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Imbalanced data always has a serious impact on a predictive model, and most under-sampling techniques
consume more time and suffer from loss of samples containing critical information during imbalanced data
processing, especially in the biomedical field. To solve these problems, we developed an active balancing
mechanism (ABM) based on valuable information contained in the biomedical data. ABM adopts the Gaussian
naive Bayes method to estimate the object samples and entropy as a query function to evaluate sample infor-
mation and only retains valuable samples of the majority class to achieve under-sampling. The Physikalisch
Technische Bundesanstalt diagnostic electrocardiogram (ECG) database, including 5,173 normal ECG samples
and 26,654 myocardial infarction ECG samples, is applied to verify the validity of ABM. At imbalance rates of
13 and 5, experimental results reveal that ABM takes 7.7 seconds and 13.2 seconds, respectively. Both results
are significantly faster than five conventional under-sampling methods. In addition, at the imbalance rate of
13, ABM-based data obtained the highest accuracy of 92.23% and 97.52% using support vector machines and
modified convolutional neural networks (MCNNs) with eight layers, respectively. At the imbalance rate of
5, the processed data by ABM also achieved the best accuracy of 92.31% and 98.46% based on support vector
machines and MCNNG, respectively. Furthermore, ABM has better performance than two compared methods
in Fl-measure, G-means, and area under the curve. Consequently, ABM could be a useful and effective ap-
proach to deal with imbalanced data in general, particularly biomedical myocardial infarction ECG datasets,
and the MCNN can also achieve higher performance compared to the state of the art.
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1 INTRODUCTION

Today, deep learning has achieved great success in many fields, such as anomaly detection in med-
ical images [12], target monitoring and recognition [1, 32, 48], and feature learning [45]. However,
most models are built on balanced data, and their performance will be limited when they face
imbalanced data. Additionally, imbalanced data are widely found in the medical field, especially
in biomedical data. For instance, myocardial infarction (MI) is one of the most deadly cardiovas-
cular diseases in the world, because the blood supply to the heart is blocked by thrombosis or
atherosclerosis, resulting in tissue death. For many reasons, MI electrocardiogram (ECG) data is
more difficult to collect than normal ECG data, so it often causes imbalanced distribution of ECG
data. Recently, many methods have been proposed, including machine learning and deep learning,
for imbalanced MI ECG data classification. Baloglu eg al. [2] applied deep learning to classify MI
ECG data. They built an end-to-end convolutional neural network (CNN) model with 10 layers for
12-lead MI ECG data and achieve high accuracy. Han and Shi [9] took the energy entropy based
on wavelet transform coefficients and morphological features as feature vectors. In addition, the
dimensions of these features would be reduced by principal component analysis (PCA) and then
classified using the support vector machine (SVM). Sadhukhan et al. [29] proposed a method
based on Fourier transform for MI feature extraction and threshold and logistic regression to
classify MI ECG. Although all of these can achieve higher precision to some extent, they do not
take into account the effects of data imbalance. In imbalanced data, the predictive model priority
increases for the majority class and reduces the classification priority for the minority class [11],
and this problem has a serious impact on the reliability of ECG disease predictions. Thus, there is
an urgent need to handle the problem of imbalanced biomedical data in classification.

Several researchers have designed different techniques to handle data imbalance problems.
These techniques are divided into cost-sensitive learning [4, 16, 27, 43, 44], ensemble methods,
and resampling methods. Imbalanced data processing based on cost-sensitive learning is primarily
achieved by changing some existing algorithms through cost-based learning, incorporating more
punishment into the minority class samples, and small-scale penalties in the majority class sam-
ples. These methods have high computational efficiency [8], whereas the actual costs are usually
varied and unknown from case to case and must determine the cost factor by following the actual
data class [41]. Meanwhile, the classification models may lead to over-fitting during training. En-
semble methods [5, 26, 29, 40] primarily adopt the technology of multiple classifiers to improve
the reliability of a single classifier and predict the sample class through the classification results
of all classifiers, such as classifier-based voting or averaging all classifier results. Although these
techniques will not give up every sample in the imbalanced data, a well-known problem with these
ensemble techniques is a long processing time.

