±0.02

0.50 0.3421 ±0.03 0.2717 ±0.04 0.2263 ±0.04 0.2000 ±0.02 0.1899 ±0.02

0.60 0.3255 ±0.02 0.2733 ±0.03 0.2209 ±0.03 0.1972 ±0.02 0.1906 ±0.02

0.70 0.3342 ±0.03 0.2698 ±0.05 0.2217 ±0.04 0.1940 ±0.02 0.1857 ±0.02

0.80 0.3370 ±0.03 0.2456 ±0.04 0.2041 ±0.03 0.2035 ±0.02 0.1940 ±0.02

Source: elaborated by the author.
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Pima Indians Diabetes

Table 30 – UCI dataset - ARMSE for E[C1/2(·)] (Pima Indians Diabetes).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2708 ±0.03 0.1327 ±0.01 0.1181 ±0.01 0.1576 ±0.01 0.1733 ±0.01

0.20 0.2737 ±0.03 0.1253 ±0.02 0.1160 ±0.02 0.1613 ±0.01 0.1782 ±0.01

0.30 0.2687 ±0.02 0.1301 ±0.01 0.1167 ±0.01 0.1587 ±0.01 0.1754 ±0.01

0.40 0.2681 ±0.02 0.1322 ±0.02 0.1178 ±0.01 0.1575 ±0.02 0.1739 ±0.02

0.50 0.2663 ±0.03 0.1324 ±0.01 0.1186 ±0.01 0.1582 ±0.02 0.1747 ±0.02

0.60 0.2662 ±0.02 0.1339 ±0.02 0.1173 ±0.01 0.1548 ±0.01 0.1708 ±0.01

0.70 0.2723 ±0.02 0.1333 ±0.01 0.1221 ±0.01 0.1631 ±0.01 0.1794 ±0.01

0.80 0.2607 ±0.02 0.1380 ±0.01 0.1210 ±0.01 0.1551 ±0.01 0.1710 ±0.01

Source: elaborated by the author.

Table 31 – UCI dataset - ARMSE for E[C3/2(·)] (Pima Indians Diabetes).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3533 ±0.03 0.1855 ±0.03 0.1705 ±0.03 0.2033 ±0.02 0.1891 ±0.02

0.20 0.3496 ±0.03 0.1827 ±0.02 0.1683 ±0.02 0.2005 ±0.02 0.1880 ±0.02

0.30 0.3382 ±0.03 0.1865 ±0.03 0.1684 ±0.02 0.2005 ±0.02 0.1917 ±0.03

0.40 0.3448 ±0.02 0.1799 ±0.02 0.1649 ±0.01 0.2002 ±0.02 0.1866 ±0.01

0.50 0.3442 ±0.02 0.1791 ±0.02 0.1620 ±0.01 0.1960 ±0.02 0.1827 ±0.01

0.60 0.3394 ±0.02 0.1838 ±0.03 0.1638 ±0.02 0.1945 ±0.02 0.1817 ±0.02

0.70 0.3316 ±0.02 0.1812 ±0.02 0.1605 ±0.02 0.1934 ±0.02 0.1808 ±0.02

0.80 0.3440 ±0.03 0.1857 ±0.02 0.1710 ±0.02 0.2036 ±0.02 0.1902 ±0.02

Source: elaborated by the author.

Table 32 – UCI dataset - ARMSE for E[C5/2(·)] (Pima Indians Diabetes).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3620 ±0.03 0.1949 ±0.02 0.1771 ±0.02 0.2073 ±0.02 0.1923 ±0.02

0.20 0.3552 ±0.03 0.2006 ±0.03 0.1818 ±0.03 0.2074 ±0.02 0.1921 ±0.02

0.30 0.3696 ±0.03 0.1925 ±0.02 0.1821 ±0.02 0.2135 ±0.02 0.1970 ±0.02

0.40 0.3579 ±0.03 0.1980 ±0.03 0.1777 ±0.02 0.2032 ±0.02 0.1870 ±0.02

0.50 0.3603 ±0.03 0.1911 ±0.02 0.1803 ±0.02 0.2128 ±0.02 0.1968 ±0.02

0.60 0.3655 ±0.02 0.1951 ±0.02 0.1797 ±0.02 0.2090 ±0.02 0.1934 ±0.02

0.70 0.3492 ±0.03 0.1995 ±0.02 0.1774 ±0.02 0.2023 ±0.02 0.1888 ±0.02

0.80 0.3540 ±0.04 0.2007 ±0.03 0.1831 ±0.02 0.2049 ±0.02 0.1905 ±0.01

Source: elaborated by the author.
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Table 33 – UCI dataset - ARMSE for E[C1/2(·)] (Ecoli).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2484 ±0.04 0.1925 ±0.03 0.1601 ±0.02 0.1607 ±0.02 0.1675 ±0.02

0.20 0.2565 ±0.03 0.2138 ±0.04 0.1820 ±0.04 0.1717 ±0.02 0.1731 ±0.02

0.30 0.2611 ±0.03 0.2057 ±0.04 0.1729 ±0.03 0.1634 ±0.02 0.1663 ±0.02

0.40 0.2502 ±0.03 0.2120 ±0.04 0.1790 ±0.04 0.1659 ±0.02 0.1668 ±0.02

0.50 0.2452 ±0.03 0.2154 ±0.04 0.1817 ±0.04 0.1646 ±0.02 0.1637 ±0.01

0.60 0.2467 ±0.03 0.2243 ±0.05 0.1929 ±0.05 0.1731 ±0.02 0.1700 ±0.02

0.70 0.2410 ±0.03 0.2370 ±0.05 0.2024 ±0.05 0.1726 ±0.02 0.1656 ±0.01

0.80 0.2419 ±0.03 0.2293 ±0.05 0.1937 ±0.05 0.1693 ±0.02 0.1669 ±0.02

Source: elaborated by the author.

Table 34 – UCI dataset - ARMSE for E[C3/2(·)] (Ecoli).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3072 ±0.04 0.2736 ±0.05 0.2272 ±0.04 0.2093 ±0.03 0.2092 ±0.03

0.20 0.3084 ±0.05 0.2589 ±0.05 0.2152 ±0.04 0.2059 ±0.03 0.2048 ±0.03

0.30 0.2991 ±0.04 0.2759 ±0.05 0.2315 ±0.05 0.2106 ±0.02 0.2095 ±0.02

0.40 0.3023 ±0.03 0.2859 ±0.05 0.2358 ±0.05 0.2106 ±0.03 0.2114 ±0.03

0.50 0.2924 ±0.03 0.2928 ±0.06 0.2462 ±0.06 0.2146 ±0.03 0.2150 ±0.03

0.60 0.2985 ±0.03 0.2567 ±0.04 0.2145 ±0.04 0.2043 ±0.02 0.2025 ±0.02

0.70 0.2954 ±0.04 0.2998 ±0.07 0.2578 ±0.06 0.2233 ±0.03 0.2234 ±0.03

0.80 0.2922 ±0.03 0.3313 ±0.08 0.2832 ±0.08 0.2331 ±0.05 0.2342 ±0.05

Source: elaborated by the author.

Table 35 – UCI dataset - ARMSE for E[C5/2(·)] (Ecoli).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3056 ±0.05 0.2692 ±0.04 0.2171 ±0.03 0.2084 ±0.03 0.2092 ±0.03

0.20 0.3060 ±0.04 0.2706 ±0.04 0.2203 ±0.03 0.2096 ±0.02 0.2107 ±0.02

0.30 0.3029 ±0.04 0.3047 ±0.06 0.2463 ±0.05 0.2201 ±0.03 0.2244 ±0.03

0.40 0.3058 ±0.04 0.2935 ±0.05 0.2426 ±0.05 0.2182 ±0.03 0.2195 ±0.02

0.50 0.3093 ±0.03 0.3272 ±0.07 0.2781 ±0.07 0.2324 ±0.03 0.2324 ±0.03

0.60 0.2920 ±0.02 0.3147 ±0.08 0.2636 ±0.07 0.2258 ±0.04 0.2276 ±0.04

0.70 0.3019 ±0.04 0.3400 ±0.07 0.2865 ±0.06 0.2348 ±0.03 0.2376 ±0.03

0.80 0.3004 ±0.04 0.3281 ±0.08 0.2810 ±0.08 0.2394 ±0.04 0.2395 ±0.04

Source: elaborated by the author.
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Table 36 – UCI dataset - ARMSE for E[C1/2(·)] (Energy).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2075 ±0.02 0.1280 ±0.02 0.1091 ±0.01 0.1428 ±0.01 0.1569 ±0.01

0.20 0.1995 ±0.02 0.1312 ±0.02 0.1115 ±0.02 0.1431 ±0.01 0.1568 ±0.01

0.30 0.2037 ±0.01 0.1320 ±0.02 0.1121 ±0.01 0.1439 ±0.01 0.1576 ±0.01

0.40 0.2057 ±0.02 0.1305 ±0.02 0.1116 ±0.02 0.1443 ±0.01 0.1581 ±0.01

0.50 0.2107 ±0.01 0.1312 ±0.02 0.1127 ±0.01 0.1458 ±0.01 0.1596 ±0.01

0.60 0.2097 ±0.02 0.1388 ±0.02 0.1156 ±0.02 0.1420 ±0.01 0.1549 ±0.01

0.70 0.2014 ±0.02 0.1338 ±0.02 0.1134 ±0.02 0.1439 ±0.01 0.1572 ±0.01

0.80 0.2013 ±0.03 0.1298 ±0.02 0.1108 ±0.01 0.1434 ±0.01 0.1573 ±0.01

Source: elaborated by the author.

