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ABSTRACT Google Colaboratory (also known as Colab) is a cloud service based on Jupyter Notebooks
for disseminating machine learning education and research. It provides a runtime fully configured for deep
learning and free-of-charge access to a robust GPU. This paper presents a detailed analysis of Colaboratory
regarding hardware resources, performance, and limitations. This analysis is performed through the use of
Colaboratory for accelerating deep learning for computer vision and other GPU-centric applications. The
chosen test-cases are a parallel tree-based combinatorial search and two computer vision applications: object
detection/classification and object localization/segmentation. The hardware under the accelerated runtime
is compared with a mainstream workstation and a robust Linux server equipped with 20 physical cores.
Results show that the performance reached using this cloud service is equivalent to the performance of the
dedicated testbeds, given similar resources. Thus, this service can be effectively exploited to accelerate not
only deep learning but also other classes of GPU-centric applications. For instance, it is faster to train a CNN
on Colaboratory’s accelerated runtime than using 20 physical cores of a Linux server. The performance of
the GPU made available by Colaboratory may be enough for several profiles of researchers and students.
However, these free-of-charge hardware resources are far from enough to solve demanding real-world
problems and are not scalable. The most significant limitation found is the lack of CPU cores. Finally, several
strengths and limitations of this cloud service are discussed, which might be useful for helping potential users.

INDEX TERMS
GPU computing.

I. INTRODUCTION

Deep learning applications are present in different aspects
of our daily lives, such as web search engines, social net-
work recommendations, natural language recognition, and
e-commerce suggestions [1]. This class of application usu-
ally rely on heavy computations on massive datasets. There-
fore, parallel computing is traditionally considered to run
the training process in a feasible time. Graphics process-
ing units (GPU) are massively parallel devices candidates
to perform such a parallel task. This kind of accelerator
is ubiquitous, accessible, and deliver a high GFlops/Dollar
rate [2]. Additionally, the main deep learning frameworks are
programmed for NVIDIA GPUs [3].
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Hardware resources evolve risks [4]: under and overutiliza-
tion, depreciation of the hardware, and failures. There are also
costs related to maintenance, energy, and human resources.
In a research group reality, it may be difficult to keep a robust
computer with several GPUs for tests. Furthermore, it is
costly to provide for each member of the team a workstation
equipped with a high-end GPU.

Nowadays, cloud solutions are attractive because they pro-
vide hardware on the fly, and remove the need for maintaining
and configuring hardware resources. Cloud platforms such as
Amazon, Intel, Azure, and Google Cloud provide in a pay-
by-hour manner GPUs and a runtime fully configured for
deep learning. Also, NVIDIA offers standalone dockers with
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pre-configured CUDA environment for deep learning that can
be applied to several cloud platforms [5].

Under the scope presented above, Google has created
Colaboratory (a.k.a. Colab), a cloud service for disseminating
machine learning education and research [6]. The runtime
provided by this cloud service is fully configured with the
leading artificial intelligence (AI) libraries and also offers a
robust GPU. This Google service is linked to a Google Drive
account, and it is free-of-charge.

The primary objective of this paper is to study the feasi-
bility of Colaboratory for accelerating deep learning appli-
cations. To the best of our knowledge, the present paper is
the first work to analyze both performance and resources of
Colaboratory, as well as the use of this cloud-based service as
a tool for accelerating deep learning applications. To accom-
plish the primary objective, we performed preliminary exper-
iments and implemented two deep learning applications for
computer vision: object classification and object localization
and segmentation.

The main contributions of the present research work are
the following. We show that Google Colaboratory can be
effectively used to accelerate not only deep learning but also
other classes of GPU-centric scientific applications. Using
Colaboratory’s accelerated runtime for training a CNN can
be faster than 20 physical cores of a Linux server. Moreover,
we provide a detailed analysis of this cloud service regarding
hardware sources, performance, and possible applications.
Finally, we outline several strengths and limitations of Google
Colaboratory, which might be useful for helping potential
users.

The remainder of this paper is organized as follows.
Section II presents the background topics and related works.
Section III brings a preliminary evaluation of Colaboratory’s
hardware resources and performance. In turn, two computer
vision use cases are explored in Section IV: object classifi-
cation, and object localization and segmentation. An avail-
ability experiment is performed in Section V. An availability
experiment is performed in Section V. Next, Section VI brings
a discussion about the findings of Sections III-V. Finally,
Section VII outlines the conclusion of the present research
work.

