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Abstract

The use of computational techniques in the processing of histopathological images allows
the study of the structural organization of tissues and their changes through diseases. This
study aims to develop a tool for classifying histopathological images from breast lesions
in the benign and malignant classes through magnification scales by an innovative way
of using transfer learning techniques combined with machine learning methods and deep
learning, The BreakHis dataset was used in the experiments, consisting of histopathologi-
cal images of breast cancer with different tumor enlargement scales classified as Malignant
or Benign. In this study, various combinations of Extractor-Classifiers were performed,
thus secking to compare the best model. Among the results achieved, the best Extractor-
Classifier set formed was CNN DenseNet201, acting as an extractor, with the SVM RBF
classifier, obtaining accuracy of 95.39% and precision of 95.43% for the 200X magnifica-
tion factor. Different models were generated, compared to each other, and validated based
on methods in the literature to validate the experiments, thus showing the effectiveness of
the proposed model. The proposed method obtained satisfactory results, reaching results
in the state-of-the-art for the multi-classification of subclasses from the different scale fac-
tors found in the BreakHis dataset and obtaining better results in the classification time.

In the United States of America, it is estimated that about
255,000 new cases of invasive cancer occurred in 2017, with the

Breast cancer is the most common cause of cancer death
among women aged 40 to 45 years and being the main factor
of mortality in females [1]. According to the World Health
Organization (WHO), in 2020, about 2.3 million women were
diagnosed with breast cancer. By the end of the same year,
about 7.8 million women lived after receiving the diagnosis.
Breast cancer is considered the leading cause of female mortal-
ity worldwide, accounting for 15% of total female mortality [2].
Finally, in 2020, there were about 685,000 deaths worldwide;
these data affirm breast cancer as the most prevalent in the
wortld [3].

overwhelming majority of cases detected in women, with about
252,000 patients. Many of these cases could have been treatable
if the disease had been diagnosed early. [4].

From a financial point of view, American health insurers esti-
mate an annual expense of US$29,044 per patient with direct
health charges related to breast cancer and its sequelae, such
as hospitalizations to control systemic infections, hospitaliza-
tion costs, transport, medicines etc. A patient with this type of
pathology spends about the US$ 2,300 a year directly, and about
the US$ 3,325 to US$ 5,545 with indirect costs due to the med-
ical expenses of the disease [5].
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Even with several existing techniques in medicine for the
detection of breast cancer, the Digital Mammography [6] and
the MRI of the breast [7] are examples of this vast inventory.
An open surgical biopsy (OSB) is the most recommended exam
when there is a need for an accurate diagnosis for surgical prepa-
ration, especially when it is not possible to determine the cause
of the tumor with a needle biopsy [8] or other techniques. This
examination is performed through a cut in the breast, in which
the protuberance is removed in part or its entirety so that the
tumor can be seen under a microscope. The OSB obtains prac-
tically all the suspicious injuries in its procedure with a high rate
of reliability. Then, this exam is a technique considered adequate
for defining the entire pathology in cases where the mass is small
and complex to locate by touch or if an area looks suspicious on
a mammogram but cannot be felt [9].

Histopathological images are, by definition, microscopic
images captured from tissue damaged by the disease. Thus it
is possible to diagnose with more excellent safety and preci-
sion not only the type of pathology that affects the tissue but
its degree of evolution and severity[10]. In the case of cancer,
histopathological images help to classify it as to its class, whether
the tumor is benign or malignant [11]. The microscope images
provided by the OSB exam are histopathological images [12];
after obtaining this type of image, as already mentioned, it is nec-
essary to classify the tumor as malignant or benign. Usually, this
the diagnostic process is manual, performed by the specialist
physician, In which, based on his experience, he will detect spe-
cific characteristics by the exam image that help to classify the
tumor as Malignant or Benign [13]. However, manual diagnosis
is subject to a series of limiting factors, such as the long delay for
the final result and errors caused by the operator, whether due
to lack of experience of a professional at the beginning of their
career or due to high workloads, even difficulties in diagnosing
an exam in abnormal conditions of exam acquisition. [14].

So, taking into account the limiting factors of manual diagno-
sis, especially about the waiting time for results, many Computer
Aided Diagnosis (CAD) methods have been proposed over the
years to make this type of classification and several other med-
ical applications faster and more accurate. These methods are
mainly based on digital image processing [15], machine learning
[16], and deep learning [17], which are characterized by using
artificial intelligence, or assisting, in human activities in an intu-
itive way and need [18]. For the histopathological classification
of cancer, the CAD system must classify the pathology between
benign and malignant based on the attributes extracted from
the exam image to train the CAD system, the help of the spe-
cialist physician is necessary: The training of the CAD system is
carried out through the use of datasets previously classified by
the expert physician, in which the images are already propetly
labeled, leaving the system to understand which characteristics
delimit the classes [19].

With the growing need for datasets for training these CAD
tools, numerous institutions and research groups have been con-
centrating their efforts not only on the development of such
CAD tools but also on the construction of large datasets made
publicly available through events and challenges[20]. In this
context, The Breast Cancer Histopathological Image Classifica-
tion (BreakHis) emerged, consisting of about 9,109 microscopic

images of breast tumor tissue using different magnifying fac-
tors, 2,480 of which are benign and 5.429 malignant samples,
thus, due to the large number of images previously classified as
to the type of tumor by specialist physicians, training CAD sys-
tems based on deep learning with BreakHis becomes a more
manageable task [21].

As examples of CAD systems, works such as Sharma et al.
[22] proposed two classification methods based on machine
learning and deep learning algorithms for the set of the mul-
ticlass present in the BreakHis [21] dataset. The first proposal is
based on handcrafted resources extracted using Hu Moments,
color histogram, and Haralick textures for later classification of
these attributes to be classified by conventional classifiers. The
second proposal is based on VGG16, VGG19, and ResNet50
networks to extract and classify features. The results were sat-
isfactory, especially for convolutional neural networks, reach-
ing an accuracy of 93.97%. However, it is noteworthy that
the authors had difficulties in multi-classification due to vari-
ations in the images, with the appearance and resolution of
these classes.

Aiming better results in multi-classification, the study by
Murtaza et al. [23] sought to develop a tree-based breast cancer
multi-classification model via Deep Learning for the extraction
of discriminative characteristics; for this, the BreakHis dataset
was used to train this algorithm. In their results, the authors
obtained a minimum precision of 87.50% for the breast cancer
subtypes of the dataset, thus proving the method’s effectiveness.
However, for some subclasses, the algorithm had difficulty clas-
sifying, switching the labels to carcinoma classifications.

Taking into account the importance of CAD systems for
quickly and efficiently classification of pathologies, and based
on different techniques in the literature with the same purpose
for the same dataset, the proposed method seeks to classify
the classes of histopathologies of breast cancer, especially the
classification between benign or malignant classes through the
use of machine and deep Learning algorithms. As contributions,
this study presents significantly better results than the methods
found in the current literature, besides having a quick classifica-
tion time. We show excellent results for classification according
to the BreakHis dataset magnification factor and for generalized
classification of the dataset, that is, with all scales at once.

So, Aware of the high female mortality of breast cancer,
the high financial cost for treatment, medication, and hospi-
talization, Aware of the scope of operation of a CAD system
for the histopathological classification of breast cancer images.
Motivated by the facilitation of training a Deep Learning net-
work with the BreakHis dataset and the challenges in the multi-
classification of different subclasses from the scales used in
the dataset. This study aims to develop a tool for classifying
histopathological images from breast Lesions in the benign and
malignant classes through magnification scales by an innova-
tive way the use of transfer learning techniques combined with
machine learning methods and deep learning.

Given this context, this study addresses the following main
contributions:

* The proposal of an innovative method for the classifica-
tion of histopathological images from breast lesions in the
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benign and malignant classes, both through magnification
scales.

* The study brings in an innovative way the use of Transfer
learning techniques combined with machine learning meth-
ods and the use of deep learning.

* The study proposes the generation of different computa-
tional models of deep extractors combined with machine
learning classifiers to obtain the best combination for the
classification of histopathological tissue images.

* The method aims to aid efficient medical diagnosis, have an
innovative point an effective pre-prognosis, and enable a pos-
sible treatment in an agile and efficient way.

2 | RELATED WORKS

The use of deep learning has gained strength in recent years,
when applied as an approach to problems involving machine
learning, such as object recognition and classification [24]. A
convolutional neural network (CNN) is composed of convo-
lutional layers (used to generate attributes), layers of pooling
(used to join information from a region) and layers called fully-
connected, used in classification. In some cases, to improve the
performance of these systems, pré-processing techniques are
used on the image [25, 26].

