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ABSTRACT

A new effective method to analyze Legislative Systems is presented. Methodology is based

on two main approaches: The interactionism and the statistical. For the first approach, a set

of algorithms to gather the interaction parameters of a like spin glass system was developed.

Using the Linear Response Approximation, interaction and local field values are analytically

obtained. In addition, for the first time, an algorithm to estimate the temperature based on

the iterative scaling of the partition function is exposed. Set of procedures are condensed in

the Extended Boltzmann Machine. In the statistical approach, an algorithm for clustering

data based on the maximization of its correlation is presented. Procedure employs a

like percolation process to compute first and second giant components of a complete

connected network. Clusters emerge by analyzing plateaus of giant components and can

be visualized on the Minimal Spanning Tree (MST) ordered correlation matrix. Procedure

is named as the Nearest Correlated Clusters Algorithm. Available free roll-call vote data

for three Legislative Lower Houses were acquired. Specifically, roll-call vote data collected

are from the United States Houses of Representatives, the House of Commons of the

United Kingdom and the Chamber of Deputies of Brazil. By extracting the political

parties’ majority opinion matrix and using it in the interactionism approach, consensual

and dissensual Legislative zones appear. These zones are gathered by comparing the

average political parties’ opinion with the degree of political interaction in which the

transition from dissensus to consensus happened. On the other hand, using the Lower

House members’ roll-call vote data into the statistical approach, consensual and dissensual

Legislative states emerge. These states are characterized by analyzing the time evolution

of MST ordered correlation matrices and its probability distribution function. By joining

results of both approaches, Legislative consensual regimes are proposed. This methodology

can be used to understand profoundly, collective behavior in Legislative systems and to

foresee political storms.

Keywords: legislative consensual regimes; extended Boltzmann machine; nearest corre-

lated cluster algorithm.



RESUMO

Apresenta-se um novo método para analisar Sistemas Legislativos. A metodologia é

baseada em duas abordagens: A baseada em interações e a estatística. Para a primeira,

foram desenvolvidos um conjunto de algoritmos para obter os parâmetros de interação

de um sistema semelhante ao spin glass. Usando a Aproximação de Resposta Linear,

expressões analíticas para os valores de interação e campo local são apresentadas. Junto

com isso, pela primeira vez é exposto um algoritmo para estimar a temperatura baseada no

escalamento iterativo da função de partição. O conjunto de algoritmos são condensados na

Máquina de Boltzmann Estendida. Na abordagem estatística, mostra-se um algoritmo para

clusterizar os dados baseado na maximização da sua correlação. Este procedimento usa

um processo semelhante à percolação para obter a primeira e segunda componente gigante

de uma rede completamente conectada. Esse algoritmo é nomeado como o Algoritmo dos

Clusters mais Correlacionados. Dados de votação nominal disponíveis e de graça para

três casas baixas Legislativas foram coletados. Em específico, foram coletados dados de

votação nominal da Casa de Representantes dos Estados Unidos, a Casa dos Comuns do

Reino Unido e a Câmara dos Deputados do Brasil. Extraindo a matriz de posição política

dos partidos e usando ela dentro da abordagem baseada em interações, zonas de consenso

e dissenso legislativo aparecem. Essas zonas aparecem comparando a opinião média dos

partidos políticos junto com o valor de interação política necessária para que uma transição

de dissenso para consenso aconteça. Por outra parte, usando os dados de votação nominal

dos membros das casas baixas dentro da abordagem estatística, estados de consenso e

dissenso são obtidos. Esses estados são caracterizados pela análise temporal das matrizes

de correlação organizada pelo MST e a sua distribuição de probabilidade. Juntando

os resultados das duas abordagens, os regimes de consenso Legislativo são propostos.

Essa metodologia pode ser usada para entender profundamente as características de

comportamento coletivo dos sistemas Legislativos e pode prever tormentas políticas.

Palavras-chave: regime de consenso legislativo; maquina de Boltzmann estendida; nearest

correlated cluster algorithm.
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χ1(Ŵ′, Ĥ′, β)

)
and βmax

(
C(Ŵ′, Ĥ′, β)

)
. . . . 99

Figure 42 – Correlation matrices for the United States House of Representatives . . 103

Figure 43 – Correlation matrices for the House of Commons of the United Kingdom 104

Figure 44 – Correlation matrices for the Chamber of Deputies of Brazil . . . . . . . 105

Figure 45 – Correlation matrices colored by political parties for the United States

House of Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 46 – Correlation matrices colored by political parties for the House of Com-

mons of the United kingdom . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 47 – Correlation matrices colored by political parties for the Chamber of

Deputies of Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 48 – Ordered correlation matrices colored by learned clusters for the United

States House of Representatives. . . . . . . . . . . . . . . . . . . . . . . 111

Figure 49 – Ordered correlation matrices colored by learned clusters for the House

of Commons of the United Kingdom . . . . . . . . . . . . . . . . . . . 112

Figure 50 – Ordered correlation matrices colored by learned clusters for the Chamber

of Deputies of Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 51 – Cluster learned by NECO algorithm . . . . . . . . . . . . . . . . . . . 115

Figure 52 – Probability distribution function for correlation matrices for the United

States House of Representatives . . . . . . . . . . . . . . . . . . . . . . 116

Figure 53 – Probability distribution function for correlation matrices for the House

of Commons of the United Kingdom . . . . . . . . . . . . . . . . . . . 117

Figure 54 – Probability distribution function for correlation matrices for the Cham-

ber of Deputies of Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Figure 55 – Political states for correlation probability distributions. . . . . . . . . . 119

Figure 56 – Cumulative distribution function for correlation matrices for the United

States House of Representatives . . . . . . . . . . . . . . . . . . . . . . 121

Figure 57 – Cumulative distribution function for correlation matrices for the House

of Commons of the United Kingdom . . . . . . . . . . . . . . . . . . . 122

Figure 58 – Cumulative distribution function for correlation matrices for the Cham-

ber of Deputies of Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 59 – Bimodal index for Lower Houses. . . . . . . . . . . . . . . . . . . . . . 129

Figure 60 – Legislative consensual-dissensual regimes . . . . . . . . . . . . . . . . . 131

Figure 61 – Legislative consensual regimes for Lower Houses . . . . . . . . . . . . . 132



LIST OF TABLES

Table 1 – Expected possibilitites for three spins system . . . . . . . . . . . . . . . 25

Table 2 – Identified vote options in Lower House databases . . . . . . . . . . . . . 69

Table 3 – Fitted parameters for cumulative distribution function for the United

States House of Representatives . . . . . . . . . . . . . . . . . . . . . . 125

Table 4 – Fitted parameters for cumulative distribution function for the House of

Commons of the United Kingdom . . . . . . . . . . . . . . . . . . . . . 126

Table 5 – Fitted parameters for cumulative distribution function for the Chamber

of Deputies of Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



LIST OF ALGORITHMS

Algorithm 1 – Boltzmann machine algorithm using LRA. . . . . . . . . . . . . . 41

Algorithm 2 – Boltzmann machine algorithm using LRA and Diagonal Trick. . . 45

Algorithm 3 – Boltzmann machine algorithm for learning β̂ . . . . . . . . . . . . 57

Algorithm 4 – Political parties’ majority opinion algorithm. . . . . . . . . . . . . 74

Algorithm 5 – Political party majority random data . . . . . . . . . . . . . . . . 77

Algorithm 6 – Nearest correlated cluster algorithm (NECO) . . . . . . . . . . . 81



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 REVIEW ON STATISTICAL PHYSICS . . . . . . . . . . . . . 17

2.1 Information Theory – Shannon/Boltzmann Entropy . . . . . . 17

2.2 Joint Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Thermodynamic Ensembles . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Microcanonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Canonical Ensemble and Helmholtz Free Energy . . . . . . . . 19

2.3.3 P-T Ensemble and Gibbs Free Energy . . . . . . . . . . . . . . 20

2.4 Thermodynamics of magnetic systems . . . . . . . . . . . . . . . 22

2.4.1 Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 THEORETICAL ASPECTS . . . . . . . . . . . . . . . . . . . . 23

3.1 Analogy to a bill voting system . . . . . . . . . . . . . . . . . . . 23

3.2 Formulation of the Boltzmann Machine Learning Problem . . 23

3.2.1 Partition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Learning Algorithm using Linear Response Approximation

and Bethe Free Energy . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Introducing Bethe free energy . . . . . . . . . . . . . . . . . . . . 37

3.4 Improvement of Learning Algorithm using Diagonal Trick . . 43

3.5 Checking if the Learning Algorithm is Working Properly . . . 47

3.6 Learning β: A hidden feature in Boltzmann machines . . . . . . 51

4 DATA MINING AND MANIPULATION . . . . . . . . . . . . 67

4.1 Setting up the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Legislative Lower House Databases . . . . . . . . . . . . . . . . . 68

4.3 Lower House Databases Manipulation . . . . . . . . . . . . . . . . 71

4.4 Creating political party majority opinion vote matrix . . . . . 73

4.5 Generating political party majority random data . . . . . . . . 76

4.6 Nearest correlated cluster algorithm (NECO) . . . . . . . . . . 79

5 RESULTS AND ANALYSIS . . . . . . . . . . . . . . . . . . . . 86

5.1 Input quantities for extended Boltzmann machine learning

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Learned parameters
{
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1 INTRODUCTION

Legislative systems deals and mediate over the best and most adequate gov-

ernment proposals that determines the social and economic development in democratic

societies. Under the premise of being elected by citizens, Legislative Representatives must

be able for listening society necessities, search a solution for those demands and in the

ideal fashion, ensures its effective application. All this is done in a well-established flow

of legislative activity, beginning with the proposal of bills and ending in its discussion in

plenary sessions. Bills are discussed in order to made amendments to specific issues that

ensures that if a bill is accepted to become a law, it is because its content has been carefully

checked and agreed by all Representatives not matter its political position. However,

Legislative activity is full of political features that given its complexity, is hard to being

identified and analysed in a quantitative way. Besides that, despite some attempts to

capture these political features using statistical approximation based network science

based [1, 2] and machine learning framework [3], a complete method mixing statistical

and numerical approach is still unknown.

In this work it is proposed for the first time, the most complete method for

analyse emergence political collective behaviour. Our method analyses the available free

information of roll-call vote data. Specifically, we use roll-call vote data related to three

Lower Houses: The United States House of Representatives, The House of Commons of the

United Kingdom and the Chamber of Deputies of Brazil. In order to analyse roll-call vote

data, proposed method relies on two different approximations namely, the interactionism

and the statistical.

In the interactionism approach, political parties’ roll-call vote data is used

to extract a set of parameters {wij, hi} used to emulate the dynamics of like spin glass

lattice system. In this case, spins in the lattice will be associated to political parties.

Extraction of parameters is carried out using a Boltzmann machine in which parameters

are derived by finding its analytical expression using Linear Response Approximation

and Bethe Free Energy. Besides that, for the best of our knowledge, an extension in the

Boltzmann Machine to obtain inverse of temperature parameter β is presented. This

extension proposes a new iteratively algorithm able to estimate β, using {wij, hi} already

gathered. This method is named as the Extended Boltzmann Machine. In the political

context, {wij, hi, β} will be associated to the political parties’ pairwise interaction value,
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the capacity for a political party to maintain its political position and the average value of

political interaction among all political parties, respectively.

In the statistical approach, it is analyse Lower Houses Members roll-call vote

data. Lower Houses Members are Representatives, Commons and Deputies for the United

States House of Representatives, the House of Commons of the United Kingdom and

the Chamber of Deputies of Brazil, respectively. Analysis of Lower Houses Members

roll-call vote data is carried using method presented in [1] which reorder Lower House

Members correlation matrix based on the result of Minimal Spanning Tree (MST) technique.

However, in this work, for the first time, an extension of this method to obtain clusters of

Lower Houses Members only taking into account its correlation matrix is exposed. Clusters

are obtained from a like percolation algorithm. This method is named as the Nearest

Correlated Cluster Algorithm.

Figure 1 exposes a summarized plot of both approximations. Upper part of

plot is dedicated to the interactionism approach whereas lower part is for the statistical

approach.

Figure 1 – General overview of the content of this work. In Chapter 1 and 2 is developed the theoretical
aspects related to the extended Boltzmann Machine. In Chapter 3 is exposed the tranformation of
Lower Houses data and the explanation concerned to the Nearest Correlated Clusters Algorithm. Finally,
Chapter 4 is dedicated to the results found using the interactionism and statistical approach.

Source: Author.

Taking into account Figure 1, this work is divided as follows. Chapter 1 and

2 are entirely dedicated to the theoretical aspects related to the extended Boltzmann

Machine. Chapter 3 shows the procedures used for gathering Lower Houses roll-call vote

data, its processing and transformation along all simulated data created to compare results

and the Nearest Correlated Cluster Algorithm. Chapter 4 shows the results obtained from

the two aforementioned approximations. In this chapter, we begin by exposing results
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coming from the Extended Boltzmann Machine and subsequently, results of the Nearest

Correlated Cluster Algorithm are uncovered. Results obtained from both approaches are

condensed in the Legislative Consensual Regimes plot. Finally, last Chapter is dedicated

to the conclusion learned.
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2 REVIEW ON STATISTICAL PHYSICS

It is presented a small review of the most important concepts of Statistical

Physics mandatory to understand the analogy with voting systems.

2.1 Information Theory – Shannon/Boltzmann Entropy

Shannon extracted his information entropy under only four axioms on a

probability set ~p = (p1, p2, · · · , pn) → pi ≥ 0 → ∑
i
pi = 1 given by S =

−c∑
i
pi loga pi → a > 1, c > 1, (See Appendix A). Von Neumann pointed out to

Shannon that the entropy Shannon found had the same functional form as the Boltzmann

thermodynamic entropy, therefore it should be also called an Entropy. The maximization

of entropy is a well-known process to find probability distributions. For example, if

we find the maximum of S = −c∑
i
pi loga piwith the only constraint that ∑

i
pi = 1 we

obtain equal probabilities pi = 1
n
(See Appendix B). The equal probabilities ensemble is

called Microcanonical Ensemble. When Boltzmann solved the ideal gas problem in this

ensemble he discovered that the constants must be given by c = kB and a = e, therefore

S = −kB
∑
i
pi ln pi, for the theory to agree with ideal gas law PV = nRT . The Boltzmann

constant kB is just kB = R
Nav

the universal gas constant R divided by the Avogadro number

Nav.

2.2 Joint Entropy

Let x and y be two random variables, and p (xi, xj) = Prob [x = xi and y = yj].

The joint entropy is given by S (x, y) = −c
n∑
i=1

m∑
j=1

p (xi, xj) loga p (xi, xj), while the marginal

entropies are given by:

S (x) = −c
n∑
i=1

p (xi) logap (xi) → px (xi) =
m∑
j=1

p (xi, yj, ),

S (y) = −c
n∑
i=1

p (xi) logap (xi) → p (yj) =
n∑
i=1

p (xi, yj).
(2.1)

These quantities obey the following inequalities equations (See Appendix C):

1. Let ~q 6= ~p → qi ≥ 0 ∀i → ∑
i
qi = 1 then:

−c
n∑
i=1

pi ln pi ≤ −c
n∑
i=1

pi ln qi, (2.2)
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or
n∑
i=1

pi ln
pi
qi
≥ 0; (2.3)

2. S (x) + S (y) ≥ S (x, y) known as the subadditivity of entropies.

Taking into account that, it is possible to define the Cross Entropy as

S (~p, ~q) = −c
n∑
i=1

pilogaqi, (2.4)

and the Kullback–Leibler divergence, or relative entropy as:

DKL (~p, ~q) = −c
n∑
i=1

piloga
qi
pi

)
= c

n∑
i=1

piloga
pi
qi

)
. (2.5)

Note that DKL (~p, ~q = ~p) = 0, therefore, inferences over a probability distribu-

tion ~p expected to be similar to a known distribution ~q can be performed by finding the

minimum of DKL (~p, ~q).

2.3 Thermodynamic Ensembles

2.3.1 Microcanonical Ensemble

For a gas system with extensive variables (U, V,N) the intensive variables

at thermodynamic equilibrium are given by the maximization of Boltzmann entropy

with only the sum of probabilities constraint. From thermodynamics we know that

dU = TdS − PdV + µdN from which we obtain:

dS = 1
T
dU + P

T
dV − µ

T
dN → ∂S

∂U
= 1
T

→ ∂S

∂V
= P

T
→ ∂S

∂N
= −µ

T
. (2.6)
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This problem can be written as a maximization problem

max S (U, V,N) = −c
∑
i

pi ln pi → sc
∑
i

pi = 1,

L = −c
∑
i

pi ln pi − λ
(∑

i

pi − 1
)
,

∂L
∂pj

= −c ln pj − c− λ = 0,

pj = po = 1
Ω ,

Ω (U, V,N) = number of states compatible with U, V,N,

S = −c
∑
i

po ln po = c ln Ω.

(2.7)

For the ideal gas the energy depends only on the velocities, but not the

position, therefore the number of states is proportional to Ω = V Nω (U,N). The entropy

S = kB ln
[
V Nω (U,N)

]
= Nc ln V + c lnω (U,N) → ∂S

∂V
= Nc

V
= P

T
→ PV =

NcT = n (Navc)T . To be compatible with ideal gas law PV = nRT → c = kB = R
Nav

and the Boltzmann entropy becomes:

S = −kB
∑
i

pi ln pi. (2.8)

For Boltzmann, however, the logarithm is the Neperian one, and the connection

with the ideal gas law of thermodynamics require it to be multiplied by the Boltzmann

constant, which is the Avogadro number multiplied by the universal gas constant.

2.3.2 Canonical Ensemble and Helmholtz Free Energy

Now let the gas be in contact with an infinite source of temperature and kept

at a constant temperature T . Now we know (T, V,N) instead of (U, V,N) and the internal

energy U is obtained by the expected value ∑
i
piεi = U where εi are the energy of each
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state, or configuration. This case calls, then, for the optimization problem of the form:

max S (U, V,N) = −kB
∑
i

pi ln pi → sc
∑
i

pi = 1 and
∑
i

piεi = U,

L = −kB
∑
i

pi ln pi − λ1

(∑
i

pi − 1
)
− λ2

(∑
i

piεi − U
)
,

∂L
∂pj

= −kB ln pj − ckB − λ1 − λ2εj = 0 → pj = poe
−
λ2εj
kB ,

∑
i

pi = po
∑
i

e
−λ2εi

kB = 1 → po = 1∑
i
e
−λ2εi

kB

,

S = −kB
∑
i

pi ln
(
poe
−λ2εi

kB

)
,

= −kB ln po
∑
i

pi + λ2
∑
i

piεi = −kB ln po + λ2U,

∂S

∂U
= λ2 = 1

T
→ po = 1∑

i
ee
− εi
kBT

= 1
ZB

→ ZB =
∑
i

ee
− εi
kBT ,

(2.9)

where the partition function is given by ZB = ∑
i
ee
− εi
kBT . In terms of thermo-

dynamic potential the entropy S (U, V,N) must be changed to a function of F (T, V,N),

the Helmholtz Free Energy, obtained by the Legendre Transformation:

F = U − TS → dF = dU − TdS − SdT = −SdT − PdV + µdN,

∂F

∂T
= −S → ∂F

∂V
= −P → ∂F

∂N
= µ.

(2.10)

From which we obtained the Helmholtz Free Energy as:

pi = poe
− εi
kBT ,

S = −kB
∑
i

pi ln
(
poe
− εi
kBT

)
,

= −kB ln po + 1
T

∑
i

piεi = −kB ln po + 1
T
U,

F = U − TS = U − U + kBT ln po = −kBT lnZB,

ZB = e
− F
kBT =

∑
i

e
− εi
kBT .

(2.11)

2.3.3 P-T Ensemble and Gibbs Free Energy

Now the gas is in contact with a thermal reservoir at temperature T and a

piston to control the pressure always at P . The volume is given by the expected value
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∑
i
piVi = V . The optimization problem becomes:

max S (U, V,N) = −kB
∑
i

pi ln pi → sc
∑
i

pi = 1 →
∑
i

piεi = U →
∑
i

piVi = V,

L = −kB
∑
i

pi ln pi − λ1

(∑
i

pi − 1
)
− λ2

(∑
i

piεi − U
)
− λ3

(∑
i

piVi − V
)
,

∂L
∂pj

= −kB ln pj − ckB − λ1 − λ2εj − λ3Vj = 0 → pj = poe
−
λ2εj+λ3Vj

kB ,

∑
i

pi = po
∑
i

e
−λ2εi

kB = 1 → po = 1∑
i
e
−
λ2εj+λ3Vj

kB

,

S = −kB
∑
i

qi ln
(
qoe
−λ2εi+λ3Vi

kB

)
,

= −kB ln po +
∑
i

λ2εi +
∑
i

λ3Vi,

= −kB ln po + λ2U + λ3V,

∂S

∂U
= λ2 = 1

T
→ ∂S

∂V
= λ3 = P

T
,

po = 1∑
i
ee
− εi+PVi

kBT

= 1
ZG

,

ZG =
∑
i

ee
− εi+PVi

kBT .

(2.12)

Now the Free Energy must exchange U → T and V → P therefore the Gibbs

Free Energy is given by the Legendre transformation G = U − TS + PV = F + PV :

dG = −SdT + V dP + µdN → ∂G

∂T
= −S → ∂G

∂P
= V → ∂G

∂N
= µ. (2.13)

S = −kB
∑
i

pi ln
(
poe
− εi+PVi

kBT

)
,

= −kB ln po + 1
T

∑
i

piεi + P

T

∑
i

piVi = −kB ln po + 1
T
U + P

T
V,

G = U − TS + PV = U − T
(
−kB ln po + 1

T
U + P

T
V
)

+ PV,

= kBT ln po = −kBT lnZG,

G = −kBT lnZG → ZG = e
− G
kBT =

∑
i

e
− εi+PVi

kBT .

