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RESUMO

O sempre-crescente aumento em demanda de redes móveis sem fio impulsiona a evolução e
molda futuras tecnologias de comunicação. As próximas gerações de rede devem lidar com
requisitos cada vez mais rigorosos em relação ao número de dispositivos conectados, taxa de
transferência de dados, latência e confiabilidade. Dentre as estratégias para aumentar a eficiência
da rede, destacamos a formatação de feixes, que visa focar um feixe de sinal em uma direção
específica evitando outras, e o escalonamento de usuários, que otimiza a seleção de usuários
a transmitir utilizando um determinado recurso. Algoritmos eficientes ao ponto de vista da
rede devem considerar otimização cooperativa de forma a coordenar as entidades da rede em
direção a um objetivo global comum. Devido à natureza distribuída dos sistemas em rede, uma
coordenação centralizada em muitos casos não é adequada e soluções descentralizadas são
desejadas. Com base nisso, o principal objetivo desta tese é projetar estratégias descentralizadas
para otimizar a formatação de feixes e o escalonamento de usuários em cenários de sistemas
móveis de próximas gerações. Dividimos o conteúdo desta tese em duas partes independentes:
Na primeira, focamos em um cenário multi-célula, multi-usuário, multi-fluxo, MIMO (do inglês,
multiple-input multiple-output) com duplexação por divisão de tempo (TDD) dinâmica, onde
consideramos a otimização da formatação de feixes bidirecional com o objetivo de minimizar a
soma do consumo de energia da rede com restrições de relação sinal-interferência mais ruído
(SINR) por fluxo. Uma primeira abordagem para solução deste problem assume processamento
centralizado e requer a disponibilidade de informação de estado de canal (CSI) global. Uma
segunda abordagem é realizada de forma descentralizada, baseada em ADMM (do inglês,
alternating direction method of multipliers) e requer CSI local e uma carga de sinalização
reduzida. Ambas as abordagens convergem para um gasto mínimo de energia da rede, enquanto
um desempenho próximo ao ideal pode ser obtido ao limitar o número de iterações. Na segunda
parte, focamos no enlace direto (DL) de uma rede multi-célula, multi-usuário, MISO (do inglês,
multiple-input single-output) na presença de erros de CSI, onde consideramos o desenvolvimento
de dois esquemas de escalonamento de usuários com execução distribuída baseados em DQL
(do inglês, deep Q-learning) multi-agente para resolver o problema de formatação de feixes
com intuito de maximizar a soma das taxas com restrições de potência por base. Os resultados
das simulações mostram que na presença de erros de CSI os esquemas propostos superam os
algoritmos de última geração tanto em termos de eficiência espectral média, quanto de tempo de
execução.

Palavras-chave: decentralização; formatação de feixes; escalonamento de usuários; TDD
dinâmico; aprendizado de máquina.



ABSTRACT

The ever-growing demand increase of wireless mobile networks drives the evolution and shapes
future communication technologies. Next network generations must deal with increasingly
stringent requirements regarding the number of connected devices, data throughput, latency, and
reliability. Among strategies to enhance network efficiency, we highlight beamforming, which
aims to focus a signal beam in a specific direction while avoiding others, and user scheduling,
which optimizes the selection of users to transmit using a given resource. Network-wide efficient
algorithms must consider cooperative optimization in order to coordinate network entities into
a common global objective. Due to the distributed nature of networked systems, centralized
coordination is in many cases not suitable, and decentralized solutions are desired. Based
on that, the main objective of this thesis is to design decentralized strategies for optimizing
beamforming and user scheduling in scenarios of next-generation mobile systems. We divide
this thesis contents into two independent parts: In the first, we focus on a multi-cell, multi-
user, multi-stream, multiple-input multiple-output (MIMO), dynamic time division duplexing
(TDD) scenario, where we consider bidirectional beamforming optimization with the objective
of minimizing network sum-power expenditure with per-stream signal-to-interference-plus-noise
ratio (SINR) constraints. A first approach to solve this problem assumes centralized processing
and requires the availability of global channel state information (CSI). A second approach is
performed in an iterative decentralized manner, based on the alternating direction method of
multipliers (ADMM), which requires local CSI and has a reduced signaling load. Both approaches
converge to a minimum network power expenditure, while close-to-optimum performance can
be obtained when limiting the number of iterations. In the second part, we focus on the downlink
(DL) of a multi-cell, multi-user multiple-input single-output (MISO) network in the presence of
CSI errors, where we consider the development of two distributed-execution user scheduling
schemes based on multi-agent deep Q-learning (DQL) to solve the beamforming problem of
sum-rate maximization with per base station (BS) power constraints. Simulation results show
that in the presence of CSI errors the proposed schemes outperform state-of-the-art algorithms
both in terms of average spectral efficiency and execution time.

Keywords: decentralization; beamforming; user scheduling; dynamic TDD; machine learning.
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1 INTRODUCTION

In this introductory chapter, we aim to familiarize the reader with the context in
which this thesis is inserted and to briefly present the main contributions of the works here
contained. Also in this chapter, we provide a description of how this document is organized and
the list of main scientific productions developed within this thesis studies.

The remainder of this chapter is structured as follows. Section 1.1 discusses the
technological context of this thesis. Section 1.2 describes this thesis organization and its main
contributions. Section 1.3 lists the details of the related scientific production.

1.1 Thesis Context

In the present days, individuals in our society have the feeling that the ability to
connect with anyone at any time and everywhere, via worldwide networks, is almost as a fully
guaranteed resource. However, it was not without decades of research and development of
communication systems that such perception was achieved. In fact, the ongoing progress of
wireless cellular networks has a tremendous impact on our society’s ability to communicate.

Over the last decades, the development of wireless communications progressed along
society’s demand, drastically changing from the first generation of wireless voice-only networks
to current data-dominated wireless fifth generation (5G) systems (1). The works presented in this
thesis belong in the context of the evolving mobile wireless communications of fifth generation
(5G) and beyond.

Initial 5G network deployments are already a reality across the globe. 5G comes into
existence as a technology revolution in wireless communication networks, with the promise of
ultra-high data throughput, very low latency, and enhanced energy efficiency. 5G will deliver
mobile broadband services anywhere to anyone at any time (2). First standardized in 2017 by
the 3rd generation partnership project (3GPP) with Release 15, 5G’s development continues as
further releases are delivered (3). 5G’s initial conception, however, dates back to almost a decade
ago, in a continuous global coordinated effort from academia and industry to determine use cases
and requirements, and to develop technologies and solutions to support its application (4).

Based on the discussions and agreements between industry and academia about
the range of the application scenarios for 5G, the international telecommunication union (ITU)
has categorized three primary use cases envisioned for the new radio as this generation’s
key performance indicators (KPIs) (5) (6). The use cases are: enhanced mobile broadband
(eMBB), which will require high data rates and enhanced coverage; ultra-reliable and low latency
communication (uRLLC), which will drive the requirement for very low latency; and massive
machine type communication (mMTC), wich will need to deal with a large number of connected
devices. These 5G major applications and requirements are further detailed as follows:

• eMBB: The everlasting growth in data rates required by the people’s demand for
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novel network-consuming applications, such as ultra-high resolution video and
virtual reality, makes this use case of primary importance for 5G. The eMBB aims
not only to provide improved data rates to highly demanding users but also to enhance
user’s experience by provisioning reliable quality of service (QoS) anywhere/anytime
for users that require moderate rates (7).

• uRLLC: Emerging applications for wireless networks such as autonomous cars,
remote driving, industrial automation, and remote surgery are the root of this use case.
It is self-explanatory this application’s necessity for low latency and for available
and reliable networks, since a failure or a delay to take a crucial action can be costly.
Granting both strict latency requirements and ultra-high reliability is crucial for these
services, but it is a very challenging task (8).

• mMTC: The number of different devices that can connect and communicate in
wireless networks without human intervention in upcoming services will climb.
Devices such as sensors and actuators in health monitoring, automation, logistics,
and security have become smaller and cheaper and are characterized by transmitting
a low volume of data and by requiring high energy efficiency. Although low data
rates are demanded, the large number of connected devices may lead to network
congestion (9).

Each of the 5G primary services would present different requirements regarding
data throughput, latency, coverage, power consumption, and others. Hence, the network must
be able to adapt to the user’s demand and manage to support such applications via the same 5G
air interface. Such a broad set of capabilities of 5G systems are specified by the ITU (5) and
3GPP (10) as a list of some of the main KPIs for the downlink (DL) and uplink (UL) directions,
detailed in Table 2. The values in Table 2 show how strict the requirements of 5G are in order
to support current and future applications. Such values are orders of magnitude higher than the
ones achieved by previous fourth generation (4G) (11).

Commercial deployments of the first 5G version have already started and were
expected to reach its first billion subscriptions worldwide by the end of 2022, which is still only
almost 12% of the total subscriptions. However, the number of users is expected to fiercely rise
in the near future (12). Although already in use, 5G development is not over. 3GPP along with
industry and academia are still in full commitment to the task of improving network capabilities
in the current work on Release 18, also called 5G Advanced. The studies on the future 5G
Advanced aim to further enhance previous releases’ performance by working in the areas of
network energy savings, coverage, mobility support, multiple-input multiple-output (MIMO)
evolution, multicast and broadcast service (MBS), and positioning (13).

Along with the development of 5G Advanced, academia and industry start to envision
what comes next in the future, regarding technologies beyond 5G and sixth generation (6G) (14,
15, 16, 17). The current 5G commercial version offers significant improvements over previous
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Table 2 – Required KPIs for 5G networks (5).

KPI Use case DL requirement UL requirement
Peak data rate eMBB 20 Gbps 10 Gbps
5th Percentile
user data rate eMBB 100 Mbps 50 Mbps

Peak spectral efficiency eMBB 30 bps/Hz 15 bps/Hz
5th Percentile

user spectral efficiency
(Dense Urban)

eMBB 0.225 bps/Hz 0.15 bps/Hz

Energy efficiency eMBB
Efficient data transm.

Low idle power consump.
Efficient data transm.

Low idle power consump.

User plane latency
eMBB
uRLLC

4 ms
1 ms

4 ms
1 ms

Reliability uRLLC 1−10−5 success prob. 1−10−5 success prob.

Connection density mMTC 1 M devices/km2 1 M devices/km2

Source: Created by the author.

generations, and further 5G enhancements will improve them even more. However, it surely will
not be able to fulfill the daunting demands of a future data-centric, data-dependent, and automated
society (14). Tomorrow’s needs will, in fact, relate to smart city internet of everything (IoE)
applications, with an ongoing unprecedented proliferation of services, ranging from extended
reality to telemedicine, flying vehicles, brain-computer interfaces, and connected autonomous
systems. Such applications require even more from the long-discussed rate-reliability-latency
tradeoff (15).

This way, when regarding use cases, 6G scenarios are seen as enhancements or
extensions of 5G scenarios (17). As shown in Figure 1, the use cases are considered as an
overlap of previous ones. The ubiquitous mobile broadband (uMBB) considers full availability
of connection and a capacity boost to disruptive services, such as wearables and onboard
communications. The Ultra-reliable low-latency broadband communication (uLBC) considers
applications that require jointly uRLLC and extremely high throughput, such as immersive
gaming and tactile internet. The massive ultra-reliable low-latency communication (mULC)
combines characteristics of mMTC and uRLLC for the deployment of massive sensors in
industries.

Such use cases enforce even more strict requirements on the main envisioned KPIs
when compared to the 5G ones. The works in (15, 17) foresee the future 6G minimal requirements:
the expected peak data rates are in the order of 1 Tpbs, with user experienced rate, i.e. the 5th
percentile of the rate at levels of 1 Gbps or even higher. Spectral efficiency is predicted to be three
times higher over the 5G requirements, with 10 to 100 times greater energy efficiency. Latency is
envisioned to remain smaller than 1 ms (100 µs or even 10 µs). Reliability is expected to improve
two orders of magnitude attaining around 1−10−7 of success probability, with connection density
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Figure 1 – Evolution of 5G use cases into scenarios envi-
sioned for 6G: uMBB, uLBC and mULC .

Source: Adapter from (17).

achieving 107 M devices per km2.
The task of overcoming the rigorous requirements of 5G and beyond 5G is a great

technological challenge. Thus, the scientific community has been massively active on such
assignment, focused on developing novel strategies and techniques that are able to improve the
network performance of mobile systems to the level of the required KPIs.

Among the strategies to improve system throughput and accommodate the increasing
number of devices, we highlight the trend to densify the network by deploying more base stations
(BSs) per area unit (18). Such solution seeks to increase the reuse of radio resources, with each
BS serving a reduced set of user equipments (UEs). Also, communicating pairs would have
smaller separation distances, making the effects of path loss less harmful. However, substantial
challenges arise when network densification is applied, mainly regarding the implementation
costs of further infrastructure and the performance limitation regarding inter-cell interference
when the network entities are closer (19). In this sense, along with densification, other strategies
must be implemented to deal with the arising challenges and enhance network efficiency and
QoS. Two techniques are of high importance for this task: beamforming and user scheduling.

With multi-antenna transmitters, transmit beamforming is used to increase signal
power at the intended receiver and reduce interference signals to non-intended users (20). High
signal power can be achieved by transmitting the same data signal from all antennas, but with
different amplitudes and phases such that signal components add coherently at the intended
receiver. Low interference is accomplished by making the signal components add destructively
at non-intended users (21). With multi-antenna receivers, receive beamforming can also be
performed, in a similar way, by adjusting receive amplitude and phase of receive antenna gains
so that it focus the reception to the desired direction (22) .

In multi-user environments, user scheduling algorithms have the responsibility to
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decide which set of users should transmit at a given time slot and how much bandwidth resources
should be allocated to each active user (23). Temporarily deactivating a user’s transmission might
be advantageous, for example, if it is strongly interfering with others or spending excessive
power to overcome channel issues. Such a decision can be made based on different optimization
choices, such as rate maximization or system power minimization, depending on service provider
decision (24).

Efficient beamforming and user scheduling optimization techniques work in a com-
plementary way and their design should consider the existence of each other. After all, a user
scheduling decision might lead to different interference situations for the beamforming stage,
depending on the optimization decision, and a specific beamforming strategy might affect
scheduling performance. Also, the algorithms to optimize both techniques must consider the
network capabilities regarding computational complexity and information sharing between op-
timizing entities. In this sense, in real-world applications, the less complex and distributable
strategies are preferred to be implemented.

Another strategy to overcome beyond 5G requirements is the employment of artificial
inteligence (AI). On the list of 6G technologies, AI is recognized as the one with the highest
potential (17). The increasing complexity and heterogeneity of such future scenarios will probably
prevent closed-form and manual optimizations since their solution becomes intractable. The
machine learning (ML) algorithms use statistical techniques to allow machines to learn the
execution of a particular task, with the goal of maintaining a specific performance metric, based
on a particular experience and to improve its decision-making capabilities as they acquire more
knowledge (25). ML is recognized as being a great strategy to deal with complex problems
where existing solutions require considerable optimization effort, or for problems in which there
is no solution with traditional approaches. By extracting information from previous data, ML
can detect anomalies, predict future scenarios, adapt to fluctuating environments, get insights
from complex problems and discover patterns (26).

For the future of wireless communications, ML has the role of creating more intelli-
gent networks, by simplifying and improving the transport of real-time data, since AI increases
efficiency and reduces the processing delay of the communication steps (27). This way, by using
ML to perform system optimization, latency is expected to be significantly reduced and network
performance is expected to become more resilient to environment imperfections and fluctuations.

Inserted in this context of wireless communication’s evolution, the works presented
in this thesis aim to develop strategies to improve performance for 5G and beyond systems. More
specifically, we propose beamforming and user scheduling solutions for dense networks. We
seek that the proposed solutions are tractable and applicable to real-world scenarios, by making
them of distributed execution and by providing required signaling schemes. Also, one of the
aimed solutions is derived using ML, in order to make its execution faster and robust to channel
estimation imperfections.
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1.2 Contributions and Thesis Structure

The presented technological context shows the main trends and possible tracks for
wireless evolution. Based on such context, this thesis has as its main objective the design of
decentralized strategies for the optimization of beamforming and user scheduling in 5G and
beyond systems. More specifically, we divide this thesis’ contents into two independent parts
that aim to develop solutions to two different scenarios.

The first part aims at deriving a decentralized algorithm for the bidirectional beam-
forming optimization in multi-user multi-stream MIMO network functioning under a dynamic
time division duplexing (TDD) regime, with the objective of minimizing network sum-power
expenditure with per-stream signal-to-interference-plus-noise ratio (SINR) constraints. The main
contributions of this investigation can be summarized as follows:

• The proposal of a centralized algorithm for the solution of the proposed problem
based on alternate convex optimization of receivers and transmit vectors.

• The convergence and optimality analysis of the proposed centralized solution. The
derived algorithm is proved to converge globally to the set of Karush-Kuhn-Tucker
(KKT) conditions.

• The derivation of a decentralized algorithm for the solution of the proposed optimiza-
tion problem, based on alternate convex optimization of receive and transmit vectors
along with alternating direction method of multipliers (ADMM), that requires the
exchange of reduced crucial information between nodes.

• The design, description and analysis of a lightweight signaling scheme to support
the decentralized algorithm application.

• The convergence and optimality analysis of the proposed decentralized algorithm.

• The performance evaluation by means of simulations, where centralized and decen-
tralized solutions are compared.

The second part aims at developing distributed-execution ML user scheduling
schemes to solve the beamforming problem in DL multi-user multiple-input single-output
(MISO) networks in the presence of channel state information (CSI) errors, with the objective of
sum-rate maximization with per BS power constraints. The most relevant contributions of this
research can be outlined as follows:

• The development of a distributed-execution algorithm based on deep Q-learning
(DQL), that aims to obtain fast and robust computations in the presence of CSI errors.
This solution requires local CSI knowledge and a reduced exchange of information
between BSs;
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• The derivation of another distributed-execution algorithm based on DQL, that also
aims to obtain fast and robust computations in the presence of CSI errors. This
second algorithm assumes only local information during the execution phase, which
reduces signaling overhead;

• The proposed algorithms learn a policy that extends the application of an optimization
model which is based on perfect CSI to a more realistic scenario with CSI errors;

• The design of signaling schemes for the proposed solutions for both training and
execution phases;

• The performance evaluation by means of simulations, where we compare the pro-
posed solution with state-of-the-art algorithms.

The content of this thesis is organized into five chapters, including this introductory
chapter. Figure 2 illustrates the summary of this thesis organization. Each chapter’s content is
made self-contained and chapters can be read in any sequence. The outline of the remaining
chapters is presented as follows:

Chapter 2 addresses the central technologies that serve as a basis for the scenarios and
for the solutions approached by the two major parts of this work. In its first sections, this chapter
discusses the basis and main issues regarding beamforming and user scheduling schemes, which
are the main focus of this thesis, summarizing the main state-of-the-art solutions and applications.
The following section builds the reasoning on why decentralized/distributed algorithms, which
are aimed in this work, are needed in multi-cell multi-user scenarios. The following two sections
address the details of the theories used as basis for the solution of the optimization problems
proposed in the first and second parts of this thesis, which are convex optimization and ML,
respectively.

Chapter 3 considers the task of dealing with cross-link interference in dynamic TDD
networks by optimizing the bidirectional beamforming in a multi-user multi-stream MIMO
scenario, with the goal of minimizing the system sum-power while providing a minimum SINR
for each stream. Two solution strategies are proposed, one assumes centralized computation
with full network information, and serves as a benchmark for the other solution, which is a
decentralized one, that assumes local information knowledge and some level of coordination
among nodes. Both strategies are shown to iterate towards an optimal solution, the centralized
one is proved to converge and the decentralized one approximates such performance. Since the
decentralized algorithm requires coordination among nodes, the required signaling scheme is
proposed and is shown to be lightweight when compared to centralized signaling requirements.
The simulation results show that both strategies achieve their goals, reducing power while
providing the required minimum SINR, the decentralized one, as expected, does not reach
the same level of power minimization of the centralized, but efficiently approximates it while
requiring a reduced amount of iterations.
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Figure 2 – Thesis organization.

Source: Created by the author.

Chapter 4 proposes two distributed-execution multi-agent DQL user scheduling
schemes to solve the beamforming problem of maximizing the rate in a MISO system with
channel estimation errors. The main idea is that the beamforming is based on an optimal solution
structure, derived by uplink-downlink duality, that assumes perfect CSI, while DQL has the
task of adapting this structure to be robust by means of its actions and rewards from the real
environment. Both algorithms require coordination among BSs and a master entity during the
training phase. The required signaling scheme is provided. In the execution phase the first
algorithm, DQL-F, requires a lightweight signaling between BSs while the second DQL-L does
not rely upon any information share, only local knowledge. Results show that both algorithms are
able to provide fast and robust solutions for the maximization problem, with DQL-L presenting
a slight loss in performance when compared to DQL-F, as expected. When compared to state-of-
the-art algorithms, both strategies were able to provide faster computations and to show gains
when channel estimation errors were present.

Finally, Chapter 5 draws the main conclusions obtained along the discussions and
results, and points towards the major research directions that arise as possible extensions and
continuations from the studies presented in this document.
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1.3 Scientific Production

The content and contributions of this thesis were published with the following
information.

• Eduardo de O. Cavalcante; G. Fodor, Y. C. B. Silva and W. C. Freitas, "Bidirectional
Sum-Power Minimization Beamforming in Dynamic TDD MIMO Networks," in
IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp. 9988-10002, Oct.
2019, doi: 10.1109/TVT.2019.2937474.

• I. M. Braga, Eduardo de O. Cavalcante, G. Fodor, Y. C. B. Silva, C. F. M. e Silva and
W. C. Freitas, "User Scheduling Based on Multi-Agent Deep Q-Learning for Robust
Beamforming in Multicell MISO Systems," in IEEE Communications Letters, vol.
24, no. 12, pp. 2809-2813, Dec. 2020, doi: 10.1109/LCOMM.2020.3015462.

It is worth mentioning that this thesis was developed under the context of the
following Ericsson/UFC technical cooperation projects:

• UFC.46 - Network Assisted Intelligent Vehicle-to-Everything communications
(NAIVE), November/2018 - November/2020,

• UFC.48 - User Centric Networks and Reconfigurable Surfaces for Next Generation
Wireless, December/2020 - December/2022,

in which a number of eight technical reports, four in the first project and four in the second
project, have been delivered.



2 ENABLING TECHNOLOGIES AND BACKGROUND

In this chapter, we provide an overview of the major theories and technologies that
enable the scenarios and solutions approached in this thesis. The main objective of this section is
to familiarize the reader with the basic context of such technologies and their main state-of-the-art
applications.

This chapter is structured as follows. Section 2.1 discusses the strategy of beam-
forming, which serves as a basis for the whole content of this thesis. Section 2.2 approaches
the concepts of user scheduling, which is in focus in the second part of this thesis. Section 2.3
motivates the employment of distributed solutions in wireless networks, which are goals all
along this work. Section 2.4 provides an overview of the convex optimization theories used as
tools for the solution of the optimization problems proposed in the first part of this work and for
the basic beamforming structure for the second part. Section 2.5 provides an overview of the
machine learning theories used as tools for the solution of the optimization problems proposed
in the second part of this thesis.

2.1 Multi-user beamforming

Spectral efficiency is a measure of the amount of information that can reliably be
transmitted over a given link per time and frequency unities. In future communication systems,
the improvement of such parameter is mandatory in order to achieve the required network
performance. To increase system-wide spectral efficiency there must be an improvement in
users’ SINR, which can be achieved by a power increase of the received desired signal and an
interference power reduction.

There are some ways to seek such SINR improvement in cellular networks. One
could think that the more direct way to increase the desired signal received power would be
simply by employing more power to the transmitters. However, in a multi-user scenario that
could lead to stronger interference with other communication links, and system-wide capacity
would suffer. Also, deliberately increasing transmit power would aggravate energy consumption.

Beamforming, on the other hand, is a versatile and powerful approach to receive
and transmit signals of interest in a spatially selective way in the presence of interference and
noise (22). Beamforming refers to a spatial filtering applied on multi-antenna transmitter and/or
receiver in order to favor some directions over others (21). Such filtering is achieved by adjusting
amplitudes and phases of the signal components transmitted by each antenna in a way to make
them add coherently at the intended receiver and destructively at non-intended receivers (28).
Receive beamforming would, by a similar approach, focus antenna gain in the direction of its
intended transmitter, and avoid interfering transmitters. Both strategies can work simultaneously
in MIMO scenarios.

Figure 3 illustrates transmit and receive beamforming, where it can be seen that
transmitter 1 multiplies the data signal at each antenna circuit, by the corresponding weight in
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Figure 3 – Transmit and receive beamforming process.

Source: Created by the author.

the precoder vector m1, with the goal of focusing signal in the direction of receiver 1. On the
other hand, receiver 1 focuses its reception gains into the desired direction of transmitter 1 by
multiplying the signal received at each antenna by the corresponding weight in the decoder vector
w1, providing an estimate for the transmitted data signal. Thus, signal power and reception gains
on the desired link directions are stronger, increasing received power while avoiding causing and
receiving interference with regard to other links.

The ability to focus beams in specific directions while avoiding others allows for
signal separation on the space domain with the so-called space-division multiple access (SDMA),
in which users spatially separated can be served simultaneously using the same radio resource.
Unfortunately, the finite number of transmit antennas only provides a limited amount of spatial
directivity, which means that there are still energy leakages between the users that act as
interference (28).

The task of designing beamforming vectors that maximize signal power at the
intended user while minimizing interference leakage in a multi-user environment is generally
a nondeterministc polynomial-time (NP) hard problem (29). However, for specific situations,
classic closed-form transmit beamforming solutions are widely known:

• Maximum ratio transmission (MRT): has the objective to increase signal power at
the intended user, i.e. maximizes the signal-to-noise ratio (SNR). It is also called
matched filter, since its formulation aims that the beamforming vector matches the
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channel vector, maximizing the inner product of the channel and beamforming vector.
In noise-limited systems, it is regarded as an optimal beamforming strategy, whereas
in the high SNR regime it might indiscriminately cause interference (30).

• Zero-forcing (ZF): has the goal of eliminating the interference leakage at unintended
users in an altruistic approach. As the strategy name states, it tries to force interfer-
ence to be zero by making the unintended user’s channel orthogonal to the chosen
precoder. By doing so, ZF might not transmit sufficient power to the desired user in
the low SNR regime (31).

• Maximum signal-to-leakage-plus-noise ratio (SLNR-MAX): tries to balance signal
power maximization and interference power minimization in a heuristic way. This
is made by maximizing the signal-to-leakage-plus-noise ratio (SLNR), that is the
ratio between the signal power at the intended user and the normalized noise plus the
total interference power that leaks to non-intended users. Equivalent approaches are
also known by other names such as transmit minimum mean square error (MMSE)
(32) and transmit Wiener filter (33). Although being a generally suboptimal strategy,
SLNR-MAX combines the benefits of MRT at low SNR with the benefit of ZF at
high SNR (34).

In wireless multi-cell multi-user scenarios, system-wide beamforming optimization
can be performed by two main approaches: uncoordinated and coordinated. As the name states,
in the uncoordinated approach, each entity optimizes its beamformers independently without
any form of cooperation, whereas in coordinated beamforming the entities cooperate to jointly
optimize the beamformers. The uncoordinated approach offers low complexity, however, the
coordination of the latter approach yields an improvement in system-wide overall performance
at the cost of complication in coordination management and in the information share among
network entities.

Beyond the classic beamforming solutions, different strategies to optimize the beam-
forming in multi-cell multi-user networks have been proposed for the more diverse scenarios
and criteria. We highlight the beamforming schemes with the objectives of power minimization
and sum-rate maximization.

Power minimization beamforming has as its main objective the design of precoders
that minimize the power consumed by the network while guaranteeing a minimum QoS constraint,
conventionally SINR. Such a design decision is well-motivated and desired since reducing power
consumption is one of the main aspects of future system trends. It was introduced in (35) for
the multi-cell MISO scenario, which proposed a solution that jointly finds a set of feasible
beamforming weight vectors and downlink transmit power allocation, such that the SINR at
each link is greater than a target value in both downlink and uplink directions. The work in (36)
targets the solution of the power minimization under additional per-antenna power constraints by
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employing uplink-downlink duality, and is extended by the work in (37) that achieves the joint
globally optimal beamformers across all BSs in a decentralized manner.

Alternative power minimization beamforming solutions presented in (38) and (39)
focus on recasting the optimization problem into a standard convex form relaxed semidefinite
programming (SDP) and second-order cone programming (SOCP), respectively. Such refor-
mulations allow the efficient solution through standard convex optimization numerical tools
such as CVX (40). When considering the joint optimization of transmitters and receivers in
MIMO scenarios, the power minimization problem can no longer be recast into convex forms.
The authors in (41) proposed a solution for this network setting based on uplink-downlink
duality, while authors in (42) and (43) derived solutions based on alternate transmit and receiver
optimization with centralized and decentralized algorithms, respectively.

Sum-rate maximization beamforming aims at designing precoders that maximize
the network rate while consuming a specific amount of power. Directly optimizing total system
sum-rate may not be fair to all users, since users with good channel conditions may be favored.
This way, to add fairness to the beamforming procedure, weights can be assigned to the sum-rate
of different users. This optimization task is known to be NP-hard even for the single-antenna
case, for which only local optima can be found. Nevertheless, that does not diminish interest
in practical methods to achieve good rate maximization performance, since such optimization
objective has the desirable properties of: 1) it can prioritize users in order to provide some
fairness among them by adjusting the weights; 2) it has an implicit user and stream selection,
since the number of active streams at convergence is almost always less than or equal to the
number of BS antennas; and 3) it is always feasible when only constrained by transmit power
(44). Therefore, it continues to be an important research topic that is still being extensively
studied.

