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ABSTRACT

Breast cancer is the type of cancer with the highest incidence and global mortality of female

cancers. Thus, the adaptation of modern technologies that assist in medical diagnosis in order to

accelerate, automate and reduce the subjectivity of this process is of paramount importance for

an efficient treatment. Therefore, this work aims to propose a platform to compare and evaluate

the proposed strategies for improving breast ultrasound images and compare them with state-of-

the-art techniques by classifying them as benign, malignant, and normal. Investigations were

performed on a dataset containing a total of 780 images of tumor-affected people, divided into

benign, malignant, and normal. A data augmentation technique was used to scale up the corpus of

images available in the chosen dataset. For this, novel image enhancement techniques were used

and the Multilayer Perceptrons, k-Nearest Neighbor, and Support Vector Machines algorithms

were used for classification. From the promising outcomes of the conducted experiments, it was

observed that the image enhancement algorithm called bilateral together with the SVM classifier

achieved the best result for the classification of breast cancer, with an overall accuracy of 96.69%

and an accuracy for the detection of malignant nodules of 95.11%. Therefore, it was found that

the application of image enhancement methods can help in the detection of breast cancer at a

much earlier stage with better accuracy in detection.

Keywords: breast cancer; image enhancement; biomedical engineering.



RESUMO

O câncer de mama é o de maior incidência e mortalidade entre os cânceres femininos. Assim, a

adaptação de tecnologias modernas, que auxiliem no diagnóstico médico, são de fundamental

importância para tornar o diagnostico mais rápido e preciso. Dessa forma, este trabalho tem

como objetivo propor uma plataforma para aplicar e analisar técnicas de realce de imagens,

obtidas por ultrassom da mama, para avaliar a influencia sobre a detecção do câncer baseada em

técnicas de machine learning. Uma base de dados contendo 780 imagens, divididas em benignas,

malignas e normais foi considerada. Devido a quantidade de imagens, utilizou-se a técnica

Data Augmentation para ampliar a quantidade de imagens. Durante a análise dos resultados,

foi observado que o algoritmo de realce denominado bilateral, combinado com o classificador

SVM, obtiveram o melhor resultado para a detecção do câncer de mama, com uma precisão

global de 96,69% e uma precisão para a detecção de nódulos malignos de 95,11%. Portanto,

pode-se concluir que a aplicação de métodos de realce de imagem de ultrassom da mama é uma

ferramenta complementar e promissora para detectar o câncer de forma rápida e precisa.

Palavras-chave: câncer de mama; aprimoramento de imagens; engenharia biomédica.
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1 INTRODUCTION

It is reported that almost 24.2% of women with cancer in the world are affected by

breast cancer each year, and 15% of deaths of female cancer-affected people are from patients

with this type of cancer (LI, 2021). According to the World Health Organization (WHO),

2.3 million women were diagnosed with breast cancer in 2020, and a mortality of 685,000 was

reported (MATIC; KADRY, 2022). In addition, as per the a study, it is anticipated that breast

cancer cases will be increasing over the years and reach around 27 million in 2030 (AHMED;

ISLAM, 2021).

Some patients have breast cancer cells but are asymptomatic, so frequent screening

plays a vital role in detecting breast cancer before it becomes worse and progresses to subsequent

stages (KHUMDEE et al., 2021). To detect breast cancer, imaging tests can be used as well

as biopsy, however, the biopsy is considered an invasive method, while imaging tests are more

conservative (AFAQ; JAIN, 2022).

Among the imaging tests, the most commonly used breast cancer detection tech-

niques are Mammogram, Ultrasound and Magnetic Resonance Imaging (MRI) (WANG et al.,

2020; WU et al., 2022). Although imaging tests are fundamental in the identification and

diagnosis of breast cancer, on several occasions, the tests are affected by noise, low contrast and

other factors that impair the images and make it difficult to diagnose efficiently (HUANG et al.,

2019; MOSHREFI; NABKI, 2021).

Due to the challenges encountered in the early stage of accurate diagnosis of breast

cancer, industry and academia have been involved in active research with the aim of proposing

computational tools capable of performing a diagnosis automatically (SOUZA et al., 2021).

The concept of Computer-Aided Diagnosis (CAD) is being increasingly used to assist

in the medical analysis of various diseases, such as, vertebrae segmentation (QADRI et al., 2022),

diagnosis of Parkinson’s disease (SOUZA et al., 2021; AFONSO et al., 2019), perception of the

dynamics of blood flow to from static Computed Tomography (CT) angiography images (GAO et

al., 2020), detection and classification of multiclass skin lesions via teledermatology (KHAN et

al., 2021), EEG-based BCI rehabilitation (CAO et al., 2022), recognition and detection of atrial

fibrillation (CHEN et al., 2022), detection of pulmonary nodules on CT scans (MESQUITA et

al., 2022), classification of oral cancer (HUANG et al., 2022), as well as addressing security and

efficient authentication for IoT applications in the medical field. In addition, research has been

conducted on ways to improve the images (MOHAMED et al., 2019; SINGH et al., 2019; LATIF
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et al., 2020), segment the parts of interest (ZHAO et al., 2022; JAHWAR; ABDULAZEEZ,

2022; DABASS et al., 2019), and classify the nodes (CHEN et al., 2021; BADAWY et al., 2021;

WANG et al., 2020).

In this way, CADs systems seek to help physicians in decision-making, pointing out

doubtful aspects in the images and bringing them to the attention of the radiologist, thus helping

in the process of detecting diseases and reducing the reading of false negatives , providing less

subjectivity in the diagnosis (PANDE; BHOYAR, 2022).

In view of this, ultrasound imaging plays a significant role in diagnosis, however,

the judgment of the diagnosis of the disease based on ultrasound depends on the skill of the

physician. Uninformative open ultrasound images lead to wrong conclusions on the part of the

doctor (HOSSAIN et al., 2022). Thus, the use of ultrasound in conjunction with improvement

methods can provide lower cost and greater accessibility by people.

Thus, this research seeks to answer the following problem question: Can image

enhancement methods improve the quality of breast ultrasound images and influence the classifi-

cation?

1.1 Objectives

In this topic, the general objective and specific objectives will be addressed.

1.1.1 General objective

This research has the general objective compare and evaluate image improvement

methods in breast imaging ultrasounds, classifying them into benign, malignant, and normal

images.

1.1.2 Specific objectives

As specific objectives, we have:

• Apply methods of image enhancement;

• Compare the methods applied;

• Evaluate their performance through quality metrics;

• Classify the images into three groups: normal, benign and malignant;

• Evaluate and validate the models used.



17

• Develop a platform to aid breast cancer doctors containing image enhancement and

classification methods.

1.2 Contributions

Following are the principal contributions involved in this research:

• Development of a comparative analysis on the evaluation of breast cancer image enhance-

ment methods to improve the accuracy in the detection of malignant tumors;

• Comparing different image enhancement techniques and classification techniques focused

on breast tumor;

• Validating the results through statistical evaluations and estimating a better strategy for

pre-screnning of tumors;

• Developing Computer Assisted Diagnosis platform.

1.3 Work organization

This work is structured in five Chapter. The first one deals with the introduction,

addressing the contextualization, problematic, justification, objectives, and contributions. The

second chapter addresses the theoretical foundation, dealing with breast cancer, computer vision,

Computer Aided diagnosis (CAD) and related works. Then, the third chapter presents the

methods incorporated for the development of the research. the fourth Chapter addresses the

results obtained in relation to image improvement and classification. Finally, the last Chapter

summarizes the work with conclusions and notes on future work.

1.4 Publications

Some articles were published during the master’s period. Among them, the first

topic, which gave rise to this dissertation.

• DA SILVA, Daniel S. et al. Mammogram Image Enhancement Techniques for Online

Breast Cancer Detection and Diagnosis. Sensors, v. 22, n. 22, p. 8818, 2022.

• ASTOLFI, Rodrigo S. et al. Computer-Aided Ankle Ligament Injury Diagnosis from

Magnetic Resonance Images Using Machine Learning Techniques. Sensors, v. 23, n. 3, p.

1565, 2023.

• CHEN, Jiarong et al. Implementing ultra-lightweight co-inference model in ubiquitous
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edge device for atrial fibrillation detection. Expert Systems with Applications, v. 216, p.

119407, 2023.

• XU, Gaowei et al. A compressed unsupervised deep domain adaptation model for efficient

cross-domain fault diagnosis. IEEE Transactions on Industrial Informatics, 2022.

• CHEN, Jiarong et al. Edge2Analysis: a novel AIoT platform for atrial fibrillation recogni-

tion and detection. IEEE Journal of Biomedical and Health Informatics, v. 26, n. 12, p.

5772-5782, 2022.

• SOUSA, Fábio de O. et al. A Novel Virtual Nasal Endoscopy System based on Computed

Tomography Scans. Virtual Reality & Intelligent Hardware, v. 4, n. 4, p. 359-379, 2022.
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2 THEORETICAL FOUNDATION

This chapter is divided into four sections. The first section deals with breast cancer

and its characteristics. In the second section, it discusses computer vision and its stages. In

the third section, it deals with Computer-aided diagnostic (CAD) systems. Finally, in the third

section, it deals with the related works.

2.1 The Breast Cancer

Among women, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer

deaths, ranking first in incidence in the vast majority of countries (159 out of 185 countries) and

in mortality in 110 countries (SUNG et al., 2021). For Brazil, it is estimated that there are 66,280

new cases of breast cancer for each year of the 2020-2022 triennium. This value corresponds to

an estimated risk of 61.61 new cases per 100,000 women (INCA, 2019b).

According to INCA (2019b) female breast cancer occupies the first position of

most frequent in all regions of Brazil, without considering non-melanoma skin tumors, with an

estimated risk of 21.34 per 100,000 in the North Region; 44.29 per 100,000 in the Northeast

Region; 45.24 per 100,000 in the Midwest Region; 71.16 per 100,000 in the South Region; and

81.06 per 100 thousand in the Southeast Region.

