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RESUMO

A fim de apoiar a evolução dos sistemas de comunicações celulares para além da quinta geração
(5G), tem sido considerada pela indústria e pela academia a otimização e o desenvolvimento de
novas tecnologias de comunicação como a comunicação de múltiplas entradas e múltiplas saídas
(MIMO) massiva e a exploração de um maior espectro de frequência usando faixas de frequência
em ondas milimétricas (mmWave) e terahertz (THz). No entanto, alguns desafios surgem durante
a aplicação dessas técnicas nesses novos cenários. Neste contexto, esta dissertação aborda dois
cenários diferentes de sistemas de comunicação móvel, cada um considerando um problema
específico em relação aos sistemas 5G e de sexta geração (6G). Primeiramente, é abordado o
problema de beamforming robusto em sistemas multiusuários de múltiplas entradas e saídas
únicas (MU-MISO). Para tanto, avaliou-se o desempenho de uma estratégia de formatação de
feixes baseada em redes neurais profundas (DNN) sob condições imperfeitas de canal. Uma
análise de robustez foi fornecida adicionando controladamente um termo de ruído aditivo
independente ao canal. A estratégia de formatação de feixe baseada em DNN é comparada
com a solução clássica de erro quadrado médio ponderado mínimo (WMMSE) em termos do
impacto da informação de estado de canal imperfeita (ICSI) na soma da taxa média alcançada
pelos usuários. Resultados mostraram que a estratégia baseada em DNN é viável em termos de
complexidade computacional e tão robusta quanto a solução iterativa do WMMSE. Na segunda
parte, é avaliado o desempenho da rede de um sistema celular operando a 100 GHz com largura
de banda em torno de 3 GHz sob um regime de dinâmico de transmissão descontinuada (DTX)
aplicado aos pontos de transmissão e recepção (TRP). O uso de faixas de frequência na ordem
de THz é considerado como um meio para alcançar taxas de dados mais altas em sistemas
6G. Adicionalmente, para lidar com condições de propagação mais severas em faixas de THz,
foi adotada uma rede com múltiplos TRP equipados com grandes arranjos de antenas que
promovem conexão a equipamentos de usuário (UEs) equipados com múltiplos painéis. Para
evitar problemas de superaquecimento, foi proposto um método de DTX do lado do TRP, que
controla as transmissões de downlink enquanto garante o envio de sinais de referência específicos
da célula. Resultados de simulação considerando diferentes configurações de DTX e cargas de
tráfego foram apresentados e discutidos. Os resultados mostraram que o sistema THz considerado
com o método DTX proposto pode fornecer taxas de dados mais altas em comparação com um
sistema mmWave padrão operando a 28 GHz, promovendo um ganho de taxa de dados 6.84
vezes maior.

Palavras-chave: aprendizado profundo; MU-MISO; WMMSE; formatação e gerenciamento de
feixes; bandas sub-THz; superaquecimento; transmissão descontinuada.



ABSTRACT

In order to support the evolution of cellular communication systems towards the fifth generation
(5G) and beyond, the industry and the research community have considered the optimization and
development of communication technologies, such as massive multiple-input multiple-output
(MIMO) and the exploration of a larger frequency spectrum using millimiter wave (mmWave)
and terahertz (THz) bands. However, some challenges emerge during the application of these
techniques in these new scenarios. In this context, this dissertation addresses two different
scenarios of mobile communication systems, each considering one specific problem regarding
5G and 6G systems. First, it addresses the problem of robust beamforming in multi-user multiple-
input single-output (MU-MISO) systems. To this end, it assesses the performance of a deep
neural network (DNN)-based beamforming strategy under imperfect channel conditions. A
robustness analysis has been provided by adding a controlled independent additive noise term
to the channel. The DNN-based beamforming strategy is compared with the classical weighted
minimum mean square error (WMMSE) solution in terms of the impact of imperfect channel
state information (ICSI) on the average sum rate. Results have shown that the deep neural
network (DNN)-based strategy is viable in terms of complexity and is as robust as the weighted
minimum mean square error (WMMSE). In the second part, it evaluates the network performance
of a cellular system operating at 100 GHz with bandwidth of around 3 GHz under a dynamic
transmission and reception point (TRP)-side discontinuous transmission (DTX) regime. The use
of THz bands are envisioned as a means to achieve higher data rates in sixth generation (6G)
systems. Additionally, to deal with more severe propagation conditions in THz bands, a network
with multiple TRPs equipped with large antenna arrays serving multi-panel user equipment (UE)
has been adopted. To avoid overheating issues, a TRP-side DTX method has been proposed,
which controls downlink transmissions while guaranteeing cell-specific reference signaling.
Simulation results considering different DTX settings and traffic loads have been presented and
discussed. Results have shown that the considered THz system with the proposed DTX method
can provide higher data rates in comparison with a typical, baseline (mmWave) system operating
at 28 GHz. It was possible to reach at least 6.84 times higher data rates.

Keywords: deep learning; MU-MISO; WMMSE; deamforming and beam management; sub-
THz bands; TRP panel overheating; siscontinuous transmission.
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1 INTRODUCTION

Over the past five decades the wireless mobile communication systems have evolved
through five generations. The evolution of wireless communication technologies throughout
the generations was driven by several factors as a result of their high diffusion and acceptance,
alongside the new applications and services that can be provided.

The constant growth in the number of users, as well as the increase of the demand
for wireless services with high mobility and capacity motivated the establishment of new use
cases, scenarios, and requirements to be satisfied when evolving from one generation to the next.

The first generation of mobile communications was based on analog cellular systems
and provided mobile telephony for the first time. Second generation (2G) systems introduced
digital transmission technologies, enabling better signal processing capabilities and new data
services, being the global system for mobile communication (GSM) the main standard for
2G [1]. The transition to modern mobile communication systems was introduced by the third
generation (3G), providing high quality mobile boardband through fast Internet connection by
exploiting new radio access technologies based on code division multiple access (CDMA). With
the fourth generation (4G) of wireless communication systems, the LTE standard extended the
mobile broadband services, providing higher data rates and supporting more users with less
delay powered by orthogonal frequency division multiple access (OFDMA) in combination with
the employment of multiple-input multiple-output (MIMO) systems.

The fifth generation (5G) systems are currently in the implementation stage across
the world. 5G systems seek to provide reliable connectivity at any time in the most diverse
scenarios [2], offering low latency, high transmission rates and high mobility, even in denser
networks where a high demand for data per user is present, outperforming previous generations
and increasing the number of potential applications of mobile systems. The target requirements
envisioned to be met by 5G new radio (NR) standard in order to improve and extend LTE systems
capabilities are depicted in the following three main use cases:

1. Enhanced mobile broadband (eMBB): This use case addresses the user centric
applications, representing the direct evolution of 4G mobile boardband providing
better QoS, enhanced user experience, and large data traffic by supporting even
higher data rates.

2. Ultra-reliable and low-latency communication (URLLC): This use case extends
previous generation systems by focusing on enabling mission critical connectivity
for applications that require extremely high reliability and very low latency, such as
real time services, autonomous vehicles, and automation in Industry 4.0.

3. Massive machine-type communication (mMTC): This use case focuses on providing
and supporting dense connectivity to a large number of low-cost narrow-bandwidth
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devices, prioritizing operation whit high energy efficiency. This scenario is the key
enabler for Internet of things (IoT) applications.

In order to satisfy the requirements for 5G NR and promote its evolution toward
beyond 5G and sixth generation (6G), the industry and the research community have considered
the optimization and development of communications technologies regarding three different
aspects: more advanced multi-antenna technologies, such as massive MIMO; exploration of
higher frequency bands, e.g., millimeter wave (mmWave) bands to provide end users high data
rates; and the employment of dense and heterogenous networks via small cells architecture.

1.1 Contributions and organization

In the context of the evolution and optimization of mobile wireless systems, this dis-
sertation addresses two different scenarios of mobile communication systems, each considering
one specific problem regarding aspects of 5G and 6G systems discussed in two self contained
chapters.

The first scenario discussed in Chapter 2 is in the context of optimization strategies
for downlink transmissions and machine learning for communication systems. It addresses the
problem of robust beamforming in multi-user multiple-input single-output (MU-MISO) systems,
considering the performance of a deep neural network (DNN)-based beamforming strategy under
imperfect channel state information (ICSI) conditions. It also provides a robustness analysis in
the presence of a controlled additive error term in the fast fading component of the channel.

The second scenario is discussed in Chapter 3 and considers the context of exploiting
higher operation frequencies for beyond 5G systems and their impact on the network performance
under a dynamic discontinuous transmission (DTX) regime in a scenario considering multiple
transmission and reception points (TRPs).

Chapter 4 concludes the dissertation, summarizing the main results and discussing
potential future research lines.

The contributions of this work are listed as follows:

1. The application of a DNN-based beamforming (BF) strategy to solve the sum rate
maximization problem assuming different levels of channel state information (CSI)
imperfection in a MU-MISO system.

2. A robustness analysis of the adopted DNN, showing that it has a similar behavior
under ICSI with respect to sum rate degradation when compared to the classical
solutions. Also, a computational complexity comparison is provided.

3. The proposition of TRP-side DTX feature to assist terahertz (THz) systems facing
overheating issues and network performance evaluation.
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4. The investigation whether a particular system operating in a THz band can in fact
deliver the expected increase in data rate, in comparison with a mmWave system
with equal network layout.

1.2 Scientific contributions

The contents of this work, more specifically Chapter 2, have been partially published
and presented with the following bibliographic information:

• SANTANA JR., E. de et al. On the robustness of deep learning based beamforming
for MU-MISO systems. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES
E PROCESSAMENTO DE SINAIS (SBrT2021), XXXIX., 2021, Fortaleza. Anais
[. . . ]. Rio de Janeiro: Sociedade Brasileira de Telecomunicações, 2021. p. 1–5. DOI:
10.14209/sbrt.2021.1570730492

It is worth mentioning that this work was developed under the context of Erics-
son/UFC technical cooperation project UFC.49 - WP3 Initial access and beam management
above current NR bands, for which three technical reports have been delivered.

https://doi.org/10.14209/sbrt.2021.1570730492
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2 ROBUSTNESS ANALYSIS OF DEEP LEARNING BASED BEAMFORMING

This chapter addresses the problem of robust beamforming in MU-MISO systems.
To this end, the performance of a DNN-based beamforming strategy under ICSI conditions in a
MU-MISO scenario is assessed. A robustness analysis is provided by adding a controlled additive
independent error term in the fast fading component of the channel, not changing its statistics.
The DNN-based beamforming strategy is compared with the classical weighted minimum mean
square error (WMMSE) solution in terms of the impact of ICSI on the average sum rate and
computation complexity.