Resampling methods are mainly divided into over-sampling [17, 18, 21, 31] and under-sampling
[13, 15, 35], and two over-sampling methods are widely used. One is random over-sampling, which
requires less time to deal with minority class samples by copying minority class samples into the
minority class. This method introduces duplicate samples into the minority class dataset, causing
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the classification model to overfit, which severely affects the classification performance [13]. An-
other one is the synthetic minority over-sampling technique (SMOTE) proposed by Chawla et al.
[3], which randomly selects many minority class samples to generate new synthetic samples be-
tween these selected samples and their corresponding k-nearest neighbor (kNN) samples. Never-
theless, this approach has some expensive computing time and overlapping samples. The problem
of overlapping is due to the failure to consider the majority class samples and may limit the perfor-
mance of the classification model. In general, the performance of over-sampling methods is worse
than that of another resampling technique, namely under-sampling [6].

Under-sampling methods balance data by reducing the majority class data. The RaUS method
is the simplest under-sampling method. This approach randomly removes a certain number of
samples from the majority class data to achieve balance with minority class samples. This process
takes less time, yet there is a risk of losing important data, affecting the classification perfor-
mance. Various under-sampling approaches have been developed to address this problem. Mani
and Zhang [19] developed four under-sampling methods based on the four versions of kNN. In
addition, NearMiss-1 presents a method that selects the majority sample with the smallest average
distance from the closest three minority samples. NearMiss-2 selects majority class samples when
their average distances to the three farthest minority class samples are the smallest. NearMiss-3
selects a given number of the majority class samples nearest to each minority class sample. Most
distant methods are opposite NearMiss-1. These four methods exclude the majority class samples
based on the distance between samples. They mitigate the risk of reduced model classification per-
formance. However, these methods need more time to calculate the distances between samples.

In a recent study, Yen and Lee [42] proposed a cluster-based under-sampling method. The
method divides data into n clusters, calculates the ratio of majority to minority samples in each
cluster, and deletes a certain number of majority category samples based on a sample ratio. Sim-
ilarly, D’Addabbo and Maglietta [7] proposed a parallel selective sampling method. It divides the
majority class samples into N subsets, with each subset and the minority class samples forming a
dataset. Then, it applies Tomek links (TL) to reduce the majority class samples and repeats this step
several times until the between classes are balanced. In the entire process, these N subsets are per-
formed at the same time. Tasi [13] introduces a cluster-based and instance selection method, which
uses clustering analysis to group similar samples in the majority class into “subclasses,” whereas
the instance selection filters out unrepresentative data samples from each subclass to achieve data
balance. Although these methods are quicker, they might remove some important sample data.
Therefore, it is worthwhile to study an alternative method that quickly deals with imbalanced MI
ECG data and improves the reliability of the data classification.

Some different models based on active learning (AL) have also been used for addressing im-
balanced data, which does not include MI ECG data. For instance, Zhang et al. [46] proposed an
online asymmetric AL algorithm that uses asymmetric query strategies to process imbalanced
data. However, this method tends to query for more negative data, which may result in poor train-
ing of positive data. Zhang et al. [47] adapted to maximize the sum of weighted sensitivity and
specificity or minimize the weighted cost of misclassification to handle imbalanced data, but this
method ignored the overall accuracy. Therefore, a new under-sampling method based on AL called
the active balancing mechanism (ABM) is proposed for imbalanced ECG data in this article. Our
main contributions are as follows:

e Considering the time consumption and sample importance, this work proposes an efficient
ABM for processing imbalanced ECG data.

e An imbalanced ECG data processing method based on Gaussian naive Bayes (GNB) and
entropy is proposed for high efficiency while handling imbalanced ECG data.
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e An eight-layer modified convolutional neural network (MCNN) with low time consumption
and high performance of imbalanced ECG classification is constructed. A global average
pooling layer is used to reduce training parameters and increase the training rate.

The rest of the article is organized as follows. Section 2 proposes ABM and describes it in de-
tail. Section 3 presents the comparison of ABM with several conventional methods for examining
performance. Section 4 concludes the article.

