
FEDERAL UNIVERSITY OF CEARÁ

CENTER OF TECHNOLOGY

DEPARTMENT OF HYDRAULICS AND ENVIRONMENTAL ENGINEERING

GRADUATE PROGRAM IN CIVIL ENGINEERING: WATER RESOURCES

DOCTORAL DEGREE IN CIVIL ENGINEERING: WATER RESOURCES

TAÍS MARIA NUNES CARVALHO

MACHINE LEARNING FORWATER RESOURCES MANAGEMENT

FORTALEZA

2023



TAÍS MARIA NUNES CARVALHO

MACHINE LEARNING FOR WATER RESOURCES MANAGEMENT

Thesis submitted to the Graduate Program in
Civil Engineering: Water Resources of the
Center of Technology of the Federal University
of Ceará, as a partial requirement for obtaining
the title of Doctor in Civil Engineering. Concen-
tration Area: Water Resources

Advisor: Prof. Dr. Francisco de Assis de
Souza Filho

FORTALEZA

2023



Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Sistema de Bibliotecas
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

N929m Nunes Carvalho, Taís Maria.
    Machine Learning for Water Resources Management / Taís Maria Nunes Carvalho. – 2023.
    267 f. : il. color.

     Tese (doutorado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação
em Engenharia Civil: Recursos Hídricos, Fortaleza, 2023.
     Orientação: Prof. Dr. Francisco de Assis de Souza Filho.

1. Water resources management. 2. Water demand. 3.  Water quality. 4.  Machine learning. 5. Statistical
learning. I. Título.

CDD 627



TAÍS MARIA NUNES CARVALHO

MACHINE LEARNING FOR WATER RESOURCES MANAGEMENT

Thesis submitted to the Graduate Program
in Civil Engineering: Water Resources of
the Center of Technology of the Federal
University of Ceará, as a partial requirement
for obtaining the title of Doctor in Civil
Engineering. Concentration Area: Water
Resources

Approved on:

EXAMINATION BOARD

Prof. Dr. Francisco de Assis de Souza
Filho (Advisor)

Federal University of Ceará - UFC

Prof. Dr. Iran Eduardo Lima Neto
Federal University of Ceará - UFC

Profa. Dra. Ticiana Marinho de Carvalho
Studart

Federal University of Ceará - UFC

Dra. Mariana Madruga de Brito
Helmholtz Centre for Environmental Research

Prof. Dr. Dirceu Silveira Reis Junior
University of Brasília - UnB



To my parents Terezinha and Cláudio. To my

grandfather Antônio Gomes da Silva (in memo-

rian).



ACKNOWLEDGEMENTS

Many people walked together with me while I was constructing this thesis, and for

this, I will always be grateful.

This study was nanced in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior – Brasil (CAPES) – Finance Code 88882.344015/2019-01. I thank CAPES

for the scholarship I was awarded to conduct this thesis. I would never be able to do a PhD

without nancial support, and I feel privileged to have had this opportunity. During my PhD, we

faced one of the most unstable political moments of the history. Universities were constantly

being attacked and the credibility of researchers was severely questioned by many people. Many

times, I doubted if I was doing right by pursuing a career in science. However, I was always

very sure that education was the only way to ght misinformation and a path to create space for

more people to have a say in the future. The student support programs, scholarships, extension

projects and language courses provided by the Federal University of Ceará were essential for me

to be nishing a PhD.

I thank the Post-Graduation Program in Civil Engineering and all its professors and

staff. Getting accepted to this program was a dream come true. I enjoyed every class and every

time I had the chance to be in one of the classrooms learning from people I admire so much. I

thank all the members of the examination committee, Prof. Ticiana Studart, Prof. Iran Lima Neto,

Prof. Dirceu Reis and Dr. Mariana de Brito, for accepting to examine this thesis. I sincerely

admire all of them. I thank Prof. Samiria for her support and guidance in all the research projects

we worked together. I am grateful for the advices and shared knowledge during lunch breaks. I

thank Prof. Ticiana for her guidance and collaboration in every shared project and papers we

have worked together. I thank Prof. Iran for his kindness and careful guidance in one of the

papers of this thesis.

I thank my mom, Terezinha, for supporting me in every moment of this path and

for being my best friend. She inspires me in every possible aspect and I could never nish this

PhD without her. Her kindness, patience and unconditional love give me reason to keep studying

and working everyday. I also thank my dad, Cláudio, for always cheering for me and showing

the best side of things when I could not see it myself. I am grateful for the beautiful trees and

owers that he so carefully cultivates in our house and that were inspirational for me so many

times. His love and care give me reason to keep going.

I thank my brother, João Cláudio, for supporting my education in every possible way.



I thank my sister, Taiana Cláudia, for lling my life with music and nature and reminding myself

to enjoy small moments. I am happy to have them by my side looking out for me.

I thank my aunts Íris and Alvanisia for their love and support.

I thank my grandfather Antônio Gomes, who will always inspire me with his strength

and intelligence. His history as a workman building some of Cearás’s dams makes me proud and

happy to be working in the water resources sector. I thank my grandmother Maria Nunes for her

strength and serenity.

I thank my partner in life Walter, for the unlimited support and for always reminding

myself what I can achieve. I am grateful for walking this academic journey with him and being

inspired by him in so many steps of the way.

I thank Cida for her friendship and companionship. I am so grateful to have her as

my friend since day one at UFC. I thank my friends and lab colleagues Ályson and Tereza, for

the friendship and for sharing this academic path with me. It is always inspiring talking to you

about research ideas and hearing your inputs. I thank my friend Priscila Natiele and her family

for their kindness and for being like family to me. I thank my childhood friends Renata Freire

and Letícia Sampaio. Their friendship mean a lot to me and sure made this path much more

happy.

Lastly, I thank my advisor Prof. Francisco de Assis for mentoring me since my

undergraduate studies. You inspired me to follow an academic career with your distinct love for

teaching and research. I thank you for the guidance, patience and devotion during this journey.

Thank you for going beyond technical education and bringing literature, poetry and national

music to our meetings. We might still live as our parents, but you helped me to ll my toolbox

with tools to ght the dangers around the corner. It has been a honour learning from you.



"De cada vivimento que eu real tive, de alegria

forte ou pesar, cada vez daquela hoje vejo que

eu era como se fosse diferente pessoa. Sucedido

desgovernado. Assim eu acho, assim é que eu

conto."

(João Guimarães Rosa)



ABSTRACT

Water resources management challenges are multiple and complex, and human force, as the main

driver of environmental change, has been increasing the need for tailored (and faster) responses

to them over the past decades. Despite our increasing technical knowledge on how to tackle these

issues, which are mainly related to water quantity, quality and access, unprecedented change

in climate and landscapes will require a better understanding of the interactions between water

and society. This thesis is concerned with the challenging task of applying machine learning

techniques to extract knowledge from hydrological, socioeconomic and climate data and tackle

some of the water management issues associated with water quantity and quality. Specically,

it addresses (i) the drivers of water demand in different temporal and spatial scales; (ii) the

implications of price-based demand-side measures and how media coverage and public interest

on extreme events can affect consumption habits; (iii) the long-term water availability and supply

under climate variability, and (iv) some of the effects of environmental change on water quality.

We learn that climate variability and change might affect not only hydrological responses but also

consumption habits and water supply expansion strategies. Also, we make valuable ndings on

the drivers of water demand and quality, which can support utilities in their long-term planning.

Keywords: Water resources management. Water demand. Water quality. Machine learning.

Statistical learning.



RESUMO

Os desaos da gestão de recursos hídricos são múltiplos e complexos, e a força humana, como

principal impulsionadora da mudança ambiental, tem aumentado a necessidade de respostas

personalizadas (e mais rápidas) para eles nas últimas décadas. Apesar de nosso crescente conhec-

imento técnico sobre como lidar com essas questões, principalmente relacionadas à quantidade,

qualidade e acesso à água, mudanças sem precedentes no clima e no uso da terra exigirão uma

melhor compreensão das interações entre a água e a sociedade. Esta tese está preocupada com a

tarefa desaadora de aplicar técnicas de aprendizado de máquina para extrair conhecimento de

dados hidrológicos, socioeconômicos e climáticos e abordar alguns dos problemas de gerenci-

amento de água associados à quantidade e qualidade da água. Especicamente, aborda (i) as

variáveis que inuenciam a demanda de água em diferentes escalas temporais e espaciais; (ii)

as implicações de medidas de controle da demanda baseadas em preços e como a cobertura da

mídia e o interesse público em eventos extremos podem afetar os hábitos de consumo de água;

(iii) a disponibilidade e abastecimento de água a longo prazo sob variabilidade climática, e (iv)

alguns dos efeitos da mudança ambiental na qualidade da água. Aprendemos que a variabilidade

e as mudanças climáticas podem afetar não apenas as respostas hidrológicas, mas também os

hábitos de consumo e as estratégias de expansão do abastecimento de água. Além disso, fazemos

descobertas valiosas sobre os impulsionadores da demanda e qualidade da água, que podem

apoiar as concessionárias de água em seu planejamento de longo prazo.

Palavras-chave: Gestão dos recursos hídricos. Demanda hídrica. Qualidade da água. Apren-

dizado de máquina. Aprendizado estatístico.
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1 INTRODUCTION

Water resources management challenges are multiple and complex, and human force,

as the main driver of environmental change (COSGROVE; LOUCKS, 2015), has been increasing

the need for tailored (and faster) responses to them over the past decades. Despite our increasing

technical knowledge on how to tackle these issues, which are mainly related to water quantity,

quality and access (LOUCKS et al., 2017), unprecedented change in climate and landscapes will

require a better understanding of the interactions between water and society.

At the same time, this intense social and environmental transformation has been

accompanied by an exponential growth of computational resources and data, be it human- or

machine-generated (SIT et al., 2020). In fact, in the last decades, new data collection strategies

have been adopted by the water sector, such as satellite remote sensing (MUSA et al., 2015),

"smart" meters (COMINOLA et al., 2015), crowdsourcing approaches (WEESER et al., 2018)

and text mining (BRITO et al., 2020). Statistical learning comprise a set of tools to process this

data and gain insight from it (HASTIE et al., 2009). This means we might able to learn from

the past, not by simply expecting the future to be the same, but by assessing how nature might

respond to our actions and vice versa.

Machine learning (ML) techniques have been intensely explored in the water re-

sources eld, especially for predicting hydrological and hydroclimatological variables, such as

streamow (PAPACHARALAMPOUS; TYRALIS, 2018; LIN et al., 2021; XU et al., 2022),

precipitation (WEI et al., 2022; TAO et al., 2021), and water demand (BRENTAN et al., 2017;

GHARABAGHI et al., 2019; DUERR et al., 2018); for unraveling hydrological processes

(SCHäFER et al., 2022); improving conceptual hydrological modeling (KUMANLIOGLU;

FISTIKOGLU, 2019), and quantifying hydrological extremes (HAUSWIRTH et al., 2021). How-

ever, less effort has been put into incorporating these models into water resources management

and planning tasks.

One reason for that is the black-box nature of most ML models: their either have

incomprehensible underlying functions, or are constructed with abstract features, as in the case

of deep learning. While these models might offer accurate predictions of hydrological and

environmental variables, their supposed lack of interpretability makes them less suitable - and

thus less explored - to make decisions (RUDIN, 2019). They can, however, be used to guide the

learning process and the development of water management modes. In this context, there are

additional barriers to integrate them into decision making: the theoretical basis of these models
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is not part of the traditional background of most water resources practitioners and this might

affect their credibility with stakeholders (SHEN, 2018). In fact, decisions of water management

institutions have been mainly guided by process-based models so that incorporating purely

data-driven models into it should be challenging (OLSSON; ANDERSSON, 2007). We argue

that if combined with expert knowledge and used with parsimony, ML can be a useful tool to

advance science for planning and managing water resources systems, since the complex dynamic

of the hydrological and social systems (FICKLIN et al., 2022) require modeling approaches

capable of dealing with nonlinearities (KUMAR, 2015). We make a rst attempt to show how

ML can be leveraged to guide water management and the learning process of water resources

stakeholders.

This thesis is concerned with the task of applying ML techniques to extract knowl-

edge from hydrological and socioeconomic data and tackle some of the water management issues

associated with water quantity and quality. Specically, it addresses (1) the drivers of water

demand in different temporal and spatial scales; (2) the implications of price-based demand-side

measures and how media coverage and public interest on extreme events can affect consumption

habits; (3) strategies to manage water availability and supply under climate variability in the

long-term, and (4) some of the effects of environmental change on water quality.

We combine several ML algorithms to explore the relationships between social,

economic, climatological and hydrological attributes and variables of interest to water resources

management. Beyond obtaining accurate predictions, we use different tools to improve inter-

pretability of machine learning and rule extraction to gain signicant insights on the human-water

interfaces. Although most of the ML algorithms used in this thesis are already widely known,

we show how water resources managers and stakeholders can benet from them and reduce

the impacts of climate variability on water security. We present innovative applications and

strategies to take advantage of state of the art tools that have not yet been sufciently explored in

a way that can be easily replicated for different social and environmental contexts. We show that

ML can help researchers to explore characteristics of water users, quantify the effects of water

policies, decide which pathways to choose when developing a plan and verify the role of climate

and hydrology on eutrophication.
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1.1 Roadmap

Chapter 2 presents the methodological roadmap for all studies conducted in this

thesis, which are mainly based on statistical learning theory. Chapter 3 presents the sources and

spatial levels of the data used here. Chapters 4 and 5 refer to objective 1, Chapter 6 to objective 2,

Chapter 7 to objective 3, and Chapter 8 to objective 4. All data is available in a public dashboard.

• Chapter 4 is based on the study entitled "Urban Water Demand Modeling Using Machine

Learning Techniques". In this chapter, machine learning methods are combined to explore

the main drivers of water demand. The entire code is available on GitHub.

• Chapter 5 is based on the study entitled "Variational mode decomposition hybridized

with gradient boost regression for seasonal forecast of residential water demand". In this

chapter, we present an original method for seasonal forecast of water demand.

• Chapter 6 is based on the study entitled "A Data-Driven Model to Evaluate the Medium-

Term Effect of Contingent Pricing Policies on Residential Water Demand".

• Chapter 7 is based on the work developed for the project "Optimization of the water supply

system of Fortaleza and inclusion of alternative water sources".

• Chapter 8 is based on the study entitled "Uncovering the Inuence of Hydrological and

Climate Variables in Chlorophyll-A Concentration in Tropical Reservoirs with Machine

Learning". The entire code is available on GitHub.

Chapter 9 summarizes the main conclusions of this thesis and highlights the outcomes

and implications of the conducted research.
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2 METHODOLOGICAL ROADMAP

Statistical learning tools are designed to learn from data and make predictions. 

Depending on the data available and the problem one is trying to solve, these tools can be 

generally classied as (i) supervised learning, (ii) unsupervised learning or (iii) reinforcement 

learning. When learning occurs from a training set of data, where each occurrence has its own 

correspondent label, we might have a supervised learning problem. Learning means nding the 

function that better maps the input and output (label).

Supervised learning tasks can be formulated as either regression or classication 

problems, depending on the output. If the output takes a continuous range of values, it is a 

regression problem. Using water demand prediction as an example (Chapter 4), a regression 

could be performed with average per capita income as input and water demand as an output. The 

regression would nd a functional relationship between average per capita income (I) and water 

demand (D), such that:

D = f (I)

More than one variable might be necessary to explain the outcome, and in this case, the function 

becomes more complex and more data might be needed to train the model. In the problems 

described in Chapters 4 and 8, for instance, water demand and Chlorophyll-a concentrations 

were modeled from several socioeconomic and hydroclimatological variables, respectively. If 

the task involves dealing with sequential data, regression models can still be useful for providing 

forecasts, as long as data points are not considered to be independent (Chapter 5 and Chapter 6).

In classication problems, the output is extracted from a discrete set of l abels. In 

water resources problems, for example, a set of water quality parameters of a lake would be 

the input, and the output label would be that lake’s water quality index. Some algorithms (e.g. 

classification and regression tree and artificial neural networks) allow us to extract rules that 

explicitly describe the relationships between input and output variables (Chapter 8). Unsuper-

vised learning is appropriate when the data has no label or a specic desired output. In Chapter 

4, for example, we use a clustering algorithm to identify water consumption proles in a urban 

environment.

Table 1 summarizes the models and algorithms used in this thesis and in which 

chapters each of them was applied. All models (except for the optimization model in chapter 7) 

were developed using R programming language. The packages used to perform data manipulation
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and preparation (e.g. dplyr and tidyr), modeling and visualization (e.g. ggplot2 and rpart.plot)

are summarized in Table 2.

Table 1 – Machine Learning models and algorithms used in this thesis.

Model Section with the
corresponding description

Chapter

4 5 6 7 8

Random Forest 4.3.2, 8.2.8 ! ✕ ✕ ✕ !

Self-organizing Map 4.3.4 ! ✕ ✕ ✕ ✕

Articial Neural Network 4.3.6, 8.2.5 ! ✕ ✕ ✕ !

Accumulated Local Effect 4.3.3 ! ✕ ✕ ✕ ✕

Variational Mode Decomposition 5.3.1 ✕ ! ✕ ✕ ✕

Gradient Boosting Machine 5.3.2, 5.3.2, 8.2.8 ✕ ! ! ✕ !

Partial Autocorrelation Function 5.3.3 ✕ ! ✕ ✕ ✕

Partial Dependence 6.3.4, 8.5 ✕ ✕ ! ✕ !

Seasonal-Trend decomposition using LOESS 8.2.9 ✕ ✕ ! ✕ ✕

Support Vector Machine 8.2.9 ✕ ✕ ✕ ✕ !

Linear Regression 8.2.3 ✕ ✕ ✕ ✕ !

Elastic-Net Regularized Generalized Linear Model 8.2.4 ✕ ✕ ✕ ✕ !

kNN 8.2.6 ✕ ✕ ✕ ✕ !

Classication and Regression Tree 8.2.7 ✕ ✕ ✕ ! !

Source: The author.

Table 2 – R packages used in this thesis.

R Package Reference
Chapter

4 5 6 7 8

dplyr Wickham et al. (2022) ! ! ! ! !

tidyr Wickham (2020) ! ! ! ! !

purrr Henry and Wickham (2020) ! ! ! ! !

ggplot2 Wickham (2016) ! ! ! ! !

magrittr Bache and Wickham (2020) ! ! ! ! !

corrplot Wei and Simko (2017) ! ✕ ✕ ✕ !

randomForest Liaw and Wiener (2002) ! ✕ ✕ ✕ !

kohonen Wehrens and Kruisselbrink (2018) ! ✕ ✕ ✕ ✕

RSNNS Bergmeir and Benítez (2012) ! ✕ ✕ ✕ !

ALEPlot Apley (2018) ! ✕ ✕ ✕ ✕

vmd Hamilton and Ferry (2017) ✕ ! ✕ ✕ ✕

gbm Greenwell et al. (2020) ✕ ! ! ✕ !

pdp 6.3.4, Greenwell (2017) ✕ ✕ ! ✕ !

e1071 Meyer et al. (2020) ✕ ✕ ✕ ✕ !

kNN 8.2.6 ✕ ✕ ✕ ✕ !

rpart Therneau and Atkinson (2019) ✕ ✕ ✕ ✕ !

rpart.plot Milborrow (2020) ✕ ✕ ✕ ✕ !

Source: The author.
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3 DATA

Several databases were used to train the models described here (Table 4 and 3).

Social and economic data were obtained mainly from the Brazilian Institute of Geography and

Statistics (IBGE) census, but also from Fortaleza’s planning Institute in geospatial vector data

format. Hydrological data (e.g. precipitation and temperature) were obtained from different

sources, including (i) climate stations, (ii) reanalysis databases, and (iii) measured data. Water

quality information was extracted from satellite-based data and eld measures.

Table 3 – Variables, sources and data types obtained in the NetCDF format
used in this thesis.

Variable Spatial level Time period Source

Mean surface temperature over the reservoir 0.5 degree
grid

2002-2019 CRU
Harris et
al. (2020)

Monthly average of surface and subsurface runoff
accumulated over one day in the hydrographic basin

9 km grid 2002-2019 Muñoz-
Sabater et
al. (2021)

Air temperature at 2 m above the reservoir 9 km grid 2002-2019 Muñoz-
Sabater et
al. (2021)

Water temperature at the bottom of the reservoir 9 km grid 2002-2019 Muñoz-
Sabater et
al. (2021)

Thickness of the mixed layer 9 km grid 2002-2019 Muñoz-
Sabater et
al. (2021)

Surface net solar radiation 9 km grid 2002-2019 Muñoz-
Sabater et
al. (2021)

Horizontal wind speed at a height of 10 m above the
reservoir surface

9 km grid 2002-2019 Muñoz-
Sabater et
al. (2021)

Source: The author.
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Table 4 – Variables, sources and data types obtained from tabular databases
used in this thesis.

Variable Spatial level Time period Source

Census data

Human Development Index Neighborhood 2010 IPLANFOR
Average per capita income Census tract 2010 IBGE
% Female residents Census block 2010 PNUD

(2012)
% 65 years old or older Census block 2010 IBGE
% 1 to 14 years old Census block 2010 PNUD

(2012)
Life expectancy Census block 2010 PNUD

(2012)
Expected years of schooling Census block 2010 PNUD

(2012)
% 25 years or older who have completed Elementary
School

Census block 2010 PNUD
(2012)

% 25 years or older who have completed High School Census block 2010 PNUD
(2012)

% 25 years or older who have completed College Census block 2010 PNUD
(2012)

Average per capita income Census block 2010 PNUD
(2012)

% Population living in poverty Census block 2010 PNUD
(2012)

% Population vulnerable to poverty Census block 2010 PNUD
(2012)

% Population living in households with bathrooms and
running water

Census block 2010 PNUD
(2012)

% Population living in urban households with a garbage
collection service

Census block 2010 PNUD
(2012)

% People in households with inadequate water supply and
sanitation facilities

Census block 2010 PNUD
(2012)

% Economically active population aged 18 or older Census block 2010 PNUD
(2012)

% People in households vulnerable to poverty in which
no one has completed Elementary School

Census block 2010 PNUD
(2012)

Municipal Human Development Index Census block 2010 PNUD
(2012)

Demographic density Census tract 2019 IPLANFOR

Measured data

Average monthly precipitation Point 2010 HidroWeb
(2010)

Water level Reservoir 2002-2019 COGERH
Total water volume in the reservoir Reservoir 2002-2019 COGERH

Source: The author.
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4 URBANWATER DEMANDMODELING USING MACHINE LEARNING TECH-

NIQUES

"Sertão - sabe o senhor: sertão é onde o pen-

samento da gente se forma mais forte do que o

poder do lugar." (ROSA, 2019)

4.1 Introduction

The management of water resources systems in rapidly urbanized cities is challeng-

ing, especially in regions with high climate variability. Domestic water use is expected to grow

signicantly over the next two decades in nearly all regions of the world, except for some cities

in developed countries (UNESCO, 2018; SAURI, 2020). Freshwater availability will remain

constant or decrease (UNESCO, 2018), increasing the competition for water and the vulnerability

of water supply systems. The risk of water scarcity requires strategies of water conservation

or capacity expansion, with the inclusion of alternative water sources. Either way, accurate

prediction of water demand is crucial for effective long-term planning. However, water demand

is driven by complex, nonlinear interactions between human and ecological systems that are

not fully understood (HOUSE-PETERS; CHANG, 2011). Previous studies have showed that

socioeconomic aspects inuence domestic water use (MATOS et al., 2014; NAWAZ et al., 2019),

but this relationship is distinct in each region. Fortaleza has a history of multiyear droughts and

water supply crisis.

The city is supplied by multiple surface water reservoirs, which are also used for

irrigation and industrial purposes. Annual precipitation is low and highly variable; hence water

availability is subject to climate conditions. Aiming to expand the supply system’s capacity

and to reduce its climate dependence, local managers are planning to install a desalination and

wastewater reuse plants. The capacity expansion plan will consist in scheduled decisions about

when and which source to use in the next 30 years. Research is needed to better understand

how the complex interactions between socioeconomic changes and water demand may develop

over the coming decades. Currently, managers predict water demand based only on estimated

population growth and the average income of the neighborhoods. However, this approach

neglects social heterogeneity in the neighborhoods and other aspects that might inuence water

use (e.g. education and household composition). The purpose of this study is to provide a

framework for water demand modeling using machine learning techniques and to explore the
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inuence of socioeconomic variables on the average daily consumption across Fortaleza.

There is a lack of studies that assess domestic water demand in developing countries,

where research is needed to develop social-aware water allocation strategies (UNESCO, 2019).

Domestic water consumption in Brazil was explored in a few previous studies (BRENTAN et

al., 2017; DIAS et al., 2018; SANT’ANA; MAZZEGA, 2018; GARCIA et al., 2019). However,

they were limited to Midwest and southern regions, which have a very different climate and

social context from Northeast Brazil.

Outside Brazil, different approaches have been used for water demand modeling,

such as regression-type methods, e.g. independent component regression (HAQUE et al.,

2017), multiple linear and evolutionary polynomial regression (HUSSIEN et al., 2016), ordinary

least square regression (NAWAZ et al., 2019) and Bayesian linear regression (RASIFAGHIHI

et al., 2020), linear mixed-effects (ROMANO et al., 2014), autoregressive moving average

(GHARABAGHI et al., 2019) and agent-based (XIAO et al., 2018) models. ML techniques have

receiving increasingly attention as researchers have come to understand that these algorithms

can effectively learn information from water demand data and capture nonlinear relationships

between water demand and relevant variables. In recent studies, (LEE; DERRIBLE, 2020) and

(BOLORINOS et al., 2020) showed that ML models outperform linear methods for prediction

of residential water demand. (DUERR et al., 2018) showed that ML can be useful to quantify

long-term uncertainty in water demand predictions. Data mining techniques have also been

applied to customer segmentation, i.e. to characterize groups of water users, using smart meter

data (CARDELL-OLIVER et al., 2016; COMINOLA et al., 2018; COMINOLA et al., 2019;

BOLORINOS et al., 2020).