Table 37 – UCI dataset - ARMSE for E[C3/2(·)] (Energy).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2619 ±0.02 0.1865 ±0.03 0.1598 ±0.02 0.1883 ±0.01 0.1827 ±0.01

0.20 0.2627 ±0.02 0.1850 ±0.02 0.1561 ±0.02 0.1834 ±0.01 0.1768 ±0.01

0.30 0.2538 ±0.02 0.1822 ±0.02 0.1511 ±0.02 0.1783 ±0.02 0.1724 ±0.02

0.40 0.2548 ±0.02 0.1822 ±0.02 0.1521 ±0.02 0.1798 ±0.02 0.1735 ±0.02

0.50 0.2606 ±0.02 0.1889 ±0.02 0.1599 ±0.02 0.1850 ±0.02 0.1793 ±0.02

0.60 0.2552 ±0.03 0.1879 ±0.02 0.1566 ±0.02 0.1823 ±0.01 0.1765 ±0.01

0.70 0.2644 ±0.02 0.1792 ±0.02 0.1522 ±0.02 0.1812 ±0.01 0.1743 ±0.01

0.80 0.2591 ±0.02 0.1907 ±0.02 0.1591 ±0.02 0.1851 ±0.02 0.1798 ±0.02

Source: elaborated by the author.

Table 38 – UCI dataset - ARMSE for E[C5/2(·)] (Energy).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2659 ±0.03 0.1849 ±0.02 0.1562 ±0.02 0.1866 ±0.02 0.1779 ±0.02

0.20 0.2726 ±0.03 0.1999 ±0.02 0.1667 ±0.02 0.1885 ±0.02 0.1811 ±0.01

0.30 0.2792 ±0.02 0.1933 ±0.03 0.1670 ±0.02 0.1935 ±0.01 0.1838 ±0.01

0.40 0.2629 ±0.02 0.1996 ±0.03 0.1650 ±0.02 0.1889 ±0.02 0.1819 ±0.02

0.50 0.2777 ±0.03 0.1935 ±0.02 0.1667 ±0.02 0.1917 ±0.01 0.1826 ±0.01

0.60 0.2708 ±0.03 0.1902 ±0.02 0.1618 ±0.02 0.1895 ±0.02 0.1806 ±0.01

0.70 0.2767 ±0.02 0.1950 ±0.03 0.1663 ±0.02 0.1917 ±0.01 0.1833 ±0.01

0.80 0.2765 ±0.03 0.1913 ±0.02 0.1645 ±0.02 0.1925 ±0.01 0.1831 ±0.01

Source: elaborated by the author.
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Forest Fires

Table 39 – UCI dataset - ARMSE for E[C1/2(·)] (Forest Fires).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1869 ±0.03 0.1159 ±0.02 0.0932 ±0.02 0.1373 ±0.02 0.1601 ±0.02

0.20 0.1917 ±0.02 0.1198 ±0.02 0.0999 ±0.01 0.1418 ±0.02 0.1646 ±0.02

0.30 0.1860 ±0.02 0.1198 ±0.02 0.0964 ±0.02 0.1362 ±0.01 0.1588 ±0.01

0.40 0.1828 ±0.02 0.1208 ±0.02 0.0961 ±0.02 0.1339 ±0.01 0.1577 ±0.01

0.50 0.1904 ±0.02 0.1134 ±0.02 0.0924 ±0.01 0.1382 ±0.01 0.1613 ±0.01

0.60 0.1845 ±0.02 0.1273 ±0.02 0.1023 ±0.02 0.1357 ±0.01 0.1590 ±0.01

0.70 0.1854 ±0.02 0.1255 ±0.04 0.1024 ±0.03 0.1348 ±0.02 0.1570 ±0.01

0.80 0.1799 ±0.02 0.1181 ±0.03 0.0960 ±0.02 0.1351 ±0.01 0.1571 ±0.01

Source: elaborated by the author.

Table 40 – UCI dataset - ARMSE for E[C3/2(·)] (Forest Fires).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2547 ±0.03 0.1672 ±0.02 0.1344 ±0.02 0.1762 ±0.02 0.1684 ±0.02

0.20 0.2652 ±0.03 0.1585 ±0.02 0.1304 ±0.02 0.1799 ±0.02 0.1708 ±0.01

0.30 0.2572 ±0.02 0.1687 ±0.02 0.1320 ±0.02 0.1721 ±0.02 0.1645 ±0.02

0.40 0.2573 ±0.02 0.1676 ±0.02 0.1389 ±0.01 0.1792 ±0.02 0.1720 ±0.02

0.50 0.2557 ±0.03 0.1638 ±0.03 0.1333 ±0.02 0.1765 ±0.02 0.1691 ±0.02

0.60 0.2429 ±0.03 0.1633 ±0.03 0.1328 ±0.03 0.1735 ±0.02 0.1670 ±0.02

0.70 0.2460 ±0.03 0.1810 ±0.05 0.1471 ±0.04 0.1735 ±0.02 0.1668 ±0.01

0.80 0.2400 ±0.03 0.1691 ±0.03 0.1363 ±0.02 0.1728 ±0.02 0.1667 ±0.01

Source: elaborated by the author.

Table 41 – UCI dataset - ARMSE for E[C5/2(·)] (Forest Fires).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2654 ±0.03 0.1796 ±0.03 0.1427 ±0.02 0.1848 ±0.02 0.1737 ±0.02

0.20 0.2758 ±0.03 0.1850 ±0.02 0.1491 ±0.02 0.1858 ±0.02 0.1750 ±0.02

0.30 0.2700 ±0.03 0.1837 ±0.03 0.1440 ±0.02 0.1828 ±0.02 0.1724 ±0.02

0.40 0.2731 ±0.02 0.1789 ±0.02 0.1477 ±0.02 0.1921 ±0.02 0.1808 ±0.02

0.50 0.2664 ±0.02 0.1879 ±0.02 0.1469 ±0.02 0.1810 ±0.01 0.1712 ±0.01

0.60 0.2719 ±0.03 0.1895 ±0.03 0.1495 ±0.02 0.1794 ±0.02 0.1686 ±0.02

0.70 0.2601 ±0.03 0.1921 ±0.05 0.1586 ±0.05 0.1853 ±0.02 0.1760 ±0.02

0.80 0.2624 ±0.03 0.1790 ±0.03 0.1481 ±0.02 0.1876 ±0.02 0.1773 ±0.01

Source: elaborated by the author.
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Table 42 – UCI dataset - ARMSE for E[C1/2(·)] (Glass).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1807 ±0.04 0.2167 ±0.04 0.1777 ±0.04 0.1570 ±0.03 0.1632 ±0.02

0.20 0.1745 ±0.03 0.2089 ±0.04 0.1699 ±0.03 0.1537 ±0.02 0.1607 ±0.02

0.30 0.1676 ±0.02 0.2228 ±0.03 0.1808 ±0.02 0.1544 ±0.01 0.1557 ±0.02

0.40 0.1813 ±0.03 0.2255 ±0.04 0.1872 ±0.04 0.1646 ±0.03 0.1661 ±0.02

0.50 0.1839 ±0.03 0.2239 ±0.03 0.1868 ±0.04 0.1647 ±0.02 0.1630 ±0.01

0.60 0.1786 ±0.03 0.2307 ±0.03 0.1896 ±0.03 0.1623 ±0.02 0.1633 ±0.02

0.70 0.1750 ±0.03 0.2233 ±0.04 0.1839 ±0.04 0.1597 ±0.02 0.1608 ±0.02

0.80 0.1719 ±0.03 0.2253 ±0.04 0.1870 ±0.03 0.1615 ±0.02 0.1606 ±0.02

Source: elaborated by the author.

Table 43 – UCI dataset - ARMSE for E[C3/2(·)] (Glass).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2192 ±0.05 0.2901 ±0.05 0.2295 ±0.05 0.2000 ±0.03 0.2061 ±0.03

0.20 0.2249 ±0.04 0.2897 ±0.06 0.2342 ±0.05 0.2074 ±0.03 0.2111 ±0.03

0.30 0.2208 ±0.03 0.2917 ±0.05 0.2341 ±0.04 0.2073 ±0.02 0.2147 ±0.03

0.40 0.2204 ±0.03 0.2857 ±0.06 0.2274 ±0.06 0.2042 ±0.03 0.2107 ±0.03

0.50 0.2321 ±0.03 0.3023 ±0.05 0.2471 ±0.05 0.2146 ±0.03 0.2189 ±0.03

0.60 0.2159 ±0.04 0.2771 ±0.04 0.2211 ±0.03 0.1977 ±0.02 0.2034 ±0.02

0.70 0.2220 ±0.03 0.3352 ±0.08 0.2792 ±0.08 0.2296 ±0.04 0.2383 ±0.04

0.80 0.2185 ±0.03 0.2720 ±0.04 0.2159 ±0.04 0.1981 ±0.02 0.2044 ±0.02

Source: elaborated by the author.