2 METHODOLOGY

Recent advancements in mobile and wearable devices have allowed researchers to passively col-
lect real-time data on individuals without disrupting their daily lives [23, 24, 36-39]. On the one
hand, this data can help researchers inform individuals of their risk profiles and enable clinicians
and patients to make more informed care decisions. On the other hand, to improve the availability
of a wearable system for long-term and real-time monitoring, it is important to propose a novel
methodology for decreasing the influences of the imbalanced distribution of samples on the accu-
racy and reliability of a classifier, because imbalanced data make classifiers have high accuracies
on majority class samples and low accuracies on minority samples. More importantly, the minor-
ity class samples are often abnormal disease data that are essential to disease prediction; once the
prediction is wrong, it may lead to serious results. Therefore, imbalanced data must be processed
before the application and need to be handled in a short time for real-time monitoring.

The well-designed methodology for imbalanced ECG data processing includes three parts: sig-
nal pre-processing derived from a wearable system, proposed ABM implementation, and disease
predication (or decision). The signal pre-processing stage aims to remove noise interference and
divide the ECG data into a single heartbeat sample based on the location of the R-peak. In the
ABM stage, m samples are randomly selected from the majority class data, and N samples of the
minority class constitute the initial dataset for training the GNB estimator. Then, the remaining
M-mmajority class samples are estimated by the trained estimator, and the entropy values of these
samples are calculated from their estimates. Afterward, k samples with the largest entropy values
are selected and added to the training set to retrain the estimator. The second and third steps
are repeated K times until the two types of samples in the training set are equal. The last stage
is application of the balance data using deep networks, such as disease predication. The overall
pre-processing phase with data imbalance and performance evaluation is illustrated in Figure 1.

2.1 Dataset

In our work, the Physikalisch Technische Bundesanstalt (PTB) diagnostic ECG database was con-
sidered as an experimental dataset. This database contains 148 MI subjects and 52 normal patients
between the ages of 17 and 87 years, with an average age of 55.5 years for men and 61.6 years for
women, and each signal sampling frequency is 1,000 Hz. In addition, lead Il ECG data are usually
used for ECG classification; therefore, in our study, lead II was also used as experimental data.

In the pre-processing stage, we applied a wavelet transform for processing the raw ECG signal.
The MI and normal ECG records are segmented according to the position of the R-peaks detected
by the Pan Tompkins algorithm [22]. Each ECG sample consists of 220 interval points located at
the left of the R-peak and 380 interval points to the right. There are 5,173 normal ECG samples
and 26,654 MI ECG samples.

2.2 Proposed ABM

This section balances MI ECG data and normal ECG by adopting ABM to obtain balanced data be-
tween MI and normal ECG samples. A visualization process of imbalanced data processing using

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 1s, Article 39. Publication date: March 2020.



ABM for Imbalanced Medical Data in Deep Learning—Based Classification Models 39:5

Data collection Pre-processing Training Artificial Intelligence for Decision Making
PN D .
J - Q smartohone MMI samples X M-m-ki samples, (/ € [0,K], m<M)
{ loT & Big Data ¥ a

\
\ J - Laptop ( Artificial Intelligence ABM .\

Sample-1  Sample-2
{ I

4 V
'msamples ﬂ
:> eccsgnas |54 nitial training data
preprocessing
N Nsamples ﬁ
Raw ECG

Sample-1  Sample-2

Wearable ECG System

=
Norm

=

n SN L ¢

T

normal N normal
ECG samples Prediction decision «----

Select kK Ml samples with highest
entropies each time, cycle K'times
K= (N-m)/k<N,K€E R*

B

[

Fig. 1. The whole process of imbalanced MI data processing.
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Fig. 2. Instance of an ABM-based under-sampling majority class. (a) Two classes of initial data. (b) Initial
training dataset was used to train a model to measure the uncertainty of the yellow samples. (c—f): The
process of obtaining the balance data based on ABM.