Il. BACKGROUND AND RELATED WORKS

This section presents background information and provides
an overview of related contributions in the literature that
investigate the viability of cloud services for processing high-
performance computing applications. The remainder of this
section is organized as follows. Section II-A briefly intro-
duces the topic of Deep Learning for Computer Vision.
In turn, the Google Colaboratory cloud platform is introduced
in Section II-B. Finally, Section II-C brings the related works.

A. DEEP LEARNING FOR COMPUTER VISION

Nowadays, digital image processing is used in a variety of
applications, whether for object segmentation into images,
extraction of image information or even classification of
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patterns [7]. Many computer vision applications are intended
to use the operating power of deep learning methods, such as
Convolutional Neural Networks (CNN) [8].

CNN are mainly applied for analyzing visual imagery, and
it has been proven to be crucial in many applications for
recognition and decision making [1]. The additional convo-
lutional layers help the network to learn filters that in others
traditional algorithms were hand-engineered. The goal of the
added layers is to make the network more robust when dealing
with transformations in the image. Thus, CNN are also known
by space invariant artificial neural networks (SIANN).

Two main problems are encountered when using CNN:
specific hardware for good performance and high power con-
sumption of this hardware. For example, health applications
need to be recognized for diseases and structures at a high
level of accuracy to save lives. It must be done promptly to
treat the disease [9]. So CNN’s high accuracy index applies
to this problem, but high-performance hardware is required to
have the life-saving response time. Therefore, GPUs are good
candidates for such a task. Besides being massively parallel,
this sort of device is also energy efficient [2], [3].

B. GOOGLE COLABORATORY

Before introducing Google Colaboratory, we introduce
Jupyter Notebooks, the technology which Colaboratory is
based on. Jupyter is an open-source and browser-based tool
that integrates interpreted languages, libraries, and tools
for visualization [10]. A Jupyter notebook can work either
locally or on the cloud. Each document is composed of mul-
tiple cells, where each cell contains script language or mark-
down code, and the output is embedded in the document.
Typical outputs include text, tables, charts, and graphics.
Using this technology makes easier to share and replicate sci-
entific works since the experiments and results are presented
in a self-contained manner [11].

Google Colaboratory (a.k.a Colab) is a project that has the
objective of disseminating machine learning education and
research [6]. Colaboratory notebooks are based on Jupyter
and work as a Google Docs object: can be shared and
users can collaborate on the same notebook. Colaboratory
provides either Python 2 and 3 runtimes pre-configured
with the essential machine learning and artificial intelligence
libraries, such as TensorFlow, Matplotlib, and Keras. The
virtual machine under the runtime (VM) is deactivated after
a period of time, and all user’s data and configurations are
lost. However, the notebook is preserved, and it is also pos-
sible to transfer files from the VM hard disk to the user’s
Google Drive account. Finally, this Google service provides a
GPU-accelerated runtime, also fully configured with the soft-
ware previously outlined. The Google Colaboratory infras-
tructure is hosted on the Google Cloud platform.

C. RELATED WORKS

Works that study the viability of cloud services for processing
high-performance computing (HPC) applications usually rely
on Amazon EC2 service [12]-[14]. The experimental pro-
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tocol of the listed studies varies. This way, the results and
conclusions of the related works are different, even though
they use Amazon services. According to Juve et al. [12],
an instance of Amazon EC2 can achieve a performance
comparable to physical systems given similar resources.
In contrast, Jackson et al. [13] claim that the underlying
network infrastructure of the EC2 cloud platform severely
limits performance. As a consequence, EC2 instances are
much slower than a typical mid-range Linux cluster. In turn,
Expésito et al. [14] analyze performance bottlenecks in HPC
application scalability on the Amazon EC2 service.

Contrasting to the works listed in the last paragraph,
Iosup et al. [15] compares four different cloud services for
processing scientific computing workloads: Amazon EC2,
GoGrid, ElasticHosts, and Mosso. According to the results,
the evaluated services need an order of magnitude in perfor-
mance improvement to be useful to the scientific community.

The literature on Google Colaboratory mainly consists
of online tutorials based on the official documentation [6].
Among these tutorials, the one by Fuat [16] distinguishes
from the others. It gives information about the underlying
hardware, presents tutorials on installing well-known artifi-
cial intelligence frameworks on Colaboratory, and also pro-
vides information about how to access a project on GitHub.