2.1 Introduction

For the evolution of wireless communication technologies, it is of greatest importance
to optimize the resources and mechanisms of the network in order to provide robustness and
better quality of service, and thus satisfy requirements of modern communication systems. 5G
systems seek to provide reliable connectivity at any time in the most diverse scenarios [2],
offering low latency, high transmission rates, and high mobility, even in denser networks where a
high demand for data per user is present, outperforming previous generations and increasing the
number of potential applications of mobile systems. The use of robust optimization techniques
is essential to provide the proper and efficient functioning of these systems, ensuring that such
requirements will be met.

BF is a means of exploiting antenna arrays to provide the expected performance
gains, such as spatial multiplexing to one or multiple users in multi-antenna systems in 5G, e.g.,
by using optimization techniques [4]. One of these techniques focuses on the solution for the
sum rate maximization problem subject to a total power constraint, which generally results in a
non-convex numerical optimization problem.

Suboptimal solutions for that type of problem can be obtained via iterative algorithms
such as WMMSE [5], given the optimal solution is usually hard to obtain and impractical for
URLLC systems. However, iterative solutions have some drawbacks related to their computa-
tional complexity and delay, especially with the expected increase in the number of antennas in
5G systems. Thus, such classical beamforming techniques may be unable to meet the require-
ments of real time applications.

Such limitations motivate the search for alternative methods to ensure proper system
operation. In this context, machine learning tools have been extensively employed to optimize
modern wireless communication systems [6]. For instance, the employment of DNNs [7] is
suitable to obtain the optimal beamforming in real time due to the possibility of an offline training
model. In [8], a framework is proposed for optimal BF considering downlink (DL) transmission,
where numerical results show gains with respect to computational complexity with satisfactory
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performance in a set of common BF problems. However, the work in [8] does not provide any
robustness analysis of the proposed DNN under ICSI conditions, which can severely limit the
performance gain of BF techniques [9]. In [10], another type of machine learning strategy is
applied to solve the rate maximization problem in a MU-MISO scenario. The authors show that
deep Q-learning algorithms can learn a policy that can provide a robust BF structure, improving
the performance of models based on perfect CSI in scenarios with ICSI. However, to achieve
that goal, the deep Q-learning network needs to be trained from scratch for each execution after
being deployed, while in [8] the DNN is designed to be applied directly after an offline training
process.

This chapter assesses the application of a DNN-based beamforming strategy to
solve the sum rate maximization problem assuming different levels of CSI imperfection in a
MU-MISO system. A robustness analysis of the adopted DNN is provided, showing that it has a
similar behavior under ICSI with respect to sum rate degradation when compared to the classical
WMMSE solution. Also a comparison of the computational complexity in terms of execution
time is presented.

The topics discussed in this chapter are organized as follows. Section 2.2 presents
the system model and formulates the optimization problem. Section 2.3 is devoted to the
beamforming strategies and describes the employed deep learning framework. In Section 2.4,
the performance analysis and numerical results are presented an discussed. Finally, in Section
2.5, a summary is presented.

2.2 System model

A DL MU-MISO system has been considered, where a base station (BS) equipped
with an antenna array with 𝑀 omnidirectional antenna elements serves 𝐾 user equipments (UEs),
each with a single omnidirectional antenna as depicted in Fig. 1.

Figure 1 – A MU-MISO system where a single BS serves single
antenna UEs within the coverage region.

BS

Single antenna UE

Coverage Area

Source: Created by the author.
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The channel between the BS and the 𝑘-th UE is given by

h𝑘 =
√
𝑔𝑘h̃𝑘 , (2.1)

where h̃𝑘 ∈ℂ𝑀×1 denotes the fast fading component modeled by a complex Gaussian random vec-
tor with zero mean and covariance matrix I𝑀 , with I𝑀 denoting an identity matrix of dimension
𝑀 ×𝑀, and 𝑔𝑘 represents the large-scale fading gain.

The channel responses of the UEs are assumed to be known at the BS for beamform-
ing purposes. An ICSI model is adopted by adding noise to the channel fading following the
relation [11] [12]:

ĥ𝑘 =
√
𝑔𝑘

(√︁
1−𝜃2h̃𝑘 +𝜃h𝑒

)
, (2.2)

where ĥ𝑘 is the imperfect channel response of the 𝑘-th UE available at the BS, due to imperfect
channel estimation of the direct link, h𝑒 is the independent fast fading error component also
modeled by a complex Gaussian random vector with zero mean and covariance matrix I𝑀
uncorrelated with h̃𝑘, and 0 ≤ 𝜃 ≤ 1 represents the accuracy of the channel estimation process.
When 𝜃 = 0 the channel estimate is perfect, whereas when 𝜃 is close to 1, more uncorrelated is
the estimate with the actual channel. The linear combination in (2.2) ensures that h𝑘 and ĥ𝑘 have
the same statistics.

For unicast data transmission, the BS applies the beamforming vector w𝑘 ∈ ℂ𝑀×1 to
transmit the 𝑀 = 𝐾 1 independent data stream 𝑥𝑘 to the 𝑘-th UE. Each data stream is considered
to have 𝔼{|𝑥𝑘 |2} = 1, where 𝔼{·} denotes the expected value operator.

The received signal at the 𝑘-th UE is given as follows:

𝑦𝑘 = h𝐻𝑘
𝐾∑︁
𝑖=1

w𝑖𝑥𝑖 + 𝑧𝑘, (2.3)

where (·)𝐻 denotes de conjugate transpose operation, 𝑧𝑘 denotes the additive white Gaussian
noise with zero mean and variance 𝜎2. The signal-to-interference-plus-noise ratio (SINR) at
receiver 𝑘 is defined as follows:

𝛾𝑘 =
|h𝐻
𝑘

w𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘 |h𝐻𝑘 w𝑖 |2 +𝜎2

. (2.4)

2.2.1 Optimization problem and solution structure

In this scenario, the beamforming vectors are designed according to the following
optimization problem [8]:

max
w1,...,w𝑘

𝐾∑︁
𝑘=1

𝛼𝑘 log2
(
1+ 𝛾𝑘

)
subject to | |w𝑘 | |2 ≤ 𝑃max, ∀𝑘 ∈ {1, ..., 𝐾}.

(2.5)

1 Here, 𝑀 = 𝐾 was set to provide for the system the maximum spatial degrees of freedom available.
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The objective in (2.5) is to jointly find the beamforming vectors w𝑘 that maximize

the weighted sum rate
𝐾∑
𝑘=1

𝛼𝑘 log2
(
1+ 𝛾𝑘

)
subject to a transmit power constraint 𝑃max, where 𝛼𝑘

represents constant system weights for the 𝑘-th UE.
For the problem (2.5), as well as in [8], the optimal beamforming vectors can be

obtained through the solution structure presented in [13]:

w★
𝑘 =
√
𝑝𝑘w̃𝑘 =

√
𝑝𝑘

h𝑘
(
I𝑀 +

∑𝐾
𝑗=1

𝜆 𝑗

𝜎2 h𝐻
𝑗
h 𝑗

)−1

| |h𝑘
(
I𝑀 +

∑𝐾
𝑗=1

𝜆 𝑗

𝜎2 h𝐻
𝑗
h 𝑗

)−1 | |
. (2.6)

To formulate this particular closed form expression, first the following power mini-
mization problem for the presented scenario is considered:

min
w1,...,𝛾𝑘

𝐾∑︁
𝑘=1
| |𝛾𝑘 | |2

subject to 𝛾𝑘 ≥ 𝛾′𝑘, ∀𝑘 ∈ {1, ..., 𝐾}.
(2.7)

Here, the constraints 𝛾′1, . . . , 𝛾
′
𝑘

represent the target SINR that each user shall achieve at the
optimum. Reformulating (2.7) as a convex problem, by extracting the convexity of the SINR
constraints and considering the inner product h𝐻

𝑘
𝛾𝑘 real valued and positive, it is possible to

rewrite 𝛾𝑘 ≥ 𝛾′𝑘 using (2.4) as

h𝐻
𝑘
𝛾𝑘√︃

𝛾′
𝑘
𝜎2
≥

√√√ 𝐾∑︁
𝑖=1,𝑖≠𝑘

1
𝜎2 |h

𝐻
𝑘

w𝑖 |2 +1 . (2.8)

By defining the Lagrangian function of the reformulated convex problem as

L (w1, ..., 𝛾𝑘, 𝜆1, ..., 𝜆𝐾) =
𝐾∑︁
𝑘=1
| |𝛾𝑘 | |2 +

𝐾∑︁
𝑘=1

𝜆𝑘
©«

𝐾∑︁
𝑖=1,𝑖≠𝑘

1
𝜎2 |h

𝐻
𝑘 w𝑖 |2 +1−

h𝐻
𝑘
𝛾𝑘√︃

𝛾′
𝑘
𝜎2

ª®®¬ , (2.9)

it can be seen that the dual function is min
w1,...,𝛾𝑘

L =
𝐾∑
𝑘=1

𝜆𝑘 and the strong duality relation [13]

implies that
∑𝐾
𝑘=1 𝑝𝑘 =

∑𝐾
𝑘=1 𝜆𝑘 = 𝑃max at the optimal solution.

By applying the Karush–Kuhn–Tucker (KKT) conditions to solve (2.7), 𝜕L/𝜕𝛾𝑘 = 0,
for 𝑘 = 1, ..., 𝐾, it is possible to obtain the solution structure in (2.6), since the solution to problem
(2.7) will also solve (2.5) [14].

According to the solution structure in (2.6), the optimal beamforming vector for the
𝑘-th UE is composed of a set of key parameters: a power factor 𝑝𝑘, a unitary vector that indicates
the beamforming direction w̃𝑘, and the variable 𝜆 𝑗, which represents the Lagrange multipliers for
the rate maximization dual problem, as indicated by the strong duality relation discussed above.

2.3 Multi-user beamforming strategies

As seen in the previous section, it is necessary to find the precoding vectors that
maximize the sum rate of all users to solve the optimization problem (2.5). This type of problem
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is well known in the literature [5], [15], and the process for obtaining an optimal solution is quite
complex due to the non-convex nature of the optimization problem. The beamforming strategies
considered in this chapter are presented in the following.

2.3.1 WMMSE beamforming

Suboptimal solutions to problem (2.5) can be found via iterative methods such as
the WMMSE algorithm described in [5]. To solve the weighted sum rate (WSR) maximization
problem for each user rate in the MU-MISO scenario, the WMMSE algorithm will be considered.