Table 44 – UCI dataset - ARMSE for E[C5/2(·)] (Glass).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2335 ±0.06 0.2787 ±0.05 0.2184 ±0.05 0.1994 ±0.04 0.2043 ±0.03

0.20 0.2407 ±0.04 0.2908 ±0.05 0.2323 ±0.06 0.2131 ±0.04 0.2146 ±0.03

0.30 0.2360 ±0.04 0.2801 ±0.04 0.2195 ±0.03 0.2080 ±0.02 0.2131 ±0.02

0.40 0.2404 ±0.04 0.2993 ±0.07 0.2420 ±0.06 0.2198 ±0.04 0.2237 ±0.03

0.50 0.2366 ±0.04 0.3099 ±0.06 0.2443 ±0.05 0.2175 ±0.03 0.2364 ±0.08

0.60 0.2261 ±0.04 0.3007 ±0.06 0.2379 ±0.06 0.2114 ±0.03 0.2180 ±0.03

0.70 0.2312 ±0.03 0.3311 ±0.08 0.2664 ±0.08 0.2244 ±0.04 0.2343 ±0.04

0.80 0.2323 ±0.03 0.2885 ±0.05 0.2312 ±0.05 0.2103 ±0.03 0.2157 ±0.03

Source: elaborated by the author.
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Table 45 – UCI dataset - ARMSE for E[C1/2(·)] (Haberman).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2422 ±0.04 0.1713 ±0.02 0.1524 ±0.02 0.1546 ±0.02 0.1566 ±0.02

0.20 0.2446 ±0.03 0.1699 ±0.02 0.1501 ±0.01 0.1520 ±0.02 0.1538 ±0.02

0.30 0.2444 ±0.03 0.1849 ±0.02 0.1616 ±0.02 0.1588 ±0.02 0.1596 ±0.02

0.40 0.2463 ±0.03 0.1761 ±0.03 0.1574 ±0.02 0.1575 ±0.01 0.1581 ±0.01

0.50 0.2470 ±0.03 0.1871 ±0.03 0.1662 ±0.02 0.1617 ±0.02 0.1614 ±0.02

0.60 0.2482 ±0.03 0.1909 ±0.03 0.1687 ±0.03 0.1626 ±0.02 0.1621 ±0.02

0.70 0.2531 ±0.03 0.1962 ±0.03 0.1756 ±0.02 0.1680 ±0.02 0.1662 ±0.01

0.80 0.2531 ±0.03 0.2088 ±0.04 0.1878 ±0.04 0.1749 ±0.02 0.1694 ±0.02

Source: elaborated by the author.

Table 46 – UCI dataset - ARMSE for E[C3/2(·)] (Haberman).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2456 ±0.04 0.2037 ±0.03 0.1795 ±0.03 0.1714 ±0.02 0.1711 ±0.02

0.20 0.2573 ±0.03 0.1982 ±0.03 0.1801 ±0.02 0.1730 ±0.02 0.1709 ±0.02

0.30 0.2565 ±0.04 0.2123 ±0.03 0.1901 ±0.03 0.1793 ±0.03 0.1788 ±0.02

0.40 0.2534 ±0.03 0.2097 ±0.04 0.1914 ±0.04 0.1794 ±0.02 0.1776 ±0.02

0.50 0.2608 ±0.03 0.2143 ±0.04 0.1963 ±0.03 0.1849 ±0.03 0.1836 ±0.03

0.60 0.2564 ±0.03 0.2332 ±0.03 0.2087 ±0.03 0.1878 ±0.02 0.1866 ±0.02

0.70 0.2684 ±0.03 0.2306 ±0.04 0.2108 ±0.04 0.1941 ±0.03 0.1914 ±0.02

0.80 0.2643 ±0.03 0.2430 ±0.04 0.2201 ±0.04 0.1968 ±0.03 0.1945 ±0.03

Source: elaborated by the author.

Table 47 – UCI dataset - ARMSE for E[C5/2(·)] (Haberman).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2532 ±0.06 0.2036 ±0.03 0.1893 ±0.05 0.1806 ±0.05 0.1799 ±0.04

0.20 0.2453 ±0.03 0.2143 ±0.04 0.1930 ±0.03 0.1785 ±0.02 0.1793 ±0.02

0.30 0.2418 ±0.03 0.2072 ±0.03 0.1854 ±0.03 0.1740 ±0.02 0.1751 ±0.02

0.40 0.2557 ±0.03 0.2192 ±0.04 0.2027 ±0.03 0.1866 ±0.02 0.1861 ±0.02

0.50 0.2519 ±0.04 0.2406 ±0.07 0.2168 ±0.06 0.1927 ±0.04 0.1941 ±0.04

0.60 0.2538 ±0.03 0.2291 ±0.04 0.2092 ±0.03 0.1886 ±0.03 0.1889 ±0.03

0.70 0.2425 ±0.03 0.2311 ±0.05 0.2024 ±0.04 0.1814 ±0.03 0.1829 ±0.03

0.80 0.2564 ±0.04 0.2579 ±0.06 0.2285 ±0.05 0.1965 ±0.03 0.1962 ±0.03

Source: elaborated by the author.
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Table 48 – UCI dataset - ARMSE for E[C1/2(·)] (Housing).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1740 ±0.02 0.1919 ±0.03 0.1619 ±0.03 0.1330 ±0.02 0.1802 ±0.08

0.20 0.1778 ±0.02 0.1984 ±0.03 0.1692 ±0.03 0.1432 ±0.02 0.1954 ±0.07

0.30 0.1749 ±0.02 0.1924 ±0.03 0.1654 ±0.03 0.1423 ±0.02 0.1775 ±0.04

0.40 0.1776 ±0.02 0.1993 ±0.03 0.1709 ±0.03 0.1451 ±0.01 0.1817 ±0.03

0.50 0.1755 ±0.02 0.1845 ±0.03 0.1551 ±0.03 0.1346 ±0.01 0.1729 ±0.03

0.60 0.1843 ±0.02 0.1829 ±0.02 0.1549 ±0.02 0.1422 ±0.02 0.1802 ±0.03

0.70 0.1820 ±0.02 0.1931 ±0.03 0.1658 ±0.03 0.1433 ±0.01 0.1736 ±0.03

0.80 0.1788 ±0.02 0.1978 ±0.03 0.1701 ±0.03 0.1428 ±0.01 0.1660 ±0.01

Source: elaborated by the author.

Table 49 – UCI dataset - ARMSE for E[C3/2(·)] (Housing).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2564 ±0.04 0.2383 ±0.03 0.1950 ±0.03 0.1906 ±0.02 0.1926 ±0.02

0.20 0.2430 ±0.03 0.2615 ±0.04 0.2213 ±0.04 0.1877 ±0.02 0.2079 ±0.07

0.30 0.2465 ±0.03 0.2628 ±0.03 0.2244 ±0.03 0.1954 ±0.02 0.2141 ±0.05

0.40 0.2661 ±0.03 0.2196 ±0.02 0.1801 ±0.02 0.1950 ±0.02 0.1940 ±0.02

0.50 0.2601 ±0.03 0.2262 ±0.04 0.1840 ±0.03 0.1944 ±0.01 0.1943 ±0.01

0.60 0.2463 ±0.03 0.2683 ±0.04 0.2306 ±0.04 0.1958 ±0.02 0.2031 ±0.03

0.70 0.2554 ±0.02 0.2233 ±0.03 0.1828 ±0.03 0.1972 ±0.01 0.1978 ±0.01

0.80 0.2587 ±0.03 0.2161 ±0.03 0.1754 ±0.03 0.1955 ±0.02 0.1958 ±0.02

Source: elaborated by the author.

Table 50 – UCI dataset - ARMSE for E[C5/2(·)] (Housing).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2754 ±0.04 0.2746 ±0.04 0.2257 ±0.03 0.2153 ±0.02 0.2154 ±0.02

0.20 0.2773 ±0.04 0.2473 ±0.03 0.1982 ±0.03 0.2035 ±0.02 0.2013 ±0.02

0.30 0.2818 ±0.03 0.2372 ±0.04 0.1975 ±0.03 0.2133 ±0.02 0.2087 ±0.02

0.40 0.2732 ±0.03 0.2520 ±0.03 0.2051 ±0.02 0.2126 ±0.01 0.2113 ±0.01

0.50 0.2771 ±0.03 0.2471 ±0.03 0.1992 ±0.03 0.2122 ±0.02 0.2102 ±0.02

0.60 0.2681 ±0.03 0.2536 ±0.03 0.2018 ±0.03 0.2057 ±0.02 0.2056 ±0.02

0.70 0.2794 ±0.02 0.2372 ±0.03 0.1909 ±0.02 0.2066 ±0.02 0.2027 ±0.02

0.80 0.2781 ±0.03 0.2653 ±0.03 0.2155 ±0.03 0.2174 ±0.02 0.2170 ±0.02

Source: elaborated by the author.
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Table 51 – UCI dataset - ARMSE for E[C1/2(·)] (Iris).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2044 ±0.04 0.2736 ±0.04 0.2239 ±0.03 0.1808 ±0.03 0.1755 ±0.03

0.20 0.2288 ±0.03 0.2763 ±0.03 0.2292 ±0.03 0.1921 ±0.02 0.1876 ±0.02

0.30 0.2300 ±0.03 0.2914 ±0.05 0.2434 ±0.04 0.1990 ±0.03 0.1916 ±0.02

0.40 0.2308 ±0.03 0.2924 ±0.04 0.2455 ±0.04 0.2001 ±0.02 0.1922 ±0.02

0.50 0.2355 ±0.03 0.2949 ±0.04 0.2482 ±0.04 0.2020 ±0.03 0.1929 ±0.02

0.60 0.2301 ±0.03 0.3029 ±0.05 0.2585 ±0.04 0.2065 ±0.03 0.1934 ±0.02

0.70 0.2391 ±0.04 0.2924 ±0.06 0.2490 ±0.06 0.2029 ±0.04 0.1909 ±0.03

0.80 0.2435 ±0.04 0.3212 ±0.05 0.2783 ±0.05 0.2215 ±0.03 0.2032 ±0.02

Source: elaborated by the author.