The most popular machine learning methods in water demand studies is the Articial

neural network (ANN), that has long been used because of its excellent predictive ability (VIJAI;

SIVAKUMAR, 2018). Prior research explored ANN models for predicting 15-min (GUO et al.,

2018), weekly (BATA et al., 2020; ADAMOWSKI; KARAPATAKI, 2010) and monthly water

demand (FIRAT et al., 2009; ALTUNKAYNAK; NIGUSSIE, 2017), residential water end-use

(BENNETT et al., 2013) and irrigation demand (PULIDO-CALVO et al., 2007). Other studies

combined ANN with different methods to improve water demand prediction, such as seasonal

autoregressive integrated moving average (BATA et al., 2020) and discrete wavelet transform

(ALTUNKAYNAK; NIGUSSIE, 2017).

Alternative ML techniques used to model water demand are support vector ma-
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chine (MSIZA et al., 2007; BRENTAN et al., 2017), genetic programming (LIU et al., 2015;

YOUSEFI et al., 2017) and tree-based methods, such as regression tree and random forest

(VILLARIN; RODRIGUEZ-GALIANO, 2019; BOLORINOS et al., 2020). RF algorithms have

been standing out in water science and hydrological applications (TYRALIS et al., 2019). They

have been mainly used for streamow and water quality modeling (YAJIMA; DEROT, 2018;

PAPACHARALAMPOUS; TYRALIS, 2018). A few researchers applied this method for analyz-

ing variable importance for water demand prediction (VILLARIN; RODRIGUEZ-GALIANO,

2019; BRENTAN et al., 2017) and short-term forecast (VIJAI; SIVAKUMAR, 2018; CHEN et

al., 2017; HERRERA et al., 2010).

ML techniques are also useful for pattern recognition. Self-organizing map (SOM)

– a type of neural network – has been used in several water resources applications, such as

ground-water level forecasting model (HASELBECK et al., 2019), water quality assessment

(LI et al., 2018) and analysis of land use change with satellite data (QI et al., 2019). SOM

was also used to analyze water consumption patterns in recent studies (BRENTAN et al., 2017;

PADULANO; GIUDICE, 2018).

The modeling approach depends on the data available and the planning horizon. ML

methods are useful due to the lack of understanding of the underlying processes driving water

demand (SOLOMATINE et al., 2008) but are sensitive to the dataset size and the choice of input

variables. Lee and Derrible (2020) investigated the role of data availability in water demand

modeling; ML models performed better when a larger number of explanatory variables were

considered. However, increasing the number of input variables means increasing the number of

model parameters, which could reduce the accuracy of the model (GUO et al., 2018). Hence,

variable selection is an important step in the modeling process if the dataset is extensive.

Long-term prediction is usually related to structural, social and environmental vari-

ables, such as lot size, building density, educational level and family size (CHANG et al., 2010;

POLEBITSKI; PALMER, 2010). Social and structural dynamics might inuence changes in

water use behavior, as indicated by (GONZALES; AJAMI, 2017). Understanding these rela-

tionships is helpful for tailoring demand side management strategies and drought-related public

measures (HEMATI et al., 2016; LINDSAY et al., 2017; QUESNEL; AJAMI, 2017). This

discussion, however, has been mostly limited to the US and Europe.

This study seeks to provide further insight into the application and interpretation

of machine learning methods for water demand modeling, considering the implications of data
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availability and spatial level aggregation on model performance. Previous studies have focused

on evaluating the predictive power of ML models, and so far, there has been little discussion on

the individual effect of sociodemographic variables on water demand, especially in developing

countries. We address this issue with the application the accumulated local effects method

(APLEY; ZHU, 2016) for interpreting black box models. Domestic water demand was analyzed

with cross-sectional data at two spatial levels (census tract and census block). While at the census

tract level (ne scale), only two variables were available, at the census block level (coarse scale),

eighteen explanatory variables were used. RF was used for ranking the variables and SOM was

used to cluster water demand based on the sociodemographic variables. This approach allows the

evaluation of possible shifts in water consumption patterns based on socioeconomic scenarios.

A predictive model using ANN was built for both spatial levels. At the census block level, the

IIS method (GALELLI; CASTELLETTI, 2013) was used to select the input variables for the

predictive model.

4.2 Data

This research is a cross-sectional study that compares two spatial levels of aggrega-

tion with different data availability: census tract (CT) (n = 2952) and CB (n = 182). The dataset

of the CT level included only two input variables (average per capita income and the Human

Development Index; HDI), while the dataset of the CB level included eighteen variables (Table

5).

Ceará Water and Wastewater Company (CAGECE) provided a dataset with monthly

water consumption over the year of 2010 for a total of 878,992 households. Data was provided

with a household identier, thus could be spatially aggregated by census tracts and census blocks.

The dependent variable was average daily per capita consumption for 2010, since explanatory

variables were obtained for this year. We calculated it by averaging monthly household water

consumption in 2010 and dividing it by the population in the census tracts and census blocks.

Average daily per capita water demand in the census tracts is presented in Figure 1.

The explanatory variables were obtained from the 2010 census, conducted by the

IBGE. The 2010 census collected extensive sociodemographic information of households –

grouped into census tracts – from more than ve thousand municipalities in Brazil. At the

census tract level, publicly available data is restricted to household composition and per capita

income. Household composition was intentionally excluded from the CT dataset because this
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Table 5 – Explanatory variables at the CB level.
ID Variable Unit Mean St. Dev.

HDI Human Development Index N/D 0.362 0.194
Av. per capita income Average per capita income R$ 2,151.15 2,424.35
Demographic variables
% female Female residents % 53.32 1.82
% 65+ 65 years old or older % 6.59 2.80
% 1 to 14 1 to 14 years old % 20.74 4.71
Dem. density Demographic density Habkm2 14,451.05 8,617.47
Life expect. Life expectancy Years 75.25 3.53
Education
Exp. years of schooling Expected years of schooling Years 10.57 0.84
% 25+ w/ elem. school 25 years or older who have

completed Elementary School
% 62.65 15.61

% 25+ w/ high school 25 years or older who have
completed High School

% 46.13 18.72

% 25+ w/ college 25 years or older who have
completed College

% 12.95 13.27

Income
Av. per capita income Average per capita income R$ 830.70 728.35
% pop living in poverty Population living in poverty % 11.01 7.91
% pop vuln. poverty Population vulnerable to poverty % 30.54 16.90
Basic services for
adequate housing
% pop w/ bath. & runn.
water

Population living in households
with bathrooms and running
water

% 95.35 2.83

% pop w/ garbage coll. Population living in urban
households with a garbage
collection service

% 98.60 1.96

% pop w/ poor water &
san. services

People in households with
inadequate water supply and
sanitation facilities

% 1.05 0.88

Employment and
vulnerability
% 18+ econ. active Economically active population

aged 18 or older
% 49.02 4.53

% pop vuln. poverty +
no elem. education

People in households vulnerable
to poverty in which no one has
completed Elementary School

% 8.50 6.80

MHDI Municipal Human Development
Index

N/D 0.75 0.09

Source: The author.

model is meant to assess only socioeconomic aspects of the users. Instead, we included the

neighborhood-HDI, calculated by the Economic Development Secretariat of Fortaleza. The

index is based on the 2010 census and is the geometric mean of three indicators: average monthly

income of population aged 10 years or older (income), percentage of the alphabetized population

aged 10 years or older (education) and percentage of the population over 64 years old living in

the neighborhood (longevity).

Detailed census data is only released on aggregated level, for geographic units
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Figure 1 – Jaguaribe-Metropolitano supply system (left) and Fortaleza’s census tracts and census
blocks (right).

Source: The author.

containing at least 400 households. Census blocks aggregate contiguous census tracts and are

available for 23 Brazilian metropolitan areas (PNUD et al., 2014). More than 200 indices are

provided at this level, related to aspects of demography, education, income, employment, housing

and vulnerability. Most of the indices are classied by sex and age, thus, to reduce the number

of variables, some of them were merged. The nal dataset included the potentially relevant

variables of each category, reducing the indices to 18 variables expected (Table 5). Variables were

chosen to assess socioeconomic inequalities and to explain consumer behavior. Demographic

variables initially included 85 indices, narrowed down to ve, assessing household composition,

population distribution across the city and environmental health, represented by life expectancy

(GULIS, 2000). The percentage of male residents was excluded because it is perfectly correlated

to percentage of women (Pearson correlation coefcient = 1) and would not add information to

the model.

Variables related to education assess different stages of formal learning. The Brazil-

ian education system is divided into two levels: basic and higher education. Basic education

corresponds to three stages: pre-school (for children from 0 to 5 years old), elementary school
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(6 to 14 years old) and high school or secondary education (15 to 17 years old). A high school

diploma is mandatory for admission to higher education.

The category of income included three variables. Those considered as “living in

poverty” have a per capita household income equal to or less than one-fourth of the minimum

wage, while the “vulnerable to poverty” live with less than one half of the minimum wage. These

variables were included because average per capita income alone could disguise information

on the income gap. Variables regarding basic services for adequate housing reect the health

condition of the inhabitants (MONTGOMERY; ELIMELECH, 2007).

In the category of employment and vulnerability, the percentage of economically

active population aged 18 or older accounts for the people in the job market or trying to join

it. The Municipal HDI (MHDI) contemplates the same three dimensions of the global HDI -

longevity, education and income. HDI-longevity is measured by life expectancy at birth. HDI-

education is the geometric mean of two indicators: the education of the adult population (weight

1) and the school ow of young population (weight 2). HDI-income is the municipal per capita

income, including those who do not have any prot.

Pearson’s parametric correlation coefcient was used to estimate the association

between per capita water consumption and the independent variables and to further analyze

the ranking provided by RF (Figure 2). Except for garbage collection service, households with

inadequate water supply and sanitation and demographic density, all other variables are strongly

associated with water consumption. Independent variables are also correlated to each other,

such as per capita income, associated with life expectancy at birth (r = 0.74), percentage of

college educated people (r = 0.94) and MHDI (r = 0.81). Correlated variables are usually avoided

because they might contain redundant information, but high correlation does not mean lack

of variable complementarity (GUYON; ELISSEEFF, 2003). These variables were maintained

because the initial intention of ranking the variables was to understand the relationship between

them and to nd a reduced group of variables that could explain water demand for clustering.

In addition, the RF method is appropriate for dealing with correlation (further explanation is

provided later). However, when selecting the input variables for the predictive model, the IIS

method was used to avoid redundant information.
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Figure 2 – Correlation matrix between independent variables (CB model) and water consump-
tion. The square’s size is proportional to the correlation between the variables.

Source: The author.

4.3 Methodology

The methodology of this study is divided into three sections (Figure 3): (i) variable

importance using RF; (ii) clustering and spatial analysis of demand and sociodemographic

characteristics with SOM; (iii) variable selection with the IIS method and predictive model using

ANN.

The rst part of this study investigates which sociodemographic characteristics drive

consumer behavior and water consumption. This analysis was performed at the census block

level, which had 18 explanatory variables. RF was used to dene variable importance and

to study the relationship between them. After dening the most relevant sociodemographic

variables driving water demand, a SOM was used to cluster data and to visualize the spatial

patterns present in these variables. The clustering was also performed with census tract data, in

order to compare spatial level aggregation. The predictive model was built using an ANN and it

was compared for both spatial levels: CB and CT. The rst considered the variables iteratively

selected with the RF and ANN models, while the last had only two explanatory variables.
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Figure 3 – Methodological steps.

Source: The author.

4.3.1 Algorithms and model specications

In this section, the machine learning models and algorithms are presented.

4.3.2 Random Forest

RF (BREIMAN, 2001) is a supervised learning algorithm mainly used for regression

and classication tasks. RF is based on the combination of many classication and regression

tree models trained with bootstrapping aggregation. The combined result of many decision trees

is used for prediction. The general steps in constructing a random forest are (HASTIE et al.,

2009):

1. Draw a bootstrap sample of size an from the original dataset. These observations will be

used for building the tree.

2. Grow a tree Tb to the bootstrapped sample, by recursively repeating the following steps for

each terminal node of the tree, until the minimum node size (nodesize) is reached:

a) Select a subset of variables at random among the original ones. The number of

variables to be drawn is denoted as mtry.

b) Pick the best variable/split-point among the selected variables.

c) Split the node into two daughter nodes.
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3. Summarize over all trees. For classication trees, take the majority vote. For regression

trees, take the average (HASTIE et al., 2009):

yxi = f̂ NRF(xi) =
1
N

N

∑
b=1

Tb(xi)

where xi = vector of independent variable; Tb(xi) = single regression tree grown by

bootstrapped samples and a subset of variables; and N = number of regression trees.

An important feature of random forests is the use of out-of-bag samples (HASTIE et

al., 2009). The training set of each tree is selected using a bootstrap, and the observations left

out by the bootstrap sampling are the out-of-bag sample. This sample is used for performance

evaluation, providing an unbiased estimate of the prediction error (GENUER et al., 2010).

RF is efcient and widely used for variable selection and prediction. It is applicable

to problems with nonlinear relationships between the variables and can effectively handle

small sample sizes (BIAU; SCORNET, 2015). The tree-building process of random forests

implicitly allows for interaction and high correlation between features (ZIEGLER; KöNIG,

2014). Although variable importance decreases when highly correlated variables are added to a

RF model, the relative position between the variables is preserved (GENUER et al., 2010).

After growing each regression tree, the out-of-bag sample is passed down the tree

and the MSE is computed. To assess the importance of a specic predictor variable, its values are

randomly permuted for the out-of-bag sample and the MSE is computed again. The increase in

the MSE (IncMSE) resulted from the permuting is averaged over all trees and is used to measure

the variable importance. Therefore, if a predictor is important for the model, randomly assigning

other values for that variable should have a negative inuence on prediction.

The IncMSE was used to rank the variables. Different criteria were dened for

variable selection: for clustering, 45% of the least important variables were removed; for

prediction, the IIS method was performed.

The model was validated through the leave-one-out cross-validation to reduce bias

in training data. In this approach, one data point is left for validation and the training set is

composed by n-1 samples, where n is the number of observations. The nal error estimate is

based on the average of the results of all n tests (WITTEN et al., 2011); hence for this study, the

error estimate was based on the average of the IncMSE for 182 tests. In order to get a stable

solution and to assess the variance of the measures, 100 runs of the model were performed and

the median of the mean IncMSE was used to rank the variables.
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4.3.3 Accumulated local effect

To assess the main effects of the individual predictor variables, they were visualized

with the accumulated local effect (ALE) plots (APLEY; ZHU, 2016). ALE plots describe how

variables inuence the prediction of a machine learning model on average and are appropriate

for highly correlated inputs (MOLNAR, ). To estimate local effects, the variable is divided into

many intervals and the differences in the predictions are computed. The grid that denes the

intervals consists in the quantiles of the variable distribution, to ensure that each interval contains

the same number of observations. The uncentered effect for each variable is estimated as follows

(MOLNAR, ):

f̂ j,ALE(x) =
k j(x)

∑
k=1

1
n j(k)

∑
i:x j(i)N jk

[ f (zk, j,x
(i)
Jay)− f (zk−1, j,x

(i)
Jay)]

where k is the number of intervals of the variable x, n is the number of observations in the interval

k, N is the neighborhood, i.e. the observations within an interval, z is the grid value, x is the

variable of interest and f is the predictive function. This effect is centered so that the mean effect

is zero:

f̂ j,ALE(x) = f̂ j,ALE(x)−
1
n

n

∑
i=1

f̂ j,ALE(x
(i)
j )

The value of the ALE represents how much the output of the model deviates from the average

prediction at a certain value of the variable of interest.

4.3.4 Self-Organizing Map

A SOM clusters high-dimensional data vectors and reduces them to a one- or two-

dimensional map (KOHONEN, 1982). The lattice of the grid can be either hexagonal or

rectangular, but hexagonal is better for visualization (VESANTO; ALHONIEMI, 2000). The

typical structure of a SOM consists of an input layer and an output layer. The input layer

contains one neuron for each variable in the data set. The neurons in the output layer are

connected to the input neurons through adjustable weights; each neuron i has a weight vector

w= (wi1,wi2, ,wid), where d is the dimension of the input space. These neurons relate to their

neighbors according to topological connections, i.e. the map is neighborhood preserving. The

general steps in the learning algorithm of the self-organized map are (CHAUDHARY et al.,

2014):
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1. Initialize the weight vectors wi of the mxn neurons.

2. Randomly select an input vector x(t), which represents the pattern that is presented to the

neurons in the output layer.

3. Find the winner neuron c or the Best Matching Unit based on the minimum distance

Euclidean criterion:

c= argmin∥wi(t)− xt∥

where ∥∥ is the Euclidean distance measure, x(t) and wi(t) are the input and weight vector

of neuron at iteration t respectively.

4. Update the weight vector of the neurons using the following equation:

wi(t+1) = wi(t)+hc,i(t)[x(t)−wi(t)]

where hc,i(t) is a Gaussian neighborhood function:

hc,i(t) = (t)∗ exp(−∥rc− ri∥2
2σ2(t)

)

5. where r is the coordinate position of the neuron on the map, (t) is the learning rate and

σ(t) is the neighborhood radius. Both (t) and σ(t) decrease monotonically.For all the

input data, repeat steps 2 to 4.

The main parameters of SOM are the grid size, the training rate and the neighborhood

size. There is no theoretical justication in the literature for choosing the optimal grid size of the

output layer. Previous studies have used different criteria to do it (KALTEH et al., 2008), but the

general recommendation is to dene the size by trial-and-error (KOHONEN, 2014).

The map quality can be evaluated through the resolution of the cluster structures and

the node counts, i.e., how many samples are mapped to each output neuron.

The main parameters of SOM are the grid size, the training rate and the neighborhood

size. There is no theoretical justication on the literature for choosing the optimal grid size of

the output layer. Previous studies have used different criteria to do it (KALTEH et al., 2008),

but the general recommendation is to dene the size by trial-and-error. The map quality can be

evaluated through the resolution of the cluster structures and the node counts, i.e., how many

samples are mapped to each output neuron. An ideal map size does not have areas with large

values or many empty nodes. A 6x6 network (CB level; coarse scale) and a 12x12 network (CT

level; ne scale) were considered the most suitable for the problem. Larger maps resulted in

many empty nodes and/or less than two data points per node.
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The training rate was set to decrease linearly from 0.05 to 0.01 over 100 updates,

i.e. the number of times the dataset was presented to the network. The mean radius of the

neighborhood is also set to decrease linearly with the training steps. The initial neighborhood

size was 3.6 points for CB and 7.0 points for CT, covering 2/3 of the distance between nodes,

and the nal values were zero for both models. This strategy allows SOM to be smoothed out

globally, with increasing resolution (KOHONEN, 2014).

4.3.5 Cluster validation

Two cluster validity measures were used to choose the best number of clusters: Dunn

index and silhouette index. The Dunn index (DUNN†, 1974) is equal to the minimum distance

between observations in different clusters divided by the largest intra-cluster distance. A higher

Dunn index means better clustering and smaller cluster sizes. It is computed as:

DI =
min1≤i≤m (Ci,Cj)

max1≤k≤mdiamCk

where m is the number of clusters,  (Ci,Cj) is the dissimilarity function between clustersCi and

Cj and diamCk is the diameter of a clusterCk. The dissimilarity function is dened as:

 (Ci,Cj) = minx∈Ci,y∈Cjd(x,y)

where d is the Euclidean distance. The diameter of a cluster C was dened as the Euclidean

distance between the farthest two points inside the cluster. The silhouette index (ROUSSEEUW,

1987) is given by: Si = bi−ai
maxai,bi where a is the mean Euclidean distance between an observation

and all other data points in the same cluster; and b is the mean Euclidean distance between an

observation and all other points in the next cluster.

The silhouette coefcient is the mean of all samples in the dataset; and it reveals the

capability of clustering similar objects in a group and minimizing interclass dissimilarity. The

values range from 1 to 1, with S= 1 corresponding to a high quality of clustering, and S=−1 to

false clustering. The silhouette plot displays a measure of how close each point in one cluster is

to points in the neighboring clusters.

The clusters were also identied through a graphical method based on the unied

distance matrix (U-matrix), which shows the Euclidean distance between output nodes of

neighboring map units.
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4.3.6 Articial Neural Network

ANNs are statistical models build through an iterative self-learning process. An

ANN is a network of weighted connections between neurons (nodes). The weights are dened

during the training process and are updated according to the chosen algorithm. A network is

comprised by at least two layers: input and output. The multilayer perceptron network (MLP)

has at least one hidden layer in addition to the input and output layers, with a nonlinear activation

function. The general equation for an MLP is (BISHOP, 1995):

yk = fouter[
M

∑
j=1

w(2)
k j finner[

d

∑
i=1

w(1)
ji xi+w(1)

j0 ]+w(2)
k0 ]

where yk represents the k-th output, fouter represents the output layer transfer function, finner

represents the input layer transfer function, w represents the weights and biases, (i) represents

the i-th layer.

The domestic water demand was projected with an MLP and trained with a back-

propagation algorithm (RUMELHART et al., 1986). Backpropagation is a supervised learning

method that adjusts the weights by minimizing the error between the model output and the

observed values. Determining the number of hidden layers is a difcult task and there is no

general rule on how to do it (REED; MARKS, 1999), but usually, one or two hidden layers are

enough to solve any nonlinear problem (LIPPMANN, 1987). An MLP with one hidden layer

was used in this study. Adding more hidden layers would not only increase computational time,

but also the number of parameters and a larger training dataset would be necessary.

At the census block level, the input variables were dened using the IIS method. At

the CT level, a k-fold cross-validation analysis was conducted. In this approach, the dataset is

divided into k subsets: k−1 are used to train the model and the remaining is used for testing.

This process is repeated until all k subsets are used for testing; then, the average and standard

deviation performance are computed. In this study, 5 folds were used. Because variables do not

commensurate, data was normalized by min-max scaling. The parameters used for performance

evaluation were: Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and R2.

4.3.7 Iterative Input Selection

The IIS method, proposed by Galelli and Castelletti (2013), is a tree-based method

for the selection of inputs with minimum redundancy, while keeping the most signicant variables
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for prediction. In this study, the IIS approach was adapted to incorporate the RF and the ANN

models.

The algorithm is divided in three steps (GALELLI; CASTELLETTI, 2013): (i) the

IIS algorithm runs an input ranking algorithm to sort the variables with a nonlinear statistical

measure of signicance; (ii) the rst p variables in the ranking are individually used as the input

to a model building algorithm, so p single-input-single-output (SISO) models are constructed,

and their performance is evaluated with a suitable metric; the best performing model is added to

the nal selection of input variables; (iii) the selected variables are used as an input to the model

building algorithm multi-input single-output model (MISO) and the residuals are calculated.

The residuals are used as the output variable in the rst two steps to ensure that the

next selected variable will not contain redundant information. These steps are iterated until

either a repeated variable is selected in step two or the performance of the SISO model does not

improve signicantly. The minimum improvement in signicance is dened by the parameter  .

At each step, both the SISO and MISO models are evaluated with a k-fold cross-

validation approach. In this study, the metric for evaluating model performance was the R2.

Although the original IIS approach uses a model-free input ranking algorithm, here, the RF model

was chosen, with the IncMSE as the signicance measure, to be consistent with the rst step

of the methodology. The parameters for RF are the same from the rst section of the methods.

Although this strategy might slow down the algorithm, it still provides the desired ability of

detecting nonlinear relationships and handling variables with different dimensionality. The

model building algorithm was the ANN, with the parameters previously mentioned. A sensitivity

analysis was performed to choose the IIS method parameters. The number of SISO models

evaluated at each iteration p was set to 1, 5 and 10; the number k of folds in the cross-validation

was 2, 5 and 10 and  varied between 0 and 0.1, with an incremental value of 10−2.

4.4 Results and discussion

4.4.1 Variable importance

The variables were ranked according to the median of the increase in MSE for 100

runs of the RF model (Figure 4). The interquartile range was small (less than 0.1) for all the

variables, indicating that the importance measure was stable. The median importance ranged

from 2.58 to 2.31 between the second and the eighth variables, meaning that the relative position
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among them is irrelevant for model interpretation.

Figure 4 – Variable importance according to RF. The boxplots represent the variation in the
average %IncMSE for 100 runs of the model. The variables are ranked according to
the median value of the importance measure. See Table 5 for the description of the
explanatory variables.

Source: The author.

Variables that assess household composition (percentage of elderly and women) and

education (percentage of residents with college degree) were the most relevant to water demand

prediction in Fortaleza. Life expectancy, percentage of children and average income were also

of high importance. Variables with low correlation (r < 02) to water demand, such as garbage

collection coverage, had low importance scores. Some highly intercorrelated variables (r > 07)

were ranked at the top, e.g. %65+ and %female, %1 to 14 and %25+ w/ college, % 25+ w/

college and Life expect.

The signicance of household composition for water demand forecasting is corrobo-

rated by several studies (HOUSE-PETERS et al., 2010; BENNETT et al., 2013; MATOS et al.,

2014; HUSSIEN et al., 2016; VILLARIN; RODRIGUEZ-GALIANO, 2019). Life expectancy

and the presence of indoor bathrooms and running water might be useful to assess quality of life.
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Besides, the latter has a direct relationship with water demand.