Usually, any application involving Deep Learning initially
starts with its training for the proposed problem, that is,
the adequacy of the tool for its scope. This training process
is carried out through the use of Datasets consisting of a
large amount of previously labeled samples with the classes
you want to train the network to classify [27]. For medical
applications, the datasets used to consist of large amounts
of medical exams previously organized by medical specialists
[28].

The transfer learning technique uses convolutional neural
networks and pooling layers, while replacing the fully-connected
layers with traditional classifiers (such as KNN, SVM etc.) [29].
In this way, the convolutional neural network functions as a fea-
ture extractor[30].

Histopathological images (H&E) have been used to detect
different pathologies, such as breast cancer, colorectal cancer,
and lung cancer. The various uses of this type of medical image
demonstrate the vast scope for improvements in histological
exams and the importance of contrasting these approaches
[31].

In the studies by Celik et al. [32], there was an investiga-
tion regarding the automatic detection of invasive ductal car-
cinoma (IDC), which is the most common subtype of breast
cancer, using the technique deep transfer, especially with the
aid of the ResNet-50 and DenseNet-161 extractors for IDC
detection. The method developed by the authors was applied to
the BreaKHis image data set for classification between benign
and malignant tumors of the breast, obtaining mean accuracy of
88% for the classification of the whole set, without separation
by scale. However, it is worth mentioning that the dataset has
been balanced for better performance, which may compromise
the method’s generalizability.

The work of Zhi et al. [33] investigates the use of transfer
learning with Convolutional Neural Networks to automatically
diagnose breast cancer in spots of histopathological images pro-
vided by BreakHis. The authors Combined transfer learning
with CNN VGGNet in a more superficial custom architecture.
In addition, as far as classification is concerned, it was separated
into scales the dataset, and the two main classes were considered
malignant and benign. The method obtained satisfactory results,
with metrics superior to the same model of CNN trained with-
out transfer Learning, with an accuracy of 94% for the classifi-
cation on the scale of 200%. However, the comparison between
the proposed model and other methods found in the literature
for the BreakHis dataset was based only on accuracy, which may
compromise the reliability of such a comparison, such as the
absence of observation of other points of the method, such as
its false detection positives and false negatives.

Also, taking into account the advantages of this approach,
and the same dataset, Mechra et al. [34] had Transfer Learn-
ing compared to networks fully trained in the histopatholog-
ical imaging modality. It analyzed three pre-trained networks:
VGG16, VGG19, and ResNet50. Was observed the behav-
ior of the networks to enlarge the image scale, the classifi-
cation took into account the two main types of cancer. The
method obtained 92% accuracy and 95% ROC, proving the
effectiveness of using Transfer Learning over networks. How-
ever, the authors balanced the dataset for better performance
without specifying this procedure in more detail, which makes
the method’s performance less reliable. In addition, classifica-
tion was not performed by scale.

Song et al. [35] presented an approach based on transfer
of learning for the classification of histopathological images.
In addition, we used the Fisher Image Coding Vector (FV)
resource of local characteristics, extracted using the model of
Convolutional Neural Network (CNN) pre-trained on Ima-
geNet. Again, it uses BreaKKHis the imaging data set to clas-
sify benign and malignant breast tumors. The authors used the
only accuracy as an evaluation metric, which precludes a broader
comparison with state-of-the-art works, and only performed the
classification by scale.

Deniz et al. [36] guided the theme focused on breast can-
cer in which the transfer of learning and methods of extracting
characteristics are used to adapt a pre-trained CNN model to
the problem in question. The AlexNet and Vggl6 models are
used for resource extraction. The attributes obtained are classi-
fied by support vector machines (SVM). The data set used the
BreakHis, being divided between the image scales for the malig-
nant and benign classes. The method reached 95% accuracy
with the SVM RBF classifier in the 200X scale. However, the
classification was not carried out without distinction by the scale
factor, which could prove the ability to generalize the method.

Aware of the challenge of classification regarding sub-
classes arising from the scaling factor of the BreakHis dataset,
Boumaraf et al. [37] carried out an approach based on the trans-
fer of learning for the automated classification of breast cancer
from histopathological images constituted in the BreakHis
dataset. The CNN ResNet-18, pre-trained by ImageNet, was
used for the category, with its results improved by the fine
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adjustment. The authors obtained 92% accuracy in the multi-
scale classification, being limited by the fine-tuning techniques,
which could not enhance the classification for some subclasses
arising from the different scale factors.

Liew et al. [38] proposed a technique titled Deep Learning
and eXtreme Gradient Boosting (DLLXGB) on breast cancer
histopathological images using the BreaKHis dataset; the
authors applied preprocessing on the dataset, which increased
the performance of the network in the binary and multi-scale
classification, thus obtaining an accuracy of 97% in both.
However, the authors did not carry out a study about the clas-
sification time of the entire process, which compromises the
applicability of the technique for applications as a CAD tool.

So, considering the importance of a CAD system for the clas-
sification of histopathologies quickly and efficiently, based on
different techniques in the literature with the same purpose. In
addition to the BreakHis dataset, the proposed method seeks
to classify the other classes of histopathologies of breast can-
cer, especially the classification between benign or malignant,
through Machine and Deep Learning algorithms. As contribu-
tions, this study presents significantly better results than the
methods found in the current literature:The proposed method
obtained satisfactory results, reaching results in the state-of-the-
art for the multi-classification of subclasses from the different
scale factors found in the BreakHis dataset and obtaining better
results in the classification time.

3 | MATERIALS AND METHODS

In this section, the methods used in the experiments are pre-
sented in different combinations of ways through the transfer
learning technique for the generation of other computational
models to classify tissues in histopathological exams. In this
section, the methods used in the experiments are presented,
in the different combinations of algorithms, using the transfer
learning technique to generate diverse computational models
to classify tissues in histopathological exams and the evaluation
metrics used in the experiments.

3.1 | Attribute extraction through
convolutional neural networks

The Transfer Learning method consists of using a convolu-
tional neural network (CNN), pre-trained with an extensive
database, of extracting shape and texture characteristics from
another dataset, to remove the attributes of the images used in
the classification step, using traditional classifiers [39]. In other
words, to be used exclusively as a feature extractor, CNN lacks
its classification layers, called fully connected layers [40, 41].
Thus, the network does not need to be trained, unlike what
happens with other methods such as fine-tuning or learning
from scratch, which seeks to train the network with the dataset
in question [42].

In this work, we used CNN’s topologies with weights initially
trained with the large ImageNet [43] image bank, which con-

sists of millions of images of everyday objects in 1000 different
classes. The fully connected layers were removed for all of them,
with the output of each network being a vector resulting from
the last convolutional or pooling layer.

The CNN'’s architectures used in this paper were two: the
VGG [44] architecture and the DenseNet [45] architecture. The
first was implemented in two different configurations (VGG16
and VGG19), while the second was implemented in three
(DenseNet121, DenseNet169, and DenseNet201).

The VGG16 and VGG19 configurations differ by their num-
ber of weights, with 16 layers and the second with 19 layers. This
architecture is differentiated by using small convolutional filters,
which increases its depth power [44].

In parallel, the three different DenseNet configurations are
differentiated by the different number of layers that compose
them, being formed by convolutional, transition layers and by
the so-called DenseBlocks. Its main characteristic is its dense con-
nections between the layers, feeding a system of solid propaga-
tion of attributes to the subsequent layers and its reuse, requiring
few parameters [45].

3.2 | Classification using machine learning
techniques

After the feature extraction stage, the attribute vectors extracted
by the topologies presented in the previous section have differ-
ent sizes, depending on the network, and are provided to the
seven classifiers used in this work. They are Naive Bayes [46],
MLP [47], Nearest Neighbors [48], Random Forest [49], and
three different versions of SVM (Linear, Polynomial, and RBF)
[50].

The first classifier used, Naive Bayes, is an algorithm that
makes a statistical analysis of the vector of attributes, based on
the Bayes Decision Rule, on conditional analysis, and the proba-
bility density function. The method calculates a probability value
for a sample to belong to each of the classes in question at the
end labels, it with the most likely class [46].

The MLP classifier (Multi-layer Perceptron) is an algorithm
composed of several layers of the artificial neuron, called pet-
ceptron [51]. Between the input, which receives the attributes,
and the output of the MLP, there are several layers of percep-
trons with different weights that propagate the initial informa-
tion throughout its length, learning from the values provided to
it to predict the sample class in its output [47].

Nearest Neighbors, or KNN, is a supervised machine learn-
ing method that classifies a sample through its spatial distri-
bution with the others already labeled [48]. It is based on its
k parameter, which must be odd and is the number of neigh-
bors closest to the current sample. Therefore, the new sample
receives the most frequent label among the £ neighbors.

Based on the decision trees and the form of classification of
the human brain, we have the Random Forest [49] algorithm.
This method is considered unsupervised and has a random
startup, using estimators to handle the input information.