Differently from the work by Fuat, the present research
is not a tutorial. Additionally, it is also not a comparison
between cloud services. This work analyses different aspects
of Google Colaboratory, such as hardware resources, perfor-
mance, limitations, and possible uses. In this sense, it is sim-
ilar to Juve et al. (2009) and Jackson et al. (2010). Moreover,
the present research studies the feasibility of Colaboratory
for accelerating deep learning and other GPU-centric appli-
cations.

IIl. PRELIMINARY EXPERIMENTS ON GOOGLE
COLABORATORY

There is no consensus in the related works whether cloud
services are useful for processing compute-intensive scien-
tific applications. Additionally, the related work about Colab-
oratory brings no performance analysis. This preliminary
set of experiments is focused on knowing better Google
Colaboratory’s hardware resources and finding out what kind
of compute-intensive applications this cloud service can be
effectively used to accelerate. Furthermore, this section aims
at answering the following research question: Given similar
resources, is it possible to run a compute-intensive scientific
application on Google Colaboratory and achieve a perfor-
mance equivalent to the one of dedicated hardware?

A. METHODOLOGY

In this analysis, a GPU-accelerated backtracking for enu-
merating all feasible solutions of the N-Queens problem is
used as test-case. Backtracking is a problem-solver paradigm
that evaluates a solution space in depth-first order. It is
present in several research areas, such as artificial intelligence
and operations research, and it is considered an essential
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class of high-performance computing (HPC) application [17].
Moreover, this class of parallel algorithm suits well this eval-
uation: the GPU portion of the application processes almost
100% of the solution space.

GPU-accelerated backtracking usually consists of two
main parts: initial backtracking on CPU, and the search on
GPU [18]. The N-Queens problem, the problem of placing
N non-attacking queens on a N x N board, is a classic
benchmark for GPU-based backtracking. For the prelimi-
nary analysis, the backtracking solves the N-Queens prob-
lem for board sizes (N) ranging from 10-18. The solution
space ranges from few thousands to several billions of nodes.
A serial, multithreaded, and GPU-accelerated versions of the
backtracking were implemented.

Two metrics are collected in each experiment: execution
time and the rate of node evaluations/second. The execution
time is used for calculating the speedup metric, which means
the benefit of using parallel programming for solving the
N-Queens problem. In turn, the node evaluations/second rate
is the performance of the hardware regarding board con-
figurations evaluated/second. The CPU baseline used for
calculating the speedup is the serial backtracking executed
on one CPU core/thread of Colab testbed, further referred to
as Terial- The speedup metric is calculated as follows [17]:

Tserial

(D
Tpamllel
In the scope of this performance analysis, Tpqraier Mmeans
the execution time of the multithread or the GPU-based back-
tracking.

B. PARAMETERS SETTINGS

All CUDA programs were parallelized using CUDA C 9.0
and compiled with NVCC 9.0 and GCC 5.4. All mul-
tithreaded versions were parallelized using OpenMP.
The kernel execution time was measured through the
cudaEventRecord function of CUDA, whereas the over-
all application time through the c1ock function of C.

Three testbeds were used in the present evaluation:
A Linux server, a mainstream workstation, and the hardware
configuration under Colaboratory’s accelerated runtime, fur-
ther referred to as Colab. All testbeds are summarized
in Table 1 and detailed as follows.

o Server: Operates under CentOS 7.1 64 bits and it is
composed of two Intel Xeon E5-2650v3 @ 2.30 GHz
with 20 cores, 40 threads, and 32 GB RAM. It is
equipped with a NVIDIA Tesla K40m (GK110B
chipset), 12 GB RAM, 2880 CUDA cores @745 MHz.

« Mainstream: Operates under Ubuntu 16.04 LTS 64 bits
and it is composed an Intel Core i7 3770, with 4 cores
@3.4 GHz, 8 threads, and 8 GB RAM. It is equipped
with a NVIDIA GeForce 1050TI (GP107 chipset),
4 GB RAM, 768 CUDA cores @1290 MHz.

o Colab: Operates under Ubuntu 17.10 64 bits and it is
composed of an Intel Xeon processor (not specified)
with two cores @2.3 GHz and 13 GB RAM. It is

61679



IEEE Access

T. Carneiro et al.: Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications

TABLE 1. Specification of the three testbeds used in the preliminary performance evaluation: Server, mainstream, and the hardware configuration under

colaboratory’s accelerated runtime.