The accumulated local effect plots were helpful to interpret the effect of the explana-

tory variables on the average prediction of water demand (Figure 5). The average per capita

income has a strong positive effect on the prediction. The inuence of income in water use

has been extensively explored in other studies (HOUSE-PETERS et al., 2010; SHANDAS;

PARANDVASH, 2010; LIU et al., 2015; VILLARIN; RODRIGUEZ-GALIANO, 2019). House-

holds with higher income are more likely to install water-saving devices and water storage units,

e.g. cisterns and water tanks (GRANDE et al., 2016). Although it would be expected that these

mechanisms would reduce household consumption, past studies led to divergent conclusions

(OLMSTEAD; STAVINS, 2009). High-income households are less likely to be concerned

about saving water than low- and medium-income households, who tend to maintain a lower

consumption to avoid water shortage.

Percentage of children and elderly have opposite effects on water demand. The

average prediction rises with increasing percentage of elderly (when above 4%) but falls with

increasing percentage of children. An inverse relationship between households with children

and water demand was also found in previous studies (SCHLEICH; HILLENBRAND, 2009;

HUSSIEN et al., 2016). However, different consumption patterns were detected in Spain

(MARTINEZ-ESPIñEIRA, 2002), Portugal (MATOS et al., 2014) and Italy (MUSOLESI;

NOSVELLI, 2007), where water use tends to decrease with age. A positive relationship between

elderly percent and the predictions could imply an increase in water demand in the next twenty

years, since a demographic trend of population ageing is expected in Fortaleza (BARRETO;

MENEZES, 2014)).

Some of the variables have a most signicant effect on prediction after reaching

a threshold, such as female percent, life expectancy, MHDI and percentage of adults which

completed college and elementary school. The effect of the presence of bathrooms and running

water in the households in average water demand is more signicant between 88% and 93%.

The variables which were down in the RF ranking have little effect on the prediction.

An increase in garbage collection coverage from 96% to 98%, for example, reduces average per

capita water demand by only one unit. Some of these predictors have a complex relationship with

the outcome and are difcult to interpret, such as exp. years of schooling, %pop vuln. poverty +

no elem. education and dem. density.
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4.4.2 Spatial analysis of water demand

After removing 45% of the least important variables from the ranking provided by

RF, the ten remaining sociodemographic variables at the CB level were used to cluster water

demand using SOM. The variables at the CT level (Human Development Index (MHDI) and per

capita income) were also used to create clusters.

At the CB level, the Dunn index indicated that ve or six clusters are the best choice,

but a larger silhouette coefcient was obtained for ve clusters (Figure 6a). Although two and

three clusters had larger silhouette coefcients, ve clusters were preferred because it is more

convenient for the analysis of Fortaleza’s heterogeneities. CB data presented rather low silhouette

widths (ranging between 0.2 and 0.5; Figure 7-right), but the clusters are substantially different

from each other, especially in percentage of female and college-graduated and average per capita

income (Table 6). For example, the average per capita income in cluster E-CB is less than 10%

of the cluster A-CB.

Table 6 – Characteristics of SOM clusters dened using the 10 most important explanatory
variables at census block level. Except for area and population, the other variables
are represented by the mean value for all census blocks in each cluster.

Cluster A-CB (n = 6) B-CB (n = 30) C-CB (n = 55) D-CB (n = 46) E-CB (n = 45)

Total Area (km²) 16,655,727 46,821,907 72,779,209 60,424,798 101,088,280
Total Population 127,415 298,058 637,127 496,293 767,285
Average Water
demand (Lpd)

204.76 135.25 126.52 107.43 105.00

PELD (%) 9.89 9.84 7.18 5.70 4.18
COLL (%) 51.95 31.44 14.00 5.20 2.05
PFEM (%) 55.82 55.72 53.73 52.63 51.57
LIFEXP (years) 80.89 79.67 77.02 73.85 70.79
P1T14 (%) 14.29 14.57 18.62 22.60 26.38
APCI (R$) 3622.77 1593.81 803.31 479.12 342.57
P18EAP (%) 54.93 53.76 51.25 47.90 43.48
MHDI 0.925 0.860 0.786 0.708 0.643
BTHRW (%) 98.23 96.37 96.97 95.11 92.56
ELSCH (%) 89.67 82.08 70.32 55.73 43.81

Source: The author.

The SOM map for CB data and its clusters are represented in the U-matrix (Figure

8). The heat maps in Figure 8 show the distribution of the explanatory variables across the SOM.

They reveal a direct relationship between average per capita income, education level (%25+ w/

elem. school and %25+ w/ college), MHDI and economically active population percent. These

have an inverse relationship with percentage of children. Female and elderly percent also present

a direct connection.
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The CB cluster’s spatial distribution is represented in Figure 9 and their characteris-

tics are listed in Table 6. Neighborhoods with high HDI and elevated per capita income were

clustered together (A-CB and B-CB). These are also the areas with the highest water consumption

rates. Further comments on the cluster divisions are provided in the supplemental material.

At the CT level, the silhouette coefcient indicated that two clusters would be the

best choice, but three, four or ve were also acceptable (Figure 6b). The largest Dunn index was

obtained for ve clusters, but four clusters were considered the most suitable for further analysis.

The four clusters at the CT level have moderate silhouette values, with an average width of 0.39

and some misclassied CTs (negative Si), especially in cluster D-CT (Figure 7-left). Overall,

CT’s data set presented relatively good clustering.

Table 7 – Characteristics of SOM clusters dened using the explanatory variables at census
tract level. Except for area and population, the other variables are represented by
the mean value for all census tracts in each cluster.

Cluster A-CT (n = 24) B-CT (n = 204) C-CT (n = 128) D-CT (n = 2596)

Total Area (km²) 2,640,250 14,700,981 27,919,873 248,262,919
Total Population 16,522 134,297 98,534 2,170,488
Average Water demand (Lpd) 197.94 182.07 136.80 94.03
MHDI 0.829 0.815 0.362 0.322
APCI (R$) 15,122.85 8,145.50 4,647.49 1,437.09

Source: The author.

The heat maps of the CT level SOM show a direct relationship between MHDI and

average per capita income (Figure 10). The clusters are less representative than CB level’s

(Figure 11), probably because only two variables were used to create them. Areas with elevated

average per capita income and MHDI were assigned to clusters A-CT and B-CT, which also

present an elevated water consumption (Table 7). Census tracts with medium water consumption

were clustered in C-CT. Cluster D-CT, which holds almost 90% of the population, incorporated

census tracts with low per capita income and water use.

In order to verify that clusters were a good representation of water demand patterns,

the water demand in each census tract and census block was compared to the average water

demand of their corresponding clusters and the relative error was calculated. The mean relative

error for each cluster is presented in Tables 8 and 9. CT level clustering (ner scale) resulted in

better separated clusters than CB’s (coarser scale) but was worst for water demand assessment

(higher relative errors).

Although clustering could be used to improve prediction, the ANN performance
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Table 8 – Mean of relative error (%) between water demand
in census blocks and cluster average water de-
mand.

Cluster Census blocks
A-CB B-CB C-CB D-CB E-CB

Mean relative error (%) 18.45 20.08 21.05 20.01 17.31

Source: The author.

Table 9 – Mean of relative error (%) between wa-
ter demand in census tracts and cluster
average water demand.

Cluster Census tracts
A-CT B-CT C-CT D-CT

Mean relative error (%) 53.85 63.38 58.34 43.27

Source: The author.

would be reduced since some clusters have very few data points (A-CB, for example, contains

only six census blocks). Sociodemographic-based clustering allows the incorporation of spatial

heterogeneities in economic development when projecting long-term water demand. Clustering

at a ne scale with less variables provided better separated clusters, but the coarse scale is more

convenient for urban planning and water demand estimation.

4.4.3 Predictive model

The input variables for the ANN model at the census block level (ANN-CB) were

chosen with the IIS method. The sensitivity analysis (Table 10) indicated that the best performing

selected models are those with ve SISO models and ten folds in the cross-validation. The

performance was similar for a tolerance  ranging between 0 and 0.03, all providing the same

number of variable inputs. In the nal selection,  was set to 0.01.

The variables selected with these parameters and the model performance obtained

with the inclusion of each variable is presented in Figure 12 The rst two variables selected with

IIS (av. per capita income and %1 to 14) were at the top of the RF ranking, while the third (%pop.

living in poverty) had a rather low score. These three variables can fairly describe water demand

in Fortaleza, with the av. per capita income functioning as a proxy for socioeconomic aspects of

the households, %1 to 14 describing demographic aspects, and %pop. living in poverty adding

information related to the vulnerability of the population.

The performance of ANN models at the CT (ne scale) and CB (coarse scale) levels

are presented in Table 11. The results show that the CT model had a slightly better performance
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Table 10 – Sensitivity analysis for the parameters of the Iterative Input
Selection method. Each value represents the R2 of the resulting
model corresponding to the different parameters p, k and 
indicated.

 p = 1 p = 5 p = 10
k = 2 k = 5 k = 10 k = 2 k = 5 k = 10 k = 2 k = 5 k = 10

0 0.153 0.178 0.194 0.240 0.293 0.340 0.319 0.283 0.316
0.01 0.153 0.178 0.194 0.240 0.310 0.339 0.319 0.283 0.316
0.02 0.153 0.178 0.194 0.240 0.283 0.339 0.286 0.283 0.316
0.03 0.153 0.178 0.194 0.240 0.283 0.339 0.286 0.283 0.316
0.04 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.283 0.283
0.05 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.283 0.283
0.06 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.283 0.283
0.07 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.283 0.283
0.08 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.283 0.283
0.09 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.283 0.283
0.1 0.153 0.178 0.194 0.240 0.251 0.302 0.248 0.28 0.283

Source: The author.

than the CB model when comparing the R2. One explanation is that the larger number of

observations in the CT dataset benets the training process of the MLP, which, as previously

pointed out, requires large datasets. The ANN-CB model had only 182 observations, while the

ANN-CT had 2952 and two independent variables.

Table 11 – Comparison of ANN-CB (three
explanatory variables) and ANN-
CT (two explanatory variables)
model’s performance.

Census block (CB) Census tract (CT)

MAE 20.97 22.83
RMSE 31.11 32.38
R2 0.34 0.43

Source: The author.

Water use patterns can differ depending on the aggregation level, since households

with very different consumptions could end up in the same group. Bolorinos et al. (2020) also

found that ML models perform better in a ner spatial scale. They showed that random forest

not only outperformed linear models, but also had superior accuracy when predicting water

consumption at the individual-level. This nding differs from the results of other studies that

assessed water consumption at multiple spatial levels (OUYANG et al., 2014). However, this

study applied a linear model (linear mixed-effects and ordinary least squares regression), which

has better performance when more spatial homogeneous data is used. For machine learning

methods, the amount of data is determinant to the results, thus aggregating information might
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reduce the learning power of the model. The inuence of dataset size and the number of variables

for ANN models was also pointed out by Lee and Derrible (2020), which showed that fewer

explanatory variables are preferred when considering the same dataset size.

It is worth mentioning that in terms of R2, both predictive models were only able to

explain part of the residential water demand. Even at the CB scale, where many variables were

available, the best performing model had an R2 of 0.34. This result suggests that socioeconomic

factors alone are not enough to predict water demand and additional exogenous variables might

be necessary. There are, however, other possible explanations. The original time series might

contain noise or a component that cannot be explained with known variables. Applying a

ltering technique before calculating average daily water demand, such as singular spectrum

analysis, could solve this problem. Also, the predictive model could be improved by testing

additional statistical learning techniques or by using an ensemble method. Further investigation

is recommended to address these issues.

4.5 Conclusion

In this study, three ML techniques were used to assess urban water demand in Fort-

aleza, Brazil: Random Forest, Self-Organizing Map and Articial Neural Network. Two spatial

levels were addressed: CB – coarse scale and CT – ne scale. The rst had 18 sociodemographic

explanatory variables, while the second had only two. A RF model was used to dene the most

inuential variables at the CB level, and this ranking was used for clustering. The IIS method,

which was built using RF and ANN, was used to choose the best input variables for predicting

water demand.

The features with the highest importance included those related to household com-

position (%65+, %female and %1 to 14), percent of college graduated inhabitants and life

expectancy. The clustering analysis with self-organizing maps provided some interesting insights

on the socioeconomic heterogeneity of Fortaleza. There is a distinct spatial gradient across

the city regarding sociodemographic characteristics and water demand: central and eastern

zones, with high water demand, have better education and health conditions, while southern and

western regions, with reduced water demand, have low per capita income and MHDI. Nonethe-

less, heterogeneities in water demand are present inside central areas and these must be taken

into consideration in urban and water resources planning. The input variables selected for the

ANN-CB model, with reduced redundancy and maximized information, indicated that av. per
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capita income, %1 to 14 and %pop. vulnerable to poverty provide a fair explanation of water

demand in Fortaleza.

The aspects inuencing water consumption are still not completely understood and

ML methods are useful for identifying behavior patterns. Data availability has strong inuence

on the best approach for the modeling. If the dataset consists in high-dimensional data (in terms

of number of variables), a variable selection method should be considered. The number of

observations can inuence model performance; hence, spatially aggregated data might reduce

prediction accuracy. However, a coarse scale might provide better insight into spatial analysis

of water demand patterns. Features such as the accumulated local effect plots can be useful for

interpreting black box models.

This study provided a better understanding on the inuence of socioeconomic vari-

ables on the water demand of Fortaleza. The results are important not only for prediction, but

also for designing targeted water conservation or pricing policies. Further studies could address

temporal changes of water demand and scenarios of economic development to support utilities

in their long-term planning.
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Figure 5 – Accumulated local effect plots for the RF model.

Source: The author.
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Figure 6 – Dunn index and silhouette index for different number of clusters at the (a) census
block and (b) census tract levels. The chosen number of clusters for each model are
indicated with a black circle.

Source: The author.

Figure 7 – Clusters silhouette plot for census blocks (left) and census tracts (right) aggrega-
tion. For each census block or census tract, the gures show a straight horizontal
line representing the silhouette coefcient. Each object is colored according to the
correspondent cluster and the dashed red line represents the average silhouette width.

Source: The author.
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Figure 8 – SOM heat maps for explanatory variables at census block level. The color gradient
represents the Euclidean distance between each node and its neighbors, where light
yellow means large distances and dark red small distances. See Table 5 for the
description of the explanatory variables.

Source: The author.
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Figure 9 – Clusters on the CB level dened by SOM using the ten most important explana-
tory variables for water consumption, dened by RF. Central areas of Fortaleza are
highlighted.

Source: The author.
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Figure 10 – SOM heat maps for explanatory variables at CT level. See Table 5 for the description
of the explanatory variables.

Source: The author.
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Figure 11 – Clusters dened by SOM using the explanatory variables of the CT level model
(HDI and per capita income).

Source: The author.
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Figure 12 – Increase in performance (R2) by adding the variables chosen in the IIS. The bars
represent the increase in the R2 obtained by adding each variable to the input dataset,
while the red line represents the cumulated R2.

Source: The author.
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5 VARIATIONAL MODE DECOMPOSITION HYBRIDIZED WITH GRADIENT

BOOST REGRESSION FOR SEASONAL FORECAST OF RESIDENTIAL WATER

DEMAND

A gente vive o repetido, o repetido, e, escorregável, num mim minuto, já

está empurrando noutro galho. Acertasse eu com o que depois sabendo

quei, para de lá de tantos assombros... Um está sempre no escuro, só

no último derradeiro é que clareiam a sala. Digo: o real não está na

saída nem na chegada: ele se dispõe para a gente é no meio da travessia.

(ROSA, 2019)

5.1 Introduction

A primary concern of climate change and variability is how they will affect water

demand and availability in the next decade (MILLY et al., 2008; CISNEROS et al., 2014).

Spatial and temporal variability of precipitation and temperature might cause changes in the

intensity and frequency of extreme events (ORLOWSKY; SENEVIRATNE, 2012). In urban

systems, there is also the additional challenge of increasing urbanization and water use. Water

resources planning should address accurate prediction of water demand, whether the objective

is to expand the capacity of the supply system or to implement water conservation measures

(OLMSTEAD, 2014).

Accurate forecasting of residential water demand is of special importance for the

decision-making process, as researchers have shown it to be correlated with climate (MAID-

MENT;MIAOU, 1986; HOUSE-PETERS; CHANG, 2011; ADAMOWSKI et al., 2013; CHANG

et al., 2014). Specically, it presents an inverse relationship with precipitation and a direct

relationship with temperature (HOUSE-PETERS; CHANG, 2011; ADAMOWSKI et al., 2013).

Many other elements inuence water demand patterns, such as demographic, social, and eco-

nomic aspects of households (CHANG et al., 2017; CHU; GRAFTON, 2019b; VILLARIN;

RODRIGUEZ-GALIANO, 2019; LEE; DERRIBLE, 2020). These variables are associated with

water demand trends and are usually predicted with scenario-based simulations.

Past research has indicated that water demand is strongly dependent on past use

(DUERR et al., 2018) and that it can be predicted only one month in advance. However, they

also concluded that medium- and long-term forecasts could be improved by adding covariates.

Short-term water demand forecasting, i.e. hourly to daily forecast, has been well explored. Lee
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and Derrible (2020) evaluated twelve statistical models for residential water demand prediction,

including eight machine learning techniques; gradient boost regression outperformed all the

models. In their study, two scenarios of data availability were compared, and the one with a

higher number of socioeconomic and climate exogenous variables provided better predictions.

Several studies have explored climate inuence on residential water demand (ADAMOWSKI

et al., 2013; PARANDVASH; CHANG, 2016; ZUBAIDI et al., 2020; RASIFAGHIHI et al.,

2020; FIORILLO et al., 2021) Parandvash and Chang (2016) used a structural time series regres-

sion model to assess the effect of climate change on per capita water consumption and projected

an increase of up to 10% in the water demand of Portland, in the United States, for the 2035-2064

period. Adamowski et al. (2013), Zubaidi et al. (2020) used decomposition techniques - wavelet

transform and singular spectrum analysis, respectively - to detect interactions between climate

and water demand. They found that decomposing time series into different components is a

useful approach for ltering relevant information from exogenous variables. Haque et al. (2014),

Rasifaghihi et al. (2020) provided long-term probabilistic forecasts of urban water demand,

considering future climate projections. Some authors have investigated the joint inuence of

weather and socioeconomic aspects of households on water consumption (FIORILLO et al.,

2021).

To the best of our knowledge, the current models in the literature are not able to

address the inuence of climate on the medium-term forecast of water demand in dry regions.

Our objectives are to (i) remove low-frequency variability and noisy signals from temperature and

precipitation time series, (ii) extract the seasonal component of water demand, and (iii) design

a model able to predict residential water demand up to 12 months in advance, considering the

inuence of precipitation and temperature variability. We do this by using an innovative approach

that combines an intrinsic and adaptive decomposition method coupled with a regression machine

learning model and use Fortaleza, Ceará – a region frequently affected by drought – as a case

study. The VMDmethod used in this study was designed to concurrently estimate the components

of a signal and properly deal with noise (DRAGOMIRETSKIY; ZOSSO, 2014). VMD was

applied to extract the seasonal component of water demand, removing the signals unrelated to

climate variability, and relevant signals from temperature and precipitation time series. Gradient

boost regression was employed to capture the relationship between ltered signals of water

demand and climate, which is long known to be nonlinear (MAIDMENT; MIAOU, 1986).

The study offers some important insights into tactical decisions on urban water
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supply planning. The predictive model can be coupled with seasonal climate forecasts to assess

future water demand and to guide the decision-making process.

5.2 Study area and data

The city of Fortaleza was used as a case study for the proposed model. Fortaleza is

in the Northeast region of Brazil and is the fth most populated city of the country, with over

2.6 million inhabitants. The region suffers from high climate variability and recurrent droughts,

directly affecting Fortaleza’s water supply. The most recent drought lasted seven years, starting

from 2012 until 2018 (Pontes Filho et al. 2020). The rainy season occurs between February and

May (Figure 13) and the maximum temperature ranges from 30 to 33 °C during the year (Figure

14).

Monthly residential water demand data from 2009 to 2017 was provided by the Water

and Wastewater Company of Ceará. Data was provided at the household level, in cubic meters

per month, and it was averaged over the number of consumers. Precipitation and maximum

temperature time series were obtained from a conventional meteorological station maintained by

the Brazilian National Meteorology Institute.

5.3 Methodoloy

5.3.1 Variational mode decomposition

Signal decomposition is a useful approach for ltering and capturing information

from time series. The empirical mode decomposition (EMD) (HUANG et al., 1998) is a famous

time-frequency analysis used to process nonstationary and nonlinear series. Although this

technique is simple and robust, there are a few limitations, such as the mode mixing problem, due

to intermittent signals and noise, and the endpoint effect (GAO et al., 2008). In addition, EMD

lacks an appropriate mathematical theory basis. Some methods have been developed to solve

these problems, such as the ensemble empirical mode decomposition (EEMD) (WU; HUANG,

2009), the complementary EEMD (YEH et al., 2010), and the complete EEMD with adaptive

noise (TORRES et al., 2011). However, they were not able to address the mode mixing issue for

all signals.

The VMD is a non-recursive decomposition method developed by Dragomiretskiy

and Zosso (2014) to properly address the sensitivity to noise and sampling of EMD. The VMD
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Figure 13 – Monthly average precipitation in Fortaleza for the period between 2009 and 2017.
The rug plot represents original data points.

Source: The author.

algorithm decomposes a signal into intrinsic mode functions (IMFs), which are amplitude-

modulated frequency-modulated signals. Each mode is assumed to be compact around its center

frequencies and they are concurrently estimated. The constrained variational problem solved by

VMD to decompose a time series is given by the following equation:

minuk,ωk∑
k
∥∂t [( (t)+

j
πt

∗uk(t))]e− jωt t∥22 st∑
k
uk = f

where uk are the estimated modes, and ωk their center frequencies, k is the number of

IMFs,  is the Dirac function, t is the time, j2 =−1 and ∗ denotes convolution. For a complete

description of the algorithm, see Dragomiretskiy and Zosso (2014).

VMD has three main parameters: the number k of IMFs, the quadratic penalty term

 , and the convergence tolerance  . To nd the parameter k, we followed the approach suggested

by Zuo et al. (2020), which is based on the observation of the center frequency of the last intrinsic

mode function (IMF). After dening an initial value for k, we look at the amplitude spectrum; if
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Figure 14 – Monthly maximum temperature in Fortaleza for the period between 2009 and 2017.
The rug plot represents original data points.

Source: The author.

this decomposition mode presents the aliasing phenomenon, k is reduced by one and the analysis

is repeated. A sensitivity analysis was performed to choose the best values for the quadratic

penalty and the tolerance.

5.3.2 Gradient boosting regression

Gradient Boosting is a statistical model for function estimation based on a sequential

ensemble of weak learners (FRIEDMAN, 2001). In this method, the weak learner – usually a

decision tree – is rst used to predict an output variable y with a set of explanatory variables

x. Then, the weak learner (gn) is used to predict the residuals of the initial model, and this

procedure is repeated until the loss reaches a threshold or a maximum number of models is built

(N). Predictions are multiplied by a learning rate or shrinkage parameter  to slow down the
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procedure and to increase the number of weak learners in the model:

fn(x) =  ∗gn(x)

The learning rate can vary between 0 and 1 but usually ranges from 0.1 to 0.3 (or less). The

predicted value is added to the output of the previous model:

Fn(x) = Fn−1(x)+ fn(x)

Loss is minimized following a functional gradient descent algorithm. For regression tasks, the

usual loss function is the mean squared error:

L( f ) =
1
2
(y−F(x))2

The gradient descent algorithm is used to optimize the parameters of the predictive model by

nding the local minimum of the loss function:

fn(x) =−∂L( f )
∂F

The main parameters of the gradient boosting model are: (i) the number of trees, which denes

the number of iterations; (ii) the tree depth, which inuences the complexity of the tree; (iii) the

learning rate, and (iv) the minimum number of observations in a node to result in splitting. In

this study, we set the learning rate to 0.1 and the number of observations per node to 10. We

tested different combinations of the tree depth (1, 2, and 3) and the number of trees (50, 100,

and 150). The model parameters were tuned using 5-fold cross-validation: the combination of

parameters that provide the best performance across the cross-validation results is chosen.

5.3.3 Hybrid VMD-GBR model

To check the stationarity of the signals, the Augmented Dickey-Fuller (ADF) test

was performed. This test assumes a unit root for the univariate time series, i.e., it tests the null

hypothesis that  = 1 in the following equation:

∆Yt = c+t + yt−1+1∆Yt−1+2∆Yt−2+ +p∆Yt−p

The inputs for the predictive model were selected using the mutual information

(MI) between the signals of the weather variables and the ltered water demand and the partial
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autocorrelation function (PACF) plots of each decomposed signal of water demand. The PACF

approach is commonly used for streamow forecasting (ALI et al., 2020; FENG et al., 2020).

The condence interval for the PACF corresponds to [−196n,196n], where n is the length of

the training set; the signicant lags are the ones that fall out of this interval.

The MI metric accounts for the interactions between two random variables without

assuming linearity or continuity. Basically, the larger the value of MI, the closest the relationship

between the variables and the amount of information that one contains about the other. MI is

based on the concept of Shannon entropy, which measures the uncertainty of a variable. The MI

between two variables X and Y is expressed as:

I(Y ;X) = sumx∈Xsumy∈Y (x,y)loglog(
p(x,y

p(x)p(y)

The methodology of the VMD-GBR model can be summarized as follows:

Step 1: Decompose the water demand, precipitation, and maximum temperature time series into

additive intrinsic mode functions using VMD. The parameter k is dened by observing the

power spectrum of the last IMFs of each decomposed signal, which should not present a

center frequency alias (ZUO et al., 2020). The quadratic penalty term and the convergence

tolerance are chosen with sensitivity analysis on model performance.