The Support Vector Machine (SVM), in turn, are classifica-
tion methods that use statistical analysis and optimal separation
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hyperplanes that depend directly on the kernel used to ana-
lyze the spatial layout of the samples [50]. The kernels used
for SVM’s were Linear, Polynomial, and RBF (Radial Basis
Function).

3.3 | Evaluation metrics
The metrics used to assess the classification of each combina-
tion were: accuracy (Acc), precision, recall or sensitivity, F1-
Score (F1), and Matthews Correlation Coefficient (MCC) [31].
All equations use true positives (VP), false negatives (FN),
true negatives (VN), and false positives (FP), all present in the
confusion matrix to calculate the evaluation metrics that can be
seen in Equations (1)—(5). A confusion matrix is a tool that com-
pares the actual class of each classified sample and the class pre-
dicted by the method.

P+ VN

A A IN+ P+ N M
.. P

Drecision = TP+ D’ @)
P

Rem// == T/P'i-—H\], (3)

Fl= 2P _ Precision X Recall “

T 2VP+ FP+ FEN Precision + Recall’
— FP
MCC = VP X VN X FIN
(VP + FP) (VP + FN)(VN + FP)(VN + FN)
©)

Accuracy (ACC) is a metric that measures the number of
samples correctly classified by the total number of samples,
and since it deals directly with the method’s success rate, it is
often placed as the main one. F1-Score, on the other hand, uses
intermediate metrics, Precision and Recall, to measure a balance
between them through their harmonic mean. Thus, a high F1-
Score index is considered a uniformity factor in the classifica-
tion of tissues, as it shows a low number of false positives and
false negatives [31].

Finally, the Matthews Coetficient (MCC) is a correlation mea-
sure widely used in binary classification problems. Based on
Pearson’s correlation indices, this coefficient can be treated as
a balanced measure even when there is an unbalanced dataset.

There is a metric result for each class in question, simple
arithmetic averages of the class results for representation in
tables were made to facilitate the analysis of the results. Values
will be represented as a percentage.

3.4 | Statistical test

The Kolmogorov—Smirnov test is non-parametric, commonly
used to assess the statistical similarity between two attribute

2879
TABLE 1 BreaKHis dataset images distribution according to class,
subclass and magnification factor [54]
Magnification factors

Class Subclass 40X 100X 200X 400X Total
Benign Adenosis 625 644 623 588 2,480

Fibroadenoma

Phyllodes Tumor

Tubular Adenoma
Malignant ~ Ductal Carcinoma 1,370 1,437 1,390 1,232 5429

Lobular Carcinoma

Mucinous Carcinoma

Papillary Carcinoma
Total 7,909

vectors. Through the statistical test, it is possible to affirm with
a more significant property if an average with its respective stan-
dard deviation is different from the other, since not only its
point values are compared, but the vector of values that gen-
erated it [52].

It is necessary to establish a reliability coefficient, that is, a
a to carry out such a comparison. The comparison algorithm
between the attribute vectors provides a value of P at the end
of its calculation. This P value is then compared to the alpha,
accepting the hypothesis of statistical similarity if it is greater
and rejecting the hypothesis if it is less than the value a. Usually
the value of @ chosen is 5 % (0.05) [53].

4 | METHODOLOGY

This section presents the methodology proposed in that study
for the transfer learning approach. The section is divided into
subsections addressing the dataset used in the experiments and
the methodology applied to the study, and the parameters of
each model used.

4.1 | BreaKHis database

BreaKHis is a database composed of thousands of biopsy
images, acquired through microscopes, of tissues present in
benign and malignant tumors in breasts [54]. The dataset was
formed between January and December 2014, with patients
invited by the R&D Laboratory in Brazil.

The samples were collected using open surgical biopsies
(OSB) and prepared for study through a microscope attached to
a digital camera. The resulting dataset consists of 7,909 images
with 3 RGB channels, 8 bits each, PNG format, and dimensions
of 700 X 460 pixels.

The tissue images, divided into the main benign-malignant
classes, are further subdivided into 8 other subclasses, accord-
ing to the type of lesion, as shown in Table 1. Finally, there is
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FIGURE 1

Flowchart of transfer learning process, the methodology used in this work. The Step A represents the split of dataset, depending on magnification

factor. The Step B presents the feature extraction of images by each CNN model. The Step C represents the extense feature vectors resulting from extraction stage.

The Step D shows the classification stage of each feature vector into benign or malignant classes. And the Step E represents the results reached by each model in

terms of the evaluation metrics

FIGURE 2  Sample images of benign class for each magnification factor
from BreaKHis dataset

also a division according to the magnification factor, 40X, 100X,
200X, and 400X.

Following other studies that used the same dataset and in a
context of aid to medical diagnosis, we opted for the binary clas-
sification between the benign and malignant classes for each of
the magnification factors. Thus, subclasses were not considered
for this work.

In addition, BreaKHis samples can also be grouped among
the 82 patients who volunteered to form the dataset. In this way,
several images would be assigned to the same patient, which
would promote a different classification work. It is worth men-
tioning that the classification was made only at the image level
for this work, for the different magnification factors, and the
classification at the patient level was disregarded.

We also emphasize that there was no work to increase or
balance the dataset. Therefore, only the original images were
provided to CNN’, only with the benign/malignant label.
Furthermore, the only preprocessing used for the dataset was a
resize on each image to reach the dimensions required by each
convolutional neural networks models. Figure 2 and 3 presents
different images of the benign and malignant classes, classified
for each scale factor of the BrealkKHis dataset.

FIGURE 3
factor from BreaKHis dataset

Sample images of malignant class for each magnification

4.2 | Methodology of the proposed study

To differentiate the histopathological exam images obtained
through biopsy, in their benign/malignant classes (for each sub-
division of the magnification factors), the attributes of each
of the images are extracted, through five different CNN’s
(DenseNet121, DenseNet169, DenseNet201, VGG16, and
VGG19), used as extractors, for fully automatic classification of
the end of the extraction process, subsequently using seven dif-
ferent classifiers (Naive Bayes, MLP, Nearest Neighbors, Ran-
dom Forest, Linear SVM, SVM Polynomial and SVM RBF),
both models process in parallel. Then, the performance of each
extractor-classifier combination is evaluated. The CNN archi-
tectures mentioned in this study and the classifiers are presented
in Section 3.

Figure 1 details the approach of the proposed methodology
using transfer learning techniques. The methodology was sub-
divided into Stages A to E, addressing the different points of
each Stage.

In Step A, the images from the BreaKHis dataset, presented
above, were divided according to their magnification scales
(40X, 100X, 200X, and 400X), forming four different datasets
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TABLE 2
each classifier used in the transfer learning approach

Parameters intervals provided to Random Search algorithm for

Classifier Parameters of search Intervals of search

Naive Bayes - -

MLP Hidden layers [2,1001]

Nearest Neighbors Number of Neighbors 1,3,5,7,9,11,13,15

Random Forest Maximum depth 6, Unlimited
Bootstrap True, False
Criterion Gini, Entropy

SVM Linear Regularization parameter (C) 2¥|x € [=5,15]

SVM Polynomial Degree 3,5,7,9
Regularization parameter (C) 2¥|x € [—5,15]

SVM RBF Gamma 2¥|x € [—15,3]
Regularization parameter (C) 2¥|x € [=5,15]

with different amounts of images, labeled as benign or malig-
nant.

The resize technique is performed for each image, as pre-
processing, to adapt them to the entrance to the network,
depending on the topology used. All other CNN’s parame-
ters and configurations used in this work were kept as stan-
dard by the network itself, as used in the works compared in
Section 3.

In Step B, the CNN topologies mentioned above receive each
of these datasets formed to act as feature extractors, form-
ing a sub-dataset composed of the attribute vectors extracted
from each of the images and their respective class (benign -
0, malignant - 1), resulting in Step C. The attribute vectors
have different sizes, depending on the CNN used in the extrac-
tion: 512 attributes in VGG16 or VGG19 and 1024, 1664, and
1920 attributes in the cases of DenseNet121, DenseNet169, and
DenseNet201, respectively.

In Step D, the dataset composed of the attribute vectors gen-
erated in Steps B and C leads the classifiers to carry out a super-
vised classification of each of these extracted images. The was
done by cross-validation, using the K-fold method of training
with 10 folders. For each folder, the images were separated in
the proportion of 90%,/10% for training/validation.

A random search algorithm was used to find the best settings
for each of the classifiers for the current problem. The random
search method was used to search for the best hyperparame-
ters for each of them, according to the search intervals found
in Table 2. 20 iterations were made with 5-fold cross-validation
to search for the parameters of each classifier. These parame-
ters are chosen for each set of vectors, extracted by the CNNss,
and passed to the classifiers. Therefore, they vary according to
the input data, different for each extraction model. This random
search strategy, to find the best parameters, is part of our fully
automatic approach.

