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Abstract - I n  studying the possibility of increasing wireless 
system capacity, we evaluate the performance o f  some algorithms 
that make use of sub-space techniques to estimate the covariance 
matrix, and compare these results to those obtained through 
traditional methods, such as the Direct Matrix Inversion - 
Maximum Signal-to-Noise Ratio and Maximal Ratio Combining. 
Illustrative simulation results demonstrate that the Minimum 
Mean Square Error - signal Sub-Space and the Weighted Sub- 
Space algorithms may lead to a better performance than full- 
rank conventional algorithms. Furthermore, a more elaborate 
system-level simulation in a T D M A  IS-136 context is performed 
and it shows that such benefits also appear in a more practical 
scenario. 

I .  INTRODUCTION 
Delayed multipaths and strong interference sources are 

some of the main characteristics of mobile radio 
communication systems. It is well known that the major 
challenges in this field are related to the mitigation of 
impairments caused by this harsh environment, such as Inter- 
Symbol Interference (ISI) and CO-Channel Interference (CCI), 
which can degrade Bit Error Rate (BER) performance, 
leading to a poor transmission quality. 

Several signal processing techniques have been applied in 
order to achieve increased capacity and improved 
performance in high-speed data applications, as would be 
expected to fulfill the requirements of the incoming third 
generation of mobile communications. Adaptive Antenna 
Array (AAA) diversity [ l ]  is a classical solution for those 
problems of combating multipath fading and canceling 
interfering signals. 

In this context, classical solutions include Direct Matrix 
Inversion (DMI) and Maximal Ratio Combiner (MRC) 
algorithms [2]. However, these methods, in particular the 
MRC, exhibit considerable performance degradation in strong 
CCI scenarios. 

For antenna array processing we concentrate on two 
optimization criteria. The first is the Maximum Signal-to- 
Interference-plus-Noise Ratio (MSINR) and the second is the 
Minimum Mean-Squared Error (MMSE). The sub-space 
techniques used in this work are based on Reduced-Rank 
(RR) modeling and on Sub-space (SS) weighting. The 
algorithms based on the RR approach are the MSINR- 
Eigencanceler (MSINR-EC) [3,4] and the MMSE - signal 
Sub-space (MMSE-SS) [5] and they work with the noise and 
signal sub-spaces respectively. The Weighted Sub-Space 
algorithm (MSINR-WSS) [5] is an example of a sub-space 
weighting algorithm based on a MSINR criterion. For 
interference reduction in the presence of CCI, improved BER 
performance can be achieved by these techniques over 
traditional ones, such as MSINR-based DMI (MSINR-DMI) 
and MRC algorithms. We point out that one of the limitations 
of classical RR techniques is the need of a priori knowledge 
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about the number of CCI sources present. The SS weighting 
approach is one way to overcome this limitation. 

In this paper, we evaluate the performance of these SS 
techniques in comparison to existing traditional adaptive array 
algorithms. Two sets of simulation results are presented. First, 
illustrative simulation results with a semi-static fading channel 
are presented for prescribed interference and noise scenarios. 
This set of results aim to highlight the properties of each 
algorithm in different Signal-to-Interference Ratio (SIR) and 
SNR scenarios. 

Following these results, we present a system-level 
evaluation of some selected algorithms from which we want to 
show the feasibility of increasing capacity of a 
TDMA-IS-136-like system [6]. In this case, a Space-Time 
(ST) channel model is used. Furthermore, a modified version 
of the MMSE-SS algorithm with dynamic rank selection is 
used to cope with the time-varying nature of the fading 
channel. In both sets of simulation results, the benefits of 
employing the sub-space techniques are verified. 

In the remainder of this paper, we organize the sections as 
follows: Section I1 describes the signal model. In section I l l ,  
we review the expressions for the SS algorithms of interest. 
Some illustrative simulations are presented in section IV, in 
order to highlight the benefits of the SS techniques. The 
system-level simulator is the subject of section V, along with 
the corresponding simulation results, and, at last, in section 
VI, we draw some conclusions and perspectives. 