ABM is shown in Figure 2. Figure 2(a) represents an imbalanced dataset containing two class
samples: red denotes the minority class samples, and yellow denotes the majority class. During
the process of imbalanced data processing, we first randomly obtain a certain number of red and
green samples from the two class samples as the initial training data, respectively, as shown in Fig-
ure 2(b). An estimator is then trained to calculate the probability of the remaining majority class
samples. After that, the entropy of each sample is calculated; two majority class samples with high
entropy values are selected and added to the training set to update training data, as shown in Fig-
ure 2(c). The second and third steps are repeated one time to get to a new training dataset, which is
shown in Figure 2(d); after the second repeating, we obtain another training dataset, as shown in
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Figure 2(e); the third repeating achieves a balanced dataset, which is shown in Figure 2(f). At the
same time, the main purpose of this process is to select samples from the entire sample space, not
just high-entropy samples, such as boundary samples. Figure 2 shows that when the two types of
samples are almost balanced, the selected samples are mainly at the boundary.

To build an ABM model, there is an urgent need for an estimator object and a query-based strate-
gic function. In our study, we compared GNB to some generative and discriminative approaches,
including linear discriminative analysis, decision tree, random forest, and quadratic discriminant
analysis, among others. Linear and quadratic discriminative analyses take more time than GNB,
and the classification accuracy of balanced data achieved by these two methods is lower than that
of GNB. Decision tree and random forest take even a longer time than GNB consumption. Thus,
GNB is known as an estimator, whereas entropy is considered a query strategy function.

Moreover, GNB is one of the naive Bayes (NB) models including a set of supervised learning al-
gorithms based on Bayes’ theorem. It is also a generation model and can converge to a real model
more quickly than other methods, such as decision trees and random forest. Furthermore, GNB
presumes that the data features are continuous, which is different from NB, since NB assumes that
the features of the samples remain independent of each other, so when the sample features are
continuous, NB is not suitable. GNB uses a Gaussian density estimate and assumes that the condi-
tional distribution satisfies the Gaussian distribution, checking that the sample features follow the
Gaussian distribution. Therefore, GNB is applied to process ECG data in our study. To learn about
the posterior probability of sample data, the conditional probability must be carefully interpreted.
The GNB model is carefully interpreted as shown in Equation (1):

1 _ (xi—uzy)z
P(xily) = e oy (1)
2mo?

where the parameters u, and O'Z represent the mean and variance, respectively. They are estimated
using the maximum likelihood method with P(x;|y), which is the conditional probability. In this
section, P(x;|y;) indicates the probability of x; belonging to the y; class. All MI ECG samples are
calculated with GNB without initially trained MI ECG samples. This is the first step to balance the
two classes of data.

After calculating the posterior probability of the samples, we need to obtain the sample informa-
tion for MI ECG beats. Entropy is used to predict uncertainty in a sample. It is the mathematical
expectation of the self-information of random variables. When the data produces low probabil-
ity values, it indicates that the event itself contains more uncertainty, namely the low probability
event contains more information compared to the data with high probability. The amount of in-
formation for each event becomes a random variable. The Shannon entropy of probabilities p is
defined in Equation (2):

H(x) = _pr log px, ()
k

where p, represents the different probability values that the sample can have regarding K classes.
In addition, H is the sample entropy, which is greater than the respective values. Higher en-
tropy indicates samples with more information to predict the training entities. Here, p, repre-
sents the probability of the x samples in association with the normal or MI ECG beats, whereas
H(x)represents the entropy of the x MI samples.

After obtaining sample entropies, we choose some MI ECG beats with higher H and add these
with high-entropy samples to prepare the training data. Repeating all three steps to balance the
datasets is defined next.
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ALGORITHM 1: Balanced data based on ABM

Dataset: Dy,qj = {xi}{”, i € [1, M], represents the majority class data; Dp,in = {xj}f], j € [1, N], indicates
the minority class samples. M is the number of the majority class samples, N is the number of the minority
class samples.

Input: D7ygin = Dmin + Dtraining represents the initial training data; D¢rqining = {xa}{", a € [1,m] and
m < M, is the initial training data selected from the majority class samples; D¢est = Dmaj — Dtrainings
indicates the test set.