Testbed CPU Clock

CPU Cores/Threads

GPU CUDA cores  GPU Memory

Server 2.3 GHz 20/40
Colab 2.3 GHz (n/a)/2
Mainstream 3.4 GHz 4/8

Tesla K40m 2880 12 GB
Tesla K80 2496 12 GB
GTX-1050 Ti 768 4 GB

(a)
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FIGURE 1. The average processing rate reached by: (a) one core and one
thread and (b) the GPU of Server, Colab, and Mainstream testbeds
enumerating all feasible solutions of the N-Queens. On the graphics,
testbed configuration vs. average processing rate (in 106 nodes/second).

equipped with a NVIDIA Tesla K80 (GK210 chipset),
12 GB RAM, 2496 CUDA cores @560 MHz

C. RESULTS
One can see in Figure 1 the average node evaluations/second
rate observed for one core/one thread of each testbed, as well
as for the GPU of each testbed. The results are in accor-
dance with Table 1: the highest node evaluations/second rate
is observed for the most powerful GPU (K40 - Server).
In turn, the free of charge GPU of Colab is superior to the
mainstream device (6%) and reaches 93% of Tesla K40’s
performance. The single core performance is also in agree-
ment with Table 1: the highest performance is observed for
the mainstream workstation (6.41 x 10° nodes/sec), which
has the CPU with the highest clock. In turn, Colab’s serial
performance is slightly superior to the serial performance of
the Linux server.

Figure 2 presents for each testbed the average speedup
reached by the multithreaded and the GPU implementations
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compared to the serial baseline (Figure 1 - (a)). The results for
the GPU-based implementation are also in accordance with
Table 1: the server testbed, which is equipped with a Tesla
K40 GPU, reaches an average speedup of 19.11x. In turn,
an average speedup of 18.31x and 17x observed for Colab
and Mainstream testbeds, respectively. Moreover, it can be
observed in Figure 2 that Colab provides only one CPU core
that supports two threads: no speedup is observed for the
multicore implementation running on Colab. In turn, average
speedups of 13.9x and 4.27x are observed for the mul-
ticore implementation running on Server and Mainstream,
respectively.

The results of this section are following Juve et al. [12]
and give an affirmative answer to the question posed at
the beginning of the present section: it is possible to run a
compute-intensive scientific application on Google Colabo-
ratory and achieve a performance equivalent to the one of
dedicated hardware, given similar resources. In this case,
the resources are a GPU and a single CPU core/thread.
Furthermore, results show that Google Colaboratory can be
effectively used to accelerate GPU-centric applications.

The most significant limitation found concerning the hard-
ware resources is the lack of CPU cores: only one CPU core
that supports two threads is provided. In contrast, nowadays
ordinary workstations are equipped with multicore CPUs.
Therefore, it is not worth, in terms of performance, using
Colaboratory for running CPU-based multithreaded applica-
tions. However, the lack of CPU cores is not a concern in the
scope of deep learning applications. As stated in Section I,
the essential deep learning frameworks supports NVIDIA
devices.

IV. USING COLABORATORY FOR ACCELERATING DEEP
LEARNING APPLICATIONS

This section analyses Google Colaboratory as a tool for
accelerating modern and complex deep learning applications.
Two computer vision use cases are explored in this eval-
uation: object detection/classification and object localiza-
tion/segmentation. This section is organized as follows. Ini-
tially, each use case is introduced. Then, the implementation
of each method is detailed following the organization of the
provided notebook. Next, the methodology of evaluation is
presented. Finally, the results are analyzed.

A. OBJECT CLASSIFICATION APPLICATION
In Computer Vision, object classification or detection is the
task of assigning an image one label from a set of predefined
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FIGURE 2. The average speedup reached by: (a) all cores/threads and
(b) the GPU of Server, Colab, and Mainstream testbeds compared to one
core - one thread of Colab’s CPU. On the graphics, testbed configuration
vs. average speedup.

classes. This task is one of the core problems in Computer
Vision and has several practical applications, ranging from
lung nodule malignancy classification [19] to the localization
of mobile robots [20].