Solutions for the weighted sum-rate maximization problem using convex optimiza-
tion have been proposed by some works, such as those in (45, 46, 47, 48). In (45) the sum-rate
maximization problem was studied in multi-cell MISO systems and a solution based on the
branch and bound method was presented. In (46) a local optimal solution was proposed exploiting
an iterative weighted minimum mean square error (WMMSE) approach for a single-cell MIMO
system. The authors in (47) provided proof of convergence for such an approach, as well as an
extension for multi-cell scenarios. This same scenario was studied in (48), for which a solution
based on fractional programming was proposed.

In both parts of this thesis, we approach and propose beamforming strategies. In the
first part, we propose a bidirectional approach to optimize the MIMO beamformers with the
goal of sum-power minimization with SINR constraints, in both centralized and decentralized
manners. In the second part, we approach the sum-rate maximization beamforming, by working
with a pre-defined model-based beamforming structure and a ML scheduling scheme.
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2.2 User Scheduling

Resource allocation in general plays a crucial role in wireless communications, by
having the task of managing the time/frequency and power resources. In single-input single-
output (SISO) systems, those are the available assets and the managing strategies seek to improve
performance by assigning each user to a specific resource. On the other hand, in MIMO systems,
another level of possibilities for the allocation algorithms arises, as the spatial dimension appears
as a new resource to be exploited (49).

User scheduling algorithms have the responsibility to decide which set of users
should transmit at a given time slot and how much bandwidth resources should be allocated to
each active user (23). Such a decision affects the whole network behavior and can lead to very
different levels of user QoS. Conventionally, user scheduling strategies, just like beamforming,
take the form of optimization tasks with diverse objectives.

In SISO systems, the major user scheduling solutions are the ones considering the
link activation problem and the age of information minimization. In the first, the objective is
to maximize the number of active links under SINR constraints. The works in (50) and (51)
consider this problem. Variations and extensions of this problem include the works in (52) and
(53), that take into consideration interference cancellation. In the latter, a metric called age of
information, defined as the current (observation) time minus the time at which the observed state
was generated is minimized. The works in (54) and (55) consider that objective with and without
packet deadlines, respectively.

In MIMO systems, efficient beamforming and user scheduling optimization tech-
niques work in a complementary way and their optimization should consider the existence of
each other, since they directly affect each other. This way, in MIMO systems, in addition to
scheduling decisions, the optimization must extend to transmit/receive beamforming vectors,
transmit powers, etc. (56). Conventional beamforming transceiver design normally considers
a fixed given scenario, with a pre-defined set of BSs and UEs. However, the achievable perfor-
mance of such methods depends heavily on the channel characteristics of selected users. Thus
user selection becomes a key approach to benefit from multi-user diversity and achieve full
multiplexing gain (57). Due to this characteristic of dual optimization, in order to achieve a
feasible outcome both strategies can tune their decisions: the beamforming scheme can relax
QoS requirements, or the scheduling algorithm can reduce the number of users (57).

The major user scheduling optimization objectives in multi-antenna networks are
maximizing the system sum-rate and minimizing the total transmit power. For the first objective,
the work in (58) proposed centralized and semi-distributed algorithms for user scheduling
focusing on rate-constrained sum-rate maximization for the MIMO interference broadcast
channel (IBC), and the authors in (59) proposed a distributed signal-to-leakage-plus-noise ratio
based user selection (SUS) which maximizes the weighted sum-rate (WSR) in multi-cell MISO
downlink systems. A strategy that considers the sum-rate maximization problem with per-user
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rate constraints in the MIMO IBC and proposes a solution that jointly optimizes transmit/receive
beamforming vectors, transmit powers, and user scheduling is provided in (60). Considering the
second objective, the works in (61) and (62) proposed user scheduling solutions for sum-power
minimization under minimum SINR constraints. Beyond that, a user scheduling algorithm using
DQL in a multi-antenna scenario was considered in (63).

The second part of this thesis considers the derivation of distributed-execution
ML user scheduling to solve the beamforming problem in DL multi-user MISO networks in
the presence of CSI errors, with the objective of sum-rate maximization with per BS power
constraints.

2.3 Distributed Solutions

Networked systems consist of a large number of interconnected subsystems (agents),
which are required to cooperate in order to achieve a desirable global objective (64). The
cooperative control of wireless multi-cell multi-user scenarios itself is an application of such
networked systems. The algorithms for optimizing beamforming and user scheduling have to be
executed in a system-wide coordinated manner, so that the agents cooperate in order to achieve a
global optimization objective and obtain an improved overall system performance.

For cooperative control strategies to be successful, numerous issues must be ad-
dressed, including the definition and management of shared information among a group of agents
to facilitate the coordination of these agents. In cooperative optimization strategies, the agent (or
agents) responsible for the optimization must be aware of the common objectives, constraints
and variables (65). For instance, in wireless network optimization, a common assumption is that
the optimizing agent must have CSI knowledge of the nodes affected by its optimization.

Coordination in networked systems can be approached by two distinctive means:
centralized and decentralized/distributed. Figure 4 illustrates an example of the two corresponding
setups for a given network with multiple communication nodes. In the first, agents are linked by
a central node that coordinates them, while in the second, agents are connected to each other and
coordinate themselves.

In centralized optimization, a central unit (a simple central node or a cloud radio
access network (C-RAN)) is assumed to be present as a master entity and it is in charge of
performing all the optimization, taking into account the relationship among the cells. In order to
do this, the central unit must acquire knowledge of the channels between all BSs and all UEs in
the system, i.e., global CSI, which can be achieved by each BS sending its local CSI to a central
controlling unit via backhaul. Beyond that, the results from computations and corresponding
commands must be sent back to the respective nodes. Alternatively, centralized approaches are
also commonly defined with each node performing its computations. For this, every BS must
have access to global CSI via backhaul sharing.

Due to the distributed nature of networked systems, such centralized strategies are,
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Figure 4 – Coordination setups: centralized and decentralized/distributed.

(a) Centralized (b) Decentralized/distributed

Source: Created by the author.

in many cases, not suitable to solve optimization problems. Although centralized solutions are
often able to find a network global optimum through joint optimization, they have an inherent
high computational complexity and demand a prohibitive amount of signaling load in order to
gather all required information and share results. Moreover, the centralized framework is subject
to performance limitations, such as a single point of failure, high communication requirement,
substantial computation burden, and limited flexibility and scalability. All of these have made
imperative the use of distributed approaches to solve coordinated optimization problems (64).

In decentralized/distributed wireless optimization, each agent takes its own decisions
relying on the availability of local CSI, i.e., knowledge of the channels between itself and other
nodes in the system, in order to improve a specific goal. In coordinated designs, agents must
cooperate to obtain a global optimum by minimizing or maximizing a global utility function
with certain constraints, and, to do this, decentralized solutions allow some level of exchanging
decision variables information with neighboring communication nodes (66). In wireless systems,
this cooperation exchange can happen via backhaul and/or over-the-air signaling.

The outcome of a decentralized algorithm is usually sub-optimal due to the nature of
conflict of interest among agents. Nevertheless, decentralized algorithms are often more viable
for wireless optimization problems than centralized ones since the network itself is decentralized,
and the whole process of gathering and broadcasting information required by the centralized
process is not needed. Another gain for distributed solutions is that each subproblem is much
less complex than the whole global optimization, and by distributing these smaller problems
computation can enhance optimization and improve scalability.

Based on that discussion, the choice between centralized and decentralized optimiza-
tion is dependent on the level of requirements and on the network information share capabilities.
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This is true since decentralized algorithms are able to offer reduced signaling overhead and
complexity, while there is a cost of degradation in performance. Also, different decentralized
algorithms can provide varying levels of performance by changing levels of signaling coopera-
tion, i.e. nodes can increase selfishness by cooperating less and reduce global performance, or
act more altruistically by cooperating at high levels and increase performance.

In this thesis, we aim to propose decentralized/distributed algorithms to optimize
beamforming and user scheduling with global objective functions. In the first part, we derive
both a centralized and a decentralized version of the sum-power minimization beamforming
algorithm in dynamic TDD scenario. The centralized algorithm is shown to be optimal, while
the decentralized one can achieve close to optimal performance and is able to vary the levels of
coordination at the cost of a slight performance loss. In the second part, we derive two centralized
training/decentralized execution DQL user scheduling strategies for the sum-rate maximization
beamforming. The first strategy is based on a reduced amount of cooperation signaling among
agents in execution time, while the second does only rely on local information. Both strategies
achieve good optimization performance, with the second one slightly below the first.

2.4 Convex Optimization

Convex optimization is a special class of mathematical problems that serve as a
powerful tool for addressing the design and analysis of applications in a wide range of study
fields. In signal processing and communications, convex optimization plays a crucial role, since
many important problems can either be cast as or be converted into convex optimization problems,
which can be solved numerically in a reliable and efficient way.

Convex optimization refers to the minimization of a convex objective function subject
to convex constraints. In this class of problems, a very useful property is that a local optimum is
also a global optimum. Also, in convex problems, a rigorous optimality condition and duality
theory exist to verify the optimal solution (67).

Recognizing or reformulating a problem as convex offers the great advantage that it
can be solved, very reliably and efficiently, using interior-point methods or other methods for
convex optimization. Such solution methods are reliable enough to be embedded in computer-
aided design and analysis tools, or even real-time control systems. Off-the-shelf software tools,
such as the widely used CVX (40) and SEDUMI (68), offer a quite straightforward environment
for solving convex optimization problems in an accurate and efficient way. Consequently, once
a problem is expressed in a convex form, it may be regarded as "solved" from a numerical
standpoint. Another great advantage is that the associated dual problem often has interesting
interpretations in terms of the original problem, and sometimes leads to different efficient or
distributed methods for solving it (69).

The theory of convex optimization permeates the entire content of this thesis. There-
fore, in the sequence, we provide a very brief review of some of the key aspects of convex
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optimization approached in this thesis, mainly based on the studies in (69) and (67).

The convex optimization problem

A generic convex optimization problem is one of the form

minimize
𝑥

𝑓0(𝑥) (2.1)

subject to 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,2, . . . ,𝑚,

ℎ 𝑗(𝑥) = 0, 𝑗 = 1,2, . . . , 𝑟,

𝑥 ∈ S.

where 𝑓0 is the objective function to be minimized, { 𝑓𝑖}𝑚𝑖=1 and {ℎ 𝑗}𝑟𝑗=1 are the inequality and
equality constraint functions, respectively, and S is a constraint set.

The optimization problem in (2.1) is convex if:

1. The objective function and inequality constraint functions { 𝑓𝑖}𝑚𝑖=0 are convex.

A function is convex if the line segment between any two points lies above the
graph between the two points, i.e. a convex function 𝑓𝑖: ℝ𝑛→ℝ must satisfy

𝑓𝑖(𝜃𝑥 + (1−𝜃)𝑦) ≤ 𝜃 𝑓𝑖(𝑥) + (1−𝜃) 𝑓𝑖(𝑦), ∀𝜃 ∈ [0,1]. (2.2)

2. The equality constraint functions {ℎ 𝑗}𝑟𝑗=1 are affine.

A function ℎ 𝑗: ℝ𝑛→ℝ𝑚 is affine if it is a sum of a linear function and a constant,
i.e. it has the form ℎ 𝑗(𝑥) = 𝐴𝑥 + 𝑏, where 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚.

3. The constraint set S is convex.

A set S is convex if the line segment between any two points in S lies in S, i.e.
for any two points 𝑥 and 𝑦 ∈ S, then

𝜃𝑥 + (1−𝜃)𝑦 ∈ S, ∀𝜃 ∈ [0,1]. (2.3)

The problem in (2.1) is said to be feasible if there exists at least one feasible point
that respects all constraints, and infeasible otherwise. The optimal value of (2.1) is denoted as 𝑝∗

and 𝑥∗ denotes the optimal point where 𝑓0(𝑥∗) = 𝑝∗.

Standard convex optimization forms

The convex optimization problems in engineering design applications commonly
fall into the form of widely known pre-defined optimization models. In many wireless problems,
such as the ones in this thesis and the problems in (39) and (38), authors focus on recasting the
optimization problems into standard convex forms of second-order cone programming (SOCP)
or semidefinite programming (SDP), which can be numerically solved by CVX and SEDUMI .
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The standard form of an SOCP problem is (70)

minimize
x

f𝐻x (2.4)

subject to

c𝐻
𝑖

x+ 𝑑𝑖

A𝐻
𝑖

x+b𝑖

 ⪰𝐾 0, 𝑖 = 1, . . . , 𝑁.

where x ∈ ℝ𝑛 is the optimization variable, and f,A𝑖,b𝑖,c𝑖 and 𝑑𝑖 are the data parameters of
appropriate sizes. In the second-order cone constraint, the notation ⪰𝐾 denotes the following
generalized inequality 

𝑧

z

 ⪰𝐾 0↔ ||z| | ≤ 𝑧. (2.5)

The standard form of an SDP problem is (71)

minimize
x

f𝐻x (2.6)

subject to A(x) ⪰ 0.

where x ∈ ℝ𝑛 is the optimization variable, A(x) = A0 +
∑𝑛
𝑖=1 𝑥𝑖A𝑖, with problem data being f and

the hermitian matrices A𝑖 of appropriate sizes. The notation ⪰ denotes the positive semidefinite
generalized inequality.

Duality

The principle of duality in optimization states that problems may be viewed from two
different perspectives, the primal problem and the dual problem. Such principle is an important
tool for the solutions in this thesis. Often primal problems such as the ones in (2.1), (2.4) and
(2.6) come in a form of minimization, then the dual problems have the form of a maximization.

For a problem in the form of (2.1) (not necessarily convex), we can form the La-
grangian function

𝐿(𝑥, 𝜆,𝜈) = 𝑓0(𝑥) +
𝑚∑︁
𝑖=1

𝜆 𝑖 𝑓𝑖(𝑥) +
𝑟∑︁
𝑗=1

𝜈 𝑗ℎ 𝑗(𝑥). (2.7)

where 𝜆 𝑖 are the dual variables associated with its inequality constraints and 𝜈 𝑗 are the dual
variables associated with its equality constraints.

The dual function associated with (2.1) is defined as the minimum value of the
Lagrangian over 𝑥 as

𝑔(𝜆,𝜈) = inf
𝑥∈S
(𝐿(𝑥, 𝜆,𝜈)). (2.8)

Since the dual function is the pointwise infimum of a family of affine functions, it
is concave, even when the problem (2.1) is not convex. For each pair (𝜆,𝜈) with 𝜆 ≥ 0 the dual
function gives us a lower bound on the optimal value 𝑝∗. The search for the best lower bound that
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can be obtained from the dual function defines the (always convex) dual optimization problem

maximize
𝜆,𝜈

𝑔(𝜆,𝜈) (2.9)

subject to 𝜆 ⪰ 0.

The optimal value of the dual problem, denoted as 𝑑∗, is by definition the best lower
bound for 𝑝∗, i.e. 𝑑∗ ≤ 𝑝∗, even if the original problem is not convex. This property is called
weak duality. Strong duality, on the other hand, implies that the duality gap is zero, i.e. 𝑑∗ = 𝑝∗.
Strong duality does not, in general, hold, but if the primal problem is convex in the forms of the
problems above, we usually have strong duality.

Optimality conditions

In order to analyze optimality for a convex optimization problem in the form of
(2.1) we must evaluate the KKT conditions. In such convex problems the KKT conditions are
sufficient for the points to be primal and dual optimal. Then, 𝑥∗ and (𝜆∗, 𝜈∗) are primal and dual
optimal, with zero duality gaps if

𝑓𝑖(𝑥∗) ≤ 0,∀𝑖 = 1, . . . ,𝑚 (2.10)

ℎ 𝑗(𝑥∗) = 0,∀ 𝑗 = 1, . . . , 𝑟 (2.11)

𝜆∗𝑖 ≥ 0,∀𝑖 = 1, . . . ,𝑚 (2.12)

𝜆∗𝑖 𝑓𝑖(𝑥∗) = 0,∀𝑖 = 1, . . . ,𝑚 (2.13)

∇ 𝑓0(𝑥∗) +
𝑚∑︁
𝑖=1

𝜆∗𝑖∇ 𝑓𝑖(𝑥∗) +
𝑟∑︁
𝑗=1

𝜈∗𝑗∇ℎ 𝑗(𝑥∗) = 0. (2.14)

The first two conditions state that 𝑥∗ is primal feasible. The third condition represents
dual feasibility. The fourth means the complementary slackness for the primal and dual inequality
constraint pair: 𝑓𝑖(𝑥) ≤ 0 and 𝜆 𝑖 ≥ 0. The last condition states that the gradient of the Lagrange
function vanishes at 𝑥 = 𝑥∗, i.e. 𝑥∗ minimizes 𝐿(𝑥, 𝜆∗, 𝜈∗). We employ such KKT analysis in the
proof of convergence and optimality for the algorithms in the fist part of this thesis.

ADMM

Still in the context of convex optimization, now regarding the solving stage, we
highlight a method that has recently drawn significant attention, namely the ADMM. ADMM is
described by (72) as a simple but powerful algorithm that is well suited to distributed convex
optimization and takes the form of a decomposition-coordination procedure, in which the
solutions to small subproblems are coordinated to find a solution to a large global problem. The
ADMM algorithm tries to mix the benefits of other two preceding optimization methods. It
tries to implement the parallelism provided by the dual ascent method (72, Chapter 2.1) and the
robustness of the method of multipliers (72, Chapter 2.2), by implementing a combination of
both algorithms. A very brief review of ADMM is provided next.
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Consider the following simple convex optimization problem

minimize
x

𝑓 (x)

subject to Ax = b,
(2.15)

with x ∈ ℝ𝑛, A ∈ ℝ𝑚×𝑛, and 𝑓 : ℝ𝑛→ℝ being a strictly convex function.
This problem can be rewritten by splitting the variable x in two, x and z, related as

shown in the constraint part of (2.16), with the objective function separable across this splitting.

minimize
x,z

𝑓 (x) + 𝑔(z)

subject to Ax+Bz = c,
(2.16)

with x ∈ ℝ𝑛, z ∈ ℝ𝑚, A ∈ ℝ𝑝×𝑛, B ∈ ℝ𝑝×𝑚, and c ∈ ℝ𝑝. Assuming that 𝑓 and 𝑔 are convex
functions.

Writing the augmented Lagrangian for Problem (2.16) we obtain

𝐿𝜌(x,y) = 𝑓 (x) + 𝑔(z) +y𝑇 (Ax+Bz− c) + (𝜌/2) | |Ax+Bz− c| |22, (2.17)

where y is the dual variable and 𝜌 is the penalty parameter.
The ADMM algorithm is similar to the dual decomposition and the method of

multipliers and consists of the three steps shown bellow: the minimization of the augmented
Lagrangian over each of the two variables, x and z, and the update of the dual variable.

x𝑘+1 := argmin
x

𝐿𝜌(x,z𝑘,y𝑘),

z𝑘+1 := argmin
z

𝐿𝜌(x𝑘+1,z,y𝑘),

y𝑘+1 := y𝑘 + 𝜌(Ax𝑘+1 +Bz𝑘+1− c).

(2.18)

The difference between the method of multipliers and ADMM is that the updates
of x and z are done jointly in the former, but in an alternate fashion in the latter (z𝑘+1 depends
on x𝑘+1), and this allows the decomposition when 𝑓 or 𝑔 are separable. In this sense, ADMM is
a robust method for solving large-scale optimization problems in a decentralized and parallel
way. In the first part of this thesis, ADMM is used as the strategy for the decentralization of the
proposed algorithm.

2.5 Machine Learning

Machine learning ML, which is a subset of artificial intelligence, has a crucial role
in the future of wireless communications. With ML as a driving technology, networks are
expected to be more intelligent, by providing more flexible features such as self-configuration,
self-optimization, and self-healing and by simplifying and improving the transport of real-time
data (73) (27).
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ML techniques allow machines to learn the execution of a particular task, with the
goal of maintaining a specific performance metric, based on a particular experience and to
improve its decision-making capabilities as they acquire more knowledge (25). ML is widely
expected to become a key component of beyond 5G networks since it offers considerable potential
benefits, from which we highlight (74):

• Extracting information from data: Channel and interference models are extremely
complicated in reality due to the dynamic nature of wireless communication channels.
ML techniques may automatically extract the unknown channel information by
learning from the communication data and prior knowledge.

• Large scale optimization: As the density of wireless access points continues to in-
crease, there is an urgent need for global optimization of communication resources.
However, the size, number of variables, and coupling relation among entities make
optimization a difficult task. On the other hand, ML algorithms (e.g., deep learn-
ing) may be able to model the highly nonlinear correlations and estimate system
parameters.

• Adapting to fluctuating environments: The dynamic nature of wireless channels,
traffic, and interference in multi-user scenarios makes the constant adaptation to the
varying environment a burdensome task. ML will realize learning-based adaptive
configuration of networks by finding out behavioral patterns and responding quickly
and flexibly to various scenarios.

The way that an ML application takes form varies according to the nature of the
agents, environment, and data, and the way they interact with each other. ML algorithms are
typically classified into three main categories, namely supervised learning, unsupervised learning,
and reinforcement learning, see Figure 5. In supervised learning, the goal is to predict an outcome
y from an entry value x by looking at several examples of a random vector x and its label value of
vector y, by estimating 𝑝(y|x) or particular properties of that distribution. Unsupervised learning
implicates observing different instances of a random vector x aiming to learn its probability
distribution 𝑝(x). In reinforcement learning an agent interacts with the surrounding environment
to learn a policy that maximizes the rewards obtained by its actions on the environment (26).

Reinforcement learning is one of the most important research directions of machine
learning, which has significant impacts on the development of AI over the last 20 years (75). In
reinforcement learning, an agent interacts with the environment, taking actions and obtaining
rewards from it. In general, the agents do not have full information about the environment, but
they are considered to know a subset of parameters that delimits a state of the environment. The
experience from rewards received from past actions defines which actions are good or bad for
the agent. This way, the agent must keep exploring actions to discover the ones that maximize
the rewards. Actions also change the state of the environment, affecting the actual state and
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Figure 5 – Machine learning strategies: Unsupervised, supervised and reinforcement learning.

(a) Unsupervised. (b) Supervised.

(c) Reinforcement.

Source: Adapted from (26).

future ones. Therefore the agent’s goal is to learn over time a policy that defines the best possible
actions to maximize future rewards over the long run, given the current state of the environment.
(76).

In conventional reinforcement learning applications, a simple lookup table can be
used to keep track of states, actions, and expected rewards. Therefore, the application of reinforce-
ment learning in the optimization of modern networks that are large-scale and complicated, leads
the computational complexity to rapidly become unmanageable. As a result, deep Q-learning has
been developed to be an alternative solution to overcome this challenge (75). Deep Q-learning
or deep Q-Network (DQN) corresponds to a merge between the Q-learning algorithm and a
deep neural network. In summary, a lookup table is replaced by a deep neural network. Notably,
recent advances in deep neural networks, in which several layers of nodes are used to buildup
progressively more abstract representations of the data, have made it possible for artificial neural
networks to learn concepts such as object categories directly from raw sensory data (77). A full
overview of Deep Q-learning is provided in Section 4.5.

In the second part of this thesis, we employ reinforcement learning to efficiently
solve a user scheduling problem for the optimization of beamforming. More specifically, we
employ the deep Q-learning paradigm to perform multi-agent optimization in an intelligent,
decentralized, robust, and fast way.



3 BIDIRECTIONAL SUM-POWER MINIMIZATION BEAMFORMING IN DYNAMIC
TDD MULTI-USER MULTI-STREAM MIMO NETWORKS

Employing dynamic time division duplexing (TDD) can increase the system-wide
spectral efficiency of applications with varying and unbalanced downlink (DL) and uplink (UL)
data traffic requirements. However, in order to achieve this efficiency gain, it is necessary to
manage the effects of cross-link interference, which are generated among cells transmitting in
opposite link directions.

This chapter considers bidirectional sum-power minimization beamforming in a
multi-user multi-stream multiple-input multiple-output (MIMO) network, as a means to deal
with this cross-link interference, by forcing a minimum signal-to-interference-plus-noise ratio
constraint for both UL and DL.

We propose two iterative approaches to solve this beamforming problem. The first
approach assumes centralized processing and requires the availability of global channel state in-
formation. The second approach is performed in a decentralized manner, based on the alternating
direction method of multipliers (ADMM) and requires only local channel state information and
reduced signaling load. Both approaches are shown to converge to a minimum network power
expenditure, whereas close-to-optimum performance can be obtained when limiting the number
of iterations.

The remainder of the chapter is structured as follows. Section 3.1 provides a brief
introduction to the topic of dynamic TDD and to the studies in this Chapter. Section 3.2 discusses
related works and the contributions of this chapter. Section 3.3 introduces the system model.
Section 3.4 formulates the optimization problem and describes the centralized beamforming (BF)
solution. Section 3.5 reformulates the problem and describes the ADMM-based decentralized
solution. Section 3.6 provides a complete proof of convergence for the proposed algorithms.
Section 3.7 presents a signaling scheme to support the proposed decentralized algorithm. Section
3.8 provides numerical examples for the proposed algorithms before conclusions are drawn in
Section 3.9.

3.1 Introduction

A promising way of accommodating the increasing number of mobile users and
devices and their high-capacity requirements is the deployment of small cells (18). In such
systems, using TDD is preferred over frequency division duplexing (FDD) since it can better
match traffic asymmetry between the UL and DL. Also, TDD takes advantage of channel
reciprocity between UL and DL, which reduces the complexity and the amount of required
channel feedback signaling to acquire channel state information (CSI) compared with the FDD
case (78).

In previous generations, systems that employ TDD have used fixed time intervals
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Figure 6 – Different links in a dynamic TDD scenario: desired and interfer-
ence links (UE-UE, BS-BS, BS-UE and UE-BS).

Source: Created by the author.

for each link direction (UL and DL), assuming that all cells transmit in the same direction at
any given point in time. This design avoids creating interference between base stations (BSs)
and between user equipments (UEs) transmitting in opposite directions (79). However, the
reduced cell size allows the instantaneous traffic demands to vary significantly between cells (80).
Therefore, a dynamic reconfiguration between UL and DL can increase the spectral efficiency of
systems supporting varying or unbalanced data requirements in the UL and DL directions.

However, the coexistence of different link directions in neighbor cells gives rise to
additional types of interference: between BSs and between UEs located in neighbor cells that
transmit in opposite directions. Figure 6 illustrates these interferences in a four cell scenario. The
BSs transmitting in DL generate BS-to-BS interference to the BS receiving in UL, while the UE
transmitting in UL generates UE-to-UE interference to UEs operating in the opposite direction.
Therefore, it is intuitively clear that in order to achieve the gains of dynamic reconfiguration
between UL and DL, it is crucial to mitigate the negative effects of the additional interference.

Due to the presence of BS-to-BS and UE-to-UE interference, the performance of
dynamic TDD systems depends critically on proper scheduling and time slot assignment along
with an appropriate beam allocation. In practice, the cell and time slot configurations (i.e. whether
the time slots in a cell operate in UL or DL direction) and the time slot allocation decisions (i.e.
which time slot is assigned to which user for UL or DL transmissions) are made advantageously
separately from the precoding decisions. That is, in practice, in order to manage the complexity
of traffic and quality of service (QoS)-dependent scheduling – as part of the medium access
control procedures – and configuring the UL and DL precoding weights, suboptimal schemes can
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be used. Specifically, such suboptimal schemes assume that scheduling and UL/DL configuration
and slot assignment have been made and develop BF solutions to manage UL/DL interference.
Such strategy is found in (81), where the slot assignment is assumed prior to BF and in (82) that
uses direct beamformer estimation in dynamic TDD.

In the long term evolution (LTE) release 12, the enhanced interference mitigation and
traffic adaptation (eIMTA) concept was introduced, and 7 different UL-DL frame configurations
have been standardized for dynamic TDD, as shown in table 3. In this table the letter "D" and
"U" refer to downlink and uplink subframes, while the letter "S" refers to a special subframe
used as guard interval. In this standard, each BS can select one of the configurations according
to its decision, with a DL/UL ratio varying from 40/60 to 90/10 (83).

Table 3 – Dynamic TDD UL-DL configuration on LTE.

UL-DL configuration
Subframe Number

0 1 2 3 4 5 6 7 8 9

0 D S U U U D S U U U

1 D S U U D D S U U D

2 D S U D D D S U D D

3 D S U U U D D D D D

4 D S U U D D D D D D

5 D S U D D D D D D D

6 D S U U U D S U U D

Source: Adapted from (83).

In this chapter, we consider a dynamic TDD system in which any BS can operate
in UL or DL mode in a given time slot configured by a suitable scheduling or operation and
management entity, as in, for example, (84) and (85). This means that we do not restrict our
link direction decision to the possibilities in table 3. This scheduling decision may lead to an
interference situation, similar to the one shown in Figure 6, illustrating the presence of diverse
interference links.

In this work, we propose taking advantage of the typical multi-antenna deployments
of cellular bases stations and employing BF as a way of mitigating the effects of interference in
dynamic TDD networks. Such solutions seek to minimize the system-wide sum-power and to
manage the effects of cross-link interferences by guaranteeing a minimum signal-to-interference-
plus-noise ratio (SINR) threshold for each user in both the UL and DL directions. Sum-power
minimization in densely deployed small-cell networks is a highly motivated objective, since
reduced power consumption helps the large-scale sustainable deployment of such networks and
reduces the operational expenditures.