11. SIGNAL MODEL 
Let us assume a mobile communication system that 

employs an N-element uniform linear Adaptive Antenna 
Array (AAA) at the base station. We represent the signal 
received at the array as x[n] = [x,[n],x,[n], ..., x , _ , [ n ] ] T ,  
where the superscript T denotes transpose and each entry 
xk[n],  k = 0, 1, ..., N-1, represents the signal received at the 
antenna element k after coherent demodulation, matched 
filtering and sampling at t = nT. The environment is assumed 
to be a flat Rayleigh fading channel in the presence of white 
Gaussian noise and co-channel interference. The signal vector 
is then represented as: 
x[n] = u[n] + i[n] + v [ n ]  

I. 
(1) 

where ~ [ n ] ,  i[n] and v[n] are the vector components 
relative to desired user, interference and noise signals, 
respectively. A ,  and A ,  are the desired user and interference 
signal amplitudes, respectively. The sequence a[.] represents 
the equally probable and uncorrelated data symbols for the 
user of interest. The ambient noise, represented by the vector 

= A , h , ~ [ n l + ~ A , h , z , [ n l + v [ n l ,  
/ = I  
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user of interest. The ambient noise, represented by the vector 
v[ n ]  , is complex-valued, stationary, zero-mean, white 
Gaussian distributed with variance 0; . 
The complex gain for the desired user signal is included in 

the vector hs, while for interferers signals the gains are 
represented by the vectors h,, where j = I ,  ..., L, and L is the 
number of CCI sources present. Initially, we assume that the 
channel is stationary over a time-slot corresponding to a 
prescribed number of symbol periods. 

For the moment, it is assumed that spacing between 
antenna elements is larger than the coherence distance in 
such a way that fading is independent between any two 
antennas. Later in this paper, for system-level evaluation 
purposes, this assumption is relaxed and correlated fading is 
considered. Perfect slot and symbol synchronization is 
assumed for the desired and interfering users. 

ADAPTIVE ANTENNAS 
The output of the AAA optimum combiner is given by 

y[n] = WHX[n], where the optimum weight vector w, in the 
minimum mean square error sense, is expressed as 
w = R - ' r ,  R representing the covariance matrix of the 
received signal vector and r the cross-correlation vector 
between the desired signal and the received vector, 
r = E{~'[n]x[n]lh,}= AAh,, which is estimated by: 

111. REVIEW OF SUB-SPACE TECHNIQUES FOR 

where the asterisk represents complex conjugation. Here, we 
used M to denote the number of time samples of the training 
sequence, i.e., the window size used in the calculation. 

Since the covariance matrix is Hermitian, it is possible to 
diagonalize the matrix R by using a Unitay Similarity 
Transformation. The resulting diagonalized matrix is 
expressed as follows [7]: 

where the N-by-N matrix Q has as its columns the 
orthonormal set of eigenvectors q ,  , q,  , ,.. , q, of the 
matrix R ,  and A is a diagonal matrix which has the 
associated eigenvalues A, , A2 , ... , AN for the elements of 
its main diagonal. Owing to the orthonormal nature of the 
eigenvectors, we find that Q "Q = I , where I is the N x N 
identity matrix. From this and (3) we rewrite matrix R as 
follows: 

A = Q " R Q ,  (3) 

N 

R = Q A Q "  = c A k q k q : .  (4) 
k = I  

From (1) and the assumption of mutual independence 
among the user signal, interference and noise, it is clear that 
we can rewrite R as a sum of matrices, R = R u + R , + R V ,  
where R,, R, and RV are respectively the covariance 
matrices of the components, q n ] ,  i[n] and v[n], of the 
signal ~ [ n ] .  

It is straightforward to note that each A k  can be 

decomposed into three components, A:) , A(,) and Ay), 
associated with each of the signal components, q n ] ,  i [n]  
and v[n], respectively. From this and (3), based on the 
Karhunen-Lobve expansion [7],  we can rewrite the 
eigenvalues associated to the eigenvectors of the matrix in 
(4), as: a - + + 

The selection of the space of representation is based on an 
energy criterion, taking into account ( 5 )  and the fact we have 
organized the eigenvectors of the covariance matrix in 
descending order of their associated eigenvalues, such that, 
A , 2 A  22.. .2Ap2..2AN, where p is the value that 
approximates the signal sub-space dimension. This means 
that nearly the whole signal sub-space can be defined by the 
p largest eigenvalues, A,> A, 2.. .2 Ap , p < N. On the other 
hand, we assume the noise sub-space is composed by the 
remaining eigenvalues, i.e., AP+, 2.. .2 AN . 

A. SS Algorithms for a known number of CCI sources: 
In this sub-section, we review the S S  algorithms, which 

use the information about the quantity of CCI sources 
present. 