Output: Dy ,14nce represents balance data.

Imbalanced data processing:
Iteration parameter setting: K = N — m/k, k is the number of samples per update.
Using Dryqin to train Bayes model and calculate sample entropy of Dyes;
For each i € [1,K]

Select k highest entropy samples from D¢y,

Update Dty qipn with these k samples,

Retrain Bayes model based on Dt i, and calculate sample entropy of D;es;.
End

Dyatance = Drrain-
Balance data: Dpgj4nce-

Suppose that D = {xi,yi}iT:1 is a set of ECG beats, {xi}f\il represents N ECG samples, and
{yi}fil,yi € (1,k) are the relevant labels of N ECG beats. In addition, Dp;j = {x;,y; = O}f‘il in-
dicates the MI ECG sample dataset, with M MI ECG beats, y; = 0 reveals the class label, Dyy; =
{xi,y; = 1}, n is the normal ECG beats, and y; = 1 is its label. Meanwhile, T = M + n. The imple-

mentation procedure of the proposed ABM is described in the pseudocode of Algorithm 1.

2.3 Classification of the Proposed Method

We applied SVM and MCNN classifiers to evaluate the performance of the ABM, RaUS, and
NearMiss-1 methods. The SVMs are commonly used methods, especially in binary classification,
whereas the MCNN is an improved model of the CNN. Moreover, the MCNN needs to train fewer
model parameters.

2.3.1 Support Vector Machines. The SVM is a binary classification model with the largest inter-
val of heterogeneous support vectors defined in the feature space. Its key purpose from the learn-
ing cycle viewpoint is to maximize the spacing of heterogeneous support vectors. The SVM can
be expressed as a problem-solving convex quadratic programming and contains multiple learning
models. We merely focused on the linear SVMs that were used as the classifier.

2.3.2  Modified Convolutional Neural Network. The MCNN is a modified model based on CNN.
The global average pool layer replaces the fully connected layers in smaller training parameters.
The MCNN comprises three convolutional layers, three max-pooling layers, a global average pool
layer, and a classification layer. The three-layer convolution layer is in the first layer, and the third
and fifth layers function as feature extractors. The filter sizes of the three convolutional layers
are 3, 5, and 5, respectively. The activation functions for all convolutional layers are set to Relu,
and the strides of all convolutional layers are set to 1. Max-pooling layers are used to reduce
computation for MCNNs. Max-pooling layers are located on the second, fourth, and sixth layers,
respectively. All pool sizes and strides are set to 2. The seventh layer is the global average pooling
layer, and the classification layer is located on the eighth layer. The Softmax function is selected
as the classification function of the last layer, as shown in Table 1. The hyper-parameters of the
model are set as follows: momentum was set to 0.5, the regularization parameter was 0.2, and the
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Table 1. Detailed Summary of the MCNN Structure

Layers Kernel Size  Output Shape  Stride
Convolution layer 120 (482, 3) 1
Max-pooling layer 2 (241,3) 2
Convolution layer 22 (220, 5) 1
Max-pooling layer 2 (110, 5) 2
Convolution layer 9 (102, 5) 1
Max-pooling layer 2 (51,5) 2
Global average pooling layer — 2 —
Classification layer — 2 -

learning rate was set to 2 X 1072, Meanwhile, the optimizer method is Adam at 150 epochs in our
experimental setup.

2.4 Data Evaluation Parameters

During the data evaluation stage, we first compared the time consumption of ABM to six existing
under-sampling methods. Second, the MCNN and SVM were adopted to classify the balanced data
method, taking less time. To evaluate the classification results, four other prediction performance
approaches with accuracy, G-mean [30], area under the curve (AUC) [25], and Macro-F1 [20] were
adopted.