Step 2: Estimate the deterministic component of the signals of water demand using the ADF test

and reconstruct the time series using only the remaining signals.

Step 3: Detect the most relevant IMFs of the weather variables by calculating the mutual informa-

tion between each of them and the reconstructed signal of water demand. These will be

inputs for the predictive model.

Step 4: In addition to the IMFs selected in the previous step, choose the lagged inputs for the

predictive model by observing the partial autocorrelation function of the water demand

IMFs. The IMF corresponding to the trend component is not included in this analysis.

Step 5: Normalize all data using the min-max normalization:

xnorm =
x−min(x)

max(x)−min(x)

Step 6: Split the dataset into training and testing (here, we used 80% for model training and 20%

for testing). The input variables are the lagged IMFs of water demand and the most relevant

IMFs of weather variables. In this study, different combinations of the model parameters

were tested, namely, the number of trees, the tree depth, shrinkage, and the number of
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observations in the terminal nodes. The parameters are tuned using 5-fold cross-validation

in the training dataset and the model performance is evaluated using the testing dataset.

5.3.4 Performance assessment

Model performance was evaluated with three measures: R2, MSE, and RMSE.

R2 =
∑n
i=1(yi− ŷi)2

∑n
i=1(yi− ȳi)2

MSE =
∑n
i=1 ŷi− yi2

n

RMSE =


∑n
i=1 ŷi− yi2

n

where yi is the observed water demand at month i, yi is the predicted water demand

at month j, and n is the number of months in the prediction horizon.

5.4 Results and discussion

The residential water demand time series was decomposed into four signals to avoid

the aliasing effect observed in the last IMF when k was set to ve (Figure 15 and Figure 16).

Following the same approach, the precipitation and maximum temperature time series were

decomposed into three IMFs each (Figure 17 and Figure 18).

The MI metric indicated that the second IMF of both maximum temperature and

precipitation were the ones to contain the most information on the water demand series (Table

12). The autocorrelation functions of these signals present a seasonal pattern where the peaks and

the troughs are six months apart, while the third IMF does not seem to have a seasonal pattern.

This might indicate that the last IMF of each series contains noise and thus could not directly

inuence demand patterns, while the second corresponds to a periodic signal.

The second IMF of water demand decomposition corresponds to the trend component.

The decreasing trend in residential water demand after 2015 could be associated with conservation

attitudes. After the 2012-2018 drought, the local water company implemented a contingency

tariff to encourage a reduction of at least 20% in consumption. Socioeconomic factors, such as
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Figure 15 – Power spectrum of IMFs 4 (left) and 5 (right) of water demand time series. The
aliasing effect can be observed in the IMF5, where the center frequency overlap.

Source: The author.

income, water price, and household composition could also be associated with changes in water

demand trends, as pointed out in previous studies (PARANDVASH; CHANG, 2016; ZUBAIDI

et al., 2020). Demand-side measures and even mass media coverage of extreme events can

also affect the behavior of this particular signal of water demand (BOLORINOS et al., 2020).

Modeling this component was beyond the scope of this study.

Table 12 – Mutual information between
each decomposed signal and
ltered water demand time se-
ries.

Max Temperature Precipitation

IMF1 IMF2 IMF3 IMF1 IMF2 IMF3
0.07 0.22 0.06 0.07 0.11 0.05

Source: The author.

The additional relevant inputs were dened based on the PACF of the decomposed

signals of water demand (Figure 19). Previous water demand has a great inuence on future

consumption and climate variables alone would not be able to provide accurate predictions. The

nal dataset had 12 input variables.

A sensitivity analysis on the performance of the VMD-GBR model for 1-month

ahead predictions indicated the most suitable values for the quadratic penalty term and the

convergence tolerance, set to 10 and 10-5, respectively. Table 13 indicates the R2 values for

different combinations of both parameters. After dening these parameters, the model was tested

for predictions with leading times varying between one and twelve months.

Figure 20 presents the scatter plots of the testing set for each leading time. As
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Figure 16 – Original and decomposed signals of water demand time series.

Source: The author.

it would be expected, the performance is worse as the leading time increases, but the model

presents accurate predictions for 1, 2, 3, and 4-months ahead of water demand. Table 14 shows

the R2, RMSE, and MSE for each leading time. The VMD-GBR model successfully addresses
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Figure 17 – Original and decomposed signals of mean precipitation time series.

Source: The author.

climate variability in water demand prediction and reassures previous ndings that residential

consumption is driven by precipitation and temperature patterns (ADAMOWSKI et al., 2013;

PARANDVASH; CHANG, 2016; ZUBAIDI et al., 2020).
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Figure 18 – Original and decomposed signals of maximum temperature time series.

Source: The author.

The importance measure of the input variables provides insight into the inuence of

climate variables in the prediction (Figure 21). Although there is a large variance in the mean

average MSE of the IMFs of temperature (tmpIMF2) and precipitation (precIMF2), they are



72

Figure 19 – Partial autocorrelation plots of water demand IMFs.

Source: The author.

Table 13 – R2 for different combinations of VMD param-
eters.

 
10−5 10−6 10−7 10−8 10−12 10−15 0

10 0.719 0.714 0.705 0.705 0.705 0.705 0.705
20 0.680 0.697 0.697 0.697 0.697 0.697 0.697
50 0.711 0.700 0.700 0.700 0.700 0.711 0.700
100 0.675 0.675 0.675 0.675 0.675 0.675 0.675
200 0.710 0.710 0.710 0.710 0.710 0.710 0.717
500 0.323 0.323 0.323 0.323 0.323 0.323 0.323
600 0.307 0.307 0.307 0.307 0.307 0.307 0.307
700 0.276 0.276 0.276 0.276 0.276 0.276 0.276
800 0.282 0.283 0.283 0.283 0.283 0.283 0.283
900 0.273 0.273 0.273 0.273 0.273 0.273 0.273
1000 0.272 0.266 0.266 0.266 0.266 0.266 0.266
2000 0.192 0.185 0.185 0.185 0.185 0.185 0.185

Source: The author.

Table 14 – Performance metrics for the
VMD-GBR model predic-
tions during the testing period
for different leading times.

Lead time (months) R2 RMSE MAE

1 0.719 0.197 0.158
2 0.549 0.222 0.188
3 0.463 0.226 0.199
4 0.519 0.213 0.173
5 0.388 0.230 0.192
6 0.295 0.258 0.226
7 0.354 0.258 0.230
8 0.110 0.312 0.278
9 0.233 0.277 0.233
10 0.290 0.319 0.271
11 0.337 0.324 0.271
12 0.324 0.375 0.313

Source: The author.

amongst the top-ranked variables. This result conrms the hypothesis that residential water
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Figure 20 – Scatter plots of the normalized tted values of the VMD-GBRmodel and normalized
observed data for the testing period for each leading time.

Source: The author.

demand is driven by climate patterns.

Different from the application area of other researches mentioned here (PARAND-

VASH; CHANG, 2016; RASIFAGHIHI et al., 2020; FIORILLO et al., 2021), Ceará has a

signicant interannual variability of both precipitation and temperature, mainly due to the El

Niño South Oscillation and the Interhemispheric Tropical Atlantic Gradient (HASTENRATH;

HELLER, 1977). The region also presents intraseasonal variations related to the Madden-Julian

Oscillation (JUNIOR et al., 2018b). Although widely studied, these phenomena have complex

interactions with precipitation that are still not completely understood by the scientic commu-

nity. Hence, forecasting models that can properly detect seasonal variability of climate variables

and their relationship with water demand can be of great value for operational management

decisions and the adjustment of demand-side strategies.

5.5 Conclusion

This study set out to design a predictive model of monthly residential water demand

including climate variability. To do that, we applied a decomposition technique to remove
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Figure 21 – Boxplot of the increase in MSE obtained when each of the input variables was
removed from the dataset, ranked according to the median value of its relative
importance.

Source: The author.

the water demand component associated with socioeconomic and policy characteristics and a

machine learning technique to create an autoregressive model. The methodology is applied in

Fortaleza, Brazil, a region with an elevated interannual and intraseasonal climate variability.

The results show that applying VMD to lter the water demand signal is an effective

approach for removing components that are not directly associated with climate variability.

Although the trend component could be associated with a response to drought, that is somehow

dependent on climate, the effective implementation of water conservation policies and the change

of habits in the households are more related to socioeconomic factors. The VMD-GBR model is

suitable for regions affected by extreme events or complex climate variability.

Maximum temperature and precipitation were signicant predictors of water demand

and including their seasonal components as exogenous variables of the model improved accuracy.

The model is appropriated for at least 4 months-ahead predictions, with an average RMSE of

0.214. The methods used in this study may be applied to medium-term planning of water supply

systems and to guide operational and tactical decisions of water companies. The VMD-GBR

approach can yet be coupled to seasonal climate forecast models and scenario-based predictions

of the trend component of water demand. The ndings are also useful to assess climate change

impacts on future water demand, which could provide insight into policy design.
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6 A DATA-DRIVEN MODEL TO EVALUATE THE MEDIUM-TERM EFFECT OF

CONTINGENT PRICING POLICIES ON RESIDENTIAL WATER DEMAND

"Mas levei minha sina. Mundo, o em que se

estava, não era para gente: era um espaço para

os de meia razão." (ROSA, 2019)

6.1 Introduction

The growing water demand associated with urbanization processes has increased 

water stress and the risk of shortage in several regions of the world (MCDONALD et al., 2014). 

For some of them, the elevated temporal and spatial variability in water availability offer an 

additional challenge to water supply management (ORLOWSKY; SENEVIRATNE, 2012; PAL 

et al., 2013; CAMPOS et al., 2014).

In this context, water companies and policymakers have been implementing demand 

control measures, since increasing water supply capacity is not always possible or effective 

(ROMANO et al., 2014; WHITTINGTON; NAUGES, 2020). A widely used approach is the 

adoption of increasing block rates (IBR), which is expected to encourage rational water consump-

tion (RIETVELD et al., 2000; ZHANG et al., 2017). This kind of policy is typical of regions 

affected by droughts and developing countries and has complex impacts on consumer behavior 

(RINAUDO et al., 2012). Pricing strategies might also include tariffs that vary seasonally with 

temperature and/or precipitation (PESIC et al., 2012; MOLINOS-SENANTE, 2014) or adjusted 

with the level of water storage (CHU; GRAFTON, 2019a), and household size (ARBUÉS; 

BARBERáN, 2012).

A less common strategy to reduce water use under drought conditions is the imple-

mentation of penalty fees for those households with an elevated consumption (GARCÍA-RUBIO 

et al., 2015; BRAGA; KELMAN, 2020). In Brazil, water utility companies have used this 

approach to deal with water crisis (BRAGA; KELMAN, 2020). In Fortaleza, located in northeast 

Brazil, water pricing follows an IBR structure, and a contingent tariff, i.e., a penalty fee, was 

adopted three years after the beginning of a severe drought that reduced reservoir storage by 

about 63% (PONTES FILHO et al., 2020). This tariff was influenced by the consumption 

quantity that exceeded a predefined threshold.

Previous studies have reported that water scarcity impacts price elasticity, but the 

consequences are adverse. While early research indicated that price elasticity is more signicantly
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affected by pricing structure and season (ESPEY et al., 1997), recent studies show that consumers

response to price change is related to different exogenous factors, such as climate (MONTEIRO;

ROSETA-PALMA, 2011), income (MA et al., 2014) and environmental attitude (GARRONE et

al., 2019). Dalhuisen et al. (2003) pointed out that income elasticities are relatively inelastic

under IBR pricing, and that water scarcity does not seem to affect elasticity. Molinos-Senante

and Donoso (2016) proposed a tariff scheme that accounts for the scarcity value of water and

that can promote equity, based in a IBR structure and cross-subsidy. However, the measure

might be difcult to implement due to lack of adequate water metering. Another strategy aiming

equity and sustainability was presented by Ward and Pulido-Velázquez (2008), that presented a

two-tiered pricing setup. Debate continues about the effectiveness of price control policies for

demand control, especially on IBR schemes (MANSUR; OLMSTEAD, 2012; ZHANG et al.,

2017; MATIKINCA et al., 2020).

The research to date has extensively explored the price inuence on water consump-

tion (ARBUéS et al., 2004; OLMSTEAD et al., 2007; WARD; PULIDO-VELáZQUEZ, 2008) –

together with other socioeconomic and/or climatic variables – but only a few studies are able

to address it over long time horizons (GRAFTON et al., 2014). Most studies on water price

use survey (which can be expensive and time consuming), aggregate, or household level data

to assess the empirical implications of economic variables on water demand (RUIJS, 2009).

Although these analyses have improved the understanding of the scientic community and

decision-makers, they do not allow continuous learning as new data become available.

Water companies have a huge amount of smart meter data available that could be

useful to extract information on use patterns and consumer behavior (COMINOLA et al., 2019).

In this research, we present a method that benets from this data to support managers on how to

adjust the pricing policy for a planning horizon of up to one year. The model can be coupled

with reservoir/supply systems operation or water distribution models to provide further insights

on supply-demand balance strategies.

This study proposes a data-driven predictive model to assess the medium-term effect

of price-based water conservation policies at the household level. In addition, we calculate the

elasticity of water demand reduction to price and we assess how much water price and public

interest in the drought can affect consumption habits. The methodology can be used by water

companies to assess price-related strategies of water conservation and does not require additional

variables that could be difcult to obtain in a rened scale. An advantage of this model is
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that prediction can be performed at a disaggregated level, making it possible to design policies 

tailored to socioeconomic or even structural characteristics of the households. Although this 

study considers a block tariff structure, the framework can be adapted to any other price strategy, 

if it is applied at the household level.

6.2 Methodology

6.2.1 Study area

The city of Fortaleza, capital of Ceará, located in the Northeast region of Brazil, is 

the fth most populated city of the country, with over 2.6 million inhabitants distributed across 

3149km2. The population is expected to grow to 3.1 million people in 2040 (IPLANFOR, 2015). 

The city is part of the Metropolitan Region of Fortaleza, which comprises 19 municipalities of 

Ceará.

Fortaleza is supplied by the JMS, which consists of eight reservoirs which sum up to 

a storage capacity of 11,112hm3. JMS transfers water from the Jaguaribe basin and supplies 36 

municipalities. Urban and industrial demand of Fortaleza is677m3s, corresponding to 565%

of the volume released by the supply system. Past research has indicated that water demand 

in Fortaleza is highly heterogeneous and that socioeconomic factors play an important role on 

consumption habits.

6.2.2 Water tariff structure

During the period between 2012 and 2018, the northeast of Brazil suffered from 

a historic drought that significantly impacted its economy and water storage (PONTES

FILHO et al., 2020). The main reservoirs of Fortaleza’s supply system were affected by 

the 2012-2018 drought, resulting in a significant reduction in water availability. To encourage 

domestic water conservation, which accounts for more than 80% of Fortaleza’s water demand, 

the local water company implemented a contingent tariff.

The contingent tariff was implemented in December 2015 (Figure 22) and dened a 

minimum reduction of 20% of the average consumption between October 2014 and September 

2015. If a household did not meet this reduction goal, an extra charge of 110% on the exceeded 

volume would be added to the bill, i.e., the contingent tariff is calculated on the difference 

between the volume consumed and the goal. This percentage was updated to 120% in October
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2016. Water price follows an increasing block tariff structure (Table 15); thus, the contingent

tariff also varies with the consumption block of the household. Users with a monthly consumption

of up to 10m3 did not have to pay the contingent tariff.

For example, for a household that had a mean consumption of 14m3 between October

2014 and September 2015, the goal was to use up to 11m3, corresponding to a 20% reduction

in the monthly consumption. If in a certain month of 2017 the water demand of this household

was 13m3, in addition to the water tariff (13∗451), they would have to pay the contingent tariff,

which would be charged over the 2m3 that exceeded the consumption goal (12∗2∗451). The
base price here corresponds to the second block of consumption (R$451 in 2017).

Figure 22 – Total domestic water demand (m3) in Fortaleza from 2009 to 2017. The baseline
period was used by the local water company to calculate the reduction goal for each
household.

Source: The author.

Although we consider these specic conditions in the prediction model, the method-

ology could be replicated under different price-associated water conservation measures.

Table 15 – Water tariff in Fortaleza for each con-
sumption category for 2016 and 2017.

Monthly consumption (m3) 2016 (BRL) 2017 (BRL)

0 to 10 2.79 3.48
11 to 15 3.61 4.51
16 to 20 3.92 4.88
21 to 50 6.71 8.36

Source: The author.
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6.2.3 Predictive model

The predictive model has three explanatory variables: previous water demand,

monthly seasonality of water demand, and the cost of the penalty fee, i.e., the contingent tariff

cost per household. The model was tested for multiple leading times, ranging from one to twelve

months.

The penalty fee was calculated as the cost of the volume of water consumed in the

previous month that exceeded a threshold. This threshold sets how much water should be saved

and is a percentage of the average monthly water consumption of the household for a baseline

period. Here, the baseline period goes from October 2014 to September 2015 and the threshold

is 20%.

At each month, the predictions for the previous month are used to determine the tariff

block of each household. Then, we calculate the volume of consumed water that exceeded the

threshold and how much it cost for the user. For example, when calculating water consumption

at n-months ahead, the predictions for the month n−1 are used to assess the water conservation

measure (Figure 23). This strategy allowed us to avoid the simultaneity issue associated with

water consumption modelling under block tariff policies.

Previous studies have used different price variables in econometric models of water

demand, and there is not a generally accepted approach. Many authors nd it more appropriate

using the marginal price, i.e., the cost of increasing the water consumption at each time step

(RINAUDO et al., 2012), while others prefer the average price (ZHANG et al., 2017) or both

(MA et al., 2014; DEYà-TORTELLA et al., 2016). Although some researchers argue that the

users might be more inuenced by the average price (DEYà-TORTELLA et al., 2016), in case of

a contingent tariff policy, they might pay special attention to the additional charge expressed on

the bill.

In addition to the lagged water consumption and the price component, a seasonal

variable was included to account for seasonal behavior. This variable corresponded to the

seasonal component extracted for each household with the Seasonal and Trend decomposition

using Locally estimated scatterplot smoothing (STL) method. This approach captures different

patterns of seasonal behavior and adds more information to the model than the usual approach

of using 11 dummy variables for the months. We chose a machine learning regression model

that has been widely used for electricity and wind prediction, Gradient boost regression. This

algorithm also performs better than other linear and machine learning models in predicting
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Figure 23 – The predictive model has an autoregressive component (previous month water
demand) and the penalty fee as explanatory variables, in addition to the seasonality
of the corresponding month. Starting from January, the water demand in December
would be used to calculate the cost of the contingent tariff. For the next month, the
penalty cost is calculated using the predicted water demand in January.

Source: The author.

residential water demand (LEE; DERRIBLE, 2020). The predictive model can be summarized

in the following steps:

(i) Select a dataset  of monthly household water demand and set a time horizon n (in months)

for the predictive model.

(ii) Extract the seasonal component si of each household’s water demand time series yi using

the STL method.

(iii) Set a consumption reduction goal or threshold and the penalty cost policy p(). The

goal might be a percentage of the average consumption over a certain period, named the

baseline consumption bi.

(iv) Split the dataset into two subsets for training and validating the model. Initialize the

gradient boosting model at month t = 1, setting the predictive variable y to ŷit and the

predictors to si, p(yit−1,b
i), and yit−1. Choose arbitrary values for the main parameters of

the model i.e., the number of trees, the minimum number of observations in each node and
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the learning rate (usually ranges from 0.001 to 0.1).

(v) Run the model again using the predicted water demand ŷit to calculate the penalty cost and

estimate y at month t+1. If the water tariff follows an IBR structure, it might be necessary

use a function f (ŷit) to set the tariff block to the household prior to calculating the penalty

cost. Repeat this procedure until t = p.

(vi) Compute model’s performance D(ŷ,yit) on the training and testing sets and compare the

measures to adjust the parameters and avoid overtting the model.

The tabular version of the algorithm is described below:

Initialize: Set the variable ŷ equal to yit .

- Calculate the baseline consumption and the reduction goal

- Decompose the water demand time series using STL and extract its seasonal

component si

repeat

- Determine the tariff block of each household based on the consumption of the

previous month using a function f (yit−1). This step can be ignored if the water tariff does not

follow an IBR structure.

- Calculate the penalty cost using a function p(yit−1,b
i)

- Estimate a gradient boosting regression model that predicts y using si, p(yit−1,b
i),

and yit−1 as predictors

- Compute model’s performance using the selected measure(s) D(ŷ,yit) until t = n

- Adjust model’s parameters based on the performance of the training and testing

subsets.

The model was validated with a classical out-of-sample evaluation and was trained

for the year of 2016 and tested for the year of 2017. Figure 24 provides a general outline of the

predictive model and the performed analysis.

6.2.4 Seasonality extraction

The water demand time series was decomposed into trend, seasonal and remainder

components using the STL method (CLEVELAND et al., 1990). This procedure was used to

extract the seasonality of water consumption for each household. STL consists in sequential

applications of the local regression model and provides an additive decomposition of the original
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Figure 24 – Predictive model outline. The contingent tariff cost is recalculated as new predictions
become available.

Source: The author.

signal (D) into three components:

D(t) = S(t)+T (t)+R(t)

where S, T and R are the seasonal, trend and remainder components, respectively. The algorithm

work as follows:

The local regression smoothing estimates a function g(x) for the independent variable

at any value of x rather than for the measurements xi of the dependent variable. To calculate the

regression curve g, an initial value for the parameter q is chosen; q values of xi that are closest

to x are selected and weighted on their distance from x. For q ≤ n, where n is the number of

observations in the data set, the neighborhood weight for xi is calculated as follows:

vi(x) =W (
xi− x
λq(x

)

where vi(x) is the neighborhood weight for xi, λq(x) is the distance between x and the most

distant xi. For q> n, λq(x) is multiplied by q
n . W (u) is the tricube function, expressed as:

W (u) =




(1−u3)3, if 0≤ u< 1

0, if u≥ 1

Next, a polynomial of degree d is t to the weighted data at (xi,yi). The value of d can

be 0 (constant), 1 (locally linear) or 2 (locally quadratic). In this paper, d = 1. The tted

function corresponds to g(x). It is possible to add a robustness weight ρi for each pair (xi,yi) by

multiplying it by i.
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STL consists of two nested loops (CLEVELAND et al., 1990). In the outer loop,

robustness weights are calculated for each time point. Initially, the trend and remainder com-

ponent are set to 0 and ρi is set to 1. In the next loops, the remainder component is found by

removing the trend and seasonal components calculated in the inner loop from the original series.

The robustness weight is then calculated as follows:

ρi = B(
R
h
)

h= 6∗median(R)

where B is the bi-square weight function, given as:

B(u) =




(1−u2)2, if 0≤ u< 1

0, if u> 1

The outer loop is repeated no times; if one does not wish to add robustness into STL, no should

be set to 0. In this paper, no = 15. The inner loop follows these steps: (i) Detrend the original

signal; (ii) Estimate a smoothing function using Loess for each cycle-subseries, where q is the

cycle periodicity (e.g. for a monthly time series, q is set to 12) and d is equal to 1; (iii) Apply a

low pass lter to the smoothed cycle-subseries, which consists in sequential applications of a

moving average; (iv) Detrend the smoothed cycle-subseries; (v) Remove the seasonality from

the series; (vi) Smooth the deseasonalized series using Loess. The STL decomposition can be

easily performed using the stl function from base R.

6.3 Gradient boosting

Gradient boosting machines (GBM) (FRIEDMAN, 2001) is a learning method

that converts weak learners, usually regression trees, into strong learners by combining them

sequentially. The idea behind the method is that new weak learners can learn from the residuals

of the output from the previous model; this ensemble technique is called bagging. For regression

tasks, we want to nd the function that best ts the data points in a set containing input variables

x and a corresponding output variable y. To do this, the algorithm minimizes a loss function

between y and the predicted values, in our case, the MSE.

L(y, ŷ) =
1
N

N

∑
i=1

(yi− ŷ2i )



84

The gradient boosting method consists in a combination of weak learners that are added together.

The individual models fm are added one after the other to improve model performance.

yi =
M

∑
m=1

fm(x)

The weak learners, in this case, regression trees, are tted on the residuals of the previous model.

The general representation of GBM is expressed as follows:

Fm(x) = Fm−1(x)+ fm(x)

meaning that the model fm does not change the previously tted model F(m−1). The term is a

regularization parameter or the learning rate, which determines the number of iterations. Small

values of the learning rate (01) reduce the chances of overtting. Gradient boosting applies a

functional gradient descent method to minimize the loss function, where each new weak model

is equivalent to the negative gradient of the MSE. The negative gradient is given as:

−gm(xi) =−[
∂L(yi,F(xi))

∂F(xi)
]Fx=Fm−1(x)

The algorithm stops when the loss reaches a threshold, or the maximum number of trees is

built. An important element to consider when tting machine learning models (or any predictive

model) is the bias-variance tradeoff and the chance of overtting the model. If the algorithm

misses important connections between the predictors and the response variable, the model will

have a high bias, i.e., an elevated difference between predictions and the observed data. However,

if during the model ts too perfectly to the training data, resulting in a high variance, it will not

generalize well (overt).

The best scenario when developing a model is to accurately capture the relationships

between the variables during training but also make good predictions during training. In machine

learning models, one can control the bias-variance tradeoff by controlling model parameters.

The main parameters of GBM are the number of trees, which should not be too high to avoid

overtting; the minimum number of observations in each node, which denes how depth the tree

might become; the learning rate or shrinkage, which relates to the size of the incremental steps,

usually ranging from 0.01 to 0.1, and the distribution of the response variable, which in our case,

was Gaussian.