As described in [5], the algorithm alternately iterates between the WMMSE transmit
filter, the receive filter that minimizes the mean square error (MSE) of the transmit data, and
the update of the weight matrix through closed form expressions, exploiting the relationship
between the WMMSE and WSR optimization problems to obtain the beamforming vectors.

In the considered scenario, the beamforming matrix W = [w1, ...,w𝑘] is given by [5]:

W =

(
H𝐻V𝐻UVH+ Tr(UVV𝐻)

𝑃max
I𝑀

)−1
H𝐻V𝐻U, (2.10)

where U = diag{𝑢1, ...,𝑢𝑘} and V = diag{𝑣1, ..., 𝑣𝑘} are the diagonal matrices containing the user
WMMSE weights and the MSE filter coefficients, respectively, and Tr(·) stands for the trace of
the argument matrix. The combination of these weights and filter coefficients will be used as
output values in order to train the neural network.

2.3.2 Deep learning based beamforming framework

In [8], a multi-user beamforming solution is proposed, which considers the MU-
MISO case and employs a machine learning strategy, more precisely, a deep neural network.
This strategy allows the learning of suboptimal beamforming vectors in real time with a good
performance and less computational delay, assuming that offline training models will be used in
real time applications.

Based on the sum rate maximization strategy proposed in [8], this chapter assumes a
supervised model that has as input the channel samples between the BS and each UE, and as
output values the key parameters 𝜆𝑘 and 𝑝𝑘 of the beamforming vectors from (2.6). Hence, it is
possible to recover the beamforming vector using the DNN output and the channel samples.

The output values 𝜆𝑘 and 𝑝𝑘 are extracted from the solution given by the WMMSE
algorithm presented in (2.10) to be used in the training of the supervised model. The transmit
power values 𝑝𝑘 can be extracted directly from the columns of the beamforming matrix W as
follows

𝑝𝑘 = | |w𝑘 | |2, (2.11)

whereas the variables 𝜆𝑘 can be interpreted as user priorities [13] and are given by

𝜆𝑘 = 𝑃max

���� 𝑢𝑘𝑣𝑘𝑣
∗
𝑘

𝑇𝑟(UVV𝐻)

����, (2.12)
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Figure 2 – DNN framework for downlink beamforming.
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Source: Created by the author.

where (·)∗ stands for the complex conjugate operator.
For the construction of the neural network models we consider a DNN structure

as illustrated in Fig. 2 which uses supervised learning to estimate the output values (𝜆𝑘, 𝑝𝑘)
considering the MSE metric.

Based on [8], the layers that make up the proposed model are listed below.

• Input layer: The complex channel coefficients between the BS and all UEs are
stacked into a channel data vector, e.g. h =

[
h𝑇1 , ...,h

𝑇
𝐾

]𝑇 ∈ ℂ𝑀𝐾×1, and then sep-
arated into real and imaginary components before they are fed in batches into
the neural network. Then, the input data of the neural network are in the form[

Re {h} , Im {h}
]𝑇 ∈ ℝ2×𝑀𝐾 .

• Convolutional Layers: In each convolutional layer the input layer is convolved with
the convolutional kernels, and their parameters, such as weights and bias, are shared
among different channel coefficients to extract the features.

• Batch Normalization layers: The normalization layers are introduced after each
convolutional layer to normalize their output by subtracting the batch mean and
dividing by the batch standard deviation. As described in [8], these layers help to
reduce the probability of over-fitting, to enable a higher learning rate, and to make
the neural network less sensitive to the initialization of weights.

• Activation (Ac.) layers: These layers are introduced after the batch normalization
layers to apply the rectified linear unit (ReLU) or sigmoid function to the input.

• Flatten Layer and Fully-connected Layer: The former is used to reshape its input
to a vector that will be interpreted by the fully-connected layer, that applies the
weights and the biases from its neurons to its input.

• Output layer: Here the predicted key parameters vector
[
p̂𝑇 , �̂�𝜆𝜆𝑇

]𝑇 ∈ ℝ2𝐾×1 are
generated, where p̂ and �̂�𝜆𝜆 are the vectors containing the power and the weights of
all users respectively, and the MSE loss function is applied finishing the learning
process.
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After applying the trained model to the channel samples, the predicted output values
are converted to suboptimal key parameters by a scaling process to meet the power constraint
using the following expressions:

p̂★ =
𝑃max

| |p̂| |1
p̂ and �̂�𝜆𝜆

★
=
𝑃max

| | �̂�𝜆𝜆 | |1
�̂�𝜆𝜆, (2.13)

where | | · | |1 stands for the ℓ1 norm operator.
With the scaled parameters, the optimum solution structure (2.6) is applied to recover

the estimated optimum beamforming vector w★
𝑘

considering the values of �̂�𝜆𝜆
★

and p̂★ defined in
(2.13).

Table 1 – Neural Network layer parameters.
# Layer Description
1. Input Layer Size = 2×𝑀𝐾; 200 batches; 100 epochs
2. Convolutional Layer (CL) 8 (3×3) kernels with padding (1, 1); stride 1
3. Batch Normalization Layer (BN) Momentum = 0.99; 𝜀 = 0.001
4. Activation Layer ReLU
5. Convolutional Layer (CL) 8 (3×3) kernels with zero padding 1; stride 1
6. Batch Normalization Layer (BN) Momentun = 0.99; 𝜀 = 0.001
7. Activation Layer ReLU
8. Flatten Layer
9. Fully-connected Layer Dense with 2𝐾 neurons
10. Activation Layer Sigmoid
11. Output Layer MSE metric; Adam optimizer with learning rate of 0.001

Source: Created by the author.

2.4 Simulation results

In order to assess the performance of the BF strategies and evaluate their robustness
considering ICSI, we consider the DL transmission system described in Section 2.2 composed
of a single BS equipped with 𝑀 = 4 antennas that serves 𝐾 = 4 single antenna UEs. The large
scale fading component 𝑔𝑘 follows the model 𝑔𝑘 = 128.1+37.6log10(𝑟𝑘)[dB] [16] where 𝑟𝑘 is
the distance in km between the BS and the 𝑘-th UE. UE positions are generated uniformly inside
a circle of radius 500 m and centered at the BS position, considering a minimum distance of
100 m from the BS, the considered noise power spectral density is −174 dBm/Hz, and the system
bandwidth is 20 MHz. The simulation parameters are summarized in Table 2.

For the training of the DNN models, a set of 25,000 samples (h, [𝜆, 𝑝]) were
considered, with a train-test split ratio of 80%/20%. As in [8], the weights of the network
layers were initialized following a Glorot normal distribution and the biases initially set to 0.
Also, data normalization is applied by scaling the channel samples by the noise power. The
targets were divided by a factor to ensure that they are contained within the interval [0,1) to
guarantee numerical stability. The other parameters of the neural network are described in Table
1. The DNN models and the benchmarks were implemented using Python 3.8 with Tensorflow
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Table 2 – Simulation Parameters.
Number of BS antennas 𝑀 4
Number of single antenna UEs 𝐾 4
Cell radius 500 m
UE-BS minimum distance 100 m cf. [8]
System bandwidth 20 MHz
Noise power spectral density −174 dBm/Hz

Source: Created by the author.

2.4, Keras 2.4.3 and Numpy 1.20 as numerical computing library on a computer with 1 AMD
Ryzen5-3600X CPU and RAM of 32 GB.

To compare the performance of the BF strategies as solution for the optimization
problem (2.5), the zero-forcing (ZF) and regularized zero-forcing (RZF) [13] solutions with equal
power allocation were considered as well as the WMMSE beamforming with the initialization
based on RZF and the system weights 𝛼𝑘 = 1 as baseline solutions for comparing with the DNN
beamforming strategy. Also, the target key parameters were extracted from the WMMSE solution
to compose the training and test sets.

All the results were generated considering the average of 5,000 experiments. In
Fig. 3 it is observed that with the increase in the transmitted power there is an increase in the
sum rate performance, with the DNN solution showing itself as an upper limit for the RZF
solution and close to the WMMSE target for low signal-to-noise ratio (SNR). In this case, the
supervised learning solution tries to approach the WMMSE solution as much as possible, but its
performance is upper limited by the WMMSE and lower bounded by the WMMSE initialization,
showing the potential of the DNN beamforming.

In Fig. 4, the execution time of the BF strategies is presented. As the number of
transmit antennas increases, the DNN BF applied after an offline training process has a reduced
computational complexity in comparison with the iterative WMMSE solution. The ZF and RZF
presented the best execution times due to their vectorized implementation. The main source of
complexity in the DNN BF computations is the recovery process using (2.6).

For the robustnesss analysis of the supervised learning solution, the ICSI model
(2.2) was considered, with the WMMSE performance as a benchmark. First, we perform the
experiments applying the WMMSE solution obtained using ĥ𝑘, varying the parameter 𝜃 between
[0,1], and compute the error between the average achieved sum rate and the sum rate that would
be achieved when considering perfect CSI.

To investigate the performance of the DNN beamforming, we consider ĥ𝑘 as the
input model for the precoder prediction. Then, we compute the average sum rate and the error
considering the predicted precoder using perfect CSI samples.

The relative error (%) results for both the WMMSE and DNN beamforming are
summarized in tables 3 and 4. It can be seen that the relative error obtained using the DNN
solution increases as much as the error obtained using WMMSE with the evolution of the
transmit power. This behavior indicates that the channel estimation error, which follows the same
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Figure 3 – Sum rate performance comparison considering a system with
𝑀 = 𝐾 = 4.
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Figure 4 – Execution time per sample considering a system with 𝑃max =

30 dBm and 𝑀 = 𝐾.
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statistical distribution of the channel coefficients, has a similar effect on both solutions.
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Table 3 – Average Sum Rate Error due to ICSI for each 𝑃max - WMMSE
BF.
0 dBm 5 dBm 10 dBm 15 dBm 20 dBm 25 dBm 30 dBm

𝜃 = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝜃 = 0.25 3.85 4.12 5.86 9.66 15.83 25.31 37.51
𝜃 = 0.5 15.19 16.05 20.65 29.14 40.13 52.38 63.99
𝜃 = 0.75 33.56 35.48 41.59 51.42 61.89 71.53 79.16
𝜃 = 1 61.86 62.89 67.96 75.17 81.31 85.91 89.28

Source: Created by the author.

