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“Chaos often breeds life, when order breeds

habit.” (Henry Adams).



RESUMO

Situacdes que sdo inicialmente simples e faceis de entender em detalhes podem se tornar
complicadas devido a presenga do caos. Empregando uma nova combinagdao de métodos nao
lineares, teoria do caos e teoria da informagdo, desafia-se o paradigma
deterministico/estocastico convencionalmente utilizado na dindmica das varidveis hidroldgicas.
O objetivo ¢ oferecer uma compreensdo mais robusta da complexidade e do caos subjacentes a
esses fenomenos e aprimorar a capacidade de previsao dessas séries temporais. A primeira fase
da pesquisa concentrou-se na detec¢ao do caos deterministico usando métodos nao lineares e
de teoria do caos. Os resultados revelaram que mais de 70% das series temporais de chuva e
80% das vazdes apresentaram sinais de caos em escalas de tempo mensais, utilizando a
dimensdo de correlagdo. No entanto, a detecgdo de séries cadticas diminuiu a medida que as
escalas de tempo aumentaram. A avaliagdo do maior expoente de Lyapunov indicou uma
presenca mais forte de caos nas vazdes do que nas chuvas, sugerindo que as estacoes de chuva
com caos deterministico t€ém periodos de previsibilidade mais longos do que seus equivalentes
de vazodes. Essas descobertas tém implicagdes cruciais para o gerenciamento de recursos
hidricos e o desenvolvimento de planos integrados, especialmente considerando as limitagdes
inerentes as previsoes de longo prazo de vazao. A segunda analise utilizou métodos de teoria da
informacao, especificamente a entropia multiescala (MSE), para aprofundar o entendimento da
complexidade das séries temporais. A analise de MSE indicou que as vazdes exibem menor
entropia (maior previsibilidade) em escalas de tempo menores, o que significa menor
complexidade. Notavelmente, foi observada uma diminui¢do distinta na complexidade em
metade das estagdes de precipitagdo, enquanto duas estagdes de vazao na regido sudeste
mostraram um aumento da entropia, sugerindo maior complexidade nessas séries temporais
especificas. Essas descobertas destacam a importancia de compreender a dindmica hidrolégica,
pois a complexidade dessas séries varia espacial e temporalmente. Especificamente, a parte
noroeste do estado, que ¢ considerada mais complexa em termos de chuva e vazdo. A
complexidade e o comportamento cadtico observados no regime hidrolégico do Ceard
desempenham um papel vital nos recursos hidricos. Aproveitando os resultados da deteccao do
caos, a terceira fase do estudo utilizou 20 séries temporais de precipitacdo que mostraram caos
deterministico como dados de entrada para modelos de aprendizado de maquina. Os resultados
mostraram que os modelos de Maquina de Vetor de Suporte e Floresta Aleatoria se destacaram
na previsao, entretanto, cada modelo foi adaptado a padrdes de chuva unicos em diferentes

locais. O desempenho bem-sucedido desses modelos demonstra o potencial de métodos



orientados por dados na previsdo da dinamica das chuvas sem a necessidade de informagdes
fisicas extensivas. A fase final do estudo aplicou um arcabougo multi-modelo, incorporando
seis modelos de previsdo, para prever a vazao média anual de curto e longo prazo. Os modelos
hibridos superaram os modelos independentes, sugerindo a eficicia desse método para melhorar
a precisao das previsoes de longo prazo. No entanto, o estudo reconhece a limitagdo de excluir
variaveis exogenas que podem influenciar a vazdo, como chuva e indices climaticos. Em
conclusdo, esta tese de doutorado oferece um exame abrangente das complexidades inerentes
as séries temporais de precipitagdo e vazao, além de fornecer uma metodologia inovadora para
detectar, analisar e prever essas sé€ries usando métodos ndo lineares, teoria do caos e teoria da
informagdo. As descobertas da pesquisa t€m um potencial significativo para melhorar a
confiabilidade das previsdes hidrologicas e aprimorar as estratégias de gerenciamento de

recursos hidricos.

Palavras-chave: caos deterministico; andlise de complexidade; séries temporais
hidrometeorologicas; métodos nao lineares; aprendizado de maquina; previsao de precipitagao;

previsdo de vazao; gerenciamento de recursos hidricos.



ABSTRACT

Situations that are initially simple and easy to understand in detail can end up being complicated
due to the presence of chaos. Employing a novel combination of nonlinear, chaos theory, and
information theory methods, it challenges the conventional deterministic/stochastic paradigm
commonly used in hydrological variable dynamics. It aims to offer a more robust understanding
of the underlying complexity and chaos in these phenomena and enhance the prediction
capacity of such time series. The first phase of the research focused on detecting deterministic
chaos using nonlinear and chaos theory methods. The results revealed that over 70% of the
rainfall and 80% of streamflow showed signs of chaos at monthly timescales, using the
correlation dimension. However, the detection of chaotic series diminished as the timescales
increased. The largest Lyapunov exponent assessment indicated a stronger presence of chaos in
streamflow than in rainfall, suggesting that rainfall stations with deterministic chaos have
longer predictability periods than their streamflow counterparts. These findings carry crucial
implications for water resource management and the development of integrated plans,
especially considering the inherent limitations in long-term streamflow predictions. The second
analysis used information theory methods, specifically multiscale entropy (MSE), to delve into
the complexity of the time series. The MSE analysis indicated that streamflow exhibits lower
entropy (greater predictability) at smaller timescales, signifying less complexity over time.
Notably, a distinct decrease in complexity was observed in half of the rainfall stations, while
two streamflow stations in the southeastern region showed increased entropy, suggesting
heightened complexity in those specific time series. These findings underline the importance of
understanding hydrological dynamics, as the complexity of these series varies spatially and
temporally. Specifically, the northwestern part of the state is found to be more complex in terms
of both rainfall and streamflow. The complexity and chaotic behavior observed in the
hydrological regime of Ceara play a vital role in water resources. Building upon the chaos
detection results, the third phase of the study used 20 rainfall time series, which showed
deterministic chaos, as input data for machine learning models. The results showed that Support
Vector Machine and Random Forest models stood out in the prediction; however, each model
was adapted to unique rainfall patterns in different locations. The successful performance of
these models demonstrates the potential of data-driven methods in forecasting rainfall dynamics
without extensive physical information. The final phase of the study applied a multi-model
framework, incorporating six prediction models, for forecasting short- and long-term average

annual streamflow. The hybrid models outperformed stand-alone models, suggesting the



efficacy of this approach for improving long-term prediction accuracy. However, the study
recognizes its limitation in excluding exogenous variables that may influence streamflow, like
rainfall and climatic indices. In conclusion, this doctoral thesis offers a comprehensive
examination of the complexities inherent in rainfall and streamflow time series and provides an
innovative methodology to detect, analyze, and predict these complexities using nonlinear,
chaos theory, and information theory methods. The research findings carry significant potential
for improving the reliability of hydrological forecasting and enhancing water resource

management strategies.

Keywords: deterministic chaos; complexity analysis; hydrometeorological time series;
nonlinear methods; machine learning; rainfall forecasting; streamflow forecasting; water

resource management.
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1 INTRODUCTION

Water resources are considered dynamic systems because their configuration can
change over time and space, and different processes regulate their variables at various spatial
and temporal scales. Understanding these complex and highly nonlinear variables has been a
challenging task and a major focus for water resources engineers and managers, particularly in
arid regions. Arid and semi-arid regions are characterized by high temperatures, low annual
precipitation, frequent droughts, and variations at inter-annual to higher scales. These factors
contribute to the vulnerability of these areas (RAMARAO et al. 2019; SINGH &
CHUDASAMA, 2021). Therefore, accurate predictions are essential for water resources
planning, management, and operation.

Hydrological forecast models use observed time series as input variables. Over the
past half a century, hydrologic time series analysis has become a vital part of hydrologic studies.
Depending upon the hydrologic variable and the period of observation, a hydrologic time series
may be composed of deterministic events, stochastic events, or a combination of the two.
Although, for an extended period of observations, a hydrologic time series is usually a
combination of stochastic components superimposed on deterministic components
(SIVAKUMAR, 2016). Furthermore, the deterministic component can display inherent
nonlinearity and sensitivity to initial conditions. The main focus of this doctoral thesis will be
on examining the deterministic chaos component characterized by its sensitivity to initial
conditions.

Numerous time series analysis methods have found applications in hydrology, such
as stochastic and data-driven techniques. Among these methods, linear stochastic methods are
much more popular and well-established, including Box & Jenkins (1970), Yevjevich (1972),
and Salas (1980). This popularity can be attributed, in part, to earlier developments and the
assumption that hydrologic processes are stochastic in nature. Lack of computational power to
develop the nonlinear mathematical models was an important factor that contributed to the use
of linear approaches. However, fast developments in data measurement and computer
technologies have made other methods equally attractive, such as those based on nonlinear
dynamic and chaos theories, which are exemplified in Tsonis (1992), Sivakumar (2000), and
Kantz & Schreiber (2004).

In the nonlinear science literature, the term chaos refers to the occurrence of
seemingly random and complex behaviors arising from simple, nonlinear deterministic systems

that have a sensitive dependence on initial conditions (LORENZ, 1963). Due to its properties
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(i.e., nonlinear inter-dependence, hidden determinism and order, and sensitivity to initial
conditions), chaos theory has been relevant for hydrologic systems and processes, chaos theory
has found a growing number of applications in hydrological time series (SIVAKUMAR, 2000,
2009, 2016).

Another intriguing aspect in water resources is complexity. Numerous authors have
deliberated on the concept of complexity and its significance in comprehending hydrological
systems, although a consensus on its definition remains elusive due to its subjective nature.
Nonetheless, a viable definition of complexity entails a system comprising inter-connected
components that interact in a nonlinear fashion, and nonlinearity is a common feature shared
by both chaotic and complex system (SIVAKUMAR, 2016).

A complex system is characterized by its intricate organization, inherent
uncertainty, nonlinear dynamics, interactions between scales, feedback loops, and emergent
behavior (RICKLES et al., 2007). The many elements that compose the complex system have
different components interacting at multiple scales. At each scale, a different structure can be
form, leading to emergence, which is another important property of complex systems.
Emergence is a concept in the study of complex systems that refers to the property of a system
in which collective behavior arises from the interactions of its individual components, resulting
in properties or patterns that cannot be predicted from the individual components alone. Self-
organization is a necessary condition for emergence to occur in complex systems as it provides
the underlying structure for the interactions of the individual components that result in emergent
behaviors and patterns (SIVAKUMAR, 2016).

The individual components of a complex system spontaneously arrange themselves
into structured and organized forms, creating the conditions for emergence to occur and
resulting in collective behaviors and patterns characteristic of the system as a whole. Complex
systems have multiple scales, and while chaos may exist on one scale, self-organization may
occur on a coarser scale above it (BARANGER, 2000). A chaotic system is characterized by
the generation of complicated, aperiodic, and seemingly random behavior. This behavior arises
from the iteration of a simple rule and is chaotic in a precise mathematical sense. The
complicatedness in chaotic systems is not the same as complexity in the context of complex
systems science. On the other hand, a complex system is defined by the generation of rich,
collective dynamical behavior. This behavior emerges from simple interactions between many
subunits. Complexity in complex systems is not necessarily chaotic, and chaotic systems are
not necessarily complex. However, complex systems can exhibit chaotic behavior under certain

conditions or values of variables or control parameters (RICKLES et al., 2007). In its basic
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form, complexity theory includes the concepts of chaos and complex adaptive systems (CAS),
along with path dependence, system history, nonlinearity, emergence, irreducibility,
adaptiveness, operating between order and chaos, and self-organization (TURNER and
BAKER, 2019). Chaos is supported by self-organization, feedback, and deterministic systems,
while CAS are supported through self-organization, emergence, adaptation/evolution,
feedback/history, and non-deterministic systems as described in Figure 1.

Figure 1 - Complexity theory

COMPLEXITY THEORY
CHAOS Non-linearity
L LLLLELET T Emergence
Irreducible

Order and Chaos
Self-Organizing

Path dependent

Adaptative

Feedback

Sensitive to initial conditions
Open system

Source: Adapted from Turner and Baker (2019).

In hydrology, complexity can refer to the number of dominant variables and the
nonlinearity of processes that govern watershed dynamics (Sivakumar, 2016). Further,
hydrological complexity is closely connected to concepts such as model parsimony, parameter
identifiability, and criteria for model selection (Ombadi et al., 2021). In this doctoral thesis, we
will focus on the first concept. To quantitatively understand complexity, various tools can be
used, including statistical measures like the coefficient of variation, nonlinear dynamic
measures such as dimension, information-theoretic measures like entropy, and others. For
instance, complexity can be assessed based on the number of variables that predominantly
control the system, requiring a certain amount of information to describe the system accurately.

While complex systems may exhibit patterns, structures, and self-organizing
behavior, their overall behavior can still be highly dynamic, difficult to anticipate, and
characterized by multiple possible outcomes. On the other hand, chaotic systems exhibit
deterministic behavior, meaning that their future states are completely determined by their
initial conditions and the rules governing their dynamics. However, due to the complexity and
nonlinearity of these systems, long-term prediction becomes challenging, as small errors or

uncertainties in measuring or knowing the initial conditions can quickly amplify and lead to
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substantial deviations from predicted outcomes (POLLARD et al., 2011). Therefore, predicting
hydrological variables in the long-term presents a challenge due to the inherent characteristics
of hydrological time series.

Generally, the water availability in reservoirs is estimated using inflow forecasts at
various time scales such as daily, weekly, and monthly (SILVA et al., 2017). The commonly
used models are stochastic models which may overlook important characteristics of the time
series, leading to inaccurate forecasts in the face of climate variability. This raises questions
about the possibility of accurately predicting hydrological variables using models that consider
the inherent nonlinearity and complexity of hydrological series. Can the predicted time series
provide a good database for optimizing the operation of a reservoir system in the presence of
climate variability? The scientific justification of this work is given by the importance and
innovative nature of improving hydrological forecasts by incorporating the characteristics of
nonlinearity, complexity, and chaotic behavior.

Situations that are initially simple and easy to understand in detail can end up being
complicated due to the presence of chaos. Further, the focus of this doctoral thesis was to
propose a framework that identifies the presence of chaos in rainfall and streamflow time series
using classical methods from chaos theory and nonlinear methods. Furthermore, it is also
important to quantify the complexity of hydrological time series and how it evolves spatially
and temporally. Thus, method based on information theory are applied to evaluate the
spatiotemporal changes of the relative complexity of time series including series with multiple
temporal scale characteristics. The latest state-of-the-art machine learning methods are applied
to predict the chaotic time series, and a multi-model framework with stochastic methods is

proposed to improve the modeling process.
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2 OBJECTIVES
2.1 Main Objective

To develop a methodology for detecting deterministic chaos in rainfall and
streamflow time series, and incorporating nonlinearity through the use of nonlinear, chaos
theory, and information theory methods. Furthermore, based on the previous diagnosis, a
methodology is developed to predict deterministic chaos using machine learning and a multi-

model based on stochastic models.

2.2 Specific Objectives

1. To identify the underlying dynamics of monthly, seasonal, and annual rainfall
and streamflow in the State of Ceara, Brazil.

2. To assess the spatiotemporal behavior of rainfall and streamflow and determine
their level of complexity using the Multiscale Entropy method.

3. To investigate the relation between rainfall and streamflow complexity.

4. To evaluate Machine Learning techniques in forecasting hydrological time
series with chaotic characteristics.

5. To assess the effectiveness of a multi-model approach incorporating hybrid

models for forecasting hydrological time series with a stochastic approach.



27

3 METHODOLOGICAL STRUCTURES

To address the topics outlined in the introduction and meet the proposed objectives,
this doctoral thesis is structured into four articles and a final section summarizing the key
conclusions and recommendations for future work. The first focuses on detecting deterministic
chaos in observed hydrometeorological variables (i.e., rainfall and streamflow), using different
methodologies based on chaos theory and nonlinear methods. Additionally, this article uses
Recurrence Plots to comprehend the relationship between these hydrometeorological variables
and El Nifio events.

The second article aims to explore the underlying spatiotemporal complexity of
hydrological variables. Given the nonlinear and nonstationary behavior of the climate system,
understanding its inherent complexity has both theoretical and practical significance in
revealing the uncertainty and variability of the system. In this article, sample entropy (SampEn),
which provides a measure of complexity obtained by examining the similarity of observed
segments from a time series, and Multiscale entropy (MSE), which provides insights into the
complexity of fluctuations over a range of time scales and extends standard sample entropy
measures, are used. The article also evaluates the intra-annual distribution of rainfall
complexity, and the relationship between rainfall and streamflow complexity.

The results from the first and second articles diagnose the dimensionality,
complexity, and variability of the time series using nonlinear dynamic approaches, providing a
deeper understanding of rainfall and streamflow variability at various spatiotemporal scales.
The third article incorporates the results from the previous articles, such as the time-delay, to
predict chaotic time series using different machine learning methods. These methods can
capture the nonlinearity present and improve streamflow modeling and forecasting
performance.

The final article proposes a multi-model framework to predict short- and long-term
streamflow time series, and a comparative analysis of different hybrid prediction models. The
hybrid model was based on decomposition methods (i.e., wavelet and complete ensemble
empirical mode decomposition with adaptive noise) along with stochastic models (i.e.,
autoregressive model and hidden Markov model). The forecast models were coupled using the
least absolute shrinkage and selection operator (LASSO) regression method. This framework
is adopted as preprocessing approaches can enhance the accuracy of streamflow forecasting,
particularly for long-term forecasting. Additionally, the cross-wavelet transform, and the

wavelet transform coherence are applied to analyze the effect of climatic indices such as El
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Nifio, PDO, and AMO on the analyzed streamflow.

In this context, the articles represent important steps, illustrated in Figure 2, when
dealing with time series: diagnosing its dynamics, its complexity, and incorporating these
important features of hydrological time series into the modeling framework. Thus, this
methodological structure is not limited to rainfall and streamflow-related studies and can be

applied to different fields of science dealing with nonlinear systems.

Figure 2 — Overall methodology of this thesis.
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4 EXPLORING SPATIOTEMPORAL CHAOS IN HYDROLOGICAL DATA:
EVIDENCE FROM CEARA, BRAZIL'.

4.1 Introduction

The study of hydrological systems’ characteristics has long been a subject of
interest due to the presence of complex, highly variable, random, and interdependent dynamics.
Accurate information on hydrological variables at different timescales is crucial for monitoring
and managing water resources, especially when dealing with extreme events such as droughts
and floods (PHAM et al., 2020; SHU et al. 2021). The complexity of these systems, which this
paper refers to as the number of dominant variables governing the time series dynamics, is often
associated with a random process, leading to the use of stochastic methods. However, seemingly
random processes can also arise from the sensitivity to initial conditions in deterministic

systems.

Edward Lorenz first described chaos theory in the early 1960s, and since then, it
has gained traction in several fields of natural sciences and engineering. Chaotic systems are
characterized as random-looking and complex systems originating from simple deterministic
systems sensitive to slight changes in initial conditions (LABAT et al., 2016; JIANG et al.,
2021). This sensitivity has significant implications for system modeling and prediction.
Variables considered to be random are irreproducible and unpredictable, whereas chaotic
variables can be reproducible in the short term due to their deterministic nature. However, due
to sensitivity to initial conditions, these variables are not predictable in the long-term.

Consequently, chaos and randomness exhibit very different behaviors (SIVAKUMAR, 2016).

The application of chaos theory has demonstrated that chaotic models are often
better suited for certain complex hydrological time series (SIVAKUMAR, 2000). An increasing
number of studies have applied chaos theory to analyze hydrological process dynamics, starting
from the late 1980s (RODRIGUEZ-ITURBE et al., 1989; HU et al., 2013; OUYANG et al.,
2016; HONG et al., 2016; ZHOU et al., 2022). Applications of chaos theory in hydrology began
with identifying chaos, primarily in rainfall data (RODRIGUEZ-ITURBE et al., 1989), and its

development has significantly increased since then. Chaos theory has been used to address

! Reproduced with permission from Springer Nature. This version of the article has been accepted for publication
and is available online at: https://doi.org/10.1007/s00477-023-02501-5.



30

different problems in hydrological systems, including characterization (ABARBANEL &
LALL, 1996), noise reduction (ELSHORBAGY et al.,, 2002), missing data, prediction
(TONGAL & BERNDTSSON, 2014; OUYANG et al., 2016; HONG et al., 2016; TONGAL,
2020; WANG et al., 2021; ZHOU et al., 2022), scaling, catchment classification
(SIVAKUMAR & SINGH, 2012), and disaggregation, among others.

Different methods have been used to analyze and identify chaotic behavior. For
example, Xu et al. (2009) applied the Lyapunov exponent and correlation dimension methods
to recognize the chaotic features in the annual runoff of the Tarim River, finding that it exhibits
complex nonlinear characteristics with chaotic dynamics. Kedra (2013) used several
independent methods and tools to analyze daily discharge from gauging stations in southern
Poland, including the surrogate and the determinism tests. Labat et al. (2016) applied the
correlation dimension method to streamflow data from karstic watersheds in France, detecting
the presence of chaos with attractor dimension values below three. Jiang et al. (2020) applied
the Lyapunov exponent, nonlinear prediction, and correlation dimension methods to analyze
monthly streamflow data from the Daiying hydrological station in northern China, concluding
that the monthly streamflow is chaotic. Shu et al. (2021) identified features of chaos in daily
rainfall data from the UK and conducted an extended complexity analysis using recurrence

quantification analysis.

Furthermore, several studies have employed chaos theory to properly understand
the underlying dynamics that control the behavior of hydrological time series across different
timescales. However, there is a lack of quantitative analysis of chaotic characteristics in semi-
arid regions. This shortfall might be related to the idea that chaos characterization and
prediction methods require long, noise-free time series, while data from these regions often
consist of short series with missing values. Nevertheless, some studies have argued that data
size is not a significant issue for identifying and predicting chaos and that available methods
can provide reliable results even with small time series (SIVAKUMAR 2005; SIEK &
SOLOMATINE, 2010).

Understanding the spatiotemporal dynamics of rainfall and streamflow is critical
for effective water resource management in regions with a highly variable climate, such as
Ceara, Brazil. Traditional linear models often fail to capture the complex, nonlinear
relationships between them, potentially leading to inaccurate predictions and inefficient water
management practices. Nonlinear dynamic analysis and chaos theory can serve as reliable

alternatives for modeling the complex behavior of hydrological data. Thus, this paper aims to
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employ these methodologies to identify the underlying spatiotemporal dynamics of monthly,
seasonal, and annual rainfall and streamflow in Ceara, Brazil. Well-established methods, such
as correlation dimension, Lyapunov exponent, and recurrence quantification analysis, are
applied in this study. Through the application of these methodologies, this study seeks to
improve our understanding of the complex interactions and feedback between these variables.
Additionally, comprehending the spatial variability of rainfall dynamics is crucial for the
interpolation/extrapolation of hydrological variables and classification of catchments, which

can inform more effective water management practices in the region.

4.2 Study area and hydrological data

Ceard, as shown in Figure 3, is located in the Northeast region of Brazil (NEB). The
state's climate is predominantly semi-arid, with the economy heavily dependent on rainfall due
to its agricultural base. The rainfall regime is mainly controlled by the southward movement of
the Intertropical Convergence Zone (ITCZ), with rainfall concentrated from February to May,
which accounts for approximately 70% of the annual rainfall. The mean annual rainfall is
around 810 mm, with higher values in the coastal area and lower values in the central portion,
where the semi-arid landscape is more accentuated (COSTA et al., 2021). Natural fluctuations
in the sea surface temperature also modulate rainfall patterns. Several studies identify the
influence of climate indices such as the Atlantic Multidecadal Oscillation (AMO), El Nifo
Southern Oscillation (ENSO) phenomenon, and Pacific Decadal Oscillation (PDO). These
indices have been associated with the rainfall regime in the NEB (ANDREOLI & KAYANO,
2005; KAYANO & ANDREOLI 2006; GARREAUD et al., 2009; KAYANO et al., 2020).
The shallow soils with a crystalline basement in most of the state result in low base flows, and
the rivers in the region are mainly naturally ephemeral or intermittent due to the lack of

sustained groundwater recharge.
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The rainfall and streamflow data used in the spatiotemporal analysis were obtained

from the Brazilian National Water Agency (ANA). The monthly rainfall series ranges from

January 1962 to December 2006. The length of the monthly streamflow series varies, and so do

its start and end dates, depending on geographical location (refer to Table 1). This study

includes data from 31 rain gauges and 30 streamflow gauges located in the state of Ceara, as

illustrated in Figure 3.

