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ABSTRACT

In this master”s thesis, we present a modified version of the Hertz contact theory, providing not

only the elastic, but also the viscous characteristics of living cells. The Hertzian model imposes

limitations When applied to complex scenarios involving larger deformations, non—ideal surfaces,

and adhesive interactions. Despite its limitations, the Hertz model provides quick estimations and

initial assessments of mechanical properties in a variety of experimental setups. However, When

dealing With larger deformations, nonlinear effects, and adhesive interactions, more sophisticated

models and techniques might be required to accurately understand the viscoelastic properties of

biological samples. In this sense, conventional Hertz equationºs Youngºs modulus is reformulated

as a time—dependent function, enabling the analysis of the viscoelasticity. Thus, in order to prove

our model experimentally, we used the atomic force microscopy (AFM) technique to explore

the mechanical properties of L929 fibroblastic and OFCOL ll osteoblastic cells. Furthermore,

the proposed model was rigorously tested in various conditions, simulating different geometries

of the indenter (conical, flat, and spherical), with minimal disparity of the estimated Young7s

moduli obtained from the power—law and Hertz models fitted to actual cell stiffness.

Keywords: Hertz contact theory; atomic force microscopy; nonlinear effects; mechanical

properties; viscoelasticity.



RESUMO

Nesta dissertação de mestrado, apresentamos uma versão modificada da teoria de contato de

Hertz, fornecendo não apenas as características elásticas, mas também as viscosas de células

vivas. O modelo Hertziano impõe limitações quando aplicado a cenários complexos envolvendo

deformações maiores, superfícies não ideais e interações adesivas. Apesar de suas limitações, o

modelo de Hertz fornece estimativas rápidas e avaliações iniciais de propriedades mecânicas em

uma variedade de configurações experimentais. Entretanto, ao lidar com maiores deformações,

efeitos não lineares e interações adesivas, modelos e técnicas mais sofisticados podem ser

necessários para compreender com precisão as propriedades viscoelásticas de amostras biológicas.

Nesse sentido, o módulo de Young da equação convencional de Hertz é reformulado como

uma função dependente do tempo, possibilitando a análise da viscoelasticidade. Assim, para

comprovar experimentalmente nosso modelo, utilizamos a técnica de microscopia de força

atômica (AFM), a fim de explorar as propriedades mecânicas das células fibroblásticas L929 e

osteoblásticas OFCOL ll. Além disso, o modelo proposto foi rigorosamente testado em diversas

condições, simulando diferentes geometrias do indentador (cônico, plano e esférico), com

disparidade mínima dos módulos de Young estimados obtidos a partir dos modelos power—law e

Hertz ajustados a rigidez real da célula.

Palavras-chave: teoria do contato de Hertz; microscopia de força atômica; efeitos não lineares;

propriedades mecânicas; viscoelasticidade.
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1 INTRODUCTION

The Hertz contact theory is widely used to obtain rheological information from

biological samples, being originally developed for elastic materials without considering Viscosity.

Regardless of this limitation, many researchers choose to use the Hertz model due to its simplicity

and ease of implementation. In this context, our work aims to advance scientific knowledge

by studying and characterizing the microrheology of living cells through a modified Hertz

model. Our modified model incorporates a time—dependent Young7s modulus, allowing us to

obtain Viscoelastic information and explore the nonlinear Viscoelastic regime of cells. Thus, by

investigating the microrheological properties of living cells, we gain valuable insights into their

structure, function, and mechanical interactions. Therefore, this study provides a comprehensive

understanding of the complex behavior of living cells under varying mechanical forces and

dynamic changes, with significant implications for regenerative medicine, cell therapies, and the

comprehension of cell mechanics in health and disease.

In Chapter 2 of this thesis, we have a theoretical framework with biological argu—

ments about the biomechanics of living cells, focusing on animal eukaryotic cells, which were

substantial for the investigation developed in this work. We then clarify the mechanical func—

tions performed together by three main components involved in cell mechanics: cytoskeleton,

extracellular matrix, and cell junctions. These structures gain prominence among the other

cellular components, as they interact with each other, affecting their microrheological properties.

Throughout this chapter, we further address the historical development of Rheology and the

relevance of the Microrheology to comprehend biological systems. Moreover, as will be better

explained later, we will see that Microrheology consists of a set of active and passive techniques,

such as magnetic tweezers, microlluidic filtration, cytometry, atomic force microscopy, among

others. Particularly, we used an atomic force microscope (AFM) in this study, approaching about

the Hertz contact theory and how it is related with the Boltzmannºs Superposition Principle.

In Chapter 3, we describe in detail the materials and methods adopted to measure

the microrheological properties of two different cell lines: L929 (fibroblast cells) and OFCOL ll

(osteoblastic cells). lnitially, we will present the specifications of the atomic force microscope

and the cantilever used for contact mode force curve measurements. In addition, we will briefly

describe the main calibrations to be performed on the equipment so that it works properly and

we can obtain more accurate results. Then, we will perform the cell culture protocol according

to established guidelines.
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Finally, in Chapter 4, we Will present the theoretical model proposed to describe the

microrheological properties of living cells, taking into account the experimental results obtained.

Our theoretical model seeks to fill the gap left by the Hertz model, incorporating the effects

of viscosity in the rheological calculations of living cells. We also show detailed experimental

results, including stress—strain curves, modulus of storage and loss, and statistical analysis of the

obtained data. These results provide a deeper understanding of the microrheological properties

of L929 fibroblasts and OFCOL II osteoblasts, contributing to the development of the field of

biomechanics, paving the way for future research and clinical applications.
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2 THEORETICAL FRAMEWORK

This chapter focuses on providing a physical understanding of the biomechanics

of living cells. Firstly, we will discuss the biological mechanisms that enable relaxation and

contraction of cells to fully comprehend their complex mechanical behavior. In this context, we

will consider the role of cellular tensegrity, which involves the interplay between the cytoskeleton,

the extracellular matrix, and the cell junctions. Secondly, our investigation will delve into the

application of various cellular microrheology techniques. In this way, we will elucidate the

valuable insights and data that can be extracted from each technique, while also acknowledging

their inherent limitations. Lastly, we will make an explanation about the linear viscoelasticity

theory, specifically in the context of nanomechanical characterization of biosamples, focusing on

Hertz Contact Theory and Boltzmannºs Superposition Principle. To summarize, by providing a

detailed analysis of these fundamental concepts and techniques, this chapter aims to enhance the

readers” understanding of the biomechanics of living cells.

2.1 Biomechanics of living cells

Considered the fundamental unit of life, the cell (from the Latin word cella, which

means "small chamber", reminiscent of chambers in a monastery) was first observed by the

British scientist Robert Hooke (1635—1703). In his inlluential work "Micrographia" published

in 1665, Hooke used a compound microscope of his own design to examine a thin slice of cork

under magnification. This allowed him to observe small box—like structures with empty spaces

that showed a similarity to miniature chambers, as depicted in Figure 1. This discovery was

a milestone in the history of biology, as it established the existence of basic structural units

in living organisms. Subsequently, other scientists such as Matthias Schleiden and Theodor

Schwann contributed to the development of the cell theory, giving rise to the field of Cytology.

Currently, living cells can be categorized into two primary groups: prokaryotes and

eukaryotes. This classification is determined by the presence or absence of a nucleus that is

surrounded by a nuclear membrane, effectively separating the genetic material from the cellular

cytoplasm. Represented by bacteria and cyanobacteria, prokaryotic cells are simpler and more

primitive, not possessing a true nucleus, i.e., their genetic material is dispersed in the cytoplasm.

On the other hand, eukaryotes encompass cells from the Animalia, Plantae, Fungi, and Protista

kingdoms, possessing a distinct nucleus where the genetic material is dispersed.
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Figure 1 — Drawing made by Robert Hooke to describe the cell wall of cork cells based on his
observations of the Quercus suber plant, known as the cork oak. In this plant, Hooke
was able to visualize and describe the cellular structures that make up the cork.

Source: (HOOKE, 1665, p. 114).

Over the past few decades, research in the field of cellular biomechanics has made

significant progress, rapidly advancing our understanding of the mechanics of living systems,

with a wide range of biophysical, physiological, and medical applications. In this study, our focus

will be on exploring the biomechanical properties of different lineages of animal eukaryotic cells

among the vast array of cell types. Keeping this in mind, it is crucial to develop physical and

mathematical models that assist us in explaining the mechanics of cells and tissues, as well as

how their adhesion can affect cell stiffness. This will expand our understanding of differentiation,

diseases, and mutations. The main cellular components responsible for responding to mechanical

stresses applied to the cell surface are the cytoskeleton, the extracellular matrix, and the cell

junctions, as will be clarified in the following sections.

2.1.1 Cytoskeleton

As shown in Figure 2, the cytoskeleton of eukaryotic cells consists of three main

semillexible fi laments: ac tin fil aments, intermediate fila ments, and microtubules, which are

arranged in a worm—like chain (WLC) configuration.
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Figure 2 — Schematic representation of the cellular cytoskeleton: actin filaments (in red), intermediate
filaments (in purple), and microtubules (in green), highlighting the structural components
of the cytoskeleton.

MicrotubulesActin filaments Intermediate filaments

Source: Created by the author with BioRender.

2.1.1.1 Actin flaments

Commonly situated in the cortex and near the cell membraneºs outer edges, the actin

filaments are considered the thinnest among the other filaments that compose the cytoskeleton,

which is why they are also known as microfilaments. The diameter of these filaments can range

from 6 to 8 nanometers. Their structure is composed of actin monomers, referred to as G—actin,

which is a globular protein characterized by its compact and three—dimensional shape. These

monomers tend to associate in a preferred orientation, ensuring the polarity of the resulting double

helical Hlament called F—actin, as illustrated in Figure 3. The helical shape is typically achieved

through the association of actin filaments with fragments of the myosin molecule, resulting in

arrowhead—like ends. This polarization leads to a faster process of F—actin polymerization with a

greater attraction of G—actin monomers at the barbed end (+). Conversely, the pointed end (—)

tends to remove monomers more rapidly, promoting depolymerization. Despite this, when actin

filaments are associated with stabilizing proteins, they can also adopt a more stable form.