Table 4 – Average Sum Rate Error due to ICSI for each 𝑃max - DNN BF
0 dBm 5 dBm 10 dBm 15 dBm 20 dBm 25 dBm 30 dBm

𝜃 = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
𝜃 = 0.25 3.58 3.51 4.97 7.98 13.46 23.45 37.55
𝜃 = 0.5 14.40 14.33 18.59 26.31 37.09 51.01 64.42
𝜃 = 0.75 32.82 32.43 39.04 49.03 59.66 70.58 79.30
𝜃 = 1 60.82 60.45 66.83 74.20 79.84 84.70 88.58

Source: Created by the author.

Figure 5 – Sum rate performance for WMMSE (dashed patterns) and
DNN BFs (solid) in presence of different levels of ICSI con-
trolled by the variable 𝜃.
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For each value of 𝜃, the sum rate performance of the beamforming solutions is
presented in Fig. 5. The DNN based precoder performance is close to that of WMMSE for low
SNRs as in Fig. 3, and the sum rate curve behavior in the presence of channel estimation error
shows that with the increase of 𝜃, both strategies are similarly penalized, with the WMMSE
performing better than the supervised solution as expected.
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2.5 Chapter summary

In this chapter, the performance of a DNN BF solution was assessed for a MU-
MISO system under ICSI. The ICSI was modeled as a combination of the actual channel with a
controlled noisy term. The focus was on the maximization of the weighted sum rate, which is by
definition a non-convex problem whose parameterized optimal solution is hard to be obtained.
The DNN BF applied to obtain a suboptimal solution is drawn from a DNN whose input is the
channel response and output is the beamforming vector parameters, while the (noisy) channel is
assumed to be known at the BS. The results indicate that the deep learning based beamforming
solution is viable and as robust as the WMMSE, assuming that the channel and ICSI models
follow the same distribution.
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3 NETWORK PERFORMANCE EVALUATION UNDER DYNAMIC DTX

This chapter evaluates the network performance of a cellular system operating at
100 GHz with bandwidth of around 3 GHz under a dynamic TRP-side DTX regime. The use
of THz bands are envisioned as a means to achieve higher data rates in 6G systems. To deal
with more severe propagation conditions in THz bands, a network with multiple TRPs equipped
with large antenna arrays serving multi-panel UEs is adopted. However, in this network setup,
the power consumption at TRPs’ radio components packed with several antenna elements
significantly increases due to the very high processing burden in such a wide bandwidth. To avoid
overheating issues, a TRP-side DTX method is proposed, which controls the amount of downlink
slot transmissions while guaranteeing cell-specific reference signal transmissions. Simulation
results considering different DTX settings and traffic loads will be presented and discussed.

3.1 Introduction

For the evolution of wireless communication systems beyond 5G, THz bands are
envisioned as a potential technology in order to meet the requirements of future systems, such as
extremely high data rates [17].

The wide range of frequencies available in THz bands in comparison with the NR
frequency range 2 (FR2) bands is the main aspect considered to reach data rates in the order
of terabits-per-second. However, exploring high-frequency bands becomes challenging due to
severe propagation conditions, subject to increased signal attenuation due to scatterers and
obstacles within the radio link [18]. To properly operate in high frequency, the system needs
to provide enough beamforming gain through high directive beams by employing very-large
antenna arrays [19], specially at TRPs. On the UE side, they are typically equipped with multiple
antenna panels to obtain a good spherical coverage.

With beam-based transmissions in high-frequency bands, beam management (BM) [1]
is leveraged in the initial 3rd generation partnership project (3GPP) release of NR 5G. The BM
task is to establish and maintain narrow beam pair links (BPLs) with suitable channel conditions
through its procedures [20] in order to provide UEs proper network access. Moreover, TRPs
are currently equipped with NR massive MIMO radios that consist of self contained units in
which the antenna panel and its processing units are coupled in a single box all together [21]. An
efficient cooling system is paramount for such a compact design, as several heat sources close to
one another can lead to a fast increase in the device temperature.

However, the exploitation of wider system bandwidths in THz bands requires the use
of more computational resources. Critical computations such as analog-to-digital (AD)/digital-
to-analog (DA) conversions and power amplifier linearization (e.g., digital predistortion) using
higher sampling rates make the radio processing unit operate in a higher clock regime, thus
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consuming much more power [22, 23]. As a consequence, the amount of dissipated energy
converted into heat might expose radio components of current NR massive MIMO radios
to overheating conditions when operating in THz bands, which can limit the overall system
performance.

In the literature, several works deal with thermal and/or energy issues by introducing
transmission/reception discontinuities. Particularly, discontinuous reception (DRX) is commonly
adopted at UEs to increase their power efficiency whenever there is no data to deliver to them,
as in [24]. On the other hand, DTX is usually adopted at base stations to decrease the network
energy consumption whenever there is no traffic/signaling to transmit to UEs, as discussed
in [25], or based on a resource utilization as in [26].

Nevertheless, to the best of the author’s knowledge, current DTX/DRX approaches
do not cope with the significant increase in power consumption added by the system operation in
THz bands from a network perspective. That is, TRPs equipped with NR massive MIMO radios
are likely to suffer from overheating by simply serving UEs in THz bands with wide system
bandwidths in the order of gigahertz. Consequently, the problem here is a matter of preventing
TRPs from overheating whenever they need to stay active during several time slots.

Therefore, the contributions of this chapter are twofold. First, the use of TRP-side
DTX is proposed for a TRP radio unit to i) be inactive whenever there is no traffic to transmit
from it; ii) turn off if a pre-determined number of accumulated time slots is transmitted by it.
Hence, the TRP radio unit can cool down, avoiding overheating issues. Second, this chapter
investigates whether a particular system operating in a THz band can in fact deliver the expected
increase in data rate, in comparison with a mmWave system with equal network layout, under
the thermal limitations controlled by TRP DTX. To this end, different system-level metrics are
evaluated, such as UE throughput, mean block error rate (BLER) and SINR.

The rest of the chapter is organized as follows. In Section 3.2 the system model is
described. The proposed TRP DTX framework is presented in Section 3.3. In Section 3.4 the
applied BM procedures and the considered system level aspects are introduced. The system
level evaluation and the numerical results are presented in Section 3.5. Finally, in Section 3.6 a
summary is presented.

3.2 System model

Consider a beam-based, orthogonal frequency division multiplexing (OFDM) cellular
system [1] where TRPs in a TRP setM, forming a coordination cluster, serve UEs in a downlink
THz band. The system operates at 𝑓𝑐 = 100 GHz with a resource block (RB) set Q with 𝑁RB = 264
RBs 1 available for traffic with subcarrier spacing 𝐿sc = 960 kHz, yielding a wide system
bandwidth 𝐿BW ≈ 3 GHz, and 𝑁slot = 64 slots within a subframe of 1ms.
1 An RB corresponds to 12 subcarriers, while a slot, the basis of a transmit time interval (TTI), denotes 14 OFDM

symbols, resulting in a 12×14 grid of resource elements herein referred to as a physical resource block (PRB).
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Figure 6 – Multi-TRP network with 3 TRPs forming a coordination cluster compris-
ing a single BBU/scheduler with UEs in a hotspot region delimited by the
red dashed curve.
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Source: Created by the author.

The coordination cluster has a hexagon layout with three TRPs, i.e., |M| = 3, posi-
tioned to cover a hexagonal sector, as illustrated in Fig. 6. They are connected with a base station
that has single baseband unit (BBU) where a time division multiplex (TDM)-based UE scheduler
is implemented in a centralized manner with ideal backhaul.

Both TRPs and UEs are equipped with panels of dual-polarized uniform rectangular
array (URA) panels whose cross-pole elements have identical radiation patterns and are coupled
to one radio frequency (RF) chain per polarization, which means two digital ports in total
per transmitter/receiver. Specifically, each TRP is equipped with a single URA panel with 𝑁𝑡

cross-pole elements, while UEs are equipped with four URA panels with 𝑁𝑟 cross-pole elements,
increasing the probability to find good signal reception for different TRPs. For simplicity, the
panel of a single-panel TRP will in this text be referred to simply as a TRP.

In order to increase the chance that UEs experience good coverage from any of the
TRPs, UE positioning follows a uniform distribution inside the “hotspot” depicted in Fig. 6 by
the red dashed curve. Besides, a UE has its panels oriented perpendicularly to the Cartesian
𝑥 𝑦-plane, each pointing to a different UE side (left, right, front and back), with arbitrary rotation
angle with respect to the 𝑧-axis.

To provide cell coverage, TRPs periodically transmit cell-specific synchronization
signals (SSs) for UEs to establish a BPL. A number of 𝐿SS time-multiplexed SSs are transmitted
in bursts of 𝐿SS/4 slots every 𝑇SS ms via beam sweeping from all TRPs in a synchronized fashion.
Between two consecutive SS bursts, TRPs also transmit UE-specific reference signals (RSs),
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also via beam sweeping, to cope with BPL quality degradation due to, e.g., blockage and UE
rotation/movements.

3.2.1 Channel model

As for the channel model, the link between the digital ports of a pair of TRP and
UE panels denotes – after signal combining – a single MIMO layer that performs wideband
hybrid beamforming (HBF). Let ℎ𝑚,𝑘,𝑏 [𝑞, 𝑗, 𝑙] ∈ ℂ be the equivalent channel response between
the linearly combined digital ports of TRP 𝑚 and the 𝑏-th panel of UE 𝑘 at RB 𝑞 and 𝑙-th OFDM
symbol of slot 𝑗, defined as:

ℎ𝑚,𝑘,𝑏 [𝑞, 𝑗, 𝑙] =
(
w𝑘,𝑏 [ 𝑗, 𝑙]

)𝐻H𝑚,𝑘,𝑏 [𝑞, 𝑗]f𝑚 [ 𝑗, 𝑙] , (3.1)

where w𝑘,𝑏 [ 𝑗, 𝑙] ∈ ℂ2𝑁𝑟×1 and f𝑚 [ 𝑗, 𝑙] ∈ ℂ2𝑁𝑡×1 are the dual-polarization beams of the 𝑏-th panel
of UE 𝑘 and TRP 𝑚, respectively, while H𝑚,𝑘,𝑏 [𝑞, 𝑗] ∈ ℂ2𝑁𝑟×2𝑁𝑡 denotes the dual-polarization
channel matrix in the frequency domain, which is defined as:

H𝑚,𝑘,𝑏 [𝑞, 𝑗] =
[
H̃(1,1)
𝑚,𝑘,𝑏
[𝑞, 𝑗] H̃(1,2)

𝑚,𝑘,𝑏
[𝑞, 𝑗]

H̃(2,1)
𝑚,𝑘,𝑏
[𝑞, 𝑗] H̃(2,2)

𝑚,𝑘,𝑏
[𝑞, 𝑗]

]
, (3.2)

where H̃(𝛼,𝛽)
𝑚,𝑘,𝑏
[𝑞, 𝑗] ∈ ℂ𝑁𝑟×𝑁𝑡 , with (𝛼, 𝛽) ∈ {1,2} × {1,2} representing the per polarization pair,

are the matrices storing the channel coefficients between the antenna elements of the 𝑚-th TRP
and the 𝑏-th panel of the 𝑘-th UE.