2.1.1 Breast anatomy

The breasts are made up of glandular tissue and supporting fibrous tissue inte-

grated into an adipose matrix, together with lymphatic vessels, blood vessels and nerves. They

are superficial structures that, on the anterior chest wall, are more prominent, especially in

women (MOORE et al., 2014).

As shown in Figure 1, the breast has different parts, namely (ACS, 2021):

• Lobules: The lobules are the glands that produce breast milk.

• Ducts: The ducts are small channels that come out of the lobules and carry the milk to the

nipple.

• Nipple: The nipple is the opening in the skin of the breast where the ducts join and become

larger ducts so that the milk can leave the breast.

• Fat and connective tissue (stroma): These surround the ducts and lobules and help hold

them in place.
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Figure 1 – Breast anatomy.

Source: ACS (2021).

In addition, the breasts have several other structures, such as blood vessels, lymphatic

vessels and nerve fibers.

2.1.2 Pathology and pathophysiology of breast cancer

Breast cancer has several possible causes. In view of this, several factors have been

and still continue to be studied with the aim of analyzing and understanding the relationship with

the risk of developing the disease (INCA, 2021; WEIDERPASS; STEWART, 2020). Thus, the

factors well established in the literature are:

• Age: Women aged 50 and over have a higher risk of developing breast cancer. Thus, as the

years go by, the probability of contracting cancer increases.

• Behavioral and environmental factors: Factors such as alcohol intake and overweight and

obesity after menopause are factors that can cause breast cancer.

• Heredity: Factors such as the presence of mutations in certain genes.
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• Endocrine factors and reproductive history: Some factors such as recent use of oral

contraceptives (estrogen-progesterone), exposure to the hormone estrogen as well as late

menopause (after age 55).

Generally, breast cancers are epithelial and non-epithelial supporting stromal tumors.

Most are epithelial tumors that develop from cells lining lobules or ducts, while non-epithelial

cancers of the supporting stroma are less common and originate from the connective tissues that

support the epithelial cells of the breast, such as muscles, blood vessels, lymphatics, and adipose

tissue. (CHOI, 2022).

Cancers are divided into two types, carcinoma in situ and invasive cancer. Carcinoma

in situ, which can be ductal or lobular, is characterized by the proliferation of cancer cells

within ducts or lobules and without invasion of stromal tissue, whereas invasive cancer is an

adenocarcinoma (MENKE et al., 2007; CHOI, 2022). In Figure 2, a demonstration of cancer can

be seen.

Figure 2 – Example of cancer.

Source: Adapted from MOORE et al. (2014).

The cancer usually spreads through the lymph vessels (lymphatic metastasis), which

carry cancer cells from the breast to the lymph nodes, especially those in the armpit. The cells

settle in the lymph nodes, creating foci of cancerous cells (metastases). The most common site

of breast cancer metastasis is in the axillary lymph nodes, as this is where most of the lymphatic

drainage from the breast is destined, but it can affect almost all organs in the body, the most

common being the lungs, liver, bones, brain and skin. (MOORE et al., 2014).
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When there is enlargement of these palpable lymph nodes, it suggests that there is

a possibility of breast cancer and can help detect cancer early. However, when these enlarged

axillary lymph nodes are not present, there is no guarantee that the breast cancer has not spread.

Malignant cells can migrate to other lymph nodes, such as supraclavicular and subclavian lymph

nodes (MOORE et al., 2014).

Thus, the main radiological signs of malignancy are calcifications, nodules, asym-

metries, neodensities, distortions, architectural and isolated ductal dilations (INCA, 2019a).

The most common sign of breast cancer is the fixed nodule, usually hard, painless, and irreg-

ular, which is an expansive lesion that can be evaluated according to size, shape, margin and

density (INCA, 2021; INCA, 2019a).

2.1.3 Breast cancer diagnosis

The World Health Organization recommends actions for prevention, early detection

and access to treatment for cancer control (WHO, 2017). Among these actions, early detection is

treated with greater importance and attention by the population and the media, considering that

the earlier the cancer is identified, the greater the patient’s chance of cure (INCA, 2021).

Early cancer detection encompasses two types of strategies, screening and early

diagnosis. Screening seeks to find precancerous lesions or preclinical cancer by carrying out

routine examinations in a target population without signs and symptoms suggestive of the

screened cancer, while early diagnosis aims to identify early-stage cancer in people who already

have suspicious symptoms and signs of cancer, such as a hardened and fixed breast lump,

presence of axillary lymphadenopathy, breast skin retraction, among others (INCA, 2021; WHO,

2017). It can be observed, in Figure 3, the example of tracking and early diagnosis.

There are some tests that can be used to screen for breast cancer, such as mammogra-

phy, ultrasound and magnetic resonance imaging. Mammography is still the most effective form

of imaging for early detection of changes in the breasts, even those that are so small that they go

unnoticed in awareness and clinical examination (INCA, 2019a).

Although mammography is the most important method, both for screening and

for diagnosing breast cancer, and is the only imaging method that has already been shown to

contribute to reducing mortality from breast cancer, it has some limitations and does not allow

detection of all types of cancer, notably in women with dense breasts and in high-risk women

with a mutation in the breast cancer suppressor gene (INCA, 2021; INCA, 2019a).
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Figure 3 – Example of screening and early diagnosis.

Source: WHO (2017).

Thus, other exams can be used, such as ultrasonography, which are also performed

because they have a relatively lower cost, their performance is not affected by dense tissues,

as in mammography, they do not require the use of ionizing radiation, they have the ability to

examine images in real time, in addition, not having the need to compress the breast to perform

the exam (WEIDERPASS; STEWART, 2020; VOCATURO; ZUMPANO, 2021). However, one

of the problems with this type of ultrasound examination is the low quality of the image and the

presence of noise (MISRA et al., 2022).

Thus, to alleviate these limitations, alternatives can be used, such as performing other

tests together, as well as using other technological and computational ways that can contribute

to a more accurate diagnosis (WHO, 2017; WEIDERPASS; STEWART, 2020; VOCATURO;

ZUMPANO, 2021; MISRA et al., 2022).

2.2 Computer Vision

Computer Vision (CV), also known as Artificial Vision, is a subarea of artificial

intelligence that seeks to acquire, process, extract and interpret images corresponding to real

scenes (TRINKS; FELDEN, 2020). Its main steps are acquisition, pre-processing, segmentation,

feature extraction and recognition and interpretation (MARQUES FILHO; VIEIRA NETO,

1999).

The execution of all activities in the mentioned stages requires prior knowledge

about the problem to be solved. This knowledge is stored in a knowledge base, which can vary
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significantly in size and complexity. It is desirable for this knowledge base to not only guide

the functioning of each stage but also allow for feedback between them. In Figura 4 the flow of

steps is presented.

Figure 4 – Image Processing and Analysis.

Source: MARQUES FILHO; VIEIRA NETO (1999).

In this way, each step has activities and processes that, when completed and the final

results obtained, will be passed on to the following steps. Such steps can be observed in the

following subsections.

2.2.1 Acquisition step

The acquisition stage deals with the capture of images by means of a sensor or

device such as medical tomographs, digital cameras, among others (OLIVEIRA, 2014). Among
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the design aspects involved in this step, one can consider the type of sensor, the lighting

conditions, the lenses used, as well as the resolution and number of gray levels of the scanned

image (MARQUES FILHO; VIEIRA NETO, 1999).

To perform image acquisition, single sensors, line scan sensors and matrix sensors

can be used. Image acquisition using matrix sensors is the type of sensors predominantly found

in digital cameras (GONZALEZ; WOODS, 2010). In Figure 5 an example of acquisition from

matrix sensors (digital image) is presented.

Figure 5 – Example of the digital image acquisition process (a) Energy source. (b) An element
of a scene. (c) Image acquisition system. (d) Projection of the scene onto the image
plane. (e) Scanned image.

Source: GONZALEZ; WOODS (2010).

Figure 5 shows the energy of a light source (a) being reflected from an element of

a scene (b). The image acquisition system (c) collects the input energy and projects it onto an

image plane (d), producing a digital image output (e) (GONZALEZ; WOODS, 2010).

2.2.2 Preprocessing step

After the image is obtained, pre-processing is the next step. The main function of

pre-processing is to improve the quality of the image in order to facilitate the processes of later

stages (MARQUES FILHO; VIEIRA NETO, 1999). In this stage, the images are improved by
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enhancing contrasts and brightness, removing noise, among others (GONZALEZ; WOODS,

2000).

The restoration of these acquired images is extremely important in the pre-processing

stage, some tasks such as denoising, deblurring and dehazing are used to try to soften the noise

and interference, seeking to restore a degraded image to a clean image (CHU et al., 2022).

2.2.2.1 Denoise

Noise corrupts virtually any image captured by a camera (KATTAKINDA; RA-

JAGOPALAN, 2020). The elimination of image noise is one of the problems widely studied in

the area of computer vision and image processing, aiming to reduce the noise intensity, in order

to preserve the content of the original image (KUMWILAISAK et al., 2020). In Figure 6 an

example of applying a denoise algorithm to an image with noise is presented.

Figure 6 – Example of noise reduction. a) Image with noise b) application of noise reduction
algorithm.

(a) (b)

Source: Adapted from KATTAKINDA; RAJAGOPALAN (2020).

There are several noise reduction methods for different noises (Gaussian, salt and

pepper, speckle) and different types of images such as, for example, filter algorithms (mean,

mean, Gaussian) as well as the most recent algorithms based on Convolutional Neural Network

(CNN) (YU et al., 2019).

The denoise algorithms, however, can cause blurring in the image, as well as loss of
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detail at the edges, depending on the algorithm used, amount of noise and the image used, as can

be seen in Figure 6b (YANG et al., 2018; YU et al., 2019; LIU; MA, 2020).