Table 1 - Identification of the streamflow stations and its statistical characteristics.

Rainfall Data
Mean )
Station  Station Station Start — end of the series Annual Cfoefﬁm@nt
Number ID Name (Month-Year) Rainfall  ° Vaor lation
(mm) (%)
1 338005 Maracanau 01-1962/12-2006 1333.32 38.78
Sao 01-1962/12-2006
2 338008 Gongalo do 1076.51 39.19
Amarante
3 338009 Caucaia 01-1962/12-2006 1340.72 34.87
4 338016 Maranguape 01-1962/12-2006 1254.94 34.71
5 339034 Urubt;retam 01-1962/12-2006 1173.36 33.62
6 340008 Martinopole 01-1962/12-2006 1104.34 36.87
7 340014 Carire 01-1962/12-2006 951.93 37.02
8 340023  Mucambo 01-1962/12-2006 1040.49 36.14
9 340030 Tiangua 01-1962/12-2006 1270.84 33.27
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Mean

Station  Station Station Start — end of the series Annual Cfoefﬁ‘cn‘ant
Number ID Name (Month-Year) Rainfall  ° Vaor lation
(mm) (%)
10 340031 Ubajara 01-1962/12-2006 1528.52 33.85
11 437000 Aracati 01-1962/12-2006 991.02 51.03
12 437010 Russas 01-1962/12-2006 771.42 40.51
13 438032 [tapiuna 01-1962/12-2006 783.11 35.49
14 439008 Mulungu 01-1962/12-2006 1187.90 33.52
15 439018 Aratuba 01-1962/12-2006 1449.65 44 .45
16 440005 Croata 01-1962/12-2006 579.52 39.76
17 440009 Catunda 01-1962/12-2006 720.25 46.07
18 440014 Ipueiras 01-1962/12-2006 972.67 39.45
19 440017 Nova russas 01-1962/12-2006 860.34 39.11
20 538003  Alto santo 01-1962/12-2006 775.31 37.5
71 538010 Sao Joég do 01-1962/12-2006 765.93 4127
Jaguaribe
22 539023  Solonopole 01-1962/12-2006 782.61 31.53
23 638008 Umari 01-1962/12-2006 792.64 30.23
24 638010 Aurora 01-1962/12-2006 934.20 30.64
25 638011 Pereiro 01-1962/12-2006 1024.07 354
26 639021  Acopiara 01-1962/12-2006 791.03 31.52
27 640015 Parambu 01-1962/12-2006 697.91 47.8
28 739007  Missdo 01-1962/12-2006 1006.12 26.61
Velha
29 440018 Poranga 01-1962/12-2006 657.56 42.58
30 437006 Jaguaruana 01-1962/12-2006 824.63 50.51
31 739005  Santana do 01-1962/12-2006 930.15 30.29
Cariri
Streamflow data
) . Start — end of the Mean Coefficient
Station . Station . Annual ..
Number Station ID Name series Rainfall of variation
(Month-Year) (%)
(mm)
1 34730000 Croata 01-1998/12-2006 3.47 57.96
2 34740000  Saudoso 01-1998/12-2010 3.64 83.98
3 35050000 Chaval 01-2001/12-2008 4.79 48.92
Retiro
4 35205000  Pesqueiro 01-2001/12-2015 4.93 112.85
5 35210000 192092 01 1963/12-1972 8.02 99.67
Cajazeiras
6 35235000 YarZeado oy 1987/12.2005 7.96 85.16
grosso
7 35240000 Trapia 01-1988/12-2010 6.56 134.86
8 35260000 Groairas 01-1991/12-2010 448 170.93
9 35275000 Sobral 01-2006/12-2017 21.70 184.53
10 35279000 Fe%nda g1 10851122003 0.23 147.13

bela Vista
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Mean Coefficient
Station Station ID Station Start — end of the Annual of variation
Number Name series (Month-Year) Rainfall (%)
(mm) :
11 35570000 S20TMZ 01197312 1984 19.94 198.68
do Curu
12 35740000 BarraNova  01-1999/12-2017 1.43 92.44
13 35830000 CaioPrado  01-1985/12-2005 4.97 128.22
14 35880000 Chorozinho  01-1970/12-1983 12.68 149.61
15 35900000 Itapeim 01-2001/12-2008 4.24 55.5
16 35950000  Cristais 01-1970/12-1981 6.12 180.99
17 36020000 Ameiroz  01-1976/12-2003 8.70 199.8
18 36045000 Malhada  01-1988/12-2010 1.62 169.75
19 36070000 Sitio Patos  01-2000/12-2017 7.40 158.49
20 36110000 OO 01.1968/12-1980 5.37 91.79
Conceigao
21 36125000 HOPOSO o1 1991/122011 3.99 114.44
Dantas
22 36130000  Carids 01-1992/12-2006 8.45 135.71
23 36160000  Iguatu 01-1974/12-1996 33.93 141.22
24 36210000 OO 01-1985/12-2006 4.48 82.43
lapinha
25 36250000 Podimirim  01-1973/12-2017 3.52 133.9
26 36260000 Sltl(‘j’ns;ma 01-2001/12-2017 6.70 102.52
Lavras da
27 36270000 Mangabeir  01-1980/12-1996 26.27 119.45
a
28 36290000  Ico 01-1984/12-2015 25.91 11733
29 36320000 Jaguaribe  01-1987/12-2017 41.70 112.08
30 36390000  LeXe 01-1998/12-2014 40.97 135.44
gordo

Source: Prepared by the author

The streamflow and rainfall time series each have very distinct statistical

distributions. As seen in Figure 4a for rainfall analysis, the stations in the northern part of the

State show the highest variability in rainfall, while those in the central and northeastern areas

exhibit the narrowest range of values. The stations located in the northern and western regions

have higher coefficients of variation (CV) (Table 1), indicating a large amount of variability in

their datasets. Some stations display a violin plot that is thick at the center, indicating a

relatively narrow range of values.

For streamflow (Figure 4b), the stations in the western area exhibit very high

variability, as observed for rainfall. The stations in the eastern part of the state have the highest
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mean annual streamflow, around 25m?/s. Further, the streamflow shows higher CV values
compared to rainfall, with the higher values located in the northern of the state. However, the
characterization of streamflow may be affected by the different time window analyzed due to

the amount of missing data in the streamflow time series.

Figure 4 - Violin plots of (a) rainfall data from the 31 analyzed stations and (b) streamflow
data from the 30 analyzed stations. The maximum and minimum values are represented by
points in the top and bottom of the plots, respectively, and the median is illustrated by the
horizontal line on the boxplot inside the violin plot.
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4.3 Methods

Several methods have been developed to detect the presence of chaos in time series.
These include the correlation dimension method (GRASSBERGER & PROCACCIA, 1983a),
the Kolmogorov entropy method (BENETTIN et al., 1979), the Lyapunov exponent method
(WOLF etal., 1985), the false nearest neighbor algorithm (KENNEL et al., 1992), the nonlinear
prediction method (FARMER & SIDOROWICH, 1987), and recurrence quantification analysis
(ZBILUT & WEBBER, 1992). To avoid false results, it is typically common practice to use
multiple techniques to distinguish between a stochastic and a chaotic process. Also, most of
these methods require the reconstruction of the time series’ phase space (TAKENS, 1981). The
correlation dimension, Lyapunov exponent, and recurrence quantification analysis were applied
to analyze the chaotic dynamics of rainfall and streamflow series. Each method focuses on
distinct aspects of the series to identify chaos. For instance, recurrence plots can capture the
nonlinear structure of the dynamics, while Lyapunov exponents can measure the rate of
separation between close trajectories, indicating sensitivity to initial conditions. Fig. 3

illustrates the framework of the paper.

Figure 5 - Schematic representation of the proposed chaos identification framework.
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4.3.1 Phase space reconstruction (PSR)

Nonlinear dynamic system analysis frequently entails the reconstruction of the
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phase space, which consists of a representation of the governing variables at a given moment.
The time-delay embedding theorem (TAKENS, 1981) facilitated the reconstruction of a
multidimensional phase space employing a single time series, and that led to several
applications of chaos theory in hydrology (LIANG et al., 2019), particularly because all the
actual governing variables of a hydrological system are often not known a priori (SHU et al.,
2021; YAN et al., 2021; OMBADI et al., 2021). The phase space diagram tracks the evolution

of the system from its initial conditions, and the overlap of the variables’ trajectories provides
insight into the complexity or variability of the system’s behaviors. According to the Takens

theorem (TAKENS, 1981), a one-dimensional time series of length n can be expressed in

terms of phase space vectors as described in Equation 1.
Y; = (X;, Xiver Xivao oo Xjem=-11)r  J=1,2,..,N (Eq. 01)

where 1 is the time delay, m is the embedding dimension, and N = n — (m — 1) (TAKENS,
1981). Even though the phase space is a powerful method to gain qualitative information
regarding how the systems evolve, the choice of a proper 7 is significant in representing the
optimal separation between trajectories within the minimum embedding dimension (MA &
HAN, 2006; LI et al., 2010). For example, if the value of the time delay is very small, there will
be no independence among phase-space coordinates, resulting in a lack of information about
the systems’ evolution. On the other hand, if the time delay is too large, the trajectories will
diverge, causing the loss of relevant information (DHANYA & KUMAR, 2010; LABAT et al.,
2016).

4.3.1.1 Time delay selection

In the PSR process, two variables are required: the time delay (t) and the
embedding dimension (m). Several guidelines have been proposed to determine the appropriate
time delay, many of which are based on series correlation. Among the well-known approaches
for identifying the time delay are autocorrelation and Mutual Information Functions (MIF).
However, relying solely on the first zero of the autocorrelation function to select t may lead to

inaccurate results because it only measures linear dependence between consecutive points
(FRASER & SWINNEY, 1986).

The MIF is a measure that is not affected by the nonlinearity of the series, and it is
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commonly used to analyze time series with inherent nonlinearity (STROZZI et al., 2002). The
time delay is often chosen as the local minimum of the MIF (FRASER & SWINNEY, 1986).
This choice allows for the assessment of both the linear dependence and general dependence
between successive points (SIVAKUMAR, 2016). For consecutive values of a time series, X;

and X;_, the MIF, I, can be expressed by Equation 2.

P (XjXj_1)

— Eq. 02
P(X;).P(Xj_z) (Eq. 02)

I = Zj,j—tP(XjJXj—‘r) log, [

where P (X;, X;_) is the joint probability density, and P(X;_.) and P(X;) are the
probabilities of X;_. and Xj, respectively. The local minimum of the MIF was adopted in this

study, as it can reflect that consecutive points are independent enough of each other but not so

independent as to have no connection. Further details can be found in Fraser and Swinney.
4.3.1.2 Embedding dimension

The two most common approaches for establishing the minimum necessary
embedding dimension to represent the system’s dynamics are the false nearest neighbors (FNN)
and the correlation dimension (CD). The FNN method (KENNEL et al., 1992) assumes that
points on the attractor’s trajectory are close to each other in the phase space, i.c., they are

neighbors. If the embedding dimension (m) is increased and a previously detected nearest
neighbor moves away from the vector Y, it is considered a false nearest neighbor, as it reaches
the neighborhood of ¥; in the higher embedding dimension by projecting itself from a distant
region of the attractor (KHATIBI et al., 2012).

The minimum embedding dimension (m) is found when almost all the neighbors
are true. In other words, the portion of points for which [Ry,41 (i) — R, (i)] > &R, (i) is very
small, zero, or below a 10% falseness of nearest neighbors (HUANG et al., 2010). ¢ is a
heuristic threshold factor. The distance R4, (i) — R,, is calculated to the same neighbors that
were identified with embedding m, but with the (m + 1)th coordinate.

For many real-world time series contaminated by noise, the percentage of FNN
generally does not fall to zero. Also, the percentage of FNN may not remain at this minimum
when the embedding dimension is increased. Instead, it often increases as the embedding

dimension increases due to the effects of noise propagation to higher dimensions. A low
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percentage of FNN aids in visualizing the geometric structure of the attractor as the system’s
orbits are now separated and do not cross (SIVAKUMAR, 2016).

The correlation dimension (CD) is a measure of the relationship between the
positions of points in the reconstructed phase space, and it is a popular approach for identifying
chaotic behavior (GHORBANI et al., 2018). In the context of identifying the presence of chaos,
dynamics governed by chaotic processes have a finite value of dimensions, while those
governed by stochastic dynamics have an infinite value of dimensions (KHATIBI et al., 2012;
SIVAKUMAR, 2016).

The CD, proposed by Grassberger and Procaccia (1983a), applies the correlation
integral to distinguish between stochastic and chaotic systems. The correlation integral
measures the probability that two randomly selected points will be within a certain radius (r)
of each other. The correlation function, C(r) is expressed by Equation 3 (GRASSBERGER &
PROCACCIA, 1983a; THEILER, 1986).

. 2
c@r) = 711%0 N(N-1)

1 X HO = Y = Y] (Eq. 03)
N is the number of points on the reconstructed attractor, H() is the Heaviside function with
H(u) =0for u <0 and H(u) =1 for u > 0. The variable u isdefinedas u =r — |Yi - Y]|,
where 7 is the radius of the sphere centred on Y; —Y;. Therefore, the correlation integral
approximates the number of points that are closer than a radius r in the data (LABAT et al.,
2016). For chaotic time series, the correlation function scales with r as C(r) o 7Pz, where
D, is termed the correlation exponent. In contrast, for stochastic time series, C(r) o r™ is

true. The correlation exponent can be expressed by Equation 4.

D, = lim lim 29<®
-0 n—ooo log(r)

(Eq. 04)

The correlation exponent, which measures the degree of nonlinear interdependence
among points on the attractor, can be approximated by finding the slope of logC(r) versus
log(r) plot. If the correlation exponent increases with increasing m, it suggests the absence of
chaotic behavior. However, if the correlation exponent reaches a constant value despite the
increase in m, it indicates the presence of chaotic behavior. The dimension at which the curve

saturates can be taken as the optimal m (LIANG et al., 2019). The nearest integer to the
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calculated correlation exponent is commonly considered the number of degrees of freedom of
the system, thus providing significant insights for the modeling process (GHORBANI et al.,
2018). Although the CD method has been widely used, some remarks have been raised
concerning its application to real-world time series, particularly for noisy data, short series, and
data with the presence of zeros. However, Sivakumar et al. (2002) described that the CD can
still be a reliable indicator of low-dimensional chaos in hydrological time series with limited

data.
4.3.2 Lyapunov Exponent

The Lyapunov exponent (LE) is a popular method for identifying the presence of
chaos in a time series. This method determines whether the phase trajectory has any diffusion
motion features. The LE measures the average exponential rate of separation of nearby orbits
in the phase space, serving as an indicator of the sensitivity of the attractor to initial conditions.
To be characterized as a chaotic series, the presence of a positive Lyapunov exponent is required
(KHATIBI et al., 2012). Among the existing methods to estimate the LE of a time series, the
approach proposed by Wolf et al. (1985) and later complemented by Rosenstein et al. (1993)
and by Kantz (1994) is extensively applied. This method involves computing the distance
between the reference point (Y;) and the nearest neighbor (Y;) of different trajectories in the
reconstructed phase space. The distance between them is d;(0) = ||Yl- - Yi||. However, the
nearest neighbor is not necessarily the closest one in the time domain. The distance after j

discrete time steps is computed in Equation 5.
di(@) = |[Yia; = Y| (Eq. 05)
The evolution of this separation is observed, and the divergence between the
trajectories based on the initial separation, d;(0), can be described by the exponential function
d;(j) = d;(0)e?U- 2D where At is the considered period, and A is the largest LE. Therefore,

the largest Lyapunov exponent (LLE) can easily be achieved by calculating the slope of the
curve in the exponential plot (ROSENSTEIN et al., 1993; JIANG et al., 2020).

4.3.3 Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA)

In deterministic systems, the recurrence of a state implies that if any deviation

occurs during the trajectory, that state will be returned in the future (Shu et al. 2021). The
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recurrence plot (RP) was first introduced by Eckmann et al. (1987), and it is applied to visualize
the recurring patterns in dynamic systems and their trajectories (MARWAN et al., 2007). This
well-establish nonlinear analysis technique illustrates how likely a recurrent behavior observed
in m-dimensional phase space is to recur. Further, this method is known for detecting the
dynamics of non-stationary or relatively short data (SHU et al., 2021). A system’s dynamics
are characterized by several vectors, which represent the trajectory of the attractor in a
mathematical space. The RP is established on the recurrence matrix, which can be expressed

by Equation 6.
Ri;(e) = H(e—||% %)), 1j=1..N. (Eq. 06)

where N is the number of measured points ¥, ¢ is a threshold distance, and H() is a Heaviside
function. The recurrence of state X; at time j is represented by ones (graphically depicted by a
black dot), while zeros reflect how the states are different at times i and j (MARWAN et al.,

2002). The corresponding matrix compares the systems’ states at times { and j, with R; ; = 1
if the states are similar and R; ; = O if the states are rather different. The matrix also illustrates

whether similar states occur in the underlying system (MARWAN, 2011). Several rules for
selecting the threshold & have been proposed in previous studies. In this paper, we apply the
recommendation by Marwan et al. (2002) to use 10% of the maximum phase space diameter.

The RP is a graphical representation of a system’s dynamics that can reveal
different patterns and behaviors of the system. Marwan et al. (2002) have described the different
meanings that the patterns in the RP can contain. For example, periodic processes are generally
characterized by diagonal lines or checkboard patterns. Single points can indicate a short
persistence in the state of system dynamics, whereas short diagonal lines mean that the
trajectory in phase space recurs to the same point, but at different times. This suggests the
possible presence of deterministic characteristics. Further explanation of RP can be found in
Marwan et al. (2002).

Recurrence Quantification Analysis (RQA) is a heuristic method of quantifying
RPs based on their patterns and line structures (MARWAN et al., 2002). Although RPs are
widely used, they are a visual tool that can provide only a qualitative view of the dynamic
system characteristics (SHU et al., 2021). To overcome this aspect, RQA proposes a
quantitative assessment to describe the systems’ underlying dynamics (ZBILUT et al., 2002).

RQA measures, such as determinism (DET), maximal length of diagonal structures (LMAX),
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recurrence rate (RR), and entropy (ENT) can identify and diagnose small-scale diagonal

structures in RP, which indicate the presence of chaos. The RR is described by Equation 7.
RR = —3V._ R (Eq. 07)

RR measures the portion of recurrence points with regard to the total number of
possible recurrences (MOCENNI et al. 2011). Normally, high recurrence indicates lower
system variability. The entropy (ENT) is described by Equation 8.

ENT =-3%Y, P(L)logP(L) (Eq. 08)

where L is the length of the diagonal line structure, and P(L) is the frequency distribution of
the diagonal line lengths. ENT indicates the complexity of the RP regarding the diagonal lines;
for example, small values of ENT reflect low complexity. A diagonal line of length [ means
that two segments of the trajectory, at different times, are rather close during | time steps. Hence,
these lines are related to the divergence of the trajectory. The maximal length of diagonal
structures (LMAX) is described by Equation 09.

Lyax = max ({L;,j = 1,..,N}) (Eq. 09)
where L; is the length of the j-th diagonal line in the RP. Marwan et al. (2002) observed that
deterministic dynamics result in longer diagonals and fewer isolated recurrence points, while
dynamics with uncorrelated or weakly correlated, stochastic, or chaotic behavior produce none
or very short diagonals. Therefore, one can use the ratio of recurrence points that form diagonal
structures (of at least length L,,;;,) to all recurrence points as a measure of determinism of the
system. DET is described by Equation 10.
to all recurrence points as a measure of determinism of the system. DET is described by

Equation 10.

DET ==5v 1r )

(Eq. 10)

The threshold L,,;, eliminates diagonal lines which are formed by the tangential
motion of the phase space trajectory. High values of DET are an indication of determinism in

the system, however, they are not sufficient to confirm that the system is deterministic. For
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example, if a system has DET = 1 for minor recurrence density (i.e., RR < 0.1), the underlying

process will be deterministic (i.e., a periodic or chaotic system).

4.4 Results and Discussion

4.4.1 Phase-space reconstruction (PSR)

This paper seeks to investigate the existence and inherent nature of chaos in
hydrological processes, such as rainfall and streamflow. It also explores how data aggregation
affects the detection of the deterministic chaos in the system's dynamics, as well as the spatial
distributions of chaotic time series and the relationship between these two hydrological
variables. The identification of deterministic chaos in the data is key for comprehending the
behavior of hydrological variables, and PSR is the first step for applying several methods in
chaos theory. PSR can graphically represent the variables needed to describe the system’s state
and can characterize the entire dynamics of the process with a single time series (SHU et al.,
2021; YAN et al., 2021).

The phase space for monthly rainfall and streamflow stations, geographically close
to each other, were reconstructed with a time delay equal to one and an embedding dimension
equal to three (see Figure 6), using time series from 1976 to 2006. Fig 4 shows a region of
attraction for these trajectories in the phase space, which provides possible evidence of
attractors. Although there is no clearly defined pattern, the trajectories are not dispersed
throughout the phase space, indicating an intermediate level of complexity between
deterministic and stochastic processes. Therefore, there is a need to characterize rainfall and

streamflow dynamics using chaos theory.

Figure 6 - Attractor of reconstructed phase space for monthly rainfall (left) and streamflow
(right) time series. The phase space was reconstructed with an embedding dimension of three
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and a one-month time delay.
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Two parameters are needed for the PSR: the time delay (T) and the embedding

dimension (m). These can be determined using methods such as the MIF, the FNN, and the CD.
The time delay is determined as the first minimum of the MIF. Figure 7 shows the results for
time delay identification using the MIF for the rainfall stations on both monthly and seasonal
timescales. The time delay varies among the stations and the timescales, except for station #27,
which had the same numerical value of 1 across all timescales, including the annual timescale
(Figure 9). On the monthly timescale, T ranges from three to four months, coinciding with the
State's rainy season. In the seasonal analysis, which considered data from January to June, 1
ranges from one to four seasons, with higher values mainly concentrated in the State’s

northeastern area.

Figure 7 - The spatial distribution of time delay, determined by mutual information, is examined
for rainfall at two different timescales: (a) monthly timescale in months and (b) seasonal
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timescale in terms of the number of seasons.

Source: Prepared by the author

For streamflow, the time delay ranged from two to four seasons on the seasonal
timescale. The stations with a t of four were mainly concentrated in the northwestern and
southeastern parts of the State (Figure 8). On a monthly timescale, the time delay varies from
three to six months. The southeastern and northern areas present the largest time delay for the
monthly time series. Further, the results show that a higher fluctuation of variability is observed
at the seasonal scale for rainfall compared to that on the monthly timescale, mainly due to
rainfall variability throughout the State. While for streamflow, most of the rivers are

intermittent. Thus, the time delay does not vary much throughout the region.

Figure 8 - The spatial distribution of time delay, determined by mutual information, is examined
for streamflow at two different timescales: (a) monthly timescale in months and (b) seasonal
timescale in terms of the number of seasons.
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Source: Prepared by the author

In the annual analysis (Figure 9), the time delay for rainfall ranges from one to three
years, indicating that rainfall exhibits interannual variability. Due to missing values, the annual
analysis of the streamflow series was only applied to series with over 30 years of data. These
series correspond to stations #25, #28, and #29, located in the southeastern region of the State.
On an annual timescale, the time delay was one for all stations. In comparison between the time
delays of rainfall and streamflow at stations in close geographical proximity, it is observed that
the streamflow value is typically higher. The interdependency between rainfall and streamflow,
which varies across all analyzed timescales, is often associated with changes in land cover,
climate, human water usage, or alterations in the characteristics of rainfall events themselves,
which are major drivers of streamflow. However, stations located near the central region of the

State present the same time delay for both variables.