Table 52 – UCI dataset - ARMSE for E[C3/2(·)] (Iris).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2526 ±0.04 0.3329 ±0.05 0.2636 ±0.04 0.2239 ±0.03 0.2338 ±0.03

0.20 0.2655 ±0.04 0.3471 ±0.04 0.2797 ±0.03 0.2354 ±0.02 0.2449 ±0.02

0.30 0.2626 ±0.04 0.3418 ±0.03 0.2765 ±0.03 0.2342 ±0.02 0.2433 ±0.02

0.40 0.2495 ±0.04 0.3512 ±0.04 0.2810 ±0.04 0.2322 ±0.02 0.2430 ±0.03

0.50 0.2520 ±0.03 0.3502 ±0.05 0.2840 ±0.05 0.2327 ±0.03 0.2419 ±0.03

0.60 0.2603 ±0.03 0.3651 ±0.06 0.2978 ±0.05 0.2424 ±0.03 0.2523 ±0.03

0.70 0.2626 ±0.04 0.3924 ±0.06 0.3268 ±0.06 0.2579 ±0.04 0.2666 ±0.03

0.80 0.2814 ±0.03 0.3999 ±0.07 0.3410 ±0.07 0.2701 ±0.05 0.2758 ±0.04

Source: elaborated by the author.

Table 53 – UCI dataset - ARMSE for E[C5/2(·)] (Iris).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2672 ±0.05 0.3626 ±0.04 0.2888 ±0.03 0.2433 ±0.02 0.2560 ±0.02

0.20 0.2404 ±0.05 0.3606 ±0.04 0.2775 ±0.03 0.2308 ±0.02 0.2467 ±0.02

0.30 0.2501 ±0.04 0.3507 ±0.03 0.2743 ±0.03 0.2313 ±0.02 0.2452 ±0.02

0.40 0.2655 ±0.03 0.3619 ±0.06 0.2886 ±0.05 0.2440 ±0.03 0.2571 ±0.03

0.50 0.2555 ±0.04 0.3552 ±0.06 0.2830 ±0.05 0.2370 ±0.03 0.2495 ±0.03

0.60 0.2606 ±0.04 0.3861 ±0.05 0.3124 ±0.05 0.2526 ±0.03 0.2666 ±0.03

0.70 0.2690 ±0.04 0.3880 ±0.07 0.3204 ±0.07 0.2581 ±0.04 0.2690 ±0.04

0.80 0.2743 ±0.05 0.4205 ±0.07 0.3544 ±0.08 0.2773 ±0.05 0.2865 ±0.04

Source: elaborated by the author.
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Table 54 – UCI dataset - ARMSE for E[C1/2(·)] (Monk 1).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2242 ±0.02 0.0905 ±0.01 0.1060 ±0.01 0.1614 ±0.01 0.1741 ±0.01

0.20 0.2310 ±0.02 0.0935 ±0.02 0.1065 ±0.01 0.1601 ±0.01 0.1724 ±0.01

0.30 0.2281 ±0.02 0.0894 ±0.02 0.1043 ±0.01 0.1595 ±0.01 0.1722 ±0.01

0.40 0.2325 ±0.02 0.0937 ±0.02 0.1069 ±0.01 0.1607 ±0.01 0.1730 ±0.01

0.50 0.2253 ±0.02 0.0921 ±0.02 0.1044 ±0.01 0.1578 ±0.01 0.1702 ±0.01

0.60 0.2278 ±0.01 0.0973 ±0.01 0.1087 ±0.01 0.1611 ±0.01 0.1734 ±0.01

0.70 0.2259 ±0.02 0.0878 ±0.01 0.1026 ±0.01 0.1581 ±0.01 0.1707 ±0.01

0.80 0.2266 ±0.02 0.0889 ±0.02 0.1039 ±0.01 0.1590 ±0.01 0.1715 ±0.01

Source: elaborated by the author.

Table 55 – UCI dataset - ARMSE for E[C3/2(·)] (Monk 1).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2972 ±0.02 0.1254 ±0.02 0.1497 ±0.01 0.1873 ±0.01 0.1698 ±0.01

0.20 0.2946 ±0.02 0.1241 ±0.01 0.1471 ±0.01 0.1848 ±0.02 0.1671 ±0.01

0.30 0.3000 ±0.02 0.1218 ±0.02 0.1518 ±0.01 0.1922 ±0.01 0.1740 ±0.01

0.40 0.2905 ±0.02 0.1288 ±0.02 0.1479 ±0.01 0.1847 ±0.01 0.1676 ±0.01

0.50 0.2880 ±0.01 0.1256 ±0.02 0.1476 ±0.01 0.1860 ±0.01 0.1690 ±0.01

0.60 0.2993 ±0.01 0.1224 ±0.01 0.1509 ±0.01 0.1902 ±0.01 0.1721 ±0.01

0.70 0.2959 ±0.02 0.1263 ±0.01 0.1511 ±0.01 0.1893 ±0.01 0.1716 ±0.01

0.80 0.2961 ±0.01 0.1267 ±0.02 0.1499 ±0.01 0.1873 ±0.01 0.1697 ±0.01

Source: elaborated by the author.

Table 56 – UCI dataset - ARMSE for E[C5/2(·)] (Monk 1).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3090 ±0.02 0.1331 ±0.02 0.1623 ±0.01 0.1894 ±0.01 0.1699 ±0.01

0.20 0.3154 ±0.02 0.1325 ±0.02 0.1665 ±0.01 0.1936 ±0.01 0.1733 ±0.01

0.30 0.3073 ±0.02 0.1350 ±0.02 0.1632 ±0.02 0.1902 ±0.02 0.1709 ±0.02

0.40 0.3067 ±0.01 0.1318 ±0.02 0.1599 ±0.01 0.1869 ±0.01 0.1674 ±0.01

0.50 0.3084 ±0.02 0.1373 ±0.01 0.1633 ±0.01 0.1891 ±0.01 0.1702 ±0.01

0.60 0.3007 ±0.02 0.1427 ±0.02 0.1628 ±0.01 0.1880 ±0.01 0.1700 ±0.01

0.70 0.3038 ±0.02 0.1324 ±0.02 0.1597 ±0.01 0.1867 ±0.01 0.1676 ±0.01

0.80 0.3030 ±0.01 0.1412 ±0.01 0.1629 ±0.01 0.1881 ±0.01 0.1700 ±0.01

Source: elaborated by the author.



92

Monk 2

Table 57 – UCI dataset - ARMSE for E[C1/2(·)] (Monk 2).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2266 ±0.02 0.0968 ±0.02 0.1074 ±0.01 0.1593 ±0.01 0.1716 ±0.01

0.20 0.2247 ±0.02 0.0930 ±0.01 0.1047 ±0.01 0.1585 ±0.01 0.1710 ±0.01

0.30 0.2284 ±0.01 0.0940 ±0.02 0.1057 ±0.01 0.1587 ±0.01 0.1709 ±0.01

0.40 0.2326 ±0.02 0.0953 ±0.02 0.1090 ±0.01 0.1624 ±0.01 0.1745 ±0.01

0.50 0.2286 ±0.02 0.0932 ±0.02 0.1054 ±0.01 0.1587 ±0.01 0.1709 ±0.01

0.60 0.2316 ±0.02 0.0923 ±0.02 0.1056 ±0.01 0.1594 ±0.01 0.1716 ±0.01

0.70 0.2302 ±0.02 0.0906 ±0.02 0.1058 ±0.01 0.1609 ±0.01 0.1733 ±0.01

0.80 0.2265 ±0.02 0.0945 ±0.02 0.1074 ±0.01 0.1613 ±0.01 0.1736 ±0.01

Source: elaborated by the author.

Table 58 – UCI dataset - ARMSE for E[C3/2(·)] (Monk 2).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2871 ±0.02 0.1283 ±0.01 0.1474 ±0.01 0.1849 ±0.02 0.1679 ±0.01

0.20 0.2975 ±0.02 0.1256 ±0.01 0.1501 ±0.01 0.1881 ±0.01 0.1705 ±0.01

0.30 0.2909 ±0.02 0.1243 ±0.02 0.1452 ±0.01 0.1825 ±0.01 0.1652 ±0.01

0.40 0.2938 ±0.02 0.1281 ±0.02 0.1498 ±0.01 0.1872 ±0.01 0.1703 ±0.01

0.50 0.2947 ±0.02 0.1196 ±0.02 0.1468 ±0.01 0.1863 ±0.01 0.1685 ±0.01

0.60 0.2984 ±0.02 0.1272 ±0.02 0.1529 ±0.01 0.1910 ±0.01 0.1734 ±0.01

0.70 0.2886 ±0.02 0.1337 ±0.01 0.1523 ±0.01 0.1885 ±0.01 0.1720 ±0.01

0.80 0.2962 ±0.02 0.1311 ±0.02 0.1542 ±0.01 0.1910 ±0.01 0.1739 ±0.01

Source: elaborated by the author.