The random search of parameters for each classifier totalizes
about 90% of the total train time, except for the Naive Bayes
classifier, which has no search parameters and, therefore, has
the shortest training times among the used classifiers.

In addition to the parameters found through random search
algorithm, other fixed parameters for the classifiers stand out:
For MLP, a limit of 1000 iterations and an initial learning
rate of 5X 10_4; for Random Forest, in addition to random
initialization, 3000 estimators were used; and, finally, for the
three types of SVM, fixed tolerances of 1077 were used. The
other classifying parameters, which were not mentioned here,
were specified sets and equal to the default values of the
scikit-learn library 0.20.2, used in the implementation of these
methods.

Finally, in Step E, the evaluation metrics seen in Section 3
were used to evaluate each model formed by the CNN-classifier
combination. The results of these metrics are presented in Sec-
tion 5. In addition to the comparison between the models, to
find the best combination for the problem in question, the best
model is compared with other works in the literature that used
the same database in binary classification problems, both for the
magnification factors individually, as for the entire dataset, with-
out distinction between scales.

5 | EXPERIMENTAL RESULTS

This section deals with the results obtained by each of the 35
CNN X classifier combinations (5 X 7), for each of the magnifi-
cation factors, in the light of the evaluation metrics presented in
the previous section. In addition, in the following subsections,
the best combination made by the study (best model) was com-
pared with other works in the literature. Finally, a classificatory
experiment is performed, using the entire dataset, simulating an
augmentation by scale, To validate the investigation also com-
pared with literature work.

All processing was performed using the Linux operating
system (Ubuntu 16.04 distribution) with 16GB of RAM and
AMD Ryzen 5 3400G processor. The extraction processes
with CNN’s were accelerated by means of an Nvidia GeForce
GTX 1660 Super GPU with 6GB dedicated memory. The deep
learning models (VGG’s and DenseNet’s) were implemented
in the Python programming language (version 3.7) through
the libraries TensorFlow-GPU 1.14, Keras 2.2.4, and using
OpenCV 4.1.0, while the classifiers were implemented with the
scikit-learn library 0.20.2.

Table 3 shows the results obtained with the magnification
factor of 40X for a benign-malignant binary classification of
histopathological images. For all the CNN architectures used,
it can be seen that the SVM RBF classifier achieved accuracy
above 91.9%. The accuracy and recall results for that same clas-
sifier were also above 90%. For the remaining metrics, F1-Score
and Matthews Coefficient, the results were in the range of 80%
ot 90%, which indicates a uniformity and balance in the classifi-
cation of both classes.

Table 3 also shows that the DenseNet architecture is supe-
rior as a feature extractor when compared to the VGG archi-
tecture. However, this difference is not very significant for most
classifiers. Unlike SVM RBE, SVM Polynomial was the lesser of
all classifiers, not reaching any metric value above 50%, which
shows that this classifier tends to result in more false negatives
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TABLE 3

results per metric and the best combination method

Metrics (%) and times (ms) obtained by each combination of feature extraction and classifier for the 40X magnification factor. In bold, the best

Feature extractor Classifier Accuracy Precision Recall Fl-score Matthews Train time Predict time
DenseNet121 Bayes 73.83 £ 0.68 79.63 £ 412 59.15 £ 0.56 58.00 £ 0.70  32.90 + 3.14 0.049 + 0.022  0.106 + 0.010
MLP 90.83 + 1.34  89.66 £ 2.14 89.10 £ 1.31 8930 + 1.46 78.73 + 3.03 187.838 £ 8.430  0.677 £ 0.318
Nearest Neighbors  91.73 £ 0.69  91.21 £ 0.73  89.37 £ 1.26  90.17 £ 0.91  80.54 £ 1.69 0.104 £ 0.015  16.512 + 2.471
Random Forest 87.67 £ 276 8590 £ 3.37 8537 £ 3.11 8559 &+ 3.17 71.25 + 6.38 15718 £ 1.708  5.709 + 0.454
SVM Linear 90.38 + 1.54 8837 £ 1.86 90.08 + 1.39  89.09 + 1.66 7843 + 3.19 6.940 + 0.638  3.758 + 0.195
SVM Polynomial 31.33 £ 0.00  15.66 = 0.00 50.00 = 0.00 23.85 & 0.00  0.00 & 0.00  17.794 £ 1.158 11.071 £ 0.536
SVM RBF 9313 £ 1.28 9217 £ 1.83 9191 £ 1.23 9201 £ 145 84.07 + 2.92 8.139 + 0.764  4.701 + 0.499
DenseNet169 Bayes 78.20 +£ 0.88  83.31 +£ 0.75 66.24 + 1.56 67.79 + 1.98 46.47 + 2.46 0.083 + 0.030  0.087 £ 0.029
MLP 9298 + 1.95 91.87 £ 242 91.85 £ 206 91.85 + 2.23 83.72 + 447 117.196 £ 8.137  0.590 £ 0.323
Nearest Neighbors  93.78 + 1.11 9329 4+ 0.95 9217 + 1.82 92.67 + 1.40 85.44 + 2.66 0.123 + 0.018  24.993 + 3.575
Random Forest 89.32 + 1.14  90.04 £ 1.47 84.83 £ 1.51 86.79 + 145 74.68 £ 2.79 14133 £ 1.672 10.158 + 3.413
SVM Linear 91.63 £ 1.71  89.89 + 1.95 91.25 + 1.99 90.45 + 1.90 81.12 + 3.74 9.602 + 0.873  5.606 + 0.351
SVM Polynomial 31.33 £ 0.00 15.66 £ 0.00 50.00 £ 0.00 23.85 + 0.00  0.00 £ 0.00  26.836 £ 0.972 17.894 £ 0.309
SVM RBF 94.09 + 1.32 93.63 £ 1.83 9256 £ 1.32  93.05 + 1.52 86.18 + 3.07  11.621 £ 0.960  7.104 £ 0.440
DenseNet201 Bayes 7835 £ 1.05 8411 + 1.62 6631 £ 1.74 6787 £ 223  47.11 + 3.04 0.071 £ 0.030  0.100 £ 0.034
MLP 93.18 +£ 0.81  92.64 =+ 1.02 91.38 & 1.02 91.96 + 0.96 84.01 + 1.92 121425 £ 2298  0.836 + 0.076
Nearest Neighbors  93.18 £ 1.36  93.60 + 1.58 90.43 + 1.70 9179 + 1.65 83.96 + 3.27 0.122 £+ 0.031  29.353 + 4.152
Random Forest 88.12 + 1.45 86.55 + 1.85 85.65 + 1.54 86.04 + 1.61 72.19 £+ 3.21 23.778 £ 2721 6.171 £ 1.180
SVM Linear 91.63 £ 0.80  90.07 £ 0.88  90.69 £ 1.23  90.35 + 0.96  80.75 £ 1.98  10.820 £ 0.638  6.393 + 0.282
SVM Polynomial 31.33 £ 0.00  15.66 £ 0.00 50.00 £ 0.00 23.85 + 0.00  0.00 £ 0.00  30.694 + 1.194  20.596 + 0.292
SVM RBF 94.94 + 0.87 94.63 £ 1.05 93.53 + 1.11 94.04 + 1.04 88.15 + 2.06  13.418 + 0.768  8.655 + 0.804
VGG16 Bayes 73.83 + 0.88 72.83 £ 1.87 61.24 £ 140 6146 £ 1.85 32.00 + 2.95 0.040 £ 0.030  0.074 + 0.018
MLP 87.87 £ 1.31  86.60 £ 1.38 8499 £ 251 8558 + 1.79 71.53 + 3.32 129.823 £ 9.492  0.394 £ 0.174
Nearest Neighbors  89.42 + 0.99  89.70 + 1.03 8530 + 1.42 87.03 £ 1.29 74.86 + 243 0.045 + 0.006  9.743 + 1.467
Random Forest 84.96 + 1.65 8691 £ 2.31 77.74 £ 222 8034 £ 232 63.98 + 437 34466 £+ 3.962  8.064 £+ 1.655
SVM Linear 87.02 £ 1.03  84.69 + 1.33 8594 £ 1.19 8520 + 1.12  70.61 + 2.27 5278 + 0.586  2.730 + 0.110
SVM Polynomial 31.33 £ 0.00  15.66 = 0.00 50.00 + 0.00 23.85 + 0.00  0.00 & 0.00  10.200 £ 0.302  5.609 + 0.037
SVM RBF 91.98 + 0.79  91.62 £ 0.55 89.55 £ 1.62 90.44 + 1.07 81.13 + 1.99 8.142 + 0.604  3.119 + 0.177
VGG19 Bayes 7459 £ 153 73.68 £ 349  62.62 £ 1.74 6331 £ 2.17 34.57 £ 4.90 0.047 £ 0.024  0.074 £ 0.015
MLP 88.77 +£ 0.58 87.45 + 1.20 86.39 + 1.15 86.79 + 0.63 73.81 + 1.35 178.718 £ 8.357  0.556 + 0.248
Nearest Neighbors ~ 89.47 + 0.69  90.43 + 0.92 8490 + 128 86.94 + 1.01 7510 + 1.61 0.046 + 0.006  9.576 + 1.640
Random Forest 86.17 £ 293 8512 £ 3.33  81.84 £ 390 83.13 £ 3.70  66.86 + 7.21 31.504 & 4190  6.997 + 2.559
SVM Linear 86.42 + 1.70  83.98 £ 1.94 8528 + 231 8452 + 2.00 (9.25 + 4.11 4.965 + 0.543  2.400 % 0.087
SVM Polynomial 31.33 £ 0.00  15.66 £ 0.00  50.00 £ 0.00 23.85 + 0.00  0.00 £ 0.00  10.386 £ 1.002  5.501 £ 0.056
SVM RBF 91.98 + 1.30  91.92 + 1.61 89.20 + 1.58 90.38 + 1.56 81.07 + 3.12 9.056 + 1.115  3.729 + 0.295