These coefficients are composed of both large and small scale components, follow-
ing the channel model described in [27] with space-time consistency according to the 3GPP
consistency procedure B [28] and spatially-consistent random variables generated as in [29, 30].
It also includes the stochastic blockage model A as in [28] and UE panel blockage 2 as in [31].

Note that all beams in (3.1) are wideband, i.e., not indexed by 𝑞, unit-norm, constant-
modulus vectors and selected on an OFDM symbol basis, i.e., indexed by 𝑗 and 𝑙. At last,
H𝑚,𝑘,𝑏 [𝑞, 𝑗] is assumed flat within the corresponding physical resource block (PRB), i.e., not
indexed by 𝑙.

3.2.2 Signal model

For beam-based transmissions, a pair of beams f𝑚 [ 𝑗, 𝑙] and w𝑘,𝑏 [ 𝑗, 𝑙] should be se-
lected, then forming a BPL. Such beams can have either wide beamwidth/small beamforming gain
or narrow beamwidth/large beamforming gain. For wide beams, the beam widening technique
in [32] is adopted. Beam widening exploits the tradeoff between beamwidth and beamforming
gain. On one hand, the same analog beam can be applied in both polarizations, then increasing
the beamforming gain. On the other hand, dual polarized beamforming (DPBF) [32] applies a
different analog beam per polarization, which widens beams at the cost of less beamforming
gain.
2 For each UE, one of its panels is randomly selected to have its large-scale channel component multiplied by a

0.1 attenuation factor.
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3.2.2.1 Narrow beam codebook

Let B𝑁𝑡 ,2 ⊂ ℂ2𝑁𝑡 be the set of TRP narrow beams, defined as

B𝑁𝑡 ,2 =
{
b
���b =

[
c𝑇 c𝑇

]𝑇
,∀c ∈ D𝑁𝑡 ,2

}
, (3.3)

where D𝑁𝑡 ,2 is the set of all column vectors of an 𝑁𝑡 × 2𝑁𝑡 discrete Fourier transform (DFT)
matrix with oversampling factor of 2. Thus, whenever a TRP narrow beam should be selected,
f𝑚 [ 𝑗, 𝑙] ∈ B𝑁𝑡 ,2. Similarly, the set of UE narrow receive beams can be defined as B𝑁𝑟 ,1 ⊂ ℂ2𝑁𝑟 ,

B𝑁𝑟 ,1 =
{
b
���b =

[
c𝑇 c𝑇

]𝑇
,∀c ∈ D𝑁𝑟 ,1

}
, (3.4)

where D𝑁𝑟 ,1 is the set of all column vectors of an 𝑁𝑟 ×𝑁𝑟 DFT matrix with factor set to 1. Thus,
whenever a UE narrow beam should be selected, w𝑘,𝑏 [ 𝑗, 𝑙] ∈ B𝑁𝑟 ,1.

3.2.2.2 Wide beam codebook

Let A𝑁𝑡 ,2 ⊂ ℂ2𝑁𝑡 be the set of TRP wide beams obtained as in [32] – assuming a
protoarray with half of the antenna elements in each TRP URA dimension and column vectors
of an 𝑁𝑡/4× 2𝑁𝑡 DFT matrix with oversampling factor of 2. Thus, whenever a TRP wide
beam should be selected, f𝑚 [ 𝑗, 𝑙] ∈ A𝑁𝑡 ,2. Similarly, the set of UE wide beams can be defined
as A𝑁𝑟 ,1 ⊂ ℂ𝑁𝑟 , assuming a protoarray with half of the antenna elements in each UE URA
dimension and column vectors of an 𝑁𝑟/4×𝑁𝑟 DFT matrix with oversampling factor of 1. Thus,
whenever a UE wide beam should be selected, w𝑘,𝑏 [ 𝑗, 𝑙] ∈ A𝑁𝑟 ,1.

3.2.2.3 Received signal model

Considering that the state of a TRP can be changed during the DTX regime, the
received signal 𝑦𝑘,𝑏,𝑚 [𝑞, 𝑗, 𝑙] ∈ ℂ at the combined digital ports switched to the 𝑏-th panel of UE 𝑘

from TRP 𝑚 ∈ M̃ 𝑗 sampled at RB 𝑞 and 𝑙-th OFDM symbol of slot 𝑗, is herein defined as:

𝑦𝑘,𝑏,𝑚 [𝑞, 𝑗, 𝑙] =ℎ𝑚,𝑘,𝑏 [𝑞, 𝑗, 𝑙]𝑠𝑚 [𝑞, 𝑗, 𝑙] +
∑︁
�̄�∈M̃ 𝑗
�̄�≠𝑚

ℎ�̄�,𝑘,𝑏 [𝑞, 𝑗, 𝑙]𝑠�̄� [𝑞, 𝑗, 𝑙] +𝑛𝑘 [𝑞, 𝑗, 𝑙] , (3.5)

where 𝑠𝑚 [𝑞, 𝑗, 𝑙] ∈ ℂ, for every TRP 𝑚 forming the set of available TRPs M̃ 𝑗, denotes the single
MIMO stream symbols from TRPs with power constraint 𝔼

{
|𝑠𝑚 [𝑞, 𝑗, 𝑙] |2

}
=

𝑃TX
𝑁RB

, where 𝑃TX is
the available TRP transmit power, and 𝑛𝑘 [𝑞, 𝑗, 𝑙] is an i.i.d. CN(0, 𝜎2

𝑛) noise. Also ℎ𝑚,𝑘,𝑏 [𝑞, 𝑗, 𝑙]
is assumed to be perfectly known.

3.2.2.4 RSRP measurement

When the symbol 𝑠𝑚 [𝑞, 𝑗, 𝑙] is known by the UE, such as those conveyed by SSs,
the signal quality can be measured from the received power. Let 𝜓𝑘,𝑏,𝑚 [ 𝑗, 𝑙] be the reference
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signal received power (RSRP) of the received signal at the 𝑏-th panel of UE 𝑘 from TRP 𝑚 ∈ M̃ 𝑗

sampled at RBs 𝑞 ∈ QRS ⊂ Q and 𝑙-th OFDM symbol of slot 𝑗, defined as:

𝜓𝑘,𝑏,𝑚 [ 𝑗, 𝑙] =
1
|QRS |

∑︁
𝑞∈QRS

��ℎ𝑚,𝑘,𝑏 [𝑞, 𝑗, 𝑙]��2 . (3.6)

RSRP measurements in (3.6) are used as a beam selection criterion to i) establish a BPL, and ii)
keep/adjust that BPL by selecting better beams for subsequent transmissions.

3.2.2.5 SINR measurement

A beam pair for traffic is selected on a slot basis. That is, f𝑚 [ 𝑗, 𝑙] and w𝑘,𝑏 [ 𝑗, 𝑙] are
kept fixed in any OFDM symbol 𝑙′ conveying data symbols within slot 𝑗. The corresponding
SINR sampled at RB 𝑞, ∀𝑙′ ∈ Sdata

𝑗
, is then defined as

𝛾𝑘,𝑏,𝑚 [𝑞, 𝑗] =
��ℎ𝑚,𝑘,𝑏 [𝑞, 𝑗, 𝑙′]��2∑

�̄�∈M̃ 𝑗
�̄�≠𝑚

��ℎ�̄�,𝑘,𝑏 [𝑞, 𝑗, 𝑙′]��2 +𝜎2
𝑛

, (3.7)

where Sdata
𝑗

stands for the subset of OFDM symbols of slot 𝑗 that convey data.

3.2.3 Problem statement

This work assumes that a TRP operating in a THz band uses similar radio unit tech-
nology of current NR MIMO antennas. Then, a problem emerges: a TRP i) consumes/dissipates

much more power due to sampling operations in wider3 system bandwidth, and thus ii) overheats4

whenever it consecutively transmits a number of slots larger than a pre-determined threshold
𝑛max.

TRP DTX is herein utilized as the solution tool to avoid overheating issues by
switching off a TRP 𝑚, on a slot basis, whenever its threshold 𝑛max is reached. Such a threshold
is set large enough for TRPs to at least transmit all SSs – assuming that in such a case they do
not overheat – but not too large, e.g., less than the number of slots within the 𝑇SS window. Thus,
TRPs that can be active to transmit at slot 𝑗, i.e., those not switched-off by DTX in a previous
slot, form the subset M̃ 𝑗 ∈M.

It is worth noting that both RSRP and SINR in (3.6) and (3.7), respectively, depend
on the resulting subset M̃ 𝑗, which implies that TRP DTX has an important impact on the system
performance. The proposed TRP DTX method will be discussed in detail in the following
section.
3 In mmWave bands, 𝐿sc is up to 240 kHz, while herein 𝐿sc = 960 kHz. For a constant Q, the bandwidth in the

THz band is then wider.
4 This work does not rely on any thermal model to quantitatively evaluate overheating issues and to determine

𝑛max values.
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3.3 Dynamic TRP DTX method

Methods to control the hardware temperature at radio units operating in THz bands
are essential to preserve their functionality and meet network performance requirements. In
this section, a dynamic TRP-side DTX method is proposed as a means to prevent TRPs from
overheating. The proposed method imposes some restrictions on the transmission of slots in
downlink, thus limiting the computational effort and power consumption/dissipation at TRP
radio units, by dynamically changing the states of TRPs on a slot basis.

3.3.1 DTX states

Three TRP DTX states are defined:

• Active: When TRP 𝑚 ∈ M has data activity with some UE. Then, 𝑚 ∈ M̃ and the
TRP is heating.

• Inactive: When TRP 𝑚 ∈ M has no data activity with any UE. Then, 𝑚 ∈ M̃, but
the TRP is cooling.

• Sleep: When TRP 𝑚 ∈M is switched off. Then, 𝑚 ∉ M̃ and the TRP is cooling.

When a TRP enters a DTX sleep state, ongoing transmissions are interrupted, keeping assigned
packets on a buffer.