The MMSE cost finction is intended to minimize the 
mean-squared error (MSE) between the array output and the 
desired signal. Let us assume for the MMSE cost function 
the signal sub-space is composed by the desired signal plus 
CCI components. We may express the MMSE covariance 
matrix as: 

, k =  1 ,..., N. ( 5 )  k -  

. . A , .  l M  

A4 "=I 

R,,,, = - C x [ n ] x " [ n ]  = R, + R~ + R,, 
Alternatively, we can estimate the covariance matrix in (6) 
by a reduced-rank approximation, which makes use only of 
the eigenvectors associated to the largest p eigenvalues [ 5 ] .  
Therefore, based on (4), the RR approach to the MMSE 
estimate can be written simply as: 

(7)  

Here, it is as.sumed that p = L+1. This procedure leads to 
the following sub-space approximation of the weight vector 
~ 5 1 :  

Note that each selected' eigenvector ;s weighted by its 
respective eigenvalue, which may be expressed as in (5 ) .  

The MSINR cost function attempts to maximize the 
Signal-to-Interference-plus-Noise Ratio (SINR) at the array 
output. In this case, we assume the signal sub-space is 
composed only by the CCI components, and we can write the 
covariance matrix estimate as follows: 

(9) 
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Under the MSINR criterion, the sub-space approach for 
estimation of the covariance matrix is based on the 
application of a reduced-rank method, known as the 
Eigencanceler (EC) [3,4], which performs interference 
cancellation by making use of the noise sub-space, which is 
said to be orthogonal to the interference sub-space. In 
estimating the Eigencanceler covariance matrix, we employ 
only the eigenvectors associated to the N - p  smallest 
eigenvalues of the matrix R,,,,,. As a result, we obtain the 
estimation of the inverse covariance matrix, as follows: 

where p = L. This. procedure leads to the following MSINR- 
EC weight vector [5]: 

As the computation of the -covarian/ce matrix of this 
algorithm does not take into account the desired user signal 
sub-space, we can state that = 0, V k . Therefore, (5) 
can be rewritten as: 

(12) X F R E q  = X i )  +&"', k =  1 ,..., N. 

B. SS Algorithms for an unknown number of CCI sources. 
It is still possible to deal with the problem of the AAA 

optimum combiner considering the more realistic assumption 
that the number of interferers is not known in advance and 
therefore, must be estimated by any means. To accomplish 
this task the MSINR-WSS [5] method works with the 
eigenvalues of the signal sub-space, in the absence of noise. 
These eigenvalues are weighted by a non-linear hnction, 
which is chosen to emphasize the eigenvalues associated 
with large interferers, leaving them unchanged, and force to 
zero those associated with weak interferers, if any. 

In modeling MSINR-WSS covariance matrix, we assume 
the signal sub-space is composed only by the CCI 
components. Thus, we can express the covariance matrix 
from (9), just by subtracting the noise power. This leads to: 
R = RMSINR -0p (13) 

From this and ( 5 ) ,  we see that a;) = 0 .  Therefore, 
a, = a;) , k = 1, ... ,N, are the estimated eigenvalues 
representing the interference in absence of noise. The non- 
linear function used to weight the sub-spaces is composed by 
a composition of two TAN-'(*) functions, each one properly 
scaled and shifted, in such a way as to cause the behavior 
discussed above. This hnction is used to estimate the 
interference plus noise matrix, which can be written as [5]: 

where f(kJ is the non-linear hnction we have Just 
described. 

As an alternative to the WSS method, we may employ the 
MMSE criterion in an approach very similar to the MMSE- 
SS algorithm, for which the number of CCI sources is 
unknown. Therefore, in considering this method, it is 

necessary to perform rank estimation dynamically. Since the 
energy of the space of representation is not equally 
distributed into the eigenvectors, an analysis of the 
eigenvalues may give us some knowledge about which 
eigenvectors are more important to the weight vector 
computation. In this analysis, the noise power is a reference 
parameter (as in [3]), which allows us to select the relevant 
eigenvectors. The condition to choose the rankp is stated as 
follows: 

where bV2 is an estimate of the noise power. 
This technique, which is referred to in this paper as 

MMSE Dynamic Rank Selection (MMSE-DRS), is especially 
interesting in a fading environment where the actual power 
of the interferers, and consequently, the SIR, depends on the 
effect of the channel. 