Figure 9 - Spatial distribution of time delay (years) determined by mutual information for (a)
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rainfall and (b) streamflow at annual timescale.

Source: Prepared by the author

When analyzing the embedding dimension using the FNN method for rainfall
(Figure 10) on a monthly timescale, the number of dimensions ranges from three to seven, with
higher embedding dimensions observed in the northern and eastern regions of the State. When
analyzing only the seasonal timescale, the number of dimensions decreases by at least one for
most stations. Furthermore, 32% of the stations maintained the same dimension value when
changing from seasonal to annual timescales, with most of these stations situated in the central
part of the State where rainfall is scarce. The optimal number of dimensions can be defined as
the number of variables that effectively describe the dynamics of a given variable. As the
timescales become coarser, the complexity of rainfall decreases (i.e., a decrease in the
embedding dimension), and higher complexity is seen in the northern part of the State, where
rainfall is more abundant.

On a monthly timescale, streamflow analysis (Figure 11) showed a range of three
to 15 dimensions, with higher dimensions concentrated in the western region of the State. When
shifting the timescale to a seasonal analysis, there is a decrease in the number of dimensions as
previously observed for rainfall. Only 13% of the stations showed the same number of
dimensions with the change in timescales, likely due to the many factors that influence
streamflow compared to rainfall. Notably, the streamflow series showed higher embedding
dimensions than the rainfall series, which are primarily determined by meteorological factors

such as temperature, air pressure, humidity, and topography. In contrast, streamflow is affected
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by a variety of factors, including rainfall, evaporation, infiltration, soil moisture, and land use

changes such as deforestation or urbanization, which alter the water input/output.

Figure 10 - Spatial distribution of embedding dimension determined by the FNN method for
rainfall at (a) monthly, (b) seasonal and (c) annual timescales.

Source: Prepared by the author

Figure 11 - Spatial distribution of embedding dimension determined by the FNN method for
streamflow at (a) monthly, (b) seasonal and (c) annual timescales.

Source: Prepared by the author

The CD with an increasing dimension plot was also applied to determine the
optimal embedding dimension. In many practical applications, the point on the plot where the

correlation dimension saturates is often chosen as the optimal dimension (LABAT et al., 2016;
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FUWAPE et al., 2017; LIANG et al., 2019; JIANG et al., 2020). The relationship between
InCm(r)~Inr was was obtained for the monthly timescale, with the value of m ranging from 1
to 30 for all stations (see Figure 12a for an example). Figure 12b exhibits the correlation
function for station #15 (rainfall) with an increasing embedding dimension. The plot suggests
the presence of a chaotic process as the correlation function saturates around m=11. Figure 12¢
and d illustrate the same relations for streamflow station #13, which is geographically close to
the analyzed rainfall station. The correlation function reaches saturation around m=8 for
streamflow. Table 2 shows the chosen embedding dimension for the 31 rainfall and 30
streamflow stations at all the analyzed timescales based on their saturation point. 78% of the
stations at monthly, 68% at the seasonal, and 26% of the annual rainfall stations presented a
saturation point. 83% and 76% of the monthly and seasonal streamflow stations, respectively,
showed a saturation point. Most stations showed a decrease in the embedding dimension with
increasing timescale. However, rainfall station #3 maintained the same embedding dimension
for seasonal and monthly timescales. Some stations showed an increase in m with the increase
of the timescale (e.g., stations #6, #14, #21, and #28). Although it is generally believed that
temporal aggregation results in some form of smoothing and hence, less complex (and more
predictable) behavior, previous results, as discussed in Sivakumar (2016), also found an
increase in the dimensionality (or complexity) of the flow dynamics with the scale of
aggregation.

The nearest integer to the calculated correlation exponent is often adopted as the
number of degrees of freedom of the system. In general, a correlation dimension of 1 indicates
a periodic system, whereas a quasi-periodic system is characterized by a correlation dimension
of 2 (REITERER et al., 1998). However, a non-integer correlation dimension value suggests
the presence of chaos in the system. For monthly rainfall, the correlation exponent values range
from 3.47 to 5.67, confirming the presence of deterministic chaos in time series with non-
integer values. The results indicate that the dynamics of monthly rainfall require between four
to six equations to describe them, which is consistent with the findings of Sivakumar et al.
(2014), with values ranging from 4.82 to 8.87. For streamflow, the correlation exponent values
range from 0.52 to 3.64, indicating that the dynamics require one to four equations. These
results are consistent with those found in other studies for streamflow, such as 0.46
(JAYAWARDENA & LAI 1994), 2.4 (KHATIBI et al., 2012), and 0.9-2.3 (BABOVIC &
KEIJZER, 2000).
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Figure 12 - Log—log plot of the correlation integral function for (a) rainfall station #15 and (c)
streamflow station #13. Correlation exponent versus embedding dimension for (b) rainfall

station #15 and (d) streamflow station #13.
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Table 2 — Selected dimension for which the correlation exponent versus embedding dimension
plot saturates for all the analyzed stations and timescales.

Rainfall station Strgamﬂow
Monthly ~ Seasonal  Annual station Monthly  Seasonal
number
number

1 19 - - 1 - -
2 12 - 10 2 - 5
3 15 15 - 3 14 -
4 - - - 4 8 4
5 13 12 8 5 12 6
6 12 14 - 6 12 4
7 23 18 - 7 - -
8 21 - 11 8 - 6
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9 19 - - 9 2 2
10 20 17 - 10 9 5
11 - - - 11 2 3
12 - - - 12 2 2
13 - - - 13 8 5
14 13 16 - 14 9 -
15 11 5 - 15 9 6
16 25 16 - 16 9 6
17 22 18 - 17 4 5
18 22 17 - 18 12 5
19 - 18 - 19 13 6
20 21 17 - 20 10 -
21 15 18 - 21 10 6
22 19 - - 22 11 6
23 25 16 - 23 9 -
24 19 9 - 24 11 -
25 - 16 12 25 12 4
26 25 16 - 26 10 6
27 25 11 - 27 5 4
28 7 10 - 28 - 6
29 - 18 13 29 8 4
30 20 6 13 30 12 3
31 25 - 11

Source: Prepared by the author

Analyzing the spatial distribution of the embedding dimension chosen by the CD
method for rainfall stations (Figure 13), it was observed that the southern and western regions
of the State had higher embedding dimensions for the monthly analysis, in contrast to the coastal
region of the State, which experiences higher rainfall rates. The seasonal analysis showed
similar behavior but with smaller embedding dimensions. Furthermore, only two stations
(Stations #5 and #30) showed a saturation point across all analyzed timescales. The monthly
and seasonal timescales (Figure 13) show that the embedding dimension appears to form three
clusters in the State: one in the coastal area, one in the central part, and one in the south.

In the streamflow analysis, higher values of m were found in the southern and
northwestern regions of the State (Figure 14). As seen in the rainfall analysis, there was a
reduction in the embedding dimension when moving from the monthly to seasonal timescales,
as well as with the FNN method, suggesting that larger timescales require fewer dimensions.
The clusters formed by the streamflow time series slightly differ from those observed in rainfall,
with the cluster in the coastal part of the State being divided into a northwestern and a central
part. Although Vignesh et al. (2015) stated that the FNN dimension could serve as a measure

of similarity for identifying stations with similar levels of variability in time series dynamics,
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no consistent pattern was observed in this study with this method. This inconsistency may be
associated with the size of the analyzed area. When comparing the CD and FNN methods to
estimate the optimum embedding dimension, it was found that the CD method yielded higher
values for rainfall, while the FNN method produced lower values. The CD method also showed
a different pattern compared to the FNN method, with higher values of the embedding
dimension found in the northern part of the State. Both methods demonstrated similar results
for streamflow, with higher embedding dimensions observed in the western region of the State.
Figure 13 — Spatial distribution of the chosen dimension of rainfall for which the correlation

exponent versus embedding dimension plot saturates for (a) monthly, (b) seasonal and (c)
annual timescale.

Source: Prepared by the author

Figure 14 — Spatial distribution of the chosen dimension of streamflow for which the correlation
exponent versus embedding dimension plot saturates for (a) monthly and (b) seasonal
timescales.
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Source: Prepared by the author

4.4.2 Estimation of Lyapunov exponent

The Lyapunov exponent plots are exponential graphs that show the divergence of
the data over time. If the separation between two points grows exponentially, the plot will
appear as a straight line. However, sometimes two points move away from each other more
closely together. Thus, the plot will present a straight line with oscillations. Figure 15 illustrates

a rainfall (#10) and a streamflow (#6) station at monthly and seasonal timescales.

Figure 15 - Evolution of the logarithm of the mean distance S(v) as a function of the time step
v. The red dashed line is the regression line. Rainfall station (#10) (a) at monthly and (c)
seasonal timescales; and streamflow station (#6) (b) at monthly and (d) seasonal timescales.
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The largest Lyapunov exponent (LLE) was calculated only for stations that
presented a saturation point in the CD analysis. For monthly rainfall, positive values of LLE
ranged from 0.02 to 0.24, indicating a signature of chaos (Figure 16). At the seasonal timescale,
the LLE values were similar, ranging from 0.13 to 0.32, while at the annual timescale, they

increased, ranging from 0.06 to 0.5. The LLE for the monthly timescale is a bit smaller than the
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values found by Echi et al. (2013), who found a value of 0.0632 for the daily rainfall time series
in Nigeria. Fuwape et al. (2017) found LLE values ranging from -10 to 2 for daily rainfall over
Nigeria. Falayi et al. (2022) analyzed monthly rainfall data of West African stations and
observed positive LLE ranging from 0.13 to 0.36. The higher LLE values for rainfall were
concentrated in the northern part of the State (Figure 16), where the embedding dimensions
were smaller according to the CD method.

The LLE values for streamflow showed negative values for some stations (e.g.,
Station #5, #14, and #17 for the monthly timescale, and Station #5 at the seasonal timescale),
indicating periodic orbit (Figure 17). Also, the values of LLE show a wider range from -0.32 to
3.4 and -0.04 to 11 for monthly and seasonal streamflow, respectively. The higher LLE values
for streamflow were in the northwestern part of the State. Zhou et al. (2018) found an LLE of
4.142 for a monthly streamflow time series in the Jinsha River Basin, China. Mihailovi¢ et al.
(2019) found values that range from 0.018 to 0.39 for daily streamflow at the Brazos River in
Texas (USA). Larger values of LLE indicate stronger chaos and greater sensitivity to initial
conditions in a dynamical system. Notably, the monthly rainfall analysis shows similar LLE
values across the whole State, while streamflow showed higher LLE compared to rainfall.

Alfaro et al. (2018) stated that the inverse of the LLE can be used to predict the
boundaries of a chaotic time series. Based on this, an estimate of the forecast horizon for rainfall
stations is in the range of 4 to 76 months into the future, while for streamflow, it ranges from 1
to 10 months. Ogunjo et al. (2022) found predictability of 40—58 days into the future for daily
streamflow. Our results indicate that rainfall stations that show the presence of deterministic

chaos are more predictable for longer periods compared to the streamflow in the same region.
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Figure 16 - Spatial distribution of the largest Lyapunov exponent for the rainfall stations at (a)
monthly, (b) seasonal and (c) annual timescale.

Source: Prepared by the author

Figure 17 - Spatial distribution of the largest Lyapunov exponent for the streamflow stations at
(a) monthly and (b) seasonal timescale.

Source: Prepared by the author

4.4.3 ROA

The presence of chaos in rainfall and streamflow dynamics is illustrated in the RP
(Figure 18 and Figure 19). One advantage of using a recurrence plot (RP) is that it transforms
aphase space of dimension m into a binary 2-dimensional space, with a threshold that represents

the level of recurrence, making it easier to visualize any existing patterns. The figures illustrate
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that the recurrence points do not form a periodic pattern and are not homogeneously distributed.
The RPs of the stations across the State present different behaviors. For example, in Figure 18c,
blocks with white stripes between them can be observed. Figure 18a, which illustrates the time
series, shows a higher peak of rainfall in the period of the white stripes, indicating that the RP
can be an accurate method to detect a transition in the dynamic structure. Also, for all the
analyzed stations, the recurrence points are primarily concentrated in the low rainfall and
streamflow periods, as noted by Shu et al. (2021), which is indicative of lower system variability
and a persistent dynamic structure during dry spells.

In some of the other stations analyzed in this study, the same white ribbons as in
Station #2 can be seen for the same period, such as in Stations #1 and #3 around 1971 and 1983.
The cyclic pattern observed in Station #8 is also present in Stations #9, #10, #18, and #24. Other
stations (i.e., Stations #7, #14, #23, #26, and #31) display a homogeneous RP with numerous
single points and some short diagonal lines (compared to the length of the largest observed

interval), which indicates a developed chaotic state.

Figure 18 - Examples of time series and recurrence plot (RP) based on monthly rainfall time
series at selected stations (a) Time series of station #2 and (¢) its RP. (b) Time series of station
#6 and (d) its RP. (e) Time series of station #8 and (g) its RP. (f) Time series of station #15
and (h) its RP. (i) Time series of station #27 and (k) its RP. (j) Time series of station #28 and
(1) its RP.
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The RPs for streamflow time series mostly consist of several rectangular blocks

separated by horizontal and vertical white ribbons. It is noticeable that the distribution of these

rectangular blocks and the density of recurrence points within them change. For example,

Station #4 has only one such block from 2011, while Station #19 has a structure similar to that

in the same period. Other stations, such as Stations #5 and #14, show the presence of only one

block from 1968 and Station #16 from 1974. Some stations present multiple blocks from

different periods. In the streamflow series, it is possible to observe a common change in

dynamics between the analyzed stations. For example, Stations #6, #12, #18, #29, and #30 show
a shift between 2000/2001. Stations #19, #29, and #30 show a shift in 2005, and Stations #23,

#25, and #27 show a shift around 1981/1982.
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Figure 19 — Examples of time series and recurrence plot (RP) based on monthly streamflow
time series at selected stations (a) Time series of station #4 and (c) its RP. (b) Time series of
station #12 and (d) its RP. (¢) Time series of station #18 and (g) its RP. (f) Time series of station
#23 and (h) its RP. (i) Time series of station #25 and (k) its RP. (j) Time series of station #29

and (1) its RP.
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Climate, as discussed, is a main driver of the hydrological cycle, and indices such
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as the PDO and EI Niflo are known to influence rainfall patterns in the region (KAYANO et al.
2020). Numerous studies have explored the presence of chaos and nonlinearity in EI Nifio
dynamics (NEELIN et al., 1998; STONE et al., 1998; MAJUMDER & KANIJILAL, 2019;
OGUNJO & FUWAPE, 2020). These studies establish nonlinear structures and even
indications of chaoticity. Given the identification of a chaotic signal in El Nifio events, the RP
was applied to the monthly time series to investigate the potential influence of this index on
rainfall and streamflow patterns. The RP of El Nifio (Figure 20) displays white stripes around
1972, 1981, and 1997. These are consistent with the breakpoints observed in the rainfall time
series around 1971 and 1983 and in the streamflow around 1982. Rolim et al. (2021) explored
the influence of the Oceanic Nifio Index (ONI) in the same region using information theory
metrics. They found that during El Nifio years (e.g., 1963, 1965, 1982, 1987, 1991, 1992, 1997,
2002), rainfall is scarce, resulting in higher variability. As observed in the RPs, these years
showed changes in rainfall and streamflow patterns. These alterations in the time series provide
further evidence of the influence of climate indices in the region under study. The authors also
analyzed the PDO, a well-known index that affects rainfall and streamflow in the region. They
found that the PDO exhibits more recurrence points compared to the El Nifio 3.4 index.

However, both indices demonstrate similar transition periods (APPENDIX A).

Figure 20 - (a) El Nifio 3.4 and (b) its recurrence plot.
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In addition to visualizing rainfall and streamflow behavior using RPs, RQA is also
applied to describe the dynamics by quantifying the patterns in the RP’s structure. The irregular
and heterogeneous patterns in the RP suggest chaotic behavior, justifying its quantification.
Four parameters in the RQA (RR, DET, LMAX, ENT) were computed for the monthly rainfall

and streamflow time series that showed a saturation point in the CD method.

The first recurrence variable, RR, quantifies the percentage of recurrent points
within a specified radius, with values ranging from 0 to 1. For rainfall, the RR values range
from 0.003 to 0.06 (Table 3), showing that the recurrence matrix is sparse for rainfall, with
fewer recurrent points. This result is consistent with the findings of Santana et al. (2020a), who
also found low RR values for monthly rainfall in Pernambuco, a state also located in the NEB.
For streamflow, the values range from 0.01 to 0.77, with lower values located in the
southeastern and coastal parts of the State. The other areas show high recurrence, suggesting
that the system is revisiting many states over time.

The second recurrence variable, DET, measures the proportion of recurrent points
that form diagonal line structures reflecting the occurrence of regular patterns (predictability)
in a time series. Periodic signals result in very long diagonal lines, chaotic signals result in short

diagonal lines, and stochastic signals result in no diagonal lines at all. For the rainfall, the values
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of DET range from 0.23 to (.76, indicating that some stations have recurrent points in
deterministic structures. The stations with the highest DET (#23 and #31) are located in the
southeastern region of the State, while low DET values can be found in the north of the State.
Lower values suggest a more complex and less predictable system. Furthermore, 46% of the
rainfall stations had above-average DET and below-average RR, indicating a high degree of
complexity. For streamflow, the DET value range from 0.3 to 1 (Table 4). Santana et al. (2020b)
found high DET values (0.98 and 0.79 — values before and after the dam construction) for a
streamflow time series in the NEB. For the streamflow, only 16% of the stations had above-
average DET and below-average RR, with these stations located in the northwestern and
southeastern areas of the State.

The third recurrence variable, linemax (LMAX), is inversely proportional to the
LLE (ECKMANN et al., 1987). The shorter the LMAX, the more chaotic (less stable) the signal
is. Stations #5, #6, #15, #27, and #28 presented high values of LMAX, while the LMAX values
for stations #17, #21, and #31 equaled 0. For streamflow, only Stations #3, #5, #14, #15, #16,
#20, #22, #24, and #25 presented low values of LMAX, indicating a more chaotic behavior.
These stations are located mainly in the southeastern and coastal parts of the State. The fourth
recurrence variable is ENT, a measure of signal complexity. For the rainfall, the ENT ranges
from 0 to 0.64. Most of the State has low ENT values for rainfall, with high values concentrated
in the western part of the State, indicating higher complexity in this region. The coastal area of
the State showed low values of ENT, as also seen by Rolim et al. (2021). For the streamflow,
the ENT varies from O to 3.37. Stations #3, #15, #22, #24, and #26, located in the coastal and

southeastern regions of the State, have low ENT values.

Table 3 - Summary of RQA measures at different rainfall stations

Rainfall Station REC DET LMAX ENT TT
1 0,00 0,48 2,00 0,16 2,14
2 0,01 0,24 3,00 0,09 2,04
3 0,01 0,24 2,00 0,05 2,03
5 0,01 0,28 9,00 0,15 2,03
6 0,02 0,23 15,00 0,12 2,03
7
8
9

0,01 0,39 2,00 0,11 2,00
0,01 0,25 2,00 0,09 2,00
0,01 0,32 2,00 0,15 2,05

10 0,01 0,29 2,00 0,12 2,00
14 0,01 0,39 2,00 0,16 2,09
15 0,03 0,34 19,00 0,18 2,24

16 0,01 0,40 2,00 0,35 2,00




17
18
20
21
22
23
24
26
27
28
30
31

0,01
0,01
0,00
0,01
0,01
0,00
0,01
0,00
0,06
0,05
0,01
0,00

0,38
0,26
0,46
0,24
0,36
0,61
0,30
0,45
0,27
0,29
0,31
0,76

0,00
3,00
2,00
2,00
2,00
0,00
2,00
2,00
69,00
25,00
2,00
0,00

0,00
0,28
0,64
0,07
0,27
0,00
0,08
0,30
0,17
0,45
0,07
0,00

2,00
2,00
2,00
2,30
2,00
2,00
2,00
2,00
2,32
2,17
2,03
0,00

Source: Prepared by the author

Table 4 - Summary of RQA measures at different streamflow stations

Streamflow Station = REC DET LMAX ENT TT
3 0,03 1,00 0,00 0,00 0,00
4 0,05 0,88 25,00 1,25 7,67
5 0,02 0,53 2,00 0,41 2,25
6 0,27 0,94 48,00 3,37 32,51
9 0,71 0,94 69,00 2,64 17,27
10 0,27 0,53 22,00 0,38 3,24
11 0,77 0,99 101,00 2,21 17,28
12 0,50 0,92 62,00 1,95 9,13
13 0,18 0,53 28,00 0,84 3,44
14 0,03 0,50 3,00 0,31 2,36
15 0,02 1,00 0,00 0,00 0,00
16 0,08 0,49 4,00 0,38 2,45
17 0,67 0,93 155,00 1,61 16,93
18 0,21 0,45 27,00 0,23 3,01
19 0,06 0,73 18,00 0,52 3,74
20 0,02 0,53 2,00 0,64 2,27
21 0,10 0,65 5,00 0,76 3,03
22 0,06 0,39 3,00 0,14 2,13
23 0,17 0,57 39,00 1,00 5,26
24 0,01 0,46 0,00 0,00 2,07
25 0,05 0,30 4,00 0,55 2,69
26 0,03 0,49 7,00 0,14 2,16
27 0,19 0,74 18,00 1,01 3,95
29 0,19 0,64 57,00 0,48 4,18
30 0,17 0,64 24,00 0,81 4,50

Source: Prepared by the author
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4.5 Conclusion

Reliable modeling and forecasting of rainfall and streamflow are important for
water resource applications. However, the complex dynamics inherited in hydrological data
present a challenge for analysis. This study used nonlinear and chaos theory methods to explore
temporal and spatial variability of rainfall and streamflow dynamics throughout a Brazilian
state. Phase space reconstruction, correlation dimension, Lyapunov exponent, recurrence plot,
and recurrence quantification analysis were applied to detect the presence of deterministic chaos

in the data and provide an understanding of hydrological variable modeling.

With regard to time delay estimation, we found that the rainy season plays a crucial
role in the reconstruction of the attractor for rainfall. On the other hand, streamflow exhibits a
longer time delay. This extended time delay can be attributed to the iterations that this variable
maintains with other processes in the hydrological cycle and land use. Moreover, we found the
spatial variability of rainfall to be higher than that of streamflow, likely due to differences in

soil types and characteristics of intermittent rivers.

We also investigated the impact of timescale on the reconstruction of the phase
space for rainfall and streamflow. With an increase in timescale, the required dimension for
reconstruction decreased for most stations, using both the FNN and the CD methods. Moreover,
for streamflow, both methods showed higher embedding dimensions in the State’s western
region. This suggests that these systems require more variables to describe their behavior, thus

implying increased complexity.

The saturation of the correlation exponent versus the embedding dimension is
indicative of chaotic behavior. More than 70% of rainfall and 80% of streamflow stations
presented a saturation for the monthly timescale. However, as the timescales increased, the
detection of chaotic series decreased. Another metric to detect the presence of deterministic
chaos is the LLE, which also has implications for predictability. The rainfall data showed
positive LLE values, indicating the presence of deterministic chaos, while only a few
streamflow stations had negative values. Higher values of LLE were found in the northern area
for rainfall and in the northwestern region for streamflow. In addition, the streamflow data
presented higher LLE values, suggesting a stronger presence of chaos. This finding has
important implications for forecasting, as predictability is inversely related to the LLE. Thus,

rainfall stations exhibiting deterministic chaos are more predictable over longer periods
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compared to streamflow stations. It is worth mentioning that this low predictability of
streamflow in the region can be related to the length of the time series, which is a limitation in

this paper, and that only three time series could be analyzed due to missing values in the series.