Table 59 – UCI dataset - ARMSE for E[C5/2(·)] (Monk 2).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3139 ±0.02 0.1352 ±0.02 0.1669 ±0.01 0.1944 ±0.01 0.1747 ±0.01

0.20 0.3047 ±0.02 0.1371 ±0.02 0.1642 ±0.01 0.1913 ±0.01 0.1723 ±0.01

0.30 0.3051 ±0.02 0.1336 ±0.02 0.1604 ±0.01 0.1868 ±0.02 0.1674 ±0.01

0.40 0.3067 ±0.02 0.1339 ±0.02 0.1623 ±0.01 0.1896 ±0.01 0.1702 ±0.01

0.50 0.3117 ±0.01 0.1349 ±0.02 0.1629 ±0.01 0.1887 ±0.01 0.1692 ±0.01

0.60 0.3026 ±0.02 0.1403 ±0.02 0.1640 ±0.01 0.1901 ±0.01 0.1718 ±0.01

0.70 0.3074 ±0.02 0.1343 ±0.02 0.1629 ±0.01 0.1894 ±0.01 0.1701 ±0.01

0.80 0.3058 ±0.02 0.1347 ±0.01 0.1613 ±0.01 0.1881 ±0.01 0.1687 ±0.01

Source: elaborated by the author.
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Monk 3

Table 60 – UCI dataset - ARMSE for E[C1/2(·)] (Monk 3).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2260 ±0.03 0.0899 ±0.02 0.1027 ±0.01 0.1570 ±0.01 0.1696 ±0.01

0.20 0.2307 ±0.01 0.0959 ±0.02 0.1090 ±0.01 0.1621 ±0.01 0.1744 ±0.01

0.30 0.2257 ±0.02 0.0956 ±0.02 0.1074 ±0.01 0.1601 ±0.01 0.1723 ±0.01

0.40 0.2319 ±0.02 0.0937 ±0.02 0.1091 ±0.01 0.1631 ±0.01 0.1754 ±0.01

0.50 0.2288 ±0.02 0.0883 ±0.02 0.1014 ±0.01 0.1564 ±0.01 0.1690 ±0.01

0.60 0.2329 ±0.02 0.0908 ±0.01 0.1073 ±0.01 0.1626 ±0.01 0.1751 ±0.01

0.70 0.2352 ±0.02 0.0912 ±0.01 0.1082 ±0.01 0.1637 ±0.01 0.1762 ±0.01

0.80 0.2300 ±0.02 0.0962 ±0.01 0.1084 ±0.01 0.1611 ±0.01 0.1733 ±0.01

Source: elaborated by the author.

Table 61 – UCI dataset - ARMSE for E[C3/2(·)] (Monk 3).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2885 ±0.02 0.1276 ±0.02 0.1501 ±0.01 0.1883 ±0.01 0.1712 ±0.01

0.20 0.2917 ±0.01 0.1241 ±0.02 0.1479 ±0.01 0.1867 ±0.01 0.1693 ±0.01

0.30 0.2972 ±0.02 0.1253 ±0.01 0.1494 ±0.01 0.1874 ±0.01 0.1698 ±0.01

0.40 0.2912 ±0.02 0.1323 ±0.02 0.1517 ±0.01 0.1883 ±0.01 0.1716 ±0.01

0.50 0.2945 ±0.02 0.1201 ±0.01 0.1478 ±0.01 0.1881 ±0.01 0.1701 ±0.01

0.60 0.2969 ±0.02 0.1240 ±0.01 0.1509 ±0.01 0.1898 ±0.01 0.1720 ±0.01

0.70 0.2974 ±0.02 0.1247 ±0.02 0.1498 ±0.01 0.1879 ±0.01 0.1704 ±0.01

0.80 0.2939 ±0.02 0.1260 ±0.02 0.1492 ±0.01 0.1874 ±0.01 0.1700 ±0.01

Source: elaborated by the author.

Table 62 – UCI dataset - ARMSE for E[C5/2(·)] (Monk 3).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.3072 ±0.02 0.1394 ±0.02 0.1644 ±0.01 0.1902 ±0.02 0.1716 ±0.01

0.20 0.3088 ±0.02 0.1396 ±0.02 0.1661 ±0.02 0.1923 ±0.02 0.1734 ±0.01

0.30 0.3053 ±0.01 0.1368 ±0.02 0.1611 ±0.01 0.1869 ±0.01 0.1681 ±0.01

0.40 0.3117 ±0.02 0.1349 ±0.02 0.1653 ±0.02 0.1923 ±0.02 0.1726 ±0.02

0.50 0.3060 ±0.02 0.1365 ±0.02 0.1629 ±0.02 0.1899 ±0.02 0.1708 ±0.01

0.60 0.3091 ±0.02 0.1345 ±0.02 0.1632 ±0.01 0.1899 ±0.01 0.1708 ±0.01

0.70 0.3049 ±0.02 0.1360 ±0.02 0.1609 ±0.01 0.1867 ±0.01 0.1675 ±0.01

0.80 0.3011 ±0.02 0.1332 ±0.01 0.1604 ±0.01 0.1881 ±0.01 0.1687 ±0.01

Source: elaborated by the author.
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Auto MPG

Table 63 – UCI dataset - ARMSE for E[C1/2(·)] (Auto MPG).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1735 ±0.02 0.1695 ±0.04 0.1390 ±0.04 0.1354 ±0.02 0.1392 ±0.02

0.20 0.1784 ±0.02 0.1673 ±0.03 0.1356 ±0.02 0.1320 ±0.01 0.1376 ±0.01

0.30 0.1837 ±0.02 0.1717 ±0.03 0.1415 ±0.03 0.1369 ±0.01 0.1410 ±0.01

0.40 0.1770 ±0.02 0.1657 ±0.03 0.1359 ±0.02 0.1366 ±0.01 0.1423 ±0.01

0.50 0.1756 ±0.02 0.1730 ±0.03 0.1409 ±0.02 0.1352 ±0.01 0.1404 ±0.01

0.60 0.1812 ±0.03 0.1876 ±0.03 0.1540 ±0.03 0.1440 ±0.02 0.1478 ±0.02

0.70 0.1780 ±0.02 0.1710 ±0.03 0.1405 ±0.02 0.1385 ±0.02 0.1435 ±0.02

0.80 0.1747 ±0.02 0.1779 ±0.03 0.1448 ±0.03 0.1356 ±0.02 0.1392 ±0.02

Source: elaborated by the author.

Table 64 – UCI dataset - ARMSE for E[C3/2(·)] (Auto MPG).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2142 ±0.03 0.2124 ±0.03 0.1714 ±0.03 0.1692 ±0.02 0.1713 ±0.02

0.20 0.2093 ±0.03 0.2292 ±0.04 0.1823 ±0.04 0.1689 ±0.02 0.1719 ±0.02

0.30 0.2111 ±0.02 0.2307 ±0.04 0.1855 ±0.04 0.1729 ±0.02 0.1765 ±0.02

0.40 0.2188 ±0.02 0.2344 ±0.04 0.1896 ±0.04 0.1772 ±0.02 0.1801 ±0.02

0.50 0.2070 ±0.03 0.2180 ±0.04 0.1717 ±0.03 0.1642 ±0.02 0.1681 ±0.02

0.60 0.2144 ±0.03 0.2284 ±0.04 0.1837 ±0.03 0.1719 ±0.02 0.1740 ±0.02

0.70 0.2110 ±0.02 0.2347 ±0.04 0.1890 ±0.04 0.1741 ±0.02 0.1770 ±0.02

0.80 0.2011 ±0.02 0.2221 ±0.04 0.1763 ±0.03 0.1667 ±0.02 0.1707 ±0.02

Source: elaborated by the author.

Table 65 – UCI dataset - ARMSE for E[C5/2(·)] (Auto MPG).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2221 ±0.03 0.2242 ±0.05 0.1807 ±0.04 0.1774 ±0.03 0.1788 ±0.03

0.20 0.2246 ±0.02 0.2406 ±0.05 0.1939 ±0.04 0.1807 ±0.03 0.1834 ±0.03

0.30 0.2227 ±0.03 0.2301 ±0.05 0.1849 ±0.04 0.1791 ±0.02 0.1814 ±0.02

0.40 0.2122 ±0.03 0.2383 ±0.05 0.1898 ±0.04 0.1780 ±0.02 0.1822 ±0.02

0.50 0.2167 ±0.02 0.2408 ±0.05 0.1924 ±0.04 0.1771 ±0.02 0.1802 ±0.02

0.60 0.2164 ±0.02 0.2433 ±0.04 0.1934 ±0.04 0.1845 ±0.02 0.1887 ±0.02

0.70 0.2108 ±0.03 0.2323 ±0.06 0.1852 ±0.05 0.1779 ±0.03 0.1815 ±0.03

0.80 0.2215 ±0.02 0.2308 ±0.04 0.1864 ±0.04 0.1764 ±0.02 0.1783 ±0.02

Source: elaborated by the author.
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Servo

Table 66 – UCI dataset - ARMSE for E[C1/2(·)] (Servo).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2658 ±0.04 0.1622 ±0.05 0.1448 ±0.04 0.1532 ±0.03 0.1541 ±0.02

0.20 0.2614 ±0.03 0.1636 ±0.05 0.1482 ±0.04 0.1584 ±0.02 0.1688 ±0.07

0.30 0.2610 ±0.03 0.1568 ±0.03 0.1406 ±0.02 0.1536 ±0.02 0.1586 ±0.02

0.40 0.2641 ±0.03 0.1438 ±0.02 0.1341 ±0.01 0.1552 ±0.01 0.1610 ±0.02

0.50 0.2712 ±0.03 0.1659 ±0.06 0.1540 ±0.06 0.1643 ±0.04 0.1740 ±0.08

0.60 0.2739 ±0.03 0.1531 ±0.05 0.1437 ±0.04 0.1597 ±0.03 0.1595 ±0.01

0.70 0.2651 ±0.03 0.1585 ±0.04 0.1469 ±0.04 0.1615 ±0.03 0.1720 ±0.07

0.80 0.2693 ±0.03 0.1397 ±0.02 0.1310 ±0.01 0.1537 ±0.02 0.1597 ±0.02

Source: elaborated by the author.