In our framework, parameter tuning was performed in a trial and error manner, i.e.,

we dened arbitrary values for them, compared model performance for the train and test datasets

and chose those parameters that resulted in comparable performances for both and could not be
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improved anymore. The number of trees was set to 300, the learning rate to 0.1, and the number

of observations per node to 10. All analyses were performed using R programming language.

The gradient boosting model was implemented with the package gbm (GREENWELL et al.,

2020).

6.3.1 Performance assessment

Model performance was evaluated for the entire prediction horizon, i.e., for twelve

months of the testing period. Two measures were used: RMSE and R2.

RMSEj =


n

∑
i=1

(
ŷi, j− yi, j

n
)2

R2
j =

∑n
i=1(yi, j− ŷi, j)2

∑n
i=1(yi, j− ȳ j)2

where yi, j is the observed water demand in household i at month j, yi, j is the predicted water

demand in household i at month j, yi, j is the mean observed water demand at month j, and n is

the number of households.

6.3.2 Elasticity of water demand reduction to price

Different scenarios of price increase were considered, based on the tariff for the

previous year (2015 for the training and 2016 for the validation period): no increase, 5, 10, 15

and 25%. To calculate the elasticity of water demand reduction to price, we used the predictions

for the year of 2016 obtained with the model. The reduction is related to the average consumption

during the baseline period (October 2014 to September 2015).

E =
∆R
R
∆P
P

where R is the monthly average reduction in water demand and P is the average water block

tariff.

Water demand elasticity was assessed for different socioeconomic classes, as users’

response to water conservation policies tend be heterogeneous. These classes were based on

the criteria used by the IBGE, which is based on per capita family income. IBGE uses the

minimum wage to classify the families in ve classes (Table 16). The monthly per capita income

of a household is divided by the minimum wage to nd the correspondent socioeconomic class
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(i.e., Income= N ∗minimumwage). We also compared the predicted monthly reduction with the

actual reduction aggregated water demand.

Table 16 – Socioeconomic classes and number of households in each of them. The total number
of household analyzed here is 37,689.

Class Number of minimum wages Number of households Percentage of the total number of households

A 20 or more 53 0.14%
B 10 < N < 20 969 2.57%
C 4 < N < 10 5,186 13.76%
D 2 < N < 4 17,554 46.58%
E N < 2 13,927 36.95%

Source: The author.

6.3.3 Public interest and media coverage

In this study, water demand reduction is associated with the implementation of a

price control measure, which was expected to change public behavior. However, demand control

policies may include other strategies, such as promotional events, water conservation education

programs and mass media advertising campaigns (SHARMA; VAIRAVAMOORTHY, 2009). In

Fortaleza, the water company created an app to encourage users to report leaks and frauds and

promoted educational campaigns in schools, public buildings, and social media.

Google Trends data has been proven a useful tool for characterizing public response

to certain matters and has been successfully applied to analyze private consumption (VOSEN;

SCHMIDT, 2011) and to assess drought awareness (QUESNEL; AJAMI, 2017; KAM et al.,

2019). The idea here was to use the frequency of Google searches for the key words "contingent

tariff" and "drought" to address people’s interest on these matters and their awareness about the

implementation of the tariff.

We acknowledge that mass media plays an important role on social systems (LUH-

MANN, 2000), hence media coverage on the contingent tariff might have inuenced public

response. For reference, we plotted the number of articles related to the contingent tariff pub-

lished between 2012 and 2017, which were collected from the websites of the three main local

newspapers (Tribuna do Ceará, OPovo and Diário do Nordeste). These sources have a strong

online presence and usually share the news on social media such as Instagram and Twitter. Data

was collected with web scraping using Python and the BeautifulSoup 4 library.

To assess the marginal response and the relative inuence of public interest in drought

and the contingent tariff on water demand, a regression analysis was performed using both as
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explanatory variables (Figure 25). Water demand was predicted as a function of water demand

in the previous month, public interest, and the contingent tariff cost for the previous month.

Google search hits between 2012 and 2017 for the term “contingent tariff” and “drought” by

users located in Fortaleza were used as a proxy for public interest in water scarcity, from which

the trend component was extracted using the STL method.

Figure 25 – Regression analysis outline.

Source: The author.

The GBM algorithm was used to perform the regression. For this analysis, we used

data from 2012 (beginning of the drought) to 2017. Note that here we t the model using only

observed data, i.e., the contingent cost is not iteratively calculated, since our intention was not to

build a forecast but rather to assess the importance of the explanatory variables. For the same

reason, seasonal water demand was not added as a predictor. The dataset was randomly split

into 80% train and 20% test. After obtaining the regression model, we extracted the marginal

response of each variable using partial dependence plots and their relative inuence. The relative

inuence is measured with the reduction of squared error associated with each variable, i.e., how

much worse the model’s performance would be without that variable.

6.3.4 Partial dependence plot

The PDP represents the marginal effect of independent variables on the response of

a machine learning model (FRIEDMAN, 2001). The partial dependence of the response on a

variable xl is represented by:

f̂xl(xl) = Exs [ f̂ (xl,xs)] = f̂ (xl,xs)P(xs)dxs

Where xl is the independent variable analyzed in the partial dependence plot, xs is the subset of

the other input variables of the regression model f and P(xs) is the marginal probability density
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of xs. The function shows the effect of the variable xl on the dependent variable by marginalizing

over the other explanatory variables.

6.3.5 Data

Monthly water demand data for the period between 2009 and 2017 from 45,141

households were provided by the CAGECE. This analysis focused on households with consump-

tion up to 50m3month. Households with monthly water consumption inferior to 1m3 per month

or the ones in which the total water consumption between 2009 and 2017 was less than 5m3 were

excluded from the dataset. The data cleaning process reduced the dataset to 37,689 observations.

Socioeconomic data from the 2010 Census were used to classify the households.

Average per capita income is available at the census tract level, territorial units containing

a maximum number of households that allow a survey to be carried out by a single person.

Fortaleza is divided into 3,043 census tracts, and 2,586 of them are attended by CAGECE’s water

supply.

6.4 Results

Model performance was evaluated for each month of the testing period (Figure 26).

The model presented reliable predictions in terms of RMSE and R2 for a short-term horizon (1 to

6 months ahead), and satisfactory results for a medium-term horizon (7 to 12 months ahead).

The autoregressive component was the most important, i.e., removing it from the model would

mean a signicant increase in the loss function. This suggests that water demand is strongly

dependent on past use.

Figure 26 – Model performance.

Source: The author.
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A comparison between the predicted and observed mean percent reduction in resi-

dential water demand shows that the model provided accurate predictions (Figure 27). For this

analysis, households were grouped according to their socioeconomic class, to assess variation in

model performance and mean percent reduction in water demand. Classes D and E presented

a rather regular behavior during the year, with an average reduction of 14.73% and 13.99%,

respectively. Households in class B had the largest reduction in water demand: 17.58% over the

year. Class A, with the smallest reduction (11.22% on average), presented a peak in January but

almost no change in March.

Figure 27 – Real and predicted monthly reduction in aggregated water demand for the year of
2017 for each socioeconomic class.

Source: The author.

The reduction in water demand was revealed inelastic to tariff variation (Figure 28).

These results suggest that the contingent tariff itself would be enough to encourage a reduction

in water consumption in all socioeconomic classes. However, the policy has adverse effects on

each type of consumer. While the water tariff represents less than 1% of the average per capita

income of classes A and B, it is about 23% of the income of class E, which represents 37% of

the households (Table 17). The lower income classes had the lowest per capita consumptions

during the baseline period, but still managed to reduce their demand after the implementation
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of the contingent tariff. Except for households in class B, none of the classes would reach the

20% reduction goal. Class B also had the highest average daily per capita consumption (Table 3)

during the baseline period.

Figure 28 – Elasticity of water demand reduction to price for each socioeconomic class.

Source: The author.

These ndings agree with other studies that also found water demand is inelastic

to price variation (RINAUDO et al., 2012; DEYà-TORTELLA et al., 2016). Also, Zhang et

al. (2017) showed that increasing block policies are not effective to encourage a reduction in

water consumption. Ma et al. (2014) indicated that the highest income group is not sensitive to

price changes, while residents from the lower income group respond to marginal price and might

even compare the tariff for different blocks to optimize their benet. André and Carvalho (2014)

found similar values of water demand elasticity to price in Fortaleza using survey collected

data. The advantage here is that we used only secondary data to calculate elasticity for different

socioeconomic classes.

Overall, the results indicate that the restriction policy might be unfair with the lower

income classes, for which the tariff represents a signicant percentage of their income and still

enforced a reduction in its already low daily per capita demand. As stated by Bernoulli (1954),

benet perception depends on the individual perception of cost. Hence, a small increase in water

cost has a more signicant effect on the economic value attributed to water for lower income
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classes.

In a scenario where the customers must pay an additional charge for their excess

consumption, price increase does not seem to affect consumer behavior. This result can be

explained by the fact that the customers might be at the kink point of the block rate schedule

or their willingness to pay for water rises under drought conditions, since it represents only a

small percentage of their income. The rst is the most reasonable explanation for classes D and

E, while the second is consistent with higher income classes. Another aspect to be considered is

the reservation capacity of households (water tanks or cisterns, private borehole drilling), which

is higher for wealthy customers (GRANDE et al., 2016), who might be able to maintain their

standards and still reduce the water volume from public supply.

Table 17 – Reduction in water demand elasticity to price increase and char-
acteristics of the socioeconomic classes.

Socioeconomic class A B C D E

Elasticity of water demand reduction
to price

0.515 0.212 0.426 0.314 0.295

Number of households 53 969 5,186 17,554 13,927
Percentage of the average per capita
income related to the water tariff (%)

0.46 0.89 2.00 3.77 22.97

Average daily per capita consumption
(L/hab/day) for the baseline period

102.25 123.36 105.19 96.78 94.96

Average daily per capita consumption
(L/hab/day) after the restriction
measures

90.06 104.99 92.37 84.60 83.69

R2 0.69 0.69 0.75 0.74 0.73
RMSE 4.37 4.08 3.26 3.01 3.05

Source: The author.

It is important to bear in mind that the consumers are not necessarily aware of the

pricing policy structure. Although the contingent tariff is clearly expressed on the water bill,

increasing block tariff scheme is not detailed for households.

A clear increasing trend in public interest is observed after 2012 (when the drought

started), while the number of news related to the restriction measure peaked in 2016 (Figure 29).

While this could imply that the public was well informed about pricing policy, the nding cannot

be extrapolated to all customers, since not all households have access to internet.

A regression analysis between water demand, public interest, the contingent tariff,

and past water demand was performed for each socioeconomic class (Table 18). The relative

importance values imply that an increase in the cost associated with the contingent tariff has a

higher inuence on consumer behavior than information on drought. Also, it seems that residents
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Figure 29 – Public interest and media coverage on the contingent tariff policy.

Source: The author.

with higher income have a more signicant response to both the contingent tariff and information

on drought compared to residents in classes with lower income.

Table 18 – Relative importance of the explanatory variables
of the regression model between water demand,
past water demand, public interest, and contin-
gent tariff.

Class A B C D E

Past water demand 85.87 95.78 98.31 98.67 98.55
Contingent tariff cost 10.17 3.90 1.59 1.29 1.42
Seasonal public interest 3.96 0.32 0.10 0.03 0.02
R2 0.69 0.69 0.75 0.74 0.73
RMSE 4.37 4.08 3.26 3.01 3.05

Source: The author.

PDPs were plotted for each regression model (Figure 30). The results indicate that

water cost has an inverse relationship with water demand for all households, while an increase in
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the interest in the drought has little effect on consumer habits. It is worth mentioning that class

A is the only one to present a direct relationship between public interest in the drought and water

demand. However, we should be careful when interpreting these results since class A has a low

number of households.

6.5 Conclusion

The main objective of this research was to address the inuence of a contingent

tariff on a predictive model of water demand in Fortaleza, Brazil. The model contained an

autoregressive component and variables assessing seasonality and the cost associated with the

contingent tariff. This study has found that the contingent tariff was effective and resulted in a

11-17% reduction in residential water demand. Also, reduction in consumption was inelastic to

price increase in all socioeconomic classes.

The evidence from this study suggests that a price policy that associates with a

contingent tariff could be unfair to lower income households, for which the tariff represents a

large percentage of household income. Hence, although the strategy warrants a high revenue for

the water company (that can be allocated to water security projects), its equity is questionable.

Managers should be careful when implementing pricing policies to ensure the affordability of

water services to all consumers.

The ndings of this study imply that price-related water demand control policies

are effective, while drought awareness is less likely to encourage consumers to save water. The

increase in public interest in the drought does not necessarily indicate that consumers are well

informed about the risks associated with it. It is crucial that the users are aware of the water

resources management strategies and the implications of their habits rather than having a limited

perception of drought. This can only be accomplished if social dynamics aspects are considered

when designing drought plans and policies.

The framework proposed here is exible and can be useful for water companies

planning to implement price-related measures to encourage water demand reduction. The

predictions at the household level can be useful to design policies for different classes of

consumers. The predictive model can be used to verify at what extent the changes in the price

policy could inuence water demand.
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Figure 30 – Partial dependence plots for public interest and the con-
tingent tariff cost. A regression model was built for each
socioeconomic class. Public interest is dimensionless.

Source: The author.
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7 WATER INFRASTRUCTURE PLANNING UNDER CLIMATE VARIABILITY

Eu atravesso as coisas - e no meio da travessia não vejo! - só estava

mesmo era entretido na ideia dos lugares de saída e de chegada. A

gente quer passar um rio a nado, e passa; mas vai dar na outra banda é

num ponto mais em baixo, bem diverso do em que primeiro se pensou.

(ROSA, 2019)

7.1 Introduction

Managing water under uncertainty and risk in urban systems is challenging, espe-

cially when water demand and urbanization tend to increase. Climate change and spatial and

temporal variability of precipitation and temperature might change the intensity and frequency

of extreme events, directly impacting water availability.

Long-term planning of water supply investment and short-term management deci-

sions comprise a potentially large number of options that are difcult to tackle, especially in an

uncertain environment (TRINDADE et al., 2019). Capacity expansion of water systems includes

the implementation of new water sources or the improvement of the existing infrastructure to

meet growing demand. This problem formulates as a multi-stage model and involves decisions

related to how much and when to invest in different water supply facilities at minimal cost

(FRAGA et al., 2017).

The capacity expansion optimization is a large-scale problemwith a complex solution,

that is usually solved approached with dynamic programming, stochastic dynamic programming,

or multi-objective optimization (XIONG et al., 2018). These strategies have a high computational

cost (MORTAZAVI-NAEINI et al., 2014), and are not suitable when considering multiple water

sources in a long planning horizon. For this reason, the studies found in the literature do not

offer exible models that are also able to integrate operational and capacity expansion decisions

of water supply.

To address this issue, we (i) formulate the capacity expansion problem as an opti-

mization model and solve it with Stochastic Dual Dynamic Programming (SDDP) (PEREIRA;

PINTO, 1991) and (ii) extract the operational rules obtained from the model using machine

learning. SDDP was developed to overcome the curse of dimensionality (i.e. the increase in

computational cost due to the exponential increase in stage dimension) and is one of the only
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techniques available that can explicitly consider uncertainties (ROUGé; TILMANT, 2016). This

technique is widely used to solve problems of operation of complex hydroelectric systems but has

not yet been applied to the problem of capacity expansion of water supply. SDDP approximates

the cost function with piecewise linear functions, avoiding the need to list all possible combi-

nations of the capacity of the water sources under consideration. The integration of machine

learning with the stochastic optimization algorithm results in a powerful planning tool, with

the advantage of being adaptive, exible and at the same time able to explicitly incorporate

uncertainties.

7.2 Methodology

The problem of capacity expansion and operation of a water supply system was

formulated as a stochastic optimization model. The model provides annual expansion decisions

and monthly operational rules for a 30-year planning horizon, considering both conventional

and unconventional water sources and uncertainties in water availability. The model minimizes

the costs of expansion, operation, and maintenance of the water infrastructure for a tolerable

risk of supply failure, using SDDP. After obtaining the optimal expansion policy, we simulate it

using a Monte Carlo sampling scheme, i.e., we perform several simulations of the policy with

random sampling of the reservoir inow series. For each simulation, we record operational

decisions (releases, reservoir storage and withdrawals from alternative water sources) and feed

them to a regression tree model. In this nal step, we obtain general reservoir operating rules to

guide the water allocation process and decision making of the water system stakeholders. The

methodological strategy, based on (LABADIE, 2004), is summarized in 31.

7.2.1 Case study

The optimization framework was applied to a case study for the RMF, Brazil. The

region is supplied by eight storage reservoirs, pump stations and canals that transfer water

from the Jaguaribe River basin, through the JMS. Five of them supply the Metropolitana basin,

corresponding to a capacity of 871 hm3 and the other three supply the Jaguaribe basin, with a

storage capacity of 10,241 hm3.

The expansion of the RMF water supply system (Figure 32) involves the inclusion

of some alternative water sources, including: (i) wastewater reuse (destinated exclusively for
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Figure 31 – Methodological strategy.

Source: The author.

industrial use), (ii) a desalination plant, to be installed on Iracema beach, and (iii) transbasin

diversion through the PISF.

7.2.2 Water supply sources

Fortaleza’s Integrated Water Supply System (IWSS) relies solely on the JMS, com-

prising eight surface reservoirs (Orós, Castanhão, Banabuiú, Aracoiaba, Pacajus, Pacoti-Riachão,

Sítios Novos and Gavião). The initial (30% of maximum volume) and maximum volume

considered in the model are described in Table 19.

100 synthetic streamow series were generated for the each reservoir. In the simu-

lations, we consider that all series have the same probability of occurrence (p= 1100). The

streamow series generation methodology combines a generalized linear model (GLM), for

determining the temporal structure, with copulas, for modeling the joint distributions of spatial

dependence. The model is more efcient at replicating long-term droughts than the classic au-

toregressive and moving average (ARMA) model. The method is described in detail in (PORTO

et al., 2021).

The desalination plant is expected to have a minimum ow of 0.2 m3s, and it can
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Figure 32 – Single-line diagram of the JMS.

Source: The author.

Table 19 – Initial and maximum volume of the surface reser-
voirs considered in the optimization model.

Reservoir Initial volume (hm3) Maximum volume (hm3)

Banabuiú 480.3 1601
Orós 582.0 1940
Pacajus 72.0 240
Pacoti 114.0 380
Gavião 9.9 32.9
Riachão 14.1 46.95
Sítios Novos 37.8 126
Castanhão 2010.0 6700
Aracoiaba 51.2 170.7

Source: The author.

deliver 1 m3s by the end of the planning horizon (30 years). The desalination plant needs at

least three years to be installed, hence, it can only supply water from the fourth year in the

planning horizon (this condition was added as a constraint to the optimization model).
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Information regarding the implementation of wastewater reuse, such as the maximum

ows and their implementation stages, were extracted from the report “Feasibility study for

two tertiary sewage treatment stations and for an automation and control system for water and

sewage for CAGECE” (CAGECE, 2017). The project foresees the installation of tertiary sewage

treatment technologies in two drainage basins of Fortaleza, and reclaimed wastewater will supply

industrial demand. The project should take at least ve years to be nished, hence this source is

only available from the sixth year in the planning horizon.

Water transferred from the São Francisco river through PISF is delivered to the

Castanhão reservoir; therefore, in the model equations, the source is considered as an additional

inow to this reservoir. The transposition of the São Francisco river started in 2021. In that year,

64.9 hm3 of water from the PISF were transferred to Ceará - from this volume, 54.9 hm3 were

transferred to the RMF.

It is worth mentioning that there are still no studies on water transfer losses (and

inows) to the Castanhão reservoir, which may occur (i) by inltration in the distribution network

and/or (ii) due to evaporation from the small reservoirs located in the stretch. The losses – which

were not considered in the model, as they have not yet been properly estimated – can reduce the

water availability expected by the transfer and increase the need to use alternative water sources,

such as desalination and the reuse of efuents.

Table 20 – Minimum and maximum capacity of the
water sources included in the optimization
model.

Water Source Minimum
withdrawal

Maximum
capacity (m3s)

Desalination 20% of the
installed capacity

1

Wastewater reuse 0 4.5
PISF 0 10

Source: The author.

The minimum withdrawals and the maximum capacity of all sources considered in

the model are described in Table 20.

7.2.2.1 Water demand

We estimate the urban supply, agriculture and industrial demands for each reservoir

using a linear growth function (Table 21). The water demand in the rst year of the planning
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horizon corresponds to the demand in 2020, obtained from the COGERH.

Table 21 – Water demand projections.

Reservoir Urban supply demand (m3) Agriculture demand (m3)
Year 1 Year 30 Year 1 Year 30

Castanhão 0.61 0.73 11.93 13.87
Banabuiú 0.07 0.09 0.92 1.04
Orós 0.23 0.28 3.43 3.73
Aracoiaba 0 0 0 0
Sítios Novos 1.2 3 0 0
Pacoti 0 0 0 0
Riachão 0 0 0 0
Gavião 9.27 18.33 0 0
Pacajus 0 0 0 0

Source: The author.

We considered a percentage of water distribution losses in the of 45% (27% physical

losses and 18% apparent losses), with a 20% reduction by the end of the planning horizon. Thus,

in year 30, the percentage of losses is 36%. These losses were incorporated into the Gavião

reservoir demand, which supplies the (increase in projected demands).

7.2.3 Water supply costs

Installation, transfer, operational and maintenance costs were obtained from a sys-

tematic review of the literature and information from water utility companies. All costs were

converted into net present value (Table 22). For a detailed description of the costs assessment,

see Ribeiro et al. (2022).

Table 22 – Investment, operational and maintenance (O&M) costs of the water
sources included in the optimization model.

Reservoir Fixed O&M cost
(R$m3)

Variable O&M cost
(R$m3)

Investment cost
(R$m3)

Desalination 1.01 1.80 1.12
Wastewater reuse 0.60 *0.83 1.83
PISF 0.69 0.51 0

Source: The author.

In addition to the costs of operation and maintenance and installation of water

sources, the optimization model also incorporates the supply failure cost (penalty). This cost

was quantied as a penalization parameter that is multiplied by the decit in water demand. As

urban supply should be prioritized over agricultural water use (as stated by the state water policy

(CEARá, 1992)), failing in supplying these demands results in different penalties (1 and 2,



101

respectively). We also included a penalty associated with reducing the volume stored in the

reservoirs below 20% of their maximum capacity (3). These costs were experimentally set to

1 = 8 R$hm3month, 2 = 6 R$hm3month and 3 = 10 R$hm3month.

7.2.4 Optimization model

The decision variables are the monthly withdrawal from each source to meet the

water demand, the monthly transfer between basins and the annual capacity expansion of each

water source. The state variables are the volumes stored in the reservoirs and the installed

capacities of each source. Except for desalination, water availability of all the other sources is

directly or indirectly conditioned to climate variability.

Let qt be the vector of inows during period t, xt be the vector of volume in storage

at the beginning of time period t, ft be the cost of system operation during period t, qt be the

cost of expanding the system during period t, and  be a terminal value function. The expected

costs to be minimized from system operation and expansion from period 1 to period T are:

z= E[
T

∑
t=1

ft(xt ,qt ,ut)+qt(xt ,qt ,yt)+(xT+1,qT )]

The problem is optimized under a set of hydrological, physical, and institutional

constraints. Hydrologic uncertainty associated with surface reservoir inow was assessed with

an equiprobable model of inows obtained from the historical series. Reservoir operation was

included using the water balance continuity equation, which provides monthly yield, evaporation,

and spill.

st+1 = st +qt +C(rt)− lt − et(st)− xhumt − xagrt − it

Where st is the vector of storage volume at the beginning of time period t, qt

is the vector of inows, lt is the vector of spills, C is the system connectivity matrix, et is

the evaporation loss, xhumt is the vector of urban supply withdrawals and xagrt is the vector of

agriculture withdrawals. The indexes of the alternative water sources are 1 (wastewater reuse),

2 (desalination) and 3 (PISF). Evaporation was as a linear function of reservoir volume, as

considering a nonlinear function would add a nonconvexity to the optimization problem. This

assumption was considered valid as the percentage difference between evaporation loss calculated
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with linear and nonlinear functions was less than 10% for all reservoirs. Monthly operation

decisions are conditioned to the maximum capacity of the alternative water source (Capm,i)

dened for the corresponding month.

xm,t ≤Capm,t

Except for surface reservoirs, the installed capacity of all water sources can be monthly increased.

yt,i+1 represents the increase in the capacity of the water source m.

Capm,t+1 =Capm,t + ym,t+1

The installed capacity of the water sources can not be reduced in a further month.

Capm,t+1 ≥Capm,t

Monthly withdrawals can not be greater than the water volume stored in the surface reservoirs.

xhumr,t + xagrr,t <= sr,t

The unmet water demand will be multiplied by a penalty factor in the cost function.

uhum >= dhumt − xhumr,t − xhumm,t

Where dhumt is the vector of the urban water demand in t, xhumr,t is the withdrawal from surface

reservoirs and xhumm,t from alternative water sources and uhum is the unmet urban water demand.

Agriculture water demand has a different penalty factor, as urban supply is prioritized over

agriculture use.

uagr >= dagrt − xagrr,t − xagrm,t

Where dagrt is the vector of the agriculture water demand in t, xagrr,t is the withdrawal from surface

reservoirs and xagrm,t from alternative water sources and uagr is the unmet agriculture water demand.

Once installed, the desalination plant must produce at least 20% of its total capacity.

x2,i+1 ≥ 02∗ y2,i

Wastewater reuse is limited to a percentage () of the water consumed in the RMF, i.e. water

from desalination and the Gavião reservoir (index = 9). () was set to 0.8.

x1,t <= (x2,t + xres=9
1,t )∗
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The volume stored in the reservoirs should not be less than 20% of their maximum capacity.

ures ≥ (02∗ sr,max)− sr,t

Where sr,max is the maximum storage of reservoir r and sr,t is the withdrawal from the corre-

sponding reservoir.