and false positives than true positives and true negatives, thus
making more mistakes than successes for regions belonging to
breast tissue. Finally, the MLP and Nearest Neighbors classifiers
also achieved results close to that of SVM RBF for most metrics,
but they lose to it when it comes to training time (higher pro-
cessing) and test time, respectively, since the time of MLP train-
ing is around 120 to 190 ms, while the Nearest Neighbors pre-
diction time is in the 9 to 30 ms range, with a high standard devi-
ation (while the SVM RBF trains and predicts at a faster average
than the others two and with a smaller standard deviation).

Table 4 shows the classification results for the BreaKHis
dataset, restricted to the 100X magnification factor. Much like
the results in the previous table, the combination DenseNet201
with SVM RBF also achieved the highest values for all met-
rics. Again, the Naive Bayes and SVM Polynomial classifiers
proved to be the lowest for this breast tissue classification prob-
lem, despite an improvement in SVM Polynomial for these
100X images.

The other metric values reached by the different combina-
tions had results very close to the 3, which shows that the
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TABLE 4

Metrics (%0) and times (ms) obtained by each combination of feature extraction and classifier for the 100X magnification factor. In bold, the best
results per metric and the best combination method

Feature extractor Classifier Accuracy Precision Recall Fl-score Matthews Train time Predict time
DenseNet121 Bayes 71.94 £ 0.83  81.81 £ 4.83 5492 + 1.15 50.71 + 2.04 24.85 + 4.12 0.043 + 0.025 0.106 + 0.029
MLP 9130 £ 1.19  90.23 £ 1.64 89.29 + 1.12 89.72 £ 1.33  79.50 &+ 2.67  35.253 + 1.438 0.185 + 0.071
Nearest Neighbors  88.80 £ 0.83  89.40 + 1.59 84.01 + 0.69 86.03 + 0.92 73.20 + 2.10 0.105 £ 0.012 18264 £ 2.092
Random Forest 87.89 + 146  87.46 £ 2.02 83.61 £ 1.90 8512 + 1.80 70.95 £ 3.60  11.120 + 1.281 6.901 + 2.060
SVM Linear 89.96 + 1.38 8791 £ 1.72 89.17 £ 1.19 8847 + 1.49 77.06 + 2.89 7.637 + 0.108 4.216 £+ 0.229
SVM Polynomial 61.39 £ 1527 30.70 £ 7.64 50.00 = 0.00 37.38 £ 6.91  0.00 £ 0.00  19.537 + 1.345  11.979 £ 0.301
SVM RBF 9322 £ 1.61 9241 £ 213  91.66 + 1.58 92.02 + 1.84 84.07 + 3.70 8.904 + 0.728 5.265 + 0.702
DenseNet169 Bayes 74.53 + 0.44 8408 £ 1.57 59.15 + 0.83 57.83 + 1.39 3525 + 1.26 0.081 + 0.022 0.098 + 0.016
MLP 9202 + 131 90.82 £ 1.43 9054 +£ 1.92 90.63 + 1.59 81.35 + 3.12 161.009 + 12,553  0.693 + 0.269
Nearest Neighbors  91.74 + 1.34 9155 + 1.63 88.83 + 1.67 90.02 + 1.64 80.34 + 3.25 0.120 £ 0.018  27.918 + 4.142
Random Forest 87.60 + 2.88  86.67 £ 3.88 83.78 £ 3.14 84.97 £ 339 7038 + 6.89  10.790 + 1.243 7.001 + 1.888
SVM Linear 91.78 £ 0.77  90.16 £ 0.98 90.88 + 1.00 90.48 + 0.87 81.03 + 1.74  11.390 £ 0.739 6.684 + 0.187
SVM Polynomial 61.39 + 1527 30.70 £ 7.64 50.00 £ 0.00 37.38 £ 691  0.00 £ 0.00  29.500 + 1.170  19.383 + 0.132
SVM RBF 9337 £ 097 9220 £ 1.15 9233 + 1.19 9226 + 1.12 8453 + 2.25  11.090 + 0.714 6.682 £ 0.528
DenseNet201 Bayes 79.24 £ 0.51 8559 £ 0.75  67.10 £ 0.90  69.01 + 1.12  49.32 + 1.44 0.102 £ 0.046 0.149 £ 0.021
MLP 9322 + 0.86 9252 £ 0.80 91.54 + 1.52 91.97 + 1.09 84.04 + 2.11  48.209 + 3.841 0.220 + 0.113
Nearest Neighbors 9193 £ 1.13  92.09 + 1.22 88.80 + 1.74 90.18 £ 1.45 80.81 + 2.77 0.141 £ 0.020  31.707 £ 3.707
Random Forest 8856 £ 091  87.60 £ 1.20 8512 £ 1.17 86.18 £ 1.11  72.67 £ 222 20.628 + 2.545 6.859 + 2.040
SVM Linear 92.89 + 1.18  91.53 £ 1.04 91.94 &£ 1.94 91.70 & 1.46 83.46 + 296  14.042 £ 0.807 8.433 + 0.321
SVM Polynomial 61.39 + 1527 30.70 £ 7.64 50.00 £ 0.00 3738 & 691  0.00 £ 0.00  33.403 + 0.371  22.413 + 0.353
SVM RBF 94.18 + 1.34  94.23 + 1.16 92.06 + 2.11 93.01 + 1.67 86.25 + 3.19 22408 + 2560  11.321 £ 1.032
VGGI16 Bayes 7410 £ 113 85.69 £ 0.45 5823 + 1.97 56.19 + 3.24 34.01 + 3.98 0.056 + 0.032 0.079 + 0.021
MLP 88.13 +£ 1.38  87.11 £ 1.97 8459 + 1.47 85.66 £ 1.61 71.65 £ 3.30  12.570 % 0.536 0.064 £ 0.042
Nearest Neighbors  87.22 £ 0.98  87.41 £ 0.90 8200 + 1.74 83.96 + 1.47 (9.18 + 2.49 0.051 + 0.004  10.680 + 1.631
Random Forest 86.64 £ 0.99 8496 + 1.31 83.30 + 1.44 84.00 = 1.23 68.23 £ 246 15960 + 2.162 5.360 + 1.444
SVM Linear 86.78 + 1.72  84.35 £ 2.07 8550 £ 1.90 84.82 + 1.92 69.83 + 3.84 4.979 + 0.444 2.451 £ 0.122
SVM Polynomial 61.39 + 1527 30.70 £ 7.64 50.00 £ 0.00 37.38 £ 691  0.00 £ 0.00  11.150 + 0.800 6.053 + 0.088
SVM RBF 90.05 £ 1.05  90.71 £ 1.73  85.77 + 1.33 87.67 £ 1.31 76.30 + 2.67  10.122 £ 0.926 4.319 £ 0.213
VGG19 Bayes 77.27 £ 073 8417 £ 236 63.92 £ 0.90 64.87 £ 1.20 43.60 + 2.62 0.056 + 0.034 0.080 + 0.023
MLP 87.60 £ 1.21  86.08 £ 1.38 84.43 £ 1.62 85.16 £ 1.50 70.48 £ 2.95  31.048 + 2.769 0.117 £ 0.060
Nearest Neighbors  86.30 + 1.57  86.69 + 2.09 80.49 + 2.14 82.62 + 2.11 66.88 + 4.04 0.046 + 0.004  10.614 £ 0.866
Random Forest 86.64 £ 1.14  87.07 £ 1.26 80.95 + 1.74 83.08 £ 1.60 67.73 £ 2.88  17.845 + 2.145 6.817 + 0.895
SVM Linear 8722 + 038 8479 £ 0.55 86.16 £ 0.77 8536 + 0.38 70.93 + 0.85 5.027 + 0.420 2.454 £ 0.167
SVM Polynomial 61.39 + 1527 30.70 £ 7.64 50.00 £ 0.00 37.38 £ 691  0.00 £ 0.00  11.243 + 0.988 5.991 + 0.196
SVM RBF 90.82 + 1.07  90.72 £ 1.34 87.62 + 2.06 88.85 + 1.45 78.25 + 2.70 8.794 £+ 0.905 3.290 £ 0.234