Both variables presented a shift in their dynamics, as identified by the RPs, which
displayed common shift periods. Further, climate dynamics impacted the rainfall and
streamflow time series, with the Nifio index presenting shifts similar to those in the rainfall and
streamflow. Our results also highlighted the spatial heterogeneity of hydrological processes,
with stations in the northwestern part of the State showing high values of ENT, indicating
greater complexity in that region. Additionally, streamflow exhibited higher ENT values than
rainfall, indicating higher complexity, as observed in the coefficient of variation in the statistical

analysis.

The presence of chaos in rainfall and streamflow time series can be identified, even
with changes in the timescale. However, the complexity of these series changes both spatially
and temporally. Most methods indicated that the northwestern part of the State is more complex
for both rainfall and streamflow. Furthermore, this study revealed that, due to the chaotic nature
of the streamflow time series, long-term predictions may not be effective for water resources
management in the region. This finding has significant implications for the development of an
integrated water management plan for the region. While it may seem plausible to predict
streamflow for water resource management within the study area, such attempts are likely to be
highly flawed. However, rainfall results show that it might be possible to predict the chaotic
time series for up to six years. The results presented here have potential relevance to several
applications, as they provide insight into how the dynamics of the hydrological variables evolve
and space in the State. This study found that climate dynamics have a significant influence on
rainfall and streamflow time series. Therefore, future studies should consider a more in-depth

analysis of how specific climatic indices influence these hydrological variables.
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5 COMPLEXITY ANALYSIS OF RAINFALL AND STREAMFLOW APPLYING
MULTISCALE ENTROPY TO THE STATE OF CEARA, BRAZIL.

5.1 Introduction

The hydrological constraints in arid and semi-arid regions, such as increasing
temperatures, infrequent precipitation, and drought conditions, along with variations at the
inter-annual and higher scales, render these areas susceptible to the impacts of climate
variability (RAMARAO et al., 2019; SINGH & CHUDASAMA, 2021). Climate variability and
change can lead to alterations in the hydrological cycle, resulting in changes in the quantity and
distribution of hydrological variables, which in turn can negatively impact water availability
and water quality (JEMAI et al., 2017; ZHENG et al., 2017).

Ceara State is situated in the Northeastern region of Brazil (NEB), which is the
world's most populated semi-arid area. According to the IPCC (2014), the NEB is among the
planet's regions that are most susceptible to the impacts of climate change in the upcoming
century. Climate change and human activities are expected to result in significant temperature
increases and reduced rainfall in the NEB (WU et al., 2016; MARENGO et al., 2017; DE JONG
et al., 2018). The analysis of hydrological variability in drought-prone areas plays a crucial role
in water resource planning and management as emphasized by Cirilo et al. (2017). Hence, it is
imperative to conduct climate risk assessments in order to adapt to the increased risk of extreme
events. However, comprehending the spatiotemporal complexity of hydrological variables
remains a major challenge (MISHRA & SINGH, 2010; TONGAL & SIVAKUMAR, 2019;
GUNTU et al., 2020).

Understanding the complexity of hydrological variables, such as precipitation,
streamflow, and soil moisture can provide valuable information about the behavior of a
catchment and the processes driving water movement within it. Further, comprehension of these
complex hydrological variables can aid in the development of better water resource
management strategies. For example, it can help in predicting droughts, floods, and water
shortages, as well as improving water resource allocation. In the literature, several methods and
statistical analyses are used to assess the variability in a time series, such as variance, regression
analysis, nonparametric tests, diversity indices, and measures based on information theory
(ZHANG et al., 2019). Nonetheless, techniques like regression methods, mostly capture the
regularity of precipitation and may not accurately quantify the extent of irregular change. As a

result, these techniques are not well-suited to characterizing the complex, intrinsic fluctuations
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in precipitation.

In contrast, over the past few decades, innovative concepts from complex systems
science have been applied more frequently time series analysis, improving our understanding
of hydrological processes. These studies employ techniques such as fractal and multifractal
methods (TAN & GAN, 2017; ADARSH et al., 2020), chaos theory (SIVAKUMAR, 2009;
FUWAPE et al., 2017), and information measures (DA SILVA et al., 2016; TONGAL &
SIVAKUMAR, 2019; ROLIM et al., 2022), and complex networks (FANG et al., 2017;
BRAGA et al., 2016) to evaluate the nonlinearity and complexity of rainfall dynamics.

Among the information theory methods, entropy (SHANNON, 1948) has garnered
significant attention in recent years in the field of water resources studies (ZHANG et al. 2019).
Variations in entropy values reflect the amount of information transmitted or gained, enabling
insights into a given variable. Additionally, hydrological time series exhibit variability at
various temporal scales, and a thorough analysis requires a multiscale approach. Costa et al.
(2002) introduced Multiscale Sample Entropy (MSE) as an extension of Sample entropy
(RICHMAN & MOORMAN, 2000), which is calculated at multiple time scales and can reveal
the structural complexity of the hydrological processes. In hydrology, MSE has been utilized to
analyze streamflow and has been valuable in exploring alterations related to human activities
(LT & ZHANG, 2008; ZHANG et al., 2012; BARRETO et al., 2020). However, less is known
about the multiscale complexity of rainfall processes (DA SILVA et al., 2021).

The nonlinear and nonstationary nature of the climate system highlights the
importance of exploring its inherent complexity in order to understand its uncertainty and
variability. This information can also be useful in developing strategies for adaptation and
mitigation measures aimed at enhancing the resilience of water systems. The study was
conducted in the State of Ceara, located in the Northeast of Brazil, due to its history of severe
and sometimes multi-year droughts. These long-term events pose challenges and weaknesses
in the water resource system, emphasizing the significance of investigating the uncertainties in
hydrological variables for improving water resource planning. This study aims to make a
contribution in this area by showing that an entropy analysis can provide a new perspective on
this phenomenon. The main objective of this study is to assess the spatiotemporal rainfall and
streamflow variability using a multiscale approach and analyzed the relationship between these
two processes. Additionally, a 10-years moving-window was applied to time series and the
SampEn was calculated in order to assess the change in complexity for these hydrological

variables over the years.
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5.2 Study area and hydrological data

Located in the Northeast region of Brazil (NEB), Ceara (Figure 21) is
predominantly semi-arid, with an economy heavily reliant on agricultural production and
rainfall. The Intertropical Convergence Zone (ITCZ) controls the rainfall regime, with the
majority of rainfall occurring from February to May, accounting for about 70% of the annual
total. Although the mean annual rainfall is approximately 810 mm, values are higher in the
coastal area and lower in the central region where the semi-arid landscape is more prominent
(COSTA et al., 2021). The shallow soils with crystalline basement prevalent in most parts of
the state lead to low base flows, resulting in predominantly naturally ephemeral or intermittent

rivers in the area.

Figure 21 - Location of the meteorological stations

Legend

4+ Streamflow stations
¢ Rainfall stations
[ Ceara State

Source: Prepared by the author

The spatiotemporal complexity analysis utilized rainfall and streamflow data
sourced from the Brazilian National Water Agency (ANA). The monthly rainfall data spans
from January 1962 to December 2006. Table 5 describes the statistical characteristics of the
rainfall timeseries. The monthly streamflow data, on the other hand, has varying start and end
dates depending on the location, as detailed in Table 6. For this study, 31 rain gauges and 30

streamflow gauges were chosen, all situated in the State of Ceard, and depicted in Figure 21.



Table 5 - Geophysical and statistical information for rainfall time series (1962-2009) of 31
meteorological stations
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Minimum Maximum Mean

Station ) . ) Annual Annual Annual
Number StationName  Latitude  Longitude  p o el Rainfall  Rainfall

(mm) (mm) (mm)
1 Maracanau  -3.90 -38.63 595.6 2778.5 1333.32
2 Sao Gongalo 5 50 -38.96 434.1 2200.3 1076.51
do Amarante
3 Caucaia -3.75 -38.68 675.5 2418.6 1340.72
4 Maranguape  -3.90 -38.66 465.2 2311.7 1254.94
5 Uruburetama -3.61 -39.50 419 2061.8 1173.36
6 Martinopole ~ -3.23 -40.68 399.8 2186.7 1104.34
7 Carire -3.95 -40.46 260 2081 951.93
8 Mucambo -3.90 -40.76 476.6 2120.8 1040.49
9 Tiangué -3.73 -40.98 469.5 2409.3 1270.84
10 Ubajara -3.85 -40.91 616 2864.5 1528.52
11 Aracati -4.56 -37.76 220 2654.1 991.02
12 Russas -4.93 -37.96 173.4 1929.1 771.42
13 Ttapiuna -4.58 -38.95 284.2 1573 783.11
14 Mulungu -4.30 -38.98 479.1 2149.9 1187.90
15 Aratuba -4.41 -39.05 416.3 3238.2 1449.65
16 Croata -4.41 -40.90 154 1116.8 579.52
17 Catunda -4.66 -40.20 27.1 1987.7 720.25
18 Ipueiras -4.53 -40.71 280.5 2004.2 972.67
19 Novarussas  -4.71 -40.56 351 1703.4 860.34
20 Alto santo -5.51 -38.25 116.7 1823.9 775.31
21 SaoJododo ;g -38.26 189.3 1852.5 765.93
Jaguaribe
22 Solonépole  -5.70 -39.01 237.2 1375.8 782.61
23 Umari -6.63 -38.70 298 1702.6 792.64
24 Aurora -6.95 -38.96 517.8 1951 934.20
25 Pereiro -6.05 -38.46 294.6 2065.7 1024.07
26 Acopiara -6.11 -39.45 366 1713 791.03
27 Parambu -6.21 -40.70 229.4 2237.1 697.91
28 Missdo Velha  -7.25 -39.13 594 1885.6 1006.12
29 Poranga -4.73 -40.91 144 1262.8 657.56
30 Jaguaruana ~ -4.83 -37.78 118 1887.7 824.63
31 Santanado g 3973 304.4 16121 930.15
Cariri

Source: Prepared by the author



Table 6 - Geophysical and statistical information for streamflow time series of 30
meteorological stations
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. Start/End date Minimum Maximum Mean
Station Station Name Latitude  Longitude of the time Annual Annual Annual
Number series Streamflow  Streamflow  Streamflow

(m?/s) (m?/s) (m?/s)

1 Croaté -4.42 -40.91 01'({12'_12%%86/ 0l- 0.47 7.79 3.47
2 Saudoso a6 iy OTOLIEOL g 9.91 3.64
3 Chaval Retito  -3.08 -41.26 01'212'_22%%2/ 01- 133 7.94 4.79
4 Pesqueiro -3.00 -40.57 01'212'_22%215/ 01- 0.24 19.33 4.93
5 C?;;’:S; -4.38 -40.55 01'(;12'_1126732/ 01- 0.14 23.35 8.02
6 V;f)fs‘odo R v 26.77 7.96
7 Trapia -4.20 -40.32 01'(112'_12%81%/ ol- 0.06 37.90 6.56
8 Groairas 3.91 -40.38 01'(;12'_12%911)/ ol- 0.35 33.50 4.48
9 Sobral -3.69 -40.34 01'(;12'_22%0167/ 01- 1.99 144.15 21.70
10 Fazevni‘ii‘abela 3.82 -40.19 01'(;12'_12%%53/ ol- 0.00 137 0.23
11 SﬁOCLu‘ﬁlZ o 54 -39.08 01'0112'_11%;1/ ol- 2.16 144.86 19.94
12 Barra Nova -4.19 -38.78 01'212'_12%9197/ 01- 0.16 4.43 1.43
13 CaioPrado  -4.66 3894  OUOLISIOL g 2113 4.97
14 Chorozinho 430 -3g4g  OMOVIIIOOL g0 73.65 12.68
15 Itapeim -4.35 -38.12 01'212'_22%%2/ 01- 1.45 8.47 4.24
16 Cristais -4.50 -38.36 01"112'_1199;(1/ ol- 0.19 39.87 6.12
17 Ameiroz -6.32 -40.16 01'(;12'_12%263/ ol- 0.00 77.06 8.70
18 Malhada 6.65 -39.96 01'({12:12%%%/ ol- 0.00 10.43 1.62
19 Sitio Patos -6.52 -39.64 01'0112'_22%?(;/ ol- 0.03 45.07 7.40
20 Sitio Conceiglo  -6.57 -39.50 01'0112:11992%/ ol- 0.64 19.12 5.37
21 Si]t)i;’nft);’sgo -6.56 -39.51 01'(;12'_12909111/ 01- 0.00 16.35 3.99
2 Carits 653 sos0  OMOVIEROL g 45.44 8.45
23 Iguatu 6.37 3909 OLOLIOTHOL- 0.06 173.96 33.93
24 Sitio lapinha ~ -7.22 39.14  OTOLDSSOL- 0.50 16.08 4.48
25 Podimirim -7.30 3808 O1OL1973/01- 0.06 23.09 3.52

12-2017
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01-01-2001/01-

26 SitosantaCruz  -7.01  -38.96 P 0.85 24.04 6.70
27 ﬁ;‘ggﬁ;ﬂa 615 gy OMOVIOSIOL g 132,65 26.27
28 1o 641 aggy OMOUIWOL 6 148.53 25.91
29 Jaguaribe s90 gy OTOUISTOL 566 203.14 41.70
30 Peixegordo  -523 3820  OOUTMOL gy 22258 40.97
Source: Prepared by the author
5.3 Methods

5.3.1 Sample Entropy

Sample entropy (SampEn) is a statistical measure that quantifies the complexity or
randomness of a time series signal (RICHMAN & MOORMAN, 2000). It is often used in
biomedical signal processing and analysis to evaluate the regularity and unpredictability of
physiological signals such as heart rate variability or EEG signals. The SampEn is a
modification of the approximate entropy (ApEn) method (PINCUS, 1991) by excluding the
segment self-matches. The SampEn (m, r, N) is calculated as the negative natural logarithm of
the conditional probability that two sequences of a given length remain similar at m as the
length of the sequence increases m+1, assuming that self-matches are excluded from the
probability calculation. Lower values of sample entropy indicate a higher degree of regularity
and predictable behavior, while higher values suggest more complex and random behavior
(BARRETO et al., 2020). SampEn has been largely applied in many fields, including hydrology
(CHOU et al., 2014; HU et al., 2019; XAVIER et al., 2019; ZHOU & LEI, 2020).

The algorithm for calculating sample entropy involves the following steps
(RICHMAN & MOORMAN, 2000):

1. Given a time series of length N, u(i),i = 1, ... N, a m-dimensional set of
vectors X, (i) = {u(i +j):j=0,..,m— 1}, starting at position i =
1,..N—-m+1;

2. The distance between two vectors x,,(i) and x,,(k) is calculated as the
maximum difference of their corresponding scalar components:
d[xy, (D), x (k)] = max{lu(i +j) — (k+ ))|:k=0,..,m—1}

3. Next, count the number of B; of vectors x,,(k), such as the calculated
distance is less than or equal to r, which is the tolerance level of accepting

matches, k =1,..N —m, and k=i, to exclude self-matches;
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. N-m om
Bi and B™(r) = Ziz BT

4. One then defines B™(r) lrr— N-m

, Where

B™(r) is the probability that two vectors will match for m points;
5. Repeat steps 1 to 4 for m+ 1, m+ 2, and so on, until m = N — 1, to

A ()

find A7(r) = —2— and A™(r) =

pr— , where A; is the number
of vector x,,41(k), which are within r of x,,,(i), excluding self-
matches, and A™(r) is the probability that two vector will match for m
points;

6. The sample entropy is defined as the negative natural logarithm of the
average conditional probability that two sequences of a given length remain

similar as the length of the sequence increases, as describe in Equation 11.

1 1 AT
Sg(m,r) = 1\1}1_r)rgo In Bm(r)] (Eq. 11)
And can be estimated by the statistics in Equation 12.
Sp(m, 1) = —In“ (Eq. 12)
BN B™(r) ‘

5.3.2 Multiscale Entropy

Multiscale entropy (MSE) is a statistical measure that extends the concept of
SampEn to assess the complexity or randomness of a time series signal at multiple time scales
(COSTA et al., 2002). Traditional entropy-based measures (e.g., Shannon entropy (SHANNON,
1948), Kolmogorov entropy (GRASSBERGER & PROCACCIA, 1983b), approximate entropy
(PINCUS, 1991) tend to grow monotonically with the degree of randomness fail to quantify the
complexity as a meaningful structural richness (BARRETO et al., 2020).

Costa et al. (2002) introduced the concept of multiscale sample entropy (MSE) by

calculating sample entropy for consecutive coarse-grained time series y.(k) =

%Zfzf(k_l)ﬁlu(i) where k =1,..N/t, u(i), i =1,..,N represents the initial time series
and 7 is a scale factor. MSE is obtained by plotting SampEn values for each scale factor ,
and is more suitable to adequately describe complexity that should find both fully random

(white noise) and completely regular (e.g., periodic) series to be less complex than a series
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stemming from a structurally complex process, such as 1/f noise (COSTA et al., 2002). MSE
method was successfully used in different fields, including hydrology (LI & ZHANG, 2008;
ZHANG et al., 2012; CHOU, 2012; BARRETO et al., 2020; DA SILVA et al., 2021).

The MSE provides a measure of the signal's complexity at different time scales,
with higher values indicating higher complexity and randomness, and lower values indicating
more regular and predictable behavior. The MSE can also be used to identify changes in the
signal's complexity at different time scales, which may be indicative of changes in the

underlying physical processes.

5.3.3 Trend analysis for complexity change

To analyze the change in complexity of rainfall and streamflow, we employed the
moving window method. As suggested by Huang et al. (2011), the hydrological regime is more
likely to change gradually than abruptly due to human activities and climate change, which
makes the moving window a more effective approach to analyzing time series. We selected a
moving window of 10 years to divide the original time series of rainfall and streamflow into
subseries, for which we calculated the sample entropy separately to form a SampEn time series.
Finally, we used the Mann-Kendall test to analyze the trend in the SampEn series, which could

indicate a change in the complexity trend of rainfall or streamflow.

The Mann-Kendall (Mann 1945) is a nonparametric test widely used in
environmental and hydrological time series. In this study, the test is applied to detect trends in
the SampEn calculated from the data. The null hypothesis employed in the test assumes that the
data came from a population with independent and identically distributed realizations. The test’s
null hypothesis was rejected if the p-value was less than the significance level of 0.05, detecting
either increasing or decreasing monotonic trends. Sen’s slope estimator was used to quantify

the magnitude of the trend according to Sen’s method (Sen 1968).

5.3.4 Hurst exponent

To evaluate the performance of information theory metrics in comparison to other
analysis techniques, we computed the Hurst exponent for each precipitation station. The Hurst

exponent serves as a measure of process persistence, capturing the degree of data clustering and
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commonly referred to as a measure of system 'memory' or persistence (KOUTSOYTANNIS,
2002).

The Hurst exponent was estimated through the analysis of rescaled range (R/S).
Among the methods applied to calculate the Hurst exponent, this is one of the most popular in
many fields (KARMAKAR et al., 2019). This method involves dividing the time series into
various subseries and calculating the mean and standard deviation for each subseries. Then, a
demeaned series is calculated by subtracting the corresponding sub-means from the original
time series. A cumulative series is calculated, and the widest range is generated (difference
between maximum and minimum values). The range is then rescaled by dividing it by the
standard deviation of the original time series. By plotting the rescaled range against the
corresponding sub-series, the Hurst exponent can be determined as the slope of the resulting
log-log plot. A value closer to 0.5 indicates a random or uncorrelated time series, while values
greater than 0.5 indicate long-term memory or persistence, and values less than 0.5 suggest anti-
persistence or anti-correlation. In this study, the Hurst exponent was calculated using the R/S

analysis technique to gain insights into the persistence characteristics of the analyzed time series.

5.4 Results and Discussion

Figures 22 and 23 display the results of MSE values for both the original time series
and anomalies at the 31 analyzed rainfall stations, with T ranging from 1 to 30 months. Figures
24 and 25 show the same for the 30 analyzed streamflow stations. A homogeneous pattern is
observed in the rainfall data, with well-defined intra-annual and inter-annual variability for
most stations. The original series exhibit lower entropy values, suggesting greater regularity
and predictability compared to the anomalous series. However, this difference becomes less
pronounced for certain periods, particularly for the Maracanau and Aratuba stations at © values
of 12 and 24. It is observed that some stations show inter-annual variability despite the
calculation of anomalies, which is supposed to remove seasonality, revealing lower entropy
values for 7 values of 12 and 24. In addition to these two scales, a decrease in entropy is
consistently observed at T = 6 in many stations. This suggests that these regions exhibit a form
of synchronization in their rainfall patterns, showing patterns of intra-variability in their time
series when the average monthly rainfall amount over a 6-month period is considered. The same
behavior was observed in the rainfall patterns in Pernambuco State, also located in the NEB,

by Da Silva (2021).



Figure 22 - MSE for monthly rainfall and monthly anomalies for stations from 1 to 16.
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Figure 23 - MSE for monthly rainfall and monthly anomalies for stations from 17 to 31.
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Unlike the rainfall results, which show a cyclic pattern, the MSE values for
streamflow results showed an increasing slope for most stations. This behavior indicates that
for smaller time scales, the streamflow data shows greater regularity or predictability in the
analyzed data, while for larger timescales, the series shows patterns of variation that are less
predictable or more random. For most stations at 7=6, the streamflow time series showed a
decrease in entropy, but some stations only showed that decrease at 7=12, such as Varzea do

Grosso station. In addition, due to the length of some stations, the MSE was not calculated for

longer timescales.
When comparing the results of the streamflow with the calculated anomaly, the

original series showed lower entropy values. For most stations, there was a considerable

difference between these two series. However, this difference is less pronounced in Lavras da

Mangabeira, Sitio Patos, and Pesqueiro Stations.
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Figure 24 - MSE for monthly streamflow and monthly anomalies for stations from 1 to 15
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Figure 25 - MSE for monthly streamflow and monthly anomalies for stations from 16 to 30.
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The MSE values for the rainfall and streamflow series of the analyzed stations
across the state of Ceara were obtained, and their spatial distribution is displayed in Figure 26
and Figure 27, respectively. These figures reveal more detailed spatial patterns for each
temporal scale. In particular, for the rainfall stations, lower entropy values are observed for 7 =
1 and 7 = 12, and the spatial distribution reflects the behavior seen in Figures 22 and 23. On
the other hand, the streamflow time series displays lower entropy values compared to the

rainfall series. Additionally, the stations located in the northwestern and southeastern regions

of Ceara exhibit higher entropy values in the streamflow data.
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Figure 26 - Spatial distribution of MSE from t = 1 to T = 12 months over the state of Ceara for
rainfall original series

T= T=2 1=3
-3 -3 -3
-4 4 -4
5 5 -5
6 6 6
7 7 7
-8 -8 -8
41 -40 -39 -38 41 -40 -39 -38 41 -40 -39 -38
=4 T=95 =06
-3 -3 -3
4 4 4
5 5 5
-6 6 -6
7 7 7
-8 -8 -8 E
-41 -40 -39 -38 -41 -40 -39 -38 -41 -40 -39 -38
1.5
=7 =8 =9 1.0
3 3 3 0.5
4 4 4
5 5 5
-6 6 6
7 7 7
-8 -8 -8
-41 -40 -39 -38 -41 -40 -39 -38 -41 -40 -39 -38
=10
-3
4
5
6
7
-8
-41 -40 -39 -38 -41 -40 -39 -38 -41 -40 -39 -38

Source: Prepared by the author



81

Figure 27 - Spatial distribution of MSE from t = 1 to T = 12 months over the state of Ceara for
streamflow original series
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To evaluate changes in the complexity of rainfall and streamflow time series, we
applied a 10-year moving window to the rainfall time series and calculated SampEn for each
sub-series. We then applied the Mann-Kendall test to the SampEn time series and present the
trend analysis results in Tables 7 and 8. Due to the length of the streamflow time series, we only
analyzed time series that had more than 10 sub-series, which totaled 14 stations. Of the 31
rainfall stations analyzed, we found no increase in flow complexity. However, 15 stations
showed a decrease in rainfall complexity. The majority of stations that showed a decrease in
rainfall complexity are located in the coastal region of Ceard State. Rolim et al. (2022) also
applied a trend test to evaluate a standardized entropy measure of variability of rainy days
within a given year and found a positive trend in five stations. Comparing both results, the
rainfall in the region, which is concentrated in a few months of the year, tends to increase.
However, for larger timescales the complexity is actually decreasing. When analyzing changes
in streamflow complexity, we found that seven stations showed a significant trend, with five
showing a decreasing trend, mainly located in the northern region of the State, consistent with
the rainfall behavior in that region. The two stations that showed positive trends are located in

the southeastern part of the State.