Among the various mechanical functions of the cell performed by the actin—myosin

filament network, we can highlight: cell shape and cell movement, interactions with membrane

receptors, and formation of the contractile ring during cell division. This filamentous tangle

constitutes the actin cortex and plays a vital role in certain dynamic processes such as endocytosis,

exocytosis, cell adhesion, and cellular protrusion expansion. Moreover, cellular locomotion
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Figure 3 — Formation of double helical F—actin structure from the G—actin monomers.
It is possible to observe the barbed end (+) attracting a greater amount of
monomers, while the pointed end (—) displays a higher rate of monomer
removal.

Actin monomers

(G'ªCtm) Filament ]
...... ff,—

“ªma” k_D “ "“'—«Í, (ªx—,ª _“,“ ff !
,. ], "xxx.“ ,nl "'

Filament 2

“, Double helical filament
..e/r (F -actin)

Source: Created by the author.

on solid substrates is only possible through the establishment of specialized contact regions

between the cell and the extracellular matrix. This is facilitated by the generation of contractile

forces, the presence of internal cellular stress (known as prestress), and the association of

these phenomena with traction movements. Consequently, as the cytoskeleton experiences

consecutive substrate adhesion and readaption to the surrounding environment, certain structures

enable the extension of the cytoplasm in the direction of movement, as exemplified in Figure 4.

This, in turn, effectively displaces the cell. ln more detail, what happens is the polymerization

of microfilaments, which propels the plasma membrane forward, allowing the formation of

protrusions called lamellipodia due to their blade—like shape.

Another relevant aspect worth mentioning is the impact caused by the alterations to

the cytoskeleton due to the presence or absence of gelsolin in the actin cortex. Gelsolin is an

accessory protein responsible for sequestering actin monomers. Additionally, when gelsolin is

activated by binding to CaH, it can also induce the shortening and fragmentation of the actin

filament it binds to. This nomenclature stems from the direct association between gelsolin and

cytoplasmic phase transitions known as the gel (denser and more viscous) and sol (more fluid)

states. This occurs because when actin filaments are shortened, the cytoplasm becomes more

liquefied, while in contrast, an increased quantity of actin filaments results in a more solidified
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cytoplasmic environment.

Figure 4 — Representation of cell movement and the role of actin fila—
ments: (l) Microfilament polymerization with the induction
of lamellipodium protrusive extension. (2) New adhesions are
formed due to the membrane extension. (3) Then, contractile
forces produced by stress fibers generate tension, allowing
cell body movement. (4) The de—adhesion process takes place
as a transition from strong adhesions to weak local adhesion to
the substrate. As the cell retracts its edge, old adhesions enter
an intermediate state of adhesion without the presence of ten—
sion fibers (GREENWOOD; MURPHY-ULLRICH, 1998).
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2.1.1.2 Intermediatejílaments

Intermediate filaments, unlike microfilaments, are not composed of globular pro—

teins, but rather more than 50 different types of fibrous proteins, such as keratins, desmin,

vimentin, among others. This association of mostly polymerized proteins confers the formation

of coiled—coil structures, which exhibit high mechanical resistance to traction forces. The name

"intermediate" is attributed to the fact that these filaments have an average diameter, ranging

from 8 to 12 nanometers, when compared to microfilaments and microtubules. In addition, as the

intermediate filaments do not have polarity, they guarantee greater stability to the cytoskeleton,

even contributing to the anchoring of cellular organelles.

2.1.1.3 Microtubules

Microtubules are composed of monomers of the globular protein tubulin, which form

a dimer of two similar polypeptide chains called 06 and B tubulins through a strong binding. They

are approximately cylindrical and hollow, with the largest diameter among the filaments that

make up the cytoskeleton, ranging from 22 to 24 nanometers. These tubulin dimers are dispersed

throughout the cytoplasm and organize themselves in an oriented manner, generating polarization

of the microtubules, which allows for the directed transport of different structures along them.

Within the cell, microtubules perform a variety of essential functions, such as determining

cell shape, organizing the cytoplasm, and being responsible for the transport of vesicles and

organelles. Thus, during cell division, microtubules are crucial for chromosome separation.

These structures are highly dynamic as they can continuously polymerize and depolymerize,

adjusting to the cellºs needs in terms of intracellular transport and structural reorganization.

2.1.2 Extracellular matrix and the elastic fiber system

The extracellular matrix (ECM) can be understood as a three—dimensional network of

macromolecules responsible for filling the intercellular spaces, mainly composed of proteins and

carbohydrates. This complex of macromolecules tend to associate in a way that forms a set of

different structures, allowing us to subdivide the ECM into three categories: fibrillar components,

non—fibrillar components, and microfibrils, as described in Figure 5 .

The first one, called fibrillar components, consists of fibrillar collagens and elastic

fibers. They may contribute to the proper function of tissues in response to mechanical stresses
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Figure 5 — Illustration of the components of the extracellular matrix, which consists
of a network primarily composed of proteins, such as collagen fibers, and
carbohydrates.
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and strains. While fibrillar collagens form long and fibrous structures that provide strength and

structural support to various tissues, elastic fibers, on the other hand, are specialized components

that provide elasticity and retraction properties to tissues.

The second category, know as non-Hbrillar components, includes proteoglycans

(PGs), i.e., protein molecules that contain carbohydrates, and the group of non—collagen structural

glycoproteins. On the one hand, proteoglycans consist of a central protein linked to long and

unbranched carbohydrate chains called glycosaminoglycans (GAGs). These elongated GAG

chains give proteoglycans their viscous and gelatinous properties and play an important role

in compressive strength, maintenance of hydration, and regulation of the cellular environment.

In contrast, glicoproteins are proteins to which shorter and less complex carbohydrate chains
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are attached. Glicoproteins have several functions, including cell recognition, cell adhesion,

molecular transport, and cellular signal transduction.

The last group encompasses the microfibrils, which are composed of collagen type

Vl (ColVl) and elastin proteins. ColVl forms complex networks that give strength and support

to tissues, while elastin gives remarkable Hexibility and elasticity that facilitates stretching and

subsequent recovery from deformation. Together, these two proteins contribute to the overall

integrity and functionality of tissues, ensuring that they can withstand mechanical stress and

maintain their optimal performance.

Thus, among these categories of macromolecules, there are two proteins that are

directly related to the elastic properties of the ECM, namely elastin and fibrillin. Jointly, they

form the elastic fiber system, which has been given this name because of its spring—like behavior

and its ability to deform and return to its original shape without expending energy.

Figure 6 — Cycle of retraction and distension of the elastic fiber system.

Source: Created by the author.

Figure 6 illustrates how the elastin molecules rearrange themselves in the elastic fiber

system during the retraction and distension cycle. Furthermore, because elastin is not a water—

miscible protein, it tends to organize itself into small hydrophobic domains, forming internal

amino acid structures (in red) that are separated from the hydrophilic region. Nevertheless, when

these hydrophobic domains experience deformation forces, the system tends to return to an

equilibrium state in accordance with Hooke,s law. As a result, the amino acids exposed to the

surrounding aqueous environment reassemble, leading to the retraction of the entire ensemble,
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thus shortening the elastic fiber system.

2.1.3 Cell junctions

Cell junctions are specialized structures distributed along the plasma membrane

that perform several functions, including facilitating adhesion and nutrient exchange between

cells (known as intercellular junctions) and between cells and the extracellular matrix (known

as cell—matrix junctions). However, it is important to emphasize that not all animal cells

have cell junctions, as is the case with red blood cells. Additionally, it has been observed

that certain medical conditions, such as bacterial infections, cancer, and metastasis, are directly

correlated with defects in specific cell j unctions. Hence, comprehending the biological arguments

concerning the mechanical properties of these structures and their simultaneous interaction with

the cytoskeleton and the ECM allows us to approach a field of knowledge that bridges the gap

between physics and biology.

2.1.3.1 Cell-celljlmctions

lntercellular junctions are responsible for allowing connections between neighboring

cells within a tissue, as is the case with epithelial tissue. According to Elisabetta Dejana,

these junctions not only allow adhesion, but also transfer signals that help control apoptosis

(programmed cell death, PCD, caused by the activation of enzymes that degrade the cell”s

DNA and proteins), in addition to regulating the formation of blood vessels (DEJANA, 2004).

Moreover, by considering their specific functions, there are four types of cell—cell junctions:

occlusion junction, adherent junction, desmosome, and communicating junction, which will be

more detailed further below in Figure 7.

Also known as zonula occludens or tight junction, the occlusion junction has a

characteristic shape that resembles a belt that surrounds a cell. The main role of this junction is

to act as a diffusion barrier, which tends to control the permeability of substances that come into

contact with the cell, such as ions, HZO, and other molecules.

Similar to the occlusion junction, the adherent junction, also known as zonula

adherens, encircles the cell like a ring around the apical boundaries of neighboring cells. It

receives this name because it provides cell attachment mediated by the presence of cadherin

and catenin proteins. Whereas cadherins are transmembrane adhesion proteins that mediate cell

adhesion, catenins are cytoplasmic proteins that bind to cadherins and help transmit the adhesion
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signal to actin filaments of the cytoskeleton. As observed in the literature, most tumor cells

have low adhesion to other cells, which results in greater motility and uncontrolled growth of

transformed cells (SOUSA et al., 2020). Consequently, the maintenance of adherent junctions

directly affects the triggering of the tumor and the metastasis process.