(2.14)
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2.4 Thermodynamics of magnetic systems

For the magnetic system with a fixed number of dipoles the pressure, volume

and number of dipoles do not play any role and the work must be changed to W =

−PdV → W = −µHdm = −hdm. Therefore, all we have to do is to perform the

substitutions:

P → h and V → m,

∂F

∂T
= −S → ∂F

∂mi

= −hi → ZB =
∑
i

e
− εi
kBT → F = −kBT lnZB,

∂G

∂T
= −S → ∂G

∂hi
= mi → ZG =

∑
i

e
− εi+himi

kBT → G = −kBT lnZG.

(2.15)

2.4.1 Ising Model

In the Ising model only the spins, which can only be up (+1) and down (−1),

generate the magnetization. The spins are fixed in space, but they interact with each

other and with the local field in their localization. The energy of the spins is given by

E = −
n∑
i=1

n∑
j>i

wijσiσj −
n∑
i=1

hiσi, where wij is the interaction between the spins, that can

be positive or negative, and hi is the local field in the ith spin.
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3 THEORETICAL ASPECTS

It is presented the formulation of the Boltzmann Machine Learning problem

and its solution using the Linear Response Approximation based on the Bethe Free

Energy. After that, we disclose the algorithms for learning interaction parameters
{
Ŵ, Ĥ

}
.

Subsequently, for the first time, a new algorithm for learning β parameter in which original

data was generated is exposed. Finally, a detailed description of simulations that ensures

that proposed algorithms work properly in reconstructing statistical properties and original

data is displayed.

3.1 Analogy to a bill voting system

In a voting system, the number of voting agents is fixed and they can only

approve (+1)or disapprove (−1) the bills proposed in a given period, analogous to spin up

(↑) and down (↓) magnetic system. Moreover, each agent interacts with each other, that

have influence over each one votes, represented by the exchange energy E = −
n∑
i=1

n∑
j>i

wijσiσj .

Finally, each agent feel the influence of the average of its peers as well as its voters, and

the political environment in general, which also have influence over its votes. Therefore,

the energy E = −
n∑
i=1

n∑
j>i

wijσiσj −
n∑
i=1

hiσi is a very good analogy to the influences over

each agent votes. The political environment can change the probability of each one votes

and could be viewed as an environmental temperature.

3.2 Formulation of the Boltzmann Machine Learning Problem

We will use the Ising model for the political parties’ votes in an effort to forecast

how they will vote in the future. For that, we need to infer reliable values to spin-spin

interactions wij and the local fields hi using past observations of the system behavior. The

point is that for the past observation we obtain only the averaged votes 〈σi〉 of each agent

and the covariance matrix between the agents cij = 〈σiσj〉 − 〈σi〉 〈σj〉 for a given period,

preferable in a legislature period when all the agents are the same. In terms of magnetic

system we know the magnetization and temperature, therefore the best partition function

is the Gibbs, instead of the Helmholtz. For that we use the formulation of the Boltzmann

Machine Learning Problem.

A Boltzmann machine can be defined as a neural network represented as an
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undirected weighted graph G (V,E,W, f). Vertex set V ≡ {v1, v2, v3, . . . , vn} represents

all visible or hidden spins. However, for the sake of simplicity, in the remainder of this

work only Boltzmann machines with visible spins will be used. Visible spins are regarded

as the input - output states σi ∈ {±1} from all possible configurations of the state set

~σ ≡ {σ1 ∈ {±1}, σ2 ∈ {±1} , σ3 ∈ {±1}, . . . , σn ∈ {±1}} [4]. If V ⊗ V is the set of all

ordered pairs {vi, vj}, the edge set E ⊆ V⊗ V is then a relation E on the set V, meaning

that spins vi and vj interacts each other in a specific configuration {σi, σj}. Interaction

set W ≡ {wij} is a finite non-empty set of real numbers associated to how strong is

the “force” of interplay of each element of the edge set E that is assigned through the

surjective function f : {vi, vj} ∈ E −→ wij ∈W | wij ∈ <. A graphical representation of a

Boltzmann machine with n visible spins is shown at Figure 2.

Figure 2 – Pictorial Representation of a complete connected Boltzmann machine with n visible spins.
Green circles represent each spin of the network. Spins are considered as the input - output states σi (red
label) for all possible configurations of the set ~σ. Besides the state, all spins possess a local field value
hi (orange label). Note that self-connections are not allowed. Edges for the first spin were dark blue
highlighted in order to expose that for each edge an interaction value wij is assigned.

v1

h1
σ1

v2

h2
σ2

v3

h3
σ3

vn

hn
σn

vn

hn

σn

v3

h3

σ3
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σ1

w12w12w13w13w1nw1n

. . .

. . .

vi Spin

wij Interaction value

hi Local field

σi State ∈ {±1}

Source: Author.

Figure 2 shows a complete connected Boltzmann machine. Each node (green

circle) of the network represents a visible spin and it possesses two attributes. The first

one is the possible input - output state σi (red label) and the second one is the local field

value hi (orange label), i.e., ∀ vi ∃ hi ∈ <. local field values will play an important role at

the time that Boltzmann distribution is formulated. Note that self-connections are not

allowed, that is, wij = 0 if i = j and interactions are symmetric wij = wji ∀ i, j due to

the fact that Boltzmann machine is arisen as an undirected graph. Connections for the

first spin were dark blue highlighted in order to better visualize that for each edge {vi, vj}

there exists a interaction value wij.

All the expected values of the spins must be performed over the number of
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all possible system realizations. For example, Table 1 gives the possible realizations, and

their energies, for a three spins system:

Table 1 – Expected possibilitites for three spins system. For each possible combination k is shown
the possible states ~σ, the energy value and the probability of that state.
k ~σ Ek pk

1 ~σ1 = (1, 1, 1) E1 = w12 + w13 + w23 + h1 + h2 + h3 p1 = poe
−w12+w13+w23+h1+h2+h3

kBT

2 ~σ1 = (1, 1,−1) E2 = w12 − w13 − w23 + h1 + h2 − h3 p2 = poe
−w12−w13−w23+h1+h2−h3

kBT

3 ~σ1 = (1,−1, 1) E3 = −w12 + w13 − w23 + h1 − h2 + h3 p3 = poe
−−w12+w13−w23+h1−h2+h3

kBT

4 ~σ1 = (1,−1,−1) E4 = −w12 − w13 + w23 + h1 − h2 − h3 p4 = poe
−−w12−w13+w23+h1−h2−h3

kBT

5 ~σ1 = (−1, 1, 1) E5 = −w12 − w13 + w23 − h1 + h2 + h3 p5 = poe
−−w12−w13+w23−h1+h2+h3

kBT

6 ~σ1 = (−1, 1,−1) E6 = −w12 + w13 − w23 − h1 + h2 − h3 p6 = poe
−−w12+w13−w23−h1+h2−h3

kBT

7 ~σ1 = (−1,−1, 1) E7 = w12 − w13 − w23 − h1 − h2 + h3 p7 = poe
−w12−w13−w23−h1−h2+h3

kBT

8 ~σ1 = (−1,−1,−1) E8 = w12 + w13 + w23 − h1 − h2 − h3 p8 = poe
−w12+w13+w23−h1−h2−h3

kBT

Source: Author.

For a n spins the number of possible realizations is N = 2n. The expected

values are calculated accordingly by:

N = 2n → σik = value of spin i in the kth realization,

pk = probability of kth realization,

〈σi〉 =
N∑
k=1

pkσik → 〈σiσj〉 =
N∑
k=1

pkσikσjk,

Cij = 〈σiσj〉 − 〈σi〉 〈σj〉 =
N∑
k=1

pkσikσjk −
(

N∑
k=1

pkσik

)(
N∑
k=1

pkσjk

)
,

〈E〉 = −
N∑
k=1

n∑
i=1

n∑
j>i

wijσiσj −
N∑
k=1

n∑
j=1

hjσj.

(3.1)
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The Free Energies for Helmholtz and Gibbs situations are given by:

Q = TdS → W = −
n∑
i=1

hidσi → dU = TdS −
n∑
i=1

hidσi,

dS = 1
T
dU + 1

T

n∑
i=1

hidσi → ∂S

∂U
= 1
T

→ ∂S

∂σj
= hj
T
.

Helmholtz:F
(
↔
w,~h;T

)
= U − TS,

dF = −SdT −
n∑
i=1

hidσi → ∂F

∂T
= −S → ∂F

∂σj
= −hj,

Gibbs:G
(
↔
w,~h;T

)
= F +

n∑
i=1

hiσi,

dG = −SdT +
n∑
i=1

σidhi → ∂G

∂T
= −S → ∂G

∂hi
= σi.

(3.2)

3.2.1 Partition Functions

Helmholtz:ZB =
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

hiσi`

kBT ,

F
(
↔
w,~h;T

)
= −kBT lnZB → S = −∂F

∂T
→ hj = − ∂F

∂σj
.

(3.3)

For the Gibbs situation we know the expected value for each spin, therefore,
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we have n constraints given by
N∑
k=1

pkσik = ηi. The maximization problem is written as:

max : S = −kB
N∑
k=1

pk ln pk subjected to (n+ 2) constraints :

(1)
N∑
k=1

pk = 1;

(2) −
N∑
k=1

n∑
i=1

n∑
j=i+1

pkwijσSikSjk −
N∑
k=1

n∑
i=1

pkhiσik = U ;

(n)
N∑
k=1

pkσik = ηi.

L = −kB
N∑
k=1

pk ln pk − λ1

(
N∑
k=1

pk − 1
)

+

λ2

 N∑
k=1

n∑
i=1

n∑
j=i+1

pkwijσikσjk +
N∑
k=1

n∑
i=1

pkhiσik + U

+ λ2

n∑
i=1

νi

(
N∑
k=1

pkσik − ηi
)
,

= −kB
N∑
k=1

pk ln pk − λ1

(
N∑
k=1

pk − 1
)

+

λ2

 N∑
k=1

n∑
i=1

n∑
j=i+1

pkwijσikσjk +
N∑
k=1

n∑
i=1

pk (hi + νi)σik + U −
n∑
i=1

νiηi

 .

(3.4)

We need n Lagrange multipliers νi for the constraints over each spin expected

value. We incorporated, without any loss of generality, the λ2 Lagrange multiplier in the

νi. multipliers that can be positive or negative. Following standard procedure:

∂L
∂p`

= −kB ln p` − kB − λ1 + λ2

 n∑
i=1

n∑
j=i+1

wijσi`σj` +
n∑
i=1

(hi + νi)σi`

 = 0,

p` = poe

λ2

(
n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

(hi+νi)σi`

)
kB ,

N∑
`=1

p` = 1 → po = 1

N∑
`=1

e

λ2

(
n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

(hi+νi)σi`

)
kB

.

(3.5)
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Again, the λ2 Lagrange multiplier will be λ2 = 1
T
:

S = −kB
N∑
`=1

p` ln q`,

= −kB ln po − λ2

N∑
`=1

p`

 n∑
i=1

n∑
j=i+1

wijσi`σj` +
n∑
i=1

(hi + νi)σi`

,
= −kB ln po − λ2

(
U +

n∑
i=1

νi 〈σi〉
)
,

∂S

∂U
= λ2 = 1

T
.

(3.6)

Therefore, the ~p probability set is given by:

p` = poe

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

(hi+νi)σi`

kBT ,

po = 1
ZG

→ ZG (wij, hi, νi;T ) =
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

(hi+νi)σi`

kBT .

(3.7)

There is, then, a relationship between the Gibbs and Helmholtz partition

functions given by:

ZG (wij, hi, νi;T ) = ZB (wij, hi + νi;T ) , (3.8)

and therefore the Gibbs Free energy (3.2) is given by

GB

(
↔
w,~h, ~ν, ~η;T

)
= FB

(
↔
w,~h, ~ν;T

)
+

n∑
i=1

νiηi,

= −kBT lnZG
(
↔
w,~h, ~ν

)
+

n∑
i=1

νiηi,

= −kBT ln
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

(hi+νi)σi`

kBT +
n∑
i=1

νiηi.

(3.9)
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Take attention that Kullback–Leibler divergence (KLD) (2.5) is

DKL (~p, ~q) =
N∑
k=1

qk ln
(
qk
pk

)
,

=
N∑
k=1

qk ln qk −
N∑
k=1

qk ln pk =
N∑
k=1

qk ln qk −
N∑
k=1

qk ln

 1
ZB

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

,

=
N∑
k=1

qk ln qk −
1

kBT

N∑
k=1

qk

 n∑
i=1

n∑
j>i

wijσikσjk +
n∑
i=1

hiσik

+ lnZB
N∑
k=1

qk,

=
N∑
k=1

qk ln qk −
1

kBT

 N∑
k=1

n∑
i=1

n∑
j>i

wijqkσikσjk +
N∑
k=1

n∑
i=1

hiqkσik

+ lnZB,

=
N∑
k=1

qk ln qk −
1

kBT

 n∑
i=1

n∑
j>i

wij 〈σiσj〉+
n∑
i=1

hi 〈σi〉

+ lnZB,

=
N∑
k=1

qk ln qk −
N∑
k=1

n∑
i=1

n∑
j>i

wijqkσikσjk −
N∑
k=1

n∑
i=1

hiqkσik + lnZB,

=
N∑
k=1

qk ln qk −
1

kBT

 n∑
i=1

n∑
j>i

wij 〈σiσj〉+
n∑
i=1

hi 〈σi〉

− 1
kBT

F
(
↔
w,~h;T

)
,

(3.10)

where F
(
↔
w,~h;T

)
= −kBT lnZB is the Helmholtz energy.

3.3 Learning Algorithm using Linear Response Approximation and Bethe

Free Energy

Exact solution to the minimization problem of KLD (3.10) can be achieved

through the linear response approximation (LRA) [4, 5, 6]. Linear Response Approximation

is a powerful technique used to improve accuracy in estimation of correlations in ensembles

that are away or toward equilibrium under perturbative conditions [7]. Physically speaking,

LRA means that it is possible to use the Bethe - Gibbs free energy as an approximation

of the Gibbs free energy. Mathematically, LRA can be successfully implemented if it is

possible to prove that inverse Hessian of the Gibbs free energy is equal to Hessian of

the free energy. Implementation of LRA is as follows.

The condition
N∑
k=1

pkσik = ηi on the values νi in (3.4) can be introduced as the
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dual variation of GB

(
↔
w,~h, ~ν, ~η;T

)
respect to νi, i.e.

GB

(
↔
w,~h, ~ν, ~η;T

)
= max

~ν

−kBT ln
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

(hi+νi)σi`

kBT +
n∑
i=1

νiηi

 . (3.11)

By shifting Lagrange operator νi = γi − hi we have

GB

(
↔
w,~h, ~ν, ~η

)

= max
~ν

−kBT ln
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

hiσi`+
n∑
i=1

(γi−hi)σi`

kBT +
n∑
i=1

(γi − hi)ηi

 ,

= max
~ν

−kBT ln
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

hiσi`−
n∑
i=1

hiσi`+
n∑
i=1

γiσi`

kBT +
n∑
i=1

γiηi −
n∑
i=1

hiηi

 ,

= max
~γ

−kBT ln
N∑
`=1

e

n∑
i=1

n∑
j=i+1

wijσi`σj`+
n∑
i=1

γiσi`

kBT +
n∑
i=1

γiηi

−
n∑
i=1

hiηi,

= max
~γ

{
−kBT lnZB

(
↔
w,~γ;T

)
+

n∑
i=1

γiηi

}
−

n∑
i=1

hiηi.

(3.12)

Optimal values of ~γ
(
↔
w, ~η

)
namely ~ϑ

(
↔
w, ~η

)
must be chosen such that

N∑
k=1

pkσik =

ηi, or in other words, ~ϑ
(
↔
w, ~η

)
must satisfy

ηi =
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σik, (3.13)

such that Gibbs free energy becomes

GB

(
↔
w,~h, ~ϑ, ~η;T

)
= −kBT lnZB

(
↔
w, ~ϑ;T

)
+

n∑
i=1

ϑiηi −
n∑
i=1

hiηi. (3.14)
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Deriving GB

(
↔
w,~h, ~ϑ, ~η;T

)
respect to ηj

∂GB

(
↔
w,~h, ~ϑ, ~η;T

)
∂ηj

= ∂

∂ηj

[
−kBT lnZB

(
↔
w, ~ϑ;T

)
+

n∑
i=1

ϑiηi −
n∑
i=1

hiηi

]
,

= ϑj − hj = 0 → ϑj = hj

(3.15)

meaning that

FB
(
↔
w,~h;T

)
= min

~η
GB

(
↔
w,~h, ~ϑ, ~η;T

)
= GB

(
↔
w,~h, ~ϑ, ~η∗;T

)
, (3.16)

where ~η∗ is the optimal values minimizing GB

(
↔
w,~h, ~ϑ, ~η;T

)
. Now deriving

(3.13) respect to ηj

hi = ϑi,

ZB
(
↔
w,~h;T

)
=

N∑
q=1

e

n∑
r=1

n∑
s>q

wrsσrqσsq+
n∑
i=1

ϑrσrq

kBT ,

η` =
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σ`k,

∂η`
∂ηm

= ∂

∂ηm

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σ`k,

∂η`
∂ηm

=
n∑
p=1

∂ϑp
∂ηm

∂

∂ϑp

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σ`k,

=
n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k

∂
∂ϑp

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

)

−
n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k
e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

Z2
B

(
↔
w, ~ϑ;T

) ∂

∂ϑp
ZB

(
↔
w, ~ϑ;T

)
,

=
n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT
∂
∂ϑp

1
kBT

n∑
i=1

ϑiσik

ZB
(
↔
w, ~ϑ;T

)

(3.17)
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−
n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k
e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

Z2
B

(
↔
w, ~ϑ;T

) N∑
q=1

e

n∑
r=1

n∑
s>q

wrsσrqσsq+
n∑
i=1

ϑrσrq

kBT
1

kBT

∂

∂ϑp

n∑
i=1

ϑrσrq,

=
n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k
1

kBT

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σpk

−
n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k
1

kBT

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) N∑
q=1

e

n∑
r=1

n∑
s>q

wrsσrqσsq+
n∑
i=1

ϑrσrq

kBT

ZB
(
↔
w, ~ϑ;T

) n∑
i=1

δrpσrq,

= 1
kBT

n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k
e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σpk

− 1
kBT

n∑
p=1

∂ϑp
∂ηm

N∑
k=1

σ`k
e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) N∑
q=1

e

n∑
r=1

n∑
s>q

wrsσrqσsq+
n∑
i=1

ϑrσrq

kBT

ZB
(
↔
w, ~ϑ;T

) σpq,

= 1
kBT

n∑
p=1

∂ϑp
∂ηm

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σ`kσpk

− 1
kBT

n∑
p=1

∂ϑp
∂ηm


N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

ϑiσik

kBT

ZB
(
↔
w, ~ϑ;T

) σ`k




N∑
q=1

e

n∑
r=1

n∑
s>q

wrsσrqσsq+
n∑
i=1

ϑrσrq

kBT

ZB
(
↔
w, ~ϑ;T

) σpq

,

= 1
kBT

n∑
p=1

∂ϑp
∂ηm

(〈σ`σp〉 − 〈σ`〉 〈σp〉).

Therefore, we have

∂η`
∂ηm

= 1
kBT

n∑
p=1

∂ϑp
∂ηm

(〈σ`σp〉 − 〈σ`〉 〈σp〉) = δ`m. (3.18)

From (3.15) we have ϑp =
∂GB

(
↔
w,~h,~ϑ,~η;T

)
∂ηp

+hp therefore ∂ϑp
∂ηm

=
∂2GB

(
↔
w,~h,~ϑ,~η;T

)
∂ηp∂ηm

=
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[HGB ]pm, where is the Hessian matrix of Gibbs potential. This means that:

Σp` = 〈σ`σp〉 − 〈σ`〉 〈σp〉 ,
∂η`
∂ηm

= 1
kBT

n∑
p=1

[HGB ]mpΣp` = 1
kBT

δ`m,

1
kBT

[HGB ]mpΣmp = I,

1
kBT

Σmp = [HGB ]−1
mp .

(3.19)

Now we must find out what is the matrix Σ. By taking the derivative of

Helmholtz potential respect h`

∂FB
(
↔
w,~h;T

)
∂h`

= −kBT
∂

∂h`
lnZB

(
↔
w,~h;T

)
,

= −kBT
1

ZB
(
↔
w,~h;T

) ∂

∂h`


N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

 ,

= −kBT
1

ZB
(
↔
w,~h;T

)

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT
1

kBT

∂

∂h`

n∑
i=1

hiσik

 ,

= − 1
ZB

(
↔
w,~h;T

)

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

n∑
i=1

δi`σik

 ,

= − 1
ZB

(
↔
w,~h;T

)

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT σ`k

 .
(3.20)
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The second derivative is

∂2FB
(
↔
w,~h;T

)
∂hp∂h`

= − ∂

∂hp

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

ZB
(
↔
w,~h;T

) σ`k,

= −
N∑
k=1

∂
∂hp

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

ZB
(
↔
w,~h;T

) σ`k

+
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

Z2
B

(
↔
w,~h;T

) σ`k
∂

∂hp
ZB

(
↔
w,~h;T

)
,

= −
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

ZB
(
↔
w,~h;T

) σ`k
∂

∂hp

n∑
i=1

hiσik

+
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

Z2
B

(
↔
w,~h;T

) σ`k
∂

∂hp

N∑
q=1

e

n∑
r=1

n∑
s>i

wrsσrqσsq+
n∑
i=1

hrσrq

kBT ,

= −
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

ZB
(
↔
w,~h

) σ`k
1

kBT

n∑
i=1

δipσik

+
N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

kBT

Z2
B

(
↔
w,~h

) σ`k
N∑
q=1

e

n∑
r=1

n∑
s>i

wrsσrqσsq+
n∑
i=1

hrσrq

kBT
∂

∂hp

1
kBT

n∑
i=1

hrσrq,

= − 1
kBT

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

ZB
(
↔
w,~h

) σ`kσpk

+ 1
kBT

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

Z2
B

(
↔
w,~h

) σ`k
N∑
q=1

e

n∑
r=1

n∑
s>i

wrsσrqσsq+
n∑
i=1

hrσrq n∑
i=1

δrpσrq,

= − 1
kBT

N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

ZB
(
↔
w,~h

) σ`kσpk

+ 1
kBT


N∑
k=1

e

n∑
i=1

n∑
j>i

wijσikσjk+
n∑
i=1

hiσik

ZB
(
↔
w,~h

) σ`k




N∑
q=1

e

n∑
r=1

n∑
s>i

wrsσrqσsq+
n∑
i=1

hrσrq

ZB
(
↔
w,~h

) σpq

 ,

= − 1
kBT

[〈σ`σp〉 − 〈σ`〉 〈σp〉] = − 1
kBT

Σ`p.