2.2.2.2 Deblurring

Blur is generated due to the accumulation of optical signals captured by the sensor

during the exposure time and is one of the most common artifacts of digital images. It usually

occurs when objects in captured scenes are moving, or the camera does not find focus, or the

camera is held unsteadily, or objects in the scene are moving rapidly during the exposure time

period (LIANG et al., 2022; BAI et al., 2020).

Image deblurring is a fundamental process in many computer vision applications and

can be used in many situations (GONG; ZHANG, 2019). In Figure 7 you can see the example of

the use of deblurring algorithms.

Figure 7 – Example deblurring. a) Shaky image b) application of deblurring algorithm.

(a) (b)

Source: Adapted from ZHANG et al. (2020).

Deblurring algorithms can be categorized into two types, those based on single

images and those based on multiple images. Single-image deblurring algorithms have made

considerable advances in handling the misplaced deblurring problem by utilizing various previous

statistics while multi-image-based algorithms aim to deal with the highly misplaced problem by

fusing complementary information from multiple blurred images (ZHANG et al., 2019).
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However, both approaches have points to be considered, since single-image deblur-

ring algorithms are difficult to obtain optimal results, since part of the information is lost in

the deblurring process, in addition to their computational load being, generally, quite high.

substantial. Multi-image algorithms usually take into account that all images are well aligned,

which does not happen in practice, in addition, few deblurring algorithms consider the influence

of exposure time on the deblurring process. (ZHANG et al., 2019; AGRAWAL et al., 2009)

2.2.2.3 Dehazing

The quality of images may be affected due to fog, smoke, impurities in the air,

as well as other factors that influence images indoors or outdoors (XIE et al., 2020). In this

way, Dehazing algorithms can improve the problems of several applications based on image

processing and computer vision, as it helps in improving the visibility of the scene. Removing

fog from an image can eliminate unwanted visual effects in many types of images (ABIN et al.,

2021).

You can see in Figure 8 an example of using dehazing. In Figure 8a, it is the image

with fog or haze, while in Figure 8b the image after applying the dehazing algorithm.

Figure 8 – Dehazing example. a) Image with fog b) Application of dehazing algorithm.

(a) (b)

Source: Adapted from MIN et al. (2019).

Existing dehazing methods formulate haze removal as an image composition problem,
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dividing into prior-based and data-driven. Prior-based algorithms seek to estimate factors such

as depth and atmospheric light based on various assumptions or premises. However, since

these methods assume that the haze follows certain assumptions or premises, they can easily be

violated by the complexity of the scene (ZHU et al., 2021; RAIKWAR; TAPASWI, 2020).

Data-drive methods were developed to deal with the disadvantages of prior-based,

using deep neural networks instead of a shallow model, such as convolutional neural networks

(CNNs), to learn discriminative features of raw data and regress the physical parameters. .

However, like the prior-based methods, it has some disadvantages, as these methods show

suboptimal results, given that image retrieval and parameter estimation are treated as two

separate steps, and errors can accumulate (ZHENG et al., 2020; ZHU et al., 2021).

2.2.3 Segmentation step

After the image is acquired and passed through the pre-processing step, applying all

the improvements, the segmentation step will be performed. The segmentation step deals with

the division of an image into its significant units, that is, into the objects of interest that compose

it (GONZALEZ; WOODS, 2000).

In Figure 9 an example of the use of segmentation in an image is presented, in which

only the object of interest is removed, disregarding the rest of the image (image background).

Figure 9 – Segmentation example. a) Original image b) Application of segmentation algorithm
c) Segmented image.

(a) (b) (c)

Source: Adapted from FACCIO (2020).

Segmentation is used for various purposes and areas of knowledge such as document

processing, object recognition, remote sensing image, biomedicine, among others (CORONEL

et al., 2018).

It should be considered, however, that the segmentation algorithms may present some

limitations to separate only the area of interest (PANG et al., 2021; LIN et al., 2019). Depending
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on the image, degree of noise, similarity between the object of interest and the background,

information can be lost at the time of segmentation, as well as separating objects that are not part

of the object of interest (CHENG; LI, 2021; YIN et al., 2020).

2.2.4 Feature extraction step

The image feature is actually the key information in the image content, and the

image feature extraction is the key information extraction process (CHENG et al., 2020). Thus,

the feature extraction step seeks to extract information from the images that can characterize,

through descriptors, the analyzed object (MARQUES FILHO; VIEIRA NETO, 1999). Figure 10

shows an example of extracting features from an image.

Figure 10 – Example of the feature extraction process.

Source: SADEGHI; RAIE (2019).

In this step, the input is still an image from the previous steps, however, the output

is a set of characters, whether text, numbers, or other representations (GONZALEZ; WOODS,

2018).

In this way, several resources can be extracted from the images, such as textures,

colors and shapes (KARTIKA et al., 2020). The algorithms used to extract these features can be

both traditional algorithms and algorithms based on CNN, in addition, a combination of both can

also be performed (QUAN et al., 2020) .
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2.2.5 Recognition and interpretation step

The last step to be used is recognition and interpretation. At this stage, recognition

seeks to assign a label to an object, while interpretation deals with assigning meaning to a set of

recognized objects (GONZALEZ; WOODS, 2000).

In this way, the classification and selection is carried out through pattern recog-

nition, based on the characteristics presented by the descriptors provided by the previous

step (GONÇALVES, 2016).

Figure 11 – Example of the recognition and interpretation step.

Source: Elaborated by the author (2023).

Figure 11 shows the labeling of the images according to the total number of classes

in the problem. In this way, there are several algorithms that can perform the classification of

information, in order to learn the patterns and be able to identify automatically (LI et al., 2020).

2.3 Computer-aided diagnostic systems

Computer-aided diagnostic systems are introduced in the field of medicine in order

to allow doctors and specialists to perform clinical diagnoses more accurately with the help of
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modern science and technology, saving time and improving the accuracy of diagnostic results,

as well as supporting experienced clinicians in their daily work, minimizing human error and

subjectivity. (ZHANG; LI, 2021; NAPIER et al., 2019).

The main components of these CAD systems usually include pre-processing, segmen-

tation, feature extraction and classification (detection/diagnosis) steps. Among the components,

classification is often considered the core of the CAD system (WANG et al., 2020).

Various types of medical images can be used as input to CAD systems, such as

X-rays, CT scans, ultrasound images, MRIs, mammography, among others (KUMAR et al.,

2020). In addition, different platforms can be used for CAD systems such as web, desktop and

mobile platforms (MEMARI; MOGHBEL, 2020; DULF et al., 2021).

2.4 Related works

Several studies have been proposed in recent years with the aim of proposing methods

for improving, extracting and classifying breast cancer images. In view of this, we searched in

2022 and 2023 for articles published in IEEE Xplore, Springer and Science Direct, related to

new methods and algorithms for improvement, extraction and classification applied to breast

cancer.

2.4.1 Improvement

Authors KIM et al. (2023) have proposed a generative adversarial network to syn-

thesize contrast-enhanced T1-weighted MRI (ceT1) from pre-contrast (pre-T1) T1-weighted

breast MR images. who adopted a local discriminator and a network of segmentation tasks to

specifically focus on the tumor region in addition to the entire breast. Thus, the objective is to

generate ceT1 images from pre-T1 images. For this purpose, images from Samsung Medical

Center (SMC) and Gil Hospital (GH) were used. Four normalized mean squared error (NRMSE)

evaluation metrics, Pearson’s cross-correlation coefficients (CC), peak signal-to-noise ratio

(PSNR) and structural similarity index (SSIM) map were used for the entire breast and region.

tumor. With that, the proposed method reaches NRMSE of 25.65, PSNR of 54.80 dB, SSIM of

0.91 and CC of 0.88, on average.

The authors SULAIMAN et al. (2022) sought to develop an approach based on deep

learning to enhance Digital Tomosynthesis of the Breast (DBT) images. The Very Deep Super



33

Resolution (VDSR) approach was used with three different types of optimizers which are Adam,

RMSPROP and SGDM. The database used was the VICTRE trial: Open-source. To validate

the method, the peak signal noise ratio (PSNR), the Structural Similarity Index Method (SSIM)

and the Naturalness Image Quality Evaluator (NIQE) were used. Thus, the authors reached as a

result the PSNR of 40.3274, SSIM of 0.9562 and NIQE of 9.5511.

The authors BABU; JEROME (2022) sought to investigate and identify the most

appropriate noise removal filter and the improvement technique between mean, median, adaptive

median, Gaussian, wiener, contrast stretching, equalization of histogram and contrast-limited

adaptive histogram equalization (CLAHE) for the mammography images. For that, it used the

MIAS database to perform the tests. Thus, for validation, the Mean Square Error (MSE), Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) metrics were used. Thus,

the methods that obtained the best results were the adaptive median filter with 0.5828 of MSE,

48.8351 of PSNR and 0.9912 of SSIM, on average, and the histogram equalization with 46.1515

of MSE, 20.08 of PSNR and 0.76145 of SSIM.

HARRON et al. (2022) presented a denoise technique for use in digital breast

tomosynthesis (DBT) images using a deep learning model. The new technique will use a

multiscale context aggregation network (MS-CAN) to learn how to reduce image noise. To

test the proposed technique, he used the base proposed by BUDA et al. (2020). To validate the

method used the peak signal noise ratio (PSNR), Structural Similarity Index Method (SSIM) and

Naturalness Image Quality Evaluator (NIQE) metrics. The best result used the sgdm optimizer

reaching 26.5439 of PSNR, 0.16126 of SSIM and 9.70889 of NIQE.