In a multi-cell scenario, BF can be coordinated by a central node or in a decentralized
manner. Accordingly, in this chapter, we propose two BF schemes to mitigate interference, and
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compare their performance in terms of system-wide power consumption. The first solution,
devised for benchmarking purposes, assumes the availability of a central entity that has access to
global CSI. The second, a practically viable approach uses a decentralized algorithm based on
ADMM, and requires local CSI available in each cell. It uses a lightweight backhaul and over-
the-air signaling scheme in order to exchange the required run-time information between cells.
We find that both approaches can achieve the optimum solution, which minimizes sum-power
expenditure while maintaining the required SINR levels. In both schemes, the total signaling load
can be controlled by limiting the number of iterations, at the cost of achieving close-to-optimal
performance.

Throughout this chapter, the bold lowercase letter x represents a vector and the bold
uppercase letter X ∈ ℂ𝑀×𝑁 is used to denote a matrix drawn from the 𝑀×𝑁 matrix space defined
on the complex field. X𝑇 , X𝐻 , X−1 and X† stand, respectively, for transpose, Hermitian, inverse
and pseudo-inverse of a matrix X. X ⪰ 0 means that X is positive semidefinite. For a vector x,
∥x∥2 denotes the Euclidean norm. {𝑥𝑖}∀𝑖 represents a set of elements 𝑥𝑖 in the values of 𝑖 denoted
by the subscript expression.

3.2 Related Works and Contributions

Some strategies to manage interference in dynamic TDD systems have been previ-
ously proposed, including clustering, time slot allocation and power control. Clustering schemes
are proposed in (86), according to which neighboring cells are grouped into clusters that use the
same link direction so as to eliminate cross-link interference. Time slot allocation algorithms
that avoid allocating adjacent time slots to UEs located in the border area of neighboring cells
have also been proposed to manage dynamic TDD interference, see for example (87) or (88) for
a comparison between different time slot allocation strategies. Unfortunately, these solutions
cannot accommodate unbalanced traffic demands in neighbor cells, because in these schemes
neighbor cells with different traffic demands are forced to choose the same transmit direction or
wait for a later time slot to transmit.

A power control solution is proposed in (89), which controls the BS-to-BS inter-
ference by reducing the transmission power of the aggressor BS. Another solution is proposed
in (90), which increases the transmission power of the UE that has its communication affected
by interference. However, neither of these approaches is optimal, since reducing the BS power
directly affects the DL capacity, while increasing the UE transmit power leads to a high battery
consumption, which is an important issue for mobile transceivers. These previous interference
management techniques do not make use of the multi-antenna ability to provide more degrees of
freedom in order to deal with interference.

Another very well known strategy to manage interference is beamforming (BF).
Numerous BF solutions have been proposed for non-dynamic TDD multiple-input single-output
(MISO) and MIMO systems and focusing on varied optimization objectives. For example, the
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works presented by (47) and (91) consider a sum-rate or sum-utility maximization problem and
impose a power budget at each transmitter. The work in (47) is shown to minimize the weighted
sum of mean square error (MSE) and maximizes sum rate in the DL interference broadcast
channel scenario, by using the block coordinate descent technique. Reference (91) minimizes the
system-wide MSE and maximizes the sum rate for a K-user MIMO system using an iterative and
reconfigurable distributed scheme. By contrast, the proposed methodology in this chapter aims
to minimize the total transmission power, while guaranteeing a quality target for each user. Sum-
power minimization BF is also considered as the optimization objective by (92) for the MISO
scenario, by (93) for the MISO scenario with limited backhaul information exchange, by (42) and
(94) for a multiuser multiple input multiple output (MU-MIMO) system and by (43) for the multi-
cell MIMO system. A performance analysis of coordinated BF schemes considering multiple
objectives is provided in (95) and (96) for the DL multi-cell MIMO scenarios considering CSI
uncertainties and LTE specifications, respectively.

An important class of state-of-the-art techniques is machine learning-based solutions,
which are recently being used to optimize several objectives in mobile networks, including BF
with the objective of sum-rate maximization and sum-power minimization. The works presented
in (97), (98), and (99), for example, propose learning-based solutions for transceiver design. The
first two focus on downlink transmission in a single-cell scenario, while the last one extends the
learning ideas of the others to a dynamic environment.

Although BF has been considered in a variety of scenarios, the results obtained
by the previously mentioned works do not carry over to dynamic TDD systems, since they
are not applicable in the presence of BS-to-BS and UE-to-UE interference. Recognizing this
aspect, BF solutions that are applicable in dynamic TDD systems were previously proposed
considering a MISO deployment. In (100), the authors propose a strategy to maximize the energy
efficiency. However, that solution requires a central entity and is based on non-linear fractional
programming, which has a high complexity, rendering it unpractical in dense small-cell networks.
In contrast, the authors in (101) presented a solution using a pricing approach that penalizes the
DL BSs which cause interference. Using that approach, the DL capacity suffers in order to reduce
the interference in the UL. Finally, the authors of (102) proposed a sum-power minimization
decentralized approach to optimize the DL BS transmitters with SINR constraints for the DL
users and a maximum interference power constraint to control BS-to-BS interference.

It is important to realize that in a MIMO scenario, the interference management can
be further improved by benefiting from the multi-antenna capability on the UEs side. In such
scenario, a solution is presented in (81), where the authors propose a strategy to maximize the
weighed sum rate, along with a signaling scheme that supports the optimization. Another related
work (103) considers sum-power minimization BF, imposing SINR constrains for each DL
transmission and maximum interference power constraints for BS-to-BS interference. However,
in that work the UL transmitters are considered fixed, which unfortunately implies that only
the BS power is minimized and that the UE power expenditure is not optimized. Also, in that
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work the interference caused by the UEs to other nodes – including UE-to-UE and UE-to-BS
interference – is not treated.

Along another line of research, a full-duplex deployment is considered, in which
both BSs and UEs can transmit and receive simultaneously. In this scenario, the interference
situation is similar to the one present in dynamic TDD networks, but it includes an additional
self-interference term. BF solutions have also been proposed for such a scenario, see for example
(104), (105) and (106). In the first two works the optimization objectives differ from the objective
of the present chapter, since we consider sum-power minimization, while (104), (105) consider
sum rate maximization and weighted MSE minimization. Also, from the architecture perspective,
(105) focuses on a single-cell scenario, which lacks the effects of inter-cell interference. On
the other hand, the work presented in (106) has the objective to minimize the sum-power in a
K-link full-duplex MIMO scenario. Although (106) has a similar objective, it differs from our
work with regards to the solution approach, which for that paper is based on a penalty method
along with space-time scheduling, including the time dimension to the optimization objective.
Another important difference is that these three works do not explicitly analyze a distributed
implementation of the proposed solutions, which is one of the main contributions of our work.
In this sense, although a full-duplex deployment may be similar to a dynamic TDD scenario,
the full-duplex solutions cannot be easily extended to fulfill the requirements imposed by our
objectives and the dynamic TDD scenario.

It is therefore intuitively clear that further gains in performance can be achieved
in dynamic TDD MIMO scenarios employing sum-power minimization BF, by allowing both
DL and UL transmitters to be optimized with respect to transmit power, and by imposing
predetermined SINR constraints for DL and UL reception.

Accordingly, in the present chapter we consider a solution approach based on sum-
power minimization BF in dynamic TDD multi-user multi-stream MIMO networks. Unlike
previous works, we aim to manage all types of interference, including UE-to-UE interference,
by enforcing SINR constraints to each user both in the UL and DL. This task is challenging,
since the proposed schemes must also manage the inter-user inter-stream interference, which
is inherently present in multi-user multi-stream MIMO systems. Also, the proposed schemes
enable the UEs to minimize their transmit power while also minimizing the transmit power levels
of the BSs. We believe that minimizing both the UE and the network transmit power levels in
dynamic TDD multi-cell MIMO systems is a novel and important contribution.

In the present work we provide both centralized and decentralized solutions. The
decentralized scheme is based on ADMM, and it is developed along with a light-weight signaling
structure in order to facilitate the proposed decentralized coordination. With respect to the
decentralization procedure, an important related work is (107). Such work also uses ADMM as a
tool to allow a distributed implementation, and aims to minimize sum-power in the DL multi-cell
MISO scenario. In contrast, our scheme considers multi-antenna UEs, and they can act as both
receivers and transmitters. Therefore, the distributed transceiver design is significantly more
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Figure 7 – Main notation symbols of the dynamic TDD
system model.

Source: Created by the author.

complex and challenging, since the transceivers have a general structure and the interference
pattern is markedly different from that in the DL of a regular cellular system.

Another main contribution of our work is the convergence analysis of the proposed
algorithms. Related convergence analysis are presented by (94) and (108) for the iterative
transmit and receiver optimization with the objective to minimize the sum-power in a DL MIMO
multi-user scenario. In contrast, our work is inherently multi-cell, since we consider a multi-cell
dynamic TDD system, in which not only multi-cell interference must be combated, but this
multi-cell interference has a complex structure due to the UL-DL cross-interference.

In order to highlight, even more, the contributions of this work with respect to some
of the main related papers, we summarize the differences in terms of the objective function,
constraints, architecture, centralized or distributed solution approach, CSI availability and the
merits of the proposed solution in Table 10 located in Appendix A in the end of this work.

3.3 System Model

We consider a multi-cell multi-stream dynamic TDD multi-user MIMO system with
a group formed by 𝐵 BSs, each equipped with 𝑁𝑏 antennas, and 𝐾 UEs, each equipped with 𝑁𝑢

antennas. Figure 7 Illustrates the main notation used to describe this chapter’s system model.
Let B𝑢𝑙, B𝑑𝑙, K𝑢𝑙 and K𝑑𝑙 represent the sets of BSs and UEs in the UL and DL mode,

respectively, and S𝑘 denote the set of streams of UE 𝑘. Then, the signal of all streams received
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by UE 𝑘 ∈ K𝑑𝑙, y𝑑𝑙
𝑘
= [𝑦𝑑𝑙

𝑘,1, . . . , 𝑦
𝑑𝑙
𝑘,𝑆
]𝑇 ∈ ℂ𝑆×1, can be written as

y𝑑𝑙𝑘 = W𝐻
𝑘 H𝑏𝑘,𝑘M𝑘d𝑘︸            ︷︷            ︸

useful signal + ISI

+
∑︁

𝑖∈K𝑑𝑙\𝑘
W𝐻

𝑘 H𝑏𝑖,𝑘M𝑖d𝑖︸                    ︷︷                    ︸
BS to UE interf.

+
∑︁
𝑗∈K𝑢𝑙

W𝐻
𝑘 Q 𝑗,𝑘W 𝑗d 𝑗︸                 ︷︷                 ︸

UE to UE interf.

+W𝐻
𝑘 n𝑘︸ ︷︷ ︸

noise

, (3.1)

where H𝑏𝑖,𝑘 ∈ ℂ𝑁𝑢×𝑁𝑏 denotes the channel between the BS that serves UE 𝑖 (denoted as 𝑏𝑖)
and UE 𝑘; M𝑖 = [m𝑖,1, . . . ,m𝑖,𝑆] ∈ ℂ𝑁𝑏×𝑆 denotes a BF BS filter with respect to UE 𝑖, while
W𝑖 = [w𝑖,1, . . . ,w𝑖,𝑆] ∈ ℂ𝑁𝑢×𝑆 denotes the BF filter at UE 𝑖, independently from the link direction;
d𝑖 = [𝑑𝑖,1, . . . , 𝑑𝑖,𝑆]𝑇 ∈ ℂ𝑆×1 denotes the data symbols relative to UE 𝑖, which is assumed to have
unit variance; Q 𝑗,𝑘 ∈ℂ𝑁𝑢×𝑁𝑢 denotes the channel between UEs 𝑗 and 𝑘, and n𝑘 ∈ℂ𝑁𝑢×1 ∼ 𝑁 (0, 𝑁0)
represents the noise at the link of UE 𝑘. Note that the second term of (3.1) includes intra-cell and
inter-cell interference.

On the other hand, the signal received by BS 𝑏𝑙 ∈ B𝑢𝑙, sent from its served UE 𝑙 ∈ K𝑢𝑙,
y𝑢𝑙
𝑘
= [𝑦𝑢𝑙

𝑘,1, . . . , 𝑦
𝑢𝑙
𝑘,𝑆
]𝑇 ∈ ℂ𝑆×1, is written as

y𝑢𝑙𝑙 = M𝐻
𝑙 H𝐻

𝑏𝑙 ,𝑙
W𝑙d𝑙︸          ︷︷          ︸

useful signal + ISI

+
∑︁
𝑗∈K𝑢𝑙\𝑙

M𝐻
𝑙 H𝐻

𝑏𝑙 , 𝑗
W 𝑗d 𝑗︸                   ︷︷                   ︸

UE to BS interf.

+
∑︁
𝑖∈K𝑑𝑙

M𝐻
𝑙 G𝑏𝑖,𝑏𝑙M𝑖d𝑖︸                  ︷︷                  ︸

BS to BS interf.

+M𝐻
𝑙 n𝑙︸︷︷︸

noise

, (3.2)

where G𝑏𝑖,𝑏𝑙 ∈ ℂ𝑁𝑏×𝑁𝑏 denotes the channel between the BS 𝑏𝑖 ∈ B𝑑𝑙 and 𝑏𝑙. Channel reciprocity
is used to obtain the channels between UEs and BSs (H𝑙,𝑏𝑙 = H𝐻

𝑏𝑙 ,𝑙
).

Considering the reception of each individual stream 𝑠, the received signal expressions
can also be formulated as

𝑦𝑑𝑙𝑘,𝑠 = w𝐻
𝑘,𝑠H𝑏𝑘,𝑘m𝑘,𝑠𝑑𝑘,𝑠︸               ︷︷               ︸

useful signal

+
∑︁
𝑠′≠𝑠

w𝐻
𝑘,𝑠H𝑏𝑘,𝑘m𝑘,𝑠′𝑑𝑘,𝑠′︸                      ︷︷                      ︸

ISI

+
∑︁

𝑖∈K𝑑𝑙\𝑘
w𝐻
𝑘,𝑠H𝑏𝑖,𝑘M𝑖d𝑖︸                    ︷︷                    ︸

BS to UE interf.

+
∑︁
𝑗∈K𝑢𝑙

w𝐻
𝑘,𝑠Q 𝑗,𝑘W 𝑗d 𝑗︸                 ︷︷                 ︸

UE to UE interf.

+w𝐻
𝑘,𝑠n𝑘︸ ︷︷ ︸

noise

, (3.3)

𝑦𝑢𝑙𝑙,𝑠 = m𝐻
𝑙,𝑠H

𝐻
𝑏𝑙 ,𝑙

w𝑙,𝑠𝑑𝑙,𝑠︸             ︷︷             ︸
useful signal

+
∑︁
𝑠′≠𝑠

m𝐻
𝑙,𝑠H

𝐻
𝑏𝑙 ,𝑙

w𝑙,𝑠′𝑑𝑙,𝑠′︸                   ︷︷                   ︸
ISI

+
∑︁
𝑗∈K𝑢𝑙\𝑙

m𝐻
𝑙,𝑠H

𝐻
𝑏𝑙 , 𝑗

W 𝑗d 𝑗︸                   ︷︷                   ︸
UE to BS interf.

+
∑︁
𝑖∈K𝑑𝑙

m𝐻
𝑙,𝑠G𝑏𝑖,𝑏𝑙M𝑖d𝑖︸                  ︷︷                  ︸

BS to BS interf.

+m𝐻
𝑙,𝑠n𝑙︸︷︷︸

noise

. (3.4)

3.4 Centralized Approach

The BF optimization problem is to minimize the total transmit sum power, while
satisfying a minimum SINR threshold for every stream, in both the UL and DL directions. The
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power of each multi-antenna node is represented by the squared Frobenius norm of the transmit
vectors of each transmission, which are represented as the matrix M𝑖 for each user 𝑖 in the DL
direction, and as the matrix W 𝑗 for each user 𝑗 in the UL direction. Since our objective is to
minimize the sum-power, we sum the power of each transmitter in the objective function. This
problem can be conveniently expressed as an optimization task as:

min
{M𝑖,W𝑖}∀𝑖

∑︁
𝑖∈K𝑑𝑙

∥M𝑖∥2𝐹 +
∑︁
𝑗∈K𝑢𝑙

∥W 𝑗∥2𝐹 (3.5)

s. t. Γ𝑑𝑙𝑘,𝑠 ≥ 𝛾𝑘,𝑠, ∀𝑘 ∈ K𝑑𝑙, ∀𝑠 ∈ S𝑘,
Γ𝑢𝑙𝑙,𝑠 ≥ 𝛾𝑙,𝑠, ∀𝑙 ∈ K𝑢𝑙, ∀𝑠 ∈ S𝑙,

where Γ𝑑𝑙
𝑘,𝑠

and Γ𝑢𝑙
𝑙,𝑠

denote the SINR for the stream 𝑠 that is measured at UE 𝑘 in DL and at
the serving BS of UE 𝑙 in UL, respectively; 𝛾𝑖,𝑠 denotes the minimum SINR value for the
communication link of stream 𝑠 of user 𝑖, and can be written as:

Γ𝑑𝑙𝑘,𝑠 =
|w𝐻

𝑘,𝑠
H𝑏𝑘,𝑘m𝑘,𝑠 |2∑

𝑠′≠𝑠
|w𝐻

𝑘,𝑠
H𝑏𝑘,𝑘m𝑘,𝑠′ |2 +

∑
𝑖∈K𝑑𝑙\𝑘

| |w𝐻
𝑘,𝑠

H𝑏𝑖,𝑘M𝑖 | |2 +
∑
𝑗∈K𝑢𝑙
| |w𝐻

𝑘,𝑠
Q 𝑗,𝑘W 𝑗 | |2 + ||w𝑘,𝑠 | |2𝑁0

, (3.6)

Γ𝑢𝑙𝑙,𝑠 =
|m𝐻

𝑙,𝑠
H𝐻
𝑏𝑙 ,𝑙

w𝑙,𝑠 |2∑
𝑠′≠𝑠
|m𝐻

𝑙,𝑠
H𝐻
𝑏𝑙 ,𝑙

w𝑙,𝑠′ |2 +
∑

𝑗∈K𝑢𝑙\𝑙
| |m𝐻

𝑙,𝑠
H𝐻
𝑏𝑙 , 𝑗

W 𝑗 | |2 +
∑

𝑖∈K𝑑𝑙
| |m𝐻

𝑙,𝑠
G𝑏𝑖,𝑏𝑙M𝑖 | |2 + ||m𝑙,𝑠 | |2𝑁0

. (3.7)

Problem (3.5) is not jointly convex in {M𝑖}∀𝑖 and {W𝑖}∀𝑖. However, as we will
show in the sequel, it can be solved by an iterative approach, in which the transmit and receive
beamformers are calculated in an alternate fashion until some stopping criterion.

To compute the transmit terms {{M𝑖}𝑖∈K𝑑𝑙 , {W𝑖}𝑖∈K𝑢𝑙}, the receivers {{W𝑖}𝑖∈K𝑑𝑙 ,
{M𝑖}𝑖∈K𝑢𝑙} must be fixed. On the other hand, to compute the receivers {{W𝑖}𝑖∈K𝑑𝑙 , {M𝑖}𝑖∈K𝑢𝑙},
the transmitters {{M𝑖}𝑖∈K𝑑𝑙 , {W𝑖}𝑖∈K𝑢𝑙} must be fixed. In the proposed centralized approach,
these two steps are executed iteratively until some stopping criterion is reached, such as the
relative power change between iterations or a predefined maximum number of iterations.

3.4.1 Transmit Filter Optimization

In the first step of this iterative process to solve Problem (3.5), the optimization
variables are the transmit matrices {M𝑖}𝑖∈K𝑑𝑙 and {W𝑖}𝑖∈K𝑢𝑙 . This sub-problem can be written as
(3.8).

min
{M𝑖}𝑖∈K𝑑𝑙
{W𝑖}𝑖∈K𝑢𝑙

∑︁
𝑖∈K𝑑𝑙

∥M𝑖∥2𝐹 +
∑︁
𝑗∈K𝑢𝑙

∥W 𝑗∥2𝐹 (3.8)

s. t. Γ𝑑𝑙𝑘,𝑠 ≥ 𝛾𝑘,𝑠, ∀𝑘 ∈ K𝑑𝑙, ∀𝑠 ∈ S𝑘,
Γ𝑢𝑙𝑙,𝑠 ≥ 𝛾𝑙,𝑠, ∀𝑙 ∈ K𝑢𝑙, ∀𝑠 ∈ S𝑙 .
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In the sequel we show how Problem (3.8) can be cast into a semidefinite programming
(SDP) convex form.

Thus, Problem (3.8) can be written as the relaxed SDP formulation in (3.9) by
replacing the rank-one matrices m𝑖,𝑠m𝐻

𝑖,𝑠
and w𝑖,𝑠w𝐻

𝑖,𝑠
by general-rank positive semidefinite

matrices M̂𝑖,𝑠 ⪰ 0 ∈ℂ𝑁𝑏×𝑁𝑏 and Ŵ𝑖,𝑠 ⪰ 0 ∈ℂ𝑁𝑢×𝑁𝑢 respectively. Consequentially, we also write the
multi-stream multiplications M𝑖M𝐻

𝑖
and W𝑖W𝐻

𝑖
as M̂𝑖 ∈ ℂ𝑁𝑏×𝑁𝑏 and Ŵ𝑖 ∈ ℂ𝑁𝑢×𝑁𝑢 , respectively:

min
{M̂𝑖}𝑖∈K𝑑𝑙
{Ŵ𝑖}𝑖∈K𝑢𝑙

∑︁
𝑏∈B𝑑𝑙

Tr(M̃𝑏) +
∑︁
𝑘∈K𝑢𝑙

Tr(Ŵ𝑘) (3.9)

s. t. w𝐻
𝑘,𝑠H𝑏𝑘,𝑘D𝑘,𝑠H𝐻

𝑏𝑘,𝑘
w𝑘,𝑠 ≥

∑︁
𝑏′∈B𝑑𝑙\𝑏𝑘

w𝐻
𝑘,𝑠H𝑏′,𝑘M̃𝑏′H𝐻

𝑏′,𝑘w𝑘,𝑠

+
∑︁

𝑏
′′∈B𝑢𝑙

w𝐻
𝑘,𝑠

( ∑︁
𝑖∈K

𝑏
′′

Q𝑖,𝑘Ŵ𝑖Q𝐻
𝑖,𝑘

)
w𝑘,𝑠 +𝑁0, ∀𝑘 ∈ K𝑑𝑙,∀𝑠 ∈ S𝑘,

m𝐻
𝑘,𝑠U𝑘,𝑠m𝑘,𝑠 ≥

∑︁
𝑏′∈B𝑑𝑙

m𝐻
𝑘,𝑠G𝑏′,𝑏𝑘M̃𝑏′G𝐻

𝑏′,𝑏𝑘
m𝑘,𝑠

+
∑︁

𝑏
′′∈B𝑢𝑙\𝑏𝑘

m𝐻
𝑘,𝑠

( ∑︁
𝑖∈K

𝑏
′′

H𝐻
𝑏𝑘,𝑖

Ŵ𝑖H𝑏𝑘,𝑖

)
m𝑘,𝑠 +𝑁0, ∀𝑘 ∈ K𝑢𝑙,∀𝑠 ∈ S𝑘,

M̂𝑘,𝑠 ⪰ 0, ∀𝑘 ∈ K𝑑𝑙,∀𝑠 ∈ S𝑘,
Ŵ𝑘,𝑠 ⪰ 0, ∀𝑘 ∈ K𝑢𝑙,∀𝑠 ∈ S𝑘,

where K𝑏 denotes the set of users served by BS 𝑏 and

D𝑖,𝑠 =
1
𝛾𝑖,𝑠

M̂𝑖,𝑠−
∑︁
𝑠′≠𝑠

M̂𝑖,𝑠′ −
∑︁
𝑗∈K𝑏𝑖\𝑖

M̂ 𝑗, (3.10)

M̃𝑏 =
∑︁
𝑖∈K𝑏

M̂𝑖, (3.11)

U𝑖,𝑠 = H𝐻
𝑏𝑖,𝑖

(
1
𝛾𝑖,𝑠

Ŵ𝑖,𝑠−
∑︁
𝑠′≠𝑠

Ŵ𝑖,𝑠′

)
H𝑏𝑖,𝑖−

∑︁
𝑗∈K𝑏𝑖\𝑖

H𝐻
𝑏𝑖, 𝑗

Ŵ 𝑗H𝑏𝑖, 𝑗. (3.12)

By using the sets of variables presented in Table 4, the optimization problem becomes
(3.13), with SINR constraints for DL and UL rewritten as the convex conic sets in (3.14) and
(3.15).

min
𝜒𝜒𝜒,𝛀,𝜃𝜃𝜃,𝜓𝜓𝜓,

{𝑝𝑖}𝑖∈B𝑑𝑙∪K𝑢𝑙
{M̂𝑖}𝑖∈K𝑑𝑙 ,{Ŵ𝑖}𝑖∈K𝑢𝑙

∑︁
𝑖∈B𝑑𝑙∪K𝑢𝑙

𝑝𝑖 (3.13)

s. t.
(
{M̂𝑖}𝑖∈K𝑏 ,𝜒𝜒𝜒,𝜓𝜓𝜓,𝜃𝜃𝜃, 𝑝𝑏

)
∈ D𝑏, ∀𝑏 ∈ B𝑑𝑙,(

Ŵ𝑙,𝛀,𝜓𝜓𝜓,𝜃𝜃𝜃, 𝑝𝑙

)
∈ U𝑙, ∀𝑙 ∈ K𝑢𝑙,
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where 𝑝𝑖 is an auxiliary variable which accounts for the total power used by 𝑖, and

D𝑏 =

{(
{M̂𝑖}𝑖∈K𝑏 ,𝜒𝜒𝜒,𝜓𝜓𝜓,𝜃𝜃𝜃, 𝑝𝑏

)���� Tr{M̃𝑏} = 𝑝𝑏,

w𝐻
𝑘,𝑠H𝑏,𝑘D𝑘,𝑠H𝐻

𝑏,𝑘w𝑘,𝑠 ≥
∑︁

𝑏′∈B𝑑𝑙\𝑏
𝜒𝑏′,𝑘,𝑠 +

∑︁
𝑙∈K𝑢𝑙

𝜃𝑙,𝑘,𝑠 +𝑁0, ∀𝑘 ∈ K𝑏,∀𝑠 ∈ S𝑘,

w𝐻
𝑗,𝑠H𝑏, 𝑗M̃𝑏H𝐻

𝑏, 𝑗w 𝑗,𝑠 ≤ 𝜒𝑏, 𝑗,𝑠, ∀ 𝑗 ∈ K𝑑𝑙\K𝑏,∀𝑠 ∈ S 𝑗,

m𝐻
𝑙,𝑠G𝑏,𝑏𝑙M̃𝑏G𝐻

𝑏,𝑏𝑙
m𝑙,𝑠 ≤ 𝜓𝑏,𝑙,𝑠, ∀𝑙 ∈ K𝑢𝑙,∀𝑠 ∈ S𝑙,

M̂𝑘,𝑠 ⪰ 0, ∀𝑘 ∈ K𝑏,∀𝑠 ∈ S𝑘,
}
, ∀𝑏 ∈ B𝑑𝑙, (3.14)

U𝑙 =

{(
Ŵ𝑙,𝛀,𝜓𝜓𝜓,𝜃𝜃𝜃, 𝑝𝑙

)���� Tr{Ŵ𝑙} = 𝑝𝑙,

m𝐻
𝑙,𝑠H

𝐻
𝑏𝑙 ,𝑙

(
1
𝛾𝑖,𝑠

Ŵ𝑖,𝑠−
∑︁
𝑠′≠𝑠

Ŵ𝑖,𝑠′

)
H𝑏𝑙 ,𝑙m𝑙,𝑠 ≥

∑︁
𝑏∈B𝑑𝑙

𝜓𝑏,𝑙,𝑠 +
∑︁

𝑙
′∈K𝑢𝑙\𝑙

Ω𝑙
′
,𝑙,𝑠 +𝑁0,∀𝑠 ∈ S𝑙,

w𝐻
𝑘,𝑠Q𝑙,𝑘Ŵ𝑙Q𝐻

𝑙,𝑘w𝑘,𝑠 ≤ 𝜃𝑙,𝑘,𝑠, ∀𝑘 ∈ K𝑑𝑙,∀𝑠 ∈ S𝑘,
m𝐻

𝑗,𝑠H
𝐻
𝑏 𝑗,𝑙

Ŵ𝑙H𝑏 𝑗,𝑙m 𝑗,𝑠 ≤ Ω𝑙, 𝑗,𝑠, ∀ 𝑗 ∈ K𝑢𝑙\𝑙,∀𝑠 ∈ S 𝑗,

Ŵ𝑙,𝑠 ⪰ 0,∀𝑠 ∈ S𝑙,
}
, ∀𝑙 ∈ K𝑢𝑙 . (3.15)

Table 4 – Inter-cell interference sets

Set Inter-cell interference
𝜒𝜒𝜒 = {𝜒𝑏,𝑘,𝑠}𝑏∈B𝑑𝑙 , 𝑘∈K𝑑𝑙\K𝑏,∀𝑠∈S𝑘 DL BS to DL UE

𝜓𝜓𝜓 = {𝜓𝑏,𝑘,𝑠}𝑏∈B𝑑𝑙 , 𝑘∈K𝑢𝑙 ,∀𝑠∈S𝑘 DL BS to UL BS

𝛀 = {Ω𝑙,𝑘,𝑠}𝑙∈K𝑢𝑙 , 𝑘∈K𝑢𝑙\K𝑏,∀𝑠∈S𝑘 UL UE to UL BS

𝜃𝜃𝜃 = {𝜃𝑙,𝑘,𝑠}𝑙∈K𝑢𝑙 , 𝑘∈K𝑑𝑙 ,∀𝑠∈S𝑘 UL UE to DL UE

Source: Created by the author.