Figure 7 — Schematic representation of the intercellular junctions that are present
in the plasma membrane of most animal eukaryotic cells. At the top of
the image, we have several cells interacting with each other by contact
forming a monolayer. At the bottom, when we enlarge the region of
contact between two adjacent cells, we can observe the different cell—cell
junctions.
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Source: Created by the author with BioRender.

Present in many tissues, such as epithelial, breast and cardiac tissue, desmosomes

are composed of transmembrane proteins, like desmogleins and desmocholins, which bind to

one another across contiguous cells. Also referred to as maculae adherens, these junctions

are associated with intermediate filaments via a network that connects all of the desmosomes

spread throughout the plasma membrane (GARROD; CHIDGEY, 2008). This association leads

to structures that effectively resist mechanical stress, with desmosomes being recognized as
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hyper—adhesive intercellular junctions.

Found in many kinds of cells, including bone, cardiac, and vascular cells, the

communicating junction, often referred to as nexus or gap junction, promotes the connection

between the cytoplasm of two adjacent cells. lts structure, formed by a series of channels, allows

the passage of electrical current and nutrient exchange. Moreover, its valve—like dynamics that

open and close can be influenced by external mechanical forces, while they play an important

role in regulating cell growth and differentiation (SALAMEH; DHEIN, 2013).

2.1.3.2 Cell-matrixjunctions

As important as the intercellular junctions are, the cell—matrix junctions enable the

adherence and interaction of the cell with the ECM through adhesion molecules embedded in the

plasma membrane, as depicted in Figure 8. Based on this, we can classify cell—matrix junctions

into two categories: hemidesmosome and focal adhesion junction, which will be clarified in the

next paragraphs.

Figure 8 — On the left side, we have a cell culture, where cells are adhered to a
substrate. The substrate typically consists of the extracellular matrix
(ECM) or a surface designed to imitate ECM properties. On the right side,
we see a magnified image of the region of contact between the cell and
the ECM, showing the cell—matrix junctions: hemidesmosomes and focal
adhesion.
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Hemidesmosomes (HD), considered multiprotein complexes, are responsible for

connecting the ECM with the intermediate filaments of the cytoskeleton, which confers resistance

to mechanical stresses. From the Greek, hemi means one—half, and desmos means ligament.

Therefore, we can infer that HD are structures similar to half of a desmosome (WALKO et al.,

2015). However, despite this ultrastructural similarity, HD are composed of proteins different

from those that constitute desmosomes, the so—called integrin proteins.

Like hemidesmosomes, focal adhesions junctions (also known as adhesions plaques

or focal contacts) are made up of transmembrane proteins integrins, which act as nutrient

receptors of the extracellular matrix, among other substances that have growth and differentiation

factor (BURRIDGE et al., 1988). These structures were first observed using the electronic

microscopy technique, due to an increase in electron density in these regions of the plasma

membrane (ABERCROMBIE et al., 1971). Furthermore, there is an association of cytoskeletal

microfilaments with focal adhesion junctions, resulting in the formation of stress fibers. These

fibers allow cell adhesion to rigid substrates and, consequently, anchorage—dependent cell growth,

with regulated growth control through apoptosis, which is not observed in tumor cells.

2.1.4 Microrheology of biological systems

In the 1920,s, Eugene Cook Bingham (1878—1945), professor and head of the

department of chemistry at Lafayette College, published his pioneering work in which he defined

Rheology as the study of the deformation cmd flow of matter (BINGHAM, 1929; BARNES et

al., 1989). This was a landmark in the beginning of a broad understanding of the behavior and

properties of materials subject to deformation or tension, such as elasticity, plasticity, viscosity

and How (BARNES, 2000). With the advancement of this highly interdisciplinary science,

Rheology aims to comprehend the deformability of soft materials, including foams, polymers,

gels, colloids, as well as most soft biological materials (cells, tissues, and organoids).

Moreover, as previously stated, it was possible to qualitatively delineate that cells

indeed exhibit mechanical properties characteristic of each lineage. These properties can be

affected by external forces or genetic mutations in specialized structures that can trigger the

tumor process. Therefore, by considering cells as physical entities, we can analyze this system

from a mechanical perspective, in particular, within the interdisciplinary area of Microrheology

— a specific domain within the broader field of Rheology (CICUTA; DONALD, 2007).

This approach enables us to present quantitative arguments associated with the
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understanding of mechanical models for living cells and their applications. Taking this into

account, here is a formidable definition of microrheology according to Cicuta and Donald (2007,

p. 1449):

Microrheology is a term that does not describe one particular technique, but
rather a number of approaches that attempt to overcome some serious limitations
of traditional bulk rheology, such as the range of frequency and moduli that can
be probed, the sample size and heterogeneity, and cost. The “micro-” in the term
refers to the size of the stress/strain probe, which is typically a micron-sized
colloidal particle, but also indicates that this type of rheology can be carried out
on very small volumes, of the order of a micro-litre.

Based on the above definition, we will discuss the two main classes of microrheo—

logical techniques (see Table 1): active methods and passive methods. While active methods

encompass techniques that involve active manipulation of probes by applying local stress, pas—

sive methods are those that measure passive particle movements due to thermal or Brownian

Huctuations (ASHEGHI et al., 2005).

Table 1 — Microrheological techniques most widespread among scientists in the study of me—
chanical properties of living cells, classified as active and passive methods.

Microrheological Techniques
Active methods Pas sive methods

Magnetic Tweezers Particle Tracking Microrheology (PTM)
Optical Tweezers Diffusing Wave Spectroscopy (DWS)
Optical Stretcher Dynamic Light Scattering (DLS)
Microfiuidic Filtration

Real Time Deformation Cytometry (RT—DC)
Atomic Force Microscopy (AFM)

Source: Created by the author.

2.1.4.1 Active microrheological techniques

Firstly, in Figures 93 and 9h, we briefiy present the physical principle of Optical

Tweezers (also known as optical trapping or laser tweezers), which was developed by Ashkin

and colleagues in 1986. This method uses laser light focused on the object to be manipulated to

obtain mechanical measurements of biological materials such as cells and proteins (ASHKIN

et al., 1986). Nevertheless, optical traps have a limitation concerning cell microrheology,

especially when considering the maximum force that can be applied without damaging the

sample—approximately a hundred piconewtons (MIERKE, 2018). As a result, employing core—

shell particles becomes necessary to apply forces on the order of nanonewtons, as reported by

Zhong et al. (2014).
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Secondly, considered one of the oldest biological nanomanipulation techniques,

Magnetic Tweezers are well—known for incorporating magnetic particles into a sample and

subjecting it to an external magnetic field. Figure 9c provides a schematic representation of the

experimental setup regarding this approach, showing the magnetic stage with four coils and the

microscope objective. As mentioned in the work of Mao et al. (2022), when spherical beads are

attached to the sample, they act as microscopic probes that can be manipulated using an external

magnetic field. This configuration induces deformations in the material, actively measuring the

force response and, hence, its mechanical properties, particularly the rheological behavior at

microscale (ASHEGHI et al., 2005).

Figure 9 — In (a), we have a illustration with the main physical concepts of Optical
Trapping technique. The laser beam refracts the light rays as they interact with
a spherical sample. Then, a photograph (b) was taken using a green—blocking
filter to image red Huorescence in water, improving the visibility of incident
and scattered beam trajectories. ln contrast, (c) shows a schematic illustration
of the apparatus configuration, depicting how the Magnetic Tweezers work.

(ª) LASER BEAM

Source: (ASHKIN et al., 1986; AMBLARD et al., 1996).
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Thirdly, with a similar principle to the techniques described above, the Optical

Stretcher is a highly useful device in the study of mechanical properties of suspended cells during

measurement, as exemplified in Figure 10. In this technique, two opposing divergent lasers

are directed at the same cell (GUCK et al., 2001). When both beams reach equal intensity, the

resulting force acting on the cell cancels out along the optical path. From this, it is possible

to obtain time—dependent deformation curves of the cell, which can be fitted with rheological

models to extract the viscous and elastic contributions of these materials.

Figure lO — Experimental set—up and principles involved in the Optical Cell Stretcher
technique.
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Another approach is MicroHuidic Filtration, which considers deformable cells can

pass through pores or microlluidic channels more easily than rigid cells. Based on that, fabrication

methods such as soft lithography are commonly used to create multiple microchannels in chips

made of PDMS (polydimethylsiloxane). This allows researchers to create microchannels with

sub—micrometer and nanometer—scale features (MIERKE, 2018). An example of its use is the

study of hemodynamics, in which microchannels mimic blood vessels and even allow the study

of the metastasis process (OMORI et al., 2014). Thus, in a single system, it is possible to group

regions with different functions, similar to what occurs in vivo. Therefore, cell deformability is

assessed by measuring the pressure required for a given sample to pass through a constriction in

a microHuidic channel, in accordance with Figure 11.

Similarly to the previous technique, Real—Time Deformation Cytometry (RT—DC)

stands out as a sensitive microlluidic method used to measure cell stiffness. lt enables mechanical
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Figure ll — The device design comprises four functional regions: an entry
port, a cell filter, constricted channels, and an exit port. When
enhancing the resolution in the constricted channel area, we can
observe the precise architecture in regions as narrow as lO,um,
indicated by the scale bar.
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Source: (HOELZLE et al., 2014).

characterization of numerous continuous cells from extensive populations (over 100,000 cells),

with the capacity to analyze more than a hundred cells per second in experiments (OTTO et al.,

2015). Figure 12 shows that RT—DC deforms cells using only hydrodynamic interactions, since

there is no contact with the walls of the channels through which they How. Moreover, this cell

deformation occurs due to the high velocity gradients that exist in the channel,s cross—section

(MIERKE, 2018, p. 3—32). RT—DC measurements are performed using a highly controlled

microlluidic process. First, the cells are individually encapsulated in microdroplets in a low

viscosity solution and inserted with a syringe into a microlluidic channel. These microdroplets

are then deformed by mechanical forces precisely applied along the channel. As cells undergo

these controlled deformations, high—sensitivity sensors capture their mechanical responses in real

time. Based on the collected data, it is possible to calculate the stiffness and other mechanical

properties of the cells, providing a detailed understanding of the biological and mechanical

characteristics of a large population of cells in a short period of time.