Table 7 - Trend of rainfall complexity change of the analyzed rainfall stations.

Station Z value p-value Sen's Trend
slope
Maracanau -6.048  0.000 -0.008 {
Sado Gongalo do Amarante  -4.127  0.000  -0.003 N
Caucaia -2.956  0.003  -0.003 l
Maranguape -2.166  0.030  -0.002 d
Uruburetama -3.827  0.000 -0.004 N
Martinopole -4.100  0.000  -0.004 d
Carire 0967 0334  0.001 -
Mucambo -1.430  0.153  -0.002 -
Tiangua 1.594  0.111 0.004 -
Ubajara -0.885  0.376  -0.001 -
Aracati -4.563  0.000 -0.006 d
Russas 0.940 0.347 0.002 -
Itapiuna -2.683  0.007  -0.003 l
Mulungu -6.757  0.000  -0.022 d
Aratuba -1.131  0.258  -0.003 -
Croata -1.403  0.161  -0.001 -
Catunda -3.582 0.000  -0.004 \2

Ipueiras -1.103  0.270  -0.001
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Nova Russas -1.784  0.074  -0.003 -
Alto Santo -3.473  0.001  -0.004 J
Sao Jodao do Jaguaribe -1.076 ~ 0.282  -0.001 -
Solondpole -0.531  0.595  -0.001 -
Umari -4.536  0.000 -0.011 J
Aurora 0.586 0.558 0.001 -
Pereiro -1.757  0.079  -0.004 -
Acopiara -5.625  0.000  -0.008 J
Parambu -2.820  0.005 -0.006 N
Missao Velha 0.994 0.320 0.002 -
Poranga -3.092  0.002  -0.005 N
Jaguaruana -0.123  0.902 0.000 -
Santana do Cariri -1.621 0.105  -0.001 -

Source: Prepared by the author

Table 8 - Trend of streamflow complexity change of the selected streamflow stations.

Station Z value p-value Sen'sslope  Trend
Vérzea do Grosso -2.862  0.004 -0.009 N
Trapia 1.095 0.274 0.002 -
Groairas -2.647  0.008 -0.005 N
Fazenda Bela Vista ~ -3.220  0.001 -0.007 {
Barra Nova -0.716  0.474 -0.005 -
Caio Prado 0.617 0.537 0.002 -
Arneiroz -1.929  0.054 -0.002 -
Malhada -0.657  0.511 -0.002 -
Sitio Po¢o Dantas 3.223 0.001 0.013 T
Iguatu 1.700 0.089 0.005 -
Sitio lapinha -3.722  0.000 -0.014 J
Podimirim 2275 0.023 0.002 T
Ico -1.690  0.091 -0.001 —
Jaguaribe -2.651  0.008 -0.004 J

Source: Prepared by the author

For comparison purposes, the Hurst exponent was calculated for rainfall and
streamflow stations, and the results are presented in Table 9. Among the rainfall stations, the
Aratuba station exhibited the highest Hurst exponent with a value of 0.77, implying a long-term
memory of the system. This suggests that the current condition of the system will influence its
subsequent state (Giri & Devercelli, 2023). A Hurst exponent greater than 0.5 signifies a higher
level of complexity and long-term memory in the series. It implies that past patterns or trends

persist into the future, resulting in a more intricate, structured, and complex behavior.
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Conversely, Stations Carire e Santana do Cariri displayed low Hurst exponent
values, indicating anti-persistence in the time series. This suggests reduced complexity and
variability, with extreme events or high values less likely to persist over time. The series reverts
to the mean more quickly, and the occurrence of high or low values becomes less predictable
or persistent. Approximately 70% of the stations exhibited a Hurst exponent close to 0.5
(considering a 10% margin for more or less), indicating a state of randomness or uncorrelated
behavior in the time series. This kind of time series is tough to predict, and hence it is consistent
with the random behavior.

In the streamflow analysis, 44% of the Stations showed a Hurst exponent around
0.5, with the Vazea do Grosso station having an exact value of 0.5. Meanwhile, 47% of the
streamflow stations, showed a higher Hurst exponent for streamflow, with Station Sitio
Concei¢do which has a Hurst value of 1. In the MSE analysis, streamflow demonstrated lower
entropy values compared to rainfall, indicating greater regularity or predictability, despite
several stations having high Hurst values, indicating long-term persistence. This persistence
allows for the identification of patterns or dependencies that can be used to make predictions.
However, it's important to note that the relationship between the Hurst exponent and
predictability is not linear or absolute. Other factors, such as the specific characteristics of the
time series, the presence of external factors or trends, and the quality of the data, can also

influence the predictability.

Table 9 - Hurst exponent for analyzed rainfall and streamflow stations.

Rainfall Station H Rainfall Station H
Maracanau 0.58 Catunda 0.47
Sao Gongalo do 0.60 Tpuciras 0.58
Amarante
Caucaia 0.50 Nova Russas 0.48
Maranguape 0.54 Alto Santo 0.41
Uruburetama 0.52 530 Jodo do 0.53
Jaguaribe
Martinopole 0.61 Solonopole 0.46
Carire 0.30 Umari 0.37
Mucambo 0.53 Aurora 0.35
Tiangua 0.45 Pereiro 0.47
Ubajara 0.54 Acopiara 0.43
Aracati 0.62 Parambu 0.57
Russas 0.51 Missao Velha 0.34
Itapiuna 0.50 Poranga 0.67
Mulungu 0.61 Jaguaruana 0.57
Aratuba 0.77 Santana do Cariri 0.31
Croata 0.46
Streamflow Station H Streamflow Station H
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Croata 0.63 Cristais 0.59
Saudoso 0.85 Arneiroz 0.56
Chaval Retiro 0.56 Malhada 0.56
Pesqueiro 0.57 Sitio Patos 0.61
Fazenda Cajazeiras 0.56 Sitio Conceicao 1
Vérzea do grosso 0.50 Sitio Pogo Dantas 0.58
Trapiad 0.38 Caritis 0.83
Groairas 0.63 Iguatu 0.79
Sobral 0.57 Sitio lapinha 0.69
Fazenda bela Vista 0.76 Podimirim 0.55
Sao Luiz do Curu 0.59 Sitio santa Cruz 0.40
Barra Nova 0.72 Lavras da 0.80
Mangabeira
Caio Prado 0.81 Ico 0.67
Chorozinho 0.87 Jaguaribe 0.64
Itapeim 0.54 Peixe gordo 0.56

Source: Prepared by the author

5.5 Conclusion

The analysis of rainfall and streamflow data across various stations in Ceara, Brazil,
revealed interesting patterns and insights into the complexity and predictability of these
hydrometeorological variables. The main objective of this study is to investigate the
spatiotemporal variability of rainfall and streamflow, using a multiscale entropy approach.
Furthermore, a 10-year moving-window analysis was applied to the time series data of rainfall
and streamflow to calculate SampEn and investigate changes in the complexity of these
hydrometeorological variables over time.

We calculated MSE values for each rainfall and streamflow series across 30
temporal scales ranging from 1 to 30 months, for both the original series and their anomalies.
The analysis of the original rainfall series from T =1 to t = 12 showed homogeneity for each
temporal scale, with lower values at T = 1, T = 6, and t = 12, revealing that these time scales
exhibited the greatest regularity and predictability of rainfall dynamics. This is a reflection of
the rainfall variability in the region, with well-defined dry and wet seasons, and interannual
seasonality, respectively. This effect was less pronounced for rainfall anomalies where
seasonality is removed. For the intra-annual temporal scales of the station, the entropy values
of the anomaly series were lower for T =6, which can be attributed to the duration of rainfall
seasons.

The streamflow analysis also showed a well-defined intra-variability for T = 6 for

most stations. Comparing the MSE values for rainfall and streamflow, the streamflow showed
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lower entropy values, indicating greater regularity or predictability in the time series data, and
suggesting that the data is less complex or less variable over time. For comparison purposes,
the Hurst exponent was calculated and showed long-term persistence for many stations. The
analysis demonstrated spatial and temporal patterns of complexity. The results contribute to a
better understanding of the behavior of rainfall and streamflow in the region and provide
insights for water resource management and planning.

In addition, the trend of the hydrometeorological variables' complexity was
analyzed. The rainfall data showed a decrease in rainfall complexity for half of the stations in
the State. In contrast, the streamflow data had two stations in the southeastern region of the
state that showed an increase in entropy, revealing an increase in the complexity of this time
series.

Overall, the study's findings contribute to our understanding of rainfall and
streamflow behaviors in this region, elucidating their interactions and evolution over time,
which could have significant implications for water resource management, land use planning,
and climate change adaptation. Future research should further explore the implications of these
complexities and the mechanisms behind these observed patterns, as well as extend the
multiscale entropy approach to other hydroclimatic variables for a more comprehensive

understanding of the hydrometeorological dynamics.
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6 PHASE-SPACE RECONSTRUCTION WITH MACHINE LEARNING METHODS:
APPLICATION OF RAINFALL FORECASTING TO THE STATE OF CEARA,
BRAZIL.

6.1 Introduction

Water resources management and planning issues, such as flow forecasting to
support reservoir operation, flood mitigation, and spillway design studies, require accurate
modeling and prediction of hydrological variables to be resolved. However, this modeling
process remains a significant challenge due to the extremely complex and highly nonlinear
characteristics of hydrological variables. Additionally, anthropogenic and climate change
impacts further complicate the prediction process, particularly in the medium- and long-term
(DWARAKISH & GANASRI, 2015; GU et al., 2015; ZHAO et al., 2017).

Rainfall dynamics have long been an area of interest for hydrologists. In the past,
stochastic models were commonly applied to hydrological variables (SIVAKUMAR et al., 2001;
SIVAKUMAR, 2009) due to limitations in data availability and computational power. Although
linear approaches are still popular, advancements in computational power and data collection
have enabled the use of nonlinear approaches, such as artificial neural networks
(KARUNASINGHE et al., 2006), data-driven models (FENG et al., 2020), and deterministic
chaos theory (SIVAKUMAR, 2016). In recent years, data-based techniques have become
increasingly popular in water resources management, particularly due to a lack of physical
information on the watershed. These methods have shown promising results in the modeling
processes (MESHRAM et al., 2020).

Chaotic systems are nonlinear dynamics that are sensitive to small changes in initial
conditions. Moreover, chaotic systems have a symmetric property that plays a crucial role in
producing their chaotic behavior (RAMADEVI & BINGI, 2022). This symmetry can be
observed through phase-space reconstruction, which reveals dynamic information hidden in
chaotic time series. Consequently, chaotic data behaves differently than stochastic data and
requires different approaches during the modeling process (BOARETTO et al., 2021). Given
these characteristics, in recent decades, many researchers have attempted to predict the future
evolution of chaotic systems using a wide range of models. Although traditional prediction
methods have not produced satisfactory results, advanced techniques using machine learning-
based approaches have been proposed recently (RAMADEVI & BINGI, 2022). One of the main

challenges in understanding and predicting chaotic systems is the high dimensionality and
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chaotic behavior of hydrological systems. Nevertheless, recent advances in computing power,
algorithmic innovations, and data availability have led to the convergence of different
approaches that can address this issue (VLACHAS et al., 2018).

The advancement of machine learning has allowed for the development of new
algorithms and strategies for identifying, controlling, and analyzing complex systems, resulting
in an increased use of machine learning across various fields (TANG et al., 2020). One of the
major advantages of machine techniques is that they do not require prior knowledge of the
relationship between input and output variables. In recent decades, there have been many
attempts to predict the future evolution of chaotic systems, and studies that apply machine
learning techniques in the field of time series analysis and prediction (RAMADEVI & BINGI,
2022). Popular models include support vector machines (SVMs), but the most commonly used
architecture is artificial neural networks (ANNSs). Research in complex systems and machine
learning has a strong relationship, providing a foundation for cross-disciplinary interactions.

Among the studies applied to hydrological variables, a Radial Basis Function
Neural Network (RBFNN) model was developed to estimate the nonlinear hydrological time
series of the Mekong River in Thailand and Laos, the Chao Phraya River in Thailand, and sea-
surface temperature anomaly data (JAYAWARDENA et al., 2006). Ding and Ding (2009)
developed an adaptive fuzzy inference-based neural network model was developed to predict
medium- and long-term hydrological residual time series, using data collected from the Guantai
hydrological station in the Zhang River, China. Baydaroglu and Kocak (2014) applied Support
Vector Regression (SVR) with Radial Basis Function (RBF) and phase-space reconstruction to
predict daily evaporation amounts. Ouyang et al. (2016) used ensemble empirical mode
decomposition (EEMD) and the phase-space reconstruction method to design input vectors for
the SVR forecasting model, which was applied to the monthly rainfall at a weather station in
Changchun, China. Liang et al. (2019) applied a statistical and chaotic nonlinear dynamic model
to forecast stream water temperature from solar radiation and air temperature data in the Lake
Tahoe basin, California and Nevada, USA.

The selection of appropriate inputs is a crucial stage in rainfall forecasting,
especially when using machine learning methods. The Phase-Space Reconstruction (PSR)
approach can reveal unseen information in historical data. This study explores the integration
of machine learning models with the PSR approach for rainfall pattern forecasting in Ceara,
Brazil. To the authors' knowledge, there has been no documented research comparing machine
learning models integrated with the PSR approach for rainfall pattern forecasting in Ceara or

even in Brazil. Forecasting chaotic dynamics one- or a few-time steps ahead is often easy, as
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demonstrated by the high performances obtained on many systems. However, the situation
becomes more complex when considering mid- to long-term horizons, as small errors intrinsic
to the chaotic nature of the data can expand. Even when the data is generated by a known chaotic
system, small initialization or numerical errors can be amplified, leading to predictions that land
on a random point on the system's attractor. Hence, this study aims to analyze the effect of these
forecasts on the performance of the models. The main objective of this paper is to investigate
the ability of multiple models such as Local Approximation Prediction (LAP), SVM, Decision
Tree (DT), Random Forests (RF) and Long Short-Term Memory (LSTM) Artificial Neural
Network for forecasting monthly rainfall data belong to 20 stations in the Ceara State over the

period of 1962 to 2006.

6.2 Study area and hydrological data

Brazil is a country with high variability in rainfall due to its vast territory and
diverse climates. The northeastern region, where Ceara is located, is known for its semi-arid
climate with low rainfall and high evaporation rates. The rainy season in this region typically
occurs from February to May, accounting for about 70% of the annual rainfall. The average
annual rainfall is around 810 mm, with higher values in the coastal area and lower values in the
central portion, where the semi-arid landscape is more pronounced (COSTA et al., 2021). The
rainfall data used in this study is from the Brazilian National Water Agency (ANA). The
monthly rainfall series ranges from January 1962 to December 2006. This study considered 20

rain gauges located in the State of Ceard shown in Figure 28.



Figure 28 - The location of the hydrometeorological stations in Ceara State, Brazil.
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The rainfall time series have vastly dissimilar statistical characteristics. The stations

situated in the northern part of the state have a higher average rainfall, while those in the central

region have a lower average. Furthermore, the stations in the northwest exhibit the largest range

of values (Table 10).

Table 10 - Statistical summary of the monthly rainfall time series.

Station  Station name

Mean (mm) Variation

number coefficient
1 Maracanau 110.82 1.19
2 Sao Gongalo do 80.60 1.41
Amarante
3 Caucaia 89.66 1.32
4 Carire 64.39 1.42
5 Mucambo 111.18 1.25
6 Tiangua 64.83 1.37
7 Ubajara 78.56 1.45
8 Mulungu 65.32 1.31
9 Croata 86.52 1.33
10 Catunda 66.17 1.31
11 Ipueiras 104.76 1.26
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12 Alto Santo 77.19 1.35
13 Sao Jodo do 126.40 1.21
Jaguaribe
14 Solonodpole 66.50 1.32
15 Umari 99.26 1.07
16 Aurora 83.85 1.29
17 Acopiara 47.92 1.52
18 Missao Velha 68.73 1.58
19 Jaguaruana 59.22 1.61
20 Santana do Cariri ~ 76.71 1.31

Source: Prepared by the author

6.3 Methods
6.3.1 Phase Space Reconstruction (PSR)

Considering dynamic systems, systems can be classified as deterministic or
stochastic. Deterministic systems follow a set of rules or equations that determine their behavior
and can be predicted exactly if their current state is known, while stochastic systems are affected
by randomness or uncertainty and cannot be predicted exactly. The phase space reconstruction
(PSR) approach can be used to identify the chaotic, deterministic, or stochastic nature of
dynamic systems (SIVAKUMAR et al., 2001).

PSR is a technique that extracts information about the dynamic behavior of a system
from a time series. The technique maps the time series dataset onto a higher-dimensional phase
space, allowing the underlying dynamic behavior of the system to be easily observed (LIANG
etal., 2019). The Takens theorem (TAKENS, 1981) states that a one-dimensional time series of

length k can be expressed in terms of phase space vectors as described in Equation 11.
Y = (X Xie, Xisoo - Xivmen)e), i=1,2,...,K (Eq. 13)

where 1 is the time delay, m is the embedding dimension,and K = k — (m — 1) (TAKENS,
1981). Even though phase space is a powerful method to gain qualitative information about
how a system evolves, the calculation of the reconstruction parameters m and 7 is crucial for
a proper reconstruction (JIANG et al., 2020). In this study, a fixed delay time is used to make
predictions for different embedding dimensions. The time delay is determined using mutual
information (MI), which is a statistical measure of the dependence between two variables. The
delay that minimizes the dependence between the chosen variables is selected (STROZZI et al.,

2002). The MI has been commonly used for analyzing nonlinear time series and the time delay
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is often chosen as the local minimum of the MI (FRASER & SWINNEY, 1986). Further details

on the calculation of MI can be found in Sivakumar (2016).

6.3.2 Nonlinear Local Approximation Prediction

The Local Approximation Prediction (LAP) (Farmer and Sidorowich 1987) of a
time series requires the reconstruction of the phase space. The PSR parameters enable the
interpretation of the underlying dynamics in the form of an m-dimensional map, which can be

expressed in Equation 12.

Yj+T = fT(Yj) (Eq. 14)

where Y; and Yj,r are vectors of dimension m, describing the state of the system at times |

(i.e., the current state) and j + T (i.e., the future state), respectively. The problem then is to
find an appropriate expression for fr. LAP involves dividing the points on the attractor into an
initial learning set, used to predict points in the remaining test set. The parameters are then fitted
to each neighborhood separately, allowing the underlying system dynamics to be represented
step by step in the phase space. To predict X;,r based on ¥; (an m-dimensional vector) and

past history, k nearest neighbors of ¥; are found on the basis of the minimum distance

between points in the attractor. In general, however, m is varied to find out the optimum
predictions (SIVAKUMAR, 2016). For a chaotic time series, the forecast the accuracy of the
nonlinear forecast falls off with increasing the embedding dimension. For stochastic time series,
by contrast, the forecast accuracy does not change with the embedding dimension (SUGIHARA
& MAY, 1990).

6.3.3 Long Short-Term Memory (LSTM) Neural Network

Artificial neural networks (ANNs) are parallel-distributed information-processing
systems that are inspired by the structure of the human brain, where knowledge is acquired
through a learning process and finding optimum weights for the different connections between
the individual neurons (KALIN et al., 2010; NOORI et al., 2020). ANNs are particularly useful
for forecasting as they handle the nonlinearity and instability of hydrological time series
effectively when the input vectors are designed using PSR method (PENG et al., 2017).

One ANN that has obtained outstanding performances in natural language
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processing in recent years is the Long Short-Term Memory (LSTM) neural network
(HOCHREITER & SCHMIDHUBER, 1997). Traditional Recurrent Neural Networks (RNNs)
have a problem with the vanishing gradient, which occurs when the gradients of the error
backpropagated through the network become very small, making it difficult for the network to
learn from the data (CHO & KIM, 2022). LSTMs were developed to address this problem. The
hidden layers in LSTMs contain recurrent neurons called LSTM cells, rather than traditional
feed-forward neurons. Each LSTM cell or memory cell has two internal states, which are the
hidden (h;) and cell state (C;) and three gates: the input (i;), the output (o;), and forget gate
(ft)- This structure maintains its state and regulate the flow of information in the cell-state
structure. This allows the LSTM to selectively choose what information to keep and what to
discard, effectively avoiding the vanishing gradient problem. This makes LSTM suitable for
tasks such as speech recognition, natural language processing, and time series prediction. The
fundamentals of LSTM were well described in Hrnjica and Mehr (2020).

The architecture of the LSTM unit is illustrated in Figure 29. Equations 15 to 20
describes the LSTM equations.

it = O'(Wl'xl' + Uih'i—l + bl) (Eq 15)
oy = o(Woxo + Upho—1 + by) (Eq. 17)

where W;, Wr, and W, indicate the weights linking the input, forget, and output gates with
the input, respectively; U;, Uy, and U, represent the weights from the input, forget, and
output gates to the hidden layer, respectively; b;, by, and b, denote the bias vectors for the
input, forget, and output gate, respectively. The cell state is responsible for keeping track of the
relevant information provided by past inputs, while the hidden state synthesizes the information
provided by the current input, cell state, and previous hidden state. The gates regulate the flow
of information in and out of the neuron using a sigmoid activation function. The input and
output gates act as signal filters, distinguishing time-dependent and time-independent signals
to prevent input and output weight conflicts. The input and forget gates control the extent to

which a new input value and the current cell state, respectively, affect the new cell state.

C~t = tanh(I/VCxt + UCh't—l + bC) (Eq. 18)
Ce = f®Cr_q + i1 ®C; (Eq. 19)
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ht == Ot®tanh(ct_1) (Eq 20)

C, is the state of the cell at the previous time; C, is the current state of the cell; h,_; refers

to output of the cell at the previous time point; h; refers to output of the cell at the current time

(LIU et al., 2020).

Figure 29 - LSTM-based neural network structure.
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Source: Adapted from HOCHREITER & SCHMIDHUBER (1997).

6.3.4 Decision Tree (DT)

The decision trees (DTs) are a widely used and important method for supervised
learning, which builds a tree-like model of decisions and their possible outcomes in a flowchart-
like structure for easy interpretation (BREIMAN, 1984). DTs are constructed by repeatedly
dividing the data into smaller sets based on the values of input variables, with each internal
node in the tree representing an evaluation of an input variable, and each leaf node representing
a prediction of the target variable (RAGETTLI et al., 2017). Data division is usually based on
the input variable values, using criteria such as variance reduction or mean squared error to find
the best split at each node. The predicted value of a new observation is obtained by traversing
the tree from the root to a leaf node, making decisions based on the input variable values of the
observation. To improve the accuracy of the predictions, the algorithm is run for multiple
iterations on the tree. A common process in DT modeling is pruning the tree to a subtree to
prevent overfitting and the misclassification risk of new samples (XU & LIANG, 2021). One
of the major advantages of decision trees is their interpretability. However, one disadvantage of

decision trees is their statistical instability even after pruning, meaning that small perturbations
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or noise in the training data may result in a substantially different structure of the learned tree
(Hastie et al., 2009). In this paper, the statistical package of R called 'Rpart' (THERNEAU &
ATKINSON, 2015) is used.