If perfect CSI is available, the solution of an SDP problem similar to Problem (3.13)
is shown by (107) to satisfy the rank-one requirement. The analysis presented in that work is
also valid in our case and the optimal {M𝑖}𝑖∈K𝑑𝑙 and {W𝑖}𝑖∈K𝑢𝑙 can be extracted from {M̂𝑖}𝑖∈K𝑑𝑙
and {Ŵ𝑖}𝑖∈K𝑢𝑙 .

3.4.2 Receive Filter Optimization

In the second step, the receive vectors are calculated, while keeping the transmit
filters fixed. The optimal unit norm receivers {w𝑖,𝑠}𝑖∈K𝑑𝑙 ,𝑠∈S𝑖 and {m𝑖,𝑠}𝑖∈K𝑢𝑙 ,𝑠∈S𝑖 are the ones
that maximize each stream SINR, and can be calculated using the minimum mean square error
(MMSE) approach as
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w𝑘,𝑠 =
w̄𝑘,𝑠

∥w̄𝑘,𝑠∥
,∀𝑘 ∈ K𝑑𝑙,∀𝑠 ∈ S𝑘, (3.16)

w̄𝑘,𝑠 =

( ∑︁
𝑖∈K𝑑𝑙

H𝑏𝑖,𝑘M𝑖M𝐻
𝑖 H𝐻

𝑏𝑖,𝑘
+

∑︁
𝑗∈K𝑢𝑙

Q 𝑗,𝑘W 𝑗W𝐻
𝑗 Q𝐻

𝑗,𝑘 +𝑁0I𝑁𝑢
)−1

H𝑏𝑘,𝑘m𝑘,𝑠, (3.17)

m𝑘,𝑠 =
m̄𝑘,𝑠

∥m̄𝑘,𝑠∥
,∀𝑘 ∈ K𝑢𝑙,∀𝑠 ∈ S𝑘, (3.18)

m̄𝑘,𝑠 =

( ∑︁
𝑖∈K𝑑𝑙

G𝑏𝑖,𝑏𝑘M𝑖M𝐻
𝑖 G𝐻

𝑏𝑖,𝑏𝑘
+

∑︁
𝑗∈K𝑢𝑙

H𝐻
𝑏𝑘, 𝑗

W 𝑗W𝐻
𝑗 H𝑏𝑘, 𝑗 +𝑁0I𝑁𝑏

)−1
H𝐻
𝑏𝑘,𝑘

w𝑘,𝑠. (3.19)

3.4.3 Centralized Algorithm

In the centralized coordination approach a master entity (such as a central node or a
cloud radio access network controller) is in charge of performing all the BF computation, taking
into account the relationship among the cells. In order to do this, the central controller must
acquire knowledge of the channels between all BSs and all users in the system, i.e., a global
CSI, which can be achieved by each BS sending its local CSI to a central controlling unit via a
backhaul network. In addition, the filters resulting from the BF computations must be sent back
to the respective transmitters. Alternatively, centralized approaches are also commonly defined
with each BS performing its computations. For this, every BS must have access to global CSI via
backhaul sharing.

To solve Problem (3.5), we propose the following iterative algorithm, denoted as
Algorithm 1, which must be computed in a centralized way. This requirement is imposed by the
interference terms in the sets 𝜒𝜒𝜒,𝜓𝜓𝜓,𝛀, and 𝜃𝜃𝜃, which are variables of the transmit optimization
Problem (3.13) and are each shared by two nodes (the interferer and the interfered), coupling
their solutions. Thus, the optimal values of these variables are dependent on the decision of
multiple nodes. Consequently, the Problem (3.13) cannot be solved independently by each node.
Therefore, in a dynamic TDD network, coupled nodes are the BSs or UEs that cause interference
or disturbance to one another, i.e., the selection of a BF filter in one node affects the selection of
the (receive or transmit) filter at the other node.

Algorithm 1 can be conveniently initialized by setting the transmit vectors using
some simple and suitable precoding scheme such as maximum ratio transmission (MRT). After
the initialization, the algorithm performs the calculation of the receive and transmit filters
iteratively until a predefined convergence criterion is met.

The alternate optimization of receive and transmit vectors is well known and has
been used in a variety of scenarios. However, to the best of our knowledge this is the first attempt
to use it in a dynamic TDD scenario to optimize both UL and DL transceivers. This is not a
straightforward task, since the dynamic TDD scenario adds a large set of variables and a complex
cross-interference structure to the problem. It is also important to state that the SDP optimization
step (step 4 in algorithm 1) performed to compute the transmit BF vectors adds to the total
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complexity of the solution, and it is more complex to solve such class of problems than to solve
closed form equations, for example. However, such convex problems can be efficiently solved
by standard convex optimization tools (for example CVX (40)), and a worst case complexity
analysis which is also valid for our case is presented by (71).

Algorithm 1 Centralized dynamic TDD BF

1: Initialize the precoders {M𝑖}𝑖∈K𝑑𝑙 and {W𝑖}𝑖∈K𝑢𝑙 .
2: repeat
3: Compute receivers {W𝑖}𝑖∈K𝑑𝑙 and {M𝑖}𝑖∈K𝑢𝑙 (3.16), (3.18).

4: Compute precoders {M𝑖}𝑖∈K𝑑𝑙 and {W𝑖}𝑖∈K𝑢𝑙 (3.13).

5: until Some convergence criterion

The convergence and optimality of Algorithm 1 as the solution for the Problem in
(3.5) is discussed in Section 3.6.

3.5 Decentralized Approach via ADMM

In realistic scenarios, the requirement of full CSI knowledge at a central node, or
in every node, is impractical, since the transmission of such channel information requires huge
amounts of signaling between nodes. On the other hand, decentralized approaches are better
suited for practical scenarios, since they require only local CSI knowledge.

In a coordinated decentralized approach to solve the proposed BF problem, Problem
(3.13) must be divided into subproblems, each solved by one transmitter and each receiver must
be calculated locally. In order to do this, one requirement is that each node must have access
to channel state information about the links between itself and the other nodes, i.e. CSI at the
transmitter and at the receiver. This can be acquired using a precoded pilot signaling scheme.

In addition to that, the nodes still need to share between themselves some additional
parameters via backhaul in order to coordinate the optimization procedure. However, it is
necessary to keep the amount of backhaul signaling at a minimum. The signaling strategy to
achieve this goal is detailed in Section 3.7.

In order to reformulate (3.13) into a distributable form, let us first introduce a new
set of variables in Table 5, which account for the node-specific inter-cell interference links.
The variables in these sets are called local variables and will be used to decouple the global
interference terms (𝜒𝜒𝜒,𝜓𝜓𝜓,𝛀,𝜃𝜃𝜃).

For each of this node specific interference terms there are linear mapping matrices
P𝜒

𝑖
, PΩ

𝑖
, P𝜃

𝑖
and P𝜓

𝑖
∈ {0,1}, which relate them to the global interference variables, such that

𝜒𝜒𝜒𝑖 = P𝜒

𝑖
𝜒𝜒𝜒,𝛀𝑖 = PΩ

𝑖
𝛀, 𝜃𝜃𝜃𝑖 = P𝜃

𝑖
𝜃𝜃𝜃 and 𝜓𝜓𝜓𝑖 = P𝜓

𝑖
𝜓𝜓𝜓 ∀𝑖 ∈ B𝑑𝑙 ∪K𝑢𝑙. This way, we can rewrite the

problem of (3.13) in a form which each SINR constraint is expressed using independent convex
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Table 5 – Node specific inter-cell interference sets.

Node Inter-cell interference set
𝜒𝜒𝜒𝑏 = {𝜒𝑏,𝑖,𝑠,𝜒𝑏′,𝑖′,𝑠}𝑖∈K𝑑𝑙\K𝑏, 𝑏′∈B𝑑𝑙\𝑏,𝑖′∈K𝑏,∀𝑠

𝑏 ∈ B𝑑𝑙 𝜓𝜓𝜓𝑏 = {𝜓𝑏,𝑖,𝑠}𝑖∈K𝑢𝑙 ,∀𝑠
𝜃𝜃𝜃𝑏 = {𝜃𝑙,𝑖,𝑠}𝑙∈K𝑢𝑙 , 𝑖∈K𝑏,∀𝑠

𝛀𝑙 = {Ω𝑙,𝑖,𝑠,Ω𝑙′,𝑙,𝑠}𝑖∈K𝑢𝑙\𝑙,𝑙′∈K𝑢𝑙\𝑙,∀𝑠
𝑙 ∈ K𝑢𝑙 𝜓𝜓𝜓𝑙 = {𝜓𝑏,𝑙,𝑠}𝑏∈B𝑑𝑙 ,∀𝑠

𝜃𝜃𝜃𝑙 = {𝜃𝑙,𝑖,𝑠}𝑖∈K𝑑𝑙 ,∀𝑠

Source: Created by the author.

sets as (3.20).

min
𝜒𝜒𝜒𝑏 ,𝛀𝑙 ,𝜃𝜃𝜃𝑖𝜓𝜓𝜓𝑖 ,𝜌𝑖
𝜒𝜒𝜒,𝛀,𝜃𝜃𝜃,𝜓𝜓𝜓,𝑝𝑖

{M̂𝑖}𝑖∈K𝑑𝑙 ,{Ŵ𝑖}𝑖∈K𝑢𝑙

∑︁
𝑖∈B𝑑𝑙∪K𝑢𝑙

𝑝𝑖 (3.20)

s. t.
(
{M̂𝑖}𝑖∈K𝑏 ,𝜒𝜒𝜒𝑏,𝜓𝜓𝜓𝑏,𝜃𝜃𝜃𝑏, 𝑝𝑏

)
∈ D𝑏, ∀𝑏 ∈ B𝑑𝑙,(

Ŵ𝑙,𝛀𝑙,𝜓𝜓𝜓𝑙,𝜃𝜃𝜃𝑙, 𝑝𝑙

)
∈ U𝑙, ∀𝑙 ∈ K𝑢𝑙,

𝜒𝜒𝜒𝑏 = P𝜒

𝑏
𝜒𝜒𝜒, ∀𝑏 ∈ B𝑑𝑙,

𝛀𝑙 = PΩ
𝑙 𝛀, ∀𝑙 ∈ K𝑢𝑙,

𝜃𝜃𝜃𝑖 = P𝜃
𝑖 𝜃𝜃𝜃, 𝑖 ∈ B𝑑𝑙 ∪K𝑢𝑙,

𝜓𝜓𝜓𝑖 = P𝜓

𝑖
𝜓𝜓𝜓, 𝑖 ∈ B𝑑𝑙 ∪K𝑢𝑙,

𝑝𝑖 = 𝜌𝑖, 𝑖 ∈ B𝑑𝑙 ∪K𝑢𝑙,

where 𝜌𝑖 ≥ 0,∀ 𝑖 ∈ B𝑑𝑙 ∪K𝑢𝑙 are slack variables introduced in order to impose the power penalty
parameter term.

The solution of optimization problem described in (3.20) requires centralized ex-
ecution, since it still presents the global interference variables that couple different nodes in
the network. However, it is written in a way that these global variables are organized to fit into
the recently presented node-specific interference variables. Such formulation allow us to use
a notorious iterative mathematical method for distributed optimization, the ADMM, as it is
presented in the next section.

3.5.1 ADMM Decentralized Solution

A promising approach to solve, in a decentralized way, optimization problems like
the one in (3.20) is ADMM (72). The ADMM solution consists of three iterative steps: 1) update
of local primal variables 𝜒𝜒𝜒𝑏,𝛀𝑙,𝜃𝜃𝜃𝑖,𝜓𝜓𝜓𝑖, 𝑝𝑖 2) update of global primal variables 𝜒𝜒𝜒,𝛀,𝜃𝜃𝜃,𝜓𝜓𝜓, 𝜌𝜌𝜌 and
3) update of dual variables, 𝜆𝜆𝜆𝜒

𝑏
, 𝜆𝜆𝜆Ω𝑙 , 𝜆𝜆𝜆

𝜃
𝑖 , 𝜆𝜆𝜆

𝜓

𝑖
, 𝜆

𝜌

𝑖
, related to each equality constraint in Problem

(3.20).
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In an ADMM decentralized solution, each node must compute its own local variables
independently, and then share its values to the other nodes, which compute their versions of
the global variables. After that, the dual variables are calculated to be used in the next iteration
of the ADMM algorithm. The solutions iterates towards an optimum value of sum-power and
interference terms.

3.5.1.1 Local Variables Update

In the first ADMM step for our problem, we seek the update of local primal variables
𝜒𝜒𝜒𝑏,𝛀𝑙,𝜃𝜃𝜃𝑖,𝜓𝜓𝜓𝑖, 𝑝𝑖 .The local variables update at iteration (𝑡 +1) is given by the argument of the
minimization of the augmented Lagrangian of (3.20) and is given for each DL BS 𝑏 as

{𝜒𝜒𝜒𝑏(𝑡 +1),𝜃𝜃𝜃𝑏(𝑡 +1),𝜓𝜓𝜓𝑏(𝑡 +1), 𝑝𝑏(𝑡 +1)} =

argmin
𝜒𝜒𝜒𝑏 ,𝜃𝜃𝜃𝑏
𝜓𝜓𝜓𝑏 ,𝑝𝑏

{M̂𝑖}𝑖∈K𝑏


(
𝑝𝑏 +

𝑐

2
∥P𝜒

𝑏
𝜒𝜒𝜒(𝑡) −𝜒𝜒𝜒𝑏∥

2 + 𝑐
2
∥P𝜃

𝑏𝜃𝜃𝜃(𝑡) −𝜃𝜃𝜃𝑏∥
2 + 𝑐

2
∥P𝜓

𝑏
𝜓𝜓𝜓(𝑡) −𝜓𝜓𝜓𝑏∥

2
+

𝑐

2
(𝜌𝑏(𝑡) − 𝑝𝑏)2− 𝜆𝜆𝜆𝜒𝑏

𝑇 (𝑡)𝜒𝜒𝜒𝑏− 𝜆𝜆𝜆𝜃𝑏
𝑇 (𝑡)𝜃𝜃𝜃𝑏− 𝜆𝜆𝜆𝜓𝑏

𝑇
(𝑡)𝜓𝜓𝜓𝑏− 𝜆

𝜌

𝑏
(𝑡)𝑝𝑏

)  (3.21)

s. t.
(
{M̂𝑖}𝑖∈K𝑏 ,𝜒𝜒𝜒𝑏,𝜓𝜓𝜓𝑏,𝜃𝜃𝜃𝑏, 𝑝𝑏

)
∈ D𝑏,

and for each UL UE 𝑙 as

{𝛀𝑙 (𝑡 +1),𝜃𝜃𝜃𝑙 (𝑡 +1),𝜓𝜓𝜓𝑙 (𝑡 +1), 𝑝𝑙 (𝑡 +1)} =

argmin
𝛀𝑙 ,𝜃𝜃𝜃𝑙
𝜓𝜓𝜓𝑙 ,𝑝𝑙

Ŵ𝑙


(
𝑝𝑙 +

𝑐

2
∥P𝜒

𝑙
𝛀(𝑡) −𝛀𝑙∥2 +

𝑐

2
∥P𝜃

𝑙 𝜃𝜃𝜃(𝑡) −𝜃𝜃𝜃𝑙∥
2 + 𝑐

2
∥P𝜓

𝑙
𝜓𝜓𝜓(𝑡) −𝜓𝜓𝜓𝑙∥

2
+

𝑐

2
(𝜌𝑙 (𝑡) − 𝑝𝑙)2− 𝜆𝜆𝜆Ω𝑙

𝑇 (𝑡)𝛀𝑙 − 𝜆𝜆𝜆𝜃𝑙
𝑇 (𝑡)𝜃𝜃𝜃𝑙 − 𝜆𝜆𝜆𝜓𝑙

𝑇
(𝑡)𝜓𝜓𝜓𝑙 − 𝜆

𝜌

𝑙
(𝑡)𝑝𝑙

)  (3.22)

s. t.
(
Ŵ𝑙,𝛀𝑙,𝜓𝜓𝜓𝑙,𝜃𝜃𝜃𝑙, 𝑝𝑙

)
∈ U𝑙,

where 𝑐 ≥ 0 is the penalty parameter.

3.5.1.2 Global Variables Update

In the second ADMM step for our problem, we perform the update of the global
primal variables 𝜒𝜒𝜒,𝛀,𝜃𝜃𝜃,𝜓𝜓𝜓, and 𝜌𝜌𝜌. The global variables update is also given by the argument of
the minimization of the augmented Lagrangian of (3.20), which has closed form solution given
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as

𝜒𝜒𝜒(𝑡 +1) = P𝜒
†
(
�̃�𝜒𝜒(𝑡 +1) − 1

𝑐
�̃�𝜆𝜆𝜒(𝑡)

)
, (3.23)

𝛀(𝑡 +1) = PΩ
†
(
Ω̃(𝑡 +1) − 1

𝑐
�̃�𝜆𝜆Ω (𝑡)

)
, (3.24)

𝜃𝜃𝜃(𝑡 +1) = P𝜃
†
(
�̃�𝜃𝜃(𝑡 +1) − 1

𝑐
�̃�𝜆𝜆𝜃(𝑡)

)
, (3.25)

𝜓𝜓𝜓(𝑡 +1) = P𝜓
†
(
�̃�𝜓𝜓(𝑡 +1) − 1

𝑐
�̃�𝜆𝜆𝜓(𝑡)

)
, (3.26)

𝜌𝑖(𝑡 +1) = 𝑝𝑖(𝑡 +1) − 1
𝑐
𝜆
𝜌

𝑖
(𝑡), ∀𝑖 ∈ B𝑑𝑙 ∪K𝑢𝑙, (3.27)

where P𝜒 = [P𝜒

1
𝑇
, . . . ,P𝜒

𝐵

𝑇 ]
𝑇
, �̃�𝜒𝜒 = [𝜒𝜒𝜒1

𝑇 , . . . ,𝜒𝜒𝜒𝐵
𝑇 ]𝑇 , �̃�𝜆𝜆𝜒 = [𝜆𝜆𝜆𝜒1

𝑇
, . . . , 𝜆𝜆𝜆

𝜒

𝐵

𝑇 ]𝑇 and the other variables
are defined similarly.

This step can still be further simplified. Note that a specific node does not need to
compute every element in the global sets. Each node only requires elements of the global sets
which have information about interference links related to itself. The reason for that is because
the other two ADMM steps (described in Subsections 3.5.1.1 and 3.5.1.3) multiply the global
variables by the node specific linear mapping matrices, what yields a node-specific version of
the global variable, since the terms not related to the node are multiplied by 0.

This way, each of the elements in the global sets can be computed as

𝜒𝑏,𝑖,𝑠(𝑡 +1) = 1
2

(
𝜒𝑏𝑏,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
𝜒𝑏,𝑖,𝑠
𝑏
(𝑡)

)
+1

2

(
𝜒
𝑏𝑖
𝑏,𝑖,𝑠
(𝑡 +1) − 1

𝑐
𝜆
𝜒𝑏,𝑖,𝑠
𝑏𝑖
(𝑡)

)
, (3.28)

Ω𝑙,𝑖,𝑠(𝑡 +1) = 1
2

(
Ω𝑙
𝑙,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
Ω𝑙,𝑖,𝑠

𝑙
(𝑡)

)
+1

2

(
Ω𝑖
𝑙,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
Ω𝑙,𝑖,𝑠

𝑖
(𝑡)

)
, (3.29)

𝜃𝑙,𝑖,𝑠(𝑡 +1) = 1
2

(
𝜃𝑙𝑙,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
𝜃𝑙,𝑖,𝑠
𝑙
(𝑡)

)
+1

2

(
𝜃𝑖𝑙,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
𝜃𝑙,𝑖,𝑠
𝑖
(𝑡)

)
, (3.30)

𝜓𝑏,𝑖,𝑠(𝑡 +1) = 1
2

(
𝜓𝑏
𝑏,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
𝜓𝑏,𝑖,𝑠
𝑏
(𝑡)

)
+1

2

(
𝜓𝑖
𝑏,𝑖,𝑠(𝑡 +1) − 1

𝑐
𝜆
𝜓𝑏,𝑖,𝑠
𝑖
(𝑡)

)
, (3.31)

where 𝜒𝑏
𝑏,𝑖,𝑠

denotes the element 𝜒𝑏,𝑖,𝑠 in the local variables of BS 𝑏, and 𝜆
𝜒𝑏,𝑖,𝑠
𝑏

stands for dual
element of BS 𝑏 corresponding to 𝜒𝑏,𝑖,𝑠. The other variables are defined similarly.

By using this approach, in order to calculate the global variables that are necessary
for it, each node only needs to have access to the result of the local expression 1

2 (primal− 1
𝑐
dual)

from the coupled nodes. For example, BS 𝑏 needs to have access to its own local expression and
to the result of the expression (𝜒𝑏𝑖

𝑏,𝑖,𝑠
(𝑡 +1) − 1

𝑐
𝜆
𝜒𝑏,𝑖,𝑠
𝑏𝑖
(𝑡)) computed locally at BS 𝑏𝑖, in order to

compute 𝜒𝑏,𝑖,𝑠.

3.5.1.3 Dual Variables Update

In the third, and last, ADMM step for our problem, we perform the update of the
dual variables 𝜆𝜆𝜆𝜒

𝑏
, 𝜆𝜆𝜆Ω𝑙 , 𝜆𝜆𝜆

𝜃
𝑖 , 𝜆𝜆𝜆

𝜓

𝑖
, 𝜆

𝜌

𝑖
, which can be done by the subgradient method (109) expressed
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as

𝜆𝜆𝜆
𝜒

𝑏
(𝑡 +1) = 𝜆𝜆𝜆

𝜒

𝑏
(𝑡) + 𝑐(𝑃𝑃𝑃𝜒

𝑏
𝜒𝜒𝜒(𝑡 +1) −𝜒𝜒𝜒𝑏(𝑡 +1)), (3.32)

𝜆𝜆𝜆Ω𝑙 (𝑡 +1) = 𝜆𝜆𝜆Ω𝑙 (𝑡) + 𝑐(𝑃𝑃𝑃Ω𝑙 𝛀(𝑡 +1) −𝛀𝑙 (𝑡 +1)), (3.33)

𝜆𝜆𝜆𝜃𝑖 (𝑡 +1) = 𝜆𝜆𝜆𝜃𝑖 (𝑡) + 𝑐(𝑃𝑃𝑃𝜃𝑖 𝜃𝜃𝜃(𝑡 +1) −𝜃𝜃𝜃𝑖(𝑡 +1)), (3.34)

𝜆𝜆𝜆
𝜓

𝑖
(𝑡 +1) = 𝜆𝜆𝜆

𝜓

𝑖
(𝑡) + 𝑐(𝑃𝑃𝑃𝜓

𝑖
𝜓𝜓𝜓(𝑡 +1) −𝜓𝜓𝜓𝑖(𝑡 +1)), (3.35)

𝜆
𝜌

𝑖
(𝑡 +1) = 𝜆

𝜌

𝑖
(𝑡) + 𝑐(𝜌𝑖(𝑡 +1) − 𝑝𝑖(𝑡 +1)). (3.36)

3.5.2 Decentralized Algorithm

A decentralized version of Algorithm 1 can be written based on the proposed ADMM
solution as Algorithm 2.

Algorithm 2 Decentralized dynamic TDD BF

1: Initialize 𝜒𝜒𝜒, 𝛀, 𝜃𝜃𝜃, 𝜓𝜓𝜓 and 𝜌𝜌𝜌.

2: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Initialize DL precoders {M𝑖}𝑖∈K𝑏;
UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Initialize UL precoders W𝑙.

3: repeat
4: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Use {M𝑖}𝑖∈K𝑏 to transmit pilots;

UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Use W𝑙 to transmit pilots.

5: BS 𝑏,∀𝑏 ∈ B𝑢𝑙: Compute receivers {M𝑖}𝑖∈K𝑏 (3.18);

UE 𝑘,∀𝑘 ∈ K𝑑𝑙: Compute receivers W𝑘 (3.16).

6: BS 𝑏,∀𝑏 ∈ B𝑢𝑙: send precoded pilots;

UE 𝑘,∀𝑘 ∈ K𝑑𝑙: send precoded pilots.

7: repeat
8: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Compute 𝜒𝜒𝜒𝑏,𝜃𝜃𝜃𝑏,𝜓𝜓𝜓𝑏 and 𝑝𝑏 (3.21);

UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Compute 𝛀𝑙,𝜃𝜃𝜃𝑙,𝜓𝜓𝜓𝑙 and 𝑝𝑙 (3.22).

9: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Share the results of 1
2 (primal− 1

𝑐
dual) to coupled nodes;

UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Share the results of 1
2 (primal− 1

𝑐
dual) to coupled nodes.

10: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Update its global variables terms in 𝜒𝜒𝜒, 𝜃𝜃𝜃, 𝜓𝜓𝜓, and 𝜌𝜌𝜌 (3.27) to (3.31);

UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Update its global variables terms in 𝛀, 𝜃𝜃𝜃, 𝜓𝜓𝜓, and 𝜌𝜌𝜌 (3.27) to (3.31).

11: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Update the dual variables 𝜆𝜆𝜆𝜒
𝑏
, 𝜆𝜆𝜆𝜃𝑏 , 𝜆𝜆𝜆

𝜓

𝑏
and 𝜆

𝜌

𝑏
(3.32) to (3.36);

UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Update the dual variables 𝜆𝜆𝜆Ω𝑙 , 𝜆𝜆𝜆
𝜃
𝑙 , 𝜆𝜆𝜆

𝜓

𝑙
and 𝜆

𝜌

𝑙
(3.32) to (3.36).

12: until Some stop criterion

13: BS 𝑏,∀𝑏 ∈ B𝑑𝑙: Solve (3.21) for {M̂𝑖}𝑖∈K𝑏;
UE 𝑙,∀𝑙 ∈ K𝑢𝑙: Solve (3.22) for {Ŵ𝑙}.

14: until Some stop criterion.

Note that Algorithm 2 performs an alternate optimization of transmitters and re-
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ceivers as in the centralized approach. This can be noted in steps 5 and 13, where receivers
and transmitters are computed, respectively. It can also be noted that the ADMM approach is
used in order to compute the inter-cell interference terms (𝜒𝜒𝜒,𝛀,𝜃𝜃𝜃 and 𝜓𝜓𝜓 ), which are used in the
decentralized transmitter optimization. Steps 8, 10 and 11 relate to the local, global and dual
variables update in the ADMM approach. However, in order for Algorithm 2 to be fully func-
tional, it needs to guarantee that the information required by each node to perform the necessary
optimization is available. For that, steps 6 and 9 describe the required signaling procedure, with
over-the-air precoded pilot transmission and backhaul communication. These steps are further
detailed and discussed in Section 3.7.

In our later discussions, we refer to the loop for the alternate optimization, defined
by steps 3 and 14, as outer loop, and to the loop for the ADMM solution, defined by steps 7 and
12, as inner loop.

3.6 Convergence Analysis

In this section we present the convergence analysis for both algorithms 1 and 2. In
Subsection 3.6.1 we present a proof of convergence for the alternate optimization of transmitters
and receivers, which defines Algorithm 1, but also serves as basis for Algorithm 2. In Subsection
3.6.2 the convergence of the ADMM decentralized approach in Algorithm 2 is discussed.

3.6.1 Convergence Analysis for the Alternate Optimization

In this subsection we show that the proposed alternate optimization of transmitters
and receivers, as presented in Algorithm 1, converges globally to the set of Karush-Kuhn-Tucker
(KKT) conditions for the proposed optimization Problem (3.5). This proof is based on the
convergence analysis for a MIMO multi-user DL scenario presented by (108).