Let 𝑛slot
𝑚 ∈ ℤ∗ be a slot counter implemented by TRP 𝑚, ∀𝑚 ∈M. A TRP 𝑚 in DTX

active state increments 𝑛slot
𝑚 by one after transmitting a slot, while decrements it by one if that

TRP is in either inactive or sleep state. States active and inactive mean that a TRP is awake; thus,
it is available to transmit data to a UE. On the other hand, when in sleep mode, TRP 𝑚 can only
awaken after a back-off period 𝑛off

𝑚 ∈ ℤ∗.
The rationale behind the slot counting is to obtain a simple, linear model that

approximates the TRP thermal behavior when heating/cooling, as illustrated in Fig. 7. Here, it
takes longer for a TRP to cool down than to heat up. In this sense, 𝐾cool > 1 denotes the number
of slots needed to cool down to the temperature prior to a single slot transmission.

3.3.2 Slot counting constraints.

For a TRP 𝑚 to change to sleep state, its slot counter 𝑛slot
𝑚 must violate at least one

out of two constraints C1 and C2. More specifically:

C1: As aforementioned, 𝑛slot
𝑚 cannot exceed threshold 𝑛max; otherwise, TRP 𝑚 starts

suffering overheating issues and must be switched off, then staying in sleep mode
during a back-off period 𝑛off

𝑚 = 𝐾cool slots.

C2: TRPs needs to always be able to transmit SSs. Let 𝑛budget
𝑚 be the slot budget available

at slot 𝑗 for TRP 𝑚 to transmit 𝑛SS consecutive slots conveying SSs in the next SS
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Figure 7 – Dynamic DTX example showing the slot counter evolving over time. Here
SS followed by data transmission are capped by cooling intervals due to
C1, then a longer C2 cool-down period to be able to transmit the next SS
burst.

TTI
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Source: Created by the author.

window 𝑇SS, assuming no transmissions until then, defined as:

𝑛
budget
𝑚 = max

(
𝐾cool𝑛slot

𝑚 − f
(
𝑗,𝑇SS

)
,0
)
+𝑛SS , (3.8)

where f (𝑥, 𝑦) = 𝑦 − (𝑥 mod 𝑦) stands for the complementary modulus operation.
To avoid overheating of TRP 𝑚, its 𝑛budget

𝑚 cannot exceed threshold 𝑛max at slot 𝑗;
otherwise, TRP 𝑚 will suffer overheating issues at the end of the next SS window,
unless TRP 𝑚 is switched off at slot 𝑗, then staying in sleep mode during a back-off
period 𝑛off

𝑚 = 𝐾coolf
(
𝑗,𝑇SS) slots.

The main steps of the proposed TRP DTX method discussed above are described in
Algorithm 3.1 and depicted on the flowchart in Fig. 8, which is executed by TRP 𝑚, ∀𝑚 ∈M, at
slot 𝑗, to in turn obtain an updated subset M̃ for the next slot.

3.4 System level aspects

The proposed TRP DTX method is assessed from a system-level perspective as
the main objective in this chapter. To this end, Algorithm 3.1 described in Section 3.3 was
incorporated into a system-level simulator to evaluate the performance of the system modeled in
Section 3.2 under different DTX setups.

To provide a full scale system-level simulation, main aspects of 5G NR systems have
been considered. The adopted system-level simulator implements i) beam-based transmissions
via BM procedures, with ii) traffic model, and iii) UE scheduling. Also, different system-level
metrics were calculated as key performance indicators (KPIs), namely UE throughput, SINR
and the DTX states distribution. In the following subsections, each of the listed aspects will be
discussed.
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Algorithm 3.1 algorithm
Dynamic TRP DTX at slot 𝑗

1: for 𝑚 ∈M do
2: if 𝑛off

𝑚 = 0 then # TRP awake
3: if 𝑛slot

𝑚 < 𝑛max then # C1
4: if 𝑛budget

𝑚 < 𝑛max then # C2
5: if Data activity then
6: 𝑛slot

𝑚 ← 𝑛slot
𝑚 +1 # Slot counter increased due to activity

7: else # TRP inactive
8: 𝑛slot

𝑚 ←max (𝑛slot
𝑚 −1,0) # Slot counter decreased

9: end if
10: else # TRP on sleep state due to C2
11: M̃ ← M̃\{𝑚} # Remove TRP 𝑚 from the set of active TRPs
12: 𝑛slot

𝑚 ←max
(
𝑛slot
𝑚 −1,0

)
13: 𝑛off

𝑚 ← 𝐾coolf
(
𝑗,𝑇SS) −1 # Set back-off period acording to C2

14: end if
15: else # TRP on sleep state due to C1
16: M̃ ← M̃\{𝑚}
17: 𝑛slot

𝑚 ←max
(
𝑛slot
𝑚 −1,0

)
18: 𝑛off

𝑚 ← 𝐾cool # Set back-off period acording to C1
19: end if
20: else # TRP back-off count update
21: 𝑛slot

𝑚 ←max
(
𝑛slot
𝑚 −1,0

)
22: 𝑛off

𝑚 ← 𝑛off
𝑚 −1

23: if 𝑛off
𝑚 = 0 then # TRP awakes

24: M̃ ← M̃ ∪ {𝑚} # Update the set of available TRPs
25: end if
26: end if # Update SS slot budget
27: 𝑛

budget
𝑚 ←max

(
𝐾cool𝑛slot

𝑚 − f
(
𝑗,𝑇SS) ,0) +𝑛SS

28: end for

3.4.1 Beam management

The beam management has the goal of maintaining BPLs between TRPs and con-
nected UE panels by compensating the channel dynamics along time and thus keeping a suitable
beam alignment as the UE moves around. For idle UEs, BM has the task of providing initial
access through a directional BPL, which allows the UE to establish its first access to the network.

As for the the beam management framework considered in this chapter, it has been
assumed that all UEs are connected all the time. The UE only has one active panel at a time,
hence, for each UE the beam management only execute procedures for the active panel.

3.4.1.1 Beam sweeping

The adopted beam management framework has the goal of finding at least one BPL
for each UE panel by exploring angular regions to identify more suitable analog beams. This
exploration is made by the beam sweeping procedures that can be executed at TRP and/or UE
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Figure 8 – Dynamic DTX flowchart for the steps in Algorithm 3.1.
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side as described below:

• Procedure 1 (P1): TRP and UE beam sweeping of wide analog beams. This procedure
is used for the identification of a new angular region for connected UEs.

• Procedure 2 (P2): TRP beam sweeping only. This procedure is the refinement of
BPL at TRP side. Narrow beams are swept into the angular coverage of the best TRP
wide analog beam detected during P1. It is executed only for connected UEs, whose
beams are kept fixed.

• Procedure 3 (P3): Connected UEs beam sweeping only. This procedure is the refine-
ment of BPL at the UE side. This sweeping is made considering narrow beams into
the angular region of the wide analog beam at UE side identified during P1.

In P1, a block of 𝐿P1 = 256 SSs is transmitted by the TRPs sweeping a sequence of
wide beams, pointing to different directions as a means to entirely illuminate its coverage area,
within a 5-ms window for the UE to measure their RSRP, while the UE beam, herein assumed a
wide beam, is kept fixed. This procedure represents the P1 beam sweeping, and it is repeated
with a periodicity of 𝑇SS = 20 ms, as illustrated in Fig. 9. In turn, the UE reports to the TRP
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Figure 9 – SS burst set.
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Figure 10 – Beam management events over time.
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which transmitted SS was measured with highest RSRP. It is worth mentioning that only two SS
blocks can be transmitted during a single time slot.

For the refinement in P2, CSI-RSs are transmitted in the period between SS blocks
with periodicity 𝑇CSI−RS. The TRP sweeps 𝐿P2 = 8 narrow beams within the angular space of the
wide beam selected in a previous P1, in bursts of 4 beams with an offset of 5 slots to boost the
beamforming gain towards the UE. The TRP then uses such knowledge to select the beam for
subsequent transmissions, while the UE keeps its current beam.

Finally, in P3, the goal is to adjust the UE beam. To this end, the TRP repeatedly
uses the beam selected in P2 for 𝐿P3 CSI-RS transmissions, for the UE to measure RSRP,
while sweeping 𝐿P3 = 4 narrow beams pointing to different directions. In turn, the UE selects
the best beam in terms of RSRP in (3.6) for subsequent transmissions. Note that P2 and P3
depend on P1; thus, they take place after the P1 5-millisecond window. In case multiple UEs
are connected to the same TRP, it performs P2 and P3 for each UE in a round-robin fashion. In
Fig. 10, a representation of beam sweeping of the BM framework considered in the system-level
simulations is presented.

Since every wide beam overlaps a subset of narrow beams, a mapping between wide
and narrow beams is established to speed up P2 and P3. To this end, each TRP wide beam
in A𝑁𝑡 ,2 is mapped onto the 𝐿P2 TRP best narrow beams in B𝑁𝑡 ,2 in terms of inner product.
Analogously, each UE wide beam in A𝑁𝑟 ,1 is mapped onto the 𝐿P3 UE best narrow beams in
B𝑁𝑟 ,1.



Chapter 3. Network performance evaluation under dynamic DTX 42

3.4.1.2 Panel switching

In the scenario assessed in this chapter, a UE panel switch feature is also enabled,
which provides additional diversity to the system to be explored. By this feature UEs explore
their multiple panels by running P1 always with a different panel in a round-robin fashion to
sound candidate BPLs from TRPs in subset M̃. They switch panels for subsequent data activity
only if a better BPL of wide beams than that selected in a previous P1, in terms of RSRP in (3.6),
is found.

3.4.1.3 Beam recovery

Another important aspect of BM is the beam recovery process. Here, a beam failure
event happens when no CSI-RS is detected during P2 after a UE-panel and TRP-panel lose
the BPL connection. Such a sudden event may be caused by a blockage, or due to fast UE
mobility. It then triggers the beam recovery procedure which consists of waiting for the next
SS window to establish a new BPL, assuming that the UE will use its wide beam found in the
previous P1. It is worth mentioning that if a TRP status needs to be set to sleep by the DTX, no
sounding or recovery process is triggered. The scheduler will search for another BPL candidate
for transmissions or – if no beam pair is available – it will wait until the next SS window for the
BM procedures restarting from P1.

3.4.2 Traffic model

In order to simulate data for the system-level simulations performed in this chapter,
a packet-based traffic model has been considered for all UEs. It generates a packet containing
𝑅pkt bits within the period of 𝑇pkt seconds. At the beginning of the simulation, the first packet
of the 𝑘-th UE is generated after a random period of 𝜏pkt multiple of the simulation time step,
and then the subsequent packets arrive at the buffer periodically with period 𝑇pkt. For simplicity,
𝑅pkt and 𝑇pkt are fixed; thus, the UE traffic generation during the simulation is constant, herein
referred to as Fixed Periodic traffic.