The objective is to minimize the installation, operation and maintenance costs and

the failure to supply water demand, while at the same time, maintaining the reservoir volume in

at least 20% of its maximum capacity.

3

∑
m=1

(OMCfix,m ∗Capm)+
3

∑
m=1

(OMCvar,m ∗ xm)+
3

∑
m=1

(ICm ∗Capm)+
9

∑
r=1

(TCr ∗Capm)+

+1 ∗uhum+2 ∗uagr+3 ∗ures

Where OMCfix,m is the xed OM cost of the source m, OMCvar,m is the variable OM cost of the

source m, ICm is the installation cost of the source m, TCr is the cost of transferring water from

reservoir r to another reservoir.

The optimization model was developed using the programming language Julia 1.8.5

(BEZANSON et al., 2017) and the SDDP package (DOWSON; KAPELEVICH, 2021).

7.2.5 Risk Assessment

To calculate the risk associated with the optimal expansion strategy of the water

supply system, we calculate the water supply failure associated with each reservoir. The water

supply failure corresponds to the percentage of months in which the unmet fraction of the total

demand is greater than 10%. Then, we calculate the frequency that the system attends water

demand (reliability, as dened by Hashimoto et al. (1982)) and the magnitude of failure (monthly

supply decit).

7.2.6 Extraction of operating rules

After simulating the optimal policies obtained with the optimization model, we

extracted the reservoir operation rule using a decision tree model. 100 simulations of the model

were performed using the Monte Carlo method. During a Monte Carlo simulation, streamow

series are randomly sampled from the input probability distributions. Each sample set is an
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iteration. The Monte Carlo simulation does this hundreds of times, and the result is a probability

distribution of possible outcomes.

The operating rules were extracted using a decision tree model. A decision tree

provides a set of rules for expressing the relationship between explanatory and response variables,

which are represented with a tree structure (KRZYWINSKI; ALTMAN, 2017). The leaves

represent class labels (classication) or estimates of the response variable (regression) and the

branches or internal nodes represent the values of the tested variable. This strategy has been used

by other researchers to derive operating rules (WEI; HSU, 2008; YANG et al., 2016).

The inputs of the predictive model are monthly releases (to supply either urban or

agricultural demands), reservoir storage and withdrawals from alternative sources. For each

reservoir, we t several decision trees; considering (i) the month in the year and (ii) whether the

alternative water sources have been installed or not. The response variable is the release for both

urban and agricultural supply (regression) or the decision to use or not water from wastewater

reuse and desalination (classication). Data was split into training (80%) and test (20%) and the

complexity parameter was tuned with the grid search method (we varied it from 0 to 0.4, by 0.01

increments). We used a repeated 10 fold cross validation setting with the accuracy (classication)

and the R2 (regression) as performance metrics. The minimum number of observations in a node

to have a split was set to 20, while the maximum tree depth was set to 10.

The goal of this analysis is not to estimate an accurate forecasting model, but to

extract information regarding the operating strategies indicated by the optimization model.

Therefore, although the decision tree model might not the most suitable for making accurate

predictions – RF (BREIMAN, 2001) and GBM usually have better performances (YANG et al.,

2016) – it is an excellent tool for inference and decision making.

7.3 Results

7.3.1 Optimal expansion strategy and Risk assessment

In all of the simulations, all three alternative water sources (i.e. water transfer from

PISF, desalination and wastewater reuse) were needed to supply water demands. However, they

were implemented in different time frames. We calculated the ECDF of the activation year

of each alternative water source in all simulations to identify the most appropriate timing for

installing them. While wastewater reuse should be necessary around the 8th year of the planning
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horizon; desalination should be needed around year 3, and the water transfer from PISF from

the rst year in the planning horizon. We also computed the monthly water shortage (i.e. the

difference between urban/agricultural water demand and release for these uses) per reservoir and

the frequency of water supply failure (when the decit is above 10% of the demand).

Figure 33 indicates that the failure frequency in attending urban demand is below

50% for all reservoirs during the planning horizon and except for Orós, it only happens in the

last 10 years. The maximum average decit is around 1 m3s in the 26th year of the planning

horizon (Figure 34); which indicates that the growing demand of the RMF (supplied by Gavião

reservoir) might result in reduced water security over the years or when the system is under

severe drought conditions.

Figure 33 – Failure frequency in attending urban water demand (grey bars) over the years
in the planning horizon. Colored lines indicate the ECDF of the activation
year of desalination, water transfer (PISF and wastewater reuse), calculated
for 100 simulations of the optimal expansion strategy.

Source: The author.

Water demand for irrigation, which was the second priority in relation to urban

demand, was not completely met in the last ten years of the planning horizon (Figure 35). This
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Figure 34 – Failure magnitude (m³/s) in attending urban water demand (grey bars) over
the years in the planning horizon, calculated for 100 simulations of the optimal
expansion strategy.

Source: The author.

means that incorporating alternative water supply sources into the system might not be enough

to ensure agriculture supply in the Jaguaribe region, but it can guarantee urban water supply in

both Jaguaribe and Metropolitana water basins for at least 30 years.

Hence, decision makers and stakeholders should focus on adopting measures to

reduce future water demand (both urban and agricultural), such as encouraging households to

install water saving devices (e.g. dual ushers, low ow showers) (ABU-BAKAR et al., 2021),

replacing inefcient pumps (URRESTARAZU; BURT, 2012), encouraging organic farming

(WHEELER et al., 2015) and setting limits to water allocation (PERRY et al., 2017). The benets

of increasing irrigation efciency are extensively discussed in the literature (ADAMSON; LOCH,

2014; OECD, 2016), and although it does seem to drive an increased water consumption and

only a modest increase in water productivity (WARD; PULIDO-VELAZQUEZ, 2008), it can

be helpful if combined with a water allocation scheme based on an accurate water accounting

system (PERRY et al., 2017).

It is interesting to note that water transfer from PISF is not used at the end of
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the planning horizon, even though water is needed to supply agricultural demand 37. One

possible reason for that is the optimization algorithm itself, which minimizes immediate costs

and expected future costs associated with the decision to be taken in the current state. This

means that by the end of the planning horizon, it might not be worth it to fully attend agricultural

demand in order to guarantee water availability in future stages. This is also a consequence of

the penalties attributed to each water use type.

Figure 35 – Failure frequency in attending agricultural water demand (grey bars) over the
years in the planning horizon. Colored lines indicate the ECDF of the activation
year of desalination, water transfer (PISF and wastewater reuse), calculated
for 100 simulations of the optimal expansion strategy. Only Castanhão, Orós
and Banabuiú had agricultural water demands associated with them.

Source: The author.

Some additional factors might affect optimization results, such as the initial reservoir

volume (uctuations above 10% of total storage capacity), penalty values (for not supplying

water demands), the minimum reasonable storage volume, and the probability distribution of

inow. Analyzing the effects of these assumptions was beyond the scope of this study.
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Figure 36 – Failure magnitude (m³/s) in attending agricultural water demand (grey bars)
over the years in the planning horizon, calculated for 100 simulations of the
optimal expansion strategy.

Source: The author.

Figure 37 – Withdrawals from the alternative water sources to be included in the supply
system of the RMF.

Source: The author.
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7.3.2 Operating rules extraction

We obtained the reservoir operating rules in the following sequence: (i) rst, we

tted the regression tree model for the Castanhão reservoir, using, besides its own storage, Orós

storage (which is upstream) as predictors, and the release for urban supply as a response; (ii) then,

we tted a regression tree model for Orós reservoir, based on its own storage and the releases for

irrigation and urban supply from Castanhão; (iii) nally, we obtained the regression tree model

for all other reservoirs, using the storage information available from other reservoirs upstream.

We repeated this procedure considering both the release for (i) urban supply and (ii) irrigation as

response variables, but we considered the release for urban supply as an input variable for the

irrigation regression trees. We only considered instances where both desalination and wastewater

reuse were already being used to supply water.

Figure 38 – Performance of regression tree models representing the operating rules of the
reservoirs of the JMS. In the right panel, we present the performance metrics
for the models where the response variable was the release for irrigation, and
in the left, models where the response was the release for urban supply. Below,
we present how the R2 varied across months for both models.

Source: The author.
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Then, we calculated R2 and MSE for all obtained models to assess how representative

they are of the optimal reservoir operating strategy (Figure 38). While the operation of Banabuiú,

Gavião and Sítios Novos was well represented by the regression tree models, release for urban

supply by Castanhão had less satisfying estimations from March to July (overlapping with the

rainy season). Assessment of the release for both urban supply and irrigation in Orós has a

uctuating performance across months.

Figure 39 – Regression trees obtained to estimate the release for urban supply in July for
Castanhão (left) and Gavião (right) reservoirs.

Source: The author.

Figure 39 presents two regression trees obtained for the Castanhão (Jaguaribe basin) 

and Gavião (Metropolitana basin) reservoir. The advantage of this model is that it is easy to 

interpret and can be helpful for stakeholders to make decisions about water allocation strategies 

(SOUZA FILHO et al., 2023). All other operating rules obtained with the regression tree 

model are attached to this thesis (Appendix 11).

It is also insightful to note which predictors have the strongest impact on the release 

decisions. To do that, we calculated the variable importance measure for each model 40 and 

normalized it to compare their inuence on the operation decisions. Variable importance is the 

decrease in the MSE is obtained by adding a split based on that variable to the tree. Overall, 

water stored in the reservoir at the beginning of the month is the most relevant variable for 

deciding how much water to release for urban supply. However, for the Sítios Novos reservoir, 

which supplies the main industrial demand of the RMF, the release depends heavily on how 

much water comes from wastewater reuse. Decisions regarding the release for irrigation depend
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mainly on the release for urban supply, and indirectly, on reservoir storage.

Figure 40 – Importance of predictors for each regression tree model. On the top, it the
reservoir for which the release prediction is made; on the y axis, are the
predictor names. Variable importance was normalized for each month.

Source: The author.

7.4 Conclusion

Planning the expansion of a water supply system involves making decisions about

how to manage new and current water sources over time under climate uncertainty. In this study,

we approach this problem using a combination of optimization and machine learning techniques.

First, we identify the best expansion strategy by formulating a multi-stage stochastic problem to

minimize water supply failure and the costs of expansion. Then, we simulate the best policy and

extract the reservoir operating rules from the results of several random streamow realizations.

By applying this method in Fortaleza, Brazil, we nd that installing both desalination

and a wastewater reuse plant and transferring water from another basin will be essential to

ensure water supply for the next 30 years. However, even by adding alternative sources to the
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supply system, agricultural demand might not be fully attended by the end of the planning

horizon. But the benets of including alternative water sources into the supply system go beyond

supplying water demands, and also include social and environmental gains. Wastewater reuse

might have positive impacts such as undischarged pollution (GARCIA; PARGAMENT, 2015;

HERNáNDEZ-SANCHO et al., 2010) and indirect improvement of public health (BDOUR et

al., 2009). Although desalination might have increased environmental costs (e.g. disposal of

highly concentrated brine, greenhouse gases emission due to increased energy consumption),

its availability is not restricted by climate variability. Inter-basin water transfer can mitigate

ecological water deciency in the recipient basin and benet fauna and ora, but on the downside,

it can result in salinization of soil in the donor basin (ZHUANG, 2016). The ecological impacts

of PISF must be further investigated.

One drawback of this study is that we do not assess the economic benets of irrigation

nor the environmental costs associated with desalination and wastewater reuse. We are mostly

concerned with nding strategies to increase water supply under climate uncertainty in the

long-term and analyzing the benet of including alternative water sources in the water supply

portfolio. Further research could address both environmental and social costs of including new

water sources to the supply system and climate change effects on water availability.

To close the gap between water demand and supply and ensure water security under

uncertain climate conditions, demand-side measures can be helpful. Price-based measures have

been proved to be effective to reduce domestic water demand (), but also unfair to lower income

residents (see Chapter 6). Customized demand-side programs (e.g. conservation feedbacks,

implementing water efcient devices) designed for user proles seem to be a better approach

(COMINOLA et al., 2018; QUESNEL; AJAMI, 2017).

The Master Plan for Agriculture in Ceará (FRUTAL, 2013) pinpoints that most

irrigation systems in the state are technologically inadequate and use outdated irrigation methods.

Improving such systems might be necessary to reduce agricultural water use, but practitioners

should keep in mind that it may also increase water consumption (BERBEL et al., 2018). To

minimize this effect, water managers should devote to rene the water accounting system and

couple it to the allocation and permit granting policies.

Losses in water distribution networks, specially physical and/or real can also account

for a major portion of the imbalance between demand and supply. Total water losses in Ceará

were around 44.9% in 2022 (OLIVEIRA et al., 2022), hence water pressure management



113

(KARADIREK et al., 2012) and efcient loss detection (ADEDEJI et al., 2017) should be a

priority for the water managers in the state.

This study provided a method to analyze long-term planning of a water supply

system and a strategy to guide operational decisions by using an interpretable machine learning

model. The proposed approach is useful for detecting potential expansion strategies and the

implications of the growing water demands.
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8 UNCOVERING THE INFLUENCE OF HYDROLOGICAL AND CLIMATE VARI-

ABLES IN CHLOROPHYLL-A CONCENTRATION IN TROPICAL RESERVOIRS

WITH MACHINE LEARNING

Viver - não é? - é muito perigoso. Porque ainda não se sabe. Porque

aprender a viver é que é o viver, mesmo. O sertão me produz, depois

me engoliu, depois me cuspiu do quente da boca... O senhor crê minha

narração? (ROSA, 2019)

8.1 Introduction

In most developing countries, the urbanization process is associated with an increase 

in water demand (UNESCO, 2018). At the same time, the availability of drinking water remains 

the same or even decreases (VELDKAMP et al., 2017; GREVE et al., 2018). Accelerated 

urbanization is also related to the intensication of human activity, resulting in increased nutrient 

loads and water quality degradation (VöRöSMARTY et al., 2010).

The situation is worse in regions with high climatic variability (temporal and spatial), 

in which the distribution of rainfall is irregular, and extreme events of droughts and oods are 

frequent (EASTERLING et al., 2000; HIRSCH; ARCHFIELD, 2015). This is the case in the 

Northeastern semi-arid region of Brazil, where multi-annual drought events are common and 

have severe socioeconomic and environmental impacts (CAMPOS, 2015; PONTES FILHO et 

al., 2020). One of the management strategies historically adopted in the region to deal with 

this scenario is the construction of reservoirs (GUTIéRREZ et al., 2014), which have the 

important role of transferring water both temporally and spatially. Most of these reservoirs 

serve multiple purposes, including drinking water supply, irrigation, and fish farming. The 

water volume in these reservoirs can vary significantly between the dry and wet seasons and 

reduce drastically during drought periods (ROCHA; LIMA NETO, 2021b).

Eutrophication, caused by the excessive increase of phosphorus and nitrogen loads, is 

one of the main causes of the deterioration of water quality in reservoirs (PAERL; OTTEN, 2013). 

Eutrophication is associated with the proliferation of algae and cyanobacterial blooming (YANG 

et al., 2008), and sometimes, an increase in mortality of benthic animals and sh (SPERLING, 

2005). Agriculture and livestock farming contribute to this process since signicant loads of 

phosphorus and nitrogen can be carried with surface water runoff into the reservoir (WIEGAND 

et al., 2020; ROCHA et al., 2020; ROCHA; LIMA NETO, 2022a).
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A few studies have associated phytoplankton growth rates with the volume of water 

stored in the reservoir (PACHECO; LIMA NETO, 2017; JUNIOR et al., 2018a), but most of them 

relied on field studies, which are usually unavailable for a long-term horizon (more than 10 

years), especially in data-scarce regions. Other researchers have related Chla to hydrological 

and/or climate variables, such as wind speed, air temperature, solar radiance, precipitation, 

mixing depth, and runoff (BLAUW et al., 2018; STOCKWELL et al., 2020; STEFANIDIS et 

al., 2021), but none of them analyzed this relationship in tropical reservoirs. Past research has 

also shown that climate variability and future changes in frequency and intensity of drought 

events can increase phosphorus concentrations in tropical reservoirs (RAULINO et al., 

2021; ROCHA; LIMA NETO, 2021b), hence the importance of investigating the relationship 

between climate variables and Chla.

The mechanisms associated with Chla fluctuations are complex and have been 

extensively studied (PACHECO; LIMA NETO, 2017; BLAUW et al., 2018; DUNSTAN et al., 

2018; LI et al., 2021), and more recently, many researchers have applied machine learning 

techniques for water quality assessment and to predict Chla (LIU et al., 2019; SHEN et al., 

2019; AHMED et al., 2019; TONG et al., 2019; MAMUN et al., 2019; NGUYEN et al., 

2020; YU et al., 2020). Data for most of these studies have been obtained from automated 

stations (BLAUW et al., 2018) or long field campaigns (LIU et al., 2019; AHMED et al., 2019; 

LI et al., 2021), which can be expensive and time consuming. One strategy to deal with the 

lack of field data is using satellite data, which has been frequently used to monitor water quality 

and has proved to be reliable, but it has not been sufficiently explored for inland waters 

(LOPES et al., 2014; GHOLIZADEH et al., 2016; WANG; YANG, 2019; ROSS et al., 2019; 

NGUYEN et al., 2020; IIAMES et al., 2021).

Recent evidence suggests that reanalysis climate data can be effective in explaining 

the effects of climate on phytoplankton biomass (STEFANIDIS et al., 2021). However, to the 

authors’ knowledge, no study has explored the predictive capacity of non-parametric models 

based on reanalysis climate data for semiarid climates. In these regions, Chla modeling can be 

challenging, as water volume has a strong interannual variability and phosphorus concentration 

has a weak correlation with Chla. The state-of-the art models used to explore the mechanisms 

for Chla variability may not be suitable for them. Machine learning models can be informative 

in this case, but model comparison is required, as these algorithms are mainly driven by data and 

their predictive capacity can be site-specic.
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This study evaluates the inuence of hydrological and climate variables on Chla in

reservoirs located in Northeastern semi-arid Brazil. This analysis is important from the point

of view of climate variability, which can signicantly affect the hydrological processes of the

reservoirs, and to understand the possible inuence of water level and volume uctuations on

Chla. The predictive model proposed here combines climate reanalysis data, together with

commonly available hydrological variables, and satellite-based predictions of Chla. The main

goals of this study are (i) to explore the relationships between hydrological and climate variables

and the concentration of Chla in tropical reservoirs, and (ii) to evaluate the performance of

nonparametric machine learning models for predicting Chla using these variables.

8.2 Methodology

The reservoirs analyzed in this study are located in the Northeastern region of Brazil

(Figure 41), which has a semi-arid climate and is frequently affected by multi-annual droughts.

These reservoirs are part of the JMS, which transfers water to Fortaleza, the capital of the State

of Ceará. Castanhão is the largest reservoir for multiple uses in the country, with a capacity of

6.7 billion cubic meters. All three reservoirs are also used for irrigation. Banabuiú (capacity of

1.6 billion cubic meters) supplies the Irrigated Perimeter Morada Nova, while Orós (capacity

of 2.1 billion cubic meters), the second-largest reservoir in the State of Ceará, also serves for

hydroelectric use. The surface area of these reservoirs ranges between 116 and 410 km2, and the

mean water level from 90 to 192 m.

8.2.1 Data and variable selection

This research uses data from publicly available databases, obtained from satellite,

reanalysis, and rain gauge stations. The historical series of monthly Chlorophyll-a concentrations

(Chla) from 2002 to 2019 were obtained from the Hidrosat portal (http://hidrosat.ana.gov.br/).

The dataset obtained from Hidrosat is the result of a partnership between the Brazilian Water and

Sanitation Agency (ANA) and the Research Institute for Development / Institut de Recherche

pour le Développement (IRD). Water quality stations use data from the Terra (EOS AM) and

Aqua (EOS PM) satellites.

The program MOD3R (MODIS Reectance Retrieval over Rivers) is used to extract

time series of reectance from MODIS (sensor onboard the Terra and Aqua satellites) images of
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Figure 41 – Study area location. Banabuiú, Castanhão, and Orós are the main reservoirs of
the State of Ceará, Brazil (highlighted in the map). Their hydrographic basins are
contoured by the blue line.

Source: The author.

water bodies. The algorithm identies and groups the water pixels in the image and, from the

extraction of reectance values from the visible and infrared bands, the water quality parameters

are estimated. Mathematical models that relate reectance data and water quality data were

calibrated and validated with data collected in the eld. This procedure is detailed in Lins et al.

(2017).

For some months of the original series of Chla, more than one estimation was
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available. In these cases, the median of these values was used to represent monthly concentration.

Months with missing values were lled in with the median of the historical concentration series

for the corresponding month. Hydrological and climate variables used in this research and their

respective sources are described in Table 23. Precipitation data for the period between 2002 and

2019 were obtained from the spatial interpolation of the data provided by the Brazilian Water

Agency, publicly available on the Hidroweb portal (http://www.snirh.gov.br/hidroweb/). Daily

precipitation measured in rain gauges was interpolated using the inverse distance weighting

method with exponent two into grid points with 0.05° size. This procedure was performed using

the R package ipdw (Stachelek 2020). Then, the average monthly precipitation was calculated

for each reservoir’s hydrographic basin.

Average monthly temperature data was extracted from version 4 of the University

of East Anglia’s CRU climate database (HARRIS et al., 2020). Data is publicly available in

the NetCDF format, which stores multidimensional variables; for example, temperature has

four dimensions: latitude, longitude, time, and temperature value. To estimate average monthly

temperature over the reservoir, we extracted the pixels contained inside the limits of the reservoir

and calculated its average value for each month in the time series (2002-2019).

Except for water volume and level, all other variables were extracted from the ERA5

gridded (lat-lon grid of 0.25 degrees) reanalysis database of the European Center for Medium-

Range Weather Forecasts (HERSBACH et al., 2020). Data is also available online in the NetCDF

format, in hourly or monthly scale, with a temporal coverage from 1979 to present. Reanalysis

uses observed data from weather stations across the world and climate models to estimate a

global dataset containing atmospheric, land and oceanic climate variables.

Average runoff was calculated by averaging the monthly runoff for all pixels con-

tained in the region delimited by each reservoir’s hydrographic basin. For all other vari-

ables, the time series was extracted for the nearest pixel to the centroid of the reservoir,

which was identied using the nearest-neighbor interpolation method. Water volume and level

were obtained from the COGERH, also available online on the Reservoir Monitoring System

(https://www.ana.gov.br/sar).

Further improvements can be made by validating reanalysis data with eld data and

by incorporating more reservoirs into the analysis. However, this would require eld campaigns

and/or the implementation of automatic monitoring systems.

Variables that had a Pearson correlation coefcient above 0.8 were removed from
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Table 23 – Explanatory variables of the regression models.
Variable Unit Description Source Mean Standard

Deviation

Mean
precipitation

mm Average monthly
precipitation on the
hydrographic basin of the
reservoir, calculated from
rain gauge measures

Hidroweb* 61.59 74.74

Mean
temperature

C Mean surface temperature
over the reservoir calculated
from CRU grid

CRU
(HARRIS
et al.,
2020)

27.78 1.23

Water volume m3 Total water volume in the
reservoir

COGERH* 1.42E+09 1.56E+09

Water level m Distance from the bottom of
the reservoir to the water
surface

COGERH* 137.18 43.99

Runoff m Monthly average of surface
and subsurface runoff
accumulated over one day in
the hydrographic basin

ERA5 1.75E-04 3.59E-04

2m temperature K Air temperature at 2 m
above the reservoir

ERA5 300.90 1.29

Lake bottom
temperature

K Water temperature at the
bottom of the reservoir

ERA5 299.00 1.20

Lake mix-layer
depth

m Thickness of the uppermost
layer of the reservoir that is
well mixed and has a near
constant temperature

ERA5 5.19 1.48

Surface net solar
radiation

Jm−2 Amount of solar radiation
that reaches the water
surface, assuming cloudless
conditions

ERA5 1.78E+07 2.42E+06

10m
u-component of
wind

ms−1 Horizontal wind speed of air
moving towards the east, at a
height of 10 m above the
reservoir surface

ERA5 -2.43 0.80

Reservoir Dummy Represents the reservoir
correspondent to the
observation

- - -

Drought year Binary Indicates if the year of the
observation was a drought
year (1) or not (0)

- 0.37 0.48

Source: The author.
Note: Except for the variables extracted from the sources indicated with an asterisk “*” (which are available

in tabular format), all other variables were obtained in NetCDF format.

the dataset (temperature at 2 m and runoff; refer to Figure 42 in the supplementary material for 

the correlation matrix). As the effect of hydrological variables can be site-specic, a dummy 

variable was included to indicate the corresponding reservoir of each observation. To account for 

the effect of drought on Chla, a binary variable was included to indicate if the observation was 

registered during a drought year, according to drought records of the area (PONTES FILHO et 

al., 2020).
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Figure 42 – Pearson correlation coefcient between explanatory variables.

Source: The author.

All explanatory variables were re-scaled to range between 0 and 1 using the min-max

normalization:

x′ =
x−min(x)
x−min(x)

Where x is the original value and x′ is the scaled value. The nal dataset contained 679 samples

from the three reservoirs analyzed in this study. All analyses were performed using R (version

4.0.5) software.
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8.2.2 Regression models

Six nonparametric machine learning models were compared with standard linear

regression and one semi-parametric algorithm to investigate the best-performing predictive

model. Data were randomly split into training (80%) and testing (20%) datasets. The training

dataset was used to tune model hyperparameters, and the testing dataset was used to evaluate

model performance. Model tuning and performance evaluation are detailed in section 2.4.