For the sake of simplicity, the convergence analysis is performed for the case in
which each user transmits one stream, however, it also applies to the multi-stream case. This way
the transmit and receive matrices M𝑖 and W𝑖 are written as the vectors m𝑖 and m𝑖, respectively,
and our main optimization Problem (3.5) becomes

min
{m𝑖,m𝑖}∀𝑖

∑︁
𝑖∈K𝑑𝑙

∥m𝑖∥2 +
∑︁
𝑗∈K𝑢𝑙

∥m 𝑗∥2 (3.37)

s. t. Γ𝑑𝑙𝑘 ≥ 𝛾𝑘, ∀𝑘 ∈ K𝑑𝑙,

Γ𝑢𝑙𝑙 ≥ 𝛾𝑙, ∀𝑙 ∈ K𝑢𝑙 .
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Let us first define the Lagrange function associated with Problem (3.37) as

L(m,w, 𝜆𝜆𝜆) ≜
∑︁
𝑖∈K𝑑𝑙

∥m𝑖∥22 +
∑︁
𝑗∈K𝑢𝑙

∥w 𝑗∥22

+
∑︁
𝑘∈K𝑑𝑙

𝜆𝑘

( ∑︁
𝑖∈K𝑑𝑙\𝑘

|w𝐻
𝑘 H𝑏𝑖,𝑘m𝑖 |2 +

∑︁
𝑗∈K𝑢𝑙

|w𝐻
𝑘 Q 𝑗,𝑘w 𝑗 |2 + ||w𝑘 | |2𝑁0−

1
𝛾𝑘
|w𝐻

𝑘 H𝑏𝑘,𝑘m𝑘 |2
)

+
∑︁
𝑙∈K𝑢𝑙

𝜆 𝑙

( ∑︁
𝑗∈K𝑢𝑙\𝑙

|m𝐻
𝑙 H𝐻

𝑏𝑙 , 𝑗
w 𝑗 |2 +

∑︁
𝑖∈K𝑑𝑙

|m𝐻
𝑙 G𝑏𝑖,𝑏𝑙m𝑖 |2 + ||m𝑙 | |2𝑁0−

1
𝛾𝑙
|m𝐻

𝑙 H𝐻
𝑏𝑙 ,𝑙

w𝑙 |2
)
, (3.38)

where 𝜆𝜆𝜆 = [𝜆1, 𝜆2, . . . , 𝜆𝐾] is the Lagrange multiplier vector. Thus, the KKT conditions for
Problem (3.5) are given by

𝜆𝑘

( ∑︁
𝑖∈K𝑑𝑙\𝑘

H𝑏𝑖,𝑘m𝑖m𝐻
𝑖 H𝐻

𝑏𝑖,𝑘
+

∑︁
𝑗∈K𝑢𝑙

Q 𝑗,𝑘w 𝑗w𝐻
𝑗 Q𝐻

𝑗,𝑘 + I𝑁0−
1
𝛾𝑘

H𝑏𝑘,𝑘m𝑘m𝐻
𝑘 H𝐻

𝑏𝑘,𝑘

)
w𝑘 = 0, ∀𝑘 ∈ K𝑑𝑙,

(3.39)

𝜆 𝑙

( ∑︁
𝑗∈K𝑢𝑙\𝑙

H𝐻
𝑏𝑙 , 𝑗

w 𝑗w𝐻
𝑗 H𝑏𝑙 , 𝑗 +

∑︁
𝑖∈K𝑑𝑙

G𝑏𝑖,𝑏𝑙m𝑖m𝐻
𝑖 G𝐻

𝑏𝑖,𝑏𝑙
+ I𝑁0−

1
𝛾𝑙

H𝐻
𝑏𝑙 ,𝑙

w𝑙w𝐻
𝑙 H𝑏𝑙 ,𝑙

)
m𝑙 = 0, ∀𝑙 ∈ K𝑢𝑙,

(3.40)

(
I− 𝜆𝑘

𝛾𝑘
H𝐻
𝑏𝑘,𝑘

w𝑘w𝐻
𝑘 H𝑏𝑘,𝑘 +

∑︁
𝑖∈K𝑑𝑙\𝑘

𝜆 𝑖H𝐻
𝑏𝑘,𝑖

w𝑖w𝐻
𝑖 H𝑏𝑘,𝑖 +

∑︁
𝑙∈K𝑢𝑙

𝜆 𝑙G𝐻
𝑏𝑘,𝑏𝑙

m𝑙m𝐻
𝑙 G𝑏𝑘,𝑏𝑙

)
m𝑘 = 0, ∀𝑘 ∈ K𝑑𝑙,

(3.41)

(
I− 𝜆 𝑙

𝛾𝑙
H𝑏𝑙 ,𝑙m𝑙m𝐻

𝑙 H𝐻
𝑏𝑙 ,𝑙
+

∑︁
𝑗∈K𝑢𝑙\𝑙

𝜆 𝑗H𝑏 𝑗,𝑙m 𝑗m𝐻
𝑗 H𝐻

𝑏𝑙 , 𝑗
+

∑︁
𝑘∈K𝑑𝑙

Q𝐻
𝑙,𝑘w𝑘w𝐻

𝑘 Q𝑙,𝑘

)
w𝑙 = 0, ∀𝑙 ∈ K𝑢𝑙,

(3.42)

𝜆𝑘

( ∑︁
𝑖∈K𝑑𝑙\𝑘

|w𝐻
𝑘 H𝑏𝑖,𝑘m𝑖 |2 +

∑︁
𝑗∈K𝑢𝑙

|w𝐻
𝑘 Q 𝑗,𝑘w 𝑗 |2 + ||w𝑘 | |2𝑁0−

1
𝛾𝑘
|w𝐻

𝑘 H𝑏𝑘,𝑘m𝑘 |2
)
= 0, ∀𝑘 ∈ K𝑑𝑙,

(3.43)

𝜆 𝑙

( ∑︁
𝑗∈K𝑢𝑙\𝑙

|m𝐻
𝑙 H𝐻

𝑏𝑙 , 𝑗
w 𝑗 |2 +

∑︁
𝑖∈K𝑑𝑙

|m𝐻
𝑙 G𝑏𝑖,𝑏𝑙m𝑖 |2 + ||m𝑙 | |2𝑁0−

1
𝛾𝑙
|m𝐻

𝑙 H𝐻
𝑏𝑙 ,𝑙

w𝑙 |2
)
= 0, ∀𝑙 ∈ K𝑢𝑙,

(3.44)

𝛾𝑘

( ∑︁
𝑖∈K𝑑𝑙\𝑘

|w𝐻
𝑘 H𝑏𝑖,𝑘m𝑖 |2 +

∑︁
𝑗∈K𝑢𝑙

|w𝐻
𝑘 Q 𝑗,𝑘w 𝑗 |2 + ||w𝑘 | |2𝑁0

)
≤ |w𝐻

𝑘 H𝑏𝑘,𝑘m𝑘 |2, ∀𝑘 ∈ K𝑑𝑙, (3.45)
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𝛾𝑙

( ∑︁
𝑗∈K𝑢𝑙\𝑙

|m𝐻
𝑙 H𝐻

𝑏𝑙 , 𝑗
w 𝑗 |2 +

∑︁
𝑖∈K𝑑𝑙

|m𝐻
𝑙 G𝑏𝑖,𝑏𝑙m𝑖 |2 + ||m𝑙 | |2𝑁0

)
≤ |m𝐻

𝑙 H𝐻
𝑏𝑙 ,𝑙

w𝑙 |2, ∀𝑙 ∈ K𝑢𝑙, (3.46)

𝜆𝑘 ≥ 0, ∀𝑘, (3.47)

where equations (3.39) to (3.42) represent the first-order optimality conditions with respect to
DL and UL receive and DL and UL transmitters, respectively. Equations (3.43) and (3.44) are the
complementary conditions for DL and UL. Equations (3.45) and (3.46) are the primal feasibility
conditions for DL and UL and (3.47) is the dual feasibility condition.

Proposition 1. Let {(m𝑟,w𝑟, 𝜆𝜆𝜆𝑟)}∞
𝑟=1 denote a sequence generated by Algorithm 1. Suppose

(m0,w0, 𝜆𝜆𝜆0) is a feasible solution for Problem (3.37), then every limit point of {(m𝑟,w𝑟, 𝜆𝜆𝜆𝑟)}∞
𝑟=1

is a KKT point of Problem (3.37).

Proof. The state of the transmitters and receivers at the steps of Algorithm 1 is illustrated as
{{m𝑖}𝑟−1

𝑖∈K𝑑𝑙 , {w𝑖}𝑟−1
𝑖∈K𝑢𝑙 } → {{w𝑖}𝑟𝑖∈K𝑑𝑙 , {m𝑖}𝑟𝑖∈K𝑢𝑙 } → {{m𝑖}𝑟𝑖∈K𝑑𝑙 , {w𝑖}𝑟𝑖∈K𝑢𝑙 }, where the two arrows

correspond to the update rules of Algorithm 1. It can be noted that the objective function is
bounded from below, thus the transmitters {{m𝑖}𝑟𝑖∈K𝑑𝑙 , {w𝑖}𝑟𝑖∈K𝑢𝑙 } are bounded and consequently
the receivers {{w𝑖}𝑟𝑖∈K𝑑𝑙 , {m𝑖}𝑟𝑖∈K𝑢𝑙 } are bounded as well. Thus, the sequence {(m𝑟,w𝑟)} has
at least one limit point. Consider a subsequence {(m𝑟

𝑗
,w𝑟

𝑗
)}∞

𝑗=1 converging to the limit point
{m∗,w∗}. Additionally, consider another subsequence, we assume that {{m𝑖}𝑟−1

𝑖∈K𝑑𝑙 , {w𝑖}𝑟−1
𝑖∈K𝑢𝑙 }

converges to a limit point {{m𝑖}∗∗𝑖∈K𝑑𝑙 , {w𝑖}∗∗𝑖∈K𝑢𝑙 }.
First, we prove the equality of the two possible limit points of the transmitters

{{m𝑖}∗𝑖∈K𝑑𝑙 , {w𝑖}∗𝑖∈K𝑢𝑙 } = {{m𝑖}∗∗𝑖∈K𝑑𝑙 , {w𝑖}∗∗𝑖∈K𝑢𝑙 } (up to a phase rotation). Since the objective is
decreasing and it is bounded from below, we can state that∑︁

𝑖∈K𝑑𝑙

∥m𝑖∥22 +
∑︁
𝑗∈K𝑢𝑙

∥w∗𝑗 ∥22 =
∑︁
𝑖∈K𝑑𝑙

∥m∗∗𝑖 ∥22 +
∑︁
𝑗∈K𝑢𝑙

∥w∗∗𝑗 ∥22. (3.48)

Now consider fixed transmit beamformers {{ ¤m𝑖}𝑖∈K𝑑𝑙 , { ¤w𝑖}𝑖∈K𝑢𝑙 } so that

Γ𝑑𝑙𝑘 ({ ¤m𝑖}𝑖∈K𝑑𝑙 , { ¤w𝑖}𝑖∈K𝑢𝑙 ,w∗𝑘) ≥ 𝛾𝑘, ∀𝑘 ∈ K𝑑𝑙, (3.49)

Γ𝑢𝑙𝑙 ({ ¤m𝑖}𝑖∈K𝑑𝑙 , { ¤w𝑖}𝑖∈K𝑢𝑙 ,m∗𝑙 ) ≥ 𝛾𝑙, ∀𝑙 ∈ K𝑢𝑙 . (3.50)

Due to the continuity of the SINR function, there exists an index 𝑞 so that for all 𝑗 > 𝑞we can state
that Γ𝑑𝑙

𝑘
({ ¤m𝑖}𝑖∈K𝑑𝑙 , { ¤w𝑖}𝑖∈K𝑢𝑙 ,w

𝑟 𝑗

𝑘
) ≥ 𝛾𝑘,∀𝑘 ∈ K𝑑𝑙 and Γ𝑢𝑙

𝑙
({ ¤m𝑖}𝑖∈K𝑑𝑙 , { ¤w𝑖}𝑖∈K𝑢𝑙 ,m

𝑟 𝑗

𝑙
) ≥ 𝛾𝑙,∀𝑙 ∈ K𝑢𝑙.

Since transmit beamformers are updated after receive beamformers, for all 𝑗 > 𝑞 we have∑︁
𝑖∈K𝑑𝑙

∥m𝑟 𝑗
𝑖
∥22 +

∑︁
𝑗∈K𝑢𝑙

∥w𝑟 𝑗
𝑗
∥22 ≤

∑︁
𝑖∈K𝑑𝑙

∥ ¤m𝑖∥22 +
∑︁
𝑗∈K𝑢𝑙

∥ ¤w 𝑗∥22. (3.51)

Let 𝑗→∞, it implies∑︁
𝑖∈K𝑑𝑙

∥m∗𝑖 ∥22 +
∑︁
𝑗∈K𝑢𝑙

∥w∗𝑗 ∥22 ≤
∑︁
𝑖∈K𝑑𝑙

∥ ¤m𝑖∥22 +
∑︁
𝑗∈K𝑢𝑙

∥ ¤w 𝑗∥22. (3.52)
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Furthermore, according to the update rule we have

Γ𝑑𝑙𝑘 ({m𝑖}
𝑟 𝑗

𝑖∈K𝑑𝑙 , {wi}
𝑟 𝑗

𝑖∈K𝑢𝑙 ,w
𝑟 𝑗

𝑘
) ≥ 𝛾𝑘, ∀𝑘 ∈ K𝑑𝑙, (3.53)

Γ𝑢𝑙𝑙 ({m𝑖}
𝑟 𝑗

𝑖∈K𝑑𝑙 , {wi}
𝑟 𝑗

𝑖∈K𝑢𝑙 ,m
𝑟 𝑗

𝑙
) ≥ 𝛾𝑙, ∀𝑙 ∈ K𝑢𝑙 . (3.54)

and thus

Γ𝑑𝑙𝑘 ({m𝑖}∗𝑖∈K𝑑𝑙 , {wi}∗𝑖∈K𝑢𝑙 ,w
∗
𝑘) ≥ 𝛾𝑘, ∀𝑘 ∈ K𝑑𝑙, (3.55)

Γ𝑢𝑙𝑙 ({m𝑖}∗𝑖∈K𝑑𝑙 , {wi}∗𝑖∈K𝑢𝑙 ,m
∗
𝑙 ) ≥ 𝛾𝑙, ∀𝑙 ∈ K𝑢𝑙 . (3.56)

Combining (3.55) and (3.56) with the fact that (3.52) holds for any fixed transmitters
satisfying (3.49) and (3.50), we obtain

{{m𝑖}∗𝑖∈K𝑑𝑙 , {w𝑖}∗𝑖∈K𝑢𝑙 } = arg min
{m𝑖}𝑖∈K𝑑𝑙 ,{w𝑖}𝑖∈K𝑢𝑙

∑︁
𝑖∈K𝑑𝑙

∥m𝑖∥22 +
∑︁
𝑗∈K𝑢𝑙

∥w 𝑗∥22 (3.57)

s. t. Γ𝑑𝑙𝑘 ({m𝑖}𝑖∈K𝑑𝑙 , {wi}𝑖∈K𝑢𝑙 ,w∗𝑘) ≥ 𝛾𝑘, ∀𝑘 ∈ K𝑑𝑙,

Γ𝑢𝑙𝑙 ({m𝑖}𝑖∈K𝑑𝑙 , {wi}𝑖∈K𝑢𝑙 ,m∗𝑙 ) ≥ 𝛾𝑙, ∀𝑙 ∈ K𝑢𝑙 .

On the other hand, since the update of receive beamformers using MMSE re-
ceiver maintains the SINR feasibility, we have Γ𝑑𝑙

𝑘
({m𝑖}

𝑟 𝑗−1
𝑖∈K𝑑𝑙 , {wi}

𝑟 𝑗−1
𝑖∈K𝑢𝑙 ,w

𝑟 𝑗

𝑘
) ≥ 𝛾𝑘,∀𝑘 ∈ K𝑑𝑙 and

Γ𝑢𝑙
𝑙
({m𝑖}

𝑟 𝑗−1
𝑖∈K𝑑𝑙 , {wi}

𝑟 𝑗−1
𝑖∈K𝑢𝑙 ,m

𝑟 𝑗

𝑙
) ≥ 𝛾𝑙,∀𝑙 ∈ K𝑢𝑙. Letting 𝑗→∞ we obtain

Γ𝑑𝑙𝑘 ({m𝑖}∗∗𝑖∈K𝑑𝑙 , {wi}∗∗𝑖∈K𝑢𝑙 ,w
∗
𝑘) ≥ 𝛾𝑘, ∀𝑘 ∈ K𝑑𝑙, (3.58)

Γ𝑢𝑙𝑙 ({m𝑖}∗∗𝑖∈K𝑑𝑙 , {wi}∗∗𝑖∈K𝑢𝑙 ,m
∗
𝑙 ) ≥ 𝛾𝑙, ∀𝑙 ∈ K𝑢𝑙 . (3.59)

Combining (3.57), (3.58), (3.59) and (3.48), we infer that {{m𝑖}∗∗𝑖∈K𝑑𝑙 , {w𝑖}∗∗𝑖∈K𝑢𝑙 } is
also a solution to Problem (3.57). Thus, since Problem (3.57) has a strictly convex objective
function, it has a unique solution and we have {{m𝑖}∗𝑖∈K𝑑𝑙 , {w𝑖}∗𝑖∈K𝑢𝑙 } = {{m𝑖}∗∗𝑖∈K𝑑𝑙 , {w𝑖}∗∗𝑖∈K𝑢𝑙 } up
to a phase rotation.

Next, we prove that the limit point {m∗,w∗} is a KKT point for Problem (3.37).
Based on the receivers update rule the unnormalized MMSE receivers are written as

w𝑟 𝑗

𝑘
= (C𝑟 𝑗−1

𝑘
)−1H𝑏𝑘,𝑘m

𝑟−1
𝑘 ,∀𝑘 ∈ K𝑑𝑙, (3.60)

m𝑟 𝑗

𝑘
= (C𝑟 𝑗−1

𝑘
)−1H𝐻

𝑏𝑘,𝑘
w𝑟 𝑗−1
𝑘

,∀𝑘 ∈ K𝑢𝑙, (3.61)

with

C𝑟 𝑗−1
𝑘

=
∑︁
𝑖∈K𝑑𝑙

H𝑏𝑖,𝑘m
𝑟 𝑗−1
𝑖
(m𝑟 𝑗−1

𝑖
)𝐻H𝐻

𝑏𝑖,𝑘
+𝑁0I𝑁𝑢 +

∑︁
𝑗∈K𝑢𝑙

Q 𝑗,𝑘w
𝑟 𝑗−1
𝑗
(w𝑟 𝑗−1

𝑗
)𝐻Q𝐻

𝑗,𝑘,∀𝑘 ∈ K𝑑𝑙, (3.62)

C𝑟 𝑗−1
𝑘

=
∑︁
𝑖∈K𝑑𝑙

G𝑏𝑖,𝑏𝑘m
𝑟 𝑗−1
𝑖
(m𝑟 𝑗−1

𝑖
)𝐻G𝐻

𝑏𝑖,𝑏𝑘
+𝑁0I𝑁𝑏 +

∑︁
𝑗∈K𝑢𝑙

H𝐻
𝑏𝑘, 𝑗

w𝑟 𝑗−1
𝑗
(w𝑟 𝑗−1

𝑗
)𝐻H𝑏𝑘, 𝑗,∀𝑘 ∈ K𝑢𝑙 .

(3.63)
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Letting 𝑗→∞ implies

w∗𝑘 = (C
∗
𝑘)
−1H𝑏𝑘,𝑘m

∗
𝑘,∀𝑘 ∈ K𝑑𝑙, (3.64)

m∗𝑘 = (C
∗
𝑘)
−1H𝐻

𝑏𝑘,𝑘
w∗𝑘,∀𝑘 ∈ K𝑢𝑙, (3.65)

with

C∗𝑘 =
∑︁
𝑖∈K𝑑𝑙

H𝑏𝑖,𝑘m
∗
𝑖 (m∗𝑖 )𝐻H𝐻

𝑏𝑖,𝑘
+𝑁0I𝑁𝑢 +

∑︁
𝑗∈K𝑢𝑙

Q 𝑗,𝑘w∗𝑗 (w∗𝑗 )𝐻Q𝐻
𝑗,𝑘,∀𝑘 ∈ K𝑑𝑙, (3.66)

C∗𝑘 =
∑︁
𝑖∈K𝑑𝑙

G𝑏𝑖,𝑏𝑘m
∗
𝑖 (m∗𝑖 )𝐻G𝐻

𝑏𝑖,𝑏𝑘
+𝑁0I𝑁𝑏 +

∑︁
𝑗∈K𝑢𝑙

H𝐻
𝑏𝑘, 𝑗

w∗𝑗 (w∗𝑗 )𝐻H𝑏𝑘, 𝑗,∀𝑘 ∈ K𝑢𝑙 . (3.67)

On the other hand, (3.57) implies that there exists a set of multipliers 𝜆∗
𝑘
≥ 0 so that(

I−
𝜆∗
𝑘

𝛾𝑘
H𝐻
𝑏𝑘,𝑘

w∗𝑘(w
∗
𝑘)
𝐻H𝑏𝑘,𝑘+

∑︁
𝑖∈K𝑑𝑙\𝑘

𝜆 𝑖H𝐻
𝑏𝑘,𝑖

w∗𝑖 (w∗𝑖 )𝐻H𝑏𝑘,𝑖

+
∑︁
𝑙∈K𝑢𝑙

𝜆 𝑙G𝐻
𝑏𝑘,𝑏𝑙

m∗𝑙 (m
∗
𝑙 )
𝐻G𝑏𝑘,𝑏𝑙

)
m∗𝑘 = 0, ∀𝑘 ∈ K𝑑𝑙, (3.68)

(
I−

𝜆∗
𝑙

𝛾𝑙
H𝑏𝑙 ,𝑙m

∗
𝑙 (m

∗
𝑙 )
𝐻H𝐻

𝑏𝑙 ,𝑙
+
∑︁
𝑗∈K𝑢𝑙\𝑙

𝜆 𝑗H𝑏 𝑗,𝑙m
∗
𝑗 (m∗𝑗 )𝐻H𝐻

𝑏𝑙 , 𝑗
+

∑︁
𝑘∈K𝑑𝑙

Q𝐻
𝑙,𝑘w

∗
𝑘(w

∗
𝑘)
𝐻Q𝑙,𝑘

)
w∗𝑙 = 0, ∀𝑙 ∈ K𝑢𝑙,

(3.69)

𝛾𝑘

( ∑︁
𝑖∈K𝑑𝑙\𝑘

|w∗𝐻𝑘 H𝑏𝑖,𝑘m
∗
𝑖 |2 +

∑︁
𝑗∈K𝑢𝑙

| (w∗𝑘)
𝐻Q 𝑗,𝑘w∗𝑗 |2 + ||w∗𝑘 | |

2
𝑁0

)
− |(w∗𝑘)

𝐻H𝑏𝑘,𝑘m
∗
𝑘 |

2 = 0, ∀𝑘 ∈ K𝑑𝑙,

(3.70)

𝛾𝑙

( ∑︁
𝑗∈K𝑢𝑙\𝑙

| (m∗𝑙 )
𝐻H𝐻

𝑏𝑙 , 𝑗
w∗𝑗 |2 +

∑︁
𝑖∈K𝑑𝑙

| (m∗𝑙 )
𝐻G𝑏𝑖,𝑏𝑙m

∗
𝑖 |2 + ||m∗𝑙 | |

2
𝑁0

)
− |(m∗𝑙 )

𝐻H𝐻
𝑏𝑙 ,𝑙

w∗𝑙 |
2 = 0, ∀𝑙 ∈ K𝑢𝑙,

(3.71)

Using (3.66), (3.67), we can rearrange (3.70) and (3.71) as

(w∗𝑘)
𝐻

(
C∗𝑘− (1+

1
𝛾𝑘
)H𝑏𝑘,𝑘m

∗
𝑘(m

∗
𝑘)
𝐻H𝐻

𝑏𝑘,𝑘

)
w∗𝑘 = 0, ∀𝑘 ∈ K𝑑𝑙, (3.72)

(m∗𝑙 )
𝐻

(
C∗𝑙 − (1+

1
𝛾𝑘
)H𝐻

𝑏𝑙 ,𝑙
w∗𝑙 (w

∗
𝑙 )
𝐻H𝑏𝑙 ,𝑙

)
m∗𝑙 = 0, ∀𝑙 ∈ K𝑢𝑙 . (3.73)

By substituting the MMSE receivers (3.64) and (3.65) in (3.72) and (3.73) we obtain

(m∗𝑘)
𝐻H𝐻

𝑏𝑘,𝑘
(C∗𝑘)

−1H𝑏𝑘,𝑘m
∗
𝑘

(
1− (1+ 1

𝛾𝑘
) (m∗𝑘)

𝐻H𝐻
𝑏𝑘,𝑘
(C∗𝑘)

−1H𝑏𝑘,𝑘m
∗
𝑘

)
= 0, ∀𝑘 ∈ K𝑑𝑙, (3.74)
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(w∗𝑙 )
𝐻H𝑏𝑙 ,𝑙C

∗
𝑙 H

𝐻
𝑏𝑙 ,𝑙

w∗𝑙

(
1− (1+ 1

𝛾𝑘
) (w∗𝑙 )

𝐻H𝑏𝑙 ,𝑙 (C∗𝑙 )
−1H𝐻

𝑏𝑙 ,𝑙
w∗𝑙

)
= 0, ∀𝑙 ∈ K𝑢𝑙 . (3.75)

Since (m∗
𝑘
)𝐻H𝐻

𝑏𝑘,𝑘
(C∗

𝑘
)−1H𝑏𝑘,𝑘m∗𝑘 ≠ 0,∀𝑙 ∈ K𝑑𝑙 and (w∗

𝑙
)𝐻H𝑏𝑙 ,𝑙C∗𝑙 H

𝐻
𝑏𝑙 ,𝑙

w∗
𝑙
≠ 0,∀𝑙 ∈

K𝑢𝑙, it follows that

(1+ 1
𝛾𝑘
) (m∗𝑘)

𝐻H𝐻
𝑏𝑘,𝑘
(C∗𝑘)

−1H𝑏𝑘,𝑘m
∗
𝑘 = 1, ∀𝑘 ∈ K𝑑𝑙, (3.76)

(1+ 1
𝛾𝑘
) (w∗𝑙 )

𝐻H𝑏𝑙 ,𝑙 (C∗𝑙 )
−1H𝐻

𝑏𝑙 ,𝑙
w∗𝑙 = 1, ∀𝑙 ∈ K𝑢𝑙 . (3.77)

This implies that for each 𝑘 ∈ K𝑑𝑙, the matrix C∗
𝑘
− (1+ 1

𝛾𝑘
)H𝑏𝑘,𝑘m∗𝑘(m

∗
𝑘
)𝐻H𝐻

𝑏𝑘,𝑘
is

positive semidefinite, and for each 𝑙 ∈ K𝑑𝑙 the matrix C∗
𝑙
− (1+ 1

𝛾𝑘
)H𝐻

𝑏𝑙 ,𝑙
w∗
𝑙
(w∗

𝑙
)𝐻H𝑏𝑙 ,𝑙 is positive

semidefinite. Hence from (3.72) and (3.73) we get(
C∗𝑘− (1+

1
𝛾𝑘
)H𝑏𝑘,𝑘m

∗
𝑘(m

∗
𝑘)
𝐻H𝐻

𝑏𝑘,𝑘

)
w∗𝑘 = 0,∀𝑘 ∈ K𝑑𝑙, (3.78)(

C∗𝑙 − (1+
1
𝛾𝑘
)H𝐻

𝑏𝑙 ,𝑙
w∗𝑙 (w

∗
𝑙 )
𝐻H𝑏𝑙 ,𝑙

)
m∗𝑙 = 0, ∀𝑙 ∈ K𝑢𝑙 . (3.79)

Thus, from equations (3.68), (3.69), (3.70), (3.71), (3.78) and (3.79) we infer that
the limit point {m∗,w∗} is a KKT point of Problem (3.37). □

This way, we could prove that the alternate optimization of transmitters and receivers
as presented in Algorithm 1 converges globally to the set of KKT conditions for the proposed
optimization Problem (3.5).

3.6.2 Convergence Analysis for the Decentralized Algorithm

Since Algorithm 2 also implements the alternate optimization of transmitters and
receivers, the proof in Subsection 3.6.1 also applies to it. In order for Algorithm 2 to fully
converge to the optimal point it is required that the solution for the optimization of transmitters,
performed by ADMM, also fully converges. ADMM is shown, by (72), to converge to an optimal
point when applied to convex problems. That is, in order to achieve the same solution as in the
centralized case, Algorithm 2 must iterate until convergence in both inner and outer loops.

Algorithm 2 requires signaling exchange at each iteration of the ADMM steps
and also at each alternate transmit and receive optimization. It is, thus, impractical, to let the
algorithms iterate until full convergence. However, ADMM converges to modest accuracy
sufficient for many applications within few iterations (72). In Sections 3.7 and 3.8 we further
discuss this characteristic, and show that for our application, good performance can be achieved
with only few iterations.

An interesting point is that since the ADMM solution does not require that the
local variables be equal to the global ones before convergence, an intermediate solution may
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not strictly fulfill all the SINR constraints. Alternatively, the ADMM solution approximates
the desired SINR constraints. However, a solution that strictly respects the minimum SINR
constraints can be obtained by solving (3.21) and (3.22) including an additional constraint that
forces the local variables to be equal to the global ones. In this case feasibility is not guaranteed
in each iteration, and the algorithm is required to iterate more in order to reach a possible feasible
solution. Additionally, the network can employ a mechanism that stops the algorithm after a
fixed number of infeasible iterations and restarts with a different initialization or, if a feasible
iteration is not found, it can declare the problem infeasible, and the systems requirements must
be relaxed by lowering SINR targets or by decreasing the number of active users.

Another important convergence issue is that the centralized solution requires fea-
sibility at all iterations, and consequently, if the first iteration is not feasible, the centralized
algorithm fails to provide a solution. Due to this, a correct precoder initialization is crucial to
enhance feasibility probability. In our simulations, we use the simple and suitable MRT scheme
as a starting point for the algorithms, which leads to very few unfeasible cases (< 0.1%). On the
other hand, an interesting feature of the ADMM decentralized solution comes from the fact that
it does not require feasibility at all iterations. This way, it is able to converge, or at least provide
approximate solutions, even when the centralized algorithm fails to find a feasible point.

3.7 Signaling Scheme

In a centralized approach, the proposed Algorithm 1 could be executed by a master
entity (a central node or a cloud radio access network controller) that needs to have full CSI
knowledge and is capable of sending the computed transmit and receive filters for the UEs
and BSs. Another possible way of executing Algorithm 1 is by each BS performing its own
computation. For that, each BS must have access to global CSI. Both ways are highly unpractical,
given the required amount of information share.