6.3.5 Random Forest (RF)

A random forest (RF) is an ensemble learning method that combines multiple
decision trees to create a more accurate and stable prediction model for continuous target
variables. The model is known for being a robust non-parametric model capable of handling
nonlinear, noisy, and multivariate correlated data (WANG et al., 2022). In this approach, each
decision tree in the forest is trained on a random subset of the data and a random subset of the
features. Each tree makes a prediction for a given input, and the final prediction of the random
forest is the average of the predictions made by all the decision trees (YANG et al., 2016). The
RF explores predictor importance through subsets of data and bootstrapped predictors for tree
growth. Each node in the decision tree is split using the best predictor selected randomly at that
node. For each bootstrap iteration, the RF identifies data not included (out-of-bag) using the
tree grown in the bootstrap sample. After aggregating all out-of-bag (OOB) predictions, the
overall error rate is estimated (BREIMAN, 2001). RF predicts variable importance by observing
how the forecasting error increases when the out-of-bag data for that variable is changed, while

others remain fixed (CATANI et al., 2013).

6.3.6 Support Vector Machine (SVM)

Support Vector Machines (SVMs) are machine learning algorithms that have good
generalization capability applying a structural risk minimization on a limited number of
learning patterns (BAYDAROGLU & KOCAK, 2014). SVM is one of the machine learning
methods utilized in hydrology and has proved to be an alternative to ANNs (MESHRAM et al.,
2020). SVM is a supervised learning algorithm which seek to minimize model complexity and
errors (NHU et al., 2020). The model was first introduced by Vapnik (1995). The goal of SVM
is to find a hyperplane (a line or a plane in a higher-dimensional space) that separates the data
points of different classes, or, in the case of regression, predicts the target variable. The
hyperplane is chosen so that it maximizes the margin, which is the distance between the
hyperplane and the closest data points of each class, known as support vectors. The data points

closest to the hyperplane are called support vectors and have the greatest impact on the position
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of the hyperplane (PHAM et al., 2016).

SVM can handle nonlinearly separable data by using kernel functions that map the
data into a higher-dimensional space where a linear hyperplane can be used for separation
(TEHRANY et al., 2014). An optimal separating hyper-plane is projected in the original space
of n coordinates (x; parameters in vector x) between the points of two distinct classes within
a certain error limit (TEHRANY et al., 2014). Consider that x and y correspond to input
variables and output variables, respectively. If x; € R™,y; € {—1,1} and i = 1,...,n, then
the optimal separating hyper-plane is calculated using a classification decision function in

Equation 21.
f(x) = sgn(XiL, yia;K(x;, xj) + b) (Eq.21)

where n is the number of input variables, a; are Lagrange multipliers, K(x; x;) is the
kernel function and b is the offset of the hyper-plane from the origin.

Ideally, the choice of kernel function should be made based on structure of the
structure of the input data and its relation to the output (WANG et al 2022). In literature, there
are different kernel functions such as linear, polynomial, sigmoid and radial basis (Gaussian)
function (RBF). In the application of SVR, RBF is chosen as it is the best kernel function
(Equation 22) according to past hydrometeorological studies (see ADNAN et al., 2020;
BAESENS et al., 2000; LEONG et al., 2021) and it also represents the hydrometeorological

processes, which have yielded good results.

K(xi,xj) = exp (—yx; — x;)° (Eq. 22)
where y controls the degree of nonlinearity of the SVM model. Small and large values of y
cause under- and over-fitting of the training data, respectively. For further details about SVMs,
see Hamel (2009), and Steinwart and Christmann (2008), Tehrany et al. (2014).
6.3.7 Cross-validation in time series

Cross-validation is a statistical method used to evaluate the performance of machine

learning models. Different parameters must be defined for each situation. Since the case studies

addressed here refer to time series data, the approach of leave-one-out cross-validation
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(LOOCYV) is suitable for DT, RF and SVM. In this perspective, training is conducted in an
iterative way, in which training, and validation sets are used. The process is carried out several
times and in each iteration the training set contains more observations than in the previous
iteration and the validation set has less. The corresponding training set consists only of
observations that occurred prior to the observation that forms the test set. For the case studies
addressed here, the trainControl function contained in caret package is used. The main
parameters adopted are: (i) method equals time slice, (ii) initial window equals 90% of training
set, (ii1) 10% of training set to compose the validation set and (iv) fixed window equals true. In
this process, the training window moves ahead with fixed horizon. The process is carried out
until entire training set is used. The training performance is obtained by the average of
performance measures of iterations. Further details can be obtained in Kuhn et al. (2020)

The LSTM model consists of two stacked LSTM layers and a single-unit fully
connected layer. The LSTM layers have 50 units, the batch size is set to 6, and the number of
epochs is 100. The network is optimized using Adamax, an adaptive moment estimation
extension based on the infinity norm, and the Huber loss function. To prevent overfitting, 10%
of the training data is used for validation. To capture longer dependencies, a stateful LSTM

truncation layer is applied.

6.3.9 Chaos theory and machine learning

To predict the monthly rainfall, the MI is first used to identify the time delay and
then a sequential procedure is used to estimate the embedding dimension m for PSR by trying
out dimensions from 1 to 30. Each PSR is then fed to the proposed models in this study, and the
fit of the models is evaluated using Root Mean Square Error (RMSE) and Nash-Sutcliffe
Efficiency (NSE) metrics in the training phase. The reconstructed phase space with the
dimension that results in a stabilization of the errors in most models is selected. The chosen
dimension is then used to reconstruct the phase space and PSR is used as input to the forecast
models. The training period is then divided into a training and validation phase to tune the
parameters of the machine learning models. The forecasts are compared using numerical
metrics such as RMSE, Mean Absolute Error (MAE), NSE and Correlation Coefficient (R), and

a Taylor diagram is used to show the prediction skill of the models.
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6.4 Results and discussion

6.4.1 Phase-space reconstruction

The phase space was reconstructed with a delay time 1 calculated using the mutual
information method and embedding dimensions ranging from 1 to 30. Figure 30 illustrates the
mutual information for various lag times for the stations analyzed in this study. The first
minimum for most of the stations is at lag of 3, apart from Maracanat, Catunda and Ipueiras

stations which have a 4-month lag.

Figure 30 - Mutual information with delay time for monthly rainfall stations (a) 1 through 10

and (b) 11 through 20.
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All data was normalized to enable the machine learning models to reasonably
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consider both extremely low and extremely high values in the feature phase-space
reconstruction, regardless of their magnitude. The combination of delay time and varying
embedding dimensions results in different prediction accuracy. The choice of dimensions for
each station was based on how the model errors stabilized for most of the applied machine
learning models according to the NSE and RMSE values. Table 11 describes the choose
dimension for the training dataset based on the RMSE and NSE for each station. The results for
the RMSE and NSE in the training dataset, based on the variation of embedding dimensions,
are displayed in APPENDIX B.

For most of the models, the selected embedding dimension ranged from 10 to 21
(Figure 31), suggesting that they need information that is older than 2-5 years in order to have
a better fit of the models. This variability in time period is consistent with events such as El
Nino, which are known to impact rainfall in the region (KAYANO & ANDREOLLI, 2006). The
RF and SVM methods showed limited improvement in prediction accuracy as the dimensions
increased, as measured by the RMSE in APPENDIX B. However, for other methods, such as
LAP, the RMSE varied significantly with changes in the embedding dimension. Spatial analysis
of the chosen dimensions revealed that the coastal region of the state has lower embedding
dimensions, while the central-eastern region has higher embedding dimensions, as illustrated

in Figure 31.

Table 11 — Chosen embedding dimension for the training dataset according to the accuracy of
the models.

Station C'hosen' Station C.hosen'
dimension dimension

MARACANAU 10 [PUEIRAS 17
SAO GONCALO DO

AMARANTE 11 ALTO SANTO 21

SAO JOAO DO

CAUCAIA 13 JAGUARIBE 21
CARIRE 17 SOLONOPOLE 22
MUCAMBO 15 UMARI 15
TIANGUA 15 AURORA 15
UBAJARA 17 ACOPIARA 18
MULUNGU 14 MISSAO VELHA 18
CROATA 17 JAGUARUANA 14
CATUNDA 17 SANTANA DO CARIRI 15

Source: Prepared by the author
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Figure 31 - Spatial distribution of the chosen dimension for the rainfall stations according to
the prediction accuracy.
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6.4.2 Comparisons of the results

In this study, the performance of various machine learning methods and a nonlinear
prediction method for modeling rainfall time series is analyzed. To compare the model, the
rainfall time series were divided into training (80%), validation (10%) and test (10%) phases.
Table 12 presents the performance metrics for the analyzed stations during the validation period.
The best scores on the validation sets are highlighted in bold. The results show that most models
are capable of accurately modelling rainfall and providing information about the time series.
The RF model performed the best during the validation period. The DT, SVM, and LSTM
models had similar NSE values for most stations, while the LPA model had the worst

performance across most stations.
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Table 12 - Performance of machine learning models for monthly rainfall in the validation phase

Chosen

Station dimension and Model MAE RMSE NSE R

time delay (mm) (mm)
DT 46.51 66.77 0.64  0.65
. LPA 103.05 135 049  0.02
Maracanay ™ = 10T = 4 LSTM 52.1 77.38 051 0.5
RF 22.67 35.08 0.9 0.92
SVM 43.95 64.55 0.66  0.66
] DT 37.41 58.31 0.6 0.6
2 - Sdo LPA 15152 16409 -2.16 0.0l
Goggalo m=11,7r =3 LSTM 6489 10483  -029 048
Amarante RF 17.53 29.87 0.9 0.92
SVM 33.33 56.38 063  0.63
DT 5752 10323 054  0.56
LPA 137.11 1793 0.4 0
Cafl wiq M =137T=3 LSTM 6754 10434 053 058
RF 31.56 63.6 0.82 0.9
SVM 5729 11002 047 053
DT 31.47 53.53 068  0.68

LPA 100.18 124.32 -0.73 0.04
4—Carire m = 17,t =3 LSTM 44.23 77.62 0.32 0.39

RF 1901 3343 087 09

SVM 3388 5959 06 06

DT 3065 5041 076 078

LPA 10629 13187  -0.61 0.2

Muga;nbo m =157 =3 LSTM 5192 8879 027 037

RF 1668 3086 091  0.94

SVM 3488 6254 064 065

DT 5376 8981 055 057

LPA 12761 16329 049 0

b =157t =3 LSTM 5832 10416 04 047
Tiangua

RF 2472 4463 089 092

SVM 4318 7715 067 07

DT 4603 7626 07 07

LPA 14612 17734 063 0

Ub7aj:1ra m =177 =3 LSTM 5441  89.19 059 064

RF 1837 3119 095  0.96

SVM 3833 6743 076 077

DT 6255 9521 034 038

LPA 12883 1555  -075  0.12

Mju;gu m = 14,t =3 LSTM 78.41 118.91 -0.02 0.16

RF 30 5011 082 091

SVM 3142 6207 072 077

DT 2253 3543 055 058

o-Croatd m =177 =3 o\ 7167 7797  -118 00l
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LSTM 2729 4201 037 044
RF 1029 1726 089 092
SVM 1983 343 058 06
DT 2425 4165 077 077
LPA 6189 9249  -0.12 001
0= =177 LSTM 4126 7232 032 039
Catunda
RF 1658 3047 088 092
SVM 2726 4947 068  0.69
DT 3195 528 074 0.5
LPA 7406 10904 -012 0.1
Ipilei;as m =177 LSTM 4476 7627 045 051
RF 2059 3548 088  0.92
SVM 3908 6678 058 06l
DT 3179 4722 06 062
LPA  69.69 9235 054 0
12 - Alto
a0 = 21,7 LSTM 4224 6574 022 044
RF 1524 2447 089  0.92
SVM 31 4954 056 057
DT 319 5048 06 06
13 - Siio LPA 5475 7534 01 0.8
Jodo do m 21,1 LSTM 4521 78.89 0.02 0.27
Jaguaribe RF 17.53 30.58 0.85 0.91
SVM 3451 6091 041 043
DT 275 4438 06 06l
LPA 366 4957 05 052
Soléﬁé;ole 22,71 LSTM 3717 6932 002 043
RF 1404 2328 089 091
SVM 277 4267 063 063
DT 3165 5722 057 058
LPA 10202 11142  -0.64 0.2
15— Umari m = 15,7 LSTM 4296 6318 047  0.53
RF 1619 3058 088  0.93
SVM 3358 6078 051 0.2
DT 3363 5700 056 058
LPA 9668 12239  -1.04 0
Afm‘ra 15,7 LSTM 4425 6592 041  0.55
RF 1651 2680 09 092
SVM 3013 4911 067  0.68
DT 3437 6332 034 037
LPA 7607 9999 065 0
Aclogra m = 18,7 LSTM 359 6029 040 048
RF 1534 3021 085  0.89
SVM 2889 5229 055  0.57
18— DT 374 5827 061 062
Missio m = 18,7 LPA 10694 13332  -1.04  0.02
Velha LSTM 4926  72.02 041 048
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RF 1736 2881 09 092
SVM 3471 5493 065  0.66

DT 3232 5019 043 045

LPA 559 8663 069 0

Jagigr;ana m =147 =3 LSTM 3977 651 004 039
RF 13.16 2341 088 09

SVM  27.64 4847 047 049

DT 3559 5727 058 058

20— LPA 8917 11876  -0.8 0
Santanado m = 157 = 3 LSTM 4261  68.03 041 046
Cariri RF 14.91 27 0.91 0.93
SVM 3103 5255 065 065

Source: Prepared by the author

Figures 32 and 33 display the validation period of the analyzed datasets. It is

observed that the LPA is able to track the monthly seasonality of the rainfall series for some

stations, but not for others, such as the Sao Gongalo do Amarante Station. The LSTM

overestimates the high rainfall peaks for the year 2002 at stations such as S3o Gongalo do

Amarante, Caucaia, Catunda, Alto Santo, among others. Conversely, the SVM and DT models

underestimate the high rainfall peaks.
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Figure 32 - Comparison between measured and forecasted rainfall over the validation phase

for stations 1 through 10.
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Figure 33 - Comparison between measured and forecasted rainfall over the validation phase
for stations 11 through 20.
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The performance of rainfall time series modeling is analyzed using five machine

learning models and a nonlinear prediction method. Table 13 reports the performance measures

based on four metrics. The Ubajara Station achieved the highest accuracy in the test phase with
an RMSE of 77.32mm and an NSE of 0.72 using SVM, followed by the Tiangua Station with
an RMSE of 65.69mm and an NSE of 0.71 using RF. RF was the best-performing model in 9
stations, followed by SVM in 8 stations, DT in 2, and LSTM in 1. The LPA model performed

poorly in all stations, as also observed in the validation period. For some stations the SVM and

RF showed very similar values for the NSE and RMSE.

Table 13 - Performance of machine learning models for monthly rainfall in the testing phase

Chosen dimension

MAE

RMSE

Station and time delay Model (mm) (mm) NSE R
DT 69.97 101.92 035 037
LPA 88.65 11925  0.11  0.18

Maréc‘anau = 10,1 LSTM 6491  100.63 037 04
RF 65.58 94.14 045 045
SVM 6334  93.42 0.46  0.46

) DT 56.9 90.92 041 043
2- Sal" LPA 92.890  122.77  -0.07  0.04
G"ggao = 11,1 LSTM 6693 11051  0.13  0.38
Amarante RF 51.33 91.82 0.4 0.46
SVM 5099  89.45 0.43  0.48
DT 7046  113.97 046 047

LPA 12867 16492  -0.12  0.05

Cai caia = 13,7 LSTM 873 13193 028 033
RF 69.19 11092 049  0.53
SVM 6955 11625 044 0.8

DT 43.18 73.19 037 043

LPA 93.78  120.74  -0.71 0
4 — Carire = 17,1 LSTM 4434  71.72 0.4 0.46
RF 3536  64.59 051  0.53
SVM  37.23 68.74 045  0.49
DT 38.18 59.77 059  0.62

LPA 89.16  118.15 0.6 0
Muza;nbo = 15,7 LSTM  43.17 83.76 0.2 0.46
RF 27.22 53.17 0.68  0.68

SVM  30.41 56.08 0.64  0.65

DT 51.63 78.34 0.59 0.6
LPA 95.15  133.97  -0.19  0.08
Ti:n_gué = 15,7 LSTM  53.07 83.43 0.54 0.56
RF 38.13 65.69 071  0.74

SVM 40.3 68.82 0.69 0.7
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DT 60.32 92.8 0.6 0.62
LPA 54.68 85.46 0.66 0.67

Ub7aj‘ara m=177=3 LSTM 6781 9999 054 06

RF 537 7874 071 0.72

SVM 4647 7732 072 073

DT 5948 8511 039 041

LPA 10674 13103  -044 001

8- m =147 =3 LSTM 5649 8924 033 038
Mulungu

RF 54.12 79.84 0.47 0.51
SVM 69.68 99.33 0.17 0.24

DT 26.63 65.97 0.35 0.36
LPA 68.09 99.46 -0.47 0.07
9 — Croata m = 17, = 3 LSTM 36.24 82.58 -0.01 0.08
RF 28.26 71.93 0.23 0.27
SVM 27.02 71.35 0.24 0.29

DT 39.86 67.49 0.47 0.49
LPA 62.39 98.18 -0.12 0.01

Calt(l)lr:da m=177r =4 LSTM 3893 7777 03 04
RF 3725 7053 042 047

SVM 3674 6791 046 048

DT 5418 9453 026 032

o LPA 7801 11834  -0.16  0.02
bueims M= 17T =4 LSTM 3558 7137 0S8 062
RF 3917 7169 057 061

SVM 3897 7114 058  0.62

DT 5006 8291 03 032

e LPA 8022 10715 -0.16  0.03
o m=210=3  LSTM 5331 9281 013 03
RF 3974 732 046 0.2

SVM 3781 7263 046 05

DT 471 767 028 042

13— Siio LPA 6772 9351 007  0.06
Joiodo m =2Lr=3 LSTM 4531 7805 026 032
Jaguaribe RF 38.83 67.58 0.44 0.46
SVM 3807 6944 041 043

DT 517 9061 007 017

LPA 5687 8781 013 014

Solcl)flr(’);ole m=227t=3 LSTM 505 8841 012 022

RF 43.42 77.86 0.32 0.36
SVM 42.83 77.87 0.32 0.35

DT 39.38 61.42 0.37 0.4
LPA 57.58 78.67 -0.04 0.04
15—Umari m = 15,7 = 3 LSTM 51.15 84.38 -0.2 0.46
RF 31.61 50.17 0.58 0.58
SVM 31.09 49.27 0.59 0.60

16 - m = 15t = 3 DT 41.19 64.75 0.58 0.60
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Aurora LPA 98.14 129.27 -0.67 0.00
LSTM 42.67 72.32 0.48 0.53

RF 35.32 59.32 0.65 0.68

SVM 37.51 60.48 0.64 0.66

DT 46.58 79.87 0.09 0.15

LPA 48.96 80.69 0.07 0.20

Act;i'ara m =187 =3 LSTM 475 7982 009 025
RF 3704 6893 032 033

SVM 3754 6891 032 034

DT 5859 9944 042  0.53

18— LPA 11039 1517  -036  0.00
Missio m =187 =3 LSTM 7347 11741 019 024
Velha RF 5597 9698 044  0.58
SVM 5273 933 049  0.60

DT 4961 8632 028 029

LPA 7234 10668  -0.11  0.02

Jagifn'lana m =141 =3 LSTM 466 8795 025 033
RF  43.02 7951 038  0.41

SVM 4693 8113 036 040

DT 4603 9296 041 042

20— LPA 10977 15091  -057  0.02
Santana do m = 15,7t = 3 LSTM 45.48 84.62 0.51 0.51
Cariri RF 24 8312 052 0.60

SVM 43.56 89 0.45 0.51

Source: Prepared by the author

The accuracy of the models was evaluated and assessed. A direct comparison of the
models is shown in Figures 33 through 36. Based on these figures, the LPA performed poorly
and was not able to accurately forecast rainfall for the stations. Most of the models generally
followed the seasonal patterns of the precipitation series for most stations. However, some
differences in performance in relation to model complexity and hydrological regimes were also
evident. The LSTM tended to capture the high peaks of rainfall, but at the expense of some
overestimation, particularly for the Umari, Sio Gongalo do Amarante, and Alto Santo stations.
The simpler model, RF, captures the seasonal behavior in rainfall but tends to underestimate the
magnitude of the monthly peaks. Hagen et al. (2021) found similar results in their analysis of
snowmelt-driven flood regimes. Comparing the peaks in these rainfall forecast regimes shows
that increasing model complexity does not always lead to more accurate predictions and distinct
peaks. As stated by Papacharalampous et al. (2019), it is often argued that the best methodology

is determined by the data and the case study, as evidenced in our results. Furthermore, the small
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decrease in the evaluation metrics for the validation and testing phase for the SVM, RF, and
LSTM models could indicate that these models are more robust.

As stated by Lellep et al. (2020) and confirmed by our results, machine learning
methods can provide a useful set of tools for predicting rainfall time series if the underlying
dynamics, such as increasing complexity with prediction time and fragmentation of the state
space, are taken into account. When these conditions are met, machine learning tools have great

potential for various applications.
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Figure 34 - Comparison between measured and forecasted rainfall and best fit lines by the DT,
LAP, LSTM, RF and SVM for the best accurate input combinations over the testing phase for

the Maracanu, Sao Gongalo do Amarante, Caucaia, Carire and Mucambo station.
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Figure 35 — Comparison between measured and forecasted rainfall and best fit lines by the
DT, LAP, LSTM, RF and SVM for the best accurate input combinations over the testing phase
for the Tiangud, Ubajara, Mulungu, Croatd and Catunda stations.

TIANGUA TIANGUA
400 ;
= E
E
E 300 £
3 3
= 200 fj £
£ g
g £
100 5
0
2003-01-01 2004-01-01 2005-01-04 2006-01-01 P 100 200 200 400 500
Observed (mm)
UBAJARA UBAJARA
5001 Bi=0G
'g' '{3‘ r§2 & . :
— Ha J. ]
5400 g 4007 L s . " :
= TR I BT —
g s A
gzuo 22007,a 0k §2EET 4
P 100{" ot B
|
0 B e
2003-01-01 2004-01-01 2005-01-04 2006-01-01 0 o 100 200 300 400 500
Observed (mm)
MULUNGU MULUNGU
5001 Ri=041
=1 gy
3 E 4001 R2Z634
E =
3 3
£ 5
£ g
i E
w

2003-01-01 2004-01-01 2005-01-01 2006-01-01

Observed (mm)

CROATA CROATA

500

400 T
€ £ 400
Ean g
= 2 300
i a—
£ 200 T
£ 2 200
© 100 2]

0 aw T — "
2003-01-01 2004-01-01 2005-01-01 2006-01-01 o3 100 200 300 400 500
Observed (mm)
CATUNDA CATUNDA
400 5001 Ri=p4o
- :,g’.iﬁzg'é

E 300 E 4001 Recgas
E o
= 200 8 07
= E
3 / 2 2007
o 100 W &=

100+

2003-01-01 2004-01-01 2005-01-01 2006-01-01 0 100 200 300 400 500
Observed (mm)

—— DT -+ LSTM —— RF
—— LAP —— Observed — SVM

Source: Prepared by the author



112

Figure 36 — Comparison between measured and forecasted rainfall and best fit lines by the
DT, LAP, LSTM, RF and SVM for the best accurate input combinations over the testing phase
for the Ipueiras, Alto Santo, Sao Jodo do Jaguaribe, Solon6pole and Umari stations.
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Figure 37 - Comparison between measured and forecasted rainfall and best fit lines by the DT,
LAP, LSTM, RF and SVM for the best accurate input combinations over the testing phase for

the Aurora, Acopiara, Missdo Velha, Jaguaruana and Santana do Cariri stations.
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We also used the Taylor diagram to evaluate the models, as shown in Figure 38. The

Taylor diagram is a graphical tool for comparing a simulation or set of cases to observations,



114

evaluated in terms of their correlation coefficient and standard deviation. The distance from the
reference point (observations) represents the focused RMSE (TAYLOR, 2001). A perfect model
that matches the observations is located at the reference point, with a correlation coefficient of
1 and similar error distribution compared to the observations (HEO et al., 2014). Among the
stations, the SVM model stood out as it had similar variability to the observations and the

highest correlation for most stations.