(3.21)
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That is to say

∂2FB
(
↔
w,~h;T

)
∂hp∂h`

= − 1
kBT

Σ`p → 1
kBT

Σ`p = −[HFB ]`p,

[HGB ]−1
`p = −[HFB ]`p,

(3.22)

therefore

[HGB ]−1
ij = −[HFB ]ij. (3.23)

Equation above is known as the Linear Response Relation (LRR) [4]. This

relation opens up the way to implement the linear response approximation. In order to

implement LRA lets compute extremal conditions for KLD (3.10). Extremal conditions

for ~h gives

∂DKL (~p, ~q)
∂h`

= ∂

∂h`

 N∑
k=1

qk ln qk −
1

kBT

 n∑
i=1

n∑
j>i

wij 〈σiσj〉+
n∑
i=1

hi 〈σi〉

− 1
kBT

F
(
↔
w,~h;T

) ,
= ∂

∂h`

[
N∑
k=1

qk ln qk
]

`− 1
kBT

∂

∂h`

 n∑
i=1

n∑
j>i

wij 〈σiσj〉

 ,
− 1
kBT

∂

∂h`

[
n∑
i=1

hi 〈σi〉
]
− 1
kBT

∂

∂h`

[
F
(
↔
w,~h;T

)]
,

= − 1
kBT

n∑
i=1

δi` 〈σi〉 −
1

kBT

∂

∂h`

[
F
(
↔
w,~h;T

)]
,

= − 1
kBT

[
〈σ`〉+ ∂

∂h`

[
F
(
↔
w,~h;T

)]]
,

0 = − 1
kBT

[
〈σ`〉+ ∂

∂h`

[
min
~η
GB

(
↔
w,~h, ~ϑ, ~η;T

)]]
,

0 = − 1
kBT

[〈σ`〉 − η∗i ] .
(3.24)
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Extremal conditions for ↔w

∂DKL (~p, ~q)
∂w`m

=
[
N∑
k=1

qk ln qk
]

`− 1
kBT

∂

∂w`m

 n∑
i=1

n∑
j>i

wij 〈σiσj〉

 ,
− 1
kBT

∂

∂w`m

[
n∑
i=1

hi 〈σi〉
]
− 1
kBT

∂

∂w`m

[
F
(
↔
w,~h;T

)]
,

= − 1
kBT

 n∑
i=1

n∑
j>i

δi`δjm 〈σiσj〉

− 1
kBT

∂

∂w`m

[
F
(
↔
w,~h;T

)]
,

= − 1
kBT

[
〈σ`σm〉+ ∂

∂w`m

[
F
(
↔
w,~h;T

)]]
,

0 = − 1
kBT

〈σ`σm〉+
∂2F

(
↔
w,~h;T

)
∂h`hm

+
∂F

(
↔
w,~h;T

)
∂h`

∂F
(
↔
w,~h;T

)
∂hm

 ,
0 = − 1

kBT

〈σ`σm〉+
[
H−1
GB

]
`m

∣∣∣∣∣
~η=~η∗

+ η∗`η
∗
m

 .

(3.25)

As already mentioned, it was proven that optimal values of η∗i are precisely

the expected values of σi given by (3.1). So, the exact learning algorithm in Boltzmann

machine requires for finding desired parameters
{
↔
w,~h

}
that satisfy the conditions

〈σi〉 = η∗i ,

[HGB ]ij

∣∣∣∣∣
~η={〈σi〉}

=
[
Σ−1

]
ij
,

(3.26)

where [Σ]ij = 〈σiσj〉 − 〈σi〉 〈σj〉 is the covariance matrix of the data. Note that,

the inverse operator this time was applied over the covariance matrix. This is allowed

mainly because we are working with a complete connected Boltzmann machine. Besides,

[HGB ]ij and [Σ]ij are symmetrical and it is possible to conclude that invertible operator

change holds for all diagonal elements1. Main concern now is that the exact value of Gibbs

free energy is computationally, difficult to obtain. Therefore, in order to overcome this

situation, we use the Bethe - Gibbs free energy as an approximation of the Gibbs free

energy, that is, we applied the linear response approximation. To do that, let’s introduce

the Bethe free energy [4, 6]
1 To clarify, this just works in the exact case. When GB

(
↔
w,~h, ~ϑ, ~η;T

)
is approximated, invertible

operator change does not work with diagonal elements. This is known as the diagonal problem.
However, this difficulty can be better understood when loop contributions of Gibbs free energy are
introduced, as it will be exposed below.
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3.3.1 Introducing Bethe free energy

Let’s consider an operator Â and an arbitrary base |i〉, not necessarily the

eigenvectors of Â, and define the matrix Aij = 〈j| Â |i〉. The expected value, or expectancy,

of this operator is given by
〈
Â
〉

= ∑
i
〈i| Â |i〉 = ∑

i
Aii = Tr (A), where Tr (.) stands for trace,

applied only to square matrices. In the operator eigenvector basis Â |ai〉 = λi |ai〉 →

〈aj| Â |ai〉 = λi 〈aj|ai〉 = λiδij → Tr (A) = ∑
i
λi. For a complete set of eigenvectors

any ket can be projected in that basis as |ψ〉 = ∑
i
|ai〉 〈ai|ψ〉 =

(∑
i
|ai〉 〈ai|

)
|ψ〉 →∑

i
|ai〉 〈ai| = I → ∑

i
|i〉 〈i| = I. Therefore, the trace is independent of the chosen base:

Tr (A) =
∑
i

〈i| Â |i〉,

=
∑
i

〈i|
(∑

k

|ak〉 〈ak|
)
Â |i〉,

=
∑
i

(∑
k

〈i|ak〉 〈ak| Â |i〉
)
,

=
∑
k

(∑
i

〈ak| Â |i〉 〈i|ak〉
)

=
∑
k

〈ak| Â |ak〉.

(3.27)

The trace of a multiplication of matrices is commutative, that is, Tr (AB) =

Tr (BA):

(AB)ij =
∑
k

AikBkj → Tr (AB) =
∑
i

∑
k

AikBki,

(BA)ij =
∑
k

BikAkj → Tr (BA) =
∑
i

(∑
k

BikAki

)
=
∑
k

(∑
i

AkiBik

)
= Tr (AB).

(3.28)

Therefore, the cyclic multiplication holds: Tr (ABC) = Tr (CAB) = Tr (BCA),

in particular Tr (S−1AS) = Tr (ASS−1) = Tr (AI) = Tr (A).

Consider the probability vector ~p =
(
p1 p2 · · · pn

)
→ pi ≥ 0 →∑

i
pi = 1 and all possible states of a system |ψi〉 with probability pi. The expected

value for Â is, therefore, given by
〈
Â
〉

= ∑
i
pi 〈ψi| Â |ψi〉 = ∑

i
pi Tr

(
〈ψi| Â |ψi〉

)
=∑

i
pi Tr

(
Â |ψi〉 〈ψi|

)
= Tr

(
Â
∑
i
pi |ψi〉 〈ψi|

)
. The density matrix, therefore, is defined as:

ρ = ∑
i
pi |ψi〉 〈ψi|, and the expected value of Â = Tr

(
Âρ
)
. An important property of the

density matrix is that Tr (ρ) = 1 → Tr (ρ) = ∑
i
pi Tr (|ψi〉 〈ψi|) = ∑

i
pi Tr (〈ψi|ψi〉) =
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∑
i
pi = 1. The Bethe free energy can be defined as follows:

H = −
n∑
i=1

n∑
j>i

wijσiσj −
n∑
i=1

hiσi,

F (n) = Tr
[
ρ(n)

(
H + kBT ln ρ(n)

)]
→ Tr

(
ρ(n)

)
= 1.

(3.29)

The Bethe Free energy only considers terms up to the second order in the form:

FBethe = −
n∑
i=1

hi Tr
(
ρ(1)σi

)
−

n∑
i=1

n∑
j>i

wij Tr
(
ρ(2)σiσj

)
+ kBT Tr

(
ρ(1) ln ρ(1)

)
+ kBT Tr

(
ρ(2) ln ρ(2)

)
,

Tr
(
ρ(1)

)
= 1 → Tr

(
ρ(2)

)
= 1,

ρ(1)` = 1
2

1 +mi 0

0 1−mi

 Tr
(
ρ(1)

)
= 1

2 (1 +mi + 1−mi) = 1,

ρ(1)` = 1
4



1 +mi +mj + ξij 0 0 0

0 1−mi +mj − ξij 0 0

0 0 1 +mi −mj − ξij 0

0 0 0 1−mi −mj + ξij


,

Tr
(
ρ(2)

)
= 1

4 (1 +mi +mj + ξij + 1−mi +mj − ξij + 1 +mi −mj − ξij + 1−mi −mj + ξij) = 1,

where function mi and ξij are defined as

mi = Tr
(
ρ(1)σi

)
,

ξij = Tr
(
ρ(2)σiσj

)
.

(3.30)

Therefore Bethe free energy is given by

FBethe = −
n∑
i=1

himi −
n∑
i=1

n∑
j>i

wijξij + kBT
n∑
i=1

(1− ki)
+1∑

σi=−1

1 + σimi

2 ln
(1 + σimi

2

)

+ kBT
n∑
i=1

n∑
j>i

+1∑
σi=−1

+1∑
σj=−1

1 + σimi + σjmj + σiσjξij
4 ln

(
1 + σimi + σjmj + σiσjξij

4

)
,

(3.31)

where ki ≥ 1 is the degree of each visible spin. In the case of complete connected

Boltzmann machine ki = n− 1. Bethe free energy can be understood as the free energy up

to pairwise interactions among visible spins. Observe that Bethe free energy depends on

two new parameters {m, ξ}. These two new parameter sets are employed to ensure that
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Bethe free energy should be taken as an approximation of free energy only over optimal

values of {m, ξ}, that is,

FB
(
↔
w,~h;T

)
:= FB (W,H;T ) ≈ min

m,ξ
{FBethe(W,H,m, ξ);T} , (3.32)

where
(
↔
w,~h

)
were re-defined in term of set notation (W,H). From now, for

the sake of simplicity we assume kBT = 12. Performing the minimization process over ξ

and solving the resulting equation for the same variable, we obtain that optimal values of

ξ has the form

ξij = coth(2wij)
(
1−

√
1− (1−m2

i −m2
j) tanh(2wij)− 2mimj tanh(2wij)

)
. (3.33)

Already defined the Bethe free energy, relation (3.16) can be rewritten as

GBethe(W,H,η) = max
νi

{
min

m
{FBethe(W, ν,m, ξ(W,m))}+

∑
i

νiηi

}

−
∑
i

hiηi,

(3.34)

where the dependence of ξ on W and m was explicitly mentioned. Performing

maximization over ν implies that values of m that minimizes FBethe(W, ν,m, ξ(W,η))

must be the expectation values imposed as a constraint in equation (3.1). That is, using

the approximation m is equivalent to parameter η. Therefore, Bethe - Gibbs free energy

results in

GBethe(W,H,η) = FBethe(W, ν∗i (W,η),η, ξ(W,η))

+
∑
i

ν∗i (W,η)ηi −
∑
i

hiηi.
(3.35)

Using again relation (3.15) is simple to realize that ν∗i (W,η) = hi leading us

to conclude

FBethe(W,H,η, ξ(W,η)) = min
η
GBethe(W,H,η). (3.36)

2 Mainly because temperature is a free paramater.



40

Using GBethe(W,H,η) instead of GB(W,H,η) in extremal conditions for KLD,

equations (3.24) and (3.25) turn out assuming again kBT = 1 in

∂DKL (~p, ~q)
∂hi

≈ −〈σi〉 −
∂

∂hi
FBethe(W,H,η, ξ(W,η)),

0 = −〈σi〉 −
∂

∂hi

(
min
η
GBethe(W,H,η)

)
,

0 = −〈σi〉+ η∗i ,

(3.37)

for H set. Extremal conditions for W holds as

∂DKL (~p, ~q)
∂wi

≈ −〈σiσj〉 −
∂

∂wi
FBethe(W,H,η, ξ(W,η)),

0 = −〈σiσj〉 −
∂2

∂hi∂hj

(
min
η
GBethe(W,H,η)

)
+ ∂

∂hi

(
min
η
GBethe(W,H,η)

)
∂

∂hj

(
min
η
GBethe(W,H,η)

)
,

0 = −〈σiσj〉+
[
H−1
GBethe

]
ij

∣∣∣∣∣
η=η∗

+ η∗i η
∗
j .

(3.38)

In order to obtain value of η∗i that minimizes GBethe(W,H,η), we perform

minimization of Bethe free energy (3.31) respect to ηi. By solving the resulting equation,

optimal values η∗i must satisfy

η∗i = tanh
 1

2− n

hi − 1
2
∑
j/i

∑
σj=±1

arctanh
η∗i + σjξij

(
η∗i , η

∗
j , wij

)
1 + η∗jσj

 , (3.39)

where j/i means to sum over all spins except spins i. Now, Bethe - Gibbs

Hessian matrix is given by

[HGBethe ]ij ≡
∂2GBethe(W,H,η)

∂ηi∂ηj
=


Φi(W,η) i = j,

Ψij(wij, ηi, ηj) i 6= j,

(3.40)

where Φi(W,η) and Ψij(wij, ηi, ηj) are given by

Φi(W,η) = 2− n
1− η2

i

+ 1
4
∑
j/i

∑
σi,σj=±1

(σj + Γ (wij, ηi, ηj))2

αij (wij, ηi, ηj, σi, σj)
,

Ψij(wij, ηi, ηj) = 1
4

∑
σi,σj=±1

(σj + Γ (wij, ηi, ηj)) (σi + Γ (wij, ηj, ηi))
αij (wij, ηi, ηj, σi, σj)

,

(3.41)
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where Γ (wij, ηi, ηj) and αij (wij, ηi, ηj, σi, σj) are defined by

Γ (wij, ηi, ηj) = ηj − ηi tanh (2wij)
1− tanh (2wij) ξij (wij, ηi, ηj)

,

αij (wij, ηi, ηj, σi, σj) = 1 + σiηi + σjηj + σiσjξij (wij, ηi, ηj) .
(3.42)

Finally, condition (3.26) now arises as

〈σi〉 = η∗i , (3.43)

[HGBethe ]ij

∣∣∣∣∣
η={〈σi〉}

=
[
C−1

]
ij
. (3.44)

With these new relations, desired parameters {Ŵ, Ĥ} can be learned just by

solving (3.44) respect to W. To summarize learning process in Boltzmann machines using

LRA is necessary to follow the following procedure:

Procedure 1 Boltzmann machine algorithm using LRA.
Require: 〈σi〉 and [C]ij.
Ensure: [C]ij is not a singular matrix.
for i, j = 1 to n do

From (3.44), solve non-linear equations

Ψij (wij, 〈σi〉 , 〈σj〉) =
[
C−1

]
ij
, (3.45)

respect to wij for obtaining ŵij.
end for
for i = 1 to n do

Use solutions of Ŵ to achieve ĥi using

ĥi = (2−n) arctanh (〈σi〉) + 1
2
∑
j/i

∑
cj=±1

arctanh
(
〈σi〉+ cjξij (〈σi〉 , 〈σj〉 , ŵij)

1 + cj 〈σj〉

)
. (3.46)

end for
return

{
Ŵ, Ĥ

}
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Figure 3 resumes the procedure aformentioned exposed.

Figure 3 – Flowchart for procedure 1

Source: Author.

Advantage of learning parameters with the above procedure is that it does

not require any iteration. Computationally, the cost of the learning algorithm is O(n2)

because of the computation of [C−1]ij [4]. However, in order to assure unique existence of
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solutions, Ψij(wij, ηi, ηj) has the following properties:

1. Ψij(wij, ηi, ηj) = 0 if and only if [C−1]ij = 0 and therefore ŵij = 0;

2. Ψij(wij, ηi, ηj) is a monotonic decreasing function. Meaning that solution can be

found either deterministic or computationally;

3. Taking in consideration monotonicity of Ψij(wij, ηi, ηj), equation (3.45) possess

solution for ŵij if and only if

− 1
2| 〈σi〉 − 〈σj〉 |

<
[
C−1

]
ij
<

1
2| 〈σi〉+ 〈σj〉 |

. (3.47)

In principle, if the third condition is violated, algorithm (1) could not be used

for learning desired parameters
{
Ŵ, Ĥ

}
. However this difficulty can be overcome if we

note that (3.47) could be written as

lim
wij→∞

Ψij(wij, ηi, ηj) <
∂2GBethe(W,H,η)

∂ηi∂ηj
< lim

wij→−∞
Ψij(wij, ηi, ηj). (3.48)

If we decompose Bethe - Gibbs free energy as GBethe(W,H,η) = G̃Bethe(W,H,η)+

LB(W,η) relation (3.48) turns

lim
wij→∞

Ψij(wij, ηi, ηj) <
∂2G̃Bethe(W,H,η) + LB(W,η)

∂ηi∂ηj
< lim

wij→−∞
Ψij(wij, ηi, ηj), (3.49)

where LB(W,η) is the Gibbs free energy associated with contributions coming

from loops, that is, from diagonal elements of Hessian and G̃Bethe(W,H,η) is the naive Bethe

- Gibbs free energy. Equation (3.49) tells us that (3.47) is satisfied if loop contributions

are introduced in the learning algorithm. Modification of the learning algorithm taking

into account the role of LB(W,η) is known as the diagonal problem [4, 5].

3.4 Improvement of Learning Algorithm using Diagonal Trick

Diagonal problem aforementioned is solved as follows. Let’s introduce a new

set of parameters γ ≡ {γi} to the Bethe - Gibbs free energy to redefine it as

ǦBethe(W,H,η) = GBethe(W,H,η)− 1
2
∑
i

γ2
i . (3.50)
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Due to the increment of parameters it is necessary to introduce n new constraints

to determine γ. New constraints must satisfy that values of the diagonal inverse of the

Hessian matrix are fixed to the values of the exact ones. That is to say, possess the form

[
H̃ǦBethe

]
ii

∣∣∣∣∣
η={η∗i }

= 1− (η∗i )2, (3.51)

where
[
H̃ǦBethe

]
ij
is defined by

[
H̃ǦBethe

]
ij

= ∂2ǦBethe(W,H,η)
∂ηi∂ηj

= [HGBethe ]ij − γiδij. (3.52)

Here η∗i are the values minimizing ǦBethe(W,H,η) that must satisfy

η∗i = tanh
 1

2− n

hi − 1
2
∑
j/i

∑
σj=±1

arctanh
η∗i + σjξij

(
η∗i , η

∗
j , wij

)
1 + η∗jσj


+ γiη

∗
i

.
(3.53)

Therefore conditions (3.43) and (3.44) are transformed into

〈σi〉 = η∗i ,[
H̃G̃Bethe

]
ij

∣∣∣∣∣
η={〈σi〉}

= Ψij(wij, 〈σi〉 , 〈σj〉)

+ (Φi (wij, 〈σi〉 , 〈σj〉)− γi) δij =
[
C−1

]
ij
.

(3.54)

With these relations the extended learning procedure can be established as

follows:
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Procedure 2 Boltzmann machine algorithm using LRA and Diagonal Trick.
Require: 〈σi〉 and [C]ij.
Ensure: [C]ij is not a singular matrix.
for i, j = 1 to n do

From (3.44), solve non-linear equations

Ψij(wij, 〈σi〉 , 〈σj〉) =
[
C−1

]
ij
, (3.55)

respect to wij for obtaining ŵij.
end for
for i = 1 to n do

Use Ŵ to achieve diagonal parameters γ̂i using

γ̂i = Φi (ŵij, 〈σi〉 , 〈σj〉)−
[
C−1

]
ii
. (3.56)

end for
for i = 1 to n do

Use solutions of Ŵ, γ̂ to achieve ĥi using

ĥi = (2− n) arctanh (〈σi〉) + 1
2
∑
j/i

∑
cj=±1

arctanh
(
〈σi〉+ cjξij (〈σi〉 , 〈σj〉 , ŵij)

1 + cj 〈σj〉

)

+ γ̂i 〈σi〉 .
(3.57)

end for
return

{
Ŵ, Ĥ

}

Computational cost of procedure 2 is equal to procedure 1. The extended

learning algorithm improves mainly the inference of parameter Ĥ. In fact, extension

of naive Bethe free energy along the diagonal problem is regarded as the higher - order

approximation of the Bethe free energy [4, 6]. Figure 4 resumes the procedure aformentioned

exposed.
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Figure 4 – Flowchart for procedure 2

Source: Author.
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3.5 Checking if the Learning Algorithm is Working Properly

In order to evaluate if the learning algorithm proposed in the last section is

working properly, it is mandatory to prove that procedure (2) is capable of inferring desired

parameters
{
Ŵ, Ĥ

}
using a set of data points generated from a known set of observed

parameters {WO,HO} (subscript O stands for "observed"). With this aim, random data

points were set up by sampling the Ising model [8] on a complete connected Boltzmann

machine with n visible spins using Montecarlo simulation. First thing was to define the

set of observed parameters {WO,HO}. To do that, random weights and local fields were

sampled. For weights, normal distribution wij ∼ N (µ, σ2) with µ = 0 and σ = 0.5 were

set up and for local fields, uniform distribution hi ∼ U(hmin, hmax) where hmin = −1 and

hmax = 1 were used. Reason for choosing these distributions resides in the fact that we

want to resemble a spin glass system [9]. Observed weight parameter WO is represented as

n×n symmetric matrix and HO arises as a n - one dimensional vector. For all simulations

we fixed the number of visible spins to n = 20. Figure 5 shows the probability distribution

function for a particular set {WO,HO}.