For the decentralized approach we consider that each node only has access to local
CSI. However, information still needs to be shared between the nodes, in order to coordinate them.
Algorithm 2 relies on two types of information sharing: over-the-air precoded pilot signaling and
local expressions share. Figure 8 illustrates the proposed frame structure, which is based on the
bidirectional signaling structure proposed by (81).

The frame is divided in two main parts, the BF setup and the data transmission in both
uplink and downlink directions. All cells must be synchronized in both parts, assuming that the
system complies with the requirements of 3GPP (110). Indeed, (110) specifies the requirements
for TDD systems and serve as the basis for dynamic TDD deployments, as described in (80), for
example.

During the BF setup, the over-the-air signaling is denoted by the letter F, for the
forward (transmitters to receivers) pilot signaling, corresponding to step 4 in Algorithm 2, and B
for the backward (receivers to transmitters) pilot signaling, corresponding to step 5. This pilot
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Figure 8 – Frame structure for the decentralized execution of Algorithm 2.

Source: Created by the author.

signaling exchange is required for the update of receivers (3.18) and (3.16) and for the update of
local variables (3.21) and (3.22), since both require the knowledge of effective channels (that
incorporate the transmit and receive filters) from opposite nodes. We consider that all nodes use
known orthogonal precoded pilot symbols, allowing perfect signal separation and estimation of
effective channels, and consequently perfect estimation of the precoders and receivers by the
opposite nodes.

The sharing of the local expressions for the global variables update is denoted by
the letter L, and occurs in step 9 of Algorithm 2. This procedure is required since, in order to
compute the global variables in the ADMM solution, each node needs to have access to the
result of the local expression 1

2 (primal− 1
𝑐
dual) from the coupled nodes. This signaling stage

is proposed to take place via both backhaul and control over-the-air channel, since information
needs to be shared among all transmitting nodes (DL BSs and UL UEs). This way, all BSs must
share information between themselves by using the backhaul link and each UL UE must send its
data to its respective BS, and receive the updates from the other nodes also hearing from its BS.
The proposed signaling scheme is shown in Figure 9 for a 2-cell scenario.

In this procedure, in time 𝑇1 each UL UE share information about its local variables
expressions (regarding 𝛀𝑙,𝜓𝜓𝜓𝑙 and 𝜃𝜃𝜃𝑙) to its respective BS. In Time 𝑇2 each DL BS sends the
information about its local variables expressions (regarding 𝜒𝜒𝜒𝑏,𝜓𝜓𝜓𝑏 and 𝜃𝜃𝜃𝑏 ) to the coupled BSs,
and each UL BS sends the terms from its users to each coupled BS. In time 𝑇3 each UL BS sends
the information received from other nodes to each of its UEs. By doing this, we guarantee that
each node has the information required for the global variables update in the ADMM approach.

Note, in Figure 8, that in the proposed signaling scheme the steps F, B and L are
repeated at each outer iteration of algorithm 2. Also note that in step L, the proposed local
expression sharing, illustrated in Figure 9, is repeated at each inner iteration of algorithm 2. Due
to this, the number of elements shared at each step must be analyzed and the number of iterations
must be kept in a controlled amount, so that the decentralized algorithm is practically viable.
These practical considerations are addressed next.
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Figure 9 – Local expressions signaling strategy for the decentralized execu-
tion of Algorithm 2.
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Figure 9 illustrates a network of 2 BSs, whereas a real deployment would support
multiple BSs in a geographical area, with scheduling and UL/DL setup configured prior to
starting the execution of Algorithm 2. In such situation, while the time slot structure shown in
Figure 9 is still the same, practical issues arise for high capacity requirements. Therefore, in
practice, BSs of a dynamic TDD network form a high speed network supported by a multi-Gbps
backhaul infrastructure (see for example (111) or (112)). This type of backhaul network readily
facilitates all necessary information exchange that is necessary for the smooth operation of
dynamic TDD networks, including synchronization and other types of information, and allows
for the information exchange required by the proposed algorithm.

3.8 Results and Practical Considerations

The main simulation scenario is formed by 4 cells (2 DL, 2 UL) with 100 m radius
each, and 2 UEs per cell. Each BS has 6 antennas and each UE has 3 antennas. For the sake
of simplicity, and without loss of generality, the simulations consider that each UE transmits
or receives one single stream. This scenario is used since it is simple and presents all types
of intra-cell and inter-cell interference links. However, performance gains can be obtained for
a variety of interference-limited scenarios. Flat Rayleigh fading is considered, in which each
element of the channels is an i.i.d. complex Gaussian random variable with zero mean and unit
variance. The path-loss model is based on (113) and is provided in Table 6, where 𝑅 is the
distance between two nodes, measured in kilometers. The simulation results shown are obtained
from 100 Monte-Carlo simulations. The algorithms are allowed to iterate 50 times before the
results are harvested.

In the following subsections, we present and analyze the main simulation results.
In Subsection 3.8.1, we analyze the basic results regarding the solution of the proposed op-
timization problem. In Subsection 3.8.2 we present an analysis of the results regarding the
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convergence behavior of the proposed algorithms. In Subsection 3.8.3 we approach the main
practical considerations of the application of the proposed algorithms, mainly regarding signaling
overhead.

Table 6 – Propagation characteristics for the different link di-
rections (𝑅 in km).

Link Path-loss

BS to BS
If 𝑅 < 2/3: PL(𝑅) = 98.4 + 20log10(𝑅).
If 𝑅 ≥ 2/3: PL(𝑅) = 101.9 + 40log10(𝑅).

BS to UE

UE to BS

LOS:

PL(𝑅) = 103.8 + 20.9log10(𝑅).
NLOS:

PL(𝑅) = 145.4 + 37.5log0(𝑅).
ProbLOS(𝑅) = 0.5−min(0.5,5exp(−0.156/𝑅))
+min(0.5,5exp(−𝑅/0.03)).

UE to UE
If 𝑅 ≤ 0.05: PL(𝑅) = 98.45 + 20log10(𝑅).
If 𝑅 > 0.05: PL(𝑅) = 175.78 + 40log10(𝑅).

Source: Created by the author.

3.8.1 Optimization results

Our optimization problem seeks to minimize power while guaranteeing minimum
SINR constraints. Therefore, in Figures 10 and 11 we show the main outcomes from such
optimization when employing the centralized algorithm 1 and the decentralized algorithm 2 with
1 inner iteration.

In Figure 10, we show the average power achieved by the centralized and decen-
tralized algorithms for multiple values of SINR target. It can be seen that, for all targets, the
decentralized solution was able to well approximate the performance of the optimal centralized
algorithm, with only a slightly higher power demand. It can also be noted, for all cases, that as
the SINR targets are increased, power consumption rises, as expected.

In Figure 11, we illustrate the 50th percentile of the SINR achieved by centralized
and decentralized solutions for multiple values of SINR target. It can be seen that, for all targets,
the centralized and decentralized solutions achieved very similar values, according to the required
minimum target. The centralized algorithm forces the exact minimum SINR levels for all feasible
instances. On the other hand, the decentralized algorithm approximates this value allowing some
variation from the target. This is due to the fact that ADMM does not require feasibility at each
iteration. Therefore, in this plot, we also show error bars for the decentralized results, in red color.
These error bars illustrate the mean range of achieved SINR values deviating from the required
target, defined as 1

𝑁

∑𝑁
𝑖=0 |Achieved Value - Target Value|. It can be seen that, for all cases, the
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Figure 10 – Average power achieved by centralized and decentralized solu-
tions for multiple values of SINR target.
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Figure 11 – 50th percentile of SINR achieved by centralized and decentral-
ized solutions for multiple values of SINR target.

Source: Created by the author.

achieved SINRs lie in close proximity to the target, more specifically with values greater than the
target, although few values that are slightly smaller than the target can occur. In the discussions
of Figure 13, in the next subsection, we further discuss such behavior.
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Figure 12 – CDFs of achieved power at each iteration of the centralized solution.
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3.8.2 Convergence results

Not only showing that the solutions reach desirable optimization outcomes is impor-
tant, but it also is crucial to show how the proposed algorithms achieve their results. In Figures
from 12 to 15 we illustrate how the proposed algorithms converge. In the graphs shown here, we
consider an SINR target of 20 dB.

In Figure 12 we show the cumulative distribution functions (CDFs) of the achieved
power at each iteration of the centralized solution. The curves are shown in a color-scale, as
illustrated in the provided color-bar, which indicates the iteration number. In this figure, we see
that as the algorithm iterates, less power is demanded. Also, we note that in the initial iterations,
the power reduction between steps is larger and the gains diminish as the number of iterations
increase. Although the algorithms have run 50 iterations, from the figure we note that if much
fewer iterations were taken, still very close performance would be perceived.

In Figure 13 we illustrate the CDFs of achieved power at each outer iteration of the
decentralized solution. Also, we plot the final centralized outcome, to serve as a benchmark.
In this figure, we see that as the algorithm iterates, less power is demanded, similar to the
centralized solution. However, in this decentralized scheme, the initial iterations have a larger
power consumption when compared to the initial steps of the centralized approach. On the other
hand, as the decentralized algorithm iterates, it becomes very close to the optimal centralized
final solution, as expected. Also, in this plot, if the total number of iterations were reduced to,
for example, 15 or more, still close power-performance would be perceived.

For the decentralized algorithms it is also important to show how the SINR behaves
at each iteration, and how it converges to the required target, since the ADMM solution does not
guarantee that the SINR constraints are respected at all iterations. For this reason, we show in
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Figure 13 – CDFs of achieved power at each outer iteration of the decentralized solu-
tion, comparing with final centralized outcome.
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Figure 14 curves that illustrate the CDF of the SINRs at each outer iteration. Also, we plot the
final centralized outcome, that forces the exact minimum SINR levels for all feasible instances,
to serve as a benchmark. We see in this graph that as the algorithm iterates, the SINR variance is
reduced and the results go in the direction of the desired value (20 dB). We also note that, in
the final SINR curve, the great majority of results are very close to the target value (20dB) and
only very few cases have smaller SINR value, the minimum case is 16dB. Values larger than
the target can also be seen in the very top part of the graph. This fact relates to the error bars
in Figure 11. Additionally, just like in the power convergence shown in Figure 13, in this plot,
we also note that if the total number of iterations were reduced to 15 or more, still close SINR
performance would be perceived.

We also point out that, even in cases in which the centralized algorithm fails to
converge due to the requirement of feasibility in every iteration, the decentralized solution
achieves a similar behavior as in Figures 13 and 14. Beyond that, a minimum SINR target can
still be attained for the decentralized approach by forcing the local variables to be equal to the
global ones.

The results shown up to this point consider the decentralized algorithm with only 1
inner iteration. However, full convergence for this algorithm is proven if the inner ADMM steps
are performed until convergence. Thus it is important to analyze the behavior of the solution
with more inner iterations. In Figure 15 we compare the power and SINR performance of the
decentralized solutions with 1 and 10 inner iterations.

In Figure 15a we show the mean power at each outer iteration. We see that both
approaches iterate in the direction of a very close minimum power point, and that from the
15th iteration onwards, both solutions obtain good approximations of the optimum value. The
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Figure 14 – CDFs of achieved SINR at each outer step of the decentralized solution,
comparing with centralized outcome.
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decentralized approach with 1 inner iteration seems to be slower at the very initial iterations,
but it provided a slightly smaller final power. The approach with 10 inner iterations obtains the
smallest powers at the initial steps, but afterwards its convergence is slower.

In Figure 15b we plot the mean relative SINR error with respect to the target at each
outer iteration. It can be seen that both solutions iterate towards close points, and the version
with 1 inner iteration presents a slightly reduced final error. It can also be seen that the algorithm
with more inner iterations obtains the best target approximation at the initial iterations, but its
gains diminish with further iterations.

Such behaviors corroborate with the statement that says that ADMM can be very
slow to converge to high accuracy, but it converges to modest accuracy within a few iterations
(72). Therefore, the decentralized solution with 1 inner step is shown to be efficient and sufficient
to obtain good-enough performance.

3.8.3 Practical considerations

From the convergence results we can see that the proposed decentralized algorithms
can achieve good approximations of the centralized results with a reduced amount of iterations.
However, it is still necessary to consider whether this amount of iterations represents a reduction
in the quantity of information shared between nodes, since this is one of our main reasons to
decentralize the computation. In order to perform such analysis we recollect the centralized and
decentralized signaling schemes discussed in Section 3.7 and compute the number of scalars
shared in each stage of both.

In a centralized approach, if we assume that each BS exchanges its local CSI with
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Figure 15 – Comparison of Power and SINR convergence of decentralized solutions with 1 and
10 inner iterations.
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(b) SINR error convergence

Source: Created by the author.

all other BSs via backhaul at setup time, an estimate of the total number of real valued scalars
required to be sent is 2𝐾𝑁𝑏𝑁𝑢(𝐵− 1)𝐵 + 2|B𝑑𝑙 |𝑁2

𝑏
(𝐵− 1) |B𝑢𝑙 | + 2𝐾2

𝑏
|B𝑢𝑙 |𝑁2

𝑢 (𝐵− 1) |B𝑑𝑙 |, with
each term being related to the exchange of the channels H, G and Q, respectively. Beyond that,
the calculated precoders and receivers must still be sent to its respective node.

In the decentralized approach, by looking into the scheme presented in Figure 9 we
can note that in 𝑇1, a total of 2( |K𝑢𝑙 | −1) + |B𝑑𝑙 | + |K𝑑𝑙 | scalars need to be sent per stream by each
UE. This number is due to the sharing of the results of the local expressions regarding the update
of the global variables related to the interference terms in the links UE to BS (𝛀𝑙), BS to UE
(𝜓𝜓𝜓𝑙) and UE to UE (𝜃𝜃𝜃𝑙), respectively. In 𝑇2, the number of scalars shared per user stream by each
DL BS is 2( |K𝑑𝑙 | − |K𝑏 |) + |K𝑢𝑙 | + |K𝑢𝑙 | |K𝑏 |. Each of these terms are related to the interference
terms in the links BS to UE (𝜒𝜒𝜒𝑏), BS to BS (𝜓𝜓𝜓𝑏) and UE to UE (𝜃𝜃𝜃𝑏), respectively.

By these expressions we can note that the signaling load depends on the number of
BSs, UEs and antennas deployed in the scenario. Figure 16 shows a graph of the percentage
of signaling that an iteration of the decentralized algorithm represents when compared to the
amount of signaling required by the centralized one (scalars per iteration of decentralized/
total scalars of centralized ∗100%) versus the number of BSs. In this graph, half of the BSs
are functioning in each link direction. It can be seen in this graph that as the number of BSs
increases the decentralized algorithm becomes lighter when compared to the centralized one in
terms of signaling. This fact is crucial, since the larger the networks is, the more important it
is to keep signaling on controlled levels. For instance, in a network with a total of 10 BSs, the
centralized algorithm requires a total of 97200 scalars shared and the decentralized one requires
890 at each iteration, what represents less than 1%. This means that for this configuration, as
long as the number of iterations is lower than 110, there is a control overhead reduction when
using the decentralized approach.

Figure 17 shows a graph of the percentage of signaling that an iteration of the
decentralized algorithm represents when compared to the amount of signaling required by the
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Figure 16 – Comparison of the amount of signaling required by each itera-
tion of the decentralized algorithm, varying the number of BSs,
{𝐵𝑢𝑙, 𝐵𝑑𝑙, 𝐾𝑏, 𝑁𝑏, 𝑁𝑢} = { 𝐵2 ,

𝐵
2 ,2,6,3}.
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Figure 17 – Comparison of the amount of signaling required by each iteration
of the decentralized algorithm, varying number of UEs at each
BS, {𝐵𝑢𝑙, 𝐵𝑑𝑙, 𝐾𝑏, 𝑁𝑏, 𝑁𝑢} = {2,2, 𝐾𝑏,6,3}.
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centralized one versus the number of UEs at each BS. It can be seen that reduced signaling levels
are kept, but as the number of UEs at each BS increases, the decentralized algorithm becomes
slightly less compelling.

Figure 18 shows a graph of the percentage of signaling that an iteration of the
decentralized algorithm represents when compared to the amount of signaling required by
the centralized one versus the number of BS antennas. As the number of antennas increases,



Chapter 3. Bidirectional SP Minimization Beamforming in D-TDD Multi-User Multi-stream MIMO Networks 76

Figure 18 – Comparison of the amount of signaling required by each iteration
of the decentralized algorithm, varying number of antennas at
each BS, {𝐵𝑢𝑙, 𝐵𝑑𝑙, 𝐾𝑏, 𝑁𝑏, 𝑁𝑢} = {2,2,2, 𝑁𝑏,3}.
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the centralized algorithm needs more signaling, since the channel matrices increase, whereas
the decentralized signaling does not rely on that and remains unchanged. This means that as
the number of antennas increases, the decentralized algorithm becomes more valuable when
compared to the centralized one (this conclusion also applies to the UE antennas).

The total number of Forward-Backward and local variables sharing stages for the
decentralized approach is determined by the number of outer and inner iterations in Algorithm
2. At each outer iteration a Forward-Backward step is performed and at each inner iteration
the local variables are shared. In order to achieve the same solution as in the centralized case,
Algorithm 2 must iterate until convergence in both (i.e. inner and outer) loops. However, as seen
in the presented results, approximate solutions can be extracted at intermediate iterations, at the
cost of suboptimal sum-power and SINR. Thus, the amount of iterations can be limited by the
network operator in order to keep the control overhead within supported levels by fixing the
number of inner and outer iterations, with the cost of close-to-optimum sum-power performance.
Additionally, simulation results have shown that very close to optimal performance can be
obtained with a small number of iterations and that the total amount of signaling is reduced
compared with the centralized case.

3.9 Conclusions

In this chapter, we have proposed a BF solution for dynamic TDD Networks, which
guarantees a minimum SINR for each link while minimizing the total transmitter sum-power.
Two solutions were presented, a centralized version that requires full CSI, and a decentralized
version based on ADMM that requires local CSI and a lightweight signaling procedure. We



Chapter 3. Bidirectional SP Minimization Beamforming in D-TDD Multi-User Multi-stream MIMO Networks 77

have shown that both approaches converge to the same solution, and that the decentralized one
can approximate the optimal solution with a reduced amount of iterations. Thus, the higher
interference in dynamic TDD can be overcome, by using any of the proposed approaches, since
users in DL and UL can have their SINR requirements guaranteed.



4 USER SCHEDULING BASED ON MULTI-AGENT DEEP Q-LEARNING FOR RO-
BUST BEAMFORMING IN MULTI-CELL MISO SYSTEMS

Maximizing the rate in multiple-input single-output (MISO) systems using dis-
tributed algorithms is an important task that typically incurs high computational cost. In this
chapter, we propose two deep Q-learning-based user scheduling schemes to solve the beamform-
ing problem of sum-rate maximization with per base station power constraints in multicell MISO
scenarios.

The two key features of the proposed algorithms are that they are executed in
a distributed fashion and are robust with respect to channel state information (CSI) errors.
Simulation results show that in the presence of CSI errors the proposed schemes outperform
state-of-the-art algorithms both in terms of average spectral efficiency and execution time.

The remainder of the chapter is structured as follows. Section 4.1 provides an
introduction and discusses related works and the contributions. Section 4.2 introduces the system
model and defines the main optimization problem. Section 4.3 describes the channel estimation
strategy and defines the CSI error model. Section 4.4 presents the optimal solution structure
for the main optimization problem, based on the uplink-downlink duality. Section 4.5 presents
an overview about deep reinforcement learning and the proposed framework using deep Q-
learning (DQL). Section 4.6 presents the two proposed multi-agent DQL strategies, along with
the required signaling schemes. Section 4.7 provides and discusses the numerical results for the
proposed algorithms before conclusions are drawn in Section 4.8.

4.1 Introduction

The sum-rate maximization problem with maximum power constraint is a classical
problem in telecommunications systems, and it is known to be NP-hard (114). Solutions using
convex optimization have been proposed by some works, such as those in (45, 47, 48). A solution
based on the branch and bound method in multi-cell MISO systems was presented in (45). In
(47), the authors proposed a local optimal solution by exploiting an iterative weighted minimum
mean square error (WMMSE) approach for a multiple-input multiple-output (MIMO) system,
while in (48) a solution based on fractional programming was proposed.

Solutions based on convex optimization – although interesting in terms of perfor-
mance – usually come in the form of iterative mathematical methods, which often incur high
computational cost. To address this issue, other studies assume closed-form solutions, which
compute the beamforming without iterating resulting in low computation time, such as maximum
ratio transmission, zero forcing and maximum signal-to-leakage-plus-noise ratio (SLNR-MAX)
(34). However, this time reduction is obtained at the cost of performance loss. Consequently,
the trade-off between execution time and performance becomes the main drawback of these
solutions.
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Some previous works focused on machine learning techniques in order to obtain a
better trade-off between execution time and performance (97, 98). In these works, the authors
proposed a supervised learning scheme based on the WMMSE algorithm outputs and an unsuper-
vised learning strategy in order to improve the performance of the solution, while maintaining
reasonably low computational complexity. Nevertheless, their approaches are centralized, which
might compromise scalability and make practical deployment problematic. Furthermore, they
also depend on a massive dataset of the WMMSE algorithm outputs. In (115), a distributed-
execution scheme for power control using DQL was proposed in a single-antenna scenario.

User scheduling techniques play an important role when multiple communication
links are competing for resources in a shared wireless medium. In this sense, some works focus
on user scheduling to improve system performance. In (59) the authors proposed a distributed
signal-to-leakage-plus-noise ratio based user selection (SUS) for multicell MISO systems. A
user scheduling using DQL in a multi-antenna scenario was considered in (63). However, the
authors assume only a centralized approach for single-cell scenarios.

The aforementioned works assume perfect CSI in their modeling. However, in
practical applications there are channel estimation errors, which reduces the performance and
applicability of these solutions. Imperfect CSI is considered by other works (116, 117, 118). In
(116), the authors proposed a robust WMMSE algorithm based on the statistical knowledge of
the links, while (117) proposed an efficient stochastic sum-rate maximization algorithm based
on iterative optimization. Finally, in (118), the authors presented a low complexity beamforming
scheme for MISO systems under imperfect CSI. However, these works assume the knowledge
of parameters that characterize channel estimation, both at the receiver and transmitter, which
depends on the channel dynamics and channel estimation schemes, and are difficult to obtain in
practical implementations. In addition, to the best of our knowledge, no distributed multi-antenna
scheme using DQL in multicell scenarios with imperfect CSI has been proposed in the literature.

In this chapter, we propose user scheduling solutions based on distributed-execution
multi-agent DQL for solving the beamforming problem of maximizing the total rate in a multicell
MISO system with per-base station (BS) power constraints assuming channel estimation errors.
Differently from previous works in the literature, we focus on showing that the proposed learning
scheme is able to efficiently adapt and improve the performance of a model based on perfect CSI
in scenarios with the presence of channel estimation errors.

In summary, the main contributions of this work are: (1) Two new distributed-
execution algorithms based on DQL (77), that aim to obtain fast and robust computations in the
presence of CSI errors. The first solution requires local CSI knowledge and the exchange of
information between BSs, while the second assumes only local information during the execution
phase, which reduces signaling overhead at the cost of performance loss; (2) The proposed
algorithms learn a policy that extends the application of an optimization model that is based
on perfect CSI to a more realistic scenario with channel estimation errors; (3) The description
of signaling aspects of the proposed solutions for both training and execution phases; (4) The
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performance evaluation by means of simulations, where we compare the proposed solution with
state-of-the-art algorithms.

In order to highlight, even more, the contributions of this work with respect to some
of the main related papers, we summarize the differences in terms of the objective function,
constraints, architecture, centralized or distributed solution approach, CSI availability and the
merits of the proposed solution in Table 11 located in Appendix B in the end of this work.

4.2 System Model and Problem Formulation

We consider the downlink of a multicell MISO1 system with 𝐵 BSs, each with 𝑁𝑏

antennas, serving 𝐾𝑏 single-antenna user equipments (UEs). In addition, B and K𝑏 represent the
set of BSs and set of UEs of BS 𝑏, respectively. In this system, 𝐾 is the total number of UEs
within the network and K is its respective set. Let h𝑘𝑏 𝑗 ∈ ℂ𝑁𝑏×1 be the channel vector from BS 𝑗

to UE 𝑘 served by BS 𝑏, then the signal received by UE 𝑘 in BS 𝑏 can be written as:

𝑦𝑘𝑏 = hH
𝑘𝑏𝑏

m𝑘𝑏𝑑𝑘𝑏︸       ︷︷       ︸
desired signal

+
𝐾𝑏∑︁
𝑖=1
𝑖≠𝑘𝑏

h𝐻𝑘𝑏𝑏m𝑖𝑏𝑑𝑖𝑏

︸           ︷︷           ︸
intracell interference

+
𝐵∑︁
𝑗=1
𝑗≠𝑏

𝐾 𝑗∑︁
𝑖=1

h𝐻𝑘𝑏 𝑗m𝑖 𝑗𝑑𝑖 𝑗

︸               ︷︷               ︸
intercell interference

+ 𝑛𝑘𝑏︸︷︷︸
noise

, (4.1)

where m𝑘𝑏 ∈ ℂ𝑁𝑏×1, 𝑑𝑘𝑏 ∈ ℂ and 𝑛𝑘𝑏 ∈ ℂ denote the transmit beamforming vector, data symbol
and noise relative to UE 𝑘 in the 𝑏-th cell, in which 𝑑𝑘𝑏 and 𝑛𝑘𝑏 are zero-mean complex Gaussian
random variables with variances equal to one and 𝜎2, respectively.

In a scenario like this one, we have that the signal-to-interference-plus-noise ratio
(SINR) at UE 𝑘 in the cell 𝑏 can be written as

Γ𝑘𝑏 =
|h𝐻
𝑘𝑏𝑏

m𝑘𝑏 |2

𝐾𝑏∑
𝑖=1
𝑖≠𝑘𝑏

|h𝐻
𝑘𝑏𝑏

m𝑖𝑏 |2 +
𝐵∑
𝑗=1
𝑗≠𝑏

𝐾 𝑗∑
𝑖=1
|h𝐻
𝑘𝑏 𝑗

m𝑖 𝑗 |2 +𝜎2

. (4.2)

Such system model can be used to represent a very broad set of scenarios. Our
final goal is to find the optimum set of transmit beamformers, {m𝑘𝑏}∀𝑘∈K𝑏,∀𝑏∈B , that maximize
the sum-rate while respecting a maximum power budget. Thus, we can write the sum-rate
maximization subject to maximum power budget per base station as:

maximize
{m𝑘𝑏

}∀𝑘∈K𝑏,∀𝑏∈B

𝐵∑︁
𝑏=1

𝐾𝑏∑︁
𝑘=1

log2(1+ Γ𝑘𝑏), (4.3a)

s.t.
𝐾𝑏∑︁
𝑘=1
| |m𝑘𝑏 | |2 ≤ 𝑃𝑏, ∀𝑏 ∈ B, (4.3b)

where ∥·∥ is the Euclidean norm and 𝑃𝑏 is the maximum available power at BS 𝑏.
1 The proposed learning-based scheme can be extended to MIMO scenarios by considering the receive filter

(combiner) to be computed by known receive beamforming strategies.
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4.3 Channel Model

In addition, we also consider a scenario where nodes only have access to imperfect
CSI. Let us assume that h𝑘𝑏 𝑗 =

√︁
𝛽𝑘𝑏 𝑗g𝑘𝑏 𝑗, where g𝑘𝑏 𝑗 ∈ ℂ𝑁𝑏×1 is a vector with the small-scale

fading channel coefficients, which are assumed to be quasi-static Gaussian independent and
identically distributed (i.i.d.) with zero mean and unit variance. Also, let 𝛽𝑘𝑏 𝑗 represent the
large-scale fading channel coefficient between the 𝑘-th UE at the 𝑏-th cell and BS 𝑗. Considering
that the BS estimates the channel using a minimum mean square error (MMSE) approach, we
have that the estimated channel vector satisfies (119):

ĥ𝑘𝑏 𝑗 =
√︁
𝛽𝑘𝑏 𝑗

(
𝜉h𝑘𝑏 𝑗 +

√︁
1−𝜉2e

)
, (4.4)

where 0 ≤ 𝜉 ≤ 1 denotes the reliability of the channel estimation and e ∈ ℂ𝑁𝑏×1 is an error vector
with Gaussian i.i.d. entries with zero mean and unit variance. Note that if 𝜉 = 1 the channel is
perfectly estimated, while 𝜉 = 0 means that the BS channel estimates are fully wrong. Moreover,
the channel error modeling is done for both communication and interfering links.

4.4 Optimal Solution Structure Based on Uplink-Downlink Duality

In this chapter, we focus on distributed-execution multi-agent DQL in which our goal
consists of showing that the proposed learning scheme is able to efficiently adapt and improve
the performance of a model based on perfect CSI in scenarios with channel estimation errors.
Thus, to obtain a solution robust to CSI errors, in the following we start by obtaining an optimal
beamforming structure via uplink-downlink duality to problem (4.3) assuming perfect CSI.

An optimal solution for the sum rate maximization problem (4.3) is still unknown.
However, as discussed in (28), there is a direct relation between this problem and the optimization
task of minimizing the transmit sum-power with minimum SINR constraints, which has its
optimal solution established by means of uplink-downlink duality. This relation is such that the
solution approach for the sum-power minimization problem can be extended in order to derive a
structure for the solution of problem (4.3).