Also, an infinite transmitter buffer is adopted and generated packets do not expire.
Similar to the scheduler and BBU, we assume that the transmitter buffer is centralized. In this
way, the packets to be transmitted will be available at each one of the TRPs in the coordination
cluster.

Despite the static parameters of packet generation per UE, the traffic demand per
TRP can vary with the number of associated UEs. Therefore, along the same simulation, the
traffic demand of a given TRP may vary in consequence of beam management procedures, since
the UE-TRP association in the cluster can vary with BPL quality and with the DTX regime.
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3.4.3 Evaluation metrics

As for the system-level metrics considered in this work, the SINR has been defined
in Section 3.2 and is used to calculate UE’s throughput in accordance with the physical layer
abstraction, the mapping from SINR to transmit data rate, which is based on modulation and
coding schemes (MCSs).

In order to analyze the effective throughput in a transmission, it is necessary to
consider the BLER, defined as the ratio between the number of blocks received with error and
the total number of transmitted blocks.

Assuming a target BLER of 10% and considering that in a given slot 𝑗, the 𝑏-th panel
of UE 𝑘 received data in RB 𝑞 using the MCS 5 𝑣, the number of received bits is given by:

𝐵𝑘,𝑏 [𝑞, 𝑗] = min
(
|Sdata

𝑗 |𝐵𝑣BLER
(
𝑣, 𝛾𝑘,𝑏,𝑚 [𝑞, 𝑗]

)
, 𝑅buffer

𝑘

)
, (3.9)

where 𝑅buffer
𝑘

is the number of bits in the transmitter buffer for UE 𝑘, 𝐵𝑣 is the number of bits that
MCS 𝑣 can transmit in a single RB, and BLER(𝑣, 𝛾𝑘,𝑏,𝑚 [𝑞, 𝑗]) is a random process that maps the
SINR from (3.7) for the MCS 𝑣 into a binary value. The random process BLER

(
𝑣, 𝛾𝑘,𝑏,𝑚 [𝑞, 𝑗]

)
is modeled as a uniform variableU(0,1) in slot 𝑗.

For each transmission, a uniform variable sample is calculated, so that if the value is
lower than the probability of error in MCS 𝑣 and SINR 𝛾𝑘,𝑏,𝑚 [𝑞, 𝑗] it returns 0; otherwise, the
outcome is 1. Finally, for each UE 𝑘 at slot 𝑗, its throughput is:

𝑟𝑘, 𝑗 =

4∑
𝑏=1

Q∑
𝑞=1

𝑗∑̄
𝑗=1
𝐵𝑘,𝑏 [𝑞, �̄�]

𝑡slot
∑ 𝑗

�̄�=1 �̄�𝑘,𝑏 [𝑞, �̄�]
, (3.10)

where 𝑡slot is the slot duration in seconds and �̄�𝑘,𝑏 [𝑞, 𝑗] is a binary variable indicating if 𝑅buffer
𝑘

is
empty at slot 𝑗.

Additionally, once a packet is generated to a UE, its latency is measured as the time
elapsed from its generation instant until it is successfully received by that UE.

3.4.4 Scheduler

For transmission coordination a channel-aware multi-TRP scheduling in a TDM
fashion has been adopted. It relies on SINR estimates to set transmission parameters, such as
link adaptation, before every transmission. The SINR estimates are also used by the scheduler to
decide which UE panel will be selected to receive data.

For simplicity, the equivalent channel in (3.1) is assumed to be perfectly known at
TRPs. Hence, the SINR estimation has been defined as a linear average of the actual SINR values
5 This work adopts an LTE-like link-to-system mapping [33].
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until the slot of interest 𝑗 as follows:

�̄�𝑘,𝑏,𝑚 [𝑞, 𝑗] =

𝑗∑̄
𝑗=1
𝛾𝑘,𝑏,𝑚 [𝑞, �̄�]

𝑗
. (3.11)

The estimated SINR in (3.11) was used by the scheduler to decide which UE panel
will be allocated with RBs in a given TTI and also which MCS the link adaptation should select
to its transmission. In cases that the SINR threshold is below the BLER target of the smallest
MCS level, the scheduler will not transmit within this RB.

During each TTI 𝑗, only one UE panel is served by one TRP panel using the entire
bandwidth and based on fairness utility defined as

𝑢𝑚,𝑘,𝑏 [ 𝑗] =
𝑟𝑚,𝑘,𝑏

𝑟𝑘 [ 𝑗]
, (3.12)

where 𝑟𝑘 [ 𝑗] is the throughput of UE 𝑘 in TTI 𝑗 calculated using (3.10) and 𝑟𝑚,𝑘,𝑏 is the expected
throughput of UE 𝑘 in the current TTI 𝑗 if the UE panel (𝑘, 𝑏) has been scheduled to the RBs of
the TRP that is estimated applying the estimated SINR in (3.11) into (3.10).

Defining S𝑚 as a set containing the UE panel candidates to be scheduled by the TRP
𝑚, the multi-TRP scheduling is described in Algorithm 3.2.

Algorithm 3.2 Multi-TRP scheduling algorithm for a TTI 𝑗.
1: Define Λ𝑘,𝑏, 𝑗 = 0 ∀𝑘 and ∀𝑏.
2: for each TRP 𝑚 do
3: Schedule all RBs of TRP 𝑚 for the UE-panel that: 𝑘∗, 𝑏∗ = argmax

∀(𝑘,𝑏)∈S𝑚

{
𝑢𝑚,𝑘,𝑏

}
.

4: Update 𝑟𝑘∗ [ 𝑗] ← 𝑟𝑚,𝑘∗,𝑏∗ .
5: Update Λ𝑘∗,𝑏∗ [ 𝑗] ← 1.
6: Remove S�̄�← 𝑘∗, 𝑏∗ \S�̄� ∀�̄�
7: end for

In the first step, the allocation variables Λ𝑘,𝑏 [ 𝑗] are defined as zero. The loop between
Step 2 and Step 7 sequentially allocates all RBs for each TRP panel in the cluster to the UE panel
that has the largest fairness utility. After one TRP panel defines the scheduled UE panel, the
throughput of the selected UE is updated considering that this transmission will be successful.
At the end of loop, the scheduled UE panels are removed from all S�̄� in order to guarantee that
this UE panel will not receive data using this same panel.

The main goal of the scheduling algorithm is to achieve fairness among UEs asso-
ciated with the same TRP. In general, this goal is not feasible since the UE may receive data
from two different TRPs. Note that the proposed algorithm can lead to situations where each
panel of the same UE is served by a different TRP-panel, and thus a non-coherent (NC)-joint
transmission (JT) transmission.
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3.5 Simulation results

In this section, the numerical results regarding the impact of employing the DTX
framework described in Section 3.3 in a system-level simulator is presented and discussed. First,
the general simulation setup will be detailed.

The channel model in (3.1) is configured as line-of-sight (LOS)-only urban micro
(UMi) O2O scenario [28], with intersite distance (ISD) of 100 m, where outdoor UEs are
randomly dropped inside the hotspot region depicted in Fig. 6 with height of 1.5 m and move at
3 km/h following a uniformly-distributed random direction on the 𝑥 𝑦 plane. The coordination
cluster contains 3 TRPs with height of 10 m, 𝑃TX = 33 dBm, 𝜎2

𝑛 = −174 dBm/Hz, and 𝐿SS = 256
SSs. Once dropped, every UE randomly chooses one panel and initially selects the corresponding
“main-lobe” beam from that panel to establish a BPL during the first P1.

Each TRP has a 16×16 URA, while each UE has four 16×4 URA panels oriented
perpendicularly to the 𝑥 𝑦-plane, each pointing to a different UE side (left, right, front and
back), with random rotation around the 𝑧-axis. A complete summary of the general simulation
parameters is presented in Table 5.

As for the DTX setup, two threshold 𝑛max values are considered: a) 640 slots for the
baseline, and b) 320 slots as a more aggressive restriction. 𝐾cool = 2 indicating that the amount
of slots needed to cool down the temperature is twice as the slot duration.

For the traffic generation it has been assumed that all UEs have Fixed Periodic Traffic
model, as described in Section 3.4.2, with packets containing 𝑅pkt = 0.5 Mbytes within the period
of 𝑇pkt = 16 ms or 𝑇pkt = 8 ms for a higher load scenario.

For the sake of comparison, a baseline mmWave system is considered, which, in
general, has the same parameter setting as the THz in Table 5 except for the specific parameters
listed in Table 6 for each scenario. The goal is to evaluate the impact of the proposed DTX on the
system performance. 250 Monte Carlo runs have been simulated for each approach considering
a simulation time of 1s, but only accounting for the last 100ms of KPI measurements in order to
avoid transient effects. The results were gathered at the end of a simulate slot. As they demand
the whole simulation chain to carry out system-level evaluations, the simulation runs performed
to generate such results faced significant computational complexity issues, given the simulated
scenario presented in Section 3.2.

In summary, the cases considered for the system performance evaluation are listed
as follows:

• mmWave - 𝑇pkt = 16 ms: Baseline case for comparison with respect to the shift to
higher frequency bands;

• mmWave - 𝑇pkt = 8 ms: Baseline case considering shorter packet generation period;

• THz - 𝑇pkt = 16 ms: Scenario considering THz bands and traffic periodicity of 16 ms.
It is the baseline scenario to compare with the DTX setups;
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Table 5 – General simulation parameters.
Scenario UMi: O2O [28] (LOS)
TRP height 10 m
Downlink total transmit power (per TRP) 33 dBm
Outdoor UE drop Uniform within the coord. cluster hotspot
UE height 1.5 m
ISD 100 m
Channel model 5G stochastic radio channel for dual mobility (5G-StoRM) [27]
Space-time consistency Procedure B [28]
Blockage Stochastic blockage model A [28] and panel blockage
Antenna element type (for both TRP and UE) Dual polarized, radiation pattern according to [28]
Antenna panel type (for both TRP and UE) URA (𝜆/2 element spacing, single RF chain per polarization)
Num. TRP panels 1
Num. UE panels 4 (left, right, front and back – one active at time)
UE speed 3 km/h
TRP panel beam codebook DFT with oversampling factor of 2 (wide and narrow beams)
UE panel beam codebook DFT with oversampling factor of 1
𝑇CSI−RS 5 slots
𝑇SS 20 ms
RSRP threshold −140 dBm
Scheduler TDM, proportional fairness
MCS mapping LTE-A-like according to 3GPP TR 36.213 [34]
𝑅pkt 0.5 Mbytes (4096000 bits)
𝑇pkt 16 ms and 8 ms
Monte Carlo samples 250
Simulation time 1 s
Num. UEs in each sector 1
UE panel switch mode Round-robin

Source: Created by the author.