Figure 5 – Probability distribution function for a particular set of observed parameters {WO,HO}. For
weights and local fields, it were used a normal distribution wij ∼ N (µ, σ2) with µ = 0 and σ = 0.5 and a
uniform distribution hi ∼ U(hmin, hmax) where hmin = −1 and hmax = 1, respectively. {WO,HO} will be
employed to test if procedure (2) is working properly.

Source: Author.

Subsequently, dynamics of Ising energy function

H (WO,HO) = −
∑
i<j

wijσiσj −
∑
i

hiσi,
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was evaluated using the Metropolis algorithm [10]. As already established,

σi ∈ {±1}. For each sampling process, it were employed tMC = 104 Montecarlo steps to

reach thermal equilibrium and more tMC = 4× 103 for storing the random data points. At

the end, synthetic data consist in a dji ≡ n×m binary matrix, that is, dji ∈ {±1}, where

n is again associated to the number of visible spins and m stands as the Montecarlo steps

employed to store the random data. It is important to highlight that given that the state

probability configuration of Ising model depends on parameter β3, synthetic data was

generated for different values of βO (again superscript O stands for "observed") ranging

from βO = 0.1 to βO = 0.9, and for each sample and each βO a new set {WO,HO} was

assigned. We use 10 samples for each βO.

Two numerical techniques were employed to learn desired parameters
{
Ŵ, Ĥ

}
using procedure 2. First, Brent’s method [11] was implemented in a fixed range to find

an initial hint for solutions and subsequently, that value was used as the initial guess of

Newton’s method [12]. First and second derivatives of the Hessian function (3.40) were

computed to assure convergence of Newton method. Convergence tolerance was set up to

be 2× 10−12.

After that, to verify how well procedure 2 is working, expected value 〈σi〉,

covariance matrix [C]ij and third order Ursell function u (σi, σj, σk) [13] were computed in

two cases. First case uses synthetic data produced using observed parameters {WO,HO}

and the second case employs inferred ones
{
Ŵ, Ĥ

}
. For the last case, synthetic data was

generated by evaluating the Ising model at β := KBT = 14. This process was repeated for

all samples in the range of βO aforementioned. Expected value 〈σi〉 was defined in (3.1),

covariance matrix [C]ij is defined by

[C]ij = 〈σi〉 〈σj〉 − 〈σiσj〉 , (3.58)

where 〈σiσj〉 was defined in (3.1) and the third order Ursell function u (σi, σj, σk)

is given by

u (σi, σj, σk) = 〈σiσjσk〉 − 〈σi〉 〈σjσk〉 − 〈σj〉 〈σkσi〉 − 〈σk〉 〈σiσj〉+ 2 〈σi〉 〈σj〉 〈σk〉 . (3.59)
3 Known as inverse temperature. However, in this work we will refer to it just as the β parameter. In

fact, this new parameter is hidden in Boltzmann machines, but as will be exposed below, it is possible
to infer it too.

4 Known as inverse operation temperature.
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Figure 6 shows comparison of 〈σi〉, [C]ij and u (σi, σj, σk) when computed using

observed - inferred parameters for a random sample of βO = 0.6. Observed values are

located in the vertical axis and inferred values are in the horizontal axis of each plot. Error

bars indicate the discrepancy between inferred and observed values. O(I) superscripts are

intended to differentiate between observed and inferred quantities.

Figure 6 – Comparison of quantities computed using observed and inferred parameters. Expected value
〈σi〉, covariance matrix [C]ij and third order Ursell function u (σi, σj , σk) were measured using data
produced using observed parameters and data generated using inferred parameters at β = 1. Observed
parameters and data were sampled at βO = 0.6. Superscript O(I) means for observed and inferred
quantities. Error bars indicate the discrepancy between observed and inferred quantities.

Source: Author.

As noted, error bars show that discrepancy between observed - inferred param-

eters are small. To better realize this, lets define the discrepancy over the three measured

quantities as [6, 14]

∆ 〈σi〉 = 1
T

∑
t

√√√√ 1
n2

∑
j

(
〈σi〉Oj − 〈σi〉

I
j

)2
,

∆[C]ij = 1
T

∑
t

√√√√ 1
n2

∑
i>j

([Cij]O − [Cij]I)2,

∆u (σi, σj, σk) = 1
T

∑
t

√√√√ 1
n2

∑
l

(
u (σi, σj, σk)O

l − u (σi, σj, σk)I
l

)2
,

(3.60)

where first summation is taken over all samples T . Discrepancy close to zero

tell us that quantities were well reconstructed. Figure 7 shows the discrepancy in function

of βO parameter for each quantity already computed.
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Figure 7 – Discrepancy among observed and inferred quantities in function of βO. Discrepancies exhibit
an increase in error in reconstruction of quantities along βO. However, overall results for all samples
proves that procedure (2) is working properly at the time to reconstruct 〈σi〉, [C]ij and u (σi, σj , σk).
Maximum of discrepancy for 〈σi〉 was about 0.4%, for [C]ij was below 6% and for u (σi, σj , σk) is close to
16%. Maximum value of discrepancy in third order Ursell function is associated with the learning limit
derives from the LRA approximation.

Source: Author.

In each plot, it is observed that discrepancy for all computed quantities increases

with βO. In other words, the learning algorithm works better in reconstructing 〈σi〉, [C]ij
and u (σi, σj, σk) for low values of βO. However, overall results for all samples show that

in general, procedure (2) is working properly. Maximum of discrepancy for 〈σi〉 was about

0.4%, for [C]ij below 6% and finally for u (σi, σj, σk) was close to 16%. High value of

discrepancy in third order Ursell function can be associated with an upper limit in learning

derived from the fact that we are working with the LRA approximation. In the same way,

lets define the discrepancy ∆W and ∆H as [6, 14]

∆W = 1
T

∑
t

√√√√√√
∑
i>j

(
wO
ij − wI

ij

)2

∑
i>j

(
wO
ij

)2 , ∆H = 1
T

∑
t

√√√√√√
∑
j

(
hO
ij − hI

ij

)2

∑
j

(
hO
ij

)2 , (3.61)

where again the average is taken over all samples and O and I stands as

observed and inferred parameters, respectively. In this case, parameter discrepancy close

to one express that inferred parameters were not well reconstructed. Figure 8 shows the

parameters discrepancy computed in all ranges of βO.
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Figure 8 – Discrepancy of parameters in function of βO. For both parameters, its discrepancy decreases
as βO grows. Note that, for βO ≥ 0.7 behaviour change and discrepancy increases again. Apparently, high
values of discrepancy lead us to conclude that procedure (2) is not working properly in reconstructing
parameters {WO,HO}. However, this apparent mistake indicates that a hidden feature in the learning
algorithm has not been taken into account.

Source: Author.

Discrepancy in parameters exposes a decreasing behaviour by increasing βO.

However, for βO ≥ 0.7, behaviour changes and discrepancy increases again. The most

highlighted feature of the previous result is the highest discrepancy values for all βO. This

could lead us to conclude that the learning algorithm (2) does not work properly when

reconstructing the observed parameters. However, this apparent mistake can be easily

understood and overcome. High values of discrepancy in parameters must be due to

a hidden feature that the learning algorithm does not cover. In other words, values of

discrepancy can be decreased if that hidden feature is taken into account in the learning

algorithm.

3.6 Learning β: A hidden feature in Boltzmann machines

In extremal conditions (3.24) and (3.25), it was assumed that β = KBT = 1.

However, this is just a trick to overcome the lack of equations needed to obatin analytically

β. Main problem resides in the fact that β is a free parameter and therefore may take any

real value. To figure out how to learn this new parameter, results of inferred parameters

were checked by hand. This process led us to realize that high values in parameter

discrepancy is due to the lack of scaling in learned parameters by βO in which observed

parameters were generated. In other words, to the best of our knowledge, there is a scale

relation between observed and inferred parameters and seemingly this properly is hidden.
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In order to make this property visible, first thing made was to compute the expected value

of inferred - observed ratio for weights and local fields, i.e., E
[
Ŵ/WO

]
and E

[
Ĥ/HO

]
. As

an example, for a random sample of βO = 0.3 results were E
[
Ŵ/WO

]
= 0.3123± 0.1216

and E
[
Ĥ/HO

]
= 0.28698 ± 0.0742. Note that these two values are very close to the

original βO. This implies that if there is a scale relation between inferred and observed

parameters, ratio between them must be equal to βO. In order to prove that, a linear

fitting process was carried out between Ŵ vs. WO and Ĥ vs. HO for each observed βO. If

the previous assertion is true, the angular coefficient obtained from the fitting process

must correspond to the observed βO. Figure 9 shows the linear fitting for a random sample

of βO = 0.6. Inferred parameters are located in the vertical axis and observed parameters

are in the horizontal axis of each plot.

Figure 9 – Linear fitting between inferred and observed parameters. A random sample of βO = 0.6 was
chosen. Inferred and observed parameters are located in the vertical and horizontal axis, respectively.
Black dashed line represents linear fitting for weights and black dash-dotted line is associated with the
linear fitting of local fields. Angular coefficient of linear fitting corresponds to the observed βO in which
synthetic data was generated.

Source: Author.

The linear fitting process (black dashed line for weights and black dash-dotted

line for local fields) shows explicitly that angular coefficient (named as β̂) corresponds to

βO in which the synthetic data was generated. In order to better conclude that, the linear

fitting process was carried out for all samples and the average value of β̂ was computed.

Figure 10 shows angular coefficients obtained from linear fitting for each βO.
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Figure 10 – Average angular coefficients in function of βO. In order to prove that a scaling relation
between inferred and observed parameters exists, a linear fitting between them for all samples were made.
The average angular coefficient shows to be close to the original βO in which synthetic data was generated.
Error bars show the discrepancy between real and inferred values of β.

Source: Author.

From the Figure, we can note that in each case, the average value of angular

coefficient obtained from linear regression is close to the original βO in which synthetic

data was generated. Previous results establish that despite inferred parameters are learned

assuming β̂ = 1, the actual inferred parameters must be scaled by β̂ in which its synthetic

data was generated. If this is true, discrepancy of parameters must decrease. Figure 11

shows the parameters discrepancies (3.61) computed using both no scaling and scaling by

β̂.

Figure 11 – Scaled discrepancy of parameters in function of βO. Green color recognizes scaled discrepancies
and yellow color is for non-scaled discrepancies. A considerably decreasing in parameters discrepancies is
observed when they were scaled by the average inferred angular coefficient β̂. This proves that inferred
parameters need to be scaled by β̂ in order to reconstruct well the observed ones.

Source: Author.

As expected, the above Figure exposes the fact that discrepancy must decrease

when learned parameters are scaled by β̂. Note that values of green markers (scaled
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discrepancy) are always below from the yellow ones (no scaled discrepancy), except for

βO = 0.8, 0.9 where discrepancy remains almost equal. In this sense, to overcome the

situation for βO = 0.8, 0.9, it is sufficient to show that discrepancy in parameters must be

a minimum in β̂. To do that, scaling of inferred parameters set was carried out in a range

β = 0.1 to β = 1.5 and subsequently, the discrepancy (3.61) was again computed. Figure

12 shows the result from random samples of data generated among βO = 0.6 to βO = 0.9.

Figure 12 – Dependence of parameter discrepancy with respect to β. Inferred parameters were scaled
in a fixed range and the discrepancy (3.61) was computed. If the scaling relation between observed and
inferred parameters exists, then discrepancy must be a minimum in βO. Each line in the plot belongs to a
random sample of data generated from βO = 0.6 to βO = 0.9.

Source: Author.

As observed, in each sample, the minimum of discrepancy is close to βO in

which parameters were learned. For the remaining samples, minimum of discrepancy was

obtained and the average by βO was computed as exposed in Figure 13. As noted in the

Figure, average minimum of β̂ is close to the real observed βO, besides, errors bars got

evident as βO → 1.
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Figure 13 – Average minimum of scaled discrepancy in function of βO. For each sample, discrepancy
among observed and scaled inferred parameters was computed. Subsequently, the minimum was attained
and the average by each βO was computed. Error bars show how far the inferred β̂ is from βO. Average
minimum of β̂ is close to the real observed βO.

Source: Author.

Previous results lead us to conclude that learned parameters
{
Ŵ, Ĥ

}
must

be scaled by β̂ in order to reconstruct well observed parameters {WO,HO}. Thing now

is that in real applications, we just only having the empirical data and no observed

parameters, and then the question raising is, how β can be learned using only the

empirical data? In order to answer this question, random states were generated using

the aforementioned Montecarlo process. Instead of using observed parameters for the

sampling process, we used inferred parameters. In this case, inferred parameters were

scaled by β. The sampling process were carried out in a range βmin = 0.1 to βmax = 1.0

and in each step the discrepancy ∆ 〈σi〉 (β) defined as

∆ 〈σi〉 (β) =
√√√√ 1
n2

∑
j

(
〈σi〉Oj − 〈σi〉

I
j (β)

)2
, (3.62)

was computed. Here, 〈σi〉O stands as the observed real expected value and

〈σi〉I (β) is the expected value computed using random states generated at β. Figure 14

shows the discrepancy for each βO.



56

Figure 14 – Discrepancy of expected value 〈σi〉 as a function of β. Each set of inferred parameters were
scaled in β which synthetic data was generated. Subsequently, Metropolis sampling using the scaled
parameters was carried out in order to generate random states in a range βmin = 0.1 to βmax = 1.0. In
each step the discrepancy between the real expected value and the expected value obtained from the
sampling process was computed. Minimum of discrepancy is shown to be at the observed βO in whom
observed parameters were originated.

Source: Author.

Figure visually exposes that minimum discrepancy is close to βO in all cases.

This ensures that a based expected value procedure can be established in order to learn

β̂. In fact, a complete procedure must include fluctuations of expected values 〈σi〉 as a

function of β. To this aim, let’s introduce the first and second order fluctuation values

χ1(W,H, β), χ2(W,H, β) as5

χ1(W,H, β) = ∂2

∂h2
i

(−β lnZB (W,H, β)) ,

χ2(W,H, β) = ∂3

∂h3
i

(−β lnZB (W,H, β)) ,
(3.63)

where ZB (W,H, β) is the partition function. Taking into account these quanti-

ties, we propose the following procedure to learn β̂.
5 Known in physics as first and second order susceptibility, respectively.



57

Procedure 3 Boltzmann machine algorithm for learning β̂
Require: 〈σi〉, [C]ij and u (σi, σj, σk);

Require: Ŵ, Ĥ.
stop← false
scale← 1
βaux ← 0
τ ← 1× 10−9 . Convergence parameter
while stop = false do

ZB
(
Ŵ, Ĥ, β̂

)
← ZB

(
Ŵ, Ĥ, β̂

)
/scale

Solve

〈〈σi〉〉 = ∂

∂hi

(
−β̂ lnZB

(
Ŵ, Ĥ, β̂

))
, (3.64)

respect to β̂ to get β1.
if |β1 − βaux| ≤ τ or β1 ≤ 0 then

stop← true
else if |β1 − βaux| ≥ τ then

stop← false
scale← 1− β1

βaux ← β1

end if
end while
Use β1 to compute χ1 and χ2

χ1 = β1

n

∑
i<j

[C]ij ,

χ2 = β2
1
n

∑
i<j<k

〈σiσjσk〉 ,

where n stands by number of visible spins.
Solve equations (3.63) respect to β̂ in order to get β2 and β3.
return β̂ = mean(β1, β2, β3) . mean operator computes average value

Proposed procedure uses mainly the partition function to learn β̂. Note that in

each iteration, the partition function is scaled by the solution satisfying that the expected

value of 〈σi〉 when computed using ZB
(
Ŵ, Ĥ, β̂

)
is equal to the real observed. This loop

ends when convergence is achieved. Convergence is measured as the difference between
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actual and previous solution of β1. After this loop, β1 is used to compute first and second

fluctuations values and equations (3.63) are solved separately to find β2 and β3. Finally,

the learned parameter β̂ is attained by computing the average value among all solutions.

Figure 15 resumes the aformentioned procedure.
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Figure 15 – Flowchart for procedure 3

Source: Author.

In order to test if the algorithm is working properly, synthetic data was generated

using the Montecarlo approach as already exposed. In each βO and each set of synthetic

data,
{
Ŵ, Ĥ

}
were inferred using procedure 2. Subsequently, covariance matrix (3.58) and

third Ursell function (3.59) were computed to estimate the value of β̂. In order to solve

equations established in procedure 3, we use a root-finding method. Specifically, we use
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Powell’s method [15] with a convergence tolerance of 2× 10−12. First thing mandatory to

prove is the convergence condition to find β1. For all simulations, we set the convergence

parameter to be τ = 1× 10−9. Figure 16 shows the evaluation of convergence parameter

in each iteration for a random sample in different values of βO.

Figure 16 – Convergence condition of procedure 3. In order to prove that the procedure is working
properly, synthetic data was generated, weights and local fields were inferred using procedure 2 and
statistical quantities were measured. For βO = 0.1 to βO = 0.6 the quantity of iterations increase with
βO, meaning that the convergence condition is mediated by the difference |β1 − βaux|. For the remaining
range βO = 0.7 to βO = 0.9, it was realized that convergence condition works taking into account the
second condition of the if statement.

Source: Author.

As observed, for βO = 0.1 to βO = 0.6, convergence condition is mainly mediated

by the evaluation of difference |β1 − βaux|. In fact, the quantity of iterations grows as βO

approaches to βO = 0.6. For the remaining range βO = 0.7 to βO = 0.9 we realize that

the convergence condition was mediated by the second condition in the if statement, that

means, convergence condition stops to scale partition function because solutions of β1 are

forbidden. Verified the convergence condition of procedure 3, the next step carried out

was to implement it by complete. To do that, for each βO, we implement a framework in

which random weights, local fields and synthetic data are generated, inferred parameters

are computed using procedures 2 and 3 and if the difference
∣∣∣βO − β̂

∣∣∣ is less or equal to
1× 10−2 results are saved. This process is iteratively repeated until a total amount of ten

samples are attained by each βO. Figure 17 shows the comparison between β̂ and βO.
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Figure 17 – Comparison between β̂ and βO obtained using proposed procedure. Synthetic data was
generated for different values of βO. Parameters

{
Ŵ, Ĥ

}
were inferred using procedure 2 and β̂ was

learned using procedure 3. Each point is the average of almost ten samples by each βO. Linear relation
among observed βO and learned β̂ shows that procedure 3 can be implemented to effectively infer the last
parameter needed for a complete Boltzmann machine description.

Source: Author.

In the plot, each point corresponds to the average of almost ten samples. Error

bar shows the discrepancy between the β̂ learned and βO. Previous Figure shows that

procedure 3 can be implemented as a methodology for learning the βO parameter in which

data was generated. Note the linear relation between learned and observed quantities. A

last characterization of the effectiveness of procedure 3 can be carried out by computing

the difference of β̂ with the values obtained via scaling hypothesis (see Figure 10) and

minimum scaled discrepancy (see Figure 13) as shown in Figure 18.

Figure 18 – Final comparison for β̂. Purple hexagon represents the difference between β̂ and the
average angular coefficients obtained from the observed-inferred scaling. Orange diamonds are related
to the difference between β̂ and the average minimum value obtained from the minimization of the
observed-inferred discrepancy. Difference remains small in the range, for extreme values the difference
turns greater.

Source: Author.

In Figure, purple hexagon represents the difference between β̂ and the average

angular coefficient obtained by scaling observed and inferred parameters. In the same
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way, orange diamonds are associated with the difference between β̂ and the average value

obtained from the minimization with respect to β of the discrepancy between observed-

inferred parameters. Note from β = 0.2 to β = 0.7 difference remains small, almost zero.

In contrast, for extreme values (β −→ 0 or β −→ 1) difference turns greater, implying that

the proposed algorithm is more sensible and therefore, learning turns complex, therefore,

an improvement of the proposed algorithm must be made in order to overcome the extreme

values sensibility.

Now, in order to prove that a set
{
Ŵ, Ĥ, β̂

}
of inferred parameters are success-

fully describing all properties of the real observed data, the next step was to characterize

properties derived from the partition function. Explicitly, it were computed the dependence

in β of energy function average value 〈H〉 (W,H, β), its fluctuation value C(W,H, β)6,

average value 〈σi〉 (W,H, β) and its first order fluctuation χ1(W,H, β) defined by

〈H〉 (W,H, β) = − ∂

∂β
(lnZB (W,H, β)) ,

C(W,H, β) = ∂2

∂β2 (lnZB (W,H, β)) ,

〈σi〉 (W,H, β) = ∂

∂hi
(−β lnZB (W,H, β)) ,

χ1(W,H, β) = ∂2

∂h2
i

(−β lnZB (W,H, β)) .