Table 67 – UCI dataset - ARMSE for E[C3/2(·)] (Servo).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2791 ±0.05 0.2113 ±0.07 0.1936 ±0.07 0.1891 ±0.05 0.1900 ±0.08

0.20 0.2827 ±0.04 0.2006 ±0.06 0.1853 ±0.05 0.1861 ±0.03 0.1803 ±0.03

0.30 0.2895 ±0.03 0.2060 ±0.07 0.1913 ±0.06 0.1874 ±0.04 0.1810 ±0.03

0.40 0.2844 ±0.03 0.1807 ±0.03 0.1722 ±0.02 0.1806 ±0.02 0.1738 ±0.02

0.50 0.2840 ±0.03 0.1958 ±0.05 0.1806 ±0.04 0.1815 ±0.03 0.1745 ±0.03

0.60 0.2919 ±0.03 0.1811 ±0.02 0.1731 ±0.02 0.1810 ±0.02 0.1739 ±0.02

0.70 0.2870 ±0.02 0.1839 ±0.02 0.1755 ±0.01 0.1834 ±0.02 0.1766 ±0.02

0.80 0.2913 ±0.03 0.1820 ±0.02 0.1739 ±0.02 0.1820 ±0.02 0.1746 ±0.02

Source: elaborated by the author.

Table 68 – UCI dataset - ARMSE for E[C5/2(·)] (Servo).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2811 ±0.03 0.1968 ±0.04 0.1856 ±0.03 0.1834 ±0.03 0.1779 ±0.02

0.20 0.2825 ±0.04 0.2238 ±0.09 0.2074 ±0.08 0.1929 ±0.05 0.1868 ±0.04

0.30 0.2959 ±0.03 0.1828 ±0.02 0.1822 ±0.02 0.1860 ±0.02 0.1784 ±0.02

0.40 0.2928 ±0.02 0.1787 ±0.02 0.1758 ±0.01 0.1803 ±0.01 0.1730 ±0.01

0.50 0.2955 ±0.05 0.2487 ±0.11 0.2293 ±0.10 0.2051 ±0.06 0.1983 ±0.05

0.60 0.2837 ±0.02 0.1797 ±0.02 0.1735 ±0.02 0.1777 ±0.01 0.1709 ±0.01

0.70 0.2833 ±0.02 0.1872 ±0.02 0.1813 ±0.02 0.1842 ±0.02 0.1784 ±0.02

0.80 0.2872 ±0.03 0.1861 ±0.02 0.1801 ±0.02 0.1828 ±0.02 0.1764 ±0.02

Source: elaborated by the author.
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Concrete Slump

Table 69 – UCI dataset - ARMSE for E[C1/2(·)] (Concrete Slump).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2053 ±0.04 0.2014 ±0.04 0.1716 ±0.04 0.1484 ±0.03 0.1456 ±0.03

0.20 0.2007 ±0.03 0.2021 ±0.03 0.1717 ±0.03 0.1440 ±0.03 0.1484 ±0.03

0.30 0.2034 ±0.03 0.2348 ±0.06 0.2076 ±0.06 0.1586 ±0.03 0.1381 ±0.02

0.40 0.2000 ±0.02 0.1947 ±0.04 0.1630 ±0.04 0.1422 ±0.02 0.1464 ±0.02

0.50 0.2151 ±0.02 0.2399 ±0.06 0.2126 ±0.06 0.1650 ±0.03 0.1469 ±0.02

0.60 0.2032 ±0.03 0.2195 ±0.05 0.1909 ±0.05 0.1497 ±0.03 0.1389 ±0.02

0.70 0.2138 ±0.02 0.1932 ±0.06 0.1726 ±0.05 0.1554 ±0.02 0.1515 ±0.02

0.80 0.2082 ±0.03 0.2153 ±0.07 0.1939 ±0.06 0.1595 ±0.02 0.1463 ±0.02

Source: elaborated by the author.

Table 70 – UCI dataset - ARMSE for E[C3/2(·)] (Concrete Slump).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2667 ±0.04 0.2908 ±0.07 0.2559 ±0.07 0.1853 ±0.04 0.1722 ±0.03

0.20 0.2860 ±0.04 0.2771 ±0.05 0.2388 ±0.05 0.1994 ±0.03 0.2129 ±0.09

0.30 0.2627 ±0.03 0.3304 ±0.06 0.2946 ±0.07 0.2075 ±0.04 0.2201 ±0.09

0.40 0.2658 ±0.04 0.3238 ±0.07 0.2869 ±0.08 0.2113 ±0.04 0.2117 ±0.08

0.50 0.2700 ±0.02 0.2440 ±0.08 0.2136 ±0.07 0.1877 ±0.03 0.1778 ±0.03

0.60 0.2721 ±0.04 0.3108 ±0.09 0.2757 ±0.08 0.2073 ±0.05 0.2029 ±0.06

0.70 0.2839 ±0.03 0.2636 ±0.08 0.2365 ±0.07 0.2004 ±0.03 0.2038 ±0.06

0.80 0.2858 ±0.03 0.2785 ±0.10 0.2578 ±0.10 0.2151 ±0.04 0.2124 ±0.09

Source: elaborated by the author.

Table 71 – UCI dataset - ARMSE for E[C5/2(·)] (Concrete Slump).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2878 ±0.05 0.2982 ±0.06 0.2542 ±0.06 0.2041 ±0.04 0.1907 ±0.04

0.20 0.3022 ±0.04 0.3001 ±0.05 0.2582 ±0.05 0.2114 ±0.03 0.2039 ±0.06

0.30 0.2981 ±0.04 0.3425 ±0.08 0.3068 ±0.08 0.2294 ±0.05 0.2119 ±0.04

0.40 0.2792 ±0.02 0.2922 ±0.06 0.2441 ±0.06 0.1938 ±0.03 0.1847 ±0.03

0.50 0.2788 ±0.04 0.3349 ±0.07 0.2943 ±0.07 0.2146 ±0.03 0.2015 ±0.03

0.60 0.2915 ±0.04 0.2667 ±0.07 0.2307 ±0.07 0.2015 ±0.03 0.1905 ±0.02

0.70 0.2777 ±0.03 0.3406 ±0.09 0.3023 ±0.09 0.2200 ±0.04 0.2010 ±0.03

0.80 0.3003 ±0.03 0.3453 ±0.12 0.3195 ±0.10 0.2388 ±0.04 0.2137 ±0.03

Source: elaborated by the author.
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Statlog (vehicle silhouettes)

Table 72 – UCI dataset - ARMSE for E[C1/2(·)] (Statlog (vehicle silhouettes)).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1033 ±0.02 0.1697 ±0.02 0.1379 ±0.02 0.1056 ±0.01 0.1365 ±0.01

0.20 0.1052 ±0.01 0.1646 ±0.02 0.1332 ±0.02 0.1063 ±0.01 0.1365 ±0.01

0.30 0.1034 ±0.02 0.1576 ±0.02 0.1261 ±0.02 0.1052 ±0.01 0.1377 ±0.01

0.40 0.1009 ±0.02 0.1538 ±0.02 0.1205 ±0.02 0.1022 ±0.01 0.1347 ±0.01

0.50 0.1085 ±0.02 0.1568 ±0.02 0.1247 ±0.02 0.1073 ±0.01 0.1371 ±0.01

0.60 0.1000 ±0.02 0.1616 ±0.02 0.1282 ±0.02 0.1066 ±0.01 0.1326 ±0.01

0.70 0.1026 ±0.01 0.1523 ±0.02 0.1193 ±0.02 0.1052 ±0.01 0.1332 ±0.01

0.80 0.1037 ±0.02 0.1543 ±0.02 0.1217 ±0.02 0.1037 ±0.01 0.1275 ±0.01

Source: elaborated by the author.