magnification factor of 100X does not have much difference
compared to 40X, probably because they are very close to each
other. Despite the accuracy values being near, for the 100X fac-
tor, there was a decrease in the standard deviation in practi-
cally all combinations, showing that the models obtained min-
imally better results to classify the tissue in Histopathologi-
cal images. The F1-Score values in the table, in turn, linked
to the MLP, Nearest Neighbors, Random Forest, SVM Lin-
ear, and SVM RBF classifiers are in the same range between
80% and 92%. The Matthews coefficient, in turn, has its val-
ues highlighted for MLP, Nearest Neighbors, and SVM RBE,

mainly for the DenseNet169 and DenseNet201 networks, with
values from 85% to 88%. On the other hand, once again, SVM
Polynomial could not score on the Matthews Coefficient. That
is, it classifies the samples entirely randomly, without any
correlation.

Finally, in Tables 5 and 6 we can see the results of each
classification made for the magnification factors of 200X and
400X, respectively. The combination DenseNet201 and SVM
RBF reached their best values among all image scales for the
200X variation, when it had 95.38% accuracy, with a standard
deviation of only 0.40%. Accuracy and recall also achieved
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TABLE 5

Metrics (%0) and times (ms) obtained by each combination of feature extraction and classifier for the 200X magnification factor. In bold, the best
results per metric and the best combination method

Feature extractor Classifier Accuracy Precision Recall F1-score Matthews Train time Predict time
DenseNet121 Bayes 79.58 + 1.47 8335 + 1.20 6843 + 256 70.46 + 3.00 49.49 + 4.02 0.053 + 0.036 0.094 + 0.041
MLP 90.11 + 1.45  88.49 + 1.86 8841 + 1.58 8843 + 1.66 7690 + 3.33 246.854 + 12.726  0.685 + 0.199
Nearest Neighbors  90.76 +£ 1.98  90.34 &+ 2.05 87.68 + 2.87 88.80 £ 253 77.96 + 4.86 0.114 + 0.011  17.307 £ 2.990
Random Forest 89.32 + 240  88.89 + 251 85.66 + 3.55 8694 + 3.12 7444 + 589  16.204 + 1.637 6.762 + 1.985
SVM Linear 89.62 + 1.36  87.37 £ 1.56 89.38 + 1.47 8820 + 1.51 76.72 + 2.92 6.618 + 0.556 3.454 + 0.197
SVM Polynomial 53.73 + 18.68 26.86 + 9.34 50.00 + 0.00 3392 + 845  0.00 £ 0.00  18.467 + 0.494  11.247 + 0.233
SVM RBF 93.49 + 053 93.33 + 0.90 91.30 + 0.60 92.21 + 0.62 84.60 + 1.27  14.919 + 0.821 6.405 + 0.231
DenseNet169 Bayes 77.55 £ 0.85 8271 + 2.06 64.78 £ 1.33 66.03 + 1.71 43.94 + 2.69 0.097 + 0.032 0.064 + 0.010
MLP 9210 £ 0.95 9140 + 1.51 90.12 +£ 1.71  90.62 + 1.16 81.49 + 239 374.174 + 24.015  1.402 + 0.838
Nearest Neighbors 9294 + 1.10  92.61 + 1.33  90.68 + 1.37 91.56 + 1.34 83.27 + 2.67 0.109 + 0.024  26.162 + 2.925
Random Forest 87.88 + 0.87 8621 + 1.12 8511 + 1.07 85.61 + 1.03 71.31 +£ 2.06  10.352 + 1.196 6.788 + 1.869
SVM Linear 91.36 + 0.79  89.51 + 0.72 90.82 + 1.73 90.05 + 1.03 80.31 + 2.25  11.441 + 0.548 6.718 + 0.269
SVM Polynomial 53.73 + 18.68 26.86 + 9.34 50.00 + 0.00 33.92 + 845  0.00 + 0.00  27.726 + 1.383  18.152 + 0.530
SVM RBF 93.34 £ 090 9274 + 1.30 91.68 £ 1.51 9212 + 1.07 8439 + 2.19  10.987 + 0.577 6.693 + 0.475
DenseNet201 Bayes 82.96 £ 1.29  87.35 + 2.17 7340 £ 2.05 76.24 £ 2.19 59.08 + 3.54 0.089 + 0.035 0.108 + 0.027
MLP 9240 + 029  91.67 + 0.38  90.38 + 0.60 90.97 + 0.38 82.03 + 0.73 396.417 + 36.733  2.052 + 0.802
Nearest Neighbors  93.54 + 0.77  93.64 + 0.84 91.17 + 1.40 9223 + 0.99 84.75 + 1.81 0.136 + 0.019  30.310 + 4.724
Random Forest 89.87 + 0.67  89.77 £ 1.06 86.15 + 1.19 87.61 £ 0.90 7582 + 1.66  13.735 + 1.806 6.778 + 1.913
SVM Linear 90.61 + 0.68  88.93 + 1.06 89.49 + 1.11 89.11 + 0.72 78.40 + 1.36 9.727 + 0.710 5.600 + 0.129
SVM Polynomial 53.73 + 18.68 26.86 + 9.34 50.00 + 0.00 33.92 + 845  0.00 £ 0.00  31.196 + 0.650  21.026 + 0.403
SVM RBF 95.38 +£ 0.40  95.43 + 0.59 93.69 + 0.51 94.49 + 0.48 89.10 + 0.97  15.662 £ 0.859  10.064 + 0.493
VGG16 Bayes 74.66 £ 1.27 8411 + 2.80 59.33 + 1.90 58.07 + 2.84 35.59 + 4.74 0.048 + 0.038 0.077 + 0.024
MLP 89.47 £ 1.45 8821 + 1.82 86.88 + 1.83 8747 + 1.74 7507 £ 3.46  31.354 + 4.076 0.116 + 0.057
Nearest Neighbors  87.83 + 052  87.40 + 0.64 8343 £+ 0.80 85.01 £ 0.70 70.72 + 1.33 0.052 £ 0.008  10.039 + 0.536
Random Forest 86.14 + 0.44  84.79 + 0.70 81.99 + 0.65 83.15 + 0.52 66.72 + 0.99  13.143 + 1.720 5.684 + 1.489
SVM Linear 88.82 + 0.97  86.69 + 1.34 87.70 £ 0.85 87.12 + 1.00 7438 + 1.97 4.623 + 0.359 2.191 + 0.121
SVM Polynomial 53.73 + 18.68 26.86 + 9.34 50.00 £ 0.00 33.92 + 845  0.00 + 0.00  10.814 + 0.655 5.624 + 0.192
SVM RBF 9220 £ 0.79  91.77 + 0.60 89.75 + 1.36  90.65 + 1.03 81.49 + 1.95 8.148 + 0.585 3.245 + 0.268
VGG19 Bayes 80.38 £ 1.24  85.14 + 237 69.32 £ 1.72  71.64 £ 2.06 52.08 + 3.79 0.047 + 0.030 0.068 + 0.019
MLP 90.66 + 1.61 89.94 + 1.72 87.88 £ 2.31 88.77 £ 2.03 77.78 £ 3.94  21.890 + 1.504 0.116 + 0.028
Nearest Neighbors  86.74 + 0.50  87.56 + 0.80 80.79 + 0.54 83.10 + 0.60 68.01 + 1.25 0.044 + 0.003 9.848 + 1.696
Random Forest 87.43 + 1.21 87.84 £ 1.59 8213 + 1.62 8419 + 159 69.73 + 3.05  12.120 + 1.257 8.292 + 2.995
SVM Linear 89.37 £ 1.37  87.30 £ 1.50 8823 + 1.86 87.71 £ 1.63 7551 + 3.27 4.235 + 0.394 2.032 + 0.076
SVM Polynomial 53.73 + 18.68 26.86 + 9.34 50.00 £ 0.00 33.92 + 845  0.00 + 0.00  10.381 + 0.843 5.611 + 0.143
SVM RBF 9235 £ 1.53 9233 + 1.78 89.55 + 2.02 90.75 £ 1.90 81.82 + 3.73 7.830 + 0.676 2.938 + 0.194

approximately 95.5% and 94.5%, respectively, both with a low
standard deviation. About the F1-Score and Matthews Coef-
ficient (MCC), they have also achieved the best results so far,
with 93.7% and 89%.