In the following topics, there is a brief explanation of the regression models used

in this study. It is important to highlight an essential property of the predictive models, which

is the bias-variance tradeoff. When tting regression models, the best outcome is obtaining a

model that not only provides accurate predictions (low bias) but also generalizes well to new

data (low variance). The bias error is associated with a poor learning process, in which the

relationship between explanatory and response variables is not properly captured (undertting).

The variance error happens when the model is sensitive to small variations during training, i.e.,

ts too perfectly and ends up modeling random noise (overtting). One wants to avoid models

that are either too complex or too simple and get the one that presents similar performances

during training and testing.

8.2.3 Linear Regression Model

Linear regression aims to explain the relationship between a set of independent

variable vectors (x) and a dependent variable (y) based on the linear function described below:

Ŷ = 0+
p

∑
j=1

 jXj

Where Xj is a vector for the jth independent variable, and  j and 0 are unknown parameters

(coefcients and an intercept, respectively). The algorithm calculates the parameters by mini-

mizing the sum of the squares of the residuals (SSR), i.e., the difference between observed and

predicted values.

8.2.4 Elastic-Net Regularized Generalized Linear Model

While in the ordinary least squares regression the distribution of errors is normal,

in the GLM, it may assume different distributions, such as Binomial, Poisson, and gamma.

In GLMs, the variance of the response variable can be non-constant and a linking function
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can be used to connect the predictor and the mean of the distribution function (NELDER;

WEDDERBURN, 1972). In this study the error distribution was assumed to be normal.

Regularization is a useful technique for learning algorithms: penalties can be added

to the model to prevent overtting issues and to deal with highly correlated explanatory variables.

Ridge and Lasso regression are some of the simplest and widely used penalized models; they

work by adding a penalty to the SSR. Lasso penalizes the sum of the absolute coefcients (ℓ1

penalty) and might lead to variable selection as it sets coefcients to zero if λ is sufciently

large. The parameter λ controls the regularization strength and might assume any positive value.

SSRlasso =
n

∑
j=1

(yi− ŷi)2+λ
p

∑
j=1

 j

Where yi is the observed value, ŷi is the predicted value, n is the number of samples,  is the

coefcient vector, and p is the number of explanatory variables. Ridge regression penalizes the

square of the magnitude of the coefcients (ℓ2 penalty) and shrinks the coefcients proportionally,

keeping all of the variables in the model:

SSRlasso =
n

∑
j=1

(yi− ŷi)2+λ
p

∑
j=1

 2
j

The linear combination of both penalties is called elastic net regularization, controlled by the

parameter  , which ranges between 0 (ridge) and 1 (lasso).

8.2.5 Articial Neural Network

An articial neural network is composed of interconnected nodes (or neurons)

arranged in layers (HASTIE et al., 2009). The MLP, a broadly used class of neural networks,

consists of the input (which receives the independent vectors), output, and one or more hidden

layers. These layers have weighted connections that are adjusted as training occurs and are fully

connected, i.e., a neuron in one layer is connected to every neuron in the next layer. The number

of neurons in the hidden layer is critical for the learning process, as they detect the characteristics

present in the training data and apply a nonlinear transformation to the input data.

The training algorithm used in this study was the backpropagation of the error, in

which the gradient of the error concerning the weights is calculated layer by layer. Then, the

error is calculated, and all weights are updated backward through the network. The optimization

algorithm used to perform this method was gradient descent.
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An MLP with a single hidden layer was selected and the number of hidden nodes

was adjusted in the training process (see Table 24). The number of nodes in the input layer was

set to 10 (the number of explanatory variables), and the learning rate was set to 0.1.

8.2.6 k-Nearest Neighbors

The k-Nearest Neighbors (kNN) is a supervised algorithm (ALTMAN, 1992) for

classication and regression based on a similarity measure, such as distance functions. In this

method, one nds the k observations in the training set closest to x and (i) average their responses,

for regression tasks or (ii) take the majority class among its k nearest neighbors, for classication

tasks. The equation for the kNN t for Y can be described as:

Ŷx =
1
k ∑
xi∈Nk(x)

yi

Where Nk is the neighborhood of x dened by the k closest points xi in the training sample. The

only parameter to be determined is the number of neighbors k.

8.2.7 Classication and Regression Tree

A decision tree provides a set of rules to express the relationship between explanatory

and response variables, which are represented with a tree structure. The leaves represent class

labels (classication), or estimations of the response variable (regression), and branches represent

the values of the tested variable.

Regression trees predict using the average values of y within each subset, which

is selected to minimize the MSE. To determine whether splitting should continue to be done,

one can use some combination of (i) a minimum number of points in a node, (ii) purity or error

threshold of a node, or (iii) maximum depth of the tree (KRZYWINSKI; ALTMAN, 2017).

Here, the minimum number of points per node was set to 20. The complexity parameter, which

corresponds to the minimum improvement in the model needed at each node, was tuned using

grid search (see Table 24).

8.2.8 Tree-based Ensemble Models: Random Forest and Gradient Boosting Regression

Decision trees alone can easily overt, depending on the size of the training dataset.

An ensemble of decision trees is an effective approach to build a robust model and prevent

overtting. RF combine shallow trees using bagging, i.e. the prediction is the average (for
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regression) or the majority vote (classication) of the trees in the ensemble (BREIMAN, 2001).

The trees are constructed from bootstrap samples and a random subset of predictors (mtry) is

used at each split in a tree. Together with the number of trees, these are the main parameters of

random forests, which was tuned in the training process (see Table 24). The minimum number of

observations per node was set to 20. GBM uses a different ensemble technique called boosting,

where decision trees are combined in a forward stage-wise procedure. While in RF each tree is

independently built, in gradient boosting, each new tree is constructed on the residuals of the

previous tree to minimize the Mean Squared Error. The maximum depth of the trees (interaction

depth) was tuned between 1 to 6, while the minimum number of observations per node was set

to 10. The values set for the other parameters of GBM are described in Table 24.

8.2.9 Support Vector Machine

(BOSER et al., 1992), although widely used for classication problems, might also

be applied for regression (SVR). In , the main goal is to nd a hyperplane that ts the training

data by minimizing the Euclidean norm of the coefcient vector. This model uses a kernel

function to map input data to higher-dimensional spaces, where it can be linearly separable. In

regression problems, a symmetrical “margin” is added around the estimated function, where the

absolute errors should be equal or less than the maximum error  (AWAD; KHANNA, 2015).

is an optimization problem where the objective function minimizes the Euclidean norm of the

function coefcients (w), while avoiding outliers:

min
1
2
∥w∥2+C

n

∑
i=1

 i

Subject to:

yi−wixi ≤  i

Where C is the cost parameter, which gives more weight to the function atness and  is the

slack variable and corresponds to the tolerable distance of outliers from the margin. A Radial

Basis Function kernel was applied here, dened as:

KRBF(x,x′) = e−∥x−x′∥2

Where x and x′ are samples in the input data and  is a parameter related to the variance of the

function. This parameter was set to the inverse of the training data size.
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8.3 Model parameters and performance evaluation

The tuning process of the hyperparameters of regression models is fundamental

to avoiding overtting. One of the most traditional approaches to optimize hyperparameter

selection is grid search. In grid search, the modeler denes a subset of hyperparameter values

and a performance metric to search for the best combination of parameters. Then, k-fold cross-

validation or leave-one-out cross-validation can be used on the training set to perform the tuning

process.

In this study, the RMSE was chosen to tune the model’s parameters. Tuning was

performed with a 5-fold cross-validation. In this approach, the training dataset is split into ve

subsets: the predictive model is tted for four of them and the performance metric (in this study,

RMSE) is calculated for the remaining subset. This procedure is repeated ve times, so that

all data is used at least once to train/validate the model. Model performance is assessed by

calculating the average RMSE obtained in each subset. 5-fold cross-validation was applied using

the R package ‘caret’. Table 24 summarizes the main parameters of the tted models and their

correspondent values. Validation was performed for each combination of the parameters and the

model with the best performance (lower RMSE) was selected.

8.4 Performance metrics

Model performance in the testing dataset was evaluated using the RMSE, MAE and

the R2 measures:

RMSE =


∑n
i=1 ŷi− yi2

n

MAE =
∑n
i=1 ŷi− yi

n

R2 = 1− ∑n
i=1(yi− ŷi)2

∑n
i=1(yi− ȳi)2

where y is the observed Chla, y is the predicted Chla, y is the mean observed Chla and n is the

number of observations in the testing dataset.
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Table 24 – Main parameters of the regression models used in this study. The values used to tune
the models are indicated, and the chosen values are highlighted in bold.

Model Main parameters Values

Linear
Regression
Model

Intercept True or False

Regularized
Generalized
Linear Model

Alpha 0.10, 0.28, 0.46, 0.64, 0.82, and 1.00

Lambda 0.0046, 0.0173, 0.0646, 0.2409, 0.8979, and 3.3469
Multilayer
Perceptron

Number of nodes in the hidden layer 3, 5, 10 and 20

Decay 0.5, 0.1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6 and 1e-7
k-Nearest
Neighbors

Number of neighbors (k) 5, 7, 9, 11, 13, and 15

Regression
Tree

Complexity Parameter (cp) 0.0274, 0.0342, 0.0390, 0.0773, 0.1400, and 0.2066

Random
Forest

Number of variables for splitting (mtry) 2, 4, 6, 8, 10, and 12

Number of trees 50, 100, 250, 300
Gradient
Boosting

Shrinkage 0.1

Interaction depth 1, 2, 3, 4, 5, and 6
Minimum observations in node 10
Number of trees 50, 100, 150, 200, 250, and 300

Support
Vector
Machine

Cost parameter (C) 0.25, 0.50, 1.00, 2.00, 4.00, and 8.00

Sigma 0.0619
Epsilon () 0.1

Source: The author.

8.5 Partial Dependence Plots

PDP were introduced by Friedman (2001) to interpret complex Machine Learning

algorithms. The PDP represents the marginal effect of independent variables on the response of

a machine learning model (FRIEDMAN, 2001). The partial dependence of the response on a

variable xl is represented by:

f̂xl(xl) = Exs [ f̂ (xl,xs)] = f̂ (xl,xs)P(xs)dxs

Where xl is the independent variable analyzed in the partial dependence plot, xs is the subset of

the other input variables of the regression model f and P(xs) is the marginal probability density

of xs. The function shows the effect of the variable xl on the dependent variable by marginalizing

over the other explanatory variables.
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8.6 Results

This section presents and compares the performance obtained with the predictive

models, the relative importance of the hydrological and climate variables, and their relationships

with Chla.

8.6.1 Performance of the regression models

Figure 43 presents the scatterplots of predicted and observed values for all the

models tested in this study. From the plots, one can notice that linear regression, regularized

GLM, and the regression tree underestimate Chla. These models have strong assumptions about

error distribution: homoscedasticity, normal distribution, and no autocorrelation. Although the

variables with an elevated correlation have been removed, there was still some multi-collinearity

between the predictors, which could be a problem for the prediction. Predictors of water quality

indicators will frequently be correlated (both temporally and spatially) since the mechanisms

associated with their increase or decrease are interrelated (SU et al., 2012; LIU et al., 2019;

MESQUITA et al., 2020). It is important to keep in mind that highly correlated variables can

present complementary information when combined (GUYON; ELISSEEFF, 2003), which

reinforces the need for integrating correlation analysis with model-based variable importance.

RF, GBM, and MLP provided the best predictions (Table 25). These models are

designed to capture nonlinear relationships between variables, which is likely to be the case

here. RF and GBM can reduce the variance of the predicted values by employing ensemble

techniques (boosting and bagging, respectively), outperforming the regression tree (HASTIE et

al., 2009). The model with a radial kernel is also able to detect nonlinearity, as it transforms

data to a dimensional space where they can be linearly separable (AWAD; KHANNA, 2015).

However, had a slightly worse performance than RF, GBM, and MLP.

As expected, the predictive models were able to explain only part of Chla, since the

best performing model had an R2 of 0.52 (Table 25). This performance can be considered satis-

factory for a watershed-scale model, as a reference value to evaluate phosphorus (P) prediction

(which can be easier to predict than Chla) is an R2 > 0.5 (MORIASI et al., 2015).

This result also suggests that hydrological and climate factors alone are not enough

to predict Chla and additional variables might be necessary, such as water quality indicators

(ROCHA et al., 2020). However, it must be emphasized that the relationship between P
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Table 25 – Performance metrics for
the tted models.

Model R2 RMSE MAE

RF 0.52 9.32 7.15
GBM 0.46 10.26 8.01
MLP 0.45 9.74 7.66

0.36 10.92 8.77
kNN 0.35 10.67 8.22

Regression Tree 0.32 10.77 8.21
Linear Regression 0.26 11.48 9.10
Regularized GLM 0.26 11.48 9.08

Source: The author.

Figure 43 – Scatterplots for the predictive models tested in this study. The diagonal line repre-
sents the perfect t between observed and predicted values.

Source: The author.
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and Chla in tropical lakes is not comparable to that in temperate ones, where empirically

estimated relationships between P and Chla provide reliable models to calculate Chla levels

(SAKAMOTO, 1966; DILLON; RIGLER, 1974; JONES; BACHMANN, 1976). A correlation

analysis between measured total phosphorus concentration, obtained from COGERH database

(http://www.hidro.ce.gov.br/), and estimated Chla reveals that nutrient enrichment may not be the

only inuencing factor on eutrophication in tropical reservoirs (Figure 44). Although correlation

between nitrogen and Chla was not analyzed here (since limited data was available), this can

also be a limiting nutrient for eutrophication in reservoirs (QIN et al., 2020).

Figure 44 – Correlation between total phosphorus and Chla in the reservoirs analyzed in our
study. The dark, bold line represents the tted regression line, and the shadow area
is the condence interval. Phosphorus measurements are taken each three months
and were available for a shorter period than Chla estimations (05/2008 to 11/2019).

Source: The author.

Although past studies have obtained better predictive performances (STEFANIDIS

et al., 2021), Chla can be harder to predict in the semiarid, due to the signicant water level

variability (which implies more complex mechanisms behind eutrophication) and the usually

higher trophic levels (WIEGAND et al., 2021). There are, however, other possible explanations.
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The Chla time series were derived from satellite data, which has high estimation accuracy (LINS

et al., 2017), but might contain noise or components that cannot be explained with known

variables. Also, past studies have indicated that the drivers of Chla can vary with the temporal

resolution (BLAUW et al., 2018; LIU et al., 2019). For example, on a monthly scale, water

temperature is less important to predict Chla than nutrient loadings (LIU et al., 2019), which

means that part of the explanatory variables could not be able to explain Chla in our model.

8.6.2 Variable Importance

To measure the relative inuence of the model’s explanatory variables, the impor-

tance measure attributed by each predictive model was extracted and scaled using min-max

normalization (Figure 45). This approach has been widely used to make machine learning models

more interpretable (HASTIE et al., 2009), and can be more accurate than looking only at the

correlation between explanatory and dependent variables. Correlation criteria or the goodness

of tness of a linear model are simple and direct strategies to obtain information about a set of

variables, but it ignores multicollinearity and interactions between them. Although this study was

not intended to perform variable selection, some of the models used here have built-in processes

to select the most relevant predictions, such as RF and regularized GLM, the so-called embedded

methods (GUYON; ELISSEEFF, 2003).

Radial and kNN models were excluded from this analysis since they do not have

a direct importance measure. For RF, GBM, and the regression tree models, the importance

corresponds to the reduction in predictive performance obtained by removing the variable from

the model. In GLM and MLP, the importance is associated with the weights attributed to each

variable.

The boxplots in Figure 45 reveal that water volume was considered the most impor-

tant predictive variable in all models. The models do not agree regarding the mix-layer depth and

bottom temperature importance, as these presented a high variation among them. The dummy

variables related to the spatial location of the reservoirs (Castanhão, Orós e Banabuiú) did not

seem to signicantly inuence Chla, indicating that spatial variability could be less important

than climate variability, or yet, that the relationships between explanatory variables and Chla are

similar for all three reservoirs.

The relative inuence of the variables depends on the interactions identied by each

model and the procedure used to do it. For example, decision trees choose the optimal variable in
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Figure 45 – The relative importance of explanatory variables considering the importance mea-
sures of each predictive model, ordered by the median value. Relative importance
was scaled between 0 and 1.

Source: The author.

each split based on the information gained by adding it to the tree. The regression tree constructed

to predict Chla had only the mix-layer depth and water volume as predictors (Figure 46). This

means that these two variables provide enough information to give us an approximate estimation

of Chla. The regression tree alone can be considered a weak predictor, as it is very sensitive to

small changes in the dataset and can easily overt. Since they assume all variables have some

interaction between them, it suits well our problem, but it fails to provide accurate estimations of

Chla (here, it presented an R2 of only 0.32). However, it can still give us interesting information

on variable importance.

GBM and RF, as explained in the Methods section, combine several regression trees

to provide stronger predictive models. RF performs variable selection during its model building

process, as the variables used to construct each tree in the ensemble are selected from a random

subset of the explanatory variables. The trees are tted to bootstrap samples of the data, and the

importance measure is calculated on the left-out observations (out-of-bag set). The advantage

of RF’s strategy to calculate variable importance is that it considers both the individual effect

and the interactions between the variables (STROBL et al., 2007). GBM, on the other hand,

calculates importance on the entire training set instead of using the out-of-bag sets.

To verify the effect of the season on the relationships between the explanatory

variables and Chla, all the models were run again for the wet season (observations registered

between February and May), and the dry season (observations from the remaining months).

Variable importance was extracted for each model and normalized so one could visualize their
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Figure 46 – Graphical representation of the regression tree model. The numbers on top of each
box (representing a node) are the predicted values of Chla, while n is the number
of observations in each node and the number in the bottom right is the percentage
of observations in each node. The values of water volume and mix-layer depth are
normalized. The variable depth refers to the mix-layer depth and volume is the
reservoir water volume.

Source: The author.

relative inuence on Chla prediction (Figure 47).

Water volume and water level continue to be the most relevant indicators of Chla in

both scenarios. However, mix-layer depth and mean temperature seem to be more important in

the wet season. It is important to keep in mind that the dry season model has a smaller dataset

than the wet season, as it corresponds to the observations of four months only. For this reason,

the model can be biased, and more data could be necessary to provide reliable predictions.
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Figure 47 – Relative importance of explanatory variables considering separated models for the
wet season and dry season.

Source: The author.

8.6.3 Relative inuence of hydrological and climate variables on Chla

The PDPs in Figure 48 illustrate the relationships between hydrological and climate 

variables and Chla. The RF model was selected for this analysis, as it presented the best 

performance according to all the metrics evaluated. These plots, however, should be interpreted 

with caution, as they may not display all interactions of the explanatory variables.

Conrming the ndings of previous studies, Chla tends to increase as water volume 

reduces (JUNIOR et al., 2018a; WIEGAND et al., 2021). The decrease in water volume due to 

evaporation loss, water withdrawals, and extended drought periods are usually associated with 

higher phosphorus loads in tropical reservoirs (RAULINO et al., 2021; ROCHA; LIMA NETO, 

2021b). During the dry period, sediment release and nutrient resuspension are important 

mechanisms associated with Chla in these reservoirs. Although the effect of internal loading has 

been pointed as more significant in shallow reservoirs, in the semiarid, precipitation levels come 

close to zero and inflow decreases drastically during the dry season, so that deep reservoirs 

reach very low volumes and almost no external loads are carried to them (ROCHA; LIMA 

NETO, 2022b).

Wind speed did not seem to play an important role in Chla levels, which might 

be due to reservoirs’ morphology and the temporal scale considered here. In deep reservoirs, 

wind speed is indeed unimportant to Chla, as it is not a relevant driver of water column mixing. 

Shallow reservoirs, on the other hand, present a significant correlation with nutrient resuspension 

(ARAúJO et al., 2019; MESQUITA et al., 2020). Past research has indicated that although wind 

speed affects the dynamics of algal growth and eutrophication, there is a loss of information on
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wind dynamics on a monthly scale (STEFANIDIS et al., 2021).

Mix-layer depth has an inverse relationship with Chla, which is consistent with 

previous ndings (STOCKWELL et al., 2020; STEFANIDIS et al., 2021). There are several 

factors to consider when interpreting this relationship, such as water temperature, reservoir 

morphology, and the ratio between the mix-layer depth and thermocline depth. In deep reservoirs, 

stratication is more likely to occur and lake stability tends to increase, with a higher possibility 

of solute accumulation in the hypolimnion, dissolved oxygen depletion, and phosphorus release 

from sediments (BUTCHER et al., 2015; KRAEMER et al., 2015; MOURA et al., 2020). But 

an increase in mix-layer depth also results in a reduction of the light available to phytoplankton 

(STOCKWELL et al., 2020) and in lower water temperatures, which could inhibit Chla growth 

(ZHAO et al., 2020).

Bottom temperature, mean temperature, solar radiation, and water level have direct 

relationships with Chla. The rst three variables are directly related to each other, and their 

increase usually enhances phytoplankton productivity (LIU et al., 2019). The direct inuence 

of water level on Chla is surprising, as previous studies have reported the opposite relationship 

(MEDEIROS et al., 2015; WIEGAND et al., 2020; BRAGA; BECKER, 2020). These studies, 

however, were performed for small reservoirs, where the relationship between P and Chla is 

stronger than that for larger reservoirs, i.e., the mechanisms associated with Chla growth are less 

complex.

The effect of increasing water levels on Chla depends on the quality of the inow, 

whether it is related or not to a reduction in the outow (BAKKER; HILT, 2015), the depth, and 

the trophic state of the reservoir (COSTA et al., 2015). When precipitation occurs (and water 

levels start to rise), external loads from rivers and surface runoff add up to internal loads due 

to thermal stratication and phosphorus release from sediment, which is highly correlated with 

Chla growth (MOURA et al., 2020). Agriculture and cattle raising are important activities in 

all reservoirs analyzed here and are the main cause of nonpoint source pollution that increases 

external total phosphorus loading (ROCHA; LIMA NETO, 2021a).

Although volume and water level are directly related, they have a nonlinear relation-

ship, which can be approximated as a logarithmic curve. Hence, for a certain range, water level 

uctuations have little effect on water volume. In this case, Chla growth could be related to some 

of the factors mentioned above (e.g., the quality of external loads). Reservoir’s morphology 

should also be considered, as the storage depends on the water height-area relationship. Hence,
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the effect of water level on Chla might depend on how much water is already stored in the

reservoir (i.e., at which position in the water height-area-volume curve the reservoir is), the

reservoir’s morphology, and the quality of external loads.

Figure 48 – PDPs for predictors of the RF model. The blue smooth line was produced using
LOESS to better visualize the relationship between the explanatory and response
variables.

Source: The author.

The PDPs for the dry and wet season models were also examined. Except for mean

precipitation and wind speed, all variables maintained the patterns observed in the general model.

Figure 49 presents the variables with opposing behaviors. While precipitation has a positive

effect in the dry season, it presents a negative and almost insignicant effect during the wet

season.

One explanation for this behavior is that water volumes tend to be reduced over the

dry season. Hence, precipitation can increase nutrient loadings (JEPPESEN et al., 2015; JUNIOR
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et al., 2018a) but not have a signicant effect on water volume. During the wet season, increased 

precipitation might induce greater ushing and lower Chla (REICHWALDT; GHADOUANI, 

2012). Because the reservoirs have higher water volumes during this season, as the precipitation 

volume increases, water volume grows exponentially with respect to water level, and Chla might 

decrease because of mixing and ushing. This effect, however, seems to be not very relevant as 

produces a little variation on Chla.

The extent of precipitation inuence on Chla is difcult to generalize, as it depends 

on the intensity and frequency of rainfall events (REICHWALDT; GHADOUANI, 2012; HO; 

MICHALAK, 2020) and the initial conditions of the reservoir (water volume, trophic state, etc). 

The reduced stratification during the wet season (LIMA NETO, 2019) can also explain the 

reduction in Chla during this season, while stronger winds during the dry season can lead to 

higher Chla concentrations. Hence, precipitation alone is not the only factor to explain Chla 

fluctuations in both seasons, as its mechanisms are complex.

During the wet season, stronger winds seem to result in a slight decrease of Chla 

(up to 3 gL), while in the dry season, it has the opposing effect. The inuence of wind speed 

on Chla can differ according to the water depth, and the sign of this relationship needs further 

investigation. Previous studies have indicated that increased wind speed can result in greater 

mixing of the upper layer, thus reducing Chla (STOCKWELL et al., 2020); however, under 

oligotrophic conditions, stronger winds can carry nutrients to the bottom layer and increase 

Chla (KAHRU et al., 2010; KIM et al., 2014). This mechanism also depends on the reservoirs’ 

morphology and water level, hence for shallow reservoirs (or for reduced water levels in the dry 

season), stronger winds can induce resuspension and increase internal nutrient loads (ARAÚJO 

et al., 2019; ROCHA; LIMA NETO, 2022b). In the wet season, wind-induced resuspension 

is less significant, as external sources of nutrients play a more important role in Chla 

fluctuations (ROCHA; LIMA NETO, 2021a).

The relationship between wind speed and internal phosphorus loading has been 

explored for artificial reservoirs in Ceará, including the ones analyzed here (ROCHA; LIMA

NETO, 2022). In this study, the authors found that P release increases with stronger winds (with 

a threshold value of 3.5 ms) and the trophic state of the reservoir. As internal loading can 

increase the risk of eutrophication, wind speed is very likely to be related to Chla in the dry 

season, when reservoirs become shallower.

PDPs can also be plotted for two variables at the same time (Figure 50). Again, one
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Figure 49 – PDPs for precipitation and wind speed for two separate models, one considering the
months in the dry season, and the other, the months in the wet season.