2.4.1  Accuracy. Given a dataset, accuracy represents the ratio of the correct classification data
to the total data as given in Equation (3):
TP+TN
TP+FP+FN+TN’ )
where TPrepresents the correct number of positive class estimations, FNis the number of negative
class prediction errors, TN is the correct number of negative class predictions, and FP reveals the
number of positive class prediction errors.

accuracy =

2.4.2  G-mean. The G-mean evaluates the classification results of two class samples at the same
time. If one class of samples has a high accuracy and the other has a low accuracy, a low G-mean
will be achieved as shown in Equation (4):

G _\/ P 1IN @
mean = N'TP+FN TP+ FP’

2.4.3  Macro-F1. Macro-F1 is the performance metric that is widely used for analyzing the im-
balanced sample performance as given in Equation (5):

Flmacro - 2X Pmacro X Rmacro , (5)

Pmacro + Rmucro

Pracro = _Zpi, (6)
n 4
i=1
1 n
Rmacra = = ZRi, (7)
n 4
i=1
_TP; TP, . .
where P; = D and R; = TParN i each test, and n represents the test times.
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2.4.4 Area Under the Receiver Operating Curve (AUC). The abbreviation AUC stands for the
area under the receiver operating curve (ROC) and is one of the performance indicators, whereas
the classification model is evaluated based on the classification results of positive and negative
samples.

3 EXPERIMENTAL RESULTS AND DISCUSSION

In this study, experimental results are deployed in Python with an Integrated Development Envi-
ronment known as PyCharm and trained our model on a workstation with two Intel Core i7-6700s,
3.40-GHz processors, and 16 GB of RAM. We examined our approach using the PTB diagnostic ECG
database. The database contains a 12-lead ECG for 148 MI subjects and 52 normal subjects. Each
ECG record is digitized at 1,000 samples per second. However, we merely adopt the lead II ECG
datasets using the proposed work. Each ECG sample contains 601 sampling points. Moreover, our
results are tested by 5,173 normal ECG samples and 26,654 MI ECG samples. In the meantime,
the two class samples are adopted with different patterns. The different data samples are collected
to continue the experimental imbalance ratios to verify the performance of the proposed ABM.
Experimental datasets have imbalance ratios of 13 and 5, respectively.

3.1 Experimental Setup

In our research work, ABM is compared to other conventional under-sampling methods with dis-
tinct imbalances. The samples’ imbalance ratios between MI ECG beats and normal ECG beats
are 5 and 13, respectively. Each experiment was repeated four times, and the average of the four
experiments is taken for improving the reliability. The SVM and MCNN classifiers are adopted to
examine the under-sampling approaches. During the evaluation phase, the ECG samples are cate-
gorized into 10 equal parts to obtain more reliable performance. Moreover, 90% of the ECG samples
are used as training data, whereas the remaining 10% are considered to verify the reliability of the
under-sampling methods.

To obtain a sample set with an imbalance ratio of 13, we randomly selected 2,000 samples from
5,173 normal ECG samples and used 26,654 MI ECG data to construct the imbalanced dataset.
Afterward, 2,000 normal ECG samples and 200 MI samples were selected randomly from a 26,654-
ECG dataset to construct the initial training data. Finally, we repeated this nine times; each time,
we obtained 200 samples with high entropy and low confidence metrics for the MI samples from
the 26,454-MI dataset, and a total of 1,800 MI ECG samples were added to the training dataset to
balance the datasets between different classes.

To construct the sample data with an imbalance ratio of 5, all normal ECG samples and 26,654
MI ECG samples were used to build the imbalanced data, and 1,173 MI ECG samples and all normal
ECG samples to build initial training data were selected. Thereafter, the proposed ABM method
was repeated 10 times, and 400 samples with high entropy were achieved each time to form 4,000
MI ECG data. All of these samples were added to the initial training dataset to achieve a data
balance between classes.

Finally, to analyze the performance of ABM, we applied the MCNN and SVM methods to classify
these balanced datasets. At the same time, the proposed ABM and the two less-time-consuming
methods in the six under-sampling methods were observed in terms of classification accuracy,
G-mean, AUC, and Macro-F1 to verify the effectiveness of our proposed method.