(3.65)

To do this task, we compute these quantities in two cases: using observed

parameter set {WO,HO} and inferred parameter set
{
Ŵ, Ĥ, β̂

}
. However, in the second

case, we compute the characterization in another two cases. The first one uses the inferred

parameters and the second scales Ŵ and Ĥ by β̂ learned. The characterization for all

quantities in all cases was made in a fixed range βmin = 0.01 to βmax = 2. To compute

the partition function, we generate all 2n possible states of {~σ} to evaluate each quantity

in (3.65). Figure 19 shows the result of the characterization from a random sample of

synthetic data generated in βO = 0.5.

6 Known in physics as specific heat.
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Figure 19 – Partition function characterization of observed and inferred parameters. Quantities (3.65)
were computed using three cases. The first one uses the observed set {WO,HO} (black-dotted line),
the second uses the inferred set

{
Ŵ, Ĥ

}
(blue-starred line) and the last case employs the inferred

parameters
{
Ŵ, Ĥ

}
scaled by β̂ (red-triangled line). Note that inferred scaled values reconstruct better

the characterization when compared with the observed case.

Source: Author.

In each panel, black-dotted line corresponds to the characterization computed

using observed set {WO,HO}, while the blue-stared line represents the characterization

using inferred set
{
Ŵ, Ĥ

}
and finally, the blue-triangled line is associated with the

characterization obtained using
{
Ŵ, Ĥ

}
but scaled by β̂. Note that scaled inferred values

seem to reconstruct better the characterization of observed data in comparison with the

non-scaled case. In order to assure this conclusion, we computed the error of maximum

value of C(W,H, β) between observed and inferred-scaled characterization defined by

∆Cmax = 1
T

∑
T

∣∣∣∣∣∣
Cmax (WO,HO, βO)− Cmax

(
Ŵ, Ĥ, β̂

)
Cmax (WO,HO, βO)

∣∣∣∣∣∣ , (3.66)

where Cmax(WO,HO, βO), Cmax
(
Ŵ, Ĥ, β̂

)
are the maximum values of C(W,H, β)

in the observed, inferred-scaled case, respectively and T is the number of samples by each

βO. We did this task in a similar way with the learning of βO. However, in this case,
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we add a new step in the computation related to finding the maximum value and again

results were saved if the difference
∣∣∣βO − β̂

∣∣∣ is less or equal to 1× 10−2. Figure 20 shows

the average value of ∆Cmax for different values of βO.

Figure 20 – Average error value of maximum values of C(W,H, β) between observed and inferred-scaled
parameters. The maximum value of Average error value of maximum values of C(W,H, β) given in (3.65)
was computed using {WO,HO, βO} and

{
Ŵ, Ĥ, β̂

}
. Subsequently, the average of ∆Cmax was estimated

using ten samples in which the difference
∣∣∣βO − β̂

∣∣∣ is less or equal to 1× 10−2. The maximum value of
discrepancy in all range of βO is below 3%, meaning that inferred-scaled parameters reconstruct well the
partition function characterization.

Source: Author.

From Figure 20 can be conclude that the maximum value of discrepancy ∆Cmax

is below 3%, meaning that
{
Ŵ, Ĥ, β̂

}
is capable of reconstructing all the four possible

characterizations of the partition function given by (3.65). This ensures that parameter β̂

is mandatory in order to the Boltzmann machine reconstructs in a better way, either the

statistical properties or partition function characterization contained in the original data.

Finally, the last step to prove that procedures 2 and 3 are working properly is to test if they

are capable of reconstructing the original data, that is to say, if the Boltzmann machine can

recover the input-output states of the original dataset. To do that, we compute the value

of the energy function in (3.65) for all sequences of the original synthetic data generated

for each sample in each βO. To this computation it were used the inferred parameters{
Ŵ, Ĥ

}
scaled by β̂. Each sequence is a one-dimensional vector with n elements7. After

that, a simple algorithm for returning the combination from all 2n possibilities of ~σ who

has the energy value was implemented. We iterated the algorithm over all m sequences8.

Figure 21 shows the comparison between original and predicted data for a random sample

of data generated at βO = 0.10.

7 Remember, n is the quantity of visible spin that was set up to n = 20.
8 m was set up to be m = 4× 103
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Figure 21 – Comparison of observed and predicted data. Left (right) matrix is associated with observed
(predicted) data. In each matrix, columns represent visible spins and rows correspond to a sequence. For
better visualization, matrices were plotted with only n = 15 visible spins and m = 20 random sequences.
Visually it is possible to include that procedure 2 and 3 reconstruct with precision all input-output states
of the original data.

Source: Author.

In each matrix, each column represents a visible spin and each row is associated

with a sequence of input-output states. For the sake of better visualization, matrices were

plotted with only n = 15 visible spins and m = 20 random sequences. Besides, two colors

were assigned for each possible input-output. Blue color was assigned to on values, i.e.,

dji = 1 and yellow express off values or dji = −1. By comparing visually observed and

inferred data (left and right matrices), it is possible to attain that procedures 2 and 3

reconstruct with high precision the input-output states of the original data. To better

describe this assertion, the input-output success prediction was computed for each sample

in all values of βO. Let’s define the input-output success prediction ∆~σ as

∆~σ = 1
T

∑
T

1− 1
m

∑
ij

1
2n

∣∣∣dji − d̂ji ∣∣∣
 , (3.67)

where dji (d̂
j
i ) are the observed (inferred) input-output states, respectively, n is

the number of visible spins, m is the quantity of sequences and T is the number of samples

for each βO. Denominator in third fraction containing 2n was set up to normalize the

summation. As close the value of (3.67) to 1 better is the prediction success. Figure 22

shows the success prediction for all values of βO.
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Figure 22 – Input-output success prediction of Boltzmann machine. The success prediction of data
predicted by the Boltzmann machine was computed using (3.67). As exposed in the Figure, prediction
success is above of 99% for all values of βO

Source: Author.

Figure shows that for all values of βO, prediction success is above 99%, meaning

that procedures 2 and 3 can surely recover the original data and therefore they can be

applied to real data.
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4 DATA MINING AND MANIPULATION

It is discussed the data mining process, a procedure for generating synthetic

data and a new algorithm for detecting clusters based on the adjacency matrix. In detail,

the first part is dedicated to describe how data from three different Lower Houses in the

world was obtained, processed and transformed to a numerical fashion. Subsequently, a

procedure to generate synthetic data constrained to have the same statistical properties of

the Lower Houses processed data is exposed. Finally, based on a simple like-percolation

process an algorithm for detecting clusters in a network is presented.

4.1 Setting up Legislative data

In order to apply procedures 2 - 3 already discussed in the last chapter for

learning desired parameters
{
Ŵ, Ĥ, β̂

}
in Legislative Systems, the first thing to do is set up

the binary data points necessary to implement that process. With this in mind, the political

party majority opinion will be used to construct the binary data array dji ∈ {±1}. Here i

represents a political party and j is associated to a bill. The construction of political party

majority opinion is based on the roll - call vote1 database for three different Legislative

Lower Houses. Specifically, we will study the United States House of Representatives [16],

the House of Commons of the United Kingdom [17] and the Chamber of Deputies of Brazil

[18]. The United States House of Representatives is composed of 435 voting Members to

legislate for a two year term. The House of Commons of the United Kingdom is made up

by an elected body consisting of 650 Members of the Parliament to legislate for a four

year term and the Chamber of Deputies of Brazil is organized by 513 elected Deputies to

legislate for a four year term.

Lower Houses of these three Legislative systems were choose mainly because

they have come to wield more power and exert significant political influence due to its

Members are more numerous. The reason for working with the political majority opinion

instead of roll - call vote of Lower Houses Members is because we need to compute the

partition function for a system of n interacting units and computationally this computation,

for a small quantity of visible units, can be made exactly. In fact, computations will be
1 Roll - call vote is a voting system in which it is possible to identify voters and their votes. Generally,

roll - call vote process is made either by calling individually each voter when they vote on commissions
or by electronic vote when they vote in plenary sessions.
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restricted to a maximum quantity of n = 23 political parties. Construction of political

party majority matrix for each Lower House is explained as follows.

4.2 Legislative Lower House Databases

Results of roll - call vote for each aforementioned Lower Houses were collected

using the public and free available data found at their websites2. That process was carried

out by implementing a simple API with the aim to search, read and store in a CSV

file the result of roll - call vote for each bill discussed. For the United States House of

Representatives data was collected from 1997 to 2022. This period encloses from 105th to

117th Congress meeting. For the House of Commons of the United Kingdom data ranges

from 1997 to 2022 compassing from 52th to 58th Parliament. For the Chamber of Deputies

of Brazil data extends from 1999 to 2022 spanning from 51th to 56th Legislature. Figure

23 summarizes legislative periods to be studied.

Figure 23 – Legislative periods to be studied. Data from the Legislative Lower House of the United
States of America, United Kingdom and Brazil were collected using the public and free available data
found at their websites. The period of time studied ranges from the 105th to 117th Congress, 52th to 58th

Parliament and 51th to 56th Legislature for the United States of America, United Kingdom and Brazil,
respectively. Bluish color, purplish colors and greenish colors are used to illustrate Legislative periods of
the United States of America, United Kingdom and Brazil.

Source: Author.

In Figure 23, bluish colors, purplish colors and greenish colors are used to

illustrate Legislative periods of the United States of America, United Kingdom and Brazil,

respectively. At the end of the collecting process, files containing roll - call vote results

were grouped by year so that the quantity of files corresponds to the quantity of bills voted

in each Lower House. Figure 24 shows the quantity of bills discussed in each Lower House.

2 Websites are https://clerk.house.gov/Votes/, https://www.publicwhip.org.uk/ and http://www2.
camara.leg.br/ for the United States of America, United Kingdom and Brazil, respectively.

https://clerk.house.gov/Votes/
https://www.publicwhip.org.uk/
http://www2.camara.leg.br/
http://www2.camara.leg.br/
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Figure 24 – Quantity of bills voted in Lower Houses databases. A simple API was implemented to
search, read and store in CSV files the result of roll - call vote for each Lower House under study. Files
were grouped by year so that quantity of files corresponds to the quantity of bills discussed in each Lower
House.

Source: Author.

Subsequently, all possible vote options for each Legislative Lower House database

were identified. Vote options allow voting Members to express their stance against every

bill discussed3. Table 2 shows all vote options identified for each Lower House database.

Table 2 – Identified vote options in Lower House databases. For each Lower House it was identified
all possible options that a voting Member has in order to express its stance against a bill discussed.

Vote Options
United States United Kingdom Brazil

Aye Aye Aye
Present Tellaye Abstention

Both Art. 17
Absence Absence Absence

Tellnay Obstruction
Nay Nay Nay

Source: Author.

Aye and Nay vote options express either supporting or opposition to the bill

that is being voted. Abstention is the possibility to refuse to be part of a voting session

in order to avoid expressing a stance but counts as part of the quorum. Obstruction is a

political device used to create interference on legislative procedures. Generally, obstruction

means abandonment of plenary by voting Members to avoid quorum count. Absence is the

physical non-appearance at the time to vote by a voting Member. Tellaye and Tellnay are

appointed to verify the count when there is a division in the Commons in order to report

the result back to the House. Both, Present and Art. 17 votes does not count towards

or against the passage of a bill, but it contributes towards the quorum. With all of this,
3 It worth of comment that voting Members may use one and only vote option by bill voted.
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a small section of a particular file for each Lower House database and a random year is

exposed in Figure 25.

Figure 25 – Pictorial representation of Lower House datasets. For each Lower House and year, a database
containing name, political party, state and vote for each Voting Member was created.
Name Party State Vote
Abercrombie Democratic Hawaii Nay
Ackerman Democratic New York Nay
Aderholt Republican Alabama Nay
Allen Democratic Maine Nay
Andrews Democratic New Jersey Nay
Archer Republican Texas Nay
Armey Republican Texas Aye
Bachus Republican Alabama Nay
Baesler Democratic Kentucky Nay
Baker Republican Louisiana Nay

United States - 1997

Name Party State Vote
Angela Portela Pt Roraima Aye
Edio Lopes Pmdb Roraima Aye
Francisco Rodrigues Dem Roraima Nay
Arlindo Chinaglia Pt São Paulo Art. 17
Maria Helena Psb Roraima Aye
Sebastião Bala Rocha Pdt Amapá Abstention
Beto Faro Pt Pará Aye
Elcione Barbalho Pmdb Pará Aye
Armando Monteiro Ptb Pernambuco Obstruction
Eduardo Valverde Pt Rondonia Absence

Brazil - 2007
% Name Party State Vote
% Stephen Farry Alliance (front bench) North Down Aye
% Nigel Adams Con (front bench) Selby and Ainsty Nay
% Bim Afolami Con Hitchin and Harpenden Nay
% Adam Afriyie Con Windsor Nay
% Nickie Aiken Con Cities of London and Westminster Nay
% Peter Aldous Con Waveney Nay
% Lucy Allan Con Telford Nay
% Sir David Amess Con (front bench) Southend West Nay
% Lee Anderson Con Ashfield Nay
% Stuart Anderson Con (front bench) Wolverhampton South West Nay

United Kingdom - 1997
Source: Author.

As observed, for each Lower House and year, a database containing name,

political party, state and vote for each Lower House Member was created. Databases will

help us to construct the political party majority opinion array for each year. Another

benefit information obtained from the Legislative databases is the name of Chief Executive

power in each Legislative period as illustrated in Figure 26.

Figure 26 – Names of Chief Executive power for each Legislative database. For each term, the name of
Executive Chief is shown. Bluish, purplish and greenish colors were set up to represent the United States
of America, United Kingdom and Brazil Executive terms.

Source: Author.

In Figure 26, bluish, purplish and greenish colours indicated each Executive

term for the United States of America, United Kingdom and Brazil, respectively. This
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information will be useful at the time to analyse results derived from Boltzmann machine

computations.

4.3 Lower House Databases Manipulation

In order to create the political party majority opinion matrix, a manipulation

over each Lower House database was carried out. In detail, a script was designed for

taking all files containing the results of roll - call vote by year and transform them into

an individual file. Specifically, the script appends the result of roll - call vote for each

Lower House Member throughout year. If a Lower House Member does not have a vote

in a particular bill a missing vote is appended. After that, voting Members that either

not vote all year around or possess missing votes were removed and remaining ones were

grouped by political party. Figure 27 shows the quantity of voting Members in each Lower

House database by year after this process.

Figure 27 – Quantity of voting Members in Lower House databases. Roll - call vote was appended by
voting Member throughout year and stored in an individual file for each year and Lower House database.
Voting Members that either do not vote all year around or possess missing votes were removed from the
final file.

Source: Author.

For all Lower Houses databases, the quantity of voting Members is ever less

than the real elected parliamentary body. Afterwards, a random variable to map vote

options to integer real numbers was created for each Lower House defined like
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VUS =



2 if Aye,

1 if Present,

−1 if Absence,

−2 if Nay.

VUK =



2 if Aye,

1 if Tellaye,

0 if Both,

−1 if Absence,

−2 if Tellno,

−3 if Nay.

VBR =



2 if Aye,

1 if Abstention,

0 if Art. 17,

−1 if Absence,

−2 if Obstruction,

−3 if Nay,

(4.1)

where VUS, VUK and VBR stands as the random variable for the United States

House of Representatives, the House of Commons of the United Kingdom and the Chamber

of Deputies of Brazil, respectively. Values of each random variable were designated in

order to differentiate vote options used to express approval stance (positive values), neutral

stance (zero value) and disapproval stance (negative values). We also wanted to highlight

Aye/Nay at the highest values. At the end of this process a roll - call vote matrix

Vnk = (V1k, V2k, · · · , Vnk)′ is obtained for each year and Lower House. Vnk is a sequence

of k values of random variable (4.1) spawned in n different realizations. Here, n counts for

the number of voting Members (see Figure 27) and k represents the quantity of bills voted

by year (see Figure 24). Each element of Vnk represents the numerical value of the vote of

a voting Member n at bill k. A pictorial representation of the roll - call vote matrix is

Vnk =

M1

M2

M3

M4

M5

M6

...

Mn

−3 2 1 −1 · · · 2

0 −1 0 2 · · · 1

−2 2 −3 −3 · · · −3

2 3 −1 0 · · · 0

−2 1 2 −1 · · · −3

2 0 1 −3 · · · −2
... ... ... ... . . . ...

−2 −1 0 −3 · · · 1





Bills by year

P1

P2

Pm

, (4.2)
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where Mi represents i - voting Member and Pj depicts that Members were

grouped by m-political party. Observed that a color box was drawn to better notice the

political party ordering as well as to highlight that there are m political parties. Roll -

call vote matrix (4.2) will be used to create the political party majority opinion matrix for

each year and Lower House.

4.4 Creating political party majority opinion vote matrix

Finally, using the fact that voting Members are grouped by political party in

(4.2) is straightforward to obtain the political party majority opinion vote matrix. It is

worth of comment that due to the restriction of binary arrays dji ∈ {±1}, this matrix must

have only two possible values, meaning that the political party is being expressing either

disapproving (-1) or approving (1) stance against a bill. Specifically, for each Lower House

in each year the following procedure is proposed.
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Procedure 4 Political parties’ majority opinion algorithm.
Require: Vnk for each year and Lower House (Equation (4.2)).
m −→ Quantity of political parties
k −→ Number of bill discussed by year
Ṽmk −→ Political parties’ majority matrix
for i = 1 to m do

Compute sum over Members from i-party for all vote options in each bill.
for j = 1 to k do

if Nay[j] 6= Aye[j] then
if Nay[j] > Aye[j] then

Ṽij = 1
else

Ṽij = −1
end if

else
if Sum of positive vote options[j] > Sum of negative vote options[j] then

Ṽij = 1
else

if Sum of positive options[j] < Sum negative options[j] then
Ṽij = −1

else
Ṽij = rand(−1, 1) . rand means binary random choice.

end if
end if

end if
end for

end for
return Ṽij

Note that procedure 4 points out to compute majority opinion first by com-

paring Aye and Nay majorities, in case of draw, it compares now between approving and

disapproving majorities and if no condition is met until there, a random binary choice is

set up. Figure 28 resumes the aformentioned procedure.
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Figure 28 – Flowchart for procedure 4

Source: Author.

This procedure returns a binary array containing the majority opinion for each

party in each bill by year. A pictorial representation of the political party majority opinion
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matrix is given by

Ṽmk =

P1

P2

P3

...

Pm

−1 1 1 −1 · · · 1

1 −1 −1 1 · · · 1

−1 1 −1 −1 · · · −1
... ... ... ... . . . ...

−1 −1 1 −1 · · · 1





Bills by year

, (4.3)

where again Pm represents them - political party. Matrix (4.3) will be employed

to learn parameters
{
Ŵ, Ĥ, β̂

}
for each Lower House through all years. Figure 29 shows

the quantity of political parties for each Lower House by year after the computation of the

majority opinion binary array using the procedure 4 aforementioned.

Figure 29 – Quantity of political parties found in Lower Houses databases. For each year and Lower
House database, the political party majority opinion array was computed using procedure 4. At the end,
a like binary array (4.3) is obtained containing the majority opinion for political party. This array will be
employed to learn parameters

{
Ŵ, Ĥ, β̂

}
employing procedures exposed in Chapter 1.

Source: Author.

4.5 Generating political party majority random data

In order to prove that procedures proposed in Chapter 1 work well when applied

to the majority opinion array (4.3) and therefore, that our conclusions cannot be obtained

by chance, we decided to generate simulated data encompassing all original statistical

properties for each year in each Lower House. Specifically, it was implemented a procedure

that generates a binary array constrained to have the same correlation structure and
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cumulative distribution function when compared to each political party, year and Lower

House. Technically, we implement a procedure that uses a set of functions for generating

correlated data already offered in R language and our procedure seeks for the binary array

which minimizes the difference of the correlation matrix and marginal distribution between

the original binary political party array (4.3) and the simulated one. Functions used

were corrcheck, and ordsample from the GenOrd package [19, 20]. Proposed procedure is

established as follows.

Procedure 5 Political party majority random data
Require: F [Vmk] (Cumulative distribution function for each party)
Require: ρ [Vmk] (Correlation matrix).
Use corrcheck (ρ [Vmk] ,F [Vnk]) to verify if all correlation coefficients are feasible to
simulate.
In case, change not feasible coefficients using lower and upper bounds limits returned
by corrcheck (ρ [Vnk] ,F [Vnk]).
d −→ Number of binary values for each political party;
τ −→ Minimum tolerance value of the difference between simulated and real F [Vnk],
ρ [Vnk], respectively;
V′nd −→ Simulated political party majority opinion array.
while γ1 ≥ τ and γ2 ≥ τ do

V′nd −→ ordsample (ρ [Vnk] ,F [Vnk])
Compute cumulative distribution function for each party to obtain F [V′md]
γ1 = mean (|F [V′md]− F [Vmk] |) . mean is the average value.
γ2 = mean (|ρ [V′md]− ρ [Vmk]) . Only in upper-triangle elements.

end while
return V′md

Procedure works as follows. It is required to compute the cumulative distribu-

tion function for each party and the correlation matrix for (4.3). Prior to generate the

data, the procedure checks if all correlation coefficients are feasible to construct. This

process is carried out by computing the upper and lower bounds for each discrete variable

using its marginal distribution. Subsequently, correlated ordinal data is generated by the

ordsample function. Binary data is generated first by computing the correlation matrix

of a standard normal variable yielding the desired one and after that, a discretization is

made over the resulting variable set. Afterwards, the cumulative distribution function of
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the simulated binary array is computed by each party along its correlation matrix. Finally,

the difference between real and simulated cumulative and upper-triangle correlation values

is obtained. Note that simulated binary array is generated iteratively until the minimum

tolerance of difference for cumulative and correlation values is met. It is worth of comment

that proposed procedure does not work if correlation matrix has negative eigenvalues. In

our simulation for all years and Lower Houses, it was established a minimum tolerance

of τ = 10−3 and the quantity of data generated for each party was set up to be d = 105.