The authors SAIFUDIN et al. (2022) proposed an enhancement method based on

Non-Linear Unsharp Masking (NLUM) filters. NLUM needs a filter to complete the non-linear

element in the algorithm like Median Filter in conventional NLUM, however, you can use and

adapt other filters like Hybrid Maximum Filter (H3F) and Hybrid Sigma Filter (H4F) to replace

the conventional filter. To test the method, the database tal was used. Mean Square Error (MSE),

Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) are used for

validation. The results show that the H4F is the best filter between the conventional and the H3F

to adapt to the NLUM with 0.01976, 66.399 and 0.9417, on average, of MSE, PSNR and SSIM.
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2.4.2 Classification

PATEL et al. (2023) proposed an adaptive regularized learning based on deep network

graphs, called GARL-Net, for breast cancer classification. Transfer learning was used to train

the DenseNet121 backbone network. For the tests, three datasets (BreaKHis, BACH-2018 and

mixed) with benign and malignant classes were used. With this methodology employed, it

reached a percentage of 99.00% precision, 99.40% recall, 99.20% F-1score and 99.49% accuracy,

with the BreakHis base.

Already XU et al. (2023) have developed a Regional-attentive Multi-Rask Learning

framework (RMTL-Net) to simultaneously segment tumor regions and classify tumors in breast

ultrasound images into benign and malignant. In addition, they designed a regional attention

(RA) module that employs the predicted probability maps to automatically guide the classifier

to learn important category-sensitive information in the tumor, peritumoral, and background

regions and thus merge them seamlessly to obtain a better representation of resources. For

the experiments, two sets of breast ultrasound data, UDIAT and BSU, were used. The authors

achieved a hit rate of 96.32% for sensitivity, 81.64% for specificity, 91.94% for precision, 91.44%

for accuracy and 93.85% for F1-score.

The authors WANG et al. (2023) proposed a new structure called multicenter transfor-

mation between unified capsules (MLT-UniCaps). The MLT-UniCaps is composed of Attention

Pose Embedding, Dynamic Source Capsule Traversal, and Adaptive Target Capsule Fusion

in order to perform intelligent remote assistant diagnosis. Embedding attention poses extract

feature vectors through variations in position, orientation, scale, and lighting as poses through

an adversarial convolutional neural network with an attention-based layer. For that, three sets

of data were used, the DDSM, CBIS-DDSM and MIAS. Thus, they achieved 88.1% precision,

94.3% recall, 91.1% F1-score and 90.1% accuracy.

LOIZIDOU et al. (2022) presented a method based on the subtraction of temporally

sequential digital mammograms and on machine learning for the automatic segmentation and

classification of masses. To this end, they created a database including sequential digital

mammograms and notes of each mass and implemented a Synthetic Minority Oversampling

(SMOTE) technique for data augmentation. With that, he applied different types of extractors

and classifiers to test the best combination. Thus, the best results achieved were with Neural

Network, reaching an accuracy of 97.97%, sensitivity of 98.96% and specificity of 96.15%.

The authors LIU et al. (2022) proposed a new framework for classifying breast
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pathology, called the AlexNet-BC model, in order to alleviate the problem of overfitting for

better classification accuracy. Furthermore, they devised an improved cross-entropy loss function

to penalize overconfident low-entropy output distributions and make predictions suitable for

uniform distributions. For the tests, the BreaKHis, IDC and UCSB databases were used. Thus,

the new method reached a percentage of 98.48% of accuracy.

2.4.3 Classification using improvement methods

KHAN et al. (2022) introduced a domain adaptive model based on multiscale feature

fusion for breast cancer classification using histopathology images. Thus, the objective is to

extract features from images based on multiscale inputs, using heterogeneous models to extract

different features for better classification of complex images. In addition, the local window-based

CLAHE contrast enhancement technique is used to increase foreground and background contrast

as well as remove noise. To carry out the experiments, the BreaKHis dataset was used. Thus,

the model proposed by the authors achieved a rate of 98.00% precision, 98.15% recall, 98.08%

F1-score and 98.23% accuracy.

ISKANDAR et al. (2022) proposed an image processing method to pre-process mam-

mography images for detection and classification of breast cancer using CNN. Otsu thresholding,

median filtering, CLAHE and truncation normalization were used. The INbreast dataset was

used for testing together with private images from the Husada Hospital located in Jakarta, in

addition to applying the data argumentation technique. With this, a CNN is used to provide a

positive and negative diagnosis from the mammography images. Thus, the best result achieved

obtained 94.1% accuracy, 100.0% precision and 85% sensitivity in classifying mammography

images as benign or malignant.

2.4.4 Comparative analysis

It is noticed that the works approached seek to analyze an aspect such as just the

improvement or just the classification. The works of KIM et al. (2023), SULAIMAN et al.

(2022), BABU; JEROME (2022), HARRON et al. (2022), SAIFUDIN et al. (2022) proposes

new methods or compares existing methods to perform image enhancement, using quality metrics

to validate them. However, they did not analyze the effect of ranking enhancement.

The works of PATEL et al. (2023), XU et al. (2023), WANG et al. (2023),

LOIZIDOU et al. (2022), LIU et al. (2022) developed new methods to perform classification,
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using classification metrics to validate them. What you can notice is that the authors did not use

improvement methods, unlike the authors KHAN et al. (2022) and ISKANDAR et al. (2022)

who both did the classification and applied an improvement method. Although the authors

KHAN et al. (2022), and ISKANDAR et al. (2022) applied an improvement method, they did

not analyze with quality metrics, only ranking metrics.

Among the works approached and analyzed, only that of XU et al. (2023) developed

an IoT platform to use his method online. Thus, the Table 1 presents a summary of information

on related works.
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3 METHODOLOGY

In this chapter, the application steps of the proposed system will be presented,

covering the web platform, the image enhancement algorithms, the feature extraction method,

the classifiers, as well as the validation metrics, and the experimental settings used in this study.

Figure 12 shows the sequence of stages involved in the automated pre-screening of breast tumors

using the proposed clinical decision-making system.

From the perspective of providing an interactive environment for screening tumor-

affected patients, the proposed Web platform was built using HTML 5 and CSS 3 for the front-end

interactive part with users, and the Flask micro-framework as a fast and lightweight development

tool for the back-end design (YAGANTEESWARUDU, 2020; MUFID et al., 2019). It is

responsible for performing all the image enhancement processes, feature extraction (AHMED et

al., 2021), classification and metrics calculation, which will be discussed in the sections below.

Figure 12 – Sequence of stages involved in the proposed clinical decision-making system.

Source: Elaborated by the author (2022).

Considering the functioning of the platform, the acquisition will be performed

from the user uploads that include the breast ultrasound images with either png, jpg, jpeg

or gif extensions and channelize them for cloud processing. The images generated after the

enhancement process through the enhancement algorithms, as well as their associated metrics,

will be stored in a folder for further analysis and possible improvement in the training phases of

the presented classification algorithms (MUNADI et al., 2020).
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Subsequently followed by the enhancement, the generated images will be processed

by the feature extractors and classified as normal, benign or malignant, and the metrics related

to these processes will also be recorded in variables in the back end. Once all the results are

calculated, the image storage path and the metric values are stored in a JSON file, which will

be tracked by the front-end Flask framework, where the user can choose their visualization of

interest.

3.1 Database Description

The chosen dataset of breast ultrasound images used in this study was proposed

in (AL-DHABYANI et al., 2020), which includes data from 600 female patients aged between

25 and 75 years. The dataset comprises a total of 780 gray scale images separated into three

classes: normal, containing a total of 133 images; benign, containing 437 images; and, malignant,

containing 210 images. The images present in the dataset have an average dimension of 500 ×

500 pixels, in PNG format.

Figure 13 shows examples of ultrasound images for each class, normal image, image

with benign nodule, and image with nodule and malignant. Table 2 lists the statistics on the

count of the number of images in each category considered for the analysis.

Figure 13 – Examples of images of each class. a) Normal b) Benign c) Malignant

(a) (b) (c)

Source: Elaborated by the author (2022).

Table 2 – Base data of the images consid-
ered for analysis.

Information Amount Percent

Normal Images 133 17.05
Benign Images 437 56.03

Malignant Images 210 26.92

Source: Elaborated by the author (2022).
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3.1.1 Data Augmentation

In order to increase the number of base images, the Data Augmentation technique

was used. The transformations used for this analysis were shear, rotation, horizontal translation

(x-axis) and vertical translation (y-axis), with their corresponding values in degrees considered

for transformation as 15◦, 15◦, 10◦ and 10◦, respectively. For every individual image, the type

of transformation used is randomly chosen and they were performed thrice. Thus, the base

dataset is augmented with triple the number of images of various transformations, and the corpus

of images in the dataset will contain both the original images and the augmented images with

applied transformations.

3.2 Image Enhancement Techniques

The methods used for image enhancements are categorized into traditional methods

and methods based on Deep Learning, as shown below.

3.2.1 Bilateral

The two-sided method proposed by (TOMASI; MANDUCHI, 1998), provides a

traditional, iterative, local and simple strategy that smoothes images in order to preserve edges,

through a non-linear combination of values from nearby images. The bilateral method combines

shades of gray or colors based on their geometric proximity and photometric similarity, preferring

close values to distant values, both in range and subject, to be within the domain.

The bilateral filter combines domain and range filtering, reinforcing geometric

and photometric locality. The combination of domain and range filtering can be seen in the

equation 3.1.

h(x) = k−1(x)
∫

∞

−∞

∫
∞

−∞

f(ξ )c(ξ ,x)s(f(ξ ), f(x))dξ (3.1)

where,

• c(ξ ,x) measures the geometric proximity between the center of the neighborhood x and a

nearby point ξ

• s( f (ξ ), f (x)) measures the photometric similarity between the pixel at the center of the

neighborhood x and that of a nearby point ξ .
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• The bold font for f and h emphasizes the fact that both input and output images can be

multiband.

It can be presented with normalization, as in the equation 3.2.

k(x) =
∫

∞

−∞

∫
∞

−∞

c(ξ ,x)s( f (ξ ), f (x))dξ (3.2)

Thus, the two-sided filter replaces the pixel value in x with an average of closely

similar pixel values. In smooth regions, pixel values in a small neighborhood are similar to each

other, and the normalized similarity function k−1s is close to one. In this way, the two-sided filter

acts primarily as a standard domain filter and averages the small, weakly correlated differences

between pixel values caused by noise.