3.2 Comparative Analysis

In our work, we first compared the time consumption of ABM to six other under-sampling tech-
niques: (1) TL, (2) cluster centroids, (3) condensed nearest neighbors, (4) RaUS, (5) NearMiss-1,
and (6) ALLKNN, as shown in Table 2. The results proved that ABM consumed more time than the
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Table 2. Time Consumption Comparison of Seven Methods at Different Imbalance Ratios

Imbalance ABM TL [33] CONN [10] RaUS [14] NearMiss-1[19] ALLKNN [34]

Ratio (s) (s) (s) (s) (s) (s)
13 7.7 87.5 122.1 13 32.9 290.2
5 13.2 1123 183.9 2.2 53.7 360.1

CONN, Condensed nearest neighbors.

Table 3. Average Accuracy, G-mean, and Macro-F1 at Imbalance Ratio 13

Classification Methods  Under-Sampling Methods Accuracy (%) F1_macro G_mean

ABM 92.23 0.934 0.922

SVM RaUS 89.38 0.885 0.884
NearMiss-1 90.05 0.912 0.902

ABM 97.252 0.977 0.987

MCNN RaUS 95.13 0.922 0.916
NearMiss-1 97.30 0.981 0.975

Table 4. Average Accuracy, G-mean, and Macro-F1 at Imbalance Ratio 5

Classification Methods ~ Under-Sampling Methods ~ Accuracy (%) F1_macro G_mean

ABM 92.31 0.927 0.942

SVM RaUS 90.20 0.893 0.911
NearMiss-1 91.64 0.917 0.920

ABM 98.46 0.964 0.984

MCNN RaUS 95.92 0.923 0.928
NearMiss-1 97.81 0.956 0.974

RaUS method but far less than the other five under-sampling methods. Since time loss is an impor-
tant factor in practical applications, we only compared ABM to the NearMiss-1 and RaUS methods
in our work, as both approaches took less time. Meanwhile, we evaluated the performance of the
three under-sampling methods by considering four major aspects: accuracy, G-mean, Macro-F1,
and AUC.

Tables 3 and 4 depict the comparative analysis of the average accuracy, average G-mean, and
average Macro-F1 with different imbalance ratios for the ABM, NearMiss-1, and RaUS methods.
Moreover, Table 3 examines the accuracy, G-mean, and Macro-F1 at the imbalance ratio of 13.
The accuracy, G-mean, and Macro-F1 at the imbalance ratio of 5 are mentioned in Table 4. More-
over, Table 3 presents the samples with the imbalance ratio of 13, and convincing experimental
results are highlighted with underlined bold. The results show the average accuracy of the data
classification based on SVMs and MCNNSs, and our approach obtained the average accuracies of
92.23% and 97.52%, respectively, which are better than the accuracies of the RaUS and NearMiss-1
methods. Meanwhile, the proposed ABM had an average Macro-F1 of 0.934 and 0.977, respectively,
whereas 0.934 was the highest value compared to RaUS and NearMiss-1 in the SVM, but 0.977 was
lower than NearMiss-1 in the MCNN. The average G-mean of the SVM and MCNN based on our
method are 0.922 and 0.987, respectively. Both of them were higher than the RaUS and NearMiss-1
methods.

Table 4 illustrates the imbalance ratio of 5 with the average accuracy of the data classifica-
tion based on the SVM and MCNN methods and ABM at average accuracy of 92.31% and 98.46%,
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Fig. 3. Ten-fold cross-validation ROC and AUC based on the ABM, NearMiss-1, and RaUS methods at an
imbalance ratio of 13. Different color curves represent the ROC at each cross validation, and the mean rep-
resents the average ROC of 10 verifications. (a) Results of NearMiss-1 based on SVM. (b) Results of RaUS
based on SVM. (c) Results of ABM based on SVM. (d) Results of NearMiss-1 based on MCNN. (e) Results of
RaUS based on MCNN. (f) Results of ABM based on MCNN.

respectively, which outperforms the RaUS and NearMiss-1 methods. The proposed method shows
the average Macro-F1 of 0.927 and 0.964, which are higher than RaUS and NearMiss-1. The average
G-mean of 0.942 and 0.984 are also adopted by ABM. In summary, these results demonstrat that
ABM performs better than the RaUS and NearMiss-1 methods in terms of accuracy and G-mean
for the imbalanced MI ECG data and normal ECG data.