In fact, the relation between these problems is that the vectors which solve the
sum-power minimization problem, and thus achieve the required SINRs per UE using the
minimum possible power, must also satisfy the power constraints of the sum-rate maximization
problem. Therefore, by assuming that we know the optimal SINR Γ∗

𝑘𝑏
for each UE 𝑘𝑏 of each

BS 𝑏, which maximizes the total data rate in (4.3), we can use the optimal solution for the
sum-power minimization with SINR constraints set to Γ∗

𝑘𝑏
for each UE 𝑘𝑏 of each BS 𝑏. Since

the beamforming vectors derived by the sum-power minimization problem are also feasible for
problem (4.3) and achieve the required SINR values, they are an optimal solution.

However, in practice, we do not know the optimal SINR values, unless we solve
problem (4.3). Indeed, the main difference between these problems is that the SINR constraints
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are predefined in the sum-power minimization, while in sum-rate maximization the optimal
SINR values need to be found along with the beamforming vectors. Nevertheless, the connection
between these two problems implies that the optimal beamforming for one may hold for the
other. Therefore, based on this relation, Proposition 2 can be used in order to establish a structure
for the solution of problem (4.3).

Proposition 2. Assuming perfect CSI, the beamforming vector for UE 𝑘 in BS 𝑏, m𝑘𝑏 , is given

by m𝑘𝑏 =
√
𝑝𝑘𝑏m̃𝑘𝑏 for all 𝑘𝑏, where √𝑝𝑘𝑏 and m̃𝑘𝑏 are the beamforming power and direction,

respectively, with

m̃𝑘𝑏 =

(
𝜇𝑏
𝑃𝑏

I+
𝐵∑
𝑗=1

𝐾 𝑗∑
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h𝐻𝑖 𝑗𝑏

)−1

h𝑘𝑏𝑏������
������
(
𝜇𝑏
𝑃𝑏

I+
𝐵∑
𝑗=1

𝐾 𝑗∑
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h𝐻𝑖 𝑗𝑏

)−1

h𝑘𝑏𝑏

������
������

(4.5)

for some nonnegative, 𝜆 𝑖 𝑗 , 𝜇𝑏, ∀𝑏 ∈ B and ∀𝑖 𝑗 ∈ K.

Proof. The proof is presented in the Appendix C at the end of this work. □

This proposition provides a structure of the beamforming as function of the Lagrange
multipliers 𝜆 𝑖 𝑗 and 𝜇𝑏 and the power values 𝑝𝑘𝑏 with 𝑘, 𝑖 ∈ K and 𝑏, 𝑗 ∈ B. In addition, according
to (34, Corollary 3.6), we have that

∑𝐵
𝑗=1

∑𝐾 𝑗

𝑖=1 𝜆 𝑖 𝑗 = 1 and
∑𝐵
𝑏=1 𝜇𝑏 = 1. However, it is worth

mentioning that this provides only a necessary condition for optimal solution, but not sufficient,
except for special cases, such as single-cell transmission with a total power constraint, or any
multi-cell scenario with only one power constraint (34). Also note that in order to compute (4.5)
a BS needs to have access to CSI of the channels from itself to all served UEs in the own cell
and to interfered UEs in neighbor cells, i.e., ĥ𝑖 𝑗𝑏,∀𝑖 𝑗 ∈ K 𝑗 and ∀ 𝑗 ∈ B

Next, we will show that the proposed DQL is able to adapt this structure by means
of its actions, resulting in a robust beamforming scheme.

4.5 Deep Q-Learning Overview

Reinforcement learning is a machine learning technique characterized by the interac-
tion of an agent with the surrounding environment to learn a policy that maximizes the rewards
obtained by its actions on the environment. Note that the learning process is done by trial and
error, where the agent gets a reward for each taken action (76). Thus, we define S as the set
composed by all states, which is responsible for characterizing the environment of the agent,A is
defined as the set of actions and the policy 𝜋(𝑠, 𝑎) is the probability of taking action 𝑎 conditioned
on the current state being 𝑠, with

∑
𝑎∈A 𝜋(𝑠, 𝑎) = 1. The learning process occurs iteratively, where,

assuming discrete time steps, the agent observes, at the time 𝑡, the current state 𝑠(𝑡) ∈ S from the
environment and selects an action 𝑎(𝑡) ∈ A based on the policy 𝜋(𝑠(𝑡) , 𝑎(𝑡)). Next, the agent gets
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Figure 19 – Flowchart of the relation among
agent and environment in reinforce-
ment learning.

Agent
𝜋(𝑠(𝑡) , 𝑎(𝑡) )

Environment
𝑠(𝑡+1)
𝑟 (𝑡)
𝑠(𝑡)

𝑎(𝑡)

(𝑠(𝑡) , 𝑎(𝑡) , 𝑟 (𝑡) , 𝑠(𝑡+1) )

Source: Created by the author.

a reward 𝑟(𝑡) by the taken action 𝑎(𝑡) at state 𝑠(𝑡) and the environment moves to the next state,
𝑠(𝑡+1) . Note that the reward must be able to show how beneficial the action is for the objective to
be achieved. Finally, an experience is obtained in the tuple form as (𝑠(𝑡) , 𝑎(𝑡) , 𝑟(𝑡) , 𝑠(𝑡+1)) and the
process will be repeated until an optimal policy, 𝜋∗, is obtained. This learning process can be
seen in Figure 19.

In general, reinforcement learning techniques aim to find a policy that maximizes
the expected cumulative discounted rewards,

𝑅(𝑡) = 𝔼

[ ∞∑︁
𝑛=0

𝛾(𝑛)𝑟(𝑡+𝑛)
]
, (4.6)

where 𝛾 ∈ [0,1] is the discount factor (76). Moreover, in the stationary setting, the policy 𝜋 can
be determined by a function 𝑄(𝑠, 𝑎), commonly called Q-function, where 𝑄(𝑠, 𝑎) is defined as
the expected accumulated discounted rewards once action 𝑎 is taken under state 𝑠, assuming that
the policy 𝜋 is used, i.e,

𝑄(𝑠, 𝑎) = 𝔼
[
𝑅(𝑡) |𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎

]
. (4.7)

Thus, according to (115), the Q-function satisfies the Bellman equation:

𝑄(𝑠, 𝑎) =ℝ(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

ℙ𝑎
𝑠𝑠′

( ∑︁
𝑎′∈A

𝜋(𝑠′, 𝑎′)𝑄(𝑠′, 𝑎′)
)
, (4.8)

where ℝ(𝑠, 𝑎) = 𝔼[𝑟(𝑡) |𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎] is the expected reward of taking action 𝑎 at state 𝑠, and
ℙ𝑎
𝑠𝑠′ = 𝑃𝑟(𝑠(𝑡+1) = 𝑠′|𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎) is the transition probability from a given state 𝑠 to state

𝑠′ with the action 𝑎. The convergence to the action value function (4.7) has been proved for
some iterative approaches (120). Moreover, note that the optimal policy consists of letting
𝜋∗(𝑠, 𝑎) equal to 1 for the most suitable action. Therefore, we can express the optimal Q-function
associated with the optimal policy as

𝑄∗(𝑠, 𝑎) =ℝ(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

ℙ𝑎
𝑠𝑠′

(
max𝑄(𝑠′, 𝑎′)

)
. (4.9)
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The well-known Q-learning algorithm can be used to obtain an optimal policy that
maximizes the long-term expected accumulated discounted rewards (76). In its classical form,
Q-learning constructs a lookup table, 𝑄(𝑠, 𝑎), as a surrogate of the optimal Q-function. At the
beginning, the lookup table is initialized with arbitrary values. Next, it is iteratively updated
in order to find the optimal policy. Then, for each time step, an action is taken by the agent
according to the 𝜖-greedy policy. The 𝜖-greedy policy consists in selecting a greedy action with
probability 1− 𝜖 or a random action with probability 𝜖, where a greedy action on state 𝑠 is
given by 𝑎 = argmax∀𝑎∈A 𝑄(𝑠, 𝑎). The advantage of this policy is that it allows agents to explore
through random action selection in order to make better action selections in the future, while
avoiding to get stuck at non-optimal policies by greedy action selections (77). Moreover, note that
𝜖 decreases with time. After that, at the current time step 𝑡, a new experience (𝑠(𝑡) , 𝑎(𝑡) , 𝑟(𝑡) , 𝑠(𝑡+1))
is obtained as result of the taken action and 𝑄(𝑠(𝑡) , 𝑎(𝑡)) is updated as follows

𝑄(𝑠(𝑡) , 𝑎(𝑡)) ← 𝑄(𝑠(𝑡) , 𝑎(𝑡)) + 𝛽 [𝑟(𝑡) + 𝛾 max
∀𝑎∈A

𝑄(𝑠(𝑡+1) , 𝑎) −𝑄(𝑠(𝑡) , 𝑎(𝑡))], (4.10)

where 𝛽 is the learning rate.
According to (76), the Q-learning algorithm converges to an optimal policy 𝜋∗ if

each action in the action space is executed under each state for an infinite number of times on
an infinite run and the learning rate 𝛽 decays appropriately. However, the Q-learning algorithm
is only suitable when the state-action space is small, which is not our case. The reason is that
the storage of the lookup table related to (4.10) becomes impractical as the state-action space
increases and several states will be rarely visited, consequently creating holes in the lookup table.

Therefore, to deal with this issue, the use of deep Q-learning (77) should be properly
adapted. Roughly speaking, deep Q-leaning or deep Q-Network (DQN) corresponds to a merge
between the Q-learning algorithm and a deep neural network. In summary, the lookup table is
replaced by a deep neural network. Therefore, the 𝑄(·, ·) function can be expressed as 𝑄(·, ·,𝜃),
where 𝜃 represents the DQN parameters. Obviously, this considerably reduces the search space,
since in DQN the space is reduced to searching the best 𝜃 of finite dimensions, while in Q-learning
a search is done within a lookup table of huge dimensions.

Like the classical Q-learning algorithm, for each time step 𝑡, the agent obtains
experiences from taken actions on the environment in the form 𝜙 = (𝑠(𝑡) , 𝑎(𝑡) , 𝑟(𝑡) , 𝑠(𝑡+1)). A set
of experiences are stored by the agent in a memory with size 𝑀. Note that the memory size is
limited, where the oldest experiences are overwritten by the most recent ones when the number
of experiences exceeds the capacity. Furthermore, according to (77), in order to improve the
DQN stability, two DQNs are defined: the target DQN with parameters 𝜃(𝑡)target and the training
DQN with parameters 𝜃(𝑡)train. At every 𝑇𝑢 steps, 𝜃(𝑡)target is updated to be equal to 𝜃(𝑡)train. Also, the
memory replay method can avoid oscillations and divergence in the parameters (77). Therefore,
at time 𝑡, the least squares loss of the training DQN for a random mini-batchM (𝑡) with 𝑀𝑠

samples is

𝐿(𝜃(𝑡)train) =
∑︁

𝜙∈M (𝑡)

(
𝑦 (𝑡) −𝑄(𝑠(𝑡) , 𝑎(𝑡) ,𝜃(𝑡)train)

)2
, (4.11)
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Figure 20 – Flowchart of the proposed multi-agent deep reinforcement learn-
ing algorithm with centralized training and distributed execution.
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where the target is
𝑦 (𝑡) = 𝑟(𝑡) + 𝛾 max

∀𝑎∈A
𝑄(𝑠(𝑡+1) , 𝑎,𝜃(𝑡)target). (4.12)

Observe that 𝑦 (𝑡) is calculated using the target DQN.
Finally, the loss function (4.11) is minimized by a stochastic gradient algorithm in

order to train the mini-batchM (𝑡) . Then, the training DQN updates its parameters with the new
parameters provided by training. According to (121), the convergence to a set of good parameters
occurs quickly.

4.6 Proposed multi-agent Deep Q-learning

We propose a multi-agent DQL with 𝐵 agents, i.e., each BS is an agent. We propose
an approach in which the training is performed by a centralized node, while the actions are taken
distributively by agents, such as in (115, 122) in order to improve stability of our multi-agent
optimization. In Figure 20 we illustrate the structure of the learning scheme. Specifically, we
define 𝑠

(𝑡)
𝑏
∈ S as the state of agent 𝑏 at time slot 𝑡, which is responsible for characterizing

the environment of agent 𝑏 and points out relevant information to agent 𝑏’s action 𝑎
(𝑡)
𝑏
∈ A.

The actions are taken based only on local information employing the 𝜖-greedy policy at each
agent, where all actions are taken simultaneously and no agent has previous knowledge of
actions taken by other agents. In addition, each agent receives a reward, 𝑟(𝑡)

𝑏
, based on the

taken action from the environment and move on to the next state, 𝑠(𝑡+1)
𝑏

. Finally, an experience
𝜙 = (𝑠(𝑡)

𝑏
, 𝑎
(𝑡)
𝑏
, 𝑟
(𝑡)
𝑏
, 𝑠
(𝑡+1)
𝑏
) is obtained.

After that, the agents report their experiences to the central node, where they are
stored within one same memory. This technique is denoted as replay memory (77, 115). Moreover,
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note that the memory size, 𝑀, is limited, where the oldest experiences are overwritten by the most
recent ones when the number of experiences exceeds the capacity. The DQLs can be expressed
as a Q-function, 𝑄(𝑠, 𝑎,𝜃), which is defined as the expected accumulated discounted rewards
once action 𝑎 is taken under state 𝑠, and 𝜃 are the DQL parameters. Besides, two DQLs are
defined with parameters 𝜃(𝑡)target and 𝜃(𝑡)train. Each agent has the same copy of 𝜃(𝑡)target, while 𝜃(𝑡)train are
located at the central node. In addition, at time 𝑡, the central node randomly selects a mini-batch
M (𝑡) with 𝑀𝑠 samples from memory and, using a stochastic gradient algorithm, it minimizes the
least squares loss of the training DQL, given by

𝐿(𝜃(𝑡)train) =
∑︁

𝜙∈M (𝑡)

(
𝑟 (𝑡) + 𝛾max

𝑎
𝑄(𝑠(𝑡+1) , 𝑎,𝜃(𝑡)target) −𝑄(𝑠(𝑡) , 𝑎(𝑡) ,𝜃

(𝑡)
train)

)2
, (4.13)

where 𝛾 ∈ [0,1] is the discount factor (115). Finally, at every 𝑇𝑢 steps, 𝜃(𝑡)target is set to be equal to
𝜃
(𝑡)
train.

The behavior of the central node during the training phase is detailed in Algorithm 3.
The behavior of the agents are detailed in sections 4.6.1 and 4.6.2.

Algorithm 3 Multi-Agent DQL: Central node training

1: Initialize 𝜃train and 𝜃target.

2: Send copies of 𝜃target to each agent.

3: repeat
4: if Memory size 𝑀 is full then.

5: Delete 𝐵 oldest experiences.

6: end if
7: Receive from each agent 𝑏 its experience 𝜙(𝑡) .

8: Store the agents experiences in the memory.

9: Select a mini-batchM (𝑡) with 𝑀𝑠 samples from memory.

10: Update 𝜃(𝑡)train using the stochastic gradient algorithm regarding (4.13).

11: if 𝑡 (mod 𝑇𝑢) = 0 then
12: Update 𝜃(𝑡)target to be equal to 𝜃(𝑡)train and send copies to each agent.

13: end if
14: until Some convergence criterion.

4.6.1 Multi-agent DQL with Full Information

To proceed we assume that each BS has access to CSI of the channels from itself
to all served UEs in the own cell and to interfered UEs in neighbor cells, i.e., ĥ𝑖 𝑗𝑏,∀𝑖 𝑗 ∈ K 𝑗

and ∀ 𝑗 ∈ B. This requirement is due to the need to solve (4.5) in order to compute the transmit
vectors. This knowledge can be acquired by means of pilot signaling, and may be imperfect due
to estimation errors, as discussed in Section 4.2. In this section, we also assume that the nodes
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can communicate via control link during training and execution phases in order to coordinate
themselves. The structure for that signaling strategy is discussed in section 4.6.1.4. Next, we
discuss and define the proposed structure for the specific DQL, by characterizing state, action
and reward function.

4.6.1.1 State

As aforementioned, the state is responsible to characterize the environment for each
agent and it is crucial for determining the best choice of an action. Therefore, we consider that
𝑠
(𝑡+1)
𝑏

is composed by three aspects: the estimated channel for all users served by agent 𝑏, ĥ(𝑡+1)
𝑘𝑏𝑏

,

the previous total capacity, 𝐶 (𝑡) , and the previous activation pattern, 𝛼𝛼𝛼(𝑡)
𝑏

, which will be explained
in the next subsection.

However, note that ĥ𝑘𝑏𝑏 is composed by complex numbers, which are not supported
by the current neural network software. To deal with this issue, two approaches can be used. The
first consists of separating the complex vector ĥ𝑘𝑏𝑏 into the in-phase (real part) and quadrature
(imaginary part) components, denoted as I/Q transformation, ℜ(ĥ𝑘𝑏𝑏) and ℑ(ĥ𝑘𝑏𝑏), respectively.
The second approach, on the other hand, consists of mapping the complex vector ĥ𝑘𝑏𝑏 using
the phase and magnitude information, 𝔓(ĥ𝑘𝑏𝑏) and 𝔐(ĥ𝑘𝑏𝑏), respectively, which is denoted as
P/M transformation. Without loss of generality, we adopt the I/Q transformation. In addition, all
ℜ(ĥ(𝑡+1)

𝑘𝑏𝑏
) and ℑ(ĥ(𝑡+1)

𝑘𝑏𝑏
), ∀𝑘𝑏 ∈ K𝑏 are organized into only one vector ĥ(𝑡+1)

𝑏
∈ ℂ2𝐾𝑏𝑁𝑏×1. Thus,

we have that the state of agent 𝑏 at time 𝑡 +1 is defined as

𝑠
(𝑡+1)
𝑏

= {ĥ(𝑡+1)
𝑏

,𝐶 (𝑡) ,𝛼𝛼𝛼(𝑡)
𝑏
}. (4.14)

4.6.1.2 Action

To fulfill real-world demands, such as low latency and complexity constraints, we
limit the set of actions to activating a subset of UEs. Therefore, we define an activation pattern
𝛼𝛼𝛼𝑏 = [𝛼1, . . . ,𝛼𝐾𝑏] as a binary vector, in which 𝛼𝑘 is equal to 1 if the UE 𝑘 is selected to be active
and zero otherwise. Thus, the action of the agent 𝑏 is given by 𝛼𝛼𝛼𝑏 and the set of actions A𝑏 is
given by all the possible combinations for a given value of 𝐾𝑏. For example, assuming 𝐾𝑏 = 3 we
have

A𝑏 = {[0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], [1,1,1]}. (4.15)

Note that the number of possibilities is equal to 2𝐾𝑏 , thus, the action space increases
exponentially with the number of users per BS. However, according to (123), standardized
systems can multiplex up to 4 UEs on the same time-frequency resource, resulting in a confined
action space.

Once the action is taken and the active users are defined, the agents calculate the
beamforming direction for all active users according to (4.5), using as input the estimated
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channels, ĥ𝑘𝑏 𝑗, ∀𝑘 ∈ K𝑏 and ∀𝑏, 𝑗 ∈ B. Moreover, the parameters 𝜇𝑏 and 𝜆𝑘𝑏 are heuristically
calculated such as in the SLNR-MAX beamforming proposed in (34):

𝜇𝑏 =
𝐾𝑏∑𝐵
𝑗=1 𝐾 𝑗

=
𝐾𝑏

𝐾
, (4.16)

and
𝜆𝑘𝑏 =

𝛼𝑘𝑏
𝐵∑
𝑏=1
∥𝛼𝛼𝛼𝑏∥1

, (4.17)

where ∥·∥1 is the 𝑙1 norm operator.
These parameters are related to the relative importance of enforcing the power

constraint in a BS and the UE priority, respectively. Recall that the structure in (4.5) is based on
perfect CSI, thus, the UEs’ priority that maximizes the sum-rate can be suboptimal for scenarios
with CSI errors. However, we can set the UEs’ priority based on the taken action. Therefore, as
the agents learn the best policy, they can select a better priority for each user in the presence of
CSI errors. The power allocation, on the other hand, is performed by the well-known water-filling
algorithm (34). Also note that, in order to compute 𝜆𝑘𝑏 in (4.17), the knowledge about other
agents’ activation patterns 𝛼𝛼𝛼𝑏∀𝑏 ∈ B is needed.

4.6.1.3 Reward Function

Finally, the reward function must be designed to optimize the objective. Thus, the
more obvious choice is the total capacity. Also, the agents’ actions aim to increasingly obtain
rewards, thus, the knowledge of the real quantity of transmitted data allows the solution to be
more robust to the imperfect CSI, because the actions can be adjusted to minimize the channel
estimation errors and obtain higher capacity. Therefore,

𝑟(𝑡) = 𝐶 (𝑡) =
𝐵∑︁
𝑏=1

𝐾𝑏∑︁
𝑘=1

log2(1+ Γ𝑘𝑏). (4.18)

Note that, to effectively compute the reward in a real world deployment, we assume that each
UE estimates the actual amount of transmitted data and, next, it is reported to the BS.

4.6.1.4 Signaling Scheme

Additionally, the proposed multi-agent DQL relies on a specific signaling scheme
in order to supply the required information during execution. As it can be seen in Figure 21,
we have two periods along the time. In the first period, both training (update of parameters of
training DQL at the central node) and execution (agents’ action and beamformers computation
at the BSs) phases are performed in parallel.

Note that the CSI is constant during a time slot, the periods represent several time
slots and each phase corresponds to an iteration of the proposed scheme, which fits within a time
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Figure 21 – Signaling strategy for the training and execution phases for the
DQL approaches.
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slot. Consequently, the CSI changes during the training. Moreover, once the training is finalized,
the DQL can continue taking greedy actions and new training is required only when there are
changes in the neural network architecture, e.g., changes in the number of antennas

It is worth highlighting that it is not necessary to end the training to obtain the
actions and, consequently, the beamformers. In addition, since the training is performed at the
central node, the beamformers computation at the BSs reduces to linear and nonlinear operations,
avoiding iterative processes. Thus, the computational complexity is reduced.

That said, at time slot 𝑡+1, each agent requires knowledge about the overall capacity
achieved in the previous interval, 𝐶 (𝑡) , since it is part of its input state, as in (4.14). The capacity
𝐶 (𝑡) consists of the sum of the rates of each BS, suggesting that each agent must share via
backhaul its local capacity with other agents and acquire the local capacity from other ones.
Also, during execution phase each agent needs the action pattern chosen by each BS, 𝛼𝛼𝛼𝑏, in
order to compute the parameters 𝜆𝑘𝑏 , as in (4.17). In addition, the central node needs to receive
via backhaul at each interval the experience from the agents, 𝜙. Since 𝑎(𝑡)

𝑏
and 𝑟(𝑡)

𝑏
are already

represented in the next state set 𝑠(𝑡+1)
𝑏

, each BS shares with the central node the tuple (𝑠(𝑡)
𝑏
, 𝑠
(𝑡+1)
𝑏
).

During training it is also needed that at each 𝑇𝑢 intervals the neural network parameters 𝜃(𝑡)train be
broadcast from the central node to other agents via backhaul. In summary, during training, each
agent must broadcast a scalar number representing the local capacity and 𝐾𝑏 binary numbers for
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the action pattern, besides reporting 2𝐾𝑏𝑁𝑏 scalars regarding channel parameters to the central
node. In addition, the central node broadcasts at each 𝑇𝑢 time a scalar for each parameter of the
neural network. Since the proposed neural network is a fully-connected DQL consisting of five
layers, with three hidden layers, the number of parameters is given by

|𝜃| =
3∑︁
𝑙=0

𝑊𝑙+1(𝑊𝑙 +1), (4.19)

where 𝑊𝑙 is the number of neurons in layer 𝑙 (115).
Once training is ended, only the execution phase is performed in the second period.

Therefore, the central node leaves the network and the backhaul link will be used only for the
information share between agents, i.e., the number of parameters is reduced to a scalar plus 𝐾𝑏
binary digits, which refer to the local capacity and the action pattern, respectively.

In order to illustrate the amount of required training and execution signaling control
overhead for the proposed solutions, we consider a scenario with parameters as described in
Table 9 assuming a 1 ms time slot with 𝑇𝑢 = 100 and that scalars are encoded as single precision
floats (32 bits). In such network the signaling overhead generated during training by each agent is
estimated as around 1.06 Mbps, while the central node generated training overhead is estimated
as around 10.37 Mbps. On the other hand, the execution time overhead is only 36 bps. This
way, we see that although we have a considerable amount of training overhead, the execution
overhead is very reduced. We recall that the cooperation among agents in order to coordinate the
network in the direction of a common capacity goal motivates our training scheme. However, we
highlight that completely decentralized schemes with no need for control signaling are highly
desirable and indeed motivators for future research.

The behavior of the agents, including signaling, during the training phase and
execution phases are detailed in algorithm 4.

4.6.2 Multi-agent DQL with Local Information

Although the previous solution is an execution-distributed framework, the agents
need to exchange information with each other, even when the training is finalized. Moreover,
each BS needs to estimate the channel vectors from itself to the interfered UEs in order to
compute the transmit vectors as in (4.5). In order to reduce such requirements, we also propose a
solution based only on local information, where the BS has knowledge exclusively of the channel
vectors to its served UEs. Thus, we assume the beamforming structure for single-cell case (98),
where

m̃𝑘𝑏 =

(
I+

𝐾𝑏∑
𝑖=1

𝜆 𝑖𝑏
𝜎2 h𝑖𝑏𝑏h𝐻𝑖𝑏𝑏

)−1
h𝑘𝑏𝑏�����

�����(I+ 𝐾𝑏∑
𝑖=1

𝜆 𝑖𝑏
𝜎2 h𝑖𝑏𝑏h𝐻𝑖𝑏𝑏

)−1
h𝑘𝑏𝑏

�����
�����
. (4.20)
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Algorithm 4 Multi-agent DQL with Full Information: Agent 𝑏

1: Initialize the local copy of 𝜃target to be equal to the one shared by the central node.

2: Estimate channels, ĥ(1)
𝑖 𝑗𝑏
,∀𝑖 𝑗 ∈ K 𝑗 and ∀ 𝑗 ∈ B, by means of pilot signaling and MMSE.

3: Initialize the values of the tuple {𝐶 (0)
𝑏
,𝛼𝛼𝛼
(0)
𝑏
}.

4: Build the initial state vector 𝑠(1)
𝑏

= {ĥ(1)
𝑏
,𝐶 (0) ,𝛼𝛼𝛼(0)

𝑏
}.

5: repeat
6: Run the local DQN and update the activation pattern, 𝛼𝛼𝛼(𝑡)

𝑏
, following the 𝜖-greedy policy.

7: Compute parameters 𝜇𝑏 and 𝜆𝑘𝑏∀𝑘 ∈ K𝑏 as in (4.16) and (4.17), respectively.

8: Update the beamforming vectors, m𝑘𝑏∀𝑘 ∈ K𝑏, using (4.5).

9: Use computed m𝑘𝑏∀𝑘 ∈ K𝑏 to transmit.

10: Compute the reward, 𝐶 (𝑡)
𝑏

, as the achieved rate.

11: Share with other agents the achieved capacity and activation pattern {𝐶 (𝑡)
𝑏
,𝛼𝛼𝛼
(𝑡)
𝑏
}.

12: Estimate channels, ĥ(𝑡+1)
𝑖 𝑗𝑏

,∀𝑖 𝑗 ∈ K 𝑗 and ∀ 𝑗 ∈ B, by means of pilot signaling and MMSE.

13: Build the state vector 𝑠(𝑡+1)
𝑏

= {ĥ(𝑡+1)
𝑏

,𝐶 (𝑡) ,𝛼𝛼𝛼(𝑡)
𝑏
} from gathered information.

14: if Training phase = true then
15: Send to central node its experience set 𝜙 as the tuple (𝑠(𝑡)

𝑏
, 𝑠
(𝑡+1)
𝑏
).

16: if 𝑡 (mod 𝑇𝑢) = 0 then
17: Receive 𝜃(𝑡)train from central node and update local 𝜃(𝑡)target to be equal to 𝜃(𝑡)train.

18: end if
19: end if
20: until Some convergence criterion.

Note that it is a special case of (4.5) and is also based on perfect CSI. Moreover, the
𝜇𝑏 parameters are not calculated and the action patterns do not need to be transmitted to other
BSs. Here, we also assume that the input channels are the estimated ones, instead of the actual
values. Moreover, the actions and the reward function remain the same as those in the previous
solution and only the state is slightly changed, where instead of the previous total capacity, 𝐶 (𝑡) ,
we assume the previous capacity achieved by BS 𝑏, 𝐶 (𝑡)

𝑏
. Therefore, differently from Figure 21,

the backhaul link is used only for the exchange of information with the central node for the
training phase (first period), while in the second period no information is exchanged among the
agents.

The behavior of the agents, including signaling, during the training phase and
execution phases are detailed in algorithm 5.

In Table 7 we summarize the main differences of the two versions of the proposed
Multi-agent DQL, one with full information and the other with only local information, with
respect to the state, action, reward function and signaling requirement.
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Algorithm 5 Multi-agent DQL with Local Information: Agent 𝑏

1: Initialize the local copy of 𝜃target to be equal to the one shared by the central node.

2: Estimate channels, ĥ(1)
𝑖𝑏𝑏
,∀𝑖𝑏 ∈ K𝑏, by means of pilot signaling and MMSE.

3: Initialize the values of the tuple {𝐶 (0)
𝑏
,𝛼𝛼𝛼
(0)
𝑏
}.