3.2.2 Histogram Equalization

Histogram Equalization (HE) is another traditional method of image enhancement.

Generally, histogram equalization increases the overall contrast of the images, especially when

the used image data are represented by close contrast values, thus, it is a non-linear extension of

the image, where it redistributes the pixel values and, within of a certain range of grayscale, the

number of pixels is almost the same (ZHIHONG; XIAOHONG, 2011).

Considering continuous intensity values, with the variable r expressing the intensities

of an image to be processed, in an interval [0, L – 1], with r = 0 being black, and r = L – 1

being the white one. The value of L is given by L = 2b, where b is the number of bits in the

image (GONZALEZ; WOODS, 2018). Thus, one can observe the transformation from the

equation 3.3.

sk = T (rk) = (L−1)
k

∑
j=0

pr(r j) =
(L−1)

MN

k

∑
j=0

n j (3.3)

where, k = 0,1,2, ...,L−1.

Therefore, the processed image is obtained by mapping each pixel of the input

image with intensity rk into a corresponding pixel with level sk in the output image. The

transformation (mapping) T (rk) in this equation is called histogram equalization or histogram

linearization (GONZALEZ; WOODS, 2018).



42

3.2.3 Total Variance

The Total Variance (TV) method proposed by (CHAMBOLLE, 2004) is treated as

another traditional image enhancement method. Here, the authors propose an algorithm for

minimization and total variance applications. It is treated as a very fast method and can be used

to solve the challenges in noise reduction and zooming, in addition to ensuring better proof of

convergence.

For the noise reduction case, we considered recovering the original image u trying

to solve the problem of Equation 3.4, assuming that the observed image g = (gi, j)1≤i, j≤N is the

addition of a piecewise smooth (or with little wobble) a priori image u = (ui, j)1≤i, j≤N and a

random Gaussian noise, of estimated variance σ2, where N2 is the total number of pixels.

min
{

J(u) : ∥u−g∥2 = N2
σ

2
}

(3.4)

Thus, as the purpose of the method is to solve the problem of Equation 3.4, it was assumed

that Nσ is between 0 and ||g−⟨g⟩||. Thus, we need to find a value λ̄ for which f (λ̄ ) = Nσ .

First, choose an arbitrary initial value λ0 > 0 and calculate v0 = πλ0K(g), that it is a nonlinear

projection, as well as f (λ0) = ||v0||. This way, given λn, fn λn+1 = (Nσ/ fn)λn, calculating

vn+1 = πλn+1K(g) and fn+1 = ||vn+1||.

3.2.4 Low-Light Image Enhancement via Illumination Map Estimation

The Low-Light Image Enhancement via Illumination Map Estimation (LIME)

method is a simple low-light image enhancement method proposed by (GUO et al., 2017).

In this method, the illumination of each pixel is initially estimated individually, in order to find

the maximum value for each component of the image, the R, G and B. The initial illumination

map was refined by imposing a previous structure on it, such as the final lighting map, and thus,

with a well-built lighting map, enhancement can be achieved (GUO et al., 2017).

The LIME method is built on the Retinex model, which explains the formation of an

image in low light. The model can be observed in the equation 3.5.

L = R◦T, (3.5)
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where L and R are, respectively, the captured image and the desired recovery. The ◦ represents the

element-by-element multiplication, while the T means the lighting map. Thus, they considered

that, for color images, the three channels share the same lighting map, using the notation T̂ to

represent one-channel and three-channel lighting maps interchangeably.

From this perspective, as a way of estimating the Illumination Map and dealing with

non-uniform illumination, they used the equation 3.6:

T̂(x)← max
c∈{R,G,B}

Lc (3.6)

Thus, it is calculated for each individual pixel x. The principle underlying the

equation 3.6 is that the illumination is at least the maximum value of three channels in a given

location. The T̂(x) obtained guarantees that the recovery will not be saturated, due to the equation

R(x) = L(x)/(max
c

Lc(x)+ ε), (3.7)

where, ε is a constant too small to avoid zero denominator. In view of this, the authors sought

with this method to non-uniformly increase the illumination of low-light images, instead of

eliminating the color change caused by light sources.

3.2.5 Exposure Fusion

In the work by Ying et al., in (YING et al., 2017), the authors developed a new image

contrast enhancement algorithm using an exposure fusion framework. This method is used for

low-light images, where a weight matrix is designed for image fusion using lighting estimation

techniques.

With the model proposed by the authors, the camera response is used to synthesize

multiple exposure images and, subsequently, it is used to estimate the best exposure ratio, such

that the synthetic image is more exposed in the regions where the input image was underexposed.

Thus, the input image and synthetic image are merged according to the weight matrix to achieve

the expected enhancement result (YING et al., 2017). Figure 14 shows the steps of the Exposure

Fusion method.

To get an image with all pixels well exposed, you can merge the images using

Equation 3.8.
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Figure 14 – Steps Exposure Fusion.

Source: (YING et al., 2017).

Rc =
N

∑
i=1

Wi ◦Pc
i (3.8)

where, Wi is the weight map of the ith image, Pi is the ith image in the exposure set, c is the index

of three color channels, N is the number of images and R is the enhanced result. Thus, poorly

exposed pixels receive a small weight, while well exposed pixels receive a large weight.

Thus, in the presented method, the input image itself was merged with another

exposure to reduce the complexity, as shown in Figure 14. The fused image is defined as shown

in Equation 3.9.

Rc =W ◦Pc +(1−W )◦g(Pc,k) (3.9)

Thus, the enhancement problem can be divided into three parts: the estimate of W , g

and k.

Wherein, the W is key to achieving an enhancement algorithm that can enhance the

low contrast of underexposed regions, while the contrast in well exposed regions is preserved.

Thus, the weight matrix is calculated by the equation 3.10:

W = T µ (3.10)

Being the T the lighting map of the scene and the µ is a parameter that controls the

degree of enhancement.
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The g deals with the Camera Response Model, in which they proposed a model

called Beta-Gamma Correction Model. The brightness transform function (BTF) of the proposed

model can be analyzed in the equation 3.11.

g(P,k) = βPγ = eb(1−ka)P(ka) (3.11)

Since β and γ are two model parameters that can be calculated from camera parame-

ters a, b and exposure rate k, where a = 0.3293, b = 1.1258.

The optimal k is calculated by maximizing the entropy of the highlight brightness

image as shown in the equation 3.12.

k̂ = argmax
k

H(g(B,k)) (3.12)

To arrive at this equation, it is necessary to extract the dimly lit pixels as shown in

Equation 3.13, measure the brightness component which is defined as the geometric mean of

three channels as shown by Equation 3.14, and measure the amount of information, using the

image entropy which is defined by Equation 3.15

Q = {P(x) | T (x)< 0.5} (3.13)

Where Q contains only the under-exposed pixels.

B := 3
√

Qr ◦Qg ◦Qb (3.14)

Where, Qr, Qg and Qb are, respectively, the red, green and blue channels of the input

image Q.

H(B) =−
N

∑
i=1

pi · log2 pi (3.15)

Where, pi is the ith bin of the histogram of B that counts the number of data evaluated

and N is the number of bins.
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3.2.6 Gamma Correction

The method proposed by CAO et al. (2018) addresses contrast enhancement of

glow-distorted images by enhanced adaptive gamma correction. The authors developed an

improved adaptive gamma correction technique that utilizes a negative image strategy to perform

image contrast of bright images, employing truncated cumulative distribution function modulated

gamma correction to enhance the faint ones, thus, distortion in the structure and challenges in

local enhancement can be alleviated effectively.

The flowchart of the proposed contrast enhancement method can be seen in Figure 15.

The contrast enhancement method is used for two types of images, dim and bright.

Figure 15 – Gamma Correction Flowchart.

Source: Adapted from (CAO et al., 2018).

Thus, first an input image is identified by the threshold of the statistical quantity

I(x,y),x = 1,2, ...,M,y = 1,2, ...,N as shown in Equation 3.16.

t =
mI−Tt

Tt
(3.16)

Where, mI = ∑x ∑y I(x,y)/MN and Tt is a constant defined as the global average

brightness expected for normal natural images. For 8-bit images it is appropriate to use Tt with

approximately half of the maximum pixel intensity, that is, 128. The two cases of input images

are those considered dimmed when t ≤ Tt and bright when t > Tt .

Thus, when the image type is bright, adaptive gamma correction based on the

negative image is used, whereas when the image type is dimmed, adaptive gamma correction is

used via truncation of the cumulative distribution function, with the aim of to improve contrast

as well as restoration.
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3.2.7 Light-DehazeNet

In the work of ULLAH et al. (2021), a new lightweight CNN architecture for image

defogging is proposed. The Light-DehazeNet (LD-Net) jointly estimates both the transmission

map and atmospheric light using a transformed atmospheric scattering model. In breast ultra-

sound images with high-density impulse noise, the LD-Net ensures to realize quick and effective

means of image denoizing.

Figure 16 – LD-NET architecture.

Source: Adapted from (ULLAH et al., 2021).

LD-Net has eight convolution layers and three concatenation layers, where a rectified

linear unit layer follows each convolution layer. The network takes an RGB image of size (640 x

480 x 3) as input, processing in multiple convolution layers with various kernel sizes to extract

multiscale features. Different formations of convolutional layers followed by concatenated layers

are investigated to retain the useful learned representation.

For image reconstruction, the classic ASM model was transformed into a new repre-

sentation for the joint estimation of the parameters t(x), which is the transmission map, and A,

which is the atmospheric light. Furthermore, to obtain a joint estimate of both model parameters,

t(x) and A were encapsulated in a new variable called k(x), as shown in Equation 3.18.