Figure 38 - Taylor diagram of the forecasted rainfall over the testing period for all stations.
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6.5 Conclusions

The purpose of this study is to evaluate the effectiveness of machine learning
models on monthly rainfall time series in the Ceara State, in Northeastern Brazil. The study
takes into account the principles of chaos theory and employs various machine learning
techniques to analyze the rainfall dynamics. The monthly rainfall data from 20 hydrological
stations in the region were used as input. The data was divided into training and testing windows,
and the embedding dimension was chosen based on the accuracy of the models during the
training phase. Upon analyzing rainfall data, we found distinct rainfall patterns at each location,
requiring different models for optimal forecasting. Most stations showed embedding
dimensions greater than 10, necessitating information from a period as long as five years for
accurate prediction.

The SVM and RF models performed well in many of the stations, proving the

viability of data-driven methodologies in capturing rainfall dynamics without extensive
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physical information. However, it's important to note a key limitation in the capability of some
models in our study to adequately capture extreme rainfall events.

The results underscore the potential of machine learning techniques in rainfall
forecasting, aiding in resource management. Future research should focus on enhancing model
performance for rainfall broadening the scope to include other climatic variables. The
incorporation of physical data could also enrich the predictive power of these models, bridging

data-driven and physics-based approaches.
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7 A MULTI-MODEL FRAMEWORK FOR STREAMFLOW FORECASTING BASED
ON STOCHASTIC MODELS: AN APPLICATION TO THE STATE OF CEARA,
BRAZILZ.

7.1 Introduction

Accurate and reliable long-term streamflow prediction at monthly, annual, inter-
annual, or even decadal scales can be a valuable tool for optimal allocation and management of
water systems (LIANG et al., 2018; SINGH, 2016; WANG et al., 2019). Particularly in systems
where decadal-scale variability is prominent, and under stress due to surface and groundwater
scarcity (SZOLGAYOVA et al., 2014). However, the forecast of hydrological variables is a
major challenge due to its nonlinear, nonstationary, overly complex processes and multi-scale
characteristics, which can be directly affected by climate change and land use (NAZIR et al.
2019; WANG et al., 2019; WEN et al., 2019). Recent attention has focused on long lead-time
streamflow prediction to improve the operation of the hydroelectric system (ROLIM & SOUZA
FILHO, 2020), drought forecasting (KHAN et al., 2020; KISI et al., 2019), and other practical
water activities (DARIANE et al., 2018). Therefore, short- and long-term streamflow prediction
(3-15 years) can be used to meet water demand over extended periods, being detrimental to
water resource management (ERKYIHUN etal.,2017; MENG et al., 2019; MISHRA & SINGH,
2010; WEN et al., 2019).

Several approaches have been developed to simulate and predict streamflow time
series at longer lead-time. These approaches can be categorized as data-driven and process-
driven models (HE et al., 2014; ZHANG et al., 2018). Typically, physical models require
complex model structures that need knowledge of physical processes, require extensive
calculations, precise, and a great quantity of meteorological and hydrological data (LIANG et
al., 2018; YANG et al., 2020). Physical models consider the physical mechanism of
hydrological processes. Also, these models have been widely applied to hydrological series.
However, there is still a great discussion around those models mainly centered around the
parameterization process, uncertainty led by data limitations, and computational constraints on
model analysis (CLARK et al., 2017). Instead, data-driven models have attracted considerable

attention because of their simple formulation, the need for much less data, rapid simulations,

2 Reproduced with permission from Springer Nature. This version of the article has been accepted for publication
and is available online at: https://doi.org/10.1007/s41101-023-00184-1.
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and versatility in modeling nonlinear processes compared to physical models (MENG et al.,
2019; NAZIR et al., 2019; WEN et al., 2019). Furthermore, physical models need information
and extensive data for a complete analysis, which can be an expensive computational process,
whereas data-driven models do not require such physical constraints and can accurately
represent nonlinear and nonstationary processes, €.g., the temporal variability in streamflow

(SARAIVA et al., 2021).

One of the main types of data-driven models is the traditional stochastic model
approach, which success rate has always encouraged its implementation over physics-based
models (REMESAN & MATHEW, 2016). Stochastic models were extensively developed since
the 1960s, beginning with the original generation of synthetic streamflow (THOMAS &
FIERING, 1962). Studies mostly focused on the applications of parametric methods during the
1980s and early 1990s. Autoregressive models (AR) and autoregressive moving average
(ARMA) assume the series to be cyclostationary or stationary, however, these assumptions are
not likely to reproduce the features of long-term streamflow time series (SALAS &
OBEYSEKERA, 1982). According to Erkyihun et al. (2017), short- and long-term forecasts (1—
20 years) can be made through a fitted AR model. Nevertheless, the assumption of stationarity
in AR models limits their capability to capture nonstationary processes. Later, models like auto-
regressive with exogenous inputs (ARX) and auto-regressive moving average with exogenous
inputs (ARMAX) also showed satisfactory time series prediction skills and fairly easy
implementation. Studies also show that stochastic models can perform as well as machine
learning (ML) methods (KOUTSOYIANNIS &  GEORGAKAKOS, 2008;
PAPACHARALAMPOUS et al., 2017; PAPACHARALAMPOUS et al., 2019). Further-more,
as record lengths have increased, modelers became aware of decadal-scale variability. Hence,
improved modeling and prediction methods have been developed, such as nonparametric time
series simulation models, singular spectrum analysis (SSA) to analyze the temporal variability
of temperature time series (DETTINGER et al., 1995), a semiparametric approach for
forecasting streamflow at multiple gaging locations on climate precursors (SOUZA FILHO &
LALL, 2003), and wavelet-based models as the wavelet autoregressive model (WARM)
introduced by Kwon et al. (2007).

Many hybrid algorithms, which are data preprocessing techniques combined with
forecast models, have been applied to incorporate nonstationary and nonlinear features to
hydrological time series (CHOU & WANG, 2004; HUMPHREY et al., 2016; MENG et al.,
2019; WANG et al., 2019). Many multi-resolution tools have been applied to decompose signals,
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such as the Fourier transform window function, the wavelet trans-form (WT), singular spectrum
analysis, and principal component analysis. WT has recently become more widely applied in
hydrology because it overcomes the major limitations of Fourier analysis, such as the lack of
time-frequency localization and infinite domain of sine and cosine waves (CHOU & WANG,
2004; ERKYIHUN et al., 2017; GUO et al., 2011; KASIVISWANATHAN et al., 2016; KWON
et al., 2007; MENG et al., 2019; NOURANI et al., 2011, 2009; PENG et al., 2017). Although
WT addresses nonlinearity and nonstationary successfully, drawbacks in the method’s
performance remain (e.g., proper choice of mother wavelet and optimal processing threshold

for the frequencies to be modeled).

Alternative methods such as the empirical mode decomposition (EMD) (HUANG
et al., 1998), ensemble EMD (EEMD) (WU & HUANG, 2009), and the complete ensemble
EMD with adaptive noise (CEEMDAN) (TORRES et al., 2011) have been proposed to solve
these issues related to multi-resolution data analysis. The methods do not require a pre-
determine frequency band by the user, therefore, the process is self-adaptive. The set of EMD
is a data-driven tool that decomposes the nonstationary and nonlinear data through an adaptive
process into several oscillatory components called Intrinsic Mode Functions (IMF) and a
residue. In recent decades, these methods became popular to analyze hydro-meteorological time
series especially coupled with other ML methods such as support vector machines and extreme
learning machines (ADARSH & REDDY, 2018; MENG et al., 2019; NAZIR et al.,2019; WEN
et al., 2019).

Reliable hydrological forecasting depends on accurate predictions in a longer lead
time. Thus, the present study primary objective is to propose a multi-model framework
including hybrid models to predict long-term average annual streamflow (3-15 years). Many
recent studies have focused on applying preprocessing techniques with data-driven models to
improve long-term forecasts. Nonetheless, despite several studies on these models' performance,
no conclusive decision has been made about which model performs best in a longer lead time
for streamflow prediction. It is often argued that it is the data and the case study that decide the
‘best’ methodology (PAPACHARALAMPOUS et al., 2019). Furthermore, many of the
developed methods require a large amount of data. However, using annual streamflow makes it
easier to model in data-scarce regions. We seek the simplification of the proposed multi-model
using the LASSO (Least Absolute Shrinkage and Selection Operator) method to reduce the
subsample of the multi-model and incorporate models that account for uncertainty and consider

the gains that each model can bring in the prediction analysis. Also, we will evaluate these
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hybrid approaches separately. The hybrid selected models were the wavelet autoregressive
model (WARM), wavelet hidden Markov model (WHMM), complete ensemble empirical mode
decomposition with adaptive noise autoregressive model (CEEMDAN-AR), and complete
ensemble empirical mode decomposition with adaptive noise hidden Markov model
(CEEMDAN-HMM). The models’ forecast skills were measured for different forecast windows
(3, 5, 10, and 15 years) to evaluate model performance and improvement for short-term and

decadal-scale prediction for water resources planning and management applications.

7.2 Study area and hydrological data

The analyzed hydrological station is located in the Upper Jaguaribe basin. The
Basin is located in the south of the State of Ceard, Brazil, and it is home to approximately half
a million people. The Basin’s area extends over more than 24,000 km?. The basin's outlet is
controlled by the Oros reservoir, which has a storage capacity of 1.94 billion m* and was built
in 1961. The annual streamflow data from Iguatu hydrological station was used in this study
(Figure 39). The station has monthly streamflow data covering January 1937 through December
2016. The series has 21 months with missing data. The statistical metrics of the annual
streamflow at the Iguatu station are shown in Table 14. The rainfall regime is mainly governed
by the Intertropical Convergence Zone, with average annual rainfall in the region of around 780
mm. In contrast, the region presents high rates of annual evaporation (2500 mm). The high
temporal variability in rainfall with the high rates of evaporation leads to ephemeral or
intermittent rivers in the region (Gaiser et al. 2003; Malveira et al. 2011). The area is highly
affected by the low water levels due to recurrent droughts (Lima Neto et al. 2011) Therefore,
streamflow is an essential variable whose forecasts are of considerable implication to water

allocation in this region.
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Figure 39 - Location of the meteorological stations analyzed in this study.
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Table 14 - Statistical information of streamflow data observed at the hydrological station.

Max (m3/s) Min (m%*s) Median = Mean Standard

. Variation
3 3
(m3/s) (m3/s) Deviation Coefficient
(m?/s)
172.20 0.00 11.58 21.73 30.76 1.41

Source: Prepared by the author

7.3 Methods

The multi-model's schematics proposed to predict long-term average annual
streamflow (3-15 years) and its comparative counterpart models are illustrated in Figure 40.
First, different filtering techniques (WT and CEEMDAN) are applied to the streamflow time
series to decompose the series into the pre-determinate frequencies and IMFs, respectively. The
AR and HMM are used to forecast each WT decomposition and IMFs components and their
respective residues datasets. In the prediction step, the procedure is repeated to generate an
ensemble of streamflow forecasting time series according to the desired projection length. Next,

the forecast series are summed. Finally, the multi-model was fitted using a regression model to
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choose the models that would account for a more accurate prediction of long-term streamflow.
The multi-model performance was compared with all the models analyzed to verify its
performance in considering the uncertainties present in the streamflow time series. Their
performance was evaluated using correlation coefficient (R), root mean squared error (RMSE),
and mean absolute error (MAE). The methodology is detailed below.

Figure 40 - The overall processes of the multi-model methodologies applied in this study. The

original series was decomposed using the CEEMDAN into n IMFs and a residue term (r) and
using the WT into n daughter wavelets.
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7.3.1 Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN)

The CEEMDAN decomposition is an adaptation of the EMD. In the EMD method,
the model separates time series into several IMFs, which represent the frequency modes and a
residue. To decompose the time series, the model must satisfy the admissibility conditions,
which are: (1) the mean value of the upper and lower bounds of the IMFs is zero at any point,

and (i1) the number of extrema and zero crossings in the signal differ at most by one. A complete

description of the EMD method can be found in Huang et al. (HUANG et al., 1998).

To overcome some limitations exhibited in the EMD process, Wu & Huang (2009)
proposed an ensemble approach called EEMD, which decomposes a signal by summing
different white noise to the original signal, and then the final modes are defined as averages of
the IMFs obtained through EMD over an ensemble of trials. Limitations, such as mode mixing
issues in the reconstructed series, may still prevail. Thus, a new method named CEEMDAN
was proposed by Torres et al. (2011). In the CEEMDAN method, the decomposition process
starts via the EMD method, where the series is separated into several IMFs and residues until a
stopping criterion is attained. The method requires a controlled noise to be added at each stage

of the decomposition with a singular residue for each IMF (ANTICO et al., 2014).

In the CEEMDAN, the level of added noise used is fixed to obtain all modes.
Previous studies suggested that enough ensembles must be applied (REN et al., 2015). In this
study, the number of ensembles is set as 100. The CEEMDAN process is enabled using the
package hht (BOWMAN & LEES, 2013) in the software R.

7.4.2 Wavelet Transform

Wavelet transform is a widely applied method for the periodic phenomenon in
nonstationary time series. The wavelet transform is a local transformation of frequency and
time through multi-scale analysis using scaling and translation (MENG et al., 2019;
TORRENCE & COMPO, 1998). The method divides the time series into a subset of continuous
or discrete wavelets, and each sub-signal plays a different role and has a unique behavior. A

more detailed revision can be found in Labat (2005) and Sang (2013).

WT has been used as a decomposition tool for analyzing streamflow time series in

many studies (DANANDEH et al., 2013; KWON et al., 2007; MENG et al., 2019; PATHAK et
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al.,2016; SUN et al., 2019). The Morlet wavelet was applied to the time series, and the package
WaveletComp in R (ROSCH & SCHMIDBAUER 2016) was used in this study.

7.3.3 Hidden Markov Model

A hidden Markov model is a stochastic model used to represent dependencies
between successive hidden states. Each state is associated with a probability distribution to the
observed states. The model is comprised of two parts: an unobserved process that satisfies the
Markov property; and a state-dependent process whose distribution depends only on the current

state and not on previous states or observations.

Transitions among the hidden states are ruled by probabilities denoted as transition
probabilities and are represented by the matrix A(t). The prior probabilities (i.e., initial

conditions) © need to be defined to estimate the transition’s parameters in A.

The HMM consists of a triplet of observed probability parameters (A,B,n), which
are the state transition probability matrix, the parameter vector of the response models, and the
initial state probabilities. The expectation-maximization algorithm (EM) is used to determine
the optimal model parameters through an iterative process. The EM algorithm is used to
establish the parameter of the model which maximizes the likelihood function in HMMs. To
decode observation sequences into hidden state sequences, the Viterbi algorithm is applied.

Further details can be found in Zucchini et al. (2016).

7.3.4 Multi-Model Framework

The CEEMDAN and WT were used to decompose the average annual streamflow
series into pre-determinate frequencies and IMFs for the training and validation period (Table
15). Then, the respective decomposed series were modeled by HMM and AR models. The
prediction with the HMM was based on the relation of the current states and the transition
probability matrix. Based on each IMF or WT state at current and past times with the transition
probability matrix, a component state is generated for time t+1, and a value from the
corresponding state probability density function is sampled for time t+1. A random noise based
on the residual of the fitted models was added to the prediction value of each decomposition

component. This process is repeated to generate an ensemble of streamflow sequences for the
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chosen lengths (ERKYITHUN et al., 2017). Next, the outputs of the subseries are summed up.
Further, the CEEMDAN and WT are also coupled with an AR model.

The medians of the summed modeled ensembles series were coupled through the
use of LASSO regression developed by (TIBSHIRANI, 1996). The LASSO method is used to
restrict the number of variables by adding a penalty term on the absolute value of the regression
coefficients, which results in some coefficients being set to zero. This process was performed
using the glmnet package in R (Friedman et al 2010). The regression model associated with the

penalty value that resulted in the lowest mean cross-validated error was selected.

The framework of the long-term prediction models is displayed in Figure 40. In
addition, the prediction of the average annual streamflow for different time windows (3, 5, 10,
and 15-years) was compared to examine the effects on the time-varying forecast window of
each model. Table 15 summarizes the period of model training, validation and prediction

window.

Table 15 - Time period of model training, validation, and prediction for the multi-model.

Forecast .. ., Validation Prediction

. Training period . .
window period period
3 years (DI1) 1937 — 2003 2004 — 2013 2014 - 2016
5 years (D2) 1937 - 2001 2002 - 2011 2012 -2016
10 years (D3) 1937 — 1996 1997 — 2006 2007 —2016
15 years (D4) 1937 - 1991 1992 — 2001 2002 — 2016

Source: Prepared by the author

7.4 Results and discussion

7.4.1 The original series decomposed

For the analysis of the original series, the annual streamflow from 1937 to 2016 was
decomposed by CEEMDAN and WT. The decomposition according to the preprocessing
methods used for the annual time series is exhibited in Figure 41. The streamflow series was
decomposed into four IMFs and one residue component based on the CEEMDAN. The IMF1
(Figure 41b) represents the irregular part of the original series. Further, in the WT
decomposition, a highly irregular pattern can also be seen in the 2-4 years frequency of WT in

Figure 41c.
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Figure 41b shows the residue component using the CEEMDAN method presents a
downward inclination around 1991. Meanwhile, the last level subseries of WT shows a periodic
behavior. This characteristic may be due to the lack of physical mechanism during the
decomposition process by the WT method. Meng et al. (2019) found equivalent results when
comparing the decomposition of streamflow time series applying a modified EMD, EMD, and
WT. As streamflow is an important variable for water allocation in water-scarce regions,
predicting it accurately is vital and provides essential information in the short and long-term

planning process for water resources in the region.

Figure 41 - (a) Original annual streamflow time series, (b) decomposed results for the Oros
reservoir using CEEMDAN and (c¢) decomposed results for the Oros reservoir using WT.
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Furthermore, to account for some persistence present in the lower frequencies of
the decomposition, a cross-wavelet and a coherence analysis were applied considering the
known climatic indices to directly impact the variability of precipitation in the studied region.
The Cross-Wavelet Transform (XWT) is used to calculate the coincident powers among two-
time series. The Wavelet Transform Coherence (WTC) is applied to detect the frequency bands
and time intervals wherein the two series are related (ROCHA et al., 2019). Additional
information on the description of the XWT and WTC can be found in (TORRENCE &
WEBSTER, 1999; TANG et al., 2014).

In the analysis of the XWT for the streamflow time series and Nifio 3.4 anomaly
index (Figure 42a), results show that they share areas in common in the power spectrum in the
4-8 years period between the years 1970-1990, starting as out of phase. Another common area
is seen in the band of 8-16, from 1965 up to the end of the series, presenting an out-of-phase

behavior.

In XWT analysis for the streamflow and the Pacific Decadal Oscillation (PDO)
(Figure 42b), both variables share areas in common on the power spectrum in the periods of 4-
8 years between 1980 and 1990, starting out-of-phase with the streamflow leading. The 8-16
years period also shows a common area from the 1960s until the end of the series, starting out-
of-phase. In the 80s and 90s, the indices are in phase and then return to out of phase. From the
'90s onwards, there is a common area in the frequency above 16 years that shows out-of-phase

behavior.

Unlike the other indices previously analyzed, for streamflow and Atlantic
Multidecadal Oscillation (AMO) (Figure 42c), there are common areas on the power spectrum
in the periods of 8-16 from the beginning of the series until the end of the '90s, starting out-of-
phase and then staying in a positive phase. Similar to the PDO, the AMO analyses beginning in
the '90s show a common area in the power spectrum for frequencies above 16-years that

presents an out-of-phase behavior until the end of the '90s.

When comparing the decomposed time series, we observed that the Nifio 3.4
anomaly and the PDO presented similar communal areas with the streamflow time series be-
tween 1970 and 1990 for the 2-8 years period. This can be observed through the higher peaks
in the WT (2-4 years and 4-8 years frequency) and in the CEEMDAN (IMF1 and IMF2)

decompositions in Figure 41b-c. Similar behavior can be seen in the 8-16 years period from
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1970, while the decomposition (wavelet in the 8-16 years frequency and IMF4) composite
shows oscillations with similar amplitudes. Also, the increase in the oscillation amplitude in the
16-32 years period coincides with the PDO and AMO's influence for a similar frequency (above
16-years). These results indicate that the streamflow of the study area is related to the analyzed

indices, mainly in the variability between 8-16 years and less frequently (~ 16 to 32 years).

Figure 42 - Power spectrum XTC (a) streamflow and El Nino 3.4, (b) streamflow and PDO
and (c) streamflow and AMO and Power spectrum WTC (d) streamflow and El Nino 3.4, (e)
streamflow and PDO and (f) streamflow and AMO.

[ 7
¢ :
8 8
& &
1940 1960 1980 2000 1940 1960 1980 2000
(d)
[ A
kS i
3 3
g &
1940 1960 1980 2000 1940 1960 1980 2000
(b)
: B
D @
> >
s 3
o o
o a
1940 1960 1980 2000 1940 1960 1980 2000
(c) ()

Source: Prepared by the author

The WTC between the streamflow and the Nifio 3.4 anomaly index (Figure 42d)

indicates significant areas with high values (> 0.8) over almost the entire series, at the beginning



130

of the 1940s for the 4-8 years period with influence in phase between the analyzed series. From

the mid-1940s, the index influences throughout the analyzed period are noted, but out of phase.

The WTC between streamflow and PDO (Figure 42¢) and between streamflow and
AMO (Figure 42f) indicates areas with high values (> 0.8) over almost the entire series. For the
PDO, there is an out-of-phase behavior at the beginning of the series until 1960 in the above
16-years period. As for the AMO, there is also an out-of-phase influence between 1940-1980.
Furthermore, both indices' effects throughout the analyzed series are observed in the results.
Rocha et al. (2019) investigated the influence of the PDO and AMO on the Standard
Precipitation Index using WTC and XWT for the same area and detected a correlation between

the 4-8 years and 16-32 years period.

7.4.2 Method for parameter selection

Hydrological time series are likely to be highly nonlinear and nonstationary. Thus,
the CEEMDAN and WT were applied to obtain multiple subseries, which amount to different
frequencies and parts of the streamflow time series. Prior to decomposition, the streamflow
series was standardized for faster convergence of the parameters. Subseries of the streamflow
for the different training and validation periods were selected as the input variables for the AR
model and HMM. In the AR model, each component of the decomposition process was fitted
for the training period, and the model order was chosen by the partial autocorrelation function
plot analysis and the model’s performance in the validation period. The orders of the AR models
for the WARM and CEEMDAN-AR are presented in Table 16. In the HMM, the model was
trained to vary the number of states from one to six. The states selected for the model were
based on the lowest Bayesian information criterion value and the model’s performance in the
validation period. The number of states for the models WHMM and CEEMDAN-HMM is
presented in Table 16. For the models without decomposition, the AR order and the number of

states for the HMM are shown in Table 17.

Table 16 - The optimal order of AR model and number of hidden states for the HMM in the
hybrid models for 3-, 5-, 10- and 15-year forecasts.

WT Decomposition WARM WHMM

D1 D2 D3 D4 D1 D2 D3 D4
Wi 4 4 4 1 4 4 3 3
W2 3 2 9 2 4 4 4 4
W3 2 2 12 13 4 2 3 2
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W4 3 3 2 6 4 3 2 2
W5 4 4 1 5 4 4 3 4
CEEMDAN CEEMDAN-AR CEEMDAN-HMM

Decomposition D1 D2 D3 D4 D1 D2 D3 D4

IMF1 9 9 9 9 4 4 3 3
IMF2 1 12 3 3 3 3 4 4
IMF3 9 1 9 1 4 3 4 3
IMF4 2 2 1 2 3 3 2 3
R 1 1 1 1 2 2 4 3

Source: Prepared by the author

Table 17 - The optimal order of AR model and number of hidden states for the HMM in the
models without pre-processing for 3-, 5-, 10- and 15-year forecasts.