However, the magnification of 400X showed a decrease in the
values achieved by the metrics for all networks under study. This
approach already makes it more challenging to differentiate by
CNN topologies, not showing much difference between classes.
Despite this, the difference is low in accuracy, with the best com-
bination reaching 92.64% on average. The standard deviation

has risen above 1.2% in virtually all cases. For the MCC, there is
a more significant difference compared to the other magnifica-
tions seen, having its best result again for the SVM RBF com-
bination with DenseNet201, reaching almost 83% on average,
with a standard deviation of 2.7%.

Finally, analyzing the training times and prediction of the
tables, it is clear that they depend only on the classifiers
and the size of the vector of attributes coming from CNN.
Therefore, the time bands do not vary much depending on
the table. It is noticeable that the MLP training time varies
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TABLE 6

results per metric and the best combination method

Metrics (%0) and times (ms) obtained by each combination of feature extraction and classifier for the 400X magnification factor. In bold, the best

Feature extractor Classifier Accuracy Precision Recall Fl-score Matthews Train time Predict time
DenseNet121 Bayes 7329 £ 141 7934 £ 371 5947 £ 2.01 5812 + 298 33.27 + 557 0.064 + 0.053  0.071 £ 0.038
MLP 89.23 £ 191 87.87 + 243 8746 £ 2.02 87.64 + 2.16 7533 £ 436  140.998 + 5360  0.373 + 0.183
Nearest Neighbors  88.74 + 1.27 8832 + 1.42 8546 + 1.63 86.65 £ 1.54 73.71 £ 3.00 0.087 £ 0.012  15.624 + 0.697
Random Forest 86.92 + 0.88  86.04 £ 1.01 8349 &+ 1.49 8452 £ 1.18 6947 £ 219  11.939 + 1.040  6.299 + 0.245
SVM Linear 89.18 + 0.81  87.55 + 1.08 87.87 £ 0.60 87.69 + 0.83 75.42 + 1.63 7.269 + 0.156  3.961 + 0.035
SVM Polynomial 5348 £ 17.35 26.74 £ 8.67 50.00 £ 0.00 33.96 £ 7.83  0.00 £ 0.00  15.096 + 0.184  9.344 + 0.315
SVM RBF 9242 + 0.64  92.28 + 0.84 90.22 + 0.89  91.12 £ 0.77 8247 £ 1.50  11.703 £ 0.353  4.953 + 0.378
DenseNet169 Bayes 75.60 £ 1.32 80.17 £ 2.06  63.49 + 2.00 63.97 £ 2.66 40.28 + 3.99 0.083 + 0.028  0.064 £ 0.018
MLP 90.06 + 1.01  89.28 + 1.36  87.81 £ 1.34 88.43 + 1.18 77.06 + 230 146.267 + 5.852  0.571 £ 0.242
Nearest Neighbors  90.33 + 1.28  89.52 + 1.09 88.10 &+ 2.02 88.73 + 1.64 77.60 + 3.11 0.111 £ 0.013  24.793 £ 0.462
Random Forest 87.37 £ 2.04 8593 + 230 8490 £ 258 85.34 + 2.41 70.81 + 4.77 7.231 £ 0218 6.666 £ 0.267
SVM Linear 90.11 £ 1.60  88.43 £ 1.70  89.32 + 2.14 88.82 + 1.85 77.74 £ 376  11.047 £ 0.114  6.557 + 0.127
SVM Polynomial 53.48 + 17.35 26.74 £ 8.67 50.00 £ 0.00 33.96 £ 7.83  0.00 £ 0.00  24.843 + 0.219 16.189 £ 0.172
SVM RBF 9242 + 1.72 91.88 £ 1.76  90.63 + 2.30 91.19 £+ 2.05 8249 + 402 13303 £ 1.016  7.689 + 0.199
DenseNet201 Bayes 8253 + 1.98  86.02 + 203 7421 £ 295 76.69 £ 3.15 59.00 + 5.00 0.099 + 0.021  0.113 £ 0.026
MLP 90.71 £ 1.27  89.90 + 1.34 88.65 £ 1.77 89.21 £ 1.56 7853 + 3.03  84.052 + 8.840  0.352 £ 0.129
Nearest Neighbors ~ 90.82 + 1.20  90.63 £ 0.87 88.15 £ 2.14  89.17 £ 1.60 78.72 + 2.93 0.146 + 0.020  27.270 £ 0.638
Random Forest 89.07 £ 1.93  89.52 + 2.03 8512 £+ 2.69 86.79 £ 2.47 7450 £ 4.65  19.350 £ 1.236  9.986 £ 0.552
SVM Linear 90.71 £ 0.90  89.36 £ 0.98 89.45 + 1.21 89.40 £ 1.07 7881 £ 2.13  10.822 £ 0.217  6.512 & 0.101
SVM Polynomial 53.48 + 17.35  26.74 + 8.67 50.00 £ 0.00 33.96 £ 7.83  0.00 £ 0.00  26.524 + 0.138 17.781 £ 0.120
SVM RBF 92.64 + 1.14  92.41 + 148 90.60 £ 1.33 9141 + 1.34 8298 + 2.70  21.835 &+ 0.409 10.720 £ 0.385
VGGI16 Bayes 7225 £ 1.22 79.07 £ 296  57.72 £ 1.90 5529 £ 3.10 29.78 + 4.59 0.065 + 0.039  0.088 £ 0.024
MLP 86.65 + 1.23  85.16 + 1.47 8396 £ 1.68 84.48 £ 1.52 69.11 £ 297  17.253 £ 1.703  0.108 £ 0.057
Nearest Neighbors  84.28 + 1.16 8254 + 1.28 80.88 + 1.68 81.57 £ 1.46 63.39 + 2.82 0.042 + 0.002  9.316 £ 0.315
Random Forest 8582 + 1.33  84.65 + 1.03 8224 + 234 83.20 £ 1.89 66.83 + 3.42 9.322 + 0.250  6.547 + 0.507
SVM Linear 86.54 + 1.02 8438 + 1.21 8566 £ 1.10 84.92 £ 1.10 70.03 + 2.18 4984 + 0.175  2.443 £ 0.038
SVM Polynomial 5348 + 17.35 26.74 + 8.67 50.00 £ 0.00 33.96 £ 7.83  0.00 + 0.00 9.471 £ 0.179  5.108 + 0.041
SVM RBF 88.52 + 1.27  87.09 + 1.60 86.54 £ 1.34 86.79 £ 1.42 73.62 + 2.86 5469 + 0.259 2419 £ 0.158
VGG19 Bayes 7731 £ 111 81.62 £ 1.19 6622 + 1.81  67.51 £ 237 45.22 + 2.96 0.046 £ 0.036  0.072 % 0.031
MLP 87.64 £ 2.03  86.12 £ 2.22 8540 + 2.62 85.72 £ 241 71.51 £ 477  40.986 + 1.050  0.156 £ 0.061
Nearest Neighbors  85.71 + 1.55 8542 + 1.74 81.13 &+ 235 82.68 £+ 2.09 66.39 + 3.86 0.042 + 0.003  9.172 £ 0.274
Random Forest 86.98 + 1.33  87.07 £ 1.49 82.65 +£ 232 84.22 £ 1.85 69.55 + 3.30  14.121 £ 0.705  7.529 + 0.572
SVM Linear 87.69 £ 122 8588 + 1.61 86.65 £ 1.79 86.11 £ 1.35 72.50 + 2.84 4.406 £ 0.190  2.112 £ 0.106
SVM Polynomial 53.48 + 17.35 26.74 + 8.67 50.00 £ 0.00 33.96 £ 7.83  0.00 + 0.00 9.090 + 0.178  4.838 + 0.045
SVM RBF 89.67 £ 1.00  88.18 + 1.57 88.60 + 1.19 88.28 + 1.05 76.75 + 2.17 4721 £ 0.096  2.435 + 0.053

a lot on average, with a very high standard deviation, and is
mostly quite high and requires a high level of processing due
to the complexity of its algorithm. On the other hand, the
Nearest Neighbors classifier, despite being trained quickly,
predicts more slowly among the other classifier options. Fur-
thermore, the times of the VGG architecture (either 16 or
19) are shorter than the times of the DenseNet architecture
since the number of attributes in the vector of each sample
is at least half the number of attributes resulting from the
competing architecture. It should be noted that the values are in

milliseconds, and therefore, there is no stark difference between
the values.