In this way, the reformulated model with the proposed LD-Net defogging model are

encapsulated, in order to directly minimize the reconstruction error. After integrating the two

parameters into a single variable k(x) , the transformed fuzzy image reconstruction formula can

be rewritten as Equation 3.17:

J(x) = K(x)× I(x)−K(x)+bias (3.17)
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K(x) =
1

t(x) × (I(x)−A)+(A−bias)

I(x)−1
(3.18)

Thus, I(x) refers to the observed fuzzy image and bias refers to the bias term with a

default value of 1, while K(x) is the new variable containing t(x) and A.

3.2.8 Zero-Reference Deep Curve Estimation

The paper proposed by (GUO et al., 2020) presents a Zero-Reference Deep Curve

Estimation (Zero-DCE) as method that formulates light enhancement strategy as one of the

image-specific curve estimation tasks using a deep neural network. It is highly instrumental in

pixel-wise and high-order curve estimation and assists in adjusting the dynamic range of the

input image. Further, the non-reference loss functions used for implementing the Zero-DCE help

to realize an intuitive and simple nonlinear curve mapping.

Figure 17 – Zero-DCE architecture.

Source: (GUO et al., 2020).

Figure 17 presents the architecture and operation of Zero-DCE. Shows the structure

of Zero-DCE. Thus, a DCE-Net is organized to estimate a set of best-fit light enhancement

curves, known as Light-Enhancement curves (LE curves), which iteratively enhance a given

input image. Each layer of DCE-Net consists of 32 convolutional kernels of size 3 × 3 and step 1

followed by the ReLU activation function.
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3.2.9 Low-Light Image Enhancement with Normalizing Flow

The research proposed by (WANG et al., 2021) addresses a flow-based low-light

image enhancement with a normalizing flow method to accurately learn global image properties

as well as local pixel correlations by modeling distributions over images normally exposed.

It establishes the mapping relationship of low-light images from one to many by considering

the conditional distribution. This Low-Light Image Enhancement with Normalizing Flow

(LLFLOW) technique helps to achieve enhanced images with better illumination, rich colors,

and less noise, as well as artifacts.

Figure 18 – LLFLOW architecture.

Source: (WANG et al., 2021).

Figure 18 shows the architecture of LLFLOW. The proposed method is an invertible

network that learns image distributions, normally exposed in low light conditions, as well as a

conditional encoder to extract the color map invariant to illumination. To carry out the training,

the variable change theorem was used in order to maximize the exact probability of high light

images xh. A random selector was also used to obtain the average value of the latent variable

z that obeys the Gaussian distribution of the color map of the reference image or the extracted

color map g(xl) of the low light image through the conditional encoder.

Passing the training step, to perform the inference, one can randomly select z among

N(g(xl),1) to generate different images of normally exposed images with different levels of

brightness from the distribution learned conditional f f low(x | xl).
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3.3 Data Extraction

CNNs have been widely used for various purposes and applications (MUHAMMAD

et al., 2020; KHAN et al., 2019; HUSSAIN et al., 2020; MUHAMMAD et al., 2021). To

extract features from the images, we used the Resnet CNN proposed by (HE et al., 2016),

which possesses a residual learning structure that facilitates the training of substantially deeper

networks. This type of network has greater ease of optimization and can gain accuracy even with

considerably greater depth. Several methods have been developed based on Resnet, such as (LIU

et al., 2021; YANG et al., 2021; WAN; GU, 2021; WANG et al., 2021), which were observed

to eliminate noise inference in the images, and assist in identifying even complex features with

better accuracy.

In terms of the Resnet architecture, the vast majority of convolutional layers have

3 × 3 filters and follow two basic rules. Firstly, the layers have the same number of filters for

the same output feature map size. Secondly, the number of filters is doubled if the feature map

size is reduced by half, to preserve per-layer time complexity. Subsequently, the downsampling

is performed directly by convolutional layers. It possesses a global averaging pool layer and

a 1000-way fully connected layer with softmax, with a total of 34 weighted layers (HE et al.,

2016).

3.4 Classification Methods

For this study, the fully connected layer of the network was eliminated and only the

core Resent50 was used for performing the feature extraction. Subsequently, to classify the data

extracted by Resnet50, the Multi-Layer Perceptron (MLP), Support Vector Machine (SVM) and

k-Nearest Neighbor (k-NN) classifiers were used.

3.4.1 Multi-Layer Perceptron (MLP)

MLP is an supervised learning technique that consists of an artificial neural network

based on forward-feeding biological neurons that has three types of layers, the input layer to

collect the input data, the output layer that gives the decision over the input data, and the hidden

layer, which lies between the input layer and the output layer (DUTTA; CHANDA, 2021; AHIL

et al., 2021).

At least one hidden layer is added to the MLP, and there can be numerous hidden
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layers. With the exception of the input layer, each node is a neuron with a nonlinear activation

function (WANG; WANG, 2021).

3.4.2 Support Vector Machine (SVM)

The SVM is based on the statistical learning theory (LIU et al., 2019). SVM is a

supervised machine learning technique that builds a set of hyperplanes in a high-dimensional

space, and good separation of the hyperplanes is achieved when it is obtained based on the

greatest distance to the closest training data point of any class (KR et al., 2019).

3.4.3 k-Nearest Neighbor (k-NN)

The k-NN is a supervised machine learning regression and classification tech-

nique (TURESSON et al., 2016). The idea of kNN is that the point k closest to the sample to

be tested is usually found through the Euclidean distance (SALIM et al., 2020). If most of the

k points belong to the same category as the sampled, this sample will be classified in the same

class (MA et al., 2022).

3.5 Statistical Metrics

The metrics used for analysis were both to evaluate the quality of the images, as well

as to evaluate the classification accuracy.

3.5.1 Quality Metrics

The quality of the assessment process was ensured through several aspects that can

be observed through the following metrics:

• RMSE: The Root Mean Square Error (RMSE) is a metric thatConsiders the root mean

squared error between two sets of data. In this metric, the closer to zero, the more accurate

the observed forecast results (SABILLA et al., 2021). Thus, a comparison will be made

with the two breast ultrasound images, the original and the image after applying the

improvement algorithms.

RMSE =

√
∑

n
i=1 (Pi−Oi)

2

n
, (3.19)
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where, Pi is the actual value of the data, Oi is the predicted value, n is the number of data

and ∑ is the total number of values.

• CNR: The Contrast-to-Noise Ratio (CNR) is a metric to measure the contrast of images. It

enables us to analyze the difference in contrast between the nodules and the other regions

in the breast ultrasound images (RODRIGUEZ-MOLARES et al., 2018).

CNR =
|µi−µo|√

σ2
i +σ2

o

, (3.20)

where,

σi = E{(∥si∥2−µi)
2}, (3.21)

σo = E{(∥so∥2−µ0)
2}, (3.22)

which are the variation of signal strength inside and outside the target area, respectively,

and E is the expected value operator.

• AMBE: The Absolute Mean Brightness Error (AMBE) is a metric that evaluates the

difference between the average intensity level of the enhanced ultrasound image and the

average intensity level of the original image (HARUN et al., 2020).

AMBE = |I(y)− I(x)| (3.23)

where I(y) is the average intensity level of the enhanced image and I(x) is the average

intensity level of the original image.

• AG: The Average Gradient (AG) is a metric that represents the clarity of the breast

ultrasound image, reflecting the image’s ability to express contrast details between the

nodule and the other regions (ABDALRAHMAN et al., 2021).

AG =
1

MxN

M

∑
i=1

N

∑
j=1

√
(∂ f

∂x )
2 +(∂ f

∂y )
2

2
(3.24)

where M and N are the width and height of the image, (∂ f
∂x ) and (∂ f

∂y ) refers to the horizontal

and vertical gradients.
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• PSNR: The Peak Signal-to-Noise Ratio (PSNR) is a metric that evaluates the relationship

between the maximum value of the measured signal and the amount of noise that affects

the signal of breast ultrasound images (SABILLA et al., 2021).

PSNR = 20log10

(
MAX f√

MSE

)
(3.25)

where MAX f is the maximum value and
√

MSE is the result of the RMSE.

• SSIM: The Structural Similarity Index Measure (SSIM) is one of the quality assessment

metric used to measure the visual changes and similarity between two images, by perform-

ing quality assessment and comparing the structural characteristics, which is described

through the structural similarities (SABILLA et al., 2021). In this way, it helps to analyze

the similarity between the original breast ultrasound image and the image after applying

the image improvement algorithm.

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)(

µ2
x +µ2

y + c1
)(

σ2
x +σ2

y + c2
) (3.26)

where, with an image I(x,y) and µx being the average value for x or luminance x , µy being

the average value for y or luminance y , σy the contrast value for y , σx the contrast value

for x, c1 and c2 being two variables used to stabilize the division if the divisor is 0.

3.5.2 Rank Metrics

The classification of clinical data presents a few challenges, among them, two of

which are primary ones to be addressed. The first is the unbalanced dataset, where a greater

number of cases have negative diagnoses than positive diagnoses. In the second one, the main

interest is to accurately classify the positive case of the disease, since false positives do not cause

great damage while false negatives can result in a delay in treatment, consequently increasing

the difficulty of an early diagnosis.

The classification of clinical data presents a few challenges, among them, two of

which are primary ones to be addressed. The first is the unbalanced dataset, where there is a

greater number of cases with one diagnosis than the other. In the second one, the main interest is

to accurately classify the positive case of the disease, since false positives do not cause great harm,

while false negatives can result in a delay in treatment, consequently increasing the difficulty of

an early diagnosis.



54

To measure the accuracy of the method, the confusion matrix is used as a basis, using

the evaluation metrics of True Positive (TP), False Positive (FP), True Negative (TN) and False

Negative (FN).

As this search has three classes, benign, malignant and normal, the confusion matrix

can be described as shown in Figure 19.

Figure 19 – The confusion matrix highlighting the performance accuracy of the classifica-
tion of mammogram images, with the diagonal elements in bold representing
the true prediction labels.

Source: Elaborated by the author (2022).

In this way, we have:

• True Positive class Benign (TB): TB occurs when in the actual dataset, class Benign was

correctly predicted as class Benign.