Table 6 – Key simulation parameters.
mmWave THz

Carrier frequency 𝑓𝑐 28 GHz 100 GHz
Subcarrier spacing 𝐿sc 120 kHz 960 kHz
TRP URA (𝑁𝑡/2×𝑁𝑡/2) 8×8 16×16
UE URA (𝑁𝑟/2×𝑁𝑟/2) 8×2 16×4
N. of TRP wide beams |A𝑁𝑡 ,2 | 64 256
N. of UE wide beams |A𝑁𝑟 ,1 | 4 16
Bandwidth 𝐿BW 400 MHz 3.04 GHz
Slot duration 𝑡slot = 1/𝑁slot 1/8 ms 1/64 ms

Source: Created by the author.

• THz - 𝑇pkt = 8 ms: THz scenario with double packet generation rate;

• DTX(1) - 𝑇pkt = 16 ms: First DTX configuration case, with 𝑛max = 640;

• DTX(1) - 𝑇pkt = 8 ms: First DTX configuration with double packet generation rate;

• DTX(2) - 𝑇pkt = 16 ms: More aggressive DTX configuration case, with 𝑛max = 320;

• DTX(2) - 𝑇pkt = 8ms: Aggressive DTX configuration, considering double packet
generation rate;
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Figure 11 – CDF of UE throughput. DTX(1) and DTX(2) represent the 𝑛max

values of 640 and 320, respectively.
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Fig. 11 shows the cumulative distribution function (CDF) of the UE throughput
in (3.10) for the different setups. In general, the slot counting constraints described in Sec. 3.3
contribute to a UE throughput degradation because TRPs are switched off even if their buffers
have data to deliver. For instance, throughput losses of approximately 2.56% and 6.65% at the
50th percentile were observed by deploying DTX in the THz system for 𝑇pkt of 16 ms considering
𝑛max = 640 and 𝑛max = 320, respectively. As for the higher traffic with 𝑇pkt of 8ms, losses of
approximately 11.18% and 18.35% were observed.

The larger throughput loss in the higher traffic load case when DTX is used is
explained by the fact that DTX sleep states occur more often, the same behavior is present when
varying the maximum threshold 𝑛max.

On the other hand, in comparison with the baseline, the THz system with more
aggressive DTX in the higher traffic load case reached about 6.84 times more throughput. Thus,
even with the throughput losses caused by DTX, the wider 𝐿BW in the THz band still strongly
contributes to the high UE throughput gain observed, which per se can justify shifting 𝑓𝑐 towards
THz bands.

Fig. 12 shows the CDF of the mean SINR, by averaging (3.7) over RBs allocated to
scheduled UEs, for each case. Clearly, the THz system experienced an SINR degradation when
compared to the baseline mmWave system of about 5.6 dB at the 50th percentile. Although larger
achievable beamforming gains could compensate i) higher noise power due to the wider 𝐿BW, and
ii) higher propagation losses, narrower beams at both ends lead to higher spatial misalignment,
then reducing the experienced beamforming gain.

Fig. 13 shows the impact on the system performance when UE panels are switched
by comparing the CDF of the available BPLs RSRP for each UE. It is possible to observe that the
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Figure 12 – CDF of SINR for each simulated case. DTX(1) and DTX(2) repre-
sent the 𝑛max values of 640 and 320, respectively.
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Figure 13 – CDF of the RSRP of the available BPL for all UEs within the 100ms
window.
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achievable array gain by increasing both the TRP and UE panel size as described in Table. 6 when
shifting frequency bands from mmWave to THz, and exploring the available UE panels provided
a difference of approximately 2 dB at the 50th percentile. Thus, indicating that exploring panel
diversity might improve the RSRP levels regarding the higher propagation losses in the sub-THz
environment.

Additionally, in Table. 7 the average packet latency considering all packets transmit-
ted during the considered 100 ms window is presented for each case. It is possible to see that
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Table 7 – Average packet latency.
Case Avg pkt latency
mmWave - 𝑇𝑝𝑘𝑡 = 16ms 1.077×10−2

THz - 𝑇𝑝𝑘𝑡 = 16ms 2.072×10−3

DTX (1) - 𝑇𝑝𝑘𝑡 = 16ms 2.250×10−3

DTX (2) - 𝑇𝑝𝑘𝑡 = 16ms 2.314×10−3

mmWave - 𝑇𝑝𝑘𝑡 = 8ms 9.382×10−3

THz - 𝑇𝑝𝑘𝑡 = 8ms 1.807×10−3

DTX (1) - 𝑇𝑝𝑘𝑡 = 8ms 2.998×10−3

DTX (2) - 𝑇𝑝𝑘𝑡 = 8ms 2.835×10−3

Source: Created by the author.

Table 8 – DTX states ratio for each simulated
case.

Case Active Inactive Sleep
mmWave - 𝑇𝑝𝑘𝑡 = 16ms 55.73 44.27 –
THz - 𝑇𝑝𝑘𝑡 = 16ms 15.58 84.42 –
DTX (1) - 𝑇𝑝𝑘𝑡 = 16ms 15.39 84.30 0.31
DTX (2) - 𝑇𝑝𝑘𝑡 = 16ms 15.47 84.10 0.43
mmWave - 𝑇𝑝𝑘𝑡 = 8ms 74.39 25.61 –
THz - 𝑇𝑝𝑘𝑡 = 8ms 21.19 78.81 –
DTX (1) - 𝑇𝑝𝑘𝑡 = 8ms 21.00 76.72 2.28
DTX (2) - 𝑇𝑝𝑘𝑡 = 8ms 20.78 76.70 2.52

Source: Created by the author.

under DTX the system experienced more latency for both traffic configurations. The mmWave
setup achieved the highest values, behavior related to the lower throughput achieved.

Finally, Table. 8 presents the average of the DTX state ratio for all TRPs. This ratio
was computed considering the last 100 ms of the simulation time. It is possible to see that the
percentage of the sleep states are below 3%, with the TRPs spending the most of the time inactive
for the majority of the simulated scenarios. This behavior indicates that overall system load is
supported by the THz setup. Nevertheless, the increase in data traffic by changing 𝑇pkt contributes
to the increase of the TRP activity and, hence, for increasing the sleep states.

The states distribution impact on system performance can be noticed on the SINR
and throughput CDFs presented in Fig. 12 and Fig. 11, with more activity leading to more data
transmission and thus higher perceived interference.

3.6 Chapter summary

This chapter presented system-level evaluations of a THz system in a LOS-only UMi
scenario with outdoor UEs within a 3-TRP coordination cluster. TRP-side DTX is proposed to
avoid overheating of TRP’s radio units. Numerical results have shown that a large throughput
gain can be achieved when shifting from a baseline mmWave band to the THz one, despite the
DTX dynamics. On the other hand, the THz system experienced an SINR degradation as the
provided beamforming gain was not enough to compensate for larger propagation losses and
larger noise power. As expected, DTX leads to throughput reduction, but further analysis can
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provide better understanding regarding the impact of this strategy on other KPIs.
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4 CONCLUSIONS

In the context of the evolution of mobile communication systems, the optimization
and development of new technologies are essential to meet the demand and requirements of
new application scenarios. This work addressed two distinct scenarios of mobile communication
systems, both considering a specific problem involving aspects of 5G and 6G systems.

In Chapter 2 a 5G scenario was considered. It has assessed the performance of a
DNN BF strategy for a MU-MISO system and provided a robustness analysis regarding ICSI. The
main goal was the maximization of the weighted sum rate, which is by definition a non-convex
problem whose parameterized optimal solution is hard to be obtained.

A DNN BF strategy was applied in order to obtain a suboptimal solution with reduced
complexity. The learning model considered is drawn from a DNN whose input is the channel
response and output is the beamforming vector parameters, which are used to build the optimum
beamforming vectors for all UEs. The WMMSE BF was considered for the comparison, and its
parameters were used for the data generation and the supervised training of the DNN.

From the obtained results it was possible to verify that the deep learning based
beamforming solution is viable and as robust as the WMMSE, where the channel estimation
error has caused a similar effect on the average sum rate achieved for both solutions assuming
that the channel and ICSI models follow the same distribution. Regarding the overall sum rate
performance, the DNN approximates the WMMSE as much as possible due to its supervised
nature, but its performance is bounded by the WMMSE BF and the WMMSE initialization. At
last, the DNN BF applied after an offline training presented a reduced computational performance
in comparison with the iterative solution, which, when considering its sum rate performance,
ensures the DNN BF as a suitable strategy.

As perspectives for future works in this topic, one can consider an analysis applying
other ICSI models with different statistical distributions, as well as consider more realistic
channel models. Another interesting extension is the employment of DNN beamforming in a
system considering multi-antenna UEs with multiple streams. Also, other learning approaches
that can take use of the sum rate information as a reward, such as in reinforcement learning,
could be pursued.

In Chapter 3, system-level simulations of a 6G scenario were considered. The
scenario consisted of a system operating at 100 GHz in a LOS-only UMi scenario composed
of a 3-TRP coordination cluster providing network access for outdoor multi-panel UEs under
centralized beam management and scheduling. The impact of TRP overheating when operating in
THz bands was considered and a TRP-side dynamic DTX was proposed, controlling the amount
of slots a TRP can transmit continuously. Numerical results comparing the network performance
of THz system in comparison with a mmWave setup and THz system under different DTX
configurations were presented for two traffic load conditions.
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The presented simulation results have shown that when shifting 𝑓𝑐 from 28 to
100 GHz a throughput gain of at least 6.84 times could be achieved due to the wide bandwidth
available, despite the DTX dynamics. The THz systems have a significant SINR degradation as
the experienced beamforming gain was not enough to compensate for larger propagation losses
and larger noise power. Nevertheless, the UE panel diversity provided by executing the BM
procedure 1 with different panels in a round-robin fashion made it possible to improve the RSRP
levels of the THz system above the mmWave, despite the higher propagation losses.

As expected, DTX leads to throughput reduction as the traffic load increases or with
more aggressive setups due to the increase of sleep states events, but further analysis is needed to
provide a better understanding regarding the impact of DTX on other KPIs, since the considered
traffic setup did not stress the system enough to increase the ratio of sleep events considerably.

Also, as future works, one may consider larger URAs in the system, along with
further optimization of the BM procedures, to potentially improve the experienced beamforming
gains. In order to improve the dynamic DTX framework, a traffic aware approach may be
considered as well.
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