1) IMPLEMENTATION

We implemented the object classification application using
the browse-based notebook provided by Colaboratory.! The
explored object detection implementation is composed of
2 stages. In the first one, the target dataset is loaded into
memory and then pre-processed. In this preprocessing phase,
the images are normalized between 0 and 1, and their labels
are converted to the one-hot vector format, which is a binary
vector where only one element has its value equals to 1.

In the second stage, a Convolutional Neural Net-
work (CNN) is built, compiled and trained. This network can
be outlined as a sequence of 2 convolution layers, a Max-
Pooling layer, a Dropout layer, a flatten layer, and 2 dense
layers. In the convolution layers 32 and 64 (3 x 3) filters were
applied using the ReLU activation function. In the Dropout
layer, each input has a 0.5 probability to be set to zero,
reducing the overfitting of the network. In the MaxPooling
layer, the subsampling process is performed by returning the
max value of a 2 x 2 moving window, using stride 2. In the

IThe description of the implementation follows the cells of the notebook,
which is available at: https://goo.gl/4r6pZ6.
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flattening layer, the MaxPooling layer output is reshaped into
a one-dimensional vector. In the first dense layer there are 128
neurons using the ReLU activation function. In the second
dense layer there are 10 neurons using the Softmax activation
function.

Further, this CNN is trained using mini-batch size of 128,
a categorical cross-entropy loss and ADADELTA optimizer
through 12 epochs. Moreover, the images used to train and
test the CNN are from the MNIST dataset [8]. This dataset is
composed of 70, 000 labeled 28 x 28 pixel grayscale images
of handwritten digits. More specifically, 10, 000 of these
images were used as the testing set and the others as the
training set.

B. OBJECT LOCALIZATION AND SEGMENTATION
APPLICATION

With the advent of facial detection, autonomous vehi-
cles, computer-aided diagnosis and many other systems,
the demand for faster and accurate object detection methods
has significantly increased. To accomplish such challenging
tasks, these methods have not only to classify every object
in a given image, but also localize, or even segment them,
which substantially raises the task complexity. Fortunately,
the most successful approaches to solve these tasks, such as
Mask Region-based Convolutional Neural Networks (Mask
R-CNN) [21], are available on the Internet.

1) IMPLEMENTATION

The implementation of object localization and segmentation
uses Python 3, Keras, and the TensorFlow implementation
of Mask R-CNN.? This implementation consists of 6 steps.
First of all, it is required to download and compile the
MASK R-CNN implementation, as well as to download and
compile MS-COCO dataset Python API. Next, we change
the MASK R-CNN default execution mode configurations
to perform only one inference at a time. With the previously
installed MS-COCO Python API, we download the MASK
R-CNN pre-trained weights on MS-COCO dataset. Then,
we build the MASK R-CNN model and then load pre-trained
weights into it. Finally, we load the target image into memory
and then feed it to the MASK R-CNN model.

C. METHODOLOGY
The objective of the present computational evaluation is to
verify whether it is advantageous using Colaboratory for
processing modern deep learning applications rather than
dedicated hardware. The testbeds introduced in Section III
are also used: Colab, Server, and Mainstream. For this
evaluation, only the multithreaded and GPU-versions of the
deep learning applications previously detailed are considered
(Sections IV-A and IV-B).

To compare the testbeds, we extend the speedup to define
two metrics: speedup;pu and speedup’. The first one means

2The description of the implementation follows the cells of the notebook,
which is available at: https://goo.gl/CvD6HQ.
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TABLE 2. Average time (in seconds) required by the multithreaded and GPU versions of the object classification application for training the CNN on colab
and mainstream testbeds. In angled brackets < (a), (b) >, it is shown: the average speedup observed for the GPU-accelerated implementation compared
to: (a) - the multithreaded implementation executed on the same testbed (speedupgpu); (b) - the multithreaded implementation executed on 20 cores of

the Server testbed (speedup?).

Colab

Multicore GPU Speedup

Mainstream

Multicore ~ GPU Speedup

1925 s 135 s

< 14.77x, 2.93x >

1600 s 110 s < 14.54x, 3.6x >

TABLE 3. Average time (in seconds) required by the multithreaded and GPU versions of the object localization and segmentation application for
processing the three images on Colab and Mainstream testbeds. In angled brackets < (a), (b) >, it is shown: the average speedup observed for the
GPU-accelerated implementation compared to: (a) - the multithreaded implementation executed on the same testbed (speedupsp,,); (b) - the

multithreaded implementation executed on 20 cores of the Server testbed (speedup?).