• True Positive Malignant class (TM): The TM occurs when in the actual dataset, the

Malignant class was correctly predicted as the Malignant class.

• True Positive Normal class (TN): The TN occurs when in the actual dataset, the Normal

class was correctly predicted as the Normal class.

• False Negative (FN): The FN occurs when in the actual data set, the class we are trying

to predict was predicted incorrectly. That is, when it was supposed to be cancer and was

diagnosed as non-cancer. Within false negatives cases, it is possible to distinguish three

types: FNBM, when the case was benign and was misclassified as malignant; FNBN , when

the case was benign and was misclassified as normal; and FNMN , when the case was



55

malignant and was misclassified as normal.

• False Positive (FP): The FP occurs when in the actual dataset, the class we are trying to

predict was predicted incorrectly. That is, when it was supposed to be non-cancer and was

diagnosed as cancer. Within false positive cases, it is possible to distinguish three types:

FPMB, when the case was malignant and was incorrectly classified as benign; FPNB, when

the case was normal and was incorrectly classified as benign; and FPNM, when the case

was normal and was incorrectly classified as malignant.

For this, five metrics were used to evaluate the results considering these questions,

namely: Accuracy (AccGlobal), F1-score (F1score), benign class hit rate (Benign), malignant

class hit rate (Malignant), and normal class hit rate (Normal).

• Accuracy: This is the general probability of success, which shows the global success rate

considering the analyzed classes. Thus, it takes into account the hits of the three classes

under all hits and misses.

AccGlobal =
T B+T M+T N

T B+T M+T N +FN +FP
(3.27)

• F1-score: It is the harmonic average between precision and recall. It is a commonly used

metric to assess unbalanced data.

F1score = 2× Precision×Recall
Precision+Recall

(3.28)

• Hit rate of benign class (Benign): This is the probability that a patient who has a positive

diagnosis for benign actually has a benign nodule.

Benign =
T B

T B+FNBM +FNBN
(3.29)

• Hit rate of Malignant class: This is the probability that a patient who has a positive

diagnosis for malignant actually has a malignant nodule.

Malignant =
T M

T M+FPMB +FNMN
(3.30)

• Hit rate of the Normal class (Normal): This is the probability that a patient who has a

negative diagnosis for nodules actually does not have nodules.

Normal =
T N

T N +FPNB +FPNM
(3.31)
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3.6 Experimental Configuration

Initially, a Resnet50 (a CNN with 50 layers deep neural network) was implemented

as a feature extractor, learning intrinsic patterns from images to identify breast cancer. For

classification, the algorithms MLP, SVM and kNN were used. The dataset extracted by Resnet50

was divided into training data using k-fold Cross Validation with 20 fields. Hyperparameters

were optimized through grid search. Relative to kNN, the number of neighbors ∈ [3, 10] and leaf

size ∈ [10, 50]. The SVM parameters, the γ ∈ [2−15,2−1] and C ∈ [2−5,25]. As for MLP, the

parameters were the number of hidden layers ∈ [1,5], the number of neurons per hidden layer ∈

[50,500], α ∈ [000001,1], and learning rate ∈ [000001,0.9999].

The experiments were performed on a computing terminal with Windows 11 Operat-

ing System (a new version from Microsoft Corporation), i7 11800H processor, 8-core, 24Mb

Cache, 4.6GHz, 11th generation, 16Gb of DDR4 RAM, 3200 MHz, and NVIDIA Geforce RTX

3060 video card (a Graphical Processing Unit from NVIDIA Corporation), 6GB GDDR6.
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4 RESULTS AND DISCUSSION

In this section, the results obtained for the improvement of the images, as well as for

classification, will be discussed.

4.1 Image Enhancement

With the application of the enhancement algorithms on the ultrasound images, the

processing duration of each approach was summarized as shown in Table 3. It is evident from the

statistics that the Bilateral and LIME algorithms consume much longer processing time compared

to the other algorithms, particularly the Bilateral with 1344 min. The Gamma correction method

was the one that consumes the shortest processing time of 2.8 min.

Table 3 – Comparison of processing time
taken by image enhancement algo-
rithms (in minutes).

Algorithms Processing Time (Minutes)

Bilateral 1344.5736
Gamma correction 2.8820

HE 7.1598
LDNet 6.7305
LIME 651.8196

LLFLOW 9.2683
TV 17.3219

Ying 8.8536
ZDCE 9.5254

Source: Elaborated by the author (2022).

From the perspective of the processing times of the algorithms, the metrics presented

in Table 4 is used to assess the quality of the obtained images. It can be seen that in relation to

the RMSE metric and the AMBE metric, the algorithm that obtained the best results was the TV

with 0.0227 and 0.0017, respectively. The bilateral algorithm achieved a result close to the TV,

with RMSE of 0.0329 and AMBE of 0.0063. The HEP and LIME algorithms achieved inferior

results both in the RMSE metric and in the AMBE metric among the other algorithms.

Regarding the CNR metric, the algorithms that had the highest contrast–noise ratio

were the HE and LIME methods, while the lowest contrast–noise ratio were the TV and Bilateral

methods.

Analyzing the AG metric, which evaluates the change in the intensity of pixel values,

it can be seen that the smallest change was for the Bilateral and LIME methods, both with 0.0,
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Table 4 – Quality metrics for image enhancement algorithms.
Algorithms RMSE CNR AMBE AG PSNR SSIM

Bilateral 0.0329 0.0317 0.0063 0.0 77.8054 0.8726
Gamma correction 0.0936 0.4060 0.0763 0.0363 36.7292 0.8924

HE 0.2391 0.9998 0.2161 0.0364 61.2157 0.6347
LDNet 0.2360 0.9508 0.1941 0.0361 60.7778 0.3705
LIME 0.2801 0.9982 0.2272 0.0 59.4688 0.3778

LLFLOW 0.1342 0.5578 0.1069 0.0184 66.3159 0.8116
TV 0.0227 0.0088 0.0017 3.86e-05 81.0792 0.8569

Ying 0.0691 0.3125 0.0621 0.1676 71.6003 0.9394
ZDCE 0.1334 0.6059 0.1189 0.0362 65.6991 0.7858

Source: Elaborated by the author (2022).

while the Ying method was the one that caused the greatest change in intensity. When analyzed

from the perspective of the PSNR metric, the TV method achieved the best result with 81.0792,

followed by the Bilateral method with 77.8054. The Gamma algorithm achieved the worst result

compared to the others, with 36.7292.

With the conception of the SSIM metric, the Ying algorithm achieves the closest

result to the original image with 0.9394, while LDNet being the most distant method with 0.3705,

followed by LIME with 0.3778. The Gamma, Bilateral, TV and LLFLOW methods achieved the

SSIM value above 0.80.

Considering all the metrics, the TV method achieved a good performance in three of

the seven analyzed metrics. The Bilateral method achieved the best result in the AG metric and

also achieved good results in the RMSE, AMBE and PSNR metrics.

With the application of image enhancement algorithms, it can be seen in Figures 20–

22 the elimination of some noise that presents the same characteristics of the region of interest.

It is noted that the TV and Bilateral algorithms, which presented better results in quality metrics,

have images with less noise compared to the other algorithms, which can facilitate better

classification accuracy.



59

Figure 20 – Normal highlighted mammogram images a) Original b) Bilateral c) Gamma
correction d) HE e) LDNET f) LIME g) LLFLOW h) TV i) Ying j) Zero-
DCE.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Source: Elaborated by the author (2022).
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Figure 21 – Benign highlighted mammogram images a) Original b) Bilateral c)
Gamma correction d) HE e) LDNET f) LIME g) LLFLOW h) TV i)
Ying j) Zero-DCE.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Source: Elaborated by the author (2022).
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Figure 22 – Malignant highlighted mammogram images a) Original b) Bilateral c)
Gamma correction d) HE e) LDNET f) LIME g) LLFLOW h) TV i) Ying
j) Zero-DCE.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Source: Elaborated by the author (2022).
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4.2 Classification

From the data extracted with Resnet50, the results were obtained using the MLP,

kNN and SVM algorithms for the metrics of global accuracy (ACC Global), benign success

rate (Benign), malignant success rate (Malignant), hit rate of normals (Normal) and F1-score.

Furthermore, presented in Table 5 are the training and testing times for each algorithms for image

enhancement, considering the MLP, kNN and SVM classifiers.

It is worth noting that the kNN classifier provides the shortest training time in relation

to the other algorithms. Further, the combination of the HE enhancement approach with the kNN

achieved the shortest training time. The MLP classifier, despite being the one that takes more

training time, in relation achieves the shortest test times. Moreover, it is observed that the TV

method in association with the MLP achieved the shortest test time.

Table 5 – Training and testing times of image enhancement
algorithms and the classifiers.

Algorithms Times (Seconds) MLP kNN SVM

Original Training 161.605 0.105 109.754
Test 0.036 1.119 5.582

Bilateral Training 165.828 0.107 114,538
Test 0.034 1.105 5.741

Gamma correction Training 142.177 0.106 113.221
Test 0.039 1.231 5.801

HE Training 164.593 0.104 117.841
Test 0.033 1.176 5.906

LDNET Training 197.522 0.106 119.007
Test 0.040 1.143 6.101

LIME Training 158.675 0.105 110.196
Test 0.032 1.193 5.622

LLFLOW Training 120.524 0.106 114.953
Test 0.032 1.205 5.803

TV Training 141.409 0.106 115.173
Test 0.031 1.214 5.900

Ying Training 156.628 0.105 115.086
Test 0.033 1.194 5.874

Z-DCE Training 169.422 0.105 123.348
Test 0.037 1.122 6.170

Source: Elaborated by the author (2022).

In Table 6 are presented the metrics for each image enhancement algorithm, as well

as for the original base. Analyzing the enhancement algorithms for each classifier individually,
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we observe that for the MLP classifier, the algorithm that obtained the best accuracy result was

the TV algorithm with 95.64%, being considered statistically similar to the Bilateral method that

reached an accuracy rate of 95.54%.