Lastly, we have the Atomic Force Microscopy (AFM), reported for the first time by

Binnig et al. (1986). AFM was developed to address the challenges of studying non—conducting
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Figure l2 — Illustration of the Real—Time Deformation Cytometry (RT—DC) experi—
ment procedure.
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materials with a less invasive approach, such as biological samples. Despite the term "mi—

croscopy", this technique has a different principle from conventional methods of obtaining high

resolution images, not using light or electrons, as is the case with optical and electron micro—

scopes, respectively. Instead, the AFM is based on the principle of measuring the dellections of a

cantilever subject to intermolecular attractive and repulsive forces resulting from the interaction

With the sample (ZANETTE, 2010).

Furthermore, we can operate this microscope in different modes, including tapping

mode, non—contact mode and contact mode. This technique is not limited to obtaining images

of the topography of the materials because it also enables the application of forces of the order

of nanonewtons to the surface of the materials, thus measuring their rheological properties. As

stated by Flormann et al. (2021), it is important to mention that there are several protocols for

the application of these external forces on the samples, the main ones being: (i) stress relaxation,

(ii) creep compliance, and (iii) oscillatory tests.

2.1.4.2 Passive microrheological techniques

As reported by Asheghi et al. (2005, p. 18), passive microrheological techniques

refer to approaches that leverage the Brownian dynamics of embedded colloids for assessing the

material”s rheology and structure. Notably, Particle Tracking Microrheology (PTM), Diffusing

Wave Spectroscopy (DWS), and Dynamic Light Scattering (DLS) are prominent methods Within
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this category. An advantage regarding the PTM is that it enables the tracking of thermally driven

motion with high precision, measuring the mechanical response inside the cytoplasm of a cell,

without requiring direct contact between the cell and an external probe (MOEENDARBARY;

HARRIS, 2014). This non—invasive characteristic makes it a valuable tool for studying cellular

properties and behavior, facilitating the mimicking of three—dimensional physiological conditions.

On the other hand, DWS and DLS are two techniques that utilize light scattering to

investigate complex Huids and materials, including cell microrheology. In DWS, for example,

a laser beam is directed at an opaque sample, and the light interacts with scattering elements

in the sample. The propagation of the light through the sample is mathematically described by

the diffusion equation (ASHEGHI et al., 2005). This technique provides valuable information

about the dynamics of the scattering elements, allowing scientists to explore the movement and

interactions of particles in a sample. ln contrast, DLS is a method that has a limitation in studying

only transparent samples in order to occur the refraction phenomena (MAO et al., 2022). Despite

this, the DLS allows extracting not only the viscosity, but also the modulus of elasticity of a

viscoelastic material by measuring the temporal correlation function of the scattered light.

2.1.4.3 Constitutive relationships: stress and strain

ln accordance with the previous section, we inferred that microrheological techniques

provide experimental data that can be used to validate, refine and even derive constitutive

equations that describe the physical response of a material at the microscale. The constitutive

relationships relate stress and strain, providing a mathematical framework to understand and

predict the mechanical behavior of materials under applied forces (PHAN—THIEN, 2002). It is

known that materials respond differently to compressive, tensile, and shear forces, resulting in

distinct modes of deformation. The elastic modulus and shear modulus represent the materialºs

stiffness and its response to normal and shear forces, respectively, as shown in Figure 13.

Furthermore, cells exhibit both elastic and viscous properties, making them known as viscoelastic

materials. Thus, to provide a clearer understanding of these concepts, we will now explore the

Hookean elastic solid and the Newtonian viscous Huid.

Elasticity is a physical property observed when a material is subject to reversible

deformations, i.e., it returns to its equilibrium state after ceasing the tension acting on it. An

example that illustrates this is when we exert a force on a spring, either by compressing or

stretching it. Then, if exactly after we release the ends of the spring, it recovers its original length
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without the need for additional external forces, this demonstrates that the elastic energy had been

stored, emphasizing its elastic property. On other hand, if the material exceeds its elastic limit

and cannot return to its original length, it exhibits plastic behavior. Based on that, we can define

Hookean elastic solids as materials governed by Hooke”s law:

F : —kx, (2.1)
where F is the restoring force (or applied force), k is the spring constant, and X is the amount

of extension. However, Equation 2.1 is traditionally used in contexts involving springs or

mechanical systems and expresses that extension is proportional to the force (PHAN—THIEN,

2002, p. 60). Therefore, from a broader point of view, we can express Hooke,s law in a more

general form, as follows: o : Ee, (2-2)
where o represents the normal stress, E is the Young7s modulus (also known as modulus of

elasticity), and 8 is the normal strain (TAYLOR, 2013). The main advantage of writing Hooke,s

law as shown in Equation 2.2 is that the modulus of elasticity E is independent of material

dimensions, unlike the spring constant k. In this context, the normal stress can be defined as the

force exerted on a surface, which can be interpreted as pressure:

(, : X' (2.3)
Conversely, strain is a dimensionless quantity that characterizes the change in shape

or size of a material in response to an applied stress. lt measures the magnitude of deformation

Al experienced by the material relative to its original size lo, defined as:

_Al£_—.
10

(2.4)

In addition to normal forces, acting perpendicular to the surface of a material, it

is also relevant to consider the case where tangential forces are applied. An analogous way

of expressing Equation 2.2 is to consider the constant called shear modulus, G, through the

following linear constitutive relationship:

17 : G7, (2.5)
where ”L' is defined as the shear stress and 7 represents the shear strain, quantified as a shift

in the angle between lines that were initially perpendicular. In this case, deformation can be
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represented by the shear angle, a , which corresponds to the angular rotation between parallel

lines in a material before and after the application of shear forces, as follows:

”L' : Gtan a. (2.6)
Moreover, it is worth mentioning that the shear modulus is related to Young7s

modulus through the following equation:G— E 27_ÃVIÚ' (»
In Equation 2.7, we are faced with the Poisson,s ratio, v, which was well—marked

according to Tschoegl et al. (2002) as:

(...) an elastic constant defined as the ratio of the lateral contraction to the elon-
gation in the infinitesimal uniaxial extension of a homogeneous isotropic body.
In a viscoelastic material Poissonªs ratio is a function of time (or frequency)
that depends on the time regime chosen to elicit it. It is important as one of the
material functions that characterize bulk behavior.

In simpler words, the Poisson,s ratio quantifies the extent to which a material

contracts or expands in perpendicular directions to the applied stress. Moreover, in the work by

Malvern (1969), it was clearly demonstrated that the value of this parameter is directly influenced

by the atomic and molecular structure of the material, in addition to the physical properties

and its chemical composition, in a range of —l 5 v 5 0.5. A positive ratio indicates that a

material tends to contracts in the transverse direction when stretched axially, while a negative

ratio indicates that the material expands in the transverse direction. In the case of soft materials

such as living cells, it is considered that v % 0.5 because they have a lower capacity for lateral

deformation when compared to other materials.

Almost a decade after Hooke”s work on elasticity, the English physicist and mathe—

matician Isaac Newton (1642—1727) first addressed the concept of viscosity, which he initially

explained as a lack of slipperiness. Nowadays, the science dedicated to the study of viscosity is

called Viscometry (BARNES, 2000). When we want to quantify a materialºs ability to resist flow

under an external force, we are interested in measuring the viscosity of materials. Thereby, this

physical property refers to a fluidºs resistance to shear flow and can be determined by the ratio of

shear stress to shear strain rate, as following:

_ ”L'f=u7=$u=ç, &&
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Figure 13 — Representation of the physical quantities (a) stress and strain, when a material is subjected to
normal or tangential stress. (b) The static mechanical properties of a material are characterized
by the stress—strain relationship. (c) Soft materials exhibit a linear relationship between stress and
strain during small deformations. Nonetheless, as deformations become larger, the stress—strain
relationship becomes nonlinear, with stress increasing at a more rapid rate.(ª) (b)
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Source: (MOEENDARBARY; HARRIS, 2014).

where it is the Viscosity constant.

From Equation 2.8, we can observe a linear relationship between the shear stress

and the shear strain rate, which is characteristic of Newtonian viscous Huid. However, itis

important to recognize that many Huids in nature deviate from this linear behavior for not

having a homogeneous Viscosity. In more complex materials, such as those with viscoelastic

properties, constitutive relationships may involve additional parameters related to nonlinear

behavior (KOLLMANNSBERGER; FABRY, 2011). These relations describe the time—dependent

or nonlinear responses of the materials under stress and strain.

tt
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2.2 Linear viscoelasticity: springs and dashpots

Linear viscoelasticity refers to the rheological behavior of materials exhibiting

elastic (spring—like) and viscous (damper—like) properties. The spring represents the elastic

component, storing energy during deformation and exhibiting a reversible response, while the

damper represents the viscous component, dissipating energy during deformation and exhibiting

a time—dependent response (MOEENDARBARY; HARRIS, 2014). Hence, viscoelasticity can be

effectively modeled using combinations of springs and dampers.

Despite that, Lakes (1998) stated in his book Viscoelastic solids that in order to have

a broader understanding of the viscoelastic properties of materials, we cannot limit ourselves

to describing circuits formed by a small number of springs and dampers. lndeed, it is essential

to recognize that materials encompass a range of distinct timescales. This means that their

behavior is better understood through the lens of more complex configurations of springs and

dampers, combined both in series and in parallel. This aligns with the idea of the Boltzmann

superposition principle, where the relaxation behavior of a material is considered to be the result

of a combination of various relaxation mechanisms operating on different timescales. This

reformulation produces relaxation moduli composed as a combination of exponential functions,

each with a separate relaxation time as a parameter.