Images Colab Mainstream
Name Resolution multithreaded ~ GPU Speedup multithreaded ~ GPU Speedup
Highway (1152, 1600, 3) 29.7 s 2.5s < 11.8x,1.3x > 9.7s 2.6s < 3.7Tx,1.2x >
Savanna  (686,1024, 3) 16.2 s 0.7s <23.1x,25x > 7.7s 06s <12.8x,3.0x >
Team (443,760, 3) 15.6 s 0.8s <19.5%,2.3x > 9.0s 0.7s <12.8x,2.7x >

how much faster it is on average using the GPU of testbed
t instead of using all its CPU cores, and it is defined as
follows:

T! .
speediyy =~y 2 @
gpu
Where T, icor 15 the average execution time of the mul-

tithreaded version on testbed ¢ using all its CPU cores, and
Téfpu is the same, but executing the application on the GPU
of testbed 7. In turn, speedup’ is how much faster it is
on average using the GPU of testbed ¢ than all 20 cores
of the Linux server testbed. This metric is defined as
follows:
server
speedupg — multicore (3)

t
TgI’ u

Where T,¢7"" is the average execution time of the mul-
tithreaded version executed on all 20 physical cores of the
Server testbed.

Concerning the first implementation, the average execution
time is the one necessary for training the CNN architecture
(Section IV-A). The training procedure is repeated 30 times
and the average is considered for calculating the metrics given
above.

The second implementation performs object localization
and segmentation on three arbitrary images from the Internet:
Highway, Savanna, and Team. In this second application,
the evaluation metric is based on the execution time of the
R-CNN model introduced in Section IV-B. More specifically,
for each image, the object localization and segmentation is
repeated 30 times. Then the average execution time is com-
puted, generating three final results.

It is worth noting that the application execution time was
measured using the t ime python module.

D. RESULTS

Concerning the object classification, one can see in Table 2
the average time required by both Colab and Mainstream to
train the CNN. This table also brings the average speedup
observed for the GPU-accelerate implementation compared
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to its multithreaded counterpart running on the same testbed
(speedupy,,,) and compared to its multithreaded counterpart
executed on all cores of the Server testbed (speedup?). First
of all, it is important to point out that the multithreaded
implementation of TensorFlow does not exploit vectorization
instructions such as AVX2 and FMA, which is detrimental to
the performance of the Server testbed. Using Collaboratory’s
accelerated runtime to train the CNN is on average 2.93x
faster than using all physical cores of the Linux server. In turn,
the mainstream workstation is faster than Colab to train the
CNN, on both hardware configurations: it is on average 3.6 x
faster than the Linux server.

It is shown in Table 3 the time required by Colab and
Mainstream to perform the object localization and segmen-
tation, as well as the speedup reached by the GPU versions
compared to its multithreaded counterpart. The results for
the object localization and segmentation follow the ones of
the previous experiment: it is more advantageous to perform
object localization and segmentation on Colaboratory’s accel-
erated runtime than on 20 physical cores of the Server testbed.
The Speedups observed for Colab compared to the Server
testbed range from 1.3x to 2.5x (speedup’). Moreover,
Mainstream’s GPU is also slightly superior to Colab’s one for
performing object localization and segmentation: speedups
compared to the Server testbed range from 1.2x to 3.0x.

According to both set of experiments, it is worth investing
on GPUs for accelerating deep learning applications. A mid-
end GPU, such as NVIDIA GeForce 1050TI can be more
than 20x faster than a quad-core CPU, and more than 3x
faster than two robust CPUs (refer to Tables 2 and 3). There-
fore, we conclude that Colaboratory is useful for accelerating
complex deep learning applications, in case the underlying
deep learning software supports NVIDIA GPUs. On the one
hand, it is worth using this free-of-charge Google service,
especially when the user has no access to at least a mid-end
GPU. In this situation, a substantial benefit is observed when
exploiting the accelerated runtime. On the other hand, if the
underlying deep learning software is not GPU-ready, it is not
worth using Colaboratory for performance, due to its lack of
CPU cores (as observed in Section III).
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Even in situations where the underlying software is not
GPU-ready, Colaboratory may be useful. It offers a run-
time configured with several frameworks and libraries, e.g.,
CUDA, Keras, TensorFlow, and OpenCV. Removing from
the programmer the responsibility of setting up software may
increase productivity. Concerning the notebooks, the output
given is also a document, which makes straightforward shar-
ing research results.