1V. ILLUSTRATIVE SIMULATIONS 

a, >a, >...>ap 2 c?;, (15) 

In order to gain some insight about how the sub-space 
algorithms work under controlled conditions, we performed 
some simulations using the signal model discussed before. 
The simulator makes use of a TDMA (time-division 
multiple-access) slot format composed of 162 symbols. For 
signal processing purposes, we consider that the first 14 
symbols are used for training, and they are followed by the 
148 data symbols, which bear the user information. The 14- 
symbol-long training sequence is used to track the channel 
and adapt the weight vector during the training period. After 
this, the weight vector is kept fixed to the end of the slot and 
used to estimate the array output. An 8-antenna-element 
array is employed and for the following simulations and 
BPSK modulation is assumed. 

All results were averaged in a range of lo4 to lo5 time- 
slots, depending on the SNR. We will consider two main 
situations, one for a strong CCI power (Total SIR= OdB), 
and the other for weaker interference (Total SIR = 7dB). We 
are considering all interferers signals have the same power. 

For the situation shown in Fig. 1, only one CCI component 
is present, and SIR = 7dB. In this case, since the array counts 
with several degrees of freedom, all the SS algorithms 
present good performance, and they outperform MSINR- 
DMI. However, they are not significantly better than MRC, 
because the interference power is weak, and such a situation 
is well suited to this algorithm. Note that for this scenario 
MRC is even better than MSINR-DMI. 

For the next situation, shown in Fig. 2, the overall 
interference power is left unchanged (SIR = 7dB), but the 
number of CCI sources is increased to 3.  The first remark at 
this point concerns the sensitivity of MSINR-EC to the 
number of interferers present. Results in Fig. 2 demonstrate 
that this algorithm presents a significant BER degradation, 
relative to Fig. 1, showing that the loss of some degrees of 
freedom in the array structure may be very important to the 
computation performed by this technique. 

Also remarkable in Fig. 2 is that MRC, as well as MMSE- 
DRS and WSS, is very robust to the quantity of CCI 
components present, once the overall interference power is 
not changed. 
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Fig.l.  Performance of SS algorithms for L=l and SIR=7dB. 
All algorithms have similar performances in both cases (1 

and 3 CCI sources), except for the MSINR-EC, as explained 
above. Results of the third set of simulations can be seen in 
Fig. 3, In this situation, only one strong interferer is 
considered, in such a way that SIR = OdB. Comparing to Fig. 
1, it is clear that MRC is very sensitive to the received 
interference power, presenting a significant BER 
degradation. This degradation was much more moderate for 
the SS techniques, including the MSINR-EC, emphasizing it 
is very robust in view of the overall power received from CCI 
sources, when the number of interfering signals is fixed. 

Fig. 4 shows the results obtained for SIR = OdB and 3 CCI 
components. Comparing Fig. 4 to Fig. 2, we again see the 
performance loss of the MRC algorithm due to the increase 
of total interference power. For the other algorithms, the 
degradation in performance relative to Fig. 2 is not so 
notorious. The effects of decreasing the degrees of freedom to 
the SS algorithms can be observed once more in a 
comparison between Fig. 3 and Fig. 4, from which we certify 
the performance degradation of MSINR-EC due to its 
sensitivity to the number of CCI sources. It is then possible to 
conclude that the performance of MSINR-EC is strongly 
dependent on the degrees of freedom available to the array, 
and not on the total power delivered by all the CCI signals. 

10" ..... _,_ ..... -. .... -, ...... e ..... -*  ..... .,. .... -, ...... ..................................................... ......,......I......I...... /... ...-......,............. ......,......,......,...... ~. .. ...~ . .....,.... .. ,------ ..................................................... 
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Fig. 3. Performance of SS algorithms for L=l and SIR=OdB. 
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Fig.2. Performance of SS algorithms for L=3 and SIR=7dB. 

some of the algorithms exhibit a BER floor due to fading. 
As last, it is possible to verify that for high SNR values, 

V. SYSTEM-LEVEL EVALUATION 
For a system-level evaluation of the sub-space techniques 

in focus, we selected a TDMA IS-136 context [6]. The 
system-level simulator is described in Table I, which 
summarizes the parameters adopted in the simulation. 

Uplink power control is based on standardized maximum 
and minimum mobile station transmission power [6]. 
Channel tracking is performed after the training period in 
the decision-directed mode. A simple link-budget model is 
adopted with slightly more pessimistic interference levels 
when compared to the recommended UMTS path loss model 
[8]. Coherent 8-PSK modulation is employed as expected in 
hture evolution of TDMA systems (e.g. the EDGE system 
[IO]). The desired received power at the base station is set so 
that an 18 dB Eb/No ratio is perceived in most connections. 