Figure 30 resumes the aformentioned procedure.
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Figure 30 – Flowchart for procedure 5

Source: Author.

4.6 Nearest correlated cluster algorithm (NECO)

In order to better analyse the political parties’ intrinsic inner relationship with

the results generated by the Boltzmann machine procedures already exposed in Chapter

1, a last procedure is presented. This procedure aims to detect clusters based on the

correlation of the sequences of the Lower Houses Members votes. This procedure is based

in a "like-percolation" process computed over the correlation distance matrix of the roll-call

vote matrix (4.2). The aim is then to find the minimum value of the correlation distance

in which it is possible to construct a complete connected network. In other words, we seek

for the value of correlation distance in which unconnected - connected phase transition

happens. Actually, this procedure is an extension of the Minimal Spanning Tree (MST)

based procedure for reordering correlation matrices [1]. In simple words, the method
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computes the MST of the correlation distance matrix obtained from the roll-call vote

matrix (4.2). The MST is arisen as a subnetwork that connects all Lower Houses members

constrained to the sum of their correlation distance values is minimum. Reordering of the

correlation matrix is made then, by taking into account the position in which each pair

of Lower Houses members appears as the spanning tree grows [1]. In this sense, NECO

procedure aims for better visualization of reordered matrices produced by this method.

Procedure is established as follows.
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Procedure 6 Nearest correlated cluster algorithm (NECO)
Require: Vnk −→ Roll - call vote matrix (4.2).

Compute correlation distance matrix d [Vnk] =
√

2 (1− ρ [Vnk])
Sort ρ [Vnk] using MST-based procedure described in [1].
Consider d [Vnk] as a complete undirected connected network.
In the weighted adjacency list [vi, vj, d(i, j)], sort weights in descending order.
head −→ [1, 2, 3, . . . , n]; . Head vector for computing giants components.
mass −→ [1, 1, 1, . . . , 1]; . Mass vector array of size equal to n.
τ −→ []; . Threshold array.
n1 −→ []; . First giant component array.
n2 −→ []; . Second giant component array.
m1 −→ 0;
m2 −→ 0;
i, j −→ 0;
while m1 6= 1 and m2 6= 0 do

while vi 6= head[vi] do
ai = head[vi]
vi = head[ai]

end while
while vj 6= head[vj] do

aj = head[vj]
vj = head[aj]

end while
if vi 6= vj then

head[vj] = vi

mass[vi]+ = mass[vj]
mass[vj] = 0

end if
Sort in descending order mass array
m1 = mass[0]/n . mass[0] means first element of mass array.
m2 = mass[1]/n . mass[1] means second element of mass array.
Append m1 to n1

Append m2 to n2

Append d(i, j) to τ
end while
return n1, n2, τ

Use the last value of τ to remove unnecessary values in ρ [Vnk]
Identify plateaus of n1 or n2 and its range in τ to detect clusters in ρ [Vnk]
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Procedure 6 is based on the computation of the first and second giant com-

ponents of a complete connected network. Complete procedure works as follows: First,

a residual network is created by adding one edge step by step. Rule for adding edges

begins from the smallest to the largest weights (in this case, values of correlation distance).

Subsequently, in each step it is computed the first and second giant component of the

residual network. Giant component is a connected sub-network containing a proportion of

the entire nodes of the original vertex set [21]. Finally, the procedure runs until phase

transition is found. Phase transition is the state in which, first giant component must be

equal to one and the second giant component is zero. In the end, procedure returns three

arrays: the first and second giants components arrays and another one containing the

weights in which plateaus for the previous giants components are observed. These arrays

help us to identify clusters on the adjacency matrix (in this case, correlation matrix).

Figure 31 resumes the aformentioned procedure.
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Figure 31 – Flowchart for procedure 6

Source: Author.

To exemplify how cluster identification arise, we apply procedure 6 over a toy

network. Figure 32 shows the first (red - dashed) and second (blue - dashed) normalized

giant component plateaus for the toy network.
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Figure 32 – First (red-dashed) and second (blue-dashed) normalized giant components of a toy network.
N is the number of connected nodes in each weight d(i, j) and NT stands as the size of the network.
Vertical black dashed line indicates the value in which unconnected-connected phase transition occurs.

Source: Author.

Note that value in which the unconnected-connected phase transition happens

is depicted by a vertical black dashed line. Identification of clusters is as follows: First

use the last value of τ to remove unnecessary values in the correlation matrix (value

highlighted by the vertical black dashed line). Subsequently, by counting plateaus from the

first component array n1 it is possible to identify the number of clusters in the correlation

matrix4. To display each cluster counted, use threshold array τ to recognize correlation

ranges for clusters. Figure 33 shows the final result of cluster identification over our toy

network. To better visualize, displayed matrices were re-ordered using the MST-based

procedure detailed explained in [1].

4 Same result is attained by doing the counting process over the second giant component.
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Figure 33 – Nearest correlated cluster algorithm result. Procedure 6 was applied over a toy network in
order to identify its clusters. Figures 33a - 33c show the identified cluster and the comparison with two
known clusters. Figures 33d - 33e show the original and optimized adjacency matrix. Optimized adjacency
matrix is compute by eliminating all values greater or equal to the value in which unconnected-connected
transition occurs. Note that clusters obtained using proposed procedure resemble real clusters.

(a) Identified clusters (b) Known cluster 1 (c) Known cluster 2

(d) Adjacency matrix
(e) Optimized adjacency ma-
trix

Source: Author.

Identified cluster are located in Figure 33a which is compared with two known

cluster exposed in Figures 33b - 33c. Note how identified clusters resembles real known

clusters. In fact, procedure 6 reveals inner sub clusters. Note that quantity of clusters

(Right vertical color bar) in the upper - left matrix is greater in comparison to the number of

known clusters for upper - center and upper - left matrices. Finally, Figures 33d - 33e show

the original and optimized adjacency matrices. Optimized adjacency matrix is computed

by eliminating all values greater or equal to the value in which unconnected-connected

transition occurs. In general, proposed procedure works in any adjacency network without

regarding the metric used to measure weight between two vertices. However, at last, that

measure function must satisfy the axioms of a distance metric.



86

5 RESULTS AND ANALYSIS

It is presented the analysis of roll-call vote data using the interactionism and

statistical approach. We begin describing results obatine using interactionism proce-

dures and subsequently, results of statistical approach are discussed. Finally, Legislative

Consensual Regimes are proposed by joining results of both approaches.

5.1 Input quantities for extended Boltzmann machine learning process

Previously, in Chapter 2 was described how roll-call vote data was transformed

from raw data to political majority opinion matrix for each Lower House defined as

Ṽmk =

P1

P2

P3

...

Pm

−1 1 1 −1 · · · 1

1 −1 −1 1 · · · 1

−1 1 −1 −1 · · · −1
... ... ... ... . . . ...

−1 −1 1 −1 · · · 1





Bills by year

. (5.1)

This matrix is the main key to compute the input quantities needed to do the

learning process detailed exposed in Chapter 1. Remember that m−political parties are

located in rows and k−bills voted by year are spanned in columns as shown in (5.1). Input

quantities are listed as follows:

Political party opinion mean value: This value is computed by averaging the se-

quence of values spanned over all bills by year and do this process for each political

party (green, cyan and purple rectangles in (5.1)). At the end, a m−vector 〈σi〉O

is obtained representing the opinion mean value for each party. 〈σi〉O is a value

between zero and one;

Political party covariance matrix: Covariance matrix is computed by evaluating the

expected value (3.58) among all pairwise sequences of values spanned over columns,

i.e. all possible combinations of green, cyan and oranges rectangles. Final result

must be a m−squared [C]Oij matrix;
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Third order political party degree of interaction: Third order Ursell function (3.59)

is computed using the two previous quantities. This value measures how the interac-

tion among triplets of parties is. At the end, we obtain a s−vector u (σi, σj, σk)O

where s = m(m− 1)(m− 2)/3! counts all possible combinations of triplets among

parties.

Note that superscript O means observed data, that is, quantities computed

using Lower Houses data. Listed quantities were obtained for each Lower House and year.

Figure 34 shows the expected value of these three quantities for each Lower House in a

period of time spanning from 1997 to 2022.

Figure 34 – Expected value of input quantities for learning process. Expectation value of 〈σi〉O (left-
panels), [C]Oij (center-panels), u (σi, σj , σk)O (right-panels) was computed for each Lower House and year.
In all panels, black dashed lines and coloured zones were used to separate executive terms and a marker
was associated to a legislative term. Executive and Legislative term are displayed in the legends boxs
located at right and left of each group of panels. Lower values of

〈
〈σi〉O

〉
indicates dissensus among

political parties. Values of
〈
[C]Oij

〉
and

〈
u (σi, σj , σk)O

〉
from Chamber of Deputies of Brazil are greater

than values for the United States House of Representatives and the House of Commons of the United
Kingdom mainly because the number of political parties is greater and therefore, the number of possible
combinations is greater in consequence. 10-base log scale was set up in

〈
[C]Oij

〉
and

〈
u (σi, σj , σk)O

〉
to

better observe values for all three Lower Houses.

Source: Author.

In Figure 34 lefts panel show expected value of 〈σi〉O, center panels are for

expected values of [C]Oij and right panel are intended for expected value of u (σi, σj, σk)O.

Black dashed lines and coloured zones are intended to highlight each executive term and
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a marker was assigned for each Legislative term. Note that if
〈
〈σi〉O

〉
is close to zero,

this is an indication of a high degree of dissensus among political parties. Conversely,

greater values is associated with a more consensual sense among them. Dissensual or

polarized state is defined as the situation in which groups of political parties strongly

disagree. That is to say, is the configuration in which a subset of political parties agree

to approve the bill whereas the remaining subset enforces for rejecting it, for example.

Conversely, a consensual state is the case in which all political parties possess the same

opinion in relation to approve or disprove the bill. On the other hand, values of
〈
[C]Oij

〉
and

〈
u (σi, σj, σk)O

〉
from Brazil are greater than values for the United States and United

Kingdom mainly because the number of political parties in this Lower House is greater

and therefore, possible combinations of three political parties are greater in consequence.

In fact, for some years of the United States Lower House,
〈
u (σi, σj, σk)O

〉
is zero because

there are only two political parties. Note that 10-base log scale was set up in
〈
[C]Oij

〉
and〈

u (σi, σj, σk)O
〉
to better observe values for all three Lower Houses.

5.2 Learned parameters
{
Ŵ, Ĥ

}
: From statistics to interactions

By using input quantities
{
〈σi〉O , [C]Oij

}
as input information in procedure 2 it

is possible to learn parameter set
{
Ŵ, Ĥ

}
for each year and Lower House. As a result, Ŵ

must be a m−squared symmetrical matrix and Ĥ must be a m−vector. The importance

of learning set
{
Ŵ, Ĥ

}
resides in the fact that analyses of Lower Houses change from a

statistical (opinion mean value and covariance matrix) to an interaction (weights and

thresholds) point of view. This change promotes a deeper understanding of the intrinsic

inner political relationships because it is possible to carry out a profound characterization

of Lower Houses collective behaviour. Figure 35 shows the probability distribution function

for the set
{
Ŵ, Ĥ

}
in a random year for each Lower House.
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Figure 35 – Probability distribution function of learned parameter set
{
Ŵ, Ĥ

}
for one random year

in each Lower House. Learned parameters were obtained using procedure 2 using input quantities{
〈σi〉O , [C]Oij

}
. For each pair

(
f
(
Ŵ
)
, f
(
Ĥ
))

a label indicating the legislative term number, year and
name of Chief Executive power was set up. Distributions for the United States Lower House are sparser
in comparison with the others. For the United Kingdom and Brazil Lower Houses distribution for weights
and thresholds set seems to be normally and uniformly distributed, respectively.

Source: Author.

In Figure, for each pair
(
f
(
Ŵ
)
, f
(
Ĥ
))

, a label indicating the legislative term

number (see Figure 23), year and name of Chief Executive power was set up (see Figure 26).

Note that distributions for the United States Lower House is sparser than distributions

for the United Kingdom and Brazil Lower Houses because the number of political parties

oscillates between two and three. In comparison, the distribution function for weight sets

in the United Kingdom and Brazil Lower Houses seems to be normally distributed around

wij = 0. In the same way, distribution functions for threshold sets in both Lower Houses

show to be uniformly distributed.

5.3 β̂ learned: A new way for measuring the degree of political interaction

First thing mandatory to establish is the significance of β̂ in Legislative Houses

analysis. This parameter can be considered as an inverse measure of the degree of legislative

interaction among political parties. Legislative interaction can be understood as a naive

way to quantify how much political parties debate, discuss or share ideas when they come

to present, argue and subsequently vote bills in legislative sessions. Numerically speaking,

large β̂ is related to weak degree of legislative interaction whereas small β̂ is a sign of
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strong legislative interaction among political parties. Figure 36 illustrates a simple way to

understand the significance of β̂.

Figure 36 – Significance of β̂ in Legislative process. Beta can be understood as an inverse measure of
legislative interaction among political parties. For large β̂, consensual states are found, meaning that
political parties have the same opinion to approve-disapprove the bill by using small quantities of debates.
Contrary, small β̂ is associated with a dissensual state in which political parties interact in large quantities
of debates. β̂ value was distributed as shown in the right color bar. The fuchsia-aqua cycle makes reference
to the irreversible transition from consensus to dissensus for an individual bill.

Source: Author.

Figure shows a set of coloured distributed points according to the color bar

located at the right. Note that strong and weak degree of interaction were labelled for small

β̂ (most bluish point located at right-bottom) and large β̂ (most reddish point located at

the left-top), illustrating the premise aforementioned established. Besides that, Figure

36 shows another interesting feature that can be ingrained between β̂ and consensual -

dissensual states (vertical and horizontal axes). Small values of β̂ shall be connected to the

dissensual state because groups of political parties strongly disagree to approve-disapprove,

meaning in more debates and discussions. In the opposite, a consensual state shall be

associated with large values of β̂ due to the fact that political parties have the same opinion

for approving-disapproving bills, implying that either none or small quantity of debates or

discussion are needed. As a major conclusion, β̂ can be used to characterize transition

from consensual to dissensual state of political parties. The fuchsia-aqua cycle in Figure

36 illustrates how the consensual-dissensual transition must happen. Note that direction

and color of cycle defines an irreversible transition between consensus and dissensus. The

fuchsia cycle means that for bill ki, consensus is reached only from a dissensus state.

Reverse cycle (aqua cycle) happens when political parties begin to discuss a new bill ki+1,

for example.

Legislative interaction parameter β̂ and the association with consensus-dissensus
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transition can be easily observed in Lower Houses Legislative procedures. Lets analyze

the following example. It is known that bills with high importance over future executive

branch power actions are sent to the Legislative branch in the first year term. This is

because of the high level of controversy generated among political parties that are against

and in favour of executive power proposals, resulting in a highly polarized state [1]. These

bills are discussed, reviewed, voted on and in the majority of cases, amendments to specific

bill issues are made in order to be discussed again, meaning in large quantities of debates

and legislative sessions. As the time goes and amendments are made, more political parties

begin to agree with the bill, and therefore the number of legislative sessions decreases, that

is, the consensual state is reached. Establishing the significance of β̂ in Legislative analysis,

it is time to look at the result obtained from the Legislative Lower Houses databases. Set{
〈σi〉O , [C]Oij, u (σi, σj, σk)O

}
for each Lower House was used as the input of Procedure 3

in order to learn β̂. Figure 37 shows β̂ learned from procedure 3 for the three different

Lower Houses.



92

Figure 37 – β̂ learned in Lower Houses Databases. Set
{
〈σi〉O , [C]Oij , u (σi, σj , σk)O

}
was used as the

input of Procedure 3 in order to learn β̂. Upper, center and lower panel are related to the United States of
America House of Representatives, United Kingdom House of Commons and Brazil Chamber of Deputies.
In all panels, black dashed lines and coloured zones were used to separate executive terms. Executive and
Legislative term are displayed in the legends boxs located at right and left of each panel. In each panel, a
marker, representing a specific Legislative term shows β̂ learned for each year and Lower House. Gray
down triangles are associated with β̂ obtained from the minimization of the discrepancy between learned
parameters and learned scaled parameters and gray up triangles are values of β̂ learned obtained procedure
3 using simulated data gathered from Procedure 6. For some years in the United States of America and
Brazil panels, β̂ obtained from simulated data are away from the value obtained using the real data. This
is mainly because some correlation values were not feasible to be reconstructed and therefore, these values
were recomputed. In the case of the United Kingdom it was not possible to generate simulated data
because the majority of correlation values were not feasible to be reconstructed.

Source: Author.

Upper, center and lower panels of Figure 37 are related to the United States

House of Representatives, the House of Commons of the United Kingdom and Chamber

of Deputies of Brazil. Executive terms (see Figure 26) were coloured and black dashed
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lines were used to separate them and they can be recognize by seeing the legends boxs

located at right and left of each panel. Each panel shows β̂ learned using procedure 3 for

the United States of America, United Kingdom and Brazil, respectively. Besides, there

are two more markers for each panel. Gray down triangles are associated with β̂ obtained

from the minimization of the discrepancy between learned parameters and learned scaled

parameters, that is, by dividing
{
Ŵ, Ĥ

}
by β̂ as detailed in Chapter 1. On the other

hand, gray up triangles are values of β̂ learned obtained procedure 3, but in this case,

simulated data gathered from Procedure 6 was used as the input parameters. Note that

for some years in the United States House of Representatives and Chamber of Deputies of

Brazil panels, β̂ obtained from simulated data are away from the value obtained using

the real data. This issue comes from the fact that in order to generate simulated data,

some correlation values were not feasible to be reconstructed and therefore, these values

were recomputed. In the case of the House of Commons of the United Kingdom it was not

possible to generate simulated data because the majority of correlation values between

political parties were not feasible to be reconstructed.

Note that there are three large values of β̂ learned that are worth of com-

menting on. Specifically, these points are located in 2001 for the United States House of

Representatives and in 2000 and 2013 for the House of Commons of the United Kingdom.

It was proposed that large value of β̂ learned implies a high degree of consensus among

political parties and these points prove that this argument is true. Explicitly, in 2001,

the United States of America experience terrorist attacks, for that reason, the House

of Representatives have to deal with bills related to the interception and obstruction of

terrorism [22]. Given the situation, these bills were approved almost by unanimous consent.

On the other hand, the large value of β̂ in 2000 is associated with the introduction of the

House of Lords Act 1999 [23]. An Act to restrict membership of the House of Lords by

virtue of a hereditary peerage. The aim of this act was to make the House of Lords more

democratic and representative. This Act decreased the membership of the House from

1,330 in October 1999 to 669 in March 2000. At that time, Act 1999 was well received by

Commons. Finally, in 2003, the House of Commons had to discuss the government motion

related to the use of chemical weapons in Syria [24, 25]. The motion was defeated by the

House of Commons, meaning that at some point, Commons partially or completely agreed

and therefore, large values of β̂ does not make sense.
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5.4 Consensual and Dissensual zones: Analysing β̂ and
〈
〈σi〉O

〉

Inconsistency in the value of β̂ for the United kingdom in 2003 can be understood

if a comparison between β̂ learned and the expected value of the political party opinion

mean value
〈
〈σi〉O

〉
is made. It was established that

〈
〈σi〉O

〉
close to zero (one) is associated

with a high degree of dissensus (consensus). In this sense, by analysing all combinations

of small and large values of
(〈
〈σi〉O

〉
, β̂
)
and plotting them, we can define regions of

dissensus, consensus and for the best of our knowledge, regions of political anomalies. Our

proposal is depicted in Figure 38.

Figure 38 – Consensual and dissensual states regions. In the plot, the horizontal axis is related to the
expected value of the political party opinion mean value and the vertical axis it is related to β̂ learned
which is plotted in log scale. Four coloured regions were depicted according to all possible combinations
of coordinates

(〈
〈σi〉O

〉
, β̂
)
. Red and green coloured zones located at the bottom-left and upper-right

are associated to dissensual and consensual states, given that
(〈
〈σi〉O

〉
, β̂
)
are both either small or large.

Yellow coloured regions located at upper-left and bottom-right of the plot are associated with political
anomalies given the inconsistency between values of

(〈
〈σi〉O

〉
, β̂
)
. Finally, the blue region located at the

centre of the plot is related to all intermediary values of
(〈
〈σi〉O

〉
, β̂
)
.

Source: Author.

Figure 38 exhibits in the horizontal axis the expected value of the political

party opinion mean value with bounds fixed between zero and one and in the vertical axis

it is found in a log scale, β̂ learned. Four coloured regions were depicted according to all

possible combinations of coordinates
(〈
〈σi〉O

〉
, β̂
)
. When both values of

(〈
〈σi〉O

〉
, β̂
)
are

either small or large a highly dissensual or consensual state among political parties can be

associated. Dissensual and consensual regions were red and green coloured and these zones

are located at the bottom-left and upper-right of the plot. On the other hand, when values
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of
(〈
〈σi〉O

〉
, β̂
)
are either small-large or large-small this is a sign of political anomaly

due to the fact that it is not possible to comprehend the fact that for example, political

parties globally disagree in opinion but they are not interacting to decide that. Anomaly

regions were yellow coloured and they are located at upper-left and bottom-right of the

plot. Finally, there is a blue zone named as transitional region. This region encompasses

all intermediate values of
(〈
〈σi〉O

〉
, β̂
)
that are between dissensual and consensual zones.