2.2.1 Deborah number

Given the birth of Rheology, Bingham became aware of the work reported by Markus

Reiner (1886—1976), a civil engineer from Israel who dedicated himself to researching the flow of

plastic materials. Consequently, in 1928, Reiner was invited to work at Lafayette College, where

he made significant contributions from this collaboration (REINER, 1964). One of them was

the rheological characterization of the materials from the Deborah number, De, a dimensionless

quantity defined by the ratio between the relaxation time, l,, which represents the time spent for

a material to return to its undeformed state after applying a force, and the time of observation, T,

which is the time taken to apply a deformation, as expressed in the equation below:

Furthermore, this fundamental number of rheology can be understood based on the

following statement made by Reiner (1964):
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The difference between solids and fluids is then defined by the magnitude of De.
If your time of observation is very large, or, conversely, if the time of relaxation
of the material under observation is very small, you see the material Howing.
On the other hand, if the time of relaxation of the material is larger than your
time of observation, the material, for all practical purposes, is a solid.

In order to comprehend the Equation 2.9, it is essential to bear in mind that the

macromolecules of a material always tend to return to their equilibrium state (PHAN—THIEN,

2002, p. 63). Initially, in Figure 14a, we have an example of an elastic solid material thrown (I)

towards the ground, suffering an elastic collision with the surface (II), which causes material

deformation. After the collison, (lll) the material returns to its original shape almost immediately

after the applied force is removed. This enables us to affirm that a material has a solid—like

response when Ã, > T, i.e., the experiment time tends to be very small.

Figure 14 — Examples of materials characterized by the Deborah number. In (a), we have an example of an
elastic solid (De —> oo), represented by a sphere made of a natural rubber, allowing the material to
quickly return to its original shape after deformation. Moreover, (b) shows a viscous fluid (De —> O),
such as honey, with the applied deformation maintained over time.

(ª) (b)

Fluid-like response

T is long

Solid—er response

,
x
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Source: Created by the author.

On the other hand, Figure 14h displays the behavior of a viscous Huid. We deduced

that materials with this property are affected by the effect of a sustained deformation over time.

This is because molecular chains have a hard time getting back to their original configuration

quickly. Therefore, a material exhibits a fluid—like response when Ã, < T, i.e., the fluid relaxation

time tends to be smaller than the time of observation.
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3 MATERIALS AND METHODS

3.1 Atomic Force Microscopy

In the present work, the experiments were performed with an MFP—3D atomic force

microscope integrated with an inverted microscope, manufactured by Asylum Research (Digital

Instruments, Santa Barbara, CA). The AFM is shown in Figure 15. Moreover, we used PNP—

TR—Au type probes, which stands for Pyrex—Nitride Probe, with triangular—shaped cantilevers

that were gold (Au) coated on the pyramidal tip side. The cantilevers were made of silicon

nitride (Si3N4), fabricated by NanoWorld Innovative Technologies, with nominal spring constant

measured of k = 0.08 N/m and resonance frequency of f = 17 kHz.

Figure 15 — Experimental setup images before starting the data acquisition. (a) MFP—3D—BIO
AFM used in this study operating in liquid contact mode. (b) Properly positioned
cell culture sample in a Petri dish on the equipment. After that, to initiate our
measurements, the cantilever was duly placed on the head (c) and submerged in the
cell culture liquid.

Source: Created by the author.

Acquiring sample force curves in contact mode requires following the calibration

protocol of the device. From this protocol, we can obtain the cantilever spring constant, k, an

essential parameter in the AFM feedback system and, consequently, in the control of mechanical

movements performed by piezoelectric ceramics. Also, it is interesting to mention that the
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corrections to be discussed need to be done only once, regardless of whether we change the

medium (air or liquid) afterwards.

In order to eliminate possible instrumental errors, the first step is to correct the virtual

dellection. The term virtual dellection refers to a mechanical coupling between the movement

along the 1 axis and the cantilever dellection signal. lt intrinsically depends on the mechanical

path, which tends to undergo a slight inclination in the force curve. This correction ensures that

distortions do not occur in the accuracy of measurements and in the analysis of rheological data.

Finally, we measure the inverse optical lever sensitivity (lnvOLS) from the thermal

power spectral density, which consists of the cantilever vibrating in air and on an ideally hard

sample (clean glass slide) to determine the cantilever resonance frequency. Then, knowing the

resonance frequency, we apply a certain force to the cantilever and measure the corresponding

dellection, obtaining the lnvOLS value, as depicted Figure 16. In this way, lnvOLS computes

Figure 16 — Representation of the inverse optical lever sensitivity measured from a force
curve on a hard surface. The OLS is the ratio of the signal from cantilever
dellection in volts (blue vertical line) to the nanometer displacement in 1 (green
horizontal line). Hence, lnvOLS is the inverse of OLS.

A

4———-—>

Deflection (V)

Displacement (nm) )
Source: Created by the author.

the slope of the contact region, being a necessary algorithm to obtain the characteristic spring

constant of each cantilever. What we calculate manually is actually the OLS , given by:

_ cantilever deflection (V)OLS — .
LVDT displacement (nm)

(3.1)

Thus, lnvOLS is exactly the reciprocal value of OLS .

After making the necessary corrections to the instrument, we managed to reach

a precision that allows us to control essential factors for the feasibility of the measurements.
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Therefore, following this protocol is essential to ensure, among other things, the alignment of

the cantilever with the laser, in addition to predicting the depth of the cantilever indentation, thus

indicating that the system is working properly.

3.2 Procedures

3.2.1 Measurement protocol

The experimental investigation was structured in two steps to comprehensively assess

the mechanical properties of the material using AFM. In the initial experiment, we focused

on the impact of the indentation speed controlled by the vertical scanning frequency fZ while

keeping the applied force constant at 2 nN. Here, we vary the fZ frequency in a range of 0.25,

0.5, 1 and 2 Hz. An amplitude of the 1 piezo extension (ramp size) of 3 ,um was adopted for all

measurements. These scanning parameters result the vertical movement of the AFM tip with

speeds of 1.5, 3.0, 6.0, 12 “ /s. In the next step, we varied the applied force, keeping the fZ

frequency constant (at 0.5 Hz and 1.0 Hz). The applied forces were set to 1, 2, 4 and 8 nN,

providing a variety of load conditions to study the material response. These experiments allowed

us to consistently explore the influence of indentation speed and varying force regimes on the

mechanical behavior of the cells.

3.2.2 Cell culture

In this research, we investigated two different cell lines individually—L929 and OF—

COL ll—which were duly adhered to the substrate and cultured following the protocol described

in reference (SOUSA et al., 2020). Both were cultured in high— glucose Dulbecco,s modi—

fied Eagle,s medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin—

streptomycin, and kept at 37ºC in an atmosphere of 5% COZ. Thus, to maintain stable pH outside

the incubator, 2 ml of the medium was replaced with a PBS solution prior to AFM measurements.

Besides, it is important to mention that all measurements were taken at room temperature, 25ºC,

within a maximum of two hours after removing the cells from the incubator.
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3.2.2.1 L929 cells

Figure 17 shows the L929 cells analyzed in this work, which were derived from a

mouse fibroblast cell line. BrieHy, to understand the nomenclature of these cells, we need to

analyze it in parts. First, the letter L refers to the name of the parent strain, which was derived

from normal subcutaneous, areolar, and adipose tissue from a lOO—day—old male C3H mouse

(SANFORD et al., 1948). Second, the number 929 refers to a subclone of strain L known as

clone 929, obtained for the first time in 1948. These cells have significant relevance throughout

the history of research and in diverse biomedical applications.

Figure l7 — Image of L929 fibroblast cells captured from the bottom camera of the AFM, during
the initial stage of the experimental procedures. This demonstrates the conlluence of
the cell culture and its favorable conditions for measurements. It is also possible to
observe the triangular microcantilever used in this work.

Source: Created by the author. .

3.2.2.2 OFCOL ll cells

The cell line OFCOL II originates from mice bone marrow (OLIVEIRA et al., 2008).

These cells are osteoblastic and typically reside on the bone surface, forming sheets of cubic

or columnar structures. In addition, during our measurements, we used the AFM technique to

capture a detailed image of the cell culture, as depicted in Figure 18. Interestingly, OFCOL II

cells tend to be larger than L929 cells due to their specialized functions in the production of bone
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matrix and the metabolic demands associated With this process.

Figure 18 — OFCOL II osteoblastic cells captured from the bottom camera
of the AFM, during the initial stage of the experimental proce—
dures. This demonstrates the conlluence of the cell culture and its
favorable conditions for measurements.

Source: Created by the author.
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4 RESULTS AND DISCUSSIONS

4.1 AFM force measurements

AFM force curves exhibit the form d = f (z), where d is cantilever dellection, and 1

is the corresponding translation of the piezoelectric actuator. A schematics of the indentation

of a living cell by an AFM tip and a typical deHection—displacement curve measured in a cell

are shown in Figure 19. The hysteresis in the approach/retract cycle is a consequence of the

viscoelastic response of the sample. The maximum dellection (force) is controlled by a trigger

algorithm to avoid excessive cell indentation. In this work, we used maximum forces varying

between 1 nN and 8 nN. Beyond the contact point (zº, do), the actual cantilever dellection is

Ad : d — do, where do is the cantilever dellection just before the contact with the sample surface.

The corresponding piezo—actuator displacement is Az : z — zO, where 10 represents the piezo

displacement for which the cantilever touches the sample surface. The sample indentation 5 is

obtained with 5 : Az — Ad . These quantities are graphically represented in Figures 193 and b.