Table 73 – UCI dataset - ARMSE for E[C3/2(·)] (Statlog (vehicle silhouettes)).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1466 ±0.03 0.2254 ±0.03 0.1831 ±0.03 0.1478 ±0.02 0.1666 ±0.02

0.20 0.1430 ±0.02 0.2264 ±0.03 0.1841 ±0.03 0.1511 ±0.02 0.1700 ±0.02

0.30 0.1563 ±0.02 0.2159 ±0.04 0.1750 ±0.04 0.1543 ±0.02 0.1716 ±0.02

0.40 0.1475 ±0.02 0.2150 ±0.03 0.1697 ±0.03 0.1442 ±0.01 0.1622 ±0.01

0.50 0.1487 ±0.02 0.2236 ±0.03 0.1796 ±0.03 0.1500 ±0.02 0.1675 ±0.01

0.60 0.1485 ±0.02 0.2102 ±0.03 0.1662 ±0.03 0.1466 ±0.01 0.1631 ±0.01

0.70 0.1407 ±0.02 0.2158 ±0.02 0.1708 ±0.02 0.1433 ±0.01 0.1602 ±0.01

0.80 0.1423 ±0.02 0.2080 ±0.03 0.1641 ±0.03 0.1434 ±0.01 0.1594 ±0.01

Source: elaborated by the author.

Table 74 – UCI dataset - ARMSE for E[C5/2(·)] (Statlog (vehicle silhouettes)).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1612 ±0.02 0.2487 ±0.03 0.2038 ±0.03 0.1619 ±0.01 0.1787 ±0.01

0.20 0.1611 ±0.02 0.2411 ±0.02 0.1931 ±0.02 0.1600 ±0.01 0.1753 ±0.01

0.30 0.1620 ±0.02 0.2413 ±0.03 0.1943 ±0.03 0.1610 ±0.02 0.1764 ±0.01

0.40 0.1698 ±0.02 0.2408 ±0.04 0.1943 ±0.04 0.1630 ±0.02 0.1773 ±0.01

0.50 0.1569 ±0.02 0.2458 ±0.03 0.1979 ±0.03 0.1613 ±0.01 0.1775 ±0.01

0.60 0.1585 ±0.02 0.2311 ±0.03 0.1833 ±0.03 0.1591 ±0.01 0.1734 ±0.01

0.70 0.1562 ±0.02 0.2378 ±0.02 0.1893 ±0.02 0.1598 ±0.01 0.1751 ±0.01

0.80 0.1560 ±0.02 0.2371 ±0.04 0.1882 ±0.03 0.1605 ±0.02 0.1758 ±0.02

Source: elaborated by the author.
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Wine

Table 75 – UCI dataset - ARMSE for E[C1/2(·)] (Wine).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.1752 ±0.03 0.1438 ±0.03 0.1151 ±0.03 0.1309 ±0.02 0.1595 ±0.02

0.20 0.1669 ±0.02 0.1390 ±0.02 0.1114 ±0.02 0.1329 ±0.01 0.1621 ±0.01

0.30 0.1659 ±0.02 0.1411 ±0.03 0.1141 ±0.02 0.1316 ±0.01 0.1589 ±0.01

0.40 0.1675 ±0.02 0.1393 ±0.03 0.1150 ±0.03 0.1368 ±0.01 0.1648 ±0.01

0.50 0.1682 ±0.02 0.1373 ±0.03 0.1165 ±0.02 0.1386 ±0.02 0.1641 ±0.01

0.60 0.1602 ±0.02 0.1249 ±0.03 0.1018 ±0.02 0.1314 ±0.02 0.1557 ±0.01

0.70 0.1689 ±0.02 0.1153 ±0.02 0.0982 ±0.01 0.1383 ±0.01 0.1620 ±0.01

0.80 0.1560 ±0.02 0.1288 ±0.04 0.1081 ±0.03 0.1322 ±0.02 0.1548 ±0.02

Source: elaborated by the author.

Table 76 – UCI dataset - ARMSE for E[C3/2(·)] (Wine).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2460 ±0.04 0.2051 ±0.04 0.1650 ±0.03 0.1745 ±0.02 0.1702 ±0.02

0.20 0.2372 ±0.03 0.1986 ±0.03 0.1602 ±0.03 0.1774 ±0.02 0.1733 ±0.01

0.30 0.2333 ±0.03 0.2013 ±0.04 0.1638 ±0.03 0.1760 ±0.02 0.1732 ±0.01

0.40 0.2369 ±0.03 0.1832 ±0.04 0.1495 ±0.03 0.1765 ±0.02 0.1727 ±0.02

0.50 0.2242 ±0.03 0.2050 ±0.05 0.1665 ±0.05 0.1729 ±0.02 0.1737 ±0.02

0.60 0.2377 ±0.03 0.1935 ±0.04 0.1633 ±0.03 0.1827 ±0.02 0.1788 ±0.02

0.70 0.2288 ±0.03 0.1784 ±0.03 0.1498 ±0.02 0.1806 ±0.02 0.1775 ±0.02

0.80 0.2245 ±0.03 0.1894 ±0.05 0.1608 ±0.05 0.1762 ±0.02 0.1732 ±0.02

Source: elaborated by the author.

Table 77 – UCI dataset - ARMSE for E[C5/2(·)] (Wine).

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 0.2675 ±0.04 0.2267 ±0.04 0.1823 ±0.04 0.1874 ±0.02 0.1774 ±0.02

0.20 0.2593 ±0.03 0.2195 ±0.03 0.1770 ±0.03 0.1904 ±0.02 0.1817 ±0.02

0.30 0.2539 ±0.03 0.2222 ±0.04 0.1808 ±0.03 0.1891 ±0.02 0.1823 ±0.02

0.40 0.2578 ±0.02 0.1971 ±0.04 0.1653 ±0.02 0.1960 ±0.02 0.1878 ±0.01

0.50 0.2482 ±0.03 0.2044 ±0.04 0.1687 ±0.03 0.1879 ±0.02 0.1812 ±0.02

0.60 0.2394 ±0.03 0.2053 ±0.04 0.1658 ±0.04 0.1849 ±0.02 0.1785 ±0.01

0.70 0.2504 ±0.03 0.2134 ±0.05 0.1791 ±0.04 0.1926 ±0.02 0.1852 ±0.01

0.80 0.2406 ±0.04 0.2158 ±0.06 0.1843 ±0.05 0.1874 ±0.02 0.1812 ±0.02

Source: elaborated by the author.
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APPENDIX C – ARMSE FOR THE CASE-STUDY DATASET

Concrete Slump - Output: Slump (cm)

Table 78 – ARMSE in estimating the output Slump (cm) using C1/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 8.6067 ±0.92 8.6023 ±0.91 8.6042 ±0.91 8.6051 ±0.92 8.6048 ±0.93

0.20 8.6609 ±1.16 8.6503 ±1.19 8.6542 ±1.18 8.6584 ±1.17 8.6587 ±1.17

0.30 7.9508 ±1.03 7.9532 ±1.01 7.9506 ±1.02 7.9442 ±1.03 7.9426 ±1.03

0.40 8.1368 ±1.19 8.1203 ±1.21 8.1242 ±1.21 8.1263 ±1.20 8.1274 ±1.20

0.50 8.2066 ±1.19 8.1830 ±1.21 8.1885 ±1.21 8.1873 ±1.20 8.1867 ±1.20

0.60 8.2608 ±1.20 8.2415 ±1.22 8.2455 ±1.22 8.2496 ±1.22 8.2511 ±1.22

0.70 8.8063 ±1.32 8.8029 ±1.35 8.8019 ±1.34 8.8006 ±1.34 8.8007 ±1.34

0.80 8.9076 ±1.25 8.8946 ±1.28 8.8961 ±1.27 8.8966 ±1.28 8.8971 ±1.28

Source: elaborated by the author.

Table 79 – ARMSE in estimating the output Slump (cm) using C3/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 8.3979 ±1.12 8.3924 ±1.13 8.3936 ±1.13 8.3938 ±1.13 8.3930 ±1.13

0.20 8.3252 ±1.11 8.3192 ±1.13 8.3188 ±1.13 8.3189 ±1.13 8.3183 ±1.13

0.30 8.5163 ±1.08 8.5249 ±1.09 8.5210 ±1.09 8.5173 ±1.09 8.5178 ±1.09

0.40 8.6790 ±1.08 8.6830 ±1.10 8.6805 ±1.09 8.6717 ±1.10 8.6708 ±1.10

0.50 8.1670 ±1.12 8.1671 ±1.12 8.1659 ±1.12 8.1512 ±1.13 8.1490 ±1.14

0.60 8.3022 ±1.36 8.2889 ±1.38 8.2894 ±1.37 8.2888 ±1.38 8.2878 ±1.38

0.70 8.5626 ±1.20 8.5442 ±1.22 8.5474 ±1.21 8.5446 ±1.22 8.5421 ±1.22

0.80 8.5051 ±1.21 8.4831 ±1.23 8.4861 ±1.22 8.4847 ±1.23 8.4825 ±1.23

Source: elaborated by the author.