5.1 | Comparison of the best combination
with the methods in the literature for each
magnification factor

Since, for all magnification factors, the best combination
of CNN-classifier was analyzed using the DenseNet201
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TABLE 7 Mean accuracies (%) and their respective standard deviations of
our best method (DenseNet201 + SVM RBF) compared to other methods
from related works for each magnification factor. The other authors only
presented accuracy as evaluation metric

Magnification factors

Method 40X 100X 200X 400X

Our best method 94.94 + 0.87 94.18 +1.34 95.38 +0.40 92.64 + 1.14

Song et al. [35]. 87.00 £ 2.60 86.20 +3.70 85.20 £2.10 82.90 + 3.70

Zhi et al. [33]. 93.30 +£2.30 94.60 + 2.20 94.80 + 3.20 88.40 + 4.10

Deniz et al. [36]. 90.96 +1.59 90.58 +1.96 91.37 +£1.72 91.30 +£0.74

TABLE 8
proposed by this study and methods found in the literature with a of 1%

Result of the Kolmogorov—Smirnov test for the best method

Magnification factors

Methods 40X 100X 200X 400X
Proposed method X Song et al. [35]. # # # #
Proposed method X Zhi et al. [33]. # # # #
Proposed method X Deniz et al. [36]. #* # # #

architecture and the SVM RBF classifier. In this way, the results
of this model were used for comparison with other works in
the literature as shown in the Table 7. In the same way, these
authors also classified the images in a binary way, distinguishing
the magnification factors 40X, 100X, 200X, and 400X.

Table 7 shows the accuracy compared to the best model
of this study with other methods in the literature that also
made the benign-malignant distinction, separating the dataset
by the magnification factor. As specified in Section 2, Song et al.
[35] used CNN-based FV descriptor with adaptation layer to
classify the dataset between the two classes. On the other hand,
Zhi et al. [33] also used the transfer learning technique with a
VGGNet-based architecture custom model with a patch-based
augmentation. Finally, Deniz et al. [36] fine-tuned the AlexNet
deep model for the demand, achieving better results than in
their other attempts with the use of VGG16 and the concate-
nated vectors of VGG16 and AlexNet.

As can be seen in the Table 8, the Kolmogorov—Smirnov
statistical test rejected the hypothesis, with a & of 1%, that
the attribute vectors have statistical similarity, this refusal even
for such a small & value may have been due to the dense
amount of samples in each of the attribute vectors used to
generate the averages and standard deviations observed in the
Table 7.

Still, in Table 7, it is possible to see that our method, when
it comes to accuracy, matches the other techniques in the lit-
erature for the magnification factors of 40X, 200X, and 400X.
In addition, we also come very close to the average accuracy
of Zhi et al. [33], the best result for the magnification factor
of 100X, even without using the augmentation technique used
by the author. We present a deviation—much smaller standard
compared to his (double that obtained by this study).

90

8

(=)

40X 100X 200X 400X
UoOurl0Song ez al. [35]00Zhi et al. [33]100Deniz ez al. [36]

FIGURE 4 'The comparison between accuracies (%) reached by our
method and by the other methods from related works per magnification factor

The same results can be seen in the graph of Figure 4,
for the purpose of a better comparison between the accuracy
obtained by the methods. From the figure, it is clear that the
accuracy achieved by our method has a smaller standard devia-
tion for practically all magnification factors in comparison with
other methods.

As can be seen in the Table 8, the Kolmogorov-Smirnov sta-
tistical test rejected the hypothesis, with a & of 1%, that the
attribute vectors have statistical similarity; this refusal even for
such a small & value may have been due to the dense amount
of samples in each of the attribute vectors used to generate the
averages and standard deviations observed in the Table 7.

It is noteworthy that even when the means and standard devi-
ations are relatively similar, it is not possible to state that the
values are equal to the norm. Standard deviation cannot express
the degree of variation in the distribution of the samples. Such
an assertion can only be concluded through statistical testing;
that is, the test will indicate whether the data sets are similar.

5.2 | Comparison of the best combination
with the literature methods for the
complete dataset

One last experiment was carried out, with all the images from
the dataset, with supervised classification between the benign
and malignant classes, this time without distinction of magnifi-
cation between the images. The model generated and chosen by
this study, based on Tables 3 to 6, was also the one that uses the
DenseNet201 network with the SVM RBF classifier.

The results obtained were 94.88 + 0.57 accuracy, 94.64 + 0.49
precision, 93.97 + 0.70 recall, 93.38 + 0.89 F1-Score and
88.00 + 1.35 for the Matthews Correlation Coefficient (MCC).
In general, the results are comparable to the results obtained
individually for each magnification factor. If compared, for
example, with Table 5, which shows the results of the
models for the 200X images, there was a drop in the evaluation
metrics. In contrast, for the results of 400X images, shown in
Table 6, there was an improvement of 2% in the average accu-
racy, with a decrease of standard deviation and an even more
notable improvement for the others metrics, culminating in an
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TABLE 9 Performance of our best method (DenseNet201 + SVM RBF)

in comparison to the other, from related works, for a classification experiment
using all BreaKHis dataset, without magnification factor distinction. The other
author did not present MCC or time values

Métricas

Method Accuracy Precision Recall F1-Score

Our best method 94.88 + 0.57 94.64 +0.49 93.97 +0.70 93.38 + 0.89

Mehra et al. [34].  92.60 93.00 93.00 93.00
95
94
N H H H
Accuracy Precision Recall F1-Score
‘ J0Our0Mehra er al. [34] ‘
FIGURE 5 Comparison between our method and the other method from

related works per metric. The results below is from using of all dataset, without
magnification factor distinction. The other author did not specify the standard

deviation.

increase of almost 6% MCC with a lower standard deviation of
around 50%.

These results are most likely due to the model better discern-
ing images with magnification in the 200X range and starting
to confuse images with higher magnification, like 400X. Thus,
many authors (mentioned above) still defend the separation of
the dataset in question in different magnification factors to find
the best way to classify it.

Among cited authors, only Mehra et al. [34] and Celik et al.
[32] made a study with all the images, generalizing the scales of
40X, 100X, 200X and 400X in a single dataset. However, the
latter author has restricted himself to the detection of invasive
ductal carcinoma (IDC), as mentioned in Section 2, and there-
fore does not fit in comparison to our results. Mehra et al. tested
a full or partial training of convolutional neural networks (mod-
els VGG16, VGG19 and ResNet50) also with the BreaKHis
dataset, but in a balanced and augmented way. Table 9 compares
our best model (transfer learning with DenseNet201 + SVM
RBF) with the best method among those used by the mentioned
author (fine-tuning of VGG16 model, with logistic regression).

Likewise, Figure 5 illustrates the comparison between the
methods, shown in numbers in Table 9. By analyzing the figure,
it can be seen that, even without fine-tuning the network and
without balancing or increasing the dataset, the results obtained
by our transfer learning method are superior to the authot’s
results for the metrics in question. The standard deviations of
the comparison method were not specified by the author, leav-
ing a gap regarding the validation of the results and the possible

high levels of standard deviations compromising the real values
obtained by the presented study.

In this way, one can observe the main trends based on the
results acquired from this study, such as:

* Extraction and classification of medical images based on
open sutgical biopsy (OBS).

* Detection of cancerous regions in breast regions based on
computational models using deep learning;

* Pre-diagnosis based on computational intelligence.

* Use of computational technological tools for clinical care,
aiming to optimize effective results.

* High success rate for different computational models with a
focus on aiding diagnosis.

6 | CONCLUSION

This study presents a method to classify tissue images com-
posed of histopathological exams on four binary scales between
benign and malignant. The approach is divided into two stages:
(I) feature extraction using CNNs using the learning transfer
technique, and (II) automatic image classification using machine
learning methods.

The results show that CNNs, combined with the learning
transfer technique and machine learning methods, can be used
as resource extractors for this problem. Thus, we can say that
the experiments in this study achieved low computational costs,
with an accuracy of 95.38% with the DenseNet201 extrac-
tor combined with the SVM RBF classifier in the 200x class
between malignant and benign, using the BreaKKHis database, in
addition to F1-Score 93.69% and 10 ms in the mean test time,
as shown in Table 5. In this sense, the proposed method using
the best model (Model: VVG16 + SVM RBF) brings signifi-
cant gains for medical applications to aid pre-diagnosis in order
to identify tissues in histopathological exams with excellent
results.

Therefore, the study focuses on intensifying the analysis,
looking for parameters that enable better and better results. For
future work, the proposal of this study’s model for different tis-
sue images, such as melanoma and different types of skin dis-
eases, is proposed, in order to assess the generalization of the
model. for different types of problems and dataset. Different
ones can also be adopted for future studies, such as Health of
Things applications, cloud applications, and mobile applications
using cloud processing.
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