Figure l9 — (a,b) Schematics of the indentation of a cell adhered by an AFM cantilever. x(t) denotes the
position of the triangular—shaped cantilever (in gray) relative to the sample surface, while d(t)
due to contact with the sample, and 5 (t) represents the depth of indentation of the AFM tip in
the sample. Graphic (c) Typical AFM force curve measured in a cell.
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Source: Created by the author.
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The force dellecting the cantilever is obtained by Hookeºs law F : kCAd , where kc

is the cantilever spring constant. This force is transmitted to the sample causing an indentation.

The relationship between cantilever dellection and sample indentation assume the general form

kCAd : F(ô;E, v, Q(Ã),h), where F(õ;E, v, º(l) , h) is the force—indentation model that better

represents the sample. (E , v) represent the elasticity modulus and Poisson's ratio of the material,

respectively. Samples are considered virtually incompressible (v = 0.5). Moreover, º(l) repre—

sents a geometrical parameter of the indenter (e.g. the tip radius r for a spherical indenter or the

half—opening angle 9 for a conical indenter), and h represents the sample thickness. As illustrated

in Figure 20, the chosen tip geometry significantly influences stress distribution, contact area and

strain, resulting in specific mechanical responses. This underscores the importance of j udiciously

selecting indenter geometry to align with research objectives, ensuring an accurate interpretation

of mechanical data and a comprehensive understanding of how cells respond to applied forces.

Figure 20 — Mechanical indentation of biological sample using varied geometric tips.

Source: Created by the author.

The analysis of force—indentation F (õ;E , v, º(l) , h) curves are usually performed

within the generalized Hertzian contact theory developed by Sneddon, that states that load—

displacement relationships obey a power law F cx ôÃ , where the exponent Ã, and the proportion—

ality factor depend on the indenter geometry (SNEDDON, 1965). Hertz theory is based on the

following major assumptions: (i) the sample is assumed as a purely elastic half—space, (ii) the

stress—strain response is linear, (iii) the elasticity modulus is constant (HERTZ, 1882). Therefore,

Hertz model is not appropriate to describe viscoelastic materials. By taking into account all

those assumptions, the final form of the Hertzian force—indentation model that will be used to
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analyze the AFM forces curves takes the following form:

FH(õ) : o(inôª. (4.1)
The subscript H stands for Hertz model, º(l) and Ã, are geometry—dependent parameters, E is

the elasticity modulus, and v is the Poisson ratio (v = 0.5 for incompressible materials). The

elasticity modulus E is related to the shear modulus G as 2G : E / (1 + v). The parameters º(l)

and Ã, for different axisymmetric indenters are listed in Table 2. By writing the generalized

Hertz model in terms of the measurable quantities provided by the AFM (z and d ), one obtain

the actual equation that is used to fit AFM force curves:

Mel—do) = º(Ã)EH[(z—ZO) — (cl—do)? (4.2)

for which there are three fitting parameters: E, 10 and do.

Table 2 — Dependence of the parameters Ã, and º(l) on the indenter geometry.
Below, v represents the Poisson ratio and 5 is the indentation.

Geometry Ã, º(l) contact radius Obs.
Hat cylinder 1.0 (1ng 2) r r is the indenter radius
spherical 1.5 % (ll/íª) x/ rô r is the indenter radius
conical 2.0 % (Finª) õ tan 9 9 is the half—opening angle

Source: Created by the author.

It is noteworthy that knowing the geometry of each indenter and its respective

applicability can be very useful during experimental measurements. While a spherical indenter

establishes a circular contact region, a conical indenter generates an elliptical contact zone.

Consequently, the deformation profile within the sample is directly influenced. In addition,

spherical indenters induce localized deformations ideal for exploring microscale heterogeneities,

whereas conical indenters offer a balance between localized and average measurements. On

the other hand, Hat cylindrical indenters enforce uniform deformation over the contact region,

making them well—suited for studying planar mechanical cues, which typically involve forces or

deformations that act parallel to a surface.

4.2 Viscoelastic response of cells

Cells are complex viscoelastic materials and their viscous response plays an impor—

tant role during the indentation process. Darling et al. (DARLING et al., 2007; DARLING et
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al., 2006) and Ketene et al. (KETENE et al., 2012) measured the viscous response of living

cells, and suggested that those cells are well represented by the standard linear solid model (or

Kelvin model) (FUNG, 1993). In this model, there are two elasticity moduli, one for the early

instants of the indentation EO, which Darling et al. called instantaneous elasticity modulus, and

another elasticity modulus Ecº for later instants of indentation. To obtain the apparent viscosity

of samples with AFM, Darling et al. modified the closed—loop feedback control of the z—axis

movement to perform stress relaxation tests in their samples (DARLING et al. , 2007; DARLING

et al., 2006).

The few references mentioned above are representative of very large body of experi—

mental data that describes the viscoelastic properties of cells and tissues with simple viscoelastic

models such as Maxwell, Kelvin—Voigt and the linear solid viscoelastic model (FUNG, 1993).

These models, formed by association of springs and dashpots in series and parallel, are successful

to describe the viscoelastic behavior exhibiting exponential relaxation decays with one (or few)

characteristic timescale.

However, cells do not hold characteristic relaxation time. Instead, the complex

architecture of living cells exhibits power—law (PL) relaxation. So far, the most used model

to describe this cell mechanical behavior (even under pharmacological interventions) is the so

called soft—glassy rheology (SGR) model (FABRY et al., 2001; FABRY et al., 2003). However,

this model alone is neither able to describe other behavior commonly observed in cells (such as

force generation, prestress and contractile stiffening) nor provide a microscopic origin of such

behavior (KOLLMANNSBERGER; FABRY, 2011). There are a few studies proposing that cells

exhibit a double PL shear modulus, |G*(a))| : Awª + BwB , with a > B, where the higher and

the lower exponents describe, respectively, the fast and slow dynamic response of the cell (DENG

et al., 2006; HOFFMAN et al., 2006; HOFFMAN; CROCKER, 2009; REBELO et al., 2014;

RIGATO et al., 2017). In this case, the storage modulus G' ((O) is well described by a single PL

with low exponent of the order of B = 0.2 and the loss modulus G” ((O) described by two PL

regimes, with a lower exponent identical to the exponent of G' ((O) and a fixed exponent a : 1

for all samples. This acl hoc combination of PL responses is known as power—law structural

damping model, and it was used as the theoretical basis to describe the dynamic rheology of cells

in several works (FABRY et al., 2001; FABRY et al., 2003; MORALES et al., 2001; ALCARAZ

et al., 2003; STAMENOVIÓ et al., 2004; SMITH et al., 2005). The fast relaxation regime is

attributed to the entropic response of the individual F—actin filaments (DENG et al., 2006). On
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the other hand, the slow relaxation regime is attributed to the response of the cytoplasmic crowd,

thereby related to the architecture and deformability of the whole cytoskeleton (FABRY et al.,

2001; FABRY et al., 2003).

Since the fast relaxation only dominates in very small time scales (below few mil—

liseconds), in this study we consider only the slow viscoelastic relaxation of cells, for which a

single power—law relaxation function will be used. Such a function is written as:

t ÍB
EO“) =Eref (_) , (4.3)lºre f

where Eref : E (tref) is a reference value of the elasticity modulus at an arbitrary scaling time,

t : tref, and B is the relaxation exponent that lies in the range O 5 B 5 1. The elasticity modulus

at any given time t can be obtained with the scaling rule E (t)tl3 : E 0,4)th In this work, we

assume tref : 1 s.

4.3 Power-law force model

The force—indentation relationship in time domain depends on the indentation depth

history, 5 (t), as well as on intrinsic properties of the sample and can be described by the following

convolution integral (SOUSA et al., 2020):

dôª (t')dt' dt', (4.4)F(t) =º(l)/OZE(t—t')

where E (t) is the time—dependent relaxation function of the material, and Ã, and

º(l) are parameters related to the indenter geometry (see Table 2). In order to obtain a realistic

model, 5 (t) must be as close to experimental conditions as possible. For this, we assume a linear

indentation history during the loading/unloading phase of a regular force curve:

t/Tl O S I É ”E],õ(t) : 80 (4.5)
l/ru[(rz+ru)—t] Tl<íÉTl+Tm

where ”cl is loading time, and ”E” is the unloading time.

For a regular AFM force curve (FC), the load (1) and unload (u) curves are, respec—

tively, obtained by solving the following integrals:[ Ã !
Fla) =M) /0 %%%dz' (tsw), (4.6)
Tl Ã ! [ Ã /

F,,(t) =º(l)/0 E(t—t')dôíltgt)dt'+/T E(t—tl)%dtl (tz 171). (4.7)
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The solution of those integrals for PL materials yields:

Ha

Fl(t) _ mumu, 1 _ mªgma? (É) . (4.8)

t ”5
F,,(t) _ anormal/;, a, 1 _ magma? (E) +B r_p“7, 1 t—Tl .t—rl

—ÃQ(Ã)EB(TZ)80 Ém< ”E” ) 2F1(1,1—Ã,2+B, ”E” ) . (4.9)

2F1 (61,19, c;)c) is the Gauss hypergeometric function. In the force model above, we determined

both loading and unloading curves just for the sake of completeness. As the whole viscoelastic

relaxation properties are embedded in the loading curve alone, we will focus our analysis in the

loading portion because of its mathematical simplicity. Equation 4.8 can be written in different

forms, revealing alternative ways to interpret it:

Method 1: In the time domain, Equation can be written as

t ”5Fl(f)=F0(-) , (4.10)tl

Fo : mumu, 1 _ mªnga? (4.11)
where FO is the maximum cantilever force in the end of the loading curve, which can be

controlled by imposing a trigger force in the measurements. Such a form, shows that FO

depends on the indenter geometry, maximum indentation depth and speed, and on the material

properties. One should note that this equation can also be written in the indentation domain as

Fl(õ) : F0(õ / &)ÃÍB . In a log—log plot, loading force curve obeys a power—law whose exponent

directly shows the viscoelastic relaxation exponent.