Figure 39 shows the plot of β̂ vs
〈
〈σi〉O

〉
using the result obtained for the three lower

Houses.

Figure 39 – Consensual and dissensual zones for the three Lower Houses. In both panels, is exposed the
values of β̂ learned in the horizontal and

〈
〈σi〉O

〉
in the vertical axis. Blue stars, red plus and yellow

rotated plus are associated with the values of
(〈
〈σi〉O

〉
, β̂
)
for the United States of America, the United

Kingdom and Brazil Lower Houses. In the right panel, it is shown the same plot but this time with
coloured zones. Coloured zones were obtained by doing a classification of all possible regions described on
the right center legend. The classification of these zones is based on a Multilayer Perceptron algorithm.
Colormaps on the center right represent what is the probability for a point

(〈
〈σi〉O

〉
, β̂
)
to belong to

a region Ri. The possible values for probabilities are depicted in the fuchsia colorbar next to the right
panel. Note that probability value is related to the contrast of color. Fuchsia circle was used to highlight
points worth of commenting.

Source: Author.

In both panels of Figure 39 is exposed the values of β̂ learned and
〈
〈σi〉O

〉
in

the horizontal and vertical axis, respectively. Again, blue stars, red plus and yellow rotated

plus are associated with the values of
(〈
〈σi〉O

〉
, β̂
)
for the United States of America, the

United Kingdom and Brazil Lower Houses. The right panel of Figure 39 shows the same

plot but this time with coloured zones. Each coloured zone is associated with each possible
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region described above. Legend on the right center of the Figure shows the colormap

chosen for each region. In each coloured zone, the colormap reveals what is the probability

for belonging to a region Ri given a point
(〈
〈σi〉O

〉
, β̂
)
. Observe the levels of the colorbar

next to the right panel. A fuchsia colormap was selected only to exhibit how the probability

value is associated with the contrast of the color. These zones were obtained by employing

a Multilayer Perceptron Classifier Algorithm [26] over the set of points obtained for the

three Lower Houses. In the machine learning context, highly dissensual, highly consensual,

anomaly and transitional zones are depicted as the decision zones learned for the Multilayer

Perceptron over a multiclass classification problem. Observe how the regions better improve

the way that points
(〈
〈σi〉O

〉
, β̂
)
can be interpreted. Specifically, all points

(〈
〈σi〉O

〉
, β̂
)

for Brazil Lower House are located in the dissensual zone; For the United States of America

points
(〈
〈σi〉O

〉
, β̂
)
are distributed among dissensual and transitional zones and finally,

points for the United Kingdom are distributed among all zones. A highlight of three points

of β̂ learned, two for the United States House of Representatives, two for the House of

Commons of the United Kingdom and one more for the Chamber of Deputies of Brazil

were made in Figure 39. These points were outstanded using a fuchsia circle. The two

points mentioned of the House of Commons of the United kingdom are located in the

consensual and anomaly zone. Point located in the consensual zones is associated with the

implementation of Act 1999 and the point located in the anomaly zone is for the discussion

about use of chemical weapons in Syria. Points related to the United States located at the

edge of the transitional zone towards the consensual zone is related with bills discussed

after the 2001 terrorist attacks and the other one located in the anomaly zone is related

to the COVID-19 epidemic state of emergency. The point highlighted in Brazil is related

to the first election of Luis Inácio Lula da Silva as the President of Brazil in 2002.

5.5 Finding β̂max: An estimator to know the transition from dissensual to

consensual state

Above result shows that it is possible to characterize dissensual and consensual

states just by measuring
〈
〈σi〉O

〉
, learning

{
Ŵ, Ĥ

}
to obtain β̂ and classifying

(〈
〈σi〉O

〉
, β̂
)

to assign it a zone. However, the assignment of zones (Consensual, dissensual, transitional

and anomaly) are static in the sense that the chosen zone is extracted from the political

parties’ majority opinion array. In a more dynamic point of view one can ask if is it possible
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to know the value in which the transition from dissensual to consensual states happens for

each year in each Lower House? In order to gather this value a characterization of the

partition function ZB
(
Ŵ′, Ĥ′, β

)
= ZB

(
Ŵ/β̂, Ĥ/β̂, β

)
defined in (3.3) respect to β must

be made1. Specifically, it were computed the dependence in β of energy function average

value 〈H〉 (Ŵ′, Ĥ′, β), its fluctuation value C(Ŵ′, Ĥ′, β), average value 〈σi〉 (Ŵ′, Ĥ′, β) and

its first order fluctuation χ1(Ŵ′, Ĥ′, β) defined in (3.65) using set
{
Ŵ, Ĥ, β̂

}
learned for

each year in each Lower House. The characterization was carried out by evaluating

the aformentioned functions in a defined range of Legislative interaction. Result of this

characterization is exposed in Figure 40.

1 Note that
{
Ŵ, Ĥ

}
were scaled by β̂ in accordance with results found in Chapter 1.
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Figure 40 – Characterization of ZB

(
Ŵ′, Ĥ′, β

)
using

{
Ŵ, Ĥ, β̂

}
learned for each year in each Lower

House. It was computed the dependence in β of energy function average value 〈H〉 (Ŵ′, Ĥ′, β), its
fluctuation value C(Ŵ′, Ĥ′, β), average value 〈σi〉 (Ŵ′, Ĥ′, β) and its first order fluctuation χ1(Ŵ′, Ĥ′, β)
defined in (3.65) using learned parameters. Results for each Lower House are composed of four panels.
Four upper panels are associated with the United States House of Representatives, Four center panels
are intended for the House of Commons of the United Kingdom and the four lower panels are for the
Chamber of Deputies of Brazil. A marker and color was assigned to identify each Executive term in each
Lower House as depicted in the right boxes.

Source: Author.

Figure 40 shows the result of the partition function characterization for the

three Lower Houses. Results for each lower House consist of four panel groups. The upper

group is associated with the United States House of Representatives, center group is for the

House of Commons of the United Kingdom and the lower group is related to the Chamber

of Deputies of Brazil. Note that the right legend boxes show that for each Executive

term a marker and color was associated. In order to find values in which transition

from dissensual to consensual states happens it is necessary to compute the value of β in
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which the fluctuation of 〈σi〉 (Ŵ′, Ĥ′, β) is maximum. This is because 〈Si〉 (Ŵ′, Ĥ′, β) is

an estimator of how much Political parties are in agreement or disagreement given the

interaction value β. 〈σi〉 (Ŵ′, Ĥ′, β) close to zero implies in dissensus and close to one are

associated to consensus. In fact, 〈Si〉 (Ŵ′, Ĥ′, β) has the same role with 〈σi〉O due to it is

easy to realize that 〈Si〉O is the measure of the average political opinion among parties

when β = β̂, that is 〈σi〉O = 〈Si〉 (Ŵ′, Ĥ′, β̂). Figure 41 shows maximum values computed

over the fluctuation of 〈σi〉 (Ŵ′, Ĥ′, β) and 〈H〉 (Ŵ′, Ĥ′, β) namely as βmax
(
χ1(Ŵ′, Ĥ′, β)

)
and βmax

(
C(Ŵ′, Ĥ′, β)

)
, respectively, for each year in each Lower House. Maximum values

were computed averaging results obtained using Brent [11] and Golden [27] numerical

methods.

Figure 41 – Maximum values of βmax

(
χ1(Ŵ′, Ĥ′, β)

)
and βmax

(
C(Ŵ′, Ĥ′, β)

)
. Brent and Golden

methods were used to find maximum values. Final values arise as the average between these two results.
Set of two panels corresponds to the result for each Lower House. The upper group is dedicated to the
United States House of Representatives, the center group is for the House of Commons of the United
Kingdom and the lower group is related to the Chamber of Deputies of Brazil. The value in which the
transition from dissensual to consensual state happens is associated with βmax

(
χ1(Ŵ′, Ĥ′, β)

)
. Large

values of βmax

(
χ1(Ŵ′, Ĥ′, β)

)
can be realized by how well organized a Lower House is in order to discuss

bills.

Source: Author.

Figure 41 shows three groups of two panels. The upper group is for the United
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States House of Representatives, the center group is for the House of Commons of the

United Kingdom and the lower group is for the Chamber of Deputies of Brazil. Left

panels are associated to the maximum value of β obtained from χ1
(
Ŵ′, Ĥ′, β

)
whereas

right panels are related to the maximum values computed through C
(
Ŵ′, Ĥ′, β

)
. Again,

colored zones and black dashed lines are used to delimitate executive terms and a colored

marker was assigned for each Legislative term. The value in which the transition from

dissensual to consensual state happens is associated with βmax
(
χ1(Ŵ′, Ĥ′, β)

)
. Transition

in this scenario must be associated with the capacity of Political Parties to maximize the

degree of Legislative interaction. In other words, βmax
(
χ1(Ŵ′, Ĥ′, β)

)
can be understood

as an estimator of the optimal number of discussions, sessions and debates to be held

by Lower Houses members in order to maximize Legislative effectiveness. Remember

that β is an inverse measure of Legislative interaction among political parties. In this

sense, large values of βmax
(
χ1(Ŵ′, Ĥ′, β)

)
implies small Legislative interaction, meaning

that transition is set up with a small number of discussions or debates. Contrary, if

βmax
(
χ1(Ŵ′, Ĥ′, β)

)
is small, a high level of Legislative interaction is needed for triggering

the transition, suggesting more discussions.

Note that in the United States House of Representatives from 1997 to 2015,

transition must take place in βmax
(
χ1(Ŵ′, Ĥ′, β)

)
> 1. This result makes sense because

Legislative term in the United States is only a 2-year term, therefore a restricted number of

legislative sessions were fixed. Take attention now to the period of time from 2019 to 2022

(βmax
(
χ1(Ŵ′, Ĥ′, β)

)
< 1). If Legislative term continues to be the same, then this change it

is explained by the fact that number of Legislative sessions have been increased along time

in the United States Lower House. On the other hand, values of βmax
(
χ1(Ŵ′, Ĥ′, β)

)
for

the House of Commons of the United Kingdom follow a linear function like fashion. Note

that values alternate around βmax
(
χ1(Ŵ′, Ĥ′, β)

)
= 1 but when βmax

(
χ1(Ŵ′, Ĥ′, β)

)
> 1

values are smaller when compared to the values obtained from the United States House

of Representatives. This comparison makes sense because legislative term in the United

Kingdom is greater than in the United States, therefore, more time to discuss bills is

provided and consequently βmax
(
χ1(Ŵ′, Ĥ′, β)

)
for each year in this Lower House must

be smaller than values in the United States Lower House. Finally, take attention to the

fact that values of βmax
(
χ1(Ŵ′, Ĥ′, β)

)
for the Chamber of Deputies of Brazil are the

smallest of the three Lower Houses. This is because the Legislative term in Brazil is
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four year-term, therefore, Deputies have a long range available for discussing bills. As a

final conclusion, βmax
(
χ1(Ŵ′, Ĥ′, β)

)
measures capacity for maximizing legislative work,

when βmax
(
χ1(Ŵ′, Ĥ′, β)

)
is large, less discussions are needed to give a decision on a bill,

in contrast, βmax
(
χ1(Ŵ′, Ĥ′, β)

)
small is an indicator of large quantity of discussion are

mandatory.

5.6 Lower Houses Members analysis via nearest correlated cluster algorithm

Results discussed so far have been extracted just by employing the political

parties’ majority opinion matrix to run the extended Bolztmman machine discussed in

Chapter 1. In other words, we have used an interaction point of view to analyze Lower

Houses. Now, it is time for dealing with the statistical way to analyze Lower Houses. The

aim is to better understand Legislative collective behavior features. This information can

be extracted from the analysis of the roll-call vote matrix based on the Nearest Correlated

Cluster Algorithm (NECO) exposed in Chapter 2. The roll-call vote matrix for a particular

Lower House in a defined year is given by

Vnk =

M1

M2

M3

M4

M5

...

Mn

−3 2 1 −1 · · · 2

0 −1 0 2 · · · 1

−2 2 −3 −3 · · · −3

2 3 −1 0 · · · 0

−2 1 2 −1 · · · −3
... ... ... ... . . . ...

−2 −1 0 −3 · · · 1





Bills by year

, (5.2)

where Lower Houses members are located in the rows. This matrix is the

input quantity in procedure 6. Note first step in procedure is to computes the correlation

distance matrix

d [Vnk] =
√

2 (1− ρ [Vnk]), (5.3)
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where ρ [Vnk] is the correlation matrix. This matrix is obtained by computing

the correlation distance coefficient among all pairwise sequences of votes among Lower

Houses members (green, cyan and purple rectangles in (5.2)). In other words, correlation

distance values are gathered from the computation on the correlation distance between

pairs of votes sequences spanned over all bills voted in a year. Correlation distance varies

in the fixed range [0, 2]. If d [Vnk] = 0 then ρ [Vnk] = +1 meaning that sequences of votes

of Lower Houses members are the same. Contrary, if d [Vnk] = 2 then ρ [Vnk] = −1 and

sequences of votes of Lower Houses members are opposed. Closer correlation distance

means highly correlated Lower Houses Members. Finally, if d [Vnk] =
√

2 then ρ [Vnk] = 0

and therefore sequences of votes between Lower Houses members are independent.

The roll-call vote matrices for the three Lower Houses in each year were

computed and subsequently, procedure 6 was used. The first result that this procedure

dispatches are the ordered correlation matrices with unnecessary values removed. Figures

42, 43, 44 show the resulting matrices for the United States House of Representatives,

House of Commons of the United Kingdom and Chamber of Deputies of Brazil, respectively.
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Figure 42 – Correlation matrices for the United States House of Representatives. Roll-call vote matrices
for this Lower House were used as the input of procedure 6. Ordered matrices with unnecessary values
removed were grouped by Congress term and a box surrounding groups of matrices indicates the name of
Executive Chief Branch. A color box was designed for each Executive term. Right colorbar indicates the
value of correlation. Blueish color is intended for consensus and reddish colors are related to dissensus.
Cij label is intended for denominating correlation coefficient between Representative i and j. As a general
feature, ordered matrices present two main clusters.

Source: Author.
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Figure 43 – Correlation matrices for the House of Commons of the United Kingdom. Roll-call vote
matrices for this Lower House were used as the input of procedure 6. Ordered matrices with unnecessary
values removed were grouped by Parliament term and a box surrounding groups of matrices indicates
the name of Executive Chief Branch. A color box was designed for each Executive term. Right colorbar
indicates the value of correlation. Blueish color is intended for consensus and reddish colors are related
to dissensus. Cij label is intended for denominating correlation coefficient between Common i and j.
A transition from three main clusters to two is observed from 2010-I. Besides, note that an anomalous
symmetry is observed in 2015-II, precisely a year before the Brexit referendum.

Source: Author.
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Figure 44 – Correlation matrices for the Chamber of Deputies of Brazil. Roll-call vote matrices for
this Lower House were used as the input of procedure 6. Ordered matrices with unnecessary values
removed were grouped by Legislative term and a box surrounding groups of matrices indicates the name
of Executive Chief Branch. A color box was designed for each Executive term. Right colorbar indicates
the value of correlation. Blueish color is intended for consensus and reddish colors are related to dissensus.
Cij label is intended for denominating correlation coefficient between Deputy i and j. An anomalous
behavior is observed from 2012 to 2015. This period of time is associated with the pre-impeachment
period of Dilma Rousseff.

Source: Author.
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Figures 42, 43 and 44 show ordered matrices with unnecessary values removed.

Note that matrices were grouped by Legislative term and a box surrounding groups of

matrices indicates an Executive term. Each colored box represents a specific Executive

term. Color bar found in the rightest part of each Figure indicates the values correlation.

Blueish color is intended for consensus degree (correlation values greater than zero and

smaller or equal to one) and reddish colors are related to dissensus (correlation values

smaller than zero and smaller or equal to minus one). In the United States House of

Representatives Figure is observed two main clusters and this feature remains for all

executive terms. For the House of Commons of the United Kingdom three mains clusters

are noted from 1997 to 2010-1. From that time, a transition for two main clusters appears.

Besides that, note that in 2015-2 exhibits an anomalous symmetry. This year is associated

with the pre-Brexit referendum. For the Chamber of Deputies of Brazil a different behavior

is observed. Note that in each Legislature, a transition from three to one cluster happens.

In fact, the transition is really fast for the first Executive Term of Dillma Rousseff ended

in 2015, the pre-impeachment year.

Taking advantage of the ordered matrices produced by procedure 6, it is possible

to change color features in matrices. Instead of coloring by correlation, we can assign a

color by political party. Figures 45, 46 and 47 show the result for the United States House

of Representatives, the House of Commons of the United Kingdom and the Chamber of

Deputies of Brazil.



107

Figure 45 – Correlation matrices colored by political parties for the United States House of Representatives.
If a pair (Ri, Rj) of Representatives belong to the same political party a specific color is assigned.
Possibilities for colors are exposed in the colorbar found in the rightest part of Figure. Pi label in the
colorbar is intended for i-Political party. Grouping by Legislative Congress and Executive term was
maintained.

Source: Author.
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Figure 46 – Correlation matrices colored by political parties for the House of Commons of the United
kingdom. If a pair (Ci, Cj) of Commons belong to the same political party a specific color is assigned.
Possibilities for colors are exposed in the colorbar found in the rightest part of Figure. Pi label in the
colorbar is intended for i-Political party. Grouping by Legislative Congress and Executive term was
maintained.

Source: Author.
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Figure 47 – Correlation matrices colored by political parties for the Chamber of deputies of Brazil. If a
pair (Di, Dj) of Deputies belong to the same political party a specific color is assigned. Possibilities for
colors are exposed in the colorbar found in the rightest part of Figure. Pi label in the colorbar is intended
for i-Political party. Grouping by Legislative Congress and Executive term was maintained.

Source: Author.
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Ordered political parties matrices were plotted in the following way. If a pair

of Lower Houses members (Mi,Mj) belong to the same political party, a predefined color

is set up. Possibilities for colors are exhibited in the colorbar found at the rightest of

each Figure. Note that Legislative and executive term grouping features were maintained.

An interesting fact that can be highlighted from ordered matrices colored by political

parties is how it is possible to realize how strong the political parties cohesive degree is.

Note that color clusters for Figures concerning the United States House of Representatives

and the House of Commons of the United Kingdom are well defined in comparison with

color clusters from the Chamber of Deputies of Brazil. This is a sign that in the first

two Lower Houses mentioned, decisions and opinions are strongly related to the political

parties collective orientation.

Last result obtained from the NECO algorithm is the cluster detection based

on values of correlation distance. Figures 48, 49 and 50 show ordered matrices along with

the detected cluster found by procedure 6 for the United States House of Representatives,

the House of Commons of the United Kingdom and the Chamber of Deputies of Brazil,

respectively.
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Figure 48 – Ordered correlation matrices colored by learned clusters for the United States House of
Representatives. Using procedure 6 it is possible to detect clusters based on the values of the correlation
distance coefficient. For each cluster learned a color was assigned. Possibilities for color are shown in the
colorbar located at the righest of Figure. ci label in the colorbar is intended for i-detected cluster.

Source: Author.
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Figure 49 – Ordered correlation matrices colored by learned clusters for the House of Commons of the
United Kingdom. Using procedure 6 it is possible to detect clusters based on the values of the correlation
distance coefficient. For each cluster learned a color was assigned. Possibilities for color are shown in the
colorbar located at the righest of Figure. ci label in the colorbar is intended for i-detected cluster.

Source: Author.
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Figure 50 – Ordered correlation matrices colored by learned clusters for the Chamber of Deputies of
Brazil. Using procedure 6 it is possible to detect clusters based on the values of the correlation distance
coefficient. For each cluster learned a color was assigned. Possibilities for color are shown in the colorbar
located at the righest of Figure. ci label in the colorbar is intended for i-detected cluster.

Source: Author.
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As shown in Figures, procedure 6 is able to detect clusters only by having the

information of the correlation distance matrix. It is worth commenting that this technique

of cluster detection does not have any prior knowledge in order to learn and classify each

cluster. The procedure is based on the computation of first and second giant components

when a complete connected network is diluting, that is, when edges are being removed

from the network. This argument comes to the play in the sense that detected clusters are

unbiased to any political information. In fact, the cluster detection feature is capable of

recognizing inner undetected political groups in Lower Houses. Note for example in 2015-2,

2019-2 and 2021 parliament years for the House of Commons of the United kingdom, the

clusters detected exhibit a different pattern. These years are precisely connected with the

pre and post Brexit period. Figure 51 shows the quantity of clusters detected in each

year by each Lower House. Note that actual number of political parties was set up in

each panel of Figure for comparison. A profound study of these clusters could bring new

insights about partisanship and legislative workflow.
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Figure 51 – Cluster learned by NECO algorithm. Procedure 6 was applied over the roll-call vote matrix
for the three Lower Houses in order to detect inner undetected clusters. Upper panel is for the United
States House of Representatives, the central panel is for the House of Commons of the United Kingdom
and the lower panel is for the Chamber of Deputies of Brazil. A label for legislative terms (right legend of
each panel) was imposed and colored boxes represent Executive terms (left legend of each panel). Point
label in the right legend is intended for recognizing the actual number of political parties for each Lower
House.

Source: Author.