4: Build the initial state vector 𝑠(1)
𝑏

= {ĥ(1)
𝑏
,𝐶
(0)
𝑏
,𝛼𝛼𝛼
(0)
𝑏
}.

5: repeat
6: Run the local DQN and update the activation pattern, 𝛼𝛼𝛼(𝑡)

𝑏
, following the 𝜖-greedy policy.

7: Compute parameters 𝜆𝑘𝑏∀𝑘 ∈ K𝑏 as in (4.17).

8: Update the beamforming vectors, m𝑘𝑏∀𝑘 ∈ K𝑏, using (4.20).

9: Use computed m𝑘𝑏∀𝑘 ∈ K𝑏 to transmit.

10: Compute the reward, 𝐶 (𝑡)
𝑏

, as the achieved rate.

11: Estimate channels, ĥ(𝑡+1)
𝑖𝑏𝑏

,∀𝑖𝑏 ∈ K𝑏, by means of pilot signaling and MMSE.

12: Build the state vector 𝑠(𝑡+1)
𝑏

= {ĥ(𝑡+1)
𝑏

,𝐶
(𝑡)
𝑏
,𝛼𝛼𝛼
(𝑡)
𝑏
}.

13: if Training phase = true then
14: Send to central node its experience set 𝜙 as the tuple (𝑠(𝑡)

𝑏
, 𝑠
(𝑡+1)
𝑏
).

15: if 𝑡 (mod 𝑇𝑢) = 0 then
16: Receive 𝜃(𝑡)train from central node and update local 𝜃(𝑡)target to be equal to 𝜃(𝑡)train.

17: end if
18: end if
19: until Some convergence criterion.

Table 7 – Strategy comparison of Full information (DQL-F) and Local information
(DQL-L).

Strategy State Action Reward Signaling
DQL-F {ĥ(𝑡+1)

𝑏
,𝐶 (𝑡) ,𝛼𝛼𝛼(𝑡)

𝑏
} 𝛼𝛼𝛼𝑏 𝐶 (𝑡) Both periods in Figure 21

DQL-L {ĥ(𝑡+1)
𝑏

,𝐶
(𝑡)
𝑏
,𝛼𝛼𝛼
(𝑡)
𝑏
} 𝛼𝛼𝛼𝑏 𝐶 (𝑡)

Only exchanges with
central node in Figure 21

Source: Created by the author.

4.7 Results and Performance Evaluation

4.7.1 Simulation Parameters

We evaluate the performance of the proposed solution by means of numerical simu-
lations, where we compare the proposed algorithm with benchmark solutions from the literature.
The simulations are conducted in the downlink of a multicell MISO scenario with parameters
{𝐵, 𝐾𝑏, 𝑁𝑏} = {4,4,4}. The BSs are located at the center of each hexagonal cell and the UEs are
uniformly distributed within each cell. The cell radius is equal to 500 m and we define an inner
region with a 100 m radius from the cell center in which no UE can be placed.
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In this work, we consider the main propagation mechanisms in the modeling. There-
fore, the propagation model consists of a distance-dependent path loss model, a log-normal
shadowing component, and a Rayleigh-distributed fast fading component. The path loss is given
by 128.1+37.6log10(𝑑) (in dB), where 𝑑 is transmitter-to-receiver distance in kilometers and
the log-normal shadowing standard deviation is 10 dB (124). It is also assumed that each time
slot has a duration shorter than the channel coherence time and at each 10 time slots the UE
positions are changed randomly. The power budget (𝑃𝑏) for all BSs is equal to 46 dBm and
we assume 10 MHz bandwidth. Finally, we set the noise power spectral density equal to -174
dBm/Hz. The main network parameters are presented in Table 8.

Table 8 – Main simulations parameters regarding network configu-
ration.

Parameter Value Unit
{𝐵, 𝐾𝑏, 𝑁𝑏} {4,4,4} −
Cell radius 500 m

Bandwidth 10 MHz

Power budget per BS 46 dBm

Shadowing standard deviation 10 dB

Path loss 128.1+37.6log10(𝑑) dB

Noise power spectral density -174 dBm/Hz

Source: Created by the author.

Both DQL schemes were implemented using Tensorflow (125) and have the form of
a five-layer fully connected neural network with one input layer, three hidden layers and one
output layer. The numbers of neurons in the three hidden layers are 200, 100 and 40, respectively.
The input size is equal to 𝐾𝑏(2𝑁𝑏 + 1) + 1 for each agent and the output size is equal to 2𝐾𝑏 .
Since 𝐾𝑏 is set equal to 4, we have that the number of inputs and outputs are (8𝑁𝑏 +5) and 16,
respectively.

We use the rectifier linear unit as DQL’s activation function. The memory parameters
𝑀 and 𝑀𝑠 are equal to 10,000 and 256, respectively, and we use the Adam algorithm (126) with
a learning rate equal to 10−4. Moreover, the 𝜖-greedy policy is given by 𝜖(𝑡+1) = max{𝜖min, (1−
𝜂𝜖)𝜖(𝑡)} with 𝜖0 = 0.2, 𝜖min = 10−2 and 𝜂𝜖 = 10−4. Also, we set 𝛾 equal to 0, since the correlation
between the agent’s actions and its future rewards tends to be smaller for our application due to
fading. The main learning parameters are summarized in Table 9.

In our framework, the DQL is trained once. Therefore, the number of time slots for
training must be large enough to overcome the generalization problem. In this work, we dedicate
40,000 time slots for training. Moreover, during training, we set 𝑇𝑢 = 100, thus, once every 100
time slots the central node will broadcast the trained parameters to all agents, which are available
in the next time slot for usage. Once the DQL is trained, the central node leaves the network
and the 𝜖-greedy algorithm is finalized, i.e., the agents take only greedy actions. In order to
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Table 9 – Main simulations parameters regarding learning scheme configuration.

Parameter Value
Neural network type Fully connected

Neural network size {(8𝑁𝑏 +5),200,100,40,16}
Activation function rectifier linear unit (ReLU)

Memory parameters {𝑀,𝑀𝑠} {10000,256}
Learning rate (126) 10−4

𝜖-greedy policy 𝜖(𝑡+1) = max{10−2, (1−10−4)𝜖(𝑡)}, with 𝜖0 = 0.2
𝛾 0

Source: Created by the author.

validate the training, another 5,000 time slots are used for the testing phase, in addition to the
40,000 dedicated to the training. Thus, we assume a total of 45,000 time slots. Note that the
number of time slots for the testing phase was selected only for statistical reliability reasons,
thus, in practical scenarios the DQL could continue taking greedy actions without requiring a
new training.

In the simulation results, the DQL with full information is denoted as DQL-F and
the one with only local information is called DQL-L. Moreover, we have three benchmarks to
evaluate the performance of our algorithms, assuming that all solutions are fed with the estimated
channel. The first is the WMMSE algorithm (47), the second is the SLNR-MAX beamforming
(34) using the water-filling algorithm for power allocation and the third is the SUS algorithm
presented in (59).

Finally, in order to evaluate the performance of solutions with respect to execution
time, we compute the gain in relation to the execution time of WMMSE, which is used as
reference to maximum execution time, given by

Gain (%) = 100 ·
(
1− execution time of the solution

execution time of WMMSE

)
. (4.21)

4.7.2 Optimization results

In Figure 22 we present the average spectral efficiency as a function of time in the
first period, with channel estimation reliability 𝜉 = 0.95 for both DQL-F and DQL-L solutions.
As we can see, the achieved spectral efficiency increases with time, which shows that the agents
learn to take better actions over time, selecting the action patterns that obtain higher data rates.
Moreover, we observe that the DQL-F solution achieves higher spectral efficiency than DQL-L,
as expected. We also see in Figure 22 that convergence speed is much greater in the beginning of
the training procedure, so that the number of time slots dedicated for the training can be further
reduced without great impact on the spectral efficiency.

In Figure 23, we show the spectral efficiency versus the reliability of channel estima-
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Figure 22 – Comparison of average spectral efficiency during the first period
(training).
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Figure 23 – Comparison of multiple strategies regarding spectral efficiency vs.
reliability in the execution phase.
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tion for all solutions in the second period. Note that for each value of 𝜉 the DQLs were trained
from scratch. As we can observe, the DQLs generalize the training for new channel realizations
in the second period, where the training is finalized and only greedy actions are allowed. Indeed,
the average spectral efficiency in the execution phase is similar to the one achieved in the training
phase. In addition, spectral efficiency increases as reliability increases.

Another important observation from Figure 23 is related to the gain of the proposed
solutions in comparison to the reference algorithms when there are estimation errors. Assuming
𝜉 equal to 0.9, we have spectral efficiency gains for the DQL-F of 22%, 61% and 150%, when
compared to SUS, WMMSE, SLNR-MAX, respectively. The reason for this is that the proposed
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Figure 24 – Comparison of multiple strategies regarding the average execution
time gain compared to the WMMSE algorithm.
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solutions, in spite of being fed with the estimated channel, receive the real data rate achieved by
the system as a reward. Thus, they learn to adjust their actions in order to maximize the obtained
reward and, consequently, achieve higher data rates compared to the reference solutions. We
highlight that in this result both training and execution were performed considering the same
channel reliability 𝜉 and do not consider scenarios in which there is a mismatch in reliability
between training and execution.

We also observe that DQL-L presents a very close performance to that of DQL-F,
which shows that the signaling can be reduced at the cost of a slight performance loss. We can
also observe that WMMSE outperforms both DQL-F and DQL-L when the channel is perfectly
estimated. The reason is that the dual variables 𝜆𝑘𝑏 and 𝜇𝑏 for all UE 𝑘 and BS 𝑏, as well as the
transmit power allocation, are calculated heuristically based on the taken actions. Consequently,
the proposed solution has lower degrees of freedom than the WMMSE algorithm. Even so, our
results clearly indicate that the proposed solutions yield gains compared to SLNR-MAX and
SUS solutions.

Finally, in Figure 24 we present the average execution time gain compared to the
WMMSE algorithm versus the number of antennas, assuming 𝜉 equal to 0.9. The simulations
were written in python, using equal configurations and all tests were performed using one same
hardware setup. As we can see, the DQL is, approximately, 96% faster than the WMMSE
algorithm when the number of antennas is 2 and increases as the number of antennas increases.
This occurs because WMMSE calculates beamforming iteratively. On the other hand, we have
that DQL presents an execution time similar to SLNR-MAX and SUS, considering that these
solutions use closed-form expressions to compute the beamformers without iterations. In addition,
DQL-L has a slight gain compared to the DQL-F solution, since the beamforming structure
requires less calculations. As an overall analysis, the proposed solutions reach a good trade-off
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between performance and execution time when compared to other solutions selected from recent
literature.

4.8 Conclusions

In this work, we focused on the sum-rate maximization problem in a multi-cell
MISO scenario with per-BS power constraints and imperfect CSI using multi-agent DQL. The
proposed solutions are distributedly executed, with the transmit beamformers calculated based on
agents’ actions and expertise on the problem structure. From the results, we concluded that the
proposed DQL schemes are able to learn a policy that makes a beamforming structure based on
perfect CSI robust to scenarios with channel estimation errors. We also observed that signaling
overhead can be reduced at the cost of a slight performance loss. In addition, the proposed
schemes outperformed state-of-the-art solutions in scenarios with imperfect CSI and presented a
low execution time, which is an important feature in real-world applications. As perspectives for
future works we can mention the joint power and user scheduling or to consider a grid of beams
approach, in which the BS selects a precoder out of a discrete set of beamformers (codebook).



5 CONCLUSIONS AND FUTURE WORK

In this thesis, we addressed the design of novel strategies to improve the performance
of future mobile wireless systems. The main objective of this work was to propose decentralized
strategies for the optimization of beamforming and user scheduling in scenarios from 5G and
beyond systems. Along with that, we aimed for solutions that were tractable and applicable to
real-world scenarios, by pursuing robust designs of distributed execution and by providing the
required signaling schemes. This objective, along with the technological context that motivates
it, and a list contributions of this thesis were presented in Chapter 1.

In Chapter 2, we discuss the main aspects regarding the major technologies and
theories that generate the questions, scenarios and solution approaches studied in this thesis. First,
we discuss the aspects of beamforming, which is the technology that permeates the whole context
of this thesis, and we motivate the design of improved beamforming algorithms to enhance
network performance. Then, we also discuss the aspects and motivate the design of refined user
scheduling strategies as a means of improving efficiency. Next, we argue that the employment of
distributed algorithms is desired and necessary for cooperative optimization in wireless mobile
networks, by comparing aspects of centralized and decentralized optimization. After that, we
provide an overview of the solution methods employed in this thesis: convex optimization and
machine learning.

In Chapter 3, we considered the bidirectional sum-power minimization beamforming
in a multi-user, multi-stream, MIMO network, as a means to deal with interference generated
by the dynamic TDD scenario, by forcing a minimum signal-to-interference-plus-noise ratio
constraint for both UL and DL. In order to solve this beamforming problem, we proposed two
iterative approaches. The first presented approach is based on alternate convex optimization of
receive and transmit vectors, assumes centralized processing, and requires the availability of
global CSI. For that centralized solution, we derived and presented the proof that the proposed
algorithm converges globally to the set of KKT conditions. The second approach is performed
in a decentralized manner, based on ADMM and requires only local channel state information
and a reduced signaling load for coordination. For that decentralized solution, we designed a
lightweight signaling scheme to support the decentralized algorithm application and provided
a convergence and optimality analysis. We also were able to provide numerical results which
showed that both centralized and decentralized approaches were capable of converging to a
minimum network power expenditure while guaranteeing SINR performance, and that the
decentralized solution can well approximate the performance of the centralized one with a
reduced amount of iterations and control signaling.

In Chapter 4 we addressed the development of distributed-execution ML user schedul-
ing schemes to solve the beamforming problem in DL multi-cell MISO networks in the presence
of CSI errors, with the objective of sum-rate maximization with per BS power constraints. The
main essence of the proposed learning schemes is that they are able to efficiently adapt and
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improve the performance of an optimal beamforming structure based on perfect CSI in scenarios
with the presence of channel estimation errors. Both learning strategies are based on a multi-agent
DQL algorithm, in which the training is performed by a centralized node, while the actions are
taken distributively by agents. In that learning strategy, each agent acts based on a specific state,
that characterizes its environment and points out relevant information, and receives back a reward
as a response for that action. To fulfill real-world demands, such as low latency and complexity
constraints, we limited the set of actions to activating a subset of UEs, i. e. user scheduling.
The first proposed decentralized learning algorithm DQL-F assumes that each BS has access to
local CSI and that the nodes can communicate via control link during training and execution
phases in order to coordinate themselves. For that solution, we designed a lightweight signaling
scheme to support the decentralized algorithm application. The second proposed decentralized
learning algorithm DQL-L only assumes local CSI knowledge. We also provided numerical
results which showed that the proposed DQL schemes were able to learn a policy that makes a
beamforming structure based on perfect CSI robust to scenarios with channel estimation errors.
We also observed that signaling overhead can be reduced at the cost of a slight performance
loss. In addition, the proposed schemes outperformed state-of-the-art solutions in scenarios with
imperfect CSI and presented a low execution time, which is an important feature in real-world
applications.

Overall, throughout this thesis, we were able to propose the desired novel decentral-
ized beamforming and user scheduling strategies to improve the performance of wireless mobile
networks, along with the required schemes to support their application. Also, we were able to
assess the performance of the proposed algorithms through simulation and analysis of results,
which reinforced the quality of such solutions.

Future Research

As direct extensions of the works presented in this thesis we can enlist the following:

• Imperfect CSI for the dynamic TDD solution: The assumption of perfect CSI knowl-
edge does not hold in reality. Although state-of-the-art channel estimation methods
can provide good estimation, some levels of incorrectness still hold. This way, meth-
ods to optimize the beamforming which are robust to CSI errors are relevant in the
scenario of dynamic TDD.

• Other optimization objectives for the dynamic TDD solution: we believe that the
strategies for the decentralization of the solution proposed here can be extended to
other network beamforming objectives such as sum-rate maximization and energy
efficiency and different constraints such as rate.

• ML based optimization in the context of Dynamic time division duplexing (TDD):

As a mix of both chapters, we consider to be of interest the application of similar
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machine learning (ML) strategies to the scenario in which multiple interference links
are generated by the MIMO Dynamic TDD scenario.

• Fully distributed ML design: In the solution proposed here we need coordination
among users as means of cooperation in the direction of a common goal, which leads
to a signaling overhead in the training stage. A completely distributed ML strategy,
with good global performance, is a very desirable technology.

• Multi-armed bandits ML design: In the solution proposed here we employ a multi-
agent DQL strategy. Another promising ML approach to deal with decisions is
known as multi-armed bandits (127). The study of the application of such strategy to
our problem is of high interest.

• ML based joint optimization of power and user scheduling: In the solution proposed
here the power allocation is performed by the well-known water-filling algorithm,
we believe that gains can be achieved if both user scheduling and power allocation
are jointly optimized.

• ML based optimization of the beamforming vectors: We envision an extension in
which the learning scheme is able to optimize the beamforming vector itself, not
only the scheduling. However, there are concerns about this, regarding complexity
and latency constraints,

As previously discussed, this thesis is inserted in the context of the always-evolving
wireless networks. That means that the requirements of higher data rates, lower latency, and
more connected users will continue to be the drivers of evolution. Based on that, new scenarios
arise and we envision cell-free networks as possible grounds for the evolution of decentralized
optimization solutions related to/evolved from the ones presented here. Cell-free Massive MIMO
is considered as a promising technology for satisfying the increasing number of users and high
rate expectations in beyond-5G networks (128). The main principle is that many distributed
access points cooperate to simultaneously serve all the users within the network without creating
cell boundaries (129). This way, due to the decentralized nature of such scenarios, there is a need
to find practical architectures and ways to decentralize the processing.
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APPENDIX A – MAIN RELATED WORKS OF CHAPTER 3

Table 10 – Comparison of the most relevant references of Chapter 3.

Reference Objective Constraint Architecture Decentralization CSI availability Solution scheme Merits of solution

Chapter 3
Sum-power

min.
SINR for

UL and DL

Multi-cell
multi-stream MIMO

dynamic TDD

Centr. and
decentr.

Global for centr.
local for decentr.

MMSE-SDP for centr.
ADMM for decentr.

Converges to
mininimum

network power

(103)
DL sum-power

min.
DL SINR

BS-BS interf.
Multi-cell MIMO

dynamic TDD
Centr. and
decentr.

Global for centr.
local for decentr.

MMSE-SOCP for centr.
ADMM for decentr.

UL not
optimized

(102)
DL sum-power

min.
DL SINR

BS-BS interf.
Multi-cell MISO

dynamic TDD
Centr. and
decentr.

Global for centr.
local for decentr.

MMSE-SDP for centr.
ADMM for decentr.

UL not
optimized

(101)
DL rate max.

penalty on interf.
DL

sum-power
Multi-cell MISO

dynamic TDD
Decentr. local

Interference
pricing

DL avoids
interf. to UL

(107)
Weighted

sum-power min.
SINR

DL Multi-cell
MISO

Decentr.
Imperfect

local
ADMM

Different
levels of

coordination

(43)
Sum-power

min.
SINR

DL Multi-cell
MISO

Decentr. Local
Primal

decomposition

Performance
similar to

centr.

(94)
Sum-power

min.
SINR

DL Multi-user
MIMO

Decentr. Global MMSE-SOCP
Convergence

is proved

(106)
Sum-power

min.
Rate

Full-duplex
K-link MIMO

Centr. Global Penalty method
Space-time
scheduling

(91)
Sum-rate

max.
Power K-link MIMO Decentr. Local

Iterative
precoding

Combines
MMSE and
waterfilling

Source: Created by the author.



113

APPENDIX B – MAIN RELATED WORKS OF CHAPTER 4

Table 11 – Comparison of the most relevant references of Chapter 4.

Reference Objective Constraint Architecture Decentralization CSI availability Solution scheme Merits of solution

Chapter 4
Sum-rate

max.
Power

DL multi-cell
MISO

Decentr.
Imperfect

local
Multi-agent DQL
user scheduling

Beamforming
based on a

opt. structure

(115)
Weighted

sum-rate max.
Power

K-link
single-antenna

Decentr. Local
Multi-agent DQL
power allocation

Considers CSI
delays

(47)
Weighted

sum-rate max.
Power

downlink (DL) Multi-cell
MIMO

Decentr. Local
Iterative min.

of weighted MSE
Considers CSI

delays

(34)
SLNR
max.

Power
DL Multi-cell

MISO
Decentr. Local

Structured on
uplink/downlink

duality

Heuristically
max. SNR

min. interf. power

(59)
Weighted

sum-rate max.
Power

DL Multi-cell
MISO

Decentr. Local
SLNR based

user scheduling
Low complexity

algorithm

(60)
Sum-rate max.

penalized
dissatisfaction

Rate
DL Multi-cell

MIMO
Centr. and
Decentr.

Global for centr.
local for decentr.

Joint user
scheduling and

transceivers

Practical design
low overhead

(63)
Interference
Alignment − K-link MIMO Centr. Global

DQL
user scheduling

Cache-enabled
IA

(116)
Weighted

sum-rate max.
Power

DL Multi-cell
MIMO

Centr.
Imperfect

Global
Robust

weighted MMSE
Resilient to

imperfect CSI

(98)
Three BF
objectives − DL single-cell

MISO
Centr. Global

Supervised
Unsupervised

Neural networks
expert knowledge

(97)
Weighted

sum-rate max
Power

DL single-cell
MIMO

Centr. Global
Unsupervised

learning
Perform close to
weighted MMSE

Source: Created by the author.
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APPENDIX C – PROOF OF PROPOSITION 2

The related sum-power optimization problem can be conveniently expressed as an
optimization task as

min
{m𝑘𝑏

}∀𝑘𝑏∈K
{𝑃𝑏}∀𝑏∈B

𝐵∑︁
𝑏=1

𝑃𝑏, (C.1a)

s. t.
𝐾𝑏∑︁
𝑘=1
| |m𝑘𝑏 | |2 ≤ 𝑃𝑏, ∀𝑏 ∈ B, (C.1b)

Γ𝑘𝑏 ≥ Γmin
𝑘𝑏

, ∀𝑏 ∈ B,∀𝑘 ∈ K𝑏 (C.1c)

where 𝑃𝑏 is a variable that reflects the total power of BS 𝑏 and Γmin
𝑘𝑏

is the minimum SINR
threshold of UE 𝑘 of BS 𝑏.

In sum-rate maximization problems, the maximum power of each BS, 𝑃𝑏, are given.
Thus, there is a direct relation between problem (4.3) and the feasibility problem (C.2):

find {m𝑘𝑏}∀𝑘𝑏∈K (C.2a)

s. t.
𝐾𝑏∑︁
𝑘=1
| |m𝑘𝑏 | |2 ≤ 𝑃𝑏, ∀𝑏 ∈ B, (C.2b)

Γ𝑘𝑏 ≥ Γmin
𝑘𝑏

, ∀𝑏 ∈ B,∀𝑘 ∈ K𝑏 (C.2c)

The Lagrangian for problem (C.2) is

L({m𝑘𝑏 , 𝜆𝑘𝑏}∀𝑘𝑏∈K , {𝜇𝑏}∀𝑏∈B) =
𝐵∑︁
𝑏=1

𝜇𝑏

(
1
𝑃𝑏

𝐾𝑏∑︁
𝑘=1
| |m𝑘𝑏 | |2−1

)
+

𝐵∑︁
𝑏=1

𝐾𝑏∑︁
𝑘=1

𝜆𝑘𝑏

𝜎2

( 𝐾𝑏∑︁
𝑖=1
𝑖≠𝑘

|h𝐻𝑘𝑏𝑏m𝑖𝑏 |2 +
𝐵∑︁
𝑗=1
𝑗≠𝑏

𝐾 𝑗∑︁
𝑖=1
|h𝐻𝑘𝑏 𝑗m𝑖 𝑗 |2 +𝜎2− 1

Γmin
𝑘𝑏

|h𝐻𝑘𝑏𝑏m𝑘𝑏 |2
)
,

(C.3)

where, 𝜇𝑏 and 𝜆𝑘𝑏 are Lagrange multipliers with respect to the power constraint of BS 𝑏 and to
the SINR constraint of UE 𝑘𝑏, respectively.

This way, the dual problem of (C.2) can be written as

max
{m𝑘𝑏

,𝜆𝑘𝑏 }∀𝑘𝑏∈K
{𝜇𝑏}∀𝑏∈B

𝐵∑︁
𝑏=1

𝐾𝑏∑︁
𝑘=1

𝜆𝑘𝑏 −
𝐵∑︁
𝑏=1

𝜇𝑏, (C.4a)

s. t.
𝜇𝑏

𝑃𝑏
I+

𝐾𝑏∑︁
𝑖=1
𝑖≠𝑘

𝜆 𝑖𝑏

𝜎2 h𝑖𝑏𝑏h
𝐻
𝑖𝑏𝑏
+

𝐵∑︁
𝑗=1
𝑗≠𝑏

𝐾 𝑗∑︁
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h
𝐻
𝑖 𝑗𝑏
−

𝜆𝑘𝑏

𝜎2Γmin
𝑘𝑏

h𝑘𝑏𝑏h
𝐻
𝑘𝑏𝑏
⪰ 0, ∀𝑏 ∈ B,∀𝑘 ∈ K𝑏, (C.4b)

𝜇𝑏 ≥ 0, 𝜆𝑘𝑏 ≥ 0, ∀𝑏 ∈ B,∀𝑘 ∈ K𝑏. (C.4c)



APPENDIX C. Proof of Proposition 2 115

Strong duality of problem (C.2) implies that in the optimum point of the primal and dual problems
have the same objective value, i.e.

∑𝐵
𝑏=1

∑𝐾𝑏
𝑘𝑏=1 𝜆𝑘𝑏 −

∑𝐵
𝑏=1 𝜇𝑏 = 0. Additionally, the stationarity

Karush-Kuhn-Tucker (KKT) conditions imply that 𝜕L/𝜕m𝑘𝑏 = 0,∀𝑏 ∈ B,∀𝑘 ∈ K𝑏:

𝜇𝑏

𝑃𝑏
m𝑘𝑏 +

𝐾𝑏∑︁
𝑖=1
𝑖≠𝑘

𝜆 𝑖𝑏

𝜎2 h𝑖𝑏𝑏h
𝐻
𝑖𝑏𝑏

m𝑘𝑏 +
𝐵∑︁
𝑗=1
𝑗≠𝑏

𝐾 𝑗∑︁
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h
𝐻
𝑖 𝑗𝑏

m𝑘𝑏 −
𝜆𝑘𝑏

𝜎2Γmin
𝑘𝑏

h𝑘𝑏𝑏h
𝐻
𝑘𝑏𝑏

m𝑘𝑏 = 0, (C.5)

⇔ ©«𝜇𝑏𝑃𝑏 I+
𝐵∑︁
𝑗=1

𝐾 𝑗∑︁
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h
𝐻
𝑖 𝑗𝑏

ª®¬m𝑘𝑏 =
𝜆𝑘𝑏

𝜎2

(
1+ 1

Γmin
𝑘𝑏

)
h𝑘𝑏𝑏h

𝐻
𝑘𝑏𝑏

m𝑘𝑏 , (C.6)

⇔ m𝑘𝑏 =
©«𝜇𝑏𝑃𝑏 I+

𝐵∑︁
𝑗=1

𝐾 𝑗∑︁
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h
𝐻
𝑖 𝑗𝑏

ª®¬
−1

h𝑘𝑏𝑏︸                                    ︷︷                                    ︸
vector

𝜆𝑘𝑏

𝜎2

(
1+ 1

Γmin
𝑘𝑏

)
h𝐻𝑘𝑏𝑏m𝑘𝑏︸                       ︷︷                       ︸

scalar

(C.7)

Thus the beamforming vectors are

m𝑘𝑏 =
√
𝑝𝑘𝑏m̄𝑘𝑏 , ∀𝑏 ∈ B,∀𝑘 ∈ K𝑏, (C.8)

where √𝑝𝑘𝑏 denotes the beamforming power of UE 𝑘𝑏 and

m̄𝑘𝑏 =

(
𝜇𝑏
𝑃𝑏

I+
𝐵∑
𝑗=1

𝐾 𝑗∑
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h𝐻𝑖 𝑗𝑏

)−1

h𝑘𝑏𝑏������
������
(
𝜇𝑏
𝑃𝑏

I+
𝐵∑
𝑗=1

𝐾 𝑗∑
𝑖=1

𝜆 𝑖 𝑗

𝜎2 h𝑖 𝑗𝑏h𝐻𝑖 𝑗𝑏

)−1

h𝑘𝑏𝑏

������
������

(C.9)

denotes the beamforming direction.
The connection between the sum power minimization and sum rate maximization

problems implies that the beamforming solution for (4.3) is also given by (C.8), with
∑𝐾𝑏
𝑘=1 𝑝𝑘𝑏 ≤

𝑃𝑏,
∑𝐵
𝑏=1

∑𝐾𝑏
𝑘𝑏=1 𝜆𝑘𝑏 = 1 and

∑𝐵
𝑏=1

∑𝐾𝑏
𝑘𝑏=1 𝜆𝑘𝑏 −

∑𝐵
𝑏=1 𝜇𝑏 = 0.

This way, (C.8) provides the structure of the optimal beamforming as function of the
Lagrange multipliers 𝜆𝑘𝑏 and 𝜇𝑏 and the power values 𝑝𝑘𝑏 , with 𝑘 ∈ K𝑏 and 𝑏 ∈ B.
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