V. AVAILABILITY EXPERIMENTS
The training process of a deep learning application may take
a long time. According to Colaboratory’s documentation [6],
a long GPU utilization can be confused with cryptocurrency
mining. As a consequence, the user may be forbidden to
access the accelerated runtime. The official documentation
gives no information concerning how much time it is possible
to use the GPU resources, and the tutorial by Fuat [16] claims
that the time limit is 12 hours.

This experiment aims at answering the following research
questions:

1) Itis possible to use indefinitely the accelerated runtime
provided by Google Colaboratory without penalties?

2) In case the user loses the access to the accelerated
runtime, how much time does it take to get access to
the accelerated runtime again?

1) METHODOLOGY

To verify whether it is possible to use the accelerated runtime
uninterruptedly, a CUDA-C program runs on background
until the user gets disconnected. To figure it out whether
the cloud forbids the user to access the accelerated runtime,
after disconnection, the user reconnects, and the program is
launched once more.

The CUDA-C program presented in Listing 1 is the one
used in this investigation. This code exploits the fact that
kernel launches on GPU are asynchronous concerning the
host [22, p. 32]. The kernel executed by the GPU performs
an infinite loop on the device (lines 1-5). The CPU por-
tion of the code (lines 6-13) launches the kernel 1oop on
GPU (line 7). After launching the kernel, the code on CPU
prints the date provided by the system every 60 seconds
(line 8-11). The result is outputted on browser-based the
notebook. This way, it is possible to retrieve the results, even
in case the VM is lost and restarted.

2) RESULTS

According to the results, the program of Listing 1 can be
executed for 12 hours in the first time. Then, the user was
disconnected, and the VM restarted. After reconnecting,
the program was uploaded and run once more. In the sec-
ond time, it was observed that the user was disconnected
after 3 hours of GPU utilization. Then, it was not possible
to connect to the accelerated runtime for 5 hours, and the
platform returned the following message: "No backend with
GPU available". Additionally, it is possible to connect to the
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1 __global__ void loop (){
2 int i = 0;

3 while (true)

4 ++1

5 }

6 int main (){

7 loop <<<1,1>>>();

8 while (true ){

9 system ("date");
10 usleep (60000000);
11 }

12 return 0;

13 }

Listing 1. CUDA-C program used on the availability experiment.

regular runtime while the user is banned from the accelerated
one. The experiment was run for a third and fourth times after
the ban of 5 hours, and the results were the same.

V1. DISCUSSION AND MAIN INSIGHTS

This section brings a discussion on the use of Colaboratory
for accelerating deep learning applications. The content of
this section is based on the results of Sections III and IV
and on our experiences using Colaboratory. This discus-
sion is given concerning performance, possible applications,
and limitations. Finally, the main insights from the present
research work are also outlined.

A. PERFORMANCE

Our findings evidence that the Colaboratory’s accelerated
runtime is adequate not only for accelerating deep learn-
ing but also for processing other GPU-centric applications.
Using Colaboratory’s accelerated runtime for processing the
deep learning applications and the GPU-centric combina-
torial search is faster than using 20 physical CPU cores.
Therefore, it is worth using the cloud service in question than,
for instance, a robust server with no GPU, a laptop, or a
workstation that needs to be configured and has a mid-
end GPU. On the one hand, the free-of-charge hardware
resources provided by Colaboratory are far from enough to
solve demanding real-world problems and are not scalable.
On the other hand, the main deep learning frameworks are
programmed for NVIDIA GPUs, and the performance of the
GPU provided by Colaboratory may be enough for several
profiles of researchers and students.