5.7 Lower Houses members correlation distributions

By observing the behavior of ordered correlation matrices (see Figures 42, 43

and 44) based on NECO algorithm, one can realize that correlation coefficients must

possess a defined functional form. So, probability distribution function of the correlation

matrix f [ρ [Vmk]] was computed for each year in each Lower Houses. Figures 52, 53 and

54 show the distributions obtained. Executive and Legislative terms were colored labeled

in each Figure.
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Figure 52 – Probability distribution function for correlation matrices for the United States House of
Representatives. Executive and Legislative terms were colored labeled. Blue dashed line representing the
best fit function for each year. A well defined bimodal state is observed all years. Correlation values are
distributed both in positive and negative axis, meaning that a coexistence of dissensual and consensual
state is present in this Lower House.

Source: Author.
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Figure 53 – Probability distribution function for correlation matrices for the House of Commons of the
United Kingdom. Executive and Legislative terms were colored labeled. Blue dashed line representing the
best fit function for each year. A trimodal state is observed in some years. Trimodal state is related to
the coexistence of dissensual, consensual and random political states.

Source: Author.
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Figure 54 – Probability distribution function for correlation matrices for the Chamber of Deputies of
Brazil. Executive and Legislative terms were colored labeled. Blue dashed line representing the best fit
function for each year. A transition from bimodal to unimodal states is recognized in each Legislature.

Source: Author.
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Presence of modes in the probability distribution function for correlation values

can be associated with the existence of three possible main political states. Name these

political states as Consensual, Dissensual and Political randomness. Dissensual

political state means that correlation values are distributed over positive and negative axis

and therefore, probability distribution arise as bimodal-like distribution. Dissensual state

means that a portion of Lower House Members are agreeing among themselves, but they

are in disagreement with the remaining portion. Consensual, the contrary political state,

is associated with the fact that correlation values are distributed either over positive or

negative axis, a unimodal-like distribution. Consensual state means that all Lower House

members are in agreement either to approve or disprove. Finally, Political randomness is

the state in which correlation values are distributed all around axis, including the particular

case of ρ = 0, implying in a trimodal-like distribution. Political randomness is likely to

dissensual state, except for the presence of a portion of Lower Houses members apparently

voting freely. Political randomness could mean either that Lower Houses Members are

voting without taking into account political party orientation or that bills discussed need

a lot of amendments, meaning that some parts are being approved and other ones are

rejected. Figure 55 shows an example of the three possible political states along a skecth

of how the distribution look like.

Figure 55 – Political states for correlation probability distributions. According to modes of probability
distribution, three political states can be defined: Consensual, dissensual and political randomness. Left
central and right panels show how correlation probability distributions must look like taking into account
each possible political state.

Source: Author.

By inspecting Figures 52, 53 and 54, the probability distribution function for

correlation values for the United States Houses of Representatives possesses a bimodal

mode meaning in dissensual state. For the case of the House of Commons of the United

Kingdom the dissensual state is present except for some years in which it appears to
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have a trimodal mode. Take attention to distributions for 1998, 1999, 2000, 2000-1 and

2015-2. In these years, political randomness is present. Finally, the probability distribution

function for the Chamber of Deputies of Brazil shows the transition from bimodal mode

(dissensual state) to unimodal. Note that the final state at the end of Legislatures would

be either consensual or political randomness. The functional form of these distributions

can be acquired by finding the best function that describes all Lower Houses distributions.

Blue dashed lines in distributions show the result of a nonlinear least squares regression

technique used for finding a unique function for all three Lower Houses. The regression

process was implemented over the cumulative distribution functions of the correlation

values, mainly because F [ρ [Vmk]] is independent of bin range. Cumulative distribution

for each year was obtained after sorting correlation values from the smallest to the largest

in a Zipf Plot [28]. Figures 56, 57 and 58 show the cumulative distribution functions along

its best fit regression curve for the three Lower Houses.
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Figure 56 – Cumulative distribution function for correlation matrices for the United States House of
Representatives. Executive and Legislative terms were colored labeled. Blue dashed line represents the
best fit function for each year.

Source: Author.
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Figure 57 – Cumulative distribution function for correlation matrices for the House of Commons of the
United Kingdom. Executive and Legislative terms were colored labeled. Blue dashed line representing the
best fit function for each year.

Source: Author.
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Figure 58 – Cumulative distribution function for correlation matrices for the Chamber of Deputies of
Brazil. Executive and Legislative terms were colored labeled. Blue dashed line representing the best fit
function for each year.

Source: Author.
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The best fit function was found by minimizing the sum of residual squares

between cumulative distribution of correlation matrices and target function, constrained to

the function must have basic properties of a cumulative distribution, that is F [ρ [Vmk]] ≥

0 ∀ρ [Vmk]. Function describing the cumulative distribution for Lower Houses is

F [ρ [Vmk]] = c1

1 + exp
(
−(ρ[Vmk]−µ1)

s1

) + c2

1 + exp
(
−(ρ[Vmk]−µ2)

s2

)
+ c3

1 + exp
(
−(ρ[Vmk]−µ3)

s3

) , (5.4)

where µ1, µ2, µ3 and s1, s2, s3 are the means and scale values. c1, c2 and c3 are

constants that must satisfy c1 + c2 + c3 = 1. Constrains for mean values are µi ∈ R and for

scale values are si > 0. Cumulative distribution function (5.4) is a combination of three

logistic cumulative distributions to encapsulate all possible political states, it all depends

on the configuration of µi and ci. For example, if µ1 < 0, µ2 > 0, c2 = 1− c1 and c3 = 0,

probability distribution function (5.4) would be associated to dissensual state. In order

to find parameters for proposed distribution, a Sequential Least Squares Programming

method [29] was implemented with an accuracy fixed to 1×10−8. For the sake of simplicity,

for the United States House of Representatives and House of Commons of the United

Kingdom a combination of just two logistic distribution was used. Tables 3, 4 and 5 show

parameters found for the United States House of Representatives, the House of Commons

of the United Kingdom and the Chamber of Deputies of Brazil, respectively.
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5.8 Bimodality index: Another way to characterize dissensual and consensual

states

In the last section, it was mentioned that political states can be recognized

by inspecting modes of the correlation probability distribution function. In this sense,

fitted parameters for Lower Houses correlation probability distributions can be used to

characterize these political states. Classification is done by computing the bimodal index

[30]

D (µi, si) = |µj − µi|
2
√
s2
i + s2

j

, (5.5)

where µi and si are the mean and scale values obtained from the non-linear

regression. By establishing D (µi, si) as a function of mean and scale values, it is possible

to classify Political states. Numerically, if D (µi, si) > 1 means that either dissensual or

political randomness exists in the probability distribution function for correlation values;

contrary, if D (µi, si) ≤ 1 means that only consensual state is present. Definition of bimodal

index is based only on pairs of mean and scales values, for a trimodal-like distribution

bimodal index is computed in he following way. First bimodal index for all combinations

of pairs (µi, si) are computed and if resulting values are greater than one, the final value

arise as the average, contrary the classification is discarded and probability distribution

gets unclassified. This was the case for some years in the House of Commons of the United

Kingdom. Figure 59 shows the bimodal index measured in each year for each Lower House

under study.
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Figure 59 – Bimodal index for Lower Houses. Upper, central and lower panel shows the bimodal index
for the United States House of Representatives, The House of Commons of the United Kingdom and the
Chamber of Deputies of Brazil, respectively. Legislative terms were marker coloured labeled and each
executive term was boxed colored. Given that D (µi, si) > 1 for all years in the United States House
of Representatives and the House of Commons of the United Kingdom, it confirms the coexistence of
either consensual or political randoness states. For the Chamber of Deputies of Brazil, D (µi, si) > 1 at
the beginning of Legislatures, as it goes, D (µi, si) decreases to become D (µi, si) ≤ 1, meaning that a
transition from dissensual to consensual state happened.

Source: Author.

Upper, central and lower panel of Figure 59 shows the bimodal index for the

United States House of Representatives, The House of Commons of the United Kingdom

and the Chamber of Deputies of Brazil, respectively. Legislative terms were marker

coloured labeled and each executive term was boxed colored. Panel for the United States

House of Representatives confirm the existence of dissensual state given that D (µi, si) > 3.

The same argument holds for the House of Commons of the United Kingdom. Note

that D (µi, si) > 2.5, meaning that there is coexistence of either consensual or political

randoness states. Finally, the bimodal index for the Chamber of Deputies of Brazil shows

the transition from bimodal to unimodal already visualized in Figure 54. Observe that

D (µi, si) > 1 at the beginning of each Legislature, except for 2015, the first year of 54th

Legislature, and as the Legislature goes, bimodal index falls to become D (µi, si) ≤ 1,

meaning that a transition from dissensual to consensual state happened.
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5.9 Legislative consensual-dissensual regimes: Joining interaction and statis-

tical analysis

Last step in order to completely characterize Lower Houses is to join results

obtained from the interaction point of view, gathered using the extended Boltzmann

machine and the statistical point of view, by means of the Nearest Correlated Cluster

Algorithm (NECO). By joining these two approaches, Legislative consensual regimes

appear. A legislative consensual regime can be defined as the configuration of parameters(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
in which a Lower House will be in either consensus or

dissensus. Remember that βmax
(
χ1(Ŵ, Ĥ, β)

)
estimates the optimal degree of Legislative

interaction in which the transition from dissensus to consensus would happened. That

is to say, βmax
(
χ1(Ŵ, Ĥ, β)

)
measures the capacity for Political parties to maximize

Legislative effectiveness by setting an optimal number of discussions. Take attention

that βmax
(
χ1(Ŵ, Ĥ, β)

)
is extracted from Political parties data. If βmax

(
χ1(Ŵ, Ĥ, β)

)
is

large it means that a low level of Political interaction among political parties is needed

in order to reach consensus. On the other hand, D (µi, si) classifies political states in

Lower Houses, just by analyzing the correlation probability distribution among Lower

House members. If D (µi, si) > 1 means dissensual state, a portion of Lower House

Members agreeing among themselves, but in disagreement with the remaining portion.

Contrary, if D (µi, si) ≤ 1 is associated with consensual state, Lower House members

are either in agreement or disagrement. Legislative regimes arise then by plotting values(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
. Our proposal for these regimes must look like as shown

in Figure 60.
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Figure 60 – Legislative consensual-dissensual regimes. Based on the values of(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
, consensual and dissensual regimes can be proposed. Regimes

are classified in terms of the political state in which Lower Houses are and the optimal value of Legislative
interaction in which transition from dissensus to consensus happened. Four regimes are proposed: Strong
- delayed consensual regimes and strong - quicked dissensual regimes. Black dashed lines are used to
indicate boundaries for each regime.

Source: Author.

Vertical and horizontal axis of Figure 60 shows βmax
(
χ1(Ŵ, Ĥ, β)

)
andD (µi, si).

Vertical and horizontal dashed lines were set up as boundaries for four depicted Legislative

regimes: Strong - Delayed Consensual regimes (blue and green zones) and Strong - Quicked

dissensual regimes (red and yellow zones).

Strong consensual regime is the zone in which βmax
(
χ1(Ŵ, Ĥ, β)

)
> 0 and

D (µi, si) ≤ 1. In this zone are found all Lower Houses in which a low degree of Political

interaction is sufficient to set the consensual state. On the counter part, Delayed consensual

regime, the region in which 1 ≤ βmax
(
χ1(Ŵ, Ĥ, β)

)
< 0 and D (µi, si) ≤ 1, is the zone

in which predominates Lower Houses whose all members are agreeing and the degree of

Legislative political interaction needed to set up this configuration is large. Delayed means

for a big number of discussions. On the other hand, Strong dissensual regime is the zone

in which 1 ≤ βmax
(
χ1(Ŵ, Ĥ, β)

)
< 0 and D (µi, si) > 1. This regime is characterized

by the fact that despite the large degree of political interaction, political polarization

among Lower Houses members is observed. Finally, Quicked dissensual regime, containing

values βmax
(
χ1(Ŵ, Ĥ, β)

)
> 1 and D (µi, si) > 1, is a regime in which a small number

of discussions are necessary for political parties decide to disagree. Quicked dissensual

state can be related to the configuration in which political parties globally decide for

polarized opinions. Figure 61 exposes consensual regimes detected using all values of
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(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
from the three Lower Houses under study.

Figure 61 – Legislative consensual regimes for Lower Houses. Left panel shows values(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
for the United States House of Representatives (Blue stars), the House of

Commons of the United Kingdom (red plus) and the Chamber of Deputies of Brazil (yellow rotated plus).
Right panel exposes the same points but this time four colored zones were added. These zones correspond
to the dissensual-consensual regimes already proposed. Names for regimes are depicted in the right legend.
For each zone, color contrast is associated with the probability for a point

(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
to be in a region Ri, note the fuchsia colorbar. Regimes were obtained from a classification technique
applied over random data using Decision Tree Algorithm.

Source: Author.

Left panel shows values of
(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
. Blue stars, red

plus and yellow rotated plus are associated with the values of the United States House

of Representatives, the House of Commons of the United Kingdom and the Chamber of

Deputies of Brazil, respectively (see left legend box). Right panel shows the same data

but this time with four colored zones. Each colored zone is associated with dissensual-

consensual regimes aforementioned proposed, take attention to the right legend box. In

order to obtain these regimes, a classification technique based Decision Tree algorithm

[31] was implemented. Regimes were gathered by generating random data taking into

account boundaries for each regime. Regimes arise then as decision zones. Decision zone

for each regime indicates which is the probability to be in a regime Ri given a configuration(
D (µi, si) , βmax

(
χ1(Ŵ, Ĥ, β)

))
. Note that probability values are assigned according to

the fuchsia colorbar next to the right panel. Fuchsia circles around a marker are used to

highlight some years.

Majority of values for the United States House of Representatives and the House

of Commons of the United kingdom are found at Quicked Dissensual Regime. Meaning

that in these two Lower Houses encourage polarization among main political parties. The
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fact that a small quantity of optimal number of discussions are needed to set polarization

is held in the Legislative term, smaller in comparison to the Chamber of Deputies of Brazil.

The remaining portion of points for these two Lower Houses are located in the Strong

Dissensual Regime, specifically, years are 1997, 2018, 2021, 2022 for the United States

House of Representatives and 2003, 2005, 2010, 2017, 2019 for the House of Commons of

the United Kingdom. Respect to the Chamber of Deputies of Brazil, points are distributed

at all Regimes. Take attention to the three points in the Delayed Consensual Regime,

years for these are 2012, 2013 and 2014. This coincides with the pre-impeachment period,

culminating in 2015, point precisely located at the Strong Consensual Regime. In fact,

two of these years were fuchsia circled highlighted (2014 and 2015). Highlighted points for

the House of Commons of the United Kingdom are 2001 (located in the Quicked Regime)

and 2019 (Strong Regime) which coincides with the terrorist attack in the United States

and the Covid-19 pandemic, respectively.



134

6 CONCLUSIONS.

A complete method for analysing political collective behaviour in Legislative

system was presented. It were gathered information about roll-call vote data for the

United States House of Representatives, the House of Commons of the United Kingdom

and the Chamber of Deputies of Brazil as detailed exposed in Chapter 2. Exposed method

aims for analysing transformed and processed roll-call vote data using two approaches:

the interactionism and the statistical. Main objective of this method is to characterize

legislative consensual-dissensual regimes.

Interactionism approach aims for extract information of about legislative be-

haviour by studying the dynamics of like spin glass system in which sites of lattice

represents political parties. Parameters mandatory are extracted from the extended

Boltzmann machine learning algorithms presented in Chapter 1. Algorithm exposed were

carefully validated by testing them on synthetic data. Analysing values the political party

mean opinion value against the degree of political interaction dissensual and consensual

zones arise. These zones helps to characterize what kind of position (conssensual- dis-

sensual) political parties took in each year in each Lower House. Finding the value in

which transition from dissensus to consensus happened in each year and Lower House,

an estimator of the optimal degree of Legislative interaction needed to reach Legislative

consensus is achieved.

Purpose of statistical approach is gather Legislative political information by

analysing the correlation matrix computed from Lower Houses members’ roll-call vote

data for each year. Minimal Spanning Tree ordered correlation matrices shows time

evolution of collective consensual and dissensual features for Lower Houses studied. Parties

coloured matrices and clusters detected matrices gives us information of how cohesive is

the collaboration among Lower Houses members. Probability distribution function offers a

quantitative way to characterize the different possible political states (Dissenssus, political

randomness and conssensus). By computing bimodal index, a fast way to recognize these

kind of political states is achieved.

By join the value in which transition from consensus to dissensual happened in

the interactionism approach with the bimodal index measured in the statistical approach,

Legislative consensual regimes arise. Four regimes were defined in function of the values

coming from the interactionism and statistical approach. Meaning of these regimes were
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detailed exposed and the final results gives a powerful way to characterize collective

legislative political behaviour.

These method could be used to foresee political storms, to identify political

anomalies and as unbiased tool to audit Legislative activity.
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APPENDIX A – AXIOMS OF THE INFORMATION THEORY

The four axioms of the information theory are:

1. Let f (n) = S
(
~1
n

)
= S

(
1
n
, 1
n
, · · · , 1

n

)
. The lower the probability of an event the

larger the information obtained by knowing that such event happened. First axiom

establishes thatf (n) is a monotonically increasing function of n;

2. For two independent Random variables x, y → ~px = ~1
n

→ ~py = ~1
m

the

joint probability to find p [x and y] = 1
n
× 1

m
. The second axiom establishes that

f (n×m) = f (n) + f (m);

3. Breaking the complete set C = {1, 2, · · · , n} with a probability vector ~pn =

(p1, p2, · · · , pn) of a random variable into two subsets A = {1, 2, · · · , k} and B =

{k + 1, k + 2, · · · , n}, with the probability vectors ~pk = (p1, p2, · · · , pk) → ~pn−k =

(pk+1, pk+2, · · · , pn), the chance that an element belongs to set A is pA =
k∑
i=1

pi and

to belong to set B is pB =
n∑

i=k+1
pi. The axiom affirms that the process to first

choose the subset and then the element of the subset must be equal to choose the

element directly from the whole set at once. The 3th axiom, therefore, establishes

that: S (~pn) = S (pA, pB) + pAS
(
~pk
pA

)
+ pBS

(
~pn−k
pB

)
;

4. The 4th and last axiom simply requires that S (p, 1− p) be continous in p.

Given the four axioms we can verify that the function S (~p) = −c
n∑
i=1

pilogapi →

a > 1 → c > 0 satisfies all four axioms. Shannon also proved that this the unique

function compatible with the axioms.

1. f (n) = c log n and f (m) = c logm then f (n) + f (m) = c log n + c logm =

c log (n×m) = f (n×m);
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2. This straight forward with the algebra:

S (pA, pB) + pAS

(
~pk
pA

)
+ pBS

(
~pn−k
pB

)

= −c
pAlogapA + pBlogapB + pA

k∑
i=1

(
pi
pA

loga
pi
pA

)
+ pB

n∑
i=k+1

(
pi
pB

loga
pi
pB

)
= −c

[
pAlogapA + pBlogapB +

k∑
i=1

(pilogapi)−
(

k∑
i=1

pi

)
logapA

]

− c

 n∑
i=k+1

(pilogapi)−
 n∑
i=k+1

pi

 logapB


= −c

[
pAlogapA + pBlogapB +

n∑
i=1

(pilogapi)− pAlogapA − pBlogapB
]

= −c
n∑
i=1

(pilogapi)

= S (~pn)
(A.1)

3. S (p, 1− p) = −c [p log p+ (1− p) log (1− p)] = −c log
[
pp(1− p)(1−p)

]
is a continu-

ous function of p
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APPENDIX B – MAXIMIZING ENTROPY

Maximze
{
S = −c

n∑
i=1

pi ln pi subjected to the constraint
n∑
i=1

pi = 1
}

Lagrangian : L (λ, ~x) = −c
n∑
i=1

pi ln pi − λ
[
n∑
i=1

pi − 1
]

∂L

∂λ
= 0 →

n∑
i=1

pi = 1

∂L

∂pj
= 0 → −c

n∑
i=1

ln pi
∂pi
∂pj
− c

n∑
i=1

pi
∂ ln pi
∂pj

− λ
n∑
i=1

∂pi
∂pj

= −c
n∑
i=1

δij ln pi − c
n∑
i=1

δij
pi
pi
− λ

n∑
i=1

δij =

= −c ln pj − c− λ = 0

ln pj = −1− λ

c
→ pj = e−1−λ

c = po →
n∑
i=1

po = npo = 1 → po = 1
n

(B.1)
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APPENDIX C – INEQUALITY RELATION FOR ENTROPY

The logarithm is convex function meaning it is Always below the tangent line

in any point, in particular at the x = 1 point, when the tangent line is ytan = x − 1.

Therefore ln x ≤ x− 1 ∀x, with the equality valid only at x = 1.

This means that:

ln qi
pi
≤ qi
pi
− 1

n∑
i=1

pi ln
qi
pi
≤

n∑
i=1

pi

(
qi
pi
− 1

)
=

n∑
i=1

qi−
n∑
i=1

pi = 1− 1 = 0

n∑
i=1

pi ln
qi
pi
≤ 0

n∑
i=1

pi ln qi ≤
n∑
i=1

pi ln pi

− c
n∑
i=1

pi ln pi ≥ −c
n∑
i=1

pi ln qi

(C.1)

Now, we can define a new probability qij = p (xi) p (yj) because:

1 =
[
n∑
i=1

pi

]  m∑
j=1

pj

 =
n∑
i=1

m∑
j=1

pipj →
n∑
i=1

m∑
j=1

qij = 1 (C.2)

Therefore:

S (x) + S (y) = −c
n∑
i=1

m∑
j=1

pijlogaqij ≥ −c
n∑
i=1

m∑
j=1

pijlogapij = S (x, y) (C.3)

The equality is valid only when x and y are independent because p (xi, yj) =

p (xi) p (yj).
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