Table 80 – ARMSE in estimating the output Slump (cm) using C5/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 8.3699 ±1.33 8.3735 ±1.35 8.3704 ±1.35 8.3677 ±1.34 8.3676 ±1.34

0.20 8.7044 ±1.25 8.6971 ±1.27 8.7014 ±1.27 8.6962 ±1.26 8.6940 ±1.26

0.30 8.5514 ±1.18 8.5458 ±1.19 8.5500 ±1.18 8.5478 ±1.19 8.5467 ±1.19

0.40 8.4084 ±1.15 8.4039 ±1.16 8.4037 ±1.16 8.3922 ±1.17 8.3906 ±1.17

0.50 8.2336 ±1.54 8.1979 ±1.55 8.2066 ±1.54 8.2030 ±1.55 8.1983 ±1.55

0.60 8.4939 ±1.16 8.4937 ±1.17 8.4912 ±1.17 8.4787 ±1.18 8.4779 ±1.18

0.70 8.4017 ±1.18 8.3813 ±1.19 8.3851 ±1.19 8.3789 ±1.19 8.3764 ±1.20

0.80 8.6048 ±1.30 8.5874 ±1.30 8.5893 ±1.30 8.5845 ±1.31 8.5828 ±1.31

Source: elaborated by the author.
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Concrete Slump - Output: Flow (cm)

Table 81 – ARMSE in estimating the output Flow (cm) using C1/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 17.2083 ±2.01 17.2059 ±1.98 17.2071 ±2.00 17.2057 ±2.02 17.2044 ±2.02

0.20 16.3056 ±1.77 16.2727 ±1.80 16.2823 ±1.79 16.2908 ±1.78 16.2926 ±1.77

0.30 16.6831 ±1.86 16.6573 ±1.85 16.6652 ±1.85 16.6706 ±1.86 16.6715 ±1.87

0.40 16.4933 ±2.00 16.4640 ±2.06 16.4660 ±2.04 16.4713 ±2.02 16.4759 ±2.01

0.50 16.7360 ±1.60 16.6923 ±1.58 16.7018 ±1.58 16.7046 ±1.59 16.7068 ±1.59

0.60 16.8114 ±1.99 16.7737 ±2.04 16.7811 ±2.03 16.7790 ±2.01 16.7791 ±2.01

0.70 16.9304 ±2.05 16.8918 ±2.08 16.8982 ±2.07 16.8976 ±2.06 16.8982 ±2.06

0.80 17.3097 ±2.00 17.2633 ±2.03 17.2722 ±2.03 17.2772 ±2.03 17.2793 ±2.03

Source: elaborated by the author.

Table 82 – ARMSE in estimating the output Flow (cm) using C3/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 15.9765 ±1.61 15.9809 ±1.62 15.9801 ±1.62 15.9747 ±1.61 15.9751 ±1.61

0.20 15.6443 ±1.91 15.6408 ±1.94 15.6363 ±1.93 15.6287 ±1.92 15.6267 ±1.93

0.30 16.1068 ±1.41 16.0994 ±1.40 16.1009 ±1.41 16.0836 ±1.40 16.0788 ±1.40

0.40 16.3101 ±2.15 16.2919 ±2.18 16.2915 ±2.17 16.2799 ±2.18 16.2753 ±2.18

0.50 16.5550 ±1.55 16.4962 ±1.58 16.5115 ±1.57 16.4950 ±1.56 16.4838 ±1.56

0.60 16.1321 ±2.02 16.1096 ±2.02 16.1104 ±2.02 16.0985 ±2.03 16.0940 ±2.03

0.70 16.9831 ±1.72 16.9490 ±1.73 16.9537 ±1.72 16.9301 ±1.73 16.9236 ±1.73

0.80 16.4650 ±1.92 16.3758 ±1.99 16.3947 ±1.97 16.3848 ±1.97 16.3725 ±1.98

Source: elaborated by the author.

Table 83 – ARMSE in estimating the output Flow (cm) using C5/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 16.4856 ±1.94 16.4651 ±1.93 16.4692 ±1.94 16.4735 ±1.95 16.4710 ±1.95

0.20 16.3403 ±1.97 16.3224 ±2.01 16.3252 ±2.00 16.3233 ±1.99 16.3205 ±1.99

0.30 16.5209 ±1.90 16.5318 ±1.96 16.5238 ±1.94 16.5011 ±1.93 16.4994 ±1.94

0.40 16.5367 ±2.45 16.5145 ±2.49 16.5218 ±2.48 16.5006 ±2.47 16.4951 ±2.47

0.50 16.5665 ±1.42 16.5220 ±1.48 16.5349 ±1.46 16.5250 ±1.44 16.5185 ±1.45

0.60 16.9118 ±1.92 16.8759 ±1.97 16.8834 ±1.95 16.8703 ±1.95 16.8647 ±1.96

0.70 16.6877 ±1.94 16.6226 ±1.95 16.6370 ±1.95 16.6213 ±1.95 16.6118 ±1.95

0.80 16.5412 ±1.97 16.4434 ±1.98 16.4652 ±1.98 16.4468 ±1.98 16.4330 ±1.98

Source: elaborated by the author.
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Concrete Slump - Output: 28-day Compressive Strength (Mpa)

Table 84 – ARMSE in estimating the output 28-day Compressive Strength (Mpa) using
C1/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 7.2148 ±0.90 7.2114 ±0.90 7.2117 ±0.90 7.2131 ±0.90 7.2141 ±0.90

0.20 7.2242 ±1.41 7.2268 ±1.41 7.2245 ±1.41 7.2247 ±1.41 7.2258 ±1.41

0.30 7.8237 ±1.05 7.8176 ±1.06 7.8201 ±1.05 7.8215 ±1.05 7.8211 ±1.05

0.40 7.2509 ±1.34 7.2460 ±1.32 7.2472 ±1.33 7.2458 ±1.33 7.2444 ±1.33

0.50 7.3743 ±1.24 7.3775 ±1.24 7.3756 ±1.24 7.3697 ±1.25 7.3678 ±1.25

0.60 7.2970 ±1.09 7.2956 ±1.10 7.2953 ±1.10 7.2936 ±1.10 7.2932 ±1.09

0.70 7.3607 ±1.05 7.3709 ±1.03 7.3677 ±1.04 7.3602 ±1.04 7.3580 ±1.04

0.80 7.3932 ±1.16 7.3952 ±1.17 7.3939 ±1.17 7.3934 ±1.17 7.3937 ±1.17

Source: elaborated by the author.

Table 85 – ARMSE in estimating the output 28-day Compressive Strength (Mpa) using
C3/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 7.0204 ±1.34 7.0227 ±1.33 7.0216 ±1.33 7.0206 ±1.34 7.0208 ±1.34

0.20 7.4283 ±1.33 7.4381 ±1.33 7.4342 ±1.33 7.4282 ±1.33 7.4284 ±1.33

0.30 7.2814 ±1.25 7.2847 ±1.25 7.2850 ±1.25 7.2786 ±1.25 7.2774 ±1.25

0.40 7.3814 ±1.07 7.3830 ±1.07 7.3802 ±1.07 7.3768 ±1.06 7.3763 ±1.06

0.50 7.3006 ±1.10 7.2974 ±1.12 7.2963 ±1.11 7.2939 ±1.11 7.2933 ±1.11

0.60 7.4910 ±1.17 7.4995 ±1.18 7.4954 ±1.18 7.4878 ±1.17 7.4883 ±1.17

0.70 7.2183 ±1.23 7.2211 ±1.23 7.2179 ±1.23 7.2124 ±1.23 7.2123 ±1.23

0.80 7.3669 ±1.07 7.3523 ±1.07 7.3545 ±1.07 7.3604 ±1.06 7.3597 ±1.06

Source: elaborated by the author.

Table 86 – ARMSE in estimating the output 28-day Compressive Strength (Mpa) using
C5/2 (Concrete Slump)

rMiss CMI ESD EED EMK-MC EMK-UT

0.10 6.6997 ±1.05 6.6991 ±1.04 6.6976 ±1.04 6.6968 ±1.05 6.6963 ±1.05

0.20 7.2591 ±0.88 7.2620 ±0.88 7.2593 ±0.88 7.2565 ±0.88 7.2565 ±0.88

0.30 7.1011 ±1.00 7.1288 ±1.01 7.1164 ±1.00 7.1045 ±1.00 7.1069 ±1.01

0.40 7.2818 ±1.26 7.2821 ±1.25 7.2816 ±1.25 7.2749 ±1.25 7.2743 ±1.25

0.50 7.3898 ±0.97 7.3800 ±1.00 7.3839 ±0.99 7.3774 ±0.98 7.3753 ±0.99

0.60 7.4376 ±1.07 7.4399 ±1.06 7.4381 ±1.07 7.4360 ±1.07 7.4362 ±1.06

0.70 7.2512 ±1.06 7.2436 ±1.07 7.2431 ±1.06 7.2372 ±1.06 7.2364 ±1.06

0.80 7.4903 ±1.35 7.4757 ±1.36 7.4784 ±1.36 7.4712 ±1.35 7.4691 ±1.35

Source: elaborated by the author.
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APPENDIX D – PROPOSED EXTENSIONS FOR OTHER KERNELS

There are several common strategies for constructing kernels, one of which is

to combine simpler kernels. Let k1(X i,X i) and k2(X i,X i), be two valid kernels. Then,

the following kernels are also valid:

k(X i,Xj) = ck1(X i,Xj), constant c > 0 (D.1)

k(X i,Xj) = k1(X i,Xj) + k2(X i,Xj) (D.2)

k(X i,Xj) = q (k1(X i,Xj) , q(·) it is a polynomial with non-negative coefficients

(D.3)

k(X i,Xj) =
1

1 + αk1(X i,Xj)
(D.4)

k(X i,Xj) =
N
∑

n=1

βnkn(X i,Xj), constant β > 0 (D.5)
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