Method 2: In the indentation domain, Equation 4.8 can be written in a Sneddonºs—like form with

a time—dependent Youngºs modulus EH(t).

mar)] = º(l)EH(r)ôª(r), (4.12)

EH(t) _ ABM, 1 _ mm). (4.13)
In the case of B = 0 the above equation recovers the the Sneddon,s model for perfectly elastic

materials, i.e., E (t) is time—independent. Equation 4.12 reveals an important detail, which is
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normally overlooked when using Sneddonis model to study viscoelastic materials. The Young

modulus will depend on the duration of the loading curve if the whole curve is fitted, or the

time range of the curve portion used in the fitting processes. Moreover, the Youngis modulus

not only will depend on the type of indenter, but it will be larger than the actual elasticity

modulus by a factor of EH(t) / E (t) : ÃBM, l — B). Since living cells are well represented by

B % 0.2, this measured Youngºs modulus must be corrected by 1.39, 1.33 and 1.25 for conical,

spherical and flat indenter geometries, respectively. The Youngºs modulus measured with conical

tip must be 45% and 11% larger than the ones measured with spherical and flat indenters for

the same duration of the loading curve, while the Youngis modulus measured with spherical

indenters must be larger 6.5 % than the ones measured with flat ones. Finally, due to the explicit

time—dependence of E H(t) in Equation 4.12, the approximate relaxation function of a power—law

material can be directly obtained in a single loading force curve by making:

FU)
E“) “ W (4.14)

4.4 Simulation of AFM force curves in power-law materials

Force curves measured in materials exhibiting power—law relaxation function can be

simulated by assuming the time—dependence of the parameters d(t), x(t) and EH(t) in Equation

4.2, which becomes:

kc(d(t) —do) = ºaEH(t)l(Z(t) —Z0) — (dº) — do)? (4.15)

where the piezo displacement extends linearly x(t) : zl- i vzt, where zl- is the initial piezo position,

and the signal i indicates whether the piezo is approaching to or moving away from the sample

surface. Equation 4.15 for d (t) for each t, one can simulate approach and retract AFM force

curves for power—law materials.

Figures 213 and b show simulated AFM force curves measured with different piezo

extension rates fZ and indenter geometries, subjected to a maximum trigger force of 2 nN. The

curves F versus z clearly shows that both fZ and tip geometry will have a strong effects in the

perceived Young modulus of the samples. Fixing fz, measurements made with a conical indenter

yields the smallest Young 's modulus, while measurements made with a Hat cylinder the largest.

This is in general justified in terms of contact area, which is smallest for the conical shape, and

largest for the flat cylinder. Thus, for a fixed force, the largest is the contact area, the smaller

becomes the indentation depth, thereby yielding larger Young 's modulus. This simple analysis
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is accurate for perfectly elastic samples. However, soft materials are intrinsically viscoelastic

and time becomes a very important variable. Figure 21h shows that duration of the force curves

varies drastically not of for different fz, but also for different indenter geometries. Thus, when

probing viscoelastic materials with the AFM, even if ther standardize the maximum applied

forces, we are in fact probing not only different indentation depths, but also different times.

By changing fz, while keeping the maximum force fixed at 2 nN, we obtain loading

times ranging within nearly three orders of magnitude (few ms to few seconds). Such a range is

wide enough to reveal the relaxation properties of many types of soft samples. In fact, plotting

the fitted Youngºs moduli values versus the approach times of the force curves in each frequency,

we obtain a function that differs from the actual relaxation function by a fixed factor such

that EH(t) : ÃBM, l — B)E (t), as shown in Figure 22h. Such a behavior is very robust and

independent on the type indenter geometry. Finally, despite of the assumption of Sneddon,s

model to be valid only for purely elastic materials, by probing samples with wide enough range

of fZ frequencies, we can reconstruct the underlying relaxation function of the samples.

Although the simulated force curves have confirmed that the fitted Young moduli

differ from the actual relaxation function a fixed factor EH(t) / E (t) : ÃBM, l — B), this needs

to be validated in living cells which, despite having been widely demonstrated to relax according

to a power—law, its properties are highly inhomogeneous over the cell surface.

One should note that the relaxation exponent determined from the fitting of E H(tl)

versus E (tl) is identical to the exponent determined from the fitting EH(tl) alone measured for

various fZ frequencies. Therefore, it is clear that the fitting of the force curves with generalized

Hertz (Sneddon9s) model alone is enough to determine the viscoelastic relaxation of the cells.

4.5 Application of the model with L929 cells

Figure 22 shows force curves measured at the same spot of a L929 mouse fibroblast

with different fZ frequencies, subjected to 2 nN of maximum force. Increasing the frequency

reduces the loading time tl and maximum indentation depth, and induces an increase in the

measured Youngºs modulus. In this way, such behavior is predicted by Eq. 4.ll that shows that

the Young,s modulus is inversely proportional to the indentation depth for a fixed FO. In fact,

since FO, 80 and tl can be directly obtained from the force curves, Eq. 4.11 can be used to quickly

estimate of E (tl).

However, living cells are highly inhomogeneous, and we measure 16 force curves
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Figure 21 — Simulated AFM foce curves of a power—law material (Eref : l kPa, tref : 1 s, B = 0.2)
measured with different fZ frequencies and indenter geometries. The parameters used to
generate these curve as kc : 0.06 N/m, R = 2.5 ,um (flat cylinder and spherical indenters),
9 = 380 (conical indenter). All force curves are subjected to maximum trigger force of 2
nN. (c) Relationship between the approach time of simulated force curves as a function
fz. All simulated curves were generated using identical parameters, except for fz. (d)
Comparison of the fitted (solid symbols) and corrected (open symbols) Young 's moduli
with the actual underlying power—law relaxation curve.
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over a squared area of 4um of side of a single cell with several fZ frequencies. Each curve is

fitted with Equations 4. ll and 4.12 to obtain E (tl) and E H(tl) respectively, and the relationship

of those elasticity moduli are shown in Figure 233.

The data points clearly shows a direct scaling between E (tl) and EH(tl). By fitting

the data points with Eq. 4.13 we obtain an average relaxation exponent of B = 0.13, which can

be regarded as an average relaxation exponent to describe the whole cell as an homogeneous

viscoelastic body. One should note that Equation 4.13 does not involve time, which is only

implicitly considered by including data points measured for different values of fz. Time can be

explicitly considered by plotting E H(tl) versus tl, shown Figure 23h (colored data points). In

time domain, the data span across one order of magnitude (from 0.05 s to 2 s). Here, the position—
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Figure 22 — Samples of AFM force curves measured With different fZ in the same spot of the surface
of a L929 mouse fibroblast. The inset graph shows the force curves in time domain. The
dashed lines represent the fitting of the loading curves With Hertz 's model. The curves are
horizontally aligned by contact point, and shifted vertically for better visualization.5 l l l l l l
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Source: Created by the author.

dependent dispersion of EH(tl) becomes evident, exhibiting a dispersion Width of ] kPa. In order

to obtain the viscoelastic relaxation function, we first determine the median values of EH(tl) per

fZ (black squares). Since this data exhibit the same power—law time—dependence of E (t), the

average values of E H(tl) are fitted With a single power—law relaxation function AFB to obtain an

average relaxation exponent B = 0.14. This value is then used to calculate the correction factor

ÃBM, l — B) and use Eq. 4.13 to determine the actual E (tl) (red squares), Whose fitting With a

power—law relaxation function provides and elasticity modulus E ( l) : 1.016 kPa. According to

Equation 4.3, the parameters E ( 1) and B fully determine the average viscoelastic relaxation of

the measure cell.

4.5.1 Determination of E (t) from a single force curve

Equation 4.13 shows that fitting a force curve F (r) versus ô(t) using generalized

Hertz's model provides EH (t) , Where t is time duration that the tip takes to achieve and indentation
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Figure 23 — Analysis of elasticity moduli and viscoelastic relaxation in the experimental
data of L929 cells. (a) Elasticity moduli relationship and direct scaling. (b)
Time—dependent dispersion of EH(tl) and viscoelastic relaxation. (c) Median
values of E H(tl) per fZ (black squares) for viscoelastic relaxation function.
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depth of ô(t). This makes us wonder whether we can take advantage of force curves measured

with low fZ frequency and progressively fit F (r) versus 5 (t) with a sliding time width up to t : tl.

Moreover, in this work, the force curves were measured with sampling rate of 2 kHz, which

represents a resolution in time of At : 0.5 ms. By splitting the forces curves is slots of 30 At,

one can fit a single force curve in up to n >< (15 ms), where n = 1,2, ...,N (N >< (15 N)) : tl.
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Figure 24 — (a) Approach portion of the force curves of Figure 22 in time domain. (b)
Log—log plot of the force curves. The vertical bars indicate the end points of
each fitting window of the Hertz model. (c) Comparison of the time—dependent
Young 's moduli EH(t) determined using Equation 4.13 (solid lines) and Hertz
model (dashed lines).

fast Slow
relaxation relaxation C

Source: Created by the author.

To demonstrate this analysis, we depart from the force curves shown in Figure 22,

which are shown in Figure 243 in time domain, from the contact point up to the maximum force.

These curves are also shown in log—log plot in Figure 24b, where the vertical line show the end

points of each fitting window where the Hertzºs analyses are performed. Figure 24c shows the

time dependence of EH(t) constructed with two methods: (i) using Eq. 4.13 (solid lines), and
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(ii) by fitting the force curves with Hertzºs model using the sliding time window (dashed lines).