In situations where better hardware resources than the ones
provided by Colaboratory are available, it is possible to install
Jupyter locally and run a Colab notebook. It is also possible
to execute the content of each cell individually, without using
Jupyter. In this case, it is required to configure the whole soft-
ware stack: GPU drivers, CUDA toolkit, artificial intelligence
libraries, programming languages, and so on. It is worth to
point out another aspect of Colab: the Internet infrastruc-
ture is fast, especially when accessing resources from other
Google services, such as Drive and Storage. Thus, it may
be interesting for some users manipulating datasets using
Colaboratory rather than a residential Internet connection.
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B. OTHER POSSIBLE APPLICATIONS

Besides the use for accelerating deep learning and other
GPU-centric applications, Colaboratory may be interesting
for teaching HPC. The accelerated runtime is fully opera-
tional, which keeps inexperienced users from configuring
the CUDA Toolkit, compilers, and GPU drivers. Moreover,
a teacher can share notebooks containing lessons and code
ready for execution. The free-of-charge GPU is superior to
several low-end and mid-end gamer GPUs, which democra-
tizes the access to such an expensive device.

In a scenario of a research group with a low budget,
Colaboratory can also be useful. The accelerated runtime can
be exploited for accelerating deep learning and other appli-
cations, keeping the members from software configuration
and hardware maintenance. Moreover, it is worth using the
free-of-charge resources of Colaboratory to decide whether
to buy a dedicated computer or contract cloud-based services
for deploying applications. Finally, Jupyter notebooks are a
straightforward way of collaboration between team members.

C. LIMITATIONS

Besides the positive aspects previously discussed, this cloud
service also presents limitations that are worth to discuss.
First of all, it is difficult to program directly on a Colab-
oratory notebook. Programs written in compiled languages
must be compiled on the user’s computer, and then uploaded
for execution. Therefore, in case the user has no GPU, it is
not straightforward using the accelerated runtime for testing
and validating a GPU-based application. Moreover, there are
limits on both virtual machine lifetime and GPU utilization.
The VM and all files are lost after 12 hours, and the user
needs to reconfigure the runtime from scratch. Thanks to
the notebooks saved in Google Drive, this reconfiguration is
straightforward but may take a while.

There may be situations where it is required to use Google
Drive as an interface between Colaboratory and the user’s
computer. For instance, several deep learning applications
receive huge datasets as input. In such a situation, the user
must learn the API used by Drive to transfer files from Drive
to the VM hard disk. The main limitation concerning this fact
is the limit on transfers between Colaboratory and Drive. One
way of coping with such a restriction is creating scripts to
compress the dataset. Finally, there are no contracts or guar-
antees, which means that the hardware resources may change
along the time, Google may finish the Colaboratory project,
and so on. Thus, users may lose computer resources or even
means of visualizing saved notebooks.

D. MAIN INSIGHTS

The following summarizes the main insights from our study
on Colaboratory as a tool for accelerating deep learning
applications:

o Colaboratory can be effectively used to accelerate
not only deep learning applications but also other
GPU-centric applications.
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o The hardware resources provided by Colaboratory are
far from enough to solve demanding real-world prob-
lems. However, these resources may be enough for sev-
eral profiles of researchers.

o Colab’s performance is equivalent to dedicated hard-
ware, given similar resources.

o The user needs to learn Google API principles to fully
exploit Colaboratory features.

« Jupyter Notebooks are a straightforward tool for sharing
knowledge.

VIl. CONCLUSION AND FUTURE WORKS
This work presented a study about the feasibility of Google
Colaboratory for accelerating deep learning for computer
vision applications. Results show that Colaboratory hardware
resources can reach a performance similar to dedicated hard-
ware. Results also show that it is wort to run experiments on
Colaboratory in case the research group has no GPU more
robust than a K80. Moreover, it is possible to accelerate other
GPU-centric applications than deep learning related ones,
with no need for CUDA runtime configuration. Besides the
performance, it is interesting using this cloud service because
itis straightforward to share notebooks with code and outputs.
The present research also found limitations of Colabora-
tory regarding deep learning and HPC. It is worth to notice the
lifetime of a VM, time limit for GPU utilization, the need of
transferring data to/from Google drive or Git, the limit of data
transfer between Drive and Colab, and the lack of CPU cores.
Furthermore, the hardware provided by Colaboratory is not
scalable and far from necessary for solving bigger problems.
As a future research direction, we propose an application
that breaks the problem in such a way it could be executed
on more than one Colaboratory instance. This way, it would
be possible to use more than one GPU without paying for
an expensive service. Furthermore, Jupyter notebooks can be
executed locally or on other cloud services. We also propose
as future research investigating the use of notebooks on other
platforms, such as local machines and cloud services. Finally,
future investigations of Google Colaboratory as a tool for
teaching HPC are also considered, as suggested in the pre-
vious section.
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