Source: The author.

must be careful when interpreting these plots, as they can show correlations between variables 

rather than a causal relationship. When considering higher values of solar radiation, wind speed 

presents an inverse relationship with Chla. Whether the mix-layer is shallow or deep, when solar 

radiation is higher, Chla tends to increase, a relationship that is conrmed by previous research 

(BERGER et al., 2006). One can also notice that mix-layer depth seems to have a stronger effect 

on Chla only up to a certain point.

Wind speed had little effect on Chla when the water volume was constant. Again, 

this might be related to the size of the reservoirs analyzed here and does not necessarily mean 

that wind speed does not influence Chla. Previous studies have indicated that wind speed can 

be an important driver of internal phosphorus loadings in the dry period (ROCHA; LIMA

NETO, 2022), thus, this variable should not be neglected.
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Figure 50 – PDPs of Chla and the interaction between wind speed (winv), mix-layer depth
(depth), solar radiation (radiation), volume, and precipitation. The plots are trimmed
to not extrapolate the range of the predictive variables outside the training data. Data
were normalized to a range between 0 and 1.

Source: The author.

Precipitation can have distinct effects on nutrient concentrations (HO; MICHALAK, 

2020). Our analysis indicates that when the water volume is high, increased precipitation levels 

mean higher Chla (WIEGAND et al., 2020), while for low water volumes, increased precipitation 

levels mean lower Chla. This, again, can be related to the climate season, as previously discussed. 

Although there might have been some information loss due to the temporal resolution of the 

analysis presented here, the results are consistent with the findings of other studies performed 

for the semiarid region (MOURA et al., 2020; MESQUITA et al., 2020).
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Rather than providing accurate predictions of Chla, the predictive models explored in this 

study can indicate the magnitude and the overall direction of the relationship between hydro-

climatic variables and Chla.

8.7 Conclusion

In the semiarid region, complex mechanisms regulate phytoplankton growth, so 

that estimates of P may not result in reliable predictions of Chla. This study revealed that a 

combination of hydrological and climate factors can provide insightful information on Chla 

uctuations on a monthly s cale. To do that, RF and GBM are the most suitable models, with 

satisfactory predictive performance.

Looking at the interaction between variables, increasing solar radiation and reducing 

wind speed result in higher Chla. For a deeper mix-layer, the increase of solar radiation has 

a positive effect on Chla. Another interesting nding was that precipitation and wind speed 

present opposing effects on Chla depending on the season. Water level and volume have opposite 

relationships with Chla: the underlying mechanism associated with Chla is reverted after the dry 

season (when the internal load is more signicant).

These results suggest that climate and hydrological variables have nonlinear rela-

tionships with Chla, with an exploratory potential that should not be ignored. Machine learning 

models can provide important insight on the mechanisms related to Chla increase or decrease in 

reservoirs, especially when using interpretation methods such as PDPs. By understanding some 

of the mechanisms associated with hydrological and climatic variability and Chla, policymakers 

can design more specic strategies to mitigate eutrophication.

There are, however, a few drawbacks of this study, such as the temporal-spatial 

resolution of the time series, which can hide some of the mechanisms associated with Chla uc-

tuations. However, extensive eld data collection would be needed to overcome this limitation. 

An interesting approach to be investigated in future studies is the combination of mechanistic 

water quality modeling and machine learning methods (the so-called scientic machine learning) 

to assess eutrophication mechanisms. Within this framework, physical, biological and chemi-

cal relationships can be incorporated into machine learning modeling, facilitating uncertainty 

quantication and interpretability.
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9 CONCLUSION

The short and long-term planning of a water system involves multiple complexities

associated with hydrological, climatic and social processes. The natural sciences are clearly

no longer interested in immutable phenomena (PRIGOGINE; STENGERS, 1991), and the

announcement of the death of stationarity (MILLY et al., 2008) established the urgent need for

water resources management that incorporates the uncertainties of the Earth System.

As the relationships between social and natural environments is not linear and not

easily mapped, ML models and statistical learning tools offer a solution to extract knowledge

from the available data. Although widely studied in the literature, these tools are unexploited in

water resources management. There are also many data sources that have not been sufciently

explored, such as text data (e.g. newspapers, ofcial documents, water resources plans). In this

thesis, we develop predictive models and combine existing algorithms with explainable machine

learning tools to explore issues associated with water quantity and quality.

We set out investigating the social and economic drivers of residential water demand.

We learn that these can explain up to 40% of the low frequency component of water demand, and

we might need only a few representative variables to account for this effect - even in coarse spatial

scales. The percentage of children in a household, average monthly income and vulnerability to

poverty of residents can be used as proxies to estimate water demand patterns in Fortaleza, Ceará.

Then, we investigate the seasonal uctuations of residential water demand and create a predictive

model that is able to account for the effect of precipitation and temperature variability on this

component. After exploring social, economic and climate effects on water demand, we analyze

the implications of price-based demand-side measures. We nd that these measures are effective

- but it can be unfair to lower income households - while drought awareness is less likely to

encourage consumers to save water. During the 2012-2018 drought that severely impacted Ceará,

the implementation of a contingency tariff enforced a reduction in water demand of low income

households to below the recommended by the World Health Organization (around 100 litres of

water per person per day) (KI-MOON; GENERAL, 2010).

We then look at the long-term water supply, and discover that climate variability

and the continuous growth in water demand will require alternative water sources to guarantee

water supply in the next years. We also nd that even by expanding water supply, agricultural

water demand might not be fully attended in the next 30 years in Ceará. This means that water

resources stakeholders must draw attention to demand-side measures, water losses reduction and
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a more rened water accounting system. Finally, we investigate the mechanisms that regulate

phytoplankton growth in tropical reservoirs. By using ML, we identify advers relationships

between hydrological and climate variables and Chla depending on the season. For example,

we conclude that water level and volume have opposite relationships with Chla: the underlying

mechanism associated with Chla is reverted after the dry season (when the internal load is more

signicant).

These studies can serve not only as starting points for discussing new water man-

agement policies and adjusting the current ones, but also to provide new models to be deployed

and actually incorporated into water supply and management tools (HADJIMICHAEL et al.,

2016). However, despite its high predictive power and ability to detect patterns, ML models are

heavily conditioned by data availability. Information on income, education, employment and

infrastructure at rened spatial scales is not easy to nd or is not collected regularly. In addition,

diffuse communities, users not served by the water company or with defective meters, or even

users of precarious housing, may be absent from the available databases. While the transition to

more sophisticated predictive models can mean more detailed information about water users, it

can also be a way of reinforcing inequalities and the isolation of some people. Therefore, it is

important to take some precautions when applying these models, such as the adoption of data

balancing strategies, and to combine its use with social participation.
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APPENDIX B - DECISION TREES OBTAINED IN CHAPTER 7



Response: Release − Irrigation Castanhão
Month: January

 < 2.1

 < 4746

 >= 2.1

 >= 4746

release_urban_supply_castanhao

33
48%

reservoir_volume_castanhao

34
24%

35
28%



Response: Release − Irrigation Castanhão
Month: February

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

33
49%

release_urban_supply_castanhao

34
23%

35
27%



Response: Release − Irrigation Castanhão
Month: March

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

33
49%

release_urban_supply_castanhao

35
28%

35
23%



Response: Release − Irrigation Castanhão
Month: April

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

33
49%

release_urban_supply_castanhao

34
23%

35
28%



Response: Release − Irrigation Castanhão
Month: May

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

33
50%

release_urban_supply_castanhao

35
27%

36
23%



Response: Release − Irrigation Castanhão
Month: June

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

33
49%

release_urban_supply_castanhao

35
23%

35
28%



Response: Release − Irrigation Castanhão
Month: July

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

33
50%

release_urban_supply_castanhao

35
27%

36
23%



Response: Release − Irrigation Castanhão
Month: August

 < 2.2

 >= 2.2

release_urban_supply_castanhao

33
50%

35
50%



Response: Release − Irrigation Castanhão
Month: September

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

33
23%

34
27%

35
51%



Response: Release − Irrigation Castanhão
Month: October

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

33
28%

34
27%

35
45%



Response: Release − Irrigation Castanhão
Month: November

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

33
28%

34
27%

35
45%



Response: Release − Irrigation Castanhão
Month: December

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

33
24%

34
27%

35
49%



Response: Release − Irrigation Orós
Month: January

 < 0.32

 < 2.2

 >= 0.68

 < 551

 >= 0.32

 >= 2.2

 < 0.68

 >= 551

release_urban_supply_oros

0
0%

release_urban_supply_castanhao

release_urban_supply_oros

reservoir_volume_oros

0.75
1%

9.4
4%

9.2
48%

9.5
47%



Response: Release − Irrigation Orós
Month: February

 < 389

 >= 389

reservoir_volume_oros

4
0%

9.4
100%



Response: Release − Irrigation Orós
Month: March

 < 2.2

 < 0.64

 < 6176

 >= 2.2

 >= 0.64

 >= 6176

release_urban_supply_castanhao

release_urban_supply_oros

reservoir_volume_castanhao

3.9
0%

9.1
4%

9.2
50%

9.5
46%



Response: Release − Irrigation Orós
Month: April

 < 2.2

 >= 2.1

 < 487  < 0.66

 >= 2.2

 < 2.1

>= 487  >= 0.66

release_urban_supply_castanhao

release_urban_supply_castanhao

reservoir_volume_oros

2.8
1%

9.4
4%

release_urban_supply_oros

9.2
26%

9.3
23%

9.5
46%



Response: Release − Irrigation Orós
Month: May

 < 476

 >= 2.1  < 2.1

 >= 476

 < 2.1  >= 2.1

reservoir_volume_oros

release_urban_supply_castanhao

0.74
0%

9.3
6%

release_urban_supply_castanhao

9.2
43%

9.5
51%



Response: Release − Irrigation Orós
Month: June

 < 479

 >= 479

reservoir_volume_oros

1.5
1%

9.4
99%



Response: Release − Irrigation Orós
Month: July

 < 472

 >= 472

reservoir_volume_oros

1.5
1%

9.4
99%



Response: Release − Irrigation Orós
Month: August

 < 465

 >= 465

reservoir_volume_oros

2.7
1%

9.4
99%



Response: Release − Irrigation Orós
Month: September

 < 451

 >= 451

reservoir_volume_oros

2.8
0%

9.4
100%



Response: Release − Irrigation Orós
Month: October

 < 0.32

 >= 0.32

release_urban_supply_oros

0
1%

9.4
99%



Response: Release − Irrigation Orós
Month: November

 < 0.48

 >= 0.48

release_urban_supply_oros

0
1%

9.4
99%



Response: Release − Irrigation Orós
Month: December

 < 0.32

 < 596

 >= 0.32

 >= 596

release_urban_supply_oros

0
1%

reservoir_volume_oros

8.4
13%

9.4
86%



Response: Release − Irrigation Banabuiú
Month: January

 < 0.22

 < 0.21

 >= 0.22

 >= 0.21

release_urban_supply_banabuiu

release_urban_supply_banabuiu

2.5
26%

2.6
28%

2.6
46%



Response: Release − Irrigation Banabuiú
Month: February

 < 0.22

 < 0.21

 >= 0.22

 >= 0.21

release_urban_supply_banabuiu

release_urban_supply_banabuiu

2.5
26%

2.6
28%

2.6
46%



Response: Release − Irrigation Banabuiú
Month: March

 < 9.4

 < 0.21

 >= 9.4

 >= 0.21

release_irrigation_oros

release_urban_supply_banabuiu

2.5
26%

2.6
28%

2.6
46%



Response: Release − Irrigation Banabuiú
Month: April

 < 0.22

 < 0.21

 >= 0.22

 >= 0.21

release_urban_supply_banabuiu

release_urban_supply_banabuiu

2.5
26%

2.6
27%

2.6
47%



Response: Release − Irrigation Banabuiú
Month: May

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

2.5
45%

release_urban_supply_castanhao

2.6
28%

2.7
27%



Response: Release − Irrigation Banabuiú
Month: June

 < 2.1

 < 2.2

 >= 2.1

 >= 2.2

release_urban_supply_castanhao

2.5
46%

release_urban_supply_castanhao

2.6
27%

2.7
27%



Response: Release − Irrigation Banabuiú
Month: July

 < 2.1

 < 0.21

 >= 2.1

 >= 0.21

release_urban_supply_castanhao

release_urban_supply_banabuiu

2.5
27%

2.6
22%

2.6
51%



Response: Release − Irrigation Banabuiú
Month: August

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

2.5
23%

2.6
28%

2.6
49%



Response: Release − Irrigation Banabuiú
Month: September

 < 2.2

 < 0.21

 >= 2.2

 >= 0.21

release_urban_supply_castanhao

release_urban_supply_banabuiu

2.5
23%

2.6
27%

2.6
49%



Response: Release − Irrigation Banabuiú
Month: October

 < 2.2

 < 0.21

 >= 2.2

 >= 0.21

release_urban_supply_castanhao

release_urban_supply_banabuiu

2.5
24%

2.6
27%

2.6
49%



Response: Release − Irrigation Banabuiú
Month: November

 < 2.2

 < 0.21

 >= 2.2

 >= 0.21

release_urban_supply_castanhao

release_urban_supply_banabuiu

2.5
25%

2.6
27%

2.6
49%



Response: Release − Irrigation Banabuiú
Month: December

 < 0.22

 < 2.2

 >= 0.22

 >= 2.2

release_urban_supply_banabuiu

2.5
51%

release_urban_supply_castanhao

2.6
27%

2.7
22%



Response: Release for Urban supply − Castanhão
Month: January

 < 1699

 >= 4089

 >= 1699

 < 4089

reservoir_volume_oros

reservoir_volume_castanhao

2.1
26%

2.1
44%

2.2
30%



Response: Release for Urban supply − Castanhão
Month: February

 < 1669

 >= 4343

 >= 1669

 < 4343

reservoir_volume_oros

reservoir_volume_castanhao

2
21%

2.1
47%

2.2
31%



Response: Release for Urban supply − Castanhão
Month: March

 < 1670

 >= 3047

 >= 1670

 < 3047

reservoir_volume_oros

reservoir_volume_castanhao

2.1
43%

2.2
23%

2.2
34%



Response: Release for Urban supply − Castanhão
Month: April

 < 1653

 >= 3499

 >= 1653

 < 3499

reservoir_volume_oros

reservoir_volume_castanhao

2.1
38%

2.2
25%

2.2
37%



Response: Release for Urban supply − Castanhão
Month: May

 < 1626

 >= 3703

 >= 1626

 < 3703

reservoir_volume_oros

reservoir_volume_castanhao

2.1
32%

2.2
24%

2.2
44%



Response: Release for Urban supply − Castanhão
Month: June

 < 1627

 >= 3806

 >= 1627

 < 3806

reservoir_volume_oros

reservoir_volume_castanhao

2.1
31%

2.2
24%

2.2
45%



Response: Release for Urban supply − Castanhão
Month: July

 < 1598

 >= 3712

 >= 1598

 < 3712

reservoir_volume_oros

reservoir_volume_castanhao

2.1
32%

2.2
23%

2.2
45%



Response: Release for Urban supply − Castanhão
Month: August

 < 1889

 >= 6021

 >= 1889

 < 6021

reservoir_volume_oros

reservoir_volume_castanhao

2
14%

2.1
57%

2.2
30%



Response: Release for Urban supply − Castanhão
Month: September

 < 1857

 >= 5911

 >= 1857

 < 5911

reservoir_volume_oros

reservoir_volume_castanhao

2
14%

2.1
57%

2.2
29%



Response: Release for Urban supply − Castanhão
Month: October

 < 1819

 >= 5771

 >= 1819

 < 5771

reservoir_volume_oros

reservoir_volume_castanhao

2
14%

2.1
59%

2.2
27%



Response: Release for Urban supply − Castanhão
Month: November

 < 1779

 >= 5824

 >= 1779

 < 5824

reservoir_volume_oros

reservoir_volume_castanhao

2
15%

2.1
57%

2.2
29%



Response: Release for Urban supply − Castanhão
Month: December

 < 1737

 >= 5625

 >= 1737

 < 5625

reservoir_volume_oros

reservoir_volume_castanhao

2
15%

2.1
58%

2.2
27%



Response: Release for Urban supply − Orós
Month: January

 < 384

 < 2.2

 >= 384

 >= 2.2

reservoir_volume_oros

0.17
0%

release_urban_supply_castanhao

0.65
54%

0.7
45%



Response: Release for Urban supply − Orós
Month: February

 < 2.2

 < 396

 < 2.1

 >= 2.2

 >= 396

 >= 2.1

release_urban_supply_castanhao

reservoir_volume_oros

0.19
0%

release_urban_supply_castanhao

0.64
25%

0.67
28%

0.7
46%



Response: Release for Urban supply − Orós
Month: March

 < 2.2

 < 2.1

 < 430

 < 3131

 >= 2.2

 >= 2.1

 >= 430

 >= 3131

release_urban_supply_castanhao

release_urban_supply_castanhao

0.64
26%

reservoir_volume_oros

reservoir_volume_castanhao

0.38
0%

0.66
9%

0.67
18%

0.7
46%



Response: Release for Urban supply − Orós
Month: April

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.64
26%

0.67
32%

0.71
41%



Response: Release for Urban supply − Orós
Month: May

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.64
26%

0.67
31%

0.71
43%



Response: Release for Urban supply − Orós
Month: June

 < 2.1

 < 5042

 >= 2.1

 >= 5042

release_urban_supply_castanhao

0.65
46%

reservoir_volume_castanhao

0.68
22%

0.71
32%



Response: Release for Urban supply − Orós
Month: July

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.64
26%

0.67
32%

0.71
41%



Response: Release for Urban supply − Orós
Month: August

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.64
22%

0.67
32%

0.7
46%



Response: Release for Urban supply − Orós
Month: September

 < 2.2

 >= 2.2

release_urban_supply_castanhao

0.65
56%

0.71
44%



Response: Release for Urban supply − Orós
Month: October

 < 2.2

 < 426

 >= 2.2

 >= 426

release_urban_supply_castanhao

reservoir_volume_oros

0.29
0%

0.65
55%

0.71
45%



Response: Release for Urban supply − Orós
Month: November

 < 403

 >= 403

reservoir_volume_oros

0
1%

0.68
99%



Response: Release for Urban supply − Orós
Month: December

 < 396

 >= 396

reservoir_volume_oros

0.067
1%

0.68
99%



Response: Release for Urban supply − Sítios Novos
Month: January

 < 1494

 >= 2.7

 >= 1494

 < 2.7

reservoir_volume_banabuiu

0.41
77%

withdrawal_reuse

1.9
9%

6.3
13%



Response: Release for Urban supply − Sítios Novos
Month: February

 >= 4.7

 < 1536

 < 4.7

 >= 1536

withdrawal_reuse

0.53
65%

reservoir_volume_banabuiu

2.9
26%

6.7
9%



Response: Release for Urban supply − Sítios Novos
Month: March

 >= 4.3

 < 1491

 < 4.3

 >= 1491

withdrawal_reuse

0.27
51%

reservoir_volume_banabuiu

3.6
12%

6.1
37%



Response: Release for Urban supply − Sítios Novos
Month: April

 >= 3.5

 < 0.22

 < 3.5

 >= 0.22

withdrawal_reuse

0.11
45%

release_urban_supply_banabuiu

4.5
11%

6.6
44%



Response: Release for Urban supply − Sítios Novos
Month: May

 >= 3.6

 < 0.22

 < 3.6

 >= 0.22

withdrawal_reuse

0.097
45%

release_urban_supply_banabuiu

4.5
11%

6.6
44%



Response: Release for Urban supply − Sítios Novos
Month: June

 >= 4

 < 0.22

 < 4

 >= 0.22

withdrawal_reuse

release_urban_supply_banabuiu

0.0044
41%

2.1
11%

5.8
48%



Response: Release for Urban supply − Sítios Novos
Month: July

 >= 0.72

 < 232

 < 0.72

 >= 232

withdrawal_reuse

reservoir_volume_pacajus

0.091
47%

2.2
23%

6.3
30%



Response: Release for Urban supply − Sítios Novos
Month: August

 >= 3.3

 < 0.21

 < 3.3

 >= 0.21

withdrawal_reuse

0.44
71%

release_urban_supply_banabuiu

2.1
4%

6.6
24%



Response: Release for Urban supply − Sítios Novos
Month: September

 >= 4.1

 < 1585

 < 4.1

 >= 1585

withdrawal_reuse

0.39
73%

reservoir_volume_banabuiu

0.76
5%

6.8
22%



Response: Release for Urban supply − Sítios Novos
Month: October

 < 237

 >= 2.9

 >= 237

 < 2.9

reservoir_volume_pacajus

0.36
77%

withdrawal_reuse

1.5
3%

6.7
19%



Response: Release for Urban supply − Sítios Novos
Month: November

 < 233

 >= 3.7

 >= 233

 < 3.7

reservoir_volume_pacajus

0.34
77%

withdrawal_reuse

1.3
4%

6.7
20%



Response: Release for Urban supply − Sítios Novos
Month: December

 < 1518

 >= 2.9

 >= 1518

 < 2.9

reservoir_volume_banabuiu

0.47
77%

withdrawal_reuse

1.4
5%

6.7
18%



Response: Release for Urban supply − Gavião
Month: January

 < 31

 < 29

 >= 31

 >= 29

reservoir_volume_gaviao

reservoir_volume_gaviao

27
5%

30
8%

33
87%



Response: Release for Urban supply − Gavião
Month: February

 < 31

 < 28

 >= 31

 >= 28

reservoir_volume_gaviao

reservoir_volume_gaviao

27
4%

30
12%

33
84%



Response: Release for Urban supply − Gavião
Month: March

 >= 77

 < 2.1

 < 77

 >= 2.1

reservoir_volume_sitios_novos

30
9%

release_urban_supply_castanhao

32
17%

33
73%



Response: Release for Urban supply − Gavião
Month: April

 < 29

 < 2.1

 >= 29

 >= 2.1

reservoir_volume_gaviao

25
7%

release_urban_supply_castanhao

30
14%

33
79%



Response: Release for Urban supply − Gavião
Month: May

 < 27

 < 2.1

 >= 27

 >= 2.1

reservoir_volume_gaviao

20
5%

release_urban_supply_castanhao

30
18%

33
78%



Response: Release for Urban supply − Gavião
Month: June

 < 0.64

 < 2.1

 >= 0.64

 >= 2.1

release_urban_supply_oros

24
4%

release_urban_supply_castanhao

31
18%

33
78%



Response: Release for Urban supply − Gavião
Month: July

 < 16

 < 2.1

 >= 16

 >= 2.1

reservoir_volume_gaviao

9.1
3%

release_urban_supply_castanhao

31
24%

33
72%



Response: Release for Urban supply − Gavião
Month: August

 < 2.1

 < 26

 >= 2.1

 >= 26

release_urban_supply_castanhao

reservoir_volume_gaviao

21
1%

30
26%

33
73%



Response: Release for Urban supply − Gavião
Month: September

 < 23

 < 31

 >= 23

 >= 31

reservoir_volume_gaviao

17
5%

reservoir_volume_gaviao

29
8%

33
87%



Response: Release for Urban supply − Gavião
Month: October

 < 26

 < 31

 >= 26

 >= 31

reservoir_volume_gaviao

20
5%

reservoir_volume_gaviao

30
13%

33
83%



Response: Release for Urban supply − Gavião
Month: November

 < 28

 < 33

 >= 28

 >= 33

reservoir_volume_gaviao

23
4%

reservoir_volume_gaviao

30
16%

33
79%



Response: Release for Urban supply − Gavião
Month: December

 < 30

 < 27

 >= 30

 >= 27

reservoir_volume_gaviao

reservoir_volume_gaviao

25
3%

29
8%

33
89%



Response: Release for Urban supply − Banabuiú
Month: January

 < 9.4

 < 2.1

 >= 9.4

 >= 2.1

release_irrigation_oros

release_urban_supply_castanhao

0.2
25%

0.21
28%

0.22
47%



Response: Release for Urban supply − Banabuiú
Month: February

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
26%

0.21
28%

0.22
47%



Response: Release for Urban supply − Banabuiú
Month: March

 < 9.4

 < 2.1

 >= 9.4

 >= 2.1

release_irrigation_oros

release_urban_supply_castanhao

0.2
26%

0.21
28%

0.22
45%



Response: Release for Urban supply − Banabuiú
Month: April

 < 9.4

 < 2.1

 >= 9.4

 >= 2.1

release_irrigation_oros

release_urban_supply_castanhao

0.2
25%

0.21
28%

0.23
46%



Response: Release for Urban supply − Banabuiú
Month: May

 < 9.4

 < 2.1

 >= 9.4

 >= 2.1

release_irrigation_oros

release_urban_supply_castanhao

0.2
25%

0.21
28%

0.22
46%



Response: Release for Urban supply − Banabuiú
Month: June

 < 2.1

 < 0.71

 >= 2.1

 >= 0.71

release_urban_supply_castanhao

0.2
49%

release_urban_supply_oros

0.22
28%

0.23
23%



Response: Release for Urban supply − Banabuiú
Month: July

 < 2.1

 < 2.1

 >= 2.1

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
27%

0.21
23%

0.22
50%



Response: Release for Urban supply − Banabuiú
Month: August

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
26%

0.21
23%

0.22
50%



Response: Release for Urban supply − Banabuiú
Month: September

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
23%

0.21
27%

0.22
49%



Response: Release for Urban supply − Banabuiú
Month: October

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
25%

0.21
26%

0.22
49%



Response: Release for Urban supply − Banabuiú
Month: November

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
23%

0.21
27%

0.22
50%



Response: Release for Urban supply − Banabuiú
Month: December

 < 2.2

 < 2.1

 >= 2.2

 >= 2.1

release_urban_supply_castanhao

release_urban_supply_castanhao

0.2
25%

0.21
27%

0.22
49%