The agreement between both methods is undeniable. Moreover, the E H(t) curves for different fZ

are very similar exhibiting two relaxation regimes, a fast relaxation regime (up to 200 ms) with

exponent Bfg“ : 0.75, and a slow relaxation regime for larger observation times with exponent

Bfg“ : 0.13, nearly identical to the exponent obtained by analysing the entire range of multiple

force curves measured with different fzºs (shown in Figure 23). This fast relaxation regime has

been observed in many reports in time and frequency domains (DENG et al. , 2006; RIGATO et

al., 2017; SOUSA et al., 2020).

Two important points are worth to mention. First, we remind that the actual relaxation

function E (t) can be obtained from EH(t) using Equation 4.13. The only missing factor is the

slow relaxation exponent B, which can be extracted by fitting E H(t) with a single power—law

function AFB for larger timescales (t > 100 ms). Second, each F (r) curve shown in Figure

24 is representative of a single point in the cell surface. In order to estimate an average (E (t))

for the whole cell, it is necessary to determine E (t) over several points in the cell surface and

compute an average function.

4.6 Robustness of the model

The most important result of this work is the model of Equation 4.13 that shows

how the Youngis modulus of the generalized Hertz model E H is related to the time—dependent

elasticity modulus E (t) of material described by a single power—law viscoelastic relaxation. So

far, this model was tested with measurements made in a single L929 cell. In order to demonstrate

the robustness of the model, it is important to test it with a large volume of data.

The same experimental protocol used in Figure 23, i.e., measuring 16 forces curves

per cell with different vertical frequencies and maximum force of 2 nN, in two different cell lines

for nL929 : 13 and nOFCOLH : 16 cells. Each force curve is fitted with Hertz model (Equation

4.12) to determine E H using the whole extent of the force. The curves are also fitted the single

PL model (Equation 4.8) to extract both E (tl) and B. With these quantities, the estimated Young

modulus E g, : ÃBM, 1 — B)E (tl) is calculated and compared to the actual EH. The results are

shown in Figure 25.

The histograms clearly show that the measured E H are consistently larger than E (tl)

despite of the frequency fz and type of cell, which in qualitative agreement with Equation 4.13.

The data also show that OFCOL II cells are slightly stiffer than L929 ones. OFCOL II cells
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Figure 25 — Distribution of measured values of EH (a,e), E (tl) (b,f), relaxation exponent
B (c,g) and difference EH — Eh (d,h), where Eh : ÃBM, l — B)E(tl) is the
Youngºs moduli estimated from the time—dependent relaxation model (Equation
4.13). All force curves are subjected to a maximum force of 2 nN. The number
of measured cells Der cell line is mmo : 13 and nnpnmn : 16 cells. ln each
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also exhibit an slightly larger solid—like character (lower values of the viscoelastic exponent

B) compared to L929 cells. These characteristic hold for all vertical frequencies. The vertical

frequency has little influence in the average elasticity moduli and relaxation exponent. The

histograms of E É], are not explicitly shown but the distribution of the error AEH : EH — E É], shows

that both models agree quite well, exhibiting an average difference of approximately 0.03 kPa

for curves measured with frequencies up to fZ : 2Hz.

To confirm the robustness of the model for maximum forces above 2 nN, we also

performed the same measurements by fixing the vertical frequency at fZ : 0.5 Hz and varied the

maximum forces from 1 nN up to 8 nN. The results are shown in Figure 26.

The elastic moduli E H and E (tl) increase with an increase in the maximum force.

This stress stiffening is a well known nonlinear mechanical response of the living cells (KOLL—

MANNSBERGER et al., 2011). The ratio <EH>gnN/<EH>1nN shows that the nonlinear stiffening
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Figure 26 — Distribution of measured values of EH (a,e), E (tl) (b,f), relaxation exponent
B (c,g) and difference EH — Eh (d,h), where Eh : ÃBM, l — B)E(tl) is the
Youngºs modulus estimated from the time—dependent relaxation model (Equa—
tion 4.l3). All force curves are subjected to fZ : 0.5 Hz. The number of

L929 cells

OFCOLII cells
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is larger in OFCOL ll cells than in L929 ones. On the other hand, the relaxation exponent of the

OFCOL II cells seems independent of the maximum force, while L929 cells exhibit an slight

enhancement of its solid—like response (lower exponents) for increasing forces. This seems to be

in contradiction with the work of Kollmannsberger et al. (2011) who shown that the relaxation

exponent increases with increasing external stresses (KOLLMANNSBERGER et al., 2011).

Finally, the analysis of AEH : E H — E 141 shows that the difference between models

exhibit differences of the order of few tens Pa, but this error increases as the applied forces

increases, and the error seems cell—dependent being larger for OFCOL II cells than for L929

ones. Anyhow, we can conclude that the model of Equation 4.13 is robust enough to account for

nonlinear mechanical deformation of living cells.
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The main scientific objetive of this master's thesis is to demonstrate the relation­

ship between the generalized Hertz model, derived to describe the deformation properties of 

semi-infinite elastic materiais by axisymmetric indenters, and the time-dependent viscoelastic 

relaxation properties of living cells. 

Hertz model is largely used to study the mechanical response of cells and tissues 

under different pharmacological and pathological conditions. Despite of the fundamental as­

sumptions that, in principie, prevent the use of Hertz model to study viscoelastic materiais, the 

model developed in this work shows that it is possible to quantitatively determine the underlying 

viscoelastic relaxation function of the cells. 

The most important result of this thesis is the model of Eq. 4.13 that shows how 

the relationship of the Young's modulus EH obtained from the generalized Hertz model with 

the time-dependent elasticity modulus E (t) measured at the instant where the AFM cantilever 

achieves the maximum force. This expression assumes that living cells are described by a single 

power-law viscoelastic relaxation (see Eq. 4.3). 

The validity and robustness of the model was tested by measuring tens of living cells 

from two different lines (L929 and OFCOLII) under different loading conditions, namely (i) 

fixed force and varying indentation velocities (varying f
z
), and (ii) fixed f

z 
and varying forces. ln 

both cases, the difference between the fitted EH and the estimated Young's modulus E� derived 

from the viscoelastic force model (Eq. 4.8) is very small compared with the actual stiffness of 

the cells ( of the order of few tens of Pa). The model is valid even in the regime of nonlinear 

stress stiffening (higher applied forces). 

ln conclusion, the present study has significant experimental and theoretical im­

plications, contributing to a more comprehensive understanding of both linear and nonlinear 

mechanical properties of cells within the framework of the Generalized Hertz model. Our model 

open up new avenues for future research in nonlinear cell mechanics and provide a simplified 

theoretical framework for further investigations in cellular behaviors under complex mechanical 

environments. 
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APPENDIX A — TABLES WITH MEASURED DATA

Table 3 — Medians of Youngºs modulus (Pa) corresponding to a force map (contact mode) for each L929 cell
in cell culture obtained from the Hertz fit. In this case, the frequency is kept constant during the
measurements, varying only the force exerted on the cell during indentation.

Index of Frequency: 0.5 Hz Frequency: l.0 Hz
cell measured l nN l 2 nN l 4 nN l 8 nN l nN l 2 nN l 4 nN l 8 nNE (Pa) E (Pa)

1225.00 2250.00 2720.00 4750.00 646.26 694.66 665.09 893.49
947.17 1320.00 1540.00 2680.00 1285.00 1410.00 1615.00 212500
103592 721.62 821.71 1220.00 1055.00 965.33 995.22 1410.00
691.69 647.93 1505.00 2445.00 565.21 624.66 735.30 1215.00
1380.00 1065.00 1175.00 1520.00 388.44 620.41 862.79 1345.00
937.41 1495.00 1880.00 1680.00 1070.00 1025.00 1300.00 1300.00
894.40 993.14 1035.00 1200.00 1120.00 1390.00 1590.00 1800.00
405.04 406.43 589.14 1440.00 1705.00 1950.00 1850.00 204000
262500 1910.00 1365.00 1435.00 1810.00 975.76 1295.00 2260.00
849.97 1125.00 1465.00 2260.00 985.39 736.23 794.48 1265.00
366.17 552.04 1090.00 1935.00 1070.00 1415.00 1495.00 1800.00
950.04 1021.38 1060.00 1175.00 1200.00 1450.00 1370.00 1660.00
1855.00 2040.00 1595.00 1865.00 3315.00 3625.00 3175.00 3145.00
1240.00 1225.00 1205.00 1365.00 2135.00 2765.00 5890.00 5620.00

15 835.46 713.72 1270.00 2030.00 1017.64 1200.00 1390.00 1440.00
Source: Created by the author.

r—Ar—Ar—Ar—Ar—A WANHONDOONIOXUI-PUJNr—A

Table 4 — Medians of Young7s modulus (Pa) corresponding to a force map
(contact mode) for each L929 cell in cell culture obtained from the
Hertz fit. In this case, the force is kept constant at 2 nN during the
measurements, varying only the oscillation frequency.Index of Force: 2nN

cell measured 0.25 Hz l 0.50 Hz l 1.00 Hz l 2.00 Hz
E (Pa)

1 744.03 1260.00 1175.00 1220.00
2 857.28 892.90 1215.00 1225.00
3 936.43 1040.65 lll0.00 1145.00
4 554.97 729.45 835.01 825.19
5 344.11 367.01 426.02 419.86
6 1390.00 1155.00 507.24 387.40
7 893.56 lOll.48 1120.00 1090.00
8 1020.00 1090.00 1055.00 1195.00
9 742.97 651.31 714.19 775.41
10 1980.00 1490.00 1835.00 249000
11 1079.86 1340.00 1360.00 1315.00
12 1495.00 1605.00 2120.00 256500
13 874.95 914.83 1064.10 1350.00

Source: Created by the author.