Our system-level evaluation procedure is as follows. 
Considering that most TDMA systems are implemented with 
a 7/21 reuse pattern, we seek the implementation of tighter 
reuses, such as the 319 pattern. For that purpose, we employ 
the system level simulator in order to obtain the significant 
statistics for this particular reuse pattern. 

10'1 . . . . . . , . . . . . . , . . . . . . , . . . . . . t . . . . . . r . . . . . . , . . . . . . , . . . . . .  ..................................................... .. ....,....................*......L......,............. ,------ ...... ,......, ......,......,......r......(...... ..................................................... 

... .......*......r......,............. 

-4 -3 -2 -1 0 1 2 3 4 
SNR per antenna (dB) 

Fig. 4. Performance of SS algorithms for L=3 and SIR=OdB. 
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TABLE I 
SYSTEM-LEVEL SIMULATION PARAMETERS 

Multicell grid,  7/21,4/12 or 3 
/9, 120’ ideal sectors Cell Layout 

Sector Antenna Gain 11 dBi 
Mobile Antenna Gain 0 dBi 
Path-loss model 
Shadowing Standard Deviation 8 dB 
Cell Radius 1000 m 

351og(d) + shadowing [dB] 

Uplink Power Control Yes 
Uolink Max. Transmission Power 2R dBm 
Uplink Min Transmission Power - 7dBm 
Frequency 900 MHz 
Symbol Rate / Modulation 24 3 Kbaud / 8-PSK 
Desired Received Power at Base -102 dBm 
Noise Power Density - I  74 dBm/Hz 
Noise Figure 5 dB 

A large number of system snapshots were obtained in order 
to characterize the interference scenario where users are 
uniformly distributed in the coverage area. The cumulative 
distribution functions of the SIR per interferer were obtained 
and analyzed aiming characterize 90% of the system 
configurations. Results are summarized in Table 11. 

With these parameters in mind, we built a worst-case 
scenario where the sub-space algorithms were tested. In this 
sense, the performance results so obtained are expected to be 
representative of 90% of system configurations. 

In order to illustrate the performance of the adaptive 
antenna algorithms at the system level we compare MRC, 
MSINR-DMI and the MMSE-DRS algorithms according to 
the parameters extracted from the system-level simulations. 

The Eb/No ratio was varied from 15 to 25 dB, covering 
most of the possible occurrences of this parameter at the 
system-level. Table I1 summarizes other simulation 
parameters. 

Results are presented in Fig. 5 for a desired user velocity of 
I O  km/h and 100 km/h. The gain in E n o  of the MMSE-DRS 
over MSINR-DMI is on the range of 1.5 to 2.5dB. These 
array gains can be translated in increased cell coverage. On 
the other hand, even for 100 kmh,  a target uncoded BER of 
3% [6]  is attained with MMSE-DRS at EbMo less than the 
target of 18dB. This confirms the feasibility of employing the 
3/9-reuse pattern with the implementation of this SS 
technique. 

TABLE I1  
SYSTEM-LEVEL PARAMETERS FOR SUB-SPACE ALGORITHMS 

Reuse Pattern 3/9 
Number of significant CCI 3 
SIR per interferer 
Tested Algorithms 
Antenna Array Configuration 
Window size for Algorithms 
Desired User Velocitv 

6, I4 and I8 dB 
MRC, MSINR-DMI and MMSE-DRS 
8-element U L A 
14 symbols 
I O  and 100 Km/h 

Interferers Velocity 
distribution mean) 
Short Term Fading Model 
Angle Spread 20 degrees 

Negative exponentially (25 Km/h 

Flat fading, vector Jakes [9] 

[-W MMSE-DRS I 
15 20 25 

Ebmo (a) 

Fig. 5. Algorithms performance at system-level 

VI. CONCLUSIONS 
In this paper, we reviewed some SS techniques for antenna 

array processing and applied such algorithms in a TDMA 
system context. Both illustrative and system-level simulation 
results confirmed the superiority of the SS techniques over 
conventional methods, such as DMI and MRC. An MMSE-SS 
algorithm based on a dynamic rank selection provides gains 
that can be translated into higher coverage or capacity in a 
TDMA system. Further applications of these techniques 
comprise the EDGE system where a more challenging 
propagation environment is present and space-time processing 
is required. 
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