Forecast Window AR HMM
D1 9 4
D2 10 4
D3 8 4
D4 11 4

Source: Prepared by the author

The correlation coefficient R was used as a parameter for the order of AR and HMM
models and the metrics were calculated both for the training and validation periods (Tables 18
and 19). The WARM was the model that performed better, while the WHMM and CEEMDAN-
HMM had similar performances. The AR and HMM models had poor performance compared
to the hybrid models in all analyzed periods (Table 19). IMFs 1 and 2 showed a lower
correlation coefficient compared to the other components, this is due to the irregular behavior
that these series have, as can be seen in Figure 41. In the multi-model framework, the fitted
models were coupled using the lasso regression. In the lasso regression, a penalty for non-zero
coefficients is added by penalizing the sum of their absolute values. As a result, some
coefficients are exactly zeroed. The lasso regression was adjusted by performing a k-fold cross-
validation and it showed a correlation coefficient of 0.98, 0.96, 0.95, and 0.78 for the analyzed
periods. The regression coefficients for each prediction window can be found in Table 20. The
highest regression coefficient belongs to the WARM, which performed better in all analyzed

periods.

Table 18 - Evaluation of hybrid models in modeling the subseries of streamflow for the
training and validation periods.

WT DecompositionR2 - WARM
Training Validation
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D1 D2 D3 D4 D1 D2 D3 D4
W1 0.87 0.87  0.87 024  0.36 0.28 0.27 0.23
w2 0.95 0.93 0.99 0.93 0.91 0.98 0.85 0.65
W3 0.99 0.99 1.00 099  0.96 096 098 0.85
W4 1.00 1.00 098 .00 0.93 0.93 0.85 0.91
W5 1.00 1.00  0.98 1.00 0.99 0.98 0.00 099

R2 - WHMM
WT DecompositionTraining Validation

D1 D2 D3 D4 D1 D2 D3 D4
W1 0.87 0.66  0.55 0.58  0.15 0.35 0.04 0.17
W2 054 052 039 0.60  0.42 0.02 026  0.19
W3 0.67 0.28 0.72 042  0.20 0.11 0.05 0.43
W4 0.79 0.78 0.62 0.61 0.20 0.77  0.82 0.49
W5 0.85 0.84 0.87 0.89 0.75 0.81 0.18 0.39
CEEMDAN — CEEMDAR-AR T
Decomposition Training Validation

D1 D2 D3 D4 D1 D2 D3 D4
IMF1 0.12 0.12  0.11 0.14  0.29 0.17  0.12 0.23
IMF2 0.66 096 093 0.93 0.12 0.25 0.53 0.93
IMF3 0.98 0.82 098 0.80  0.85 099 086  0.95
IMF4 0.98 099 092 098 098 0.13 0.98 0.98
R 0.99 099 098 099  0.99 .00 099 091
CEEMDAN CEEMDAN-HMM -
Decomposition Training Validation

D1 D2 D3 D4 D1 D2 D3 D4
IMF1 0.74  0.75 0.75 0.75 0.59 0.55 0.14  0.16
IMF2 0.56 0.41 0.49 0.68  0.25 026  0.08 0.74
IMF3 0.75 0.80  0.90 0.79  0.61 026  0.95 0.82
IMF4 0.72 0.76  0.56 0.68  0.39 0.56 080 0.84
R 0.66 0.60  0.87 0.60 0.78 0.81 0.84 0.67

Source: Prepared by the author

Table 19 - Evaluation of AR and HMM models in modeling the subseries of streamflow for
the training and validation periods.

Period AR HMM
Training Validation Training Validation
DI 0.06 0.07 0.61 0.14
D2 0.08 0.13 0.51 0.08
D3 0.10 0.22 0.75 0.22
D4 0.25 0.06 0.76 0.01

Source: Prepared by the author

Table 20 - Regression coefficients for the LASSO regression for each forecast window for 3-,

5-, 10- and 15-year forecasts.

Regression
coefficients

D1 D2

D3

D4
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Intercept 0.09
AR -0.16
WARM 0.89
CEEMDAN-AR -0.04
HMM 0.19
WHMM -
CEEMDAN-

HMM i

0.09
0.88

0.18

-0.02

0.11

0.88

0.16

0.15
0.02
0.71

0.26

0.08

Source: Prepared by the author

7.4.3 Comparative analysis

The forecast algorithm applied the AR and HMM using as input variables the

subseries of the decomposition methods. For the models without the decomposition, the

forecast was performed using only the AR and the HMM. The medians of the models were

employed to form the multi-model. A comprehensive comparative analysis based on different

metrics is needed to reveal the effect of the applied methods on streamflow prediction accuracy

(Table 21). The R, RMSE, and MAE, were used as metrics to evaluate the performances of the
median forecast values of the HMM, AR, WARM, WHMM, CEEMDAN-HMM, CEEMDAN-

AR, and the multi-model. The RMSE is an ideal error metric to evaluate the global fitness of

series that have high streamflow values, while the MAE gives a measure of overall errors

(WANG et al., 2019; WEN et al., 2019).

Table 21 - The prediction performance indicators of WARM, WHMM, CEEMDAN-AR,
CEEMDAN-HMM, AR, HMM, and Multi-model at Iguatu station.

Model Indicator  3-years S-years 10-years  15-years
MAE 2678 2699 2000 1931
(m3/s)
AR RMSE 2684  27.09 2206 2048
(m3/s)
R2 0.96 0.54 0.30 0.01
MAE 204 2081 1503 1779
(m3/s)
WARM RMSE 22.49 21.53 16.42 18.67
(m3/s)
R2 0.24 0.01 0.08 0.00
?ﬁl‘?/E) 16.2 23.17 14.27 16.39
CEEMDAN-AR RMSE
17.2 23.53 17.76 18.11

(m3/s)
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R2 1.0 0.38 0.08 0.06
MAE 1491 2824  19.92 19.65
(m3/s)

HMM RMSE 1686 3423 2153 21.65
(m3/s)

R2 0.36 0.41 0.00 0.01

MAE 1854 2666 1850 1770
(m3/s)

WHMM RMSE 2087 2739 2076 1972
(m3/s)
R2 0.89 0.54 0.13 0.00
?ﬁ?/];:) 1292 2965  17.62  19.53

CEEMDANHM (I8

M : 1465 3080 1924 2245
(m?/s)
R2 0.85 0.92 0.35 0.04
MAE 1785 2227 1599  16.80
(m3/s)

MULTI-MODEL RMSE
FORECAST (m?/s) 18.74 22.90 17.41 18.10

R2 0.18 0.11 0.01 0.00
Source: Prepared by the author

The comparison between the AR and the HMM models indicates that the
forecasting accuracy of the AR model is greater than the HMM model, particularly for short-
term forecasts, however, the HMM presents a lower MAE and RMSE for the 3-year forecast.
This is an indication that the HMM can capture essential features present in streamflow series
in the short term; however, at longer timescales, the Markov transition does not perform well,
which according to Erkyihun et al. (2017), is a common characteristic of Markov chains. For
the analyzed gauge station at the 3-year forecasting, the HMM shows an improvement over the
AR model with a 44% decrease in RMSE and a 37% decrease in MAE. This difference between
the AR and HMM in performance in terms of MAE and RSME can be attributed to nonlinear
and nonstationary features present in the streamflow time series, which the AR model has
limited ability to accurately represent due to linearity and normality assumptions. For the other
forecasting windows, the AR shows a decrease of an average of 5% in RMSE and MAE. The
forecast ensembles and the historic flows for the AR model are shown in Figure 43. In the
Figure, during short-term forecasting, the median of the ensembles (horizontal line in the boxes)
tracks the variability of the historic flows (red line) well, but not well during the long-term
forecast. The AR model shows a larger uncertainty in the projections, particularly for longer
forecast windows. Comparing the AR and HMM (Figure 44), the HMM shows a lower

uncertainty.



Figure 43 - Forecasting ensembles (boxplot) and the historic flows (red) for the AR model.

Figure 44 - Forecasting ensembles (boxplot) and the historic flows (red) for the HMM model.
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The hybrid models that applied the AR model (WARM and CEEMDAN-AR)
showed an improvement regarding the AR model for the all projections, presenting an average
decrease of 18% and 24% in MAE, and a decrease of 17% and 20% in RMSE, respectively.
The CEEMDAN-AR (Figure 46) shows great uncertainty compared to the WARM (Figure 45).
For the 15-year window, the CEEMDAN-AR can track the streamflow's variability quite well
for the first years, however, the accuracy reduces after some time. In this study, the aim was to
predict the state of the system and anticipate its future state. It was observed that most boxplots
show little variability when compared to the observed values, indicating no transitions between
states of low and high flows. Among the hybrid models that applied HMM (WHMM and
CEEMDAN-HMM), the forecast accuracies showed an improvement regarding the HMM for
the forecasted windows with a decrease in the MAE and RSME, and an increase in the R. Thus,
the arrangement of these preprocessing approaches with the HMM model can improve the
annual streamflow forecast accuracy, particularly for long-term forecasting. The finding of our
study agrees with the other studies (WANG et al., 2019; WEN et al., 2019), which stated that
hybrid model can enhance the forecasting accuracy of hydrological time series. Both models
(WHMM and CEEMDAN-HMM) showed larger uncertainty for all the forecasting windows
(Figures 47 and 48).

Figure 45 - Forecasting ensembles (boxplot) and the historic flows (red) for the WARM
model.
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Figure 46 - Forecasting ensembles (boxplot) and the historic flows (red) for the CEEMDAN-
AR model.
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Figure 47 - Forecasting ensembles (boxplot) and the historic flows (red) for the WHMM
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Figure 49 shows the streamflow prediction at the four prediction windows for the
AR, HMM, WARM, WHMM, CEEMDAN-AR, CEEMDAN-HMM, and multi-model.
Looking at the LASSO regression coefficients, WARM contributes more to the multi-model, so
it is observed that the behavior of the multi-model is similar to that of the WARM. The models
that incorporate the decomposition into IMFs can predict better low flows. Although many
studies apply hybrid models with WT in hydrological and water resources forecasting, Quilty
and Adamowski (2018) stated that during wavelet decomposition sources of errors may be
introduced, which are related to the boundary conditions. These sources of errors arise during
wavelet decomposition when one seeks to calculate wavelet or scaling coefficients at a
particular time and scale that cannot be calculated correctly (i.e., without introducing error).
The boundary condition issues are associated with three main issues: the use of ‘future data,’
inappropriately selecting decomposition levels and wavelet filters, and not carefully
partitioning calibration and validation data (QUILTY & ADAMOWSKI, 2018). The
CEEMDAN can adaptively decompose a series of frequency components without a
predetermined basis function, this makes it an improved method for analyzing nonlinear and
nonstationary time series. Although some decomposition models have some drawbacks, the
hybrid models can outperform their counterpart models, without decomposition, particularly
for long-term projections and for the average annual time series such as the studied case, where
the series has a large variability from year-to-year. The multi-model performance outperformed
all the other models in terms of MAE and RMSE, particularly for long-period forecasts.
Therefore, the multi-model can achieve better prediction accuracy than the other models applied
in this study, demonstrating that the decomposition method coupled with a prediction algorithm
and a regression method can improve the prediction accuracy of hydrological series and capture

the dynamic and highly variable characteristics present in hydrological processes.

Figure 49 - Forecasted and observed average annual streamflow during the 3-, 5-, 10-, and 15-
year period by WARM, WHMM, CEEMDAN-AR, CEEMDAN-HMM, AR, HMM, and
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Multi-model at Iguatu station.

50 50
40
@ @
Ex E.
= =
g :
& 20 S
2 8
@ 5]
10
0
2012 2012 2014 2015 2016 2010 2011 2012 2013 2014 2015 2016
- AR =& CEEMDAN-HMM -== MULTI-MODEL WVWARM - AR =& CEEMDAN-HMM == MULTI-MODEL WARM
== CEEMDAN-AR =—— HMM =+~ Observations == WHMM == CEEMDAN-AR =—+=— HMM == Observations == WHMM
50
40
®
Ex
=
2
E 20
2
& \
5 . /\;. A
0 J. AV AN b i
2005 2006 2007 2008 2008 2010 2011 2012 2013 2014 2015 2016 2000 2002 2004 2006 2008 2010 2012 2014 2016
- AR =& CEEMDAN-HMM -== MULTI-MODEL WVWARM == AR =& CEEMDAN-HMM === MULTI-MODEL -+ WARM
=+ CEEMDAN-AR =—— HMM =+ Observations == WHMM == CEEMDAN-AR =—+=— HMM == Observations == WHMM

Source: Prepared by the author

Some models analyzed showed a remarkable amount of persistence from initial
conditions, where the model can predict long-term well. This persistence can be associated with
decadal and multidecadal time frames. Several studies relate low rainfall and extended drought
in the Northeast region of Brazil with the El Nifio phenomenon (MARENGO, 2008), and
decadal variability of rainfall is associated with climate indices such as the PDO and the AMO
(KAYANO & ANDREOLLI, 2007; KNIGHT et al., 2006). Also, long-term projections indicate
that there will be a trend for an increase in the frequency of consecutive dry days in the
Northeast region (MARENGO, 2008). In addition, Rolim and Souza Filho (2020) showed that
the low-frequency component of a streamflow time series of the Northeast region conditions
the variability of a given year of the streamflow series. These features of hydrologic variability
of the region where the station gauge is located are likely to influence the forecast accuracy.
Furthermore, as shown in the XWT and WTC results, there is a strong influence of high and
low-frequency climate indices in different frequencies and periods along the analyzed time
series, which may influence the prediction of the analyzed dataset. The last years of the analyzed
time series show an even more challenging feature due to the long-drought period (2012-2018)
that affected the region influenced by a serial combination and association of the climatic

phenomenon (PONTES FILHO et al., 2020).
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7.5 Conclusion

In this study, a multi-model framework to predict short- and long-term average
annual streamflow and a comparative analysis of six prediction models were applied to an
annual streamflow time series. The models selected to form the multi-model were the WARM,
WHMM, CEEMDAN-AR, CEEMDAN-HMM, AR, and HMM. The hybrid models' that
applied the WARM methods had a greater contribution to the multi-model, showing that the

hybrid method overcomes the limitation of stand-alone models.

For short-term (3-years) forecasting, the hybrid models that applied the HMM
showed better accuracy over the AR model, while for long-term forecasting, the model that
applied the WT decomposition performed better. Further, the arrangement of these
preprocessing approaches can improve the annual streamflow forecast accuracy, particularly
for long-term forecasting. Further, the multi-model presented the lowest RSME and MAE on
average for all the forecasted windows compared to the other models. Thus, the multi-model
can be helpful for reservoir management and provide new methods for hydrological forecasting
based on data-driven modeling. Although the proposed models obtained satisfactory prediction
performance, this study focuses on univariate streamflow forecasting without considering
exogenous variables that affect streamflow, such as rainfall and climatic indices. However, we
presented results that show that climatic indices such as El Nino, PDO, and AMO present great
influence over the analyzed streamflow. In future research, other variables will be considered

in the modeling of streamflow.



142

8 FINAL CONCLUSIONS AND REMARKS

This study aimed to develop a methodology for detecting deterministic chaos and
analyzing complexity in rainfall and streamflow time series using nonlinear, chaos theory, and
information theory methods. Additionally, a methodology was applied to predict those time
series using machine learning based on the diagnosis of the presence of deterministic chaos,
and a multi-model based on stochastic models was proposed.

In the article on chaos detection using nonlinear and chaos theory methods, the
correlation dimension (CD) was employed to identify chaos. The results showed that more than
70% of the rainfall and 80% of streamflow exhibited saturation a point on the monthly timescale,
indicating the presence of chaos. However, as the timescales increased, the detection of chaotic
series decreased. Another method, the largest Lyapunov exponent (LLE), was used to detect the
presence of deterministic chaos and assess predictability. While rainfall data showed positive
LLE values, indicating the presence of deterministic chaos, three streamflow stations displayed
negative exponents, suggesting non-chaotic behavior. Overall, streamflow exhibited higher
LLE values, indicating stronger chaos compared to rainfall. Since predictability is inversely
proportional to the LLE value, precipitation stations with deterministic chaos are predictable
for longer periods compared to streamflow.

The presence of chaos in rainfall and streamflow can be detected even when
considering different timescales. This study highlights the limitations of long-term predictions
for streamflow due to its chaotic nature, which has significant implications for water resource
management and the development of integrated plans. These insights shed light on the evolution
of hydrological variables and their dynamics in both time and space, offering valuable
information for water resource management applications.

The second article used information theory methods, specifically multiscale entropy
(MSE), to understand complexity in the time series. The analysis of rainfall and streamflow
data uncovered interesting patterns and insights about their complexity and predictability. When
comparing the MSE values between rainfall and streamflow, it was observed that streamflow
had lower entropy values for smaller timescales, indicating greater regularity or predictability
in the time series data, suggesting reduced complexity or variability over time. However, it's
important to note that this predictability is only for short-term durations, as indicated by the
findings of the first article. Notably, this results from MSE takes into consideration complexity
over multiple timescales. Furthermore, in the analysis of the Hurst exponent, most streamflow

time series displayed higher persistence compared to the rainfall analysis. This higher
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persistence can have an impact on predictability. Additionally, the study revealed a decrease in
complexity for half of the rainfall stations in the State. However, two streamflow stations in the
southeastern region showed increased entropy, suggesting heightened complexity in those
specific time series.

Understanding the dynamics of hydrology is crucial in comprehending the behavior
of hydrometeorological variables. The complexity of these series varies across different
locations and over time. Specifically, in Ceara, the northwestern part of the state exhibits higher
complexity in both rainfall and streamflow. This knowledge is relevant for various processes
and plays a vital role in managing water resources. The methodology employed in this thesis
can be extended to analyze other hydrometeorological systems, thereby highlighting the
presence of deterministic chaos in natural environments. We argue that chaos theory could
provide a better understanding of hydrological systems compared to the commonly used
deterministic/stochastic paradigm.

In the third article, based on the results of the first article, 20 rainfall time series that
exhibited the presence of deterministic chaos were selected as input data for machine learning
models. The study incorporates the principles of chaos theory and employs various machine
learning techniques to analyze the rainfall dynamics. The data was divided into training and
testing windows, and the embedding dimension was chosen based on the accuracy of the models
during the training phase. It was found that most stations required embedding dimensions
greater than 10 and relied on information from at least three years prior to the current time for
accurate forecasting. This order of magnitude in the embedding dimension, determined by
forecasting accuracy, is lower than the embedding dimension found using the CD method in the
first article. This finding aligns with numerous studies suggesting that the optimal dimension
for forecasting may not necessarily be the best dimension to represent the chaotic dynamics of
the time series. Furthermore, the study found that each location had unique rainfall patterns and
required different models for accurate forecasting. During the training phase, the RF model
outperformed the other models, and the same was observed in the testing phase. However, the
SVM also performed well in many stations and had similar accuracy to the RF model.

The stations that had the had the highest NSE in testing phase, namely, Tiangua e
Ubajara, had a predictability horizon of approximately 48 and 49 months, respectively, which
corresponded to the duration of the testing period in the third article. On the other hand, the
Mulungu station exhibited an even higher predictability horizon of approximately 60 months.
This indicates that the rainfall data at the Mulungu station could be accurately forecasted for a

longer period compared to other stations. However, it is important to note that despite having a
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higher predictability horizon, the station had a low NSE value. This occurrence could be
attributed to a possibility that the low NSE value indicates a discrepancy between the observed
and predicted rainfall values at the Mulungu station. This discrepancy may be influenced by
factors that are not adequately captured by the forecasting model used in the study, such as local
terrain features, microclimates, or other complex interactions that affect rainfall.

Considering the results of articles two and three, it was observed that most stations
exhibiting a Hurst exponent close to 0.5 had the lowest values of NSE. This can be justified by
their random behavior, making the time series hard to predict. On the other hand, stations like
Ipueira and Ubajara, which had a Hurst exponent higher than 0.5, also demonstrated high
performance in terms of NSE with the LSTM model. This can be seen as an indication of long-
term persistence in the series, which the model was able to capture.

This prediction study demonstrates that these data-driven methods can provide
satisfactory results for rainfall dynamics without requiring much physical information.
However, including well-known climatic indices to influence the rainfall pattern could improve
the forecasting accuracy, but it may significantly increase the problem dimension and impact
the algorithm's runtime, requiring further studies to assess its feasibility. Another limitation of
this work was the lack of an uncertainty analysis regarding the rainfall forecast. We believe that
including this step could enhance the results and further investigate the potential of the
forecasting.

The final article utilized a multi-model framework to forecast the average annual
streamflow, both in the short-term and long-term, for a specific station. The framework
consisted of six prediction models: WARM, WHMM, CEEMDAN-AR, CEEMDAN-HMM,
AR, and HMM. Among the hybrid models, the WARM had the highest contribution to the multi-
model. This finding suggests that the hybrid method overcomes the limitations of individual
models. The arrangement of these preprocessing approaches could improve the accuracy of
annual streamflow forecasting, particularly for long-term predictions. The multi-model
outperformed the other models in terms of average RSME and MAE for all the forecasted
windows. However, similar to the previous article, this study focused on univariate streamflow
forecasting and excluded exogenous variables that may impact streamflow, such as rainfall and
climatic indices. Nevertheless, the study revealed that climatic indices like EI Nino, PDO, and
AMO have a significant impact on the analyzed streamflow.

Furthermore, the station analyzed in the fourth article was selected to apply a more
stochastic approach due to its relevance in terms of water supply and the absence of

deterministic chaos, in the seasonal and annual timescale. However, at the monthly timescale,
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this station had a predictability horizon of only up to 4 months. This limited predictability
horizon could be one of the reasons why the stochastic forecast models performed poorly.

To summarize, the main objective of this work was achieved through a combination
of articles, each presenting a different methodological approach for detecting chaos and
analyzing complexity in rainfall and streamflow series, while also proposing methods for the
forecast of these variables. For future studies, the following recommendations can be made:

e Additional studies are needed to determine the most effective
complementary methods for simultaneously assessing the reliability of

results and making direct inferences regarding these methods' outcomes.

e Future studies aiming to explore complexity should consider employing
multiple methodologies to capture a wide range of cases and develop
complementary approaches. This could involve examining the complexity

of rainy days or exploring complexity across different decades.

e Further investigation is necessary to address the uncertainty associated

with machine learning-based rainfall forecasting.

e More research is needed to incorporate climate indices into the structure

between stations in the rainfall and streamflow forecasting framework.
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APPENDIX A - SUPPLEMENTAL FILES OF CHAPTER 4

This section presents the additional figures mentioned in the main article. The Pacific
Decadal Oscillation (PDO) monthly time series from 1931 to 2016 to analyze its relation to
rainfall patterns. Through the reconstruction of phase space, which required a five-month delay
time and five dimensions, we discovered significant patterns. The recurrence plot (RP) of PDO
showed noticeable white stripes around the years 1972 and 1997, matching with a breakpoint
observed in the rainfall time series around 1971. The shape of this RP was found to be

comparable to patterns identified in previous research (Ogunjo & Fuwape, 2020).

These findings strengthen the association between PDO and regional rainfall patterns,
offering a better understanding of climatic variability and its potential impact on weather-
dependent activities. Given the marked breakpoints, future research should explore these

periods more closely, seeking potential triggers and consequences.

Figure A1 — PDO recurrence plot
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APPENDIX B - SUPPLEMENTAL FILES OF CHAPTER 6

The interplay between delay time and embedding dimensions influences the precision
of predictions. The selection of dimensions for each station was determined based on the
stabilization of model errors in most machine learning models, guided by the RMSE values
(B1). The RF and SVM methodologies showed marginal prediction accuracy enhancements
with increasing dimensions, as evidenced by the RMSE. Other methods, such as LAP, exhibited

substantial RMSE variation with embedding dimension changes.
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Figure B1 — Evolution of RMSE values across model dimensions ranging from 2 to 30 for the
20 rainfall stations.
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