The performance results of AUC are summarized in Figures 3 and 4 and Tables 5 and 6. The
highly convincing results are represented in underlined bold. The 10-fold cross validation of data
processed for the ABM, RaUS, and NearMiss-1 methods are shown in Figures 3 and 4. In Table 5 and
Figure 3, the sample imbalance ratio is 13, and the three methods obtained the mean AUC based
on the MCNN, which are 0.9832, 0.9756, and 0.9763, respectively. In the SVM, the ABM, RaUS,
and NearMiss-1 methods achieved a mean for the AUC of 0.9645, 0.9480, and 0.9540, accordingly.
Our method also performs better than the conventional results. From the curve distribution of
Figure 3, the fluctuations between the 10 ROC curves obtained based on ABM are small, but the
fluctuation range of the other two methods (RaUS and NearMiss-1) is large; the main reason is
that the distribution of selected samples based on entropy are more stable. In other words, the
data obtained by the ABM method contains less variance and higher classification stability.

In Table 6 and Figure 4, the imbalance ratio is 5, and the three methods achieve the mean AUC
based on the MCNN, which are 0.9911, 0.9706, and 0.9852, respectively. The ABM method shows
better results, and the average AUC values for the three conventional methods following SVM
classification are 0.9694, 0.9554, and 0.9546, respectively. In addition, as shown in Figure 4, when
the imbalance ratio is 5, the curve distribution differences of the three methods are reduced, and
all of the ROC curve distributions are stable, which means that when the sample imbalance ratio is
small, the samples selected by the three methods have little effect on the results. Considering that
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Fig. 4. Ten-fold cross-validation ROC and AUC based on the ABM, NearMiss-1, and RaUS methods at an
imbalance ratio of 5. Different color curves represent the ROC at each cross validation, and the mean rep-
resents the average ROC of 10 verifications. (a) Results of NearMiss-1 based on SVM. (b) Results of RaUS
based on SVM. (c) Results of ABM based on SVM. (d) Results of NearMiss-1 based on MCNN. (e) Results of
RaUS based on MCNN. (f) Results of ABM based on MCNN.

Table 5. Average AUC of 10-Fold Cross Validation After Data
Processed by Three Under-Sampling Methods (Sample
Imbalance Ratio Is 13)

Under-Sampling Methods

Classification Methods ABM  NearMissT RalS
SVM 0.9645 0.9540 0.9480
MCNN 0.9832 0.9763 0.9756

Table 6. Average AUC of 10-Fold Cross Validation After Data
Processed by Three Under-Sampling Methods (Sample
Imbalance Ratio Is 5)

Under-Sampling Methods

Classification Methods ABM  NearMiss1 RalUS
SVM 0.9694 0.9546 0.9554
MCNN 0.9911 0.9852 0.9706

in imbalanced data processing the data distribution based on our method is more concentrated,
the total sample attributes are not much different. Figures 3 and 4 and Tables 5 and 6 demonstrate
that our proposed method has better performance than the RaUS and NearMiss-1 methods. In
comparison, the accuracy, G-mean, Macro-F1, and mean AUC of the proposed ABM surpasses the
other conventional methods.
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4 CONCLUSION AND FUTURE WORK

In this article, a novel effective under-sampling mechanism called ABM is proposed to address the
imbalanced MI dataset. Moreover, the experiment results show that our method based on GNB
and entropy has high efficiency to deal with imbalanced data, and it consumes less time than
the other five conventional under-sampling methods but it takes slightly longer than RaUS. In
other words, the proposed ABM outperforms RaUS and NearMiss-1 in PTB ECG data. Meanwhile,
the constructed eight-layer MCNN can be trained with less time and has high performance for
imbalanced ECG classification; all of them verify the effectiveness of our proposed method.

However, the proposed ABM still has some challenges. For example, the number of minority
samples should not be too small to achieve ABM. In addition, ABM can only validate a single
two class of datasets. In the future, we will modify the proposed ABM to verify more multi-class
datasets (i.e., real clinical ECG data).
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