For the kNN classifier, the algorithm that obtained the best results in terms of both

accuracies and hit rate of images with malignant nodules (malignant) was LDNET with 83.23%

and 76.90%, respectively. For the SVM classifier, the algorithm that obtained the best global

accuracy was the Bilateral one with 96.69%. The TV algorithm delivers an accuracy rate of

96.66%, by considering the Wilcoxon method, which is statistically equal to the Bilateral method.

Analyzing in general, considering the best combination between the image improve-

ment algorithm and classifier, the one that delivers the better results with balanced trade-offs

was the Bilateral algorithm in association with the SVM classifier, both quantitatively and

qualitatively assessed through visual analysis of the presented images.

Although global accuracy is a valid metric, the accuracy rate in the classification

of images with malignant nodules (malignant) is fundamental for this analysis, as it is more

clinically relevant. Thus, it can be seen that the Bilateral algorithm with the SVM classifier for

the malignant metric achieved the best result among all combinations, with 95.11%.

Taking into account the training and testing times along with their the hit metrics, it

is clear that despite the kNN training time being the shortest, it was the algorithm that delivers

the inferior results for all image enhancement methods. The SVM that achieved neither the

shortest, nor the longest training and test times assists in providing better classification accuracy.

Figures 23, 24 and 25 show the Boxplot graphs for the SVM, kNN and MLP

classifiers for the Global ACC metric of each image enhancement algorithm. The variability

of the improvement methods among the classifiers can be seen, showing statistical information

such as, for example, median, minimum and maximum.

It can be seen that the results for the SVM classifier have the best statistical data

compared to the other classifiers. The maximum and median values are higher, as well as the

minimum values are lower when compared to kNN and MLP.

Considering only the best combination that was targeted for achieving the best result

of global and malignant accuracy, Figure 26 shows the confusion matrix for the combination of

the bilateral method with the SVM classifier.

It is evident from the analysis that the benign class had 1701 correctly classified,

while the malignant and normal had 799 and 517, respectively. The benign class possesses more
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Figure 23 – Global Accuracy: SVM Classifier Performance as Seen in Boxplot.

Source: Elaborated by the author (2023).

errors than the malignant class, as these two classes contain nodules in their images. A similar

situation occurred with the malignant class as well, as there were more errors in the benign class.

In the normal class, there are more errors than in the benign class, which could also be observed

in comparison with the normal class, which comes very close to the error of the malignant class

that has the nodule.
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Figure 24 – Global Accuracy: k-NN Classifier Performance as Seen in Boxplot.

Source: Elaborated by the author (2023).

Figure 25 – Global Accuracy: MLP Classifier Performance as Seen in Boxplot.

Source: Elaborated by the author (2023).
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Table 6 – Metrics for image enhancement algorithms.
Algorithms Metrics MLP kNN SVM

Original

ACC Global 94.99 ± 1.65 77.85 ± 3.30 96.50 ± 1.82
Benign 97.08 ± 1.50 76.44 ± 4.98 97.42 ± 1.44

Malignant 92.50 ± 3.21 71.90 ± 5.90 94.40 ± 2.94
Normal 92.15 ± 7.50 91.91 ± 5.87 96.80 ± 3.99
F1-score 94.96 ± 1.69 78.57 ± 3.20 96.49 ± 1.56

Bilateral

ACC Global 95.54 ± 1.36 79.07 ± 2.45 96.69 ± 1.56
Benign 96.68 ± 1.91 78.78 ± 3.06 97.31 ± 1.94

Malignant 92.61 ± 3.44 73.21 ± 5.92 95.11 ± 2.86
Normal 96.41 ± 4.41 89.31 ± 5.65 97.18 ± 3.54
F1-score 95.53 ± 1.37 79.70 ± 2.41 96.69 ± 1.56

Gamma correction

ACC Global 94.93 ± 1.59 77.91 ± 2.66 96.47 ± 1.33
Benign 96.74 ± 1.57 77.17 ± 4.08 97.54 ± 1.31

Malignant 91.90 ± 3.86 70.83 ± 5.52 93.92 ± 3.32
Normal 93.83 ± 5.90 91.54 ± 6.45 97.00 ± 3.66
F1-score 94.91 ± 1.61 78.72 ± 2.65 96.46 ± 1.35

HE

ACC Global 95.28 ± 1.71 78.07 ± 2.62 96.31 ± 1.38
Benign 96.45 ± 2.01 78.20 ± 4.21 97.25 ± 1.50

Malignant 92.97 ± 3.87 75.23 ± 5.80 94.40 ± 2.84
Normal 95.15 ± 4.55 82.15 ± 7.88 96.26 ± 3.51
F1-score 95.27 ± 1.71 78.45 ± 2.54 96.30 ± 1.39

LDNET

ACC Global 94.96 ± 1.96 83.23 ± 2.54 96.31 ± 1.52
Benign 96.90 ± 1.81 84.61 ± 3.07 97.19 ± 1.59

Malignant 93.09 ± 4.63 76.90 ± 5.48 94.40 ± 3.55
Normal 91.50 ± 7.48 88.73 ± 6.95 96.45 ± 4.60
F1-score 94.93 ± 1.99 83.44 ± 2.46 96.30 ± 1.53

LIME

ACC Global 95.51 ± 1.46 81.57 ± 2.57 96.47 ± 1.24
Benign 96.91 ± 1.72 82.21 ± 3.45 97.25 ± 1.36

Malignant 92.38 ± 3.49 75.00 ± 5.90 94.16 ± 3.14
Normal 95.88 ± 3.71 89.87 ± 6.47 97.56 ± 2.45
F1-score 95.50 ± 1.46 82.00 ± 2.55 96.46 ± 1.24

LLFLOW

ACC Global 95.06 ± 1.66 75.96 ± 3.40 96.34 ± 1.07
Benign 96.23 ± 2.25 75.74 ± 3.73 97.25 ± 1.32

Malignant 92.49 ± 3.47 68.09 ± 6.79 93.69 ± 2.94
Normal 95.34 ± 6.82 89.10 ± 6.33 97.57 ± 3.77
F1-score 95.04 ± 1.66 76.75 ± 3.25 96.33 ± 1.07

TV

ACC Global 95.64 ± 1.41 77.33 ± 3.21 96.66 ±1.66
Benign 96.97 ± 1.57 73.97 ± 5.25 97.42 ± 1.57

Malignant 93.09 ± 3.18 76.30 ± 5.02 94.88 ± 2.84
Normal 95.31 ± 4.38 90.05 ± 5.44 97.00 ± 3.86
F1-score 95.63 ± 1.42 78.08 ± 3.06 96.66 ± 1.67

Ying

ACC Global 95.22 ± 1.56 78.14 ± 3.35 96.57 ± 1.39
Benign 96.22 ± 1.76 76.90 ± 5.01 97.37 ± 1.44

Malignant 93.80 ± 3.94 73.21 ± 7.25 94.64 ± 3.18
Normal 94.18 ± 6.42 90.02 ± 5.97 96.99 ± 3.69
F1-score 95.21 ± 1.58 78.93 ± 3.16 96.56 ± 1.39

Z-DCE

ACC Global 94.23 ± 2.18 76.89 ± 2.96 95.80 ± 1.35
Benign 96.68 ± 1.56 78.56 ± 5.18 97.14 ± 1.46

Malignant 92.14 ± 4.06 69.40 ± 5.54 93.09 ± 2.90
Normal 89.52 ± 9.41 83.31 ± 7.36 95.70 ± 3.74
F1-score 94.17 ± 2.25 77.25 ± 2.94 95.79 ± 1.35

Source: Elaborated by the author (2022).
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Figure 26 – Confusion matrix for the combination of the Bilateral algo-
rithm with the SVM classifier.

Source: Elaborated by the author (2022).

One of the possible explanations is that, although normal images do not have nodules,

there are still regions in the ultrasound image that may have similarities with nodules. The

characteristics of benign nodules are that they are well-defined and regular, whereas malignant

nodules are larger and asymmetrical in shape. Thus, it may be observed that some of the regions

in the normal images resemble the nodules in the benign images.

In Figure 27, it is possible to verify in (a) that the region marked in red has a similarity

with the benign nodule, even though it has a lighter texture. In Figures 27 (b),(c), one can see the

shapes of both benign and malignant nodules through their visual differences.

Analyzing the complete confusion matrix, it is noted that there were only 48 false

negatives and 55 false positives. These false negatives and false positives are the ones that can

cause the most inconvenience and delays in medical treatments and diagnoses, so minimizing

these false positives is of great importance.

Thus, observing Table 4, which presents the image quality metrics, and Table 6,

which presents the classification metrics, it is clear that the algorithms that obtained better results

in the metrics of quality were the ones that achieved the best results in the ranking metrics. The
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Figure 27 – Database images. (a) Normal image with region marked in
red that resembles a benign nodule. (b) Image with a benign
nodule. (c) Image with malignant nodule.

Source: Elaborated by the author (2022).

TV method and the Bilateral method stood out in terms of the quality metrics and achieved

reasonable rates in the classification.

More stability and consistency in the results of the proposed image enhancement

techniques were proved with better precision in the earlier stage detection of breast cancers.

Particularly, the novel approaches in the pre-processing stages of the breast ultrasound image

using different image enhancement algorithms guarantees stabilized outcomes on the chosen

dataset. Therefore, it can be verified that good pre-processing, making improvements in the

images, can considerably benefit the classification results.

4.3 Online System/Web Interfaces

The online platform for automatic pre-screening of breast tumors basically consists

of four modules: the main interface, the interface with enhanced images, the classification

interface when there are nodules and the classification interface when there are no nodules, as

specified in Figure 28. All image enhancement algorithms were tested and presented in the

enhanced image interface. However, for classification purposes, the Bilateral and SVM set was

selected.

Figure 28a shows the main interface module, where it will be possible to upload

the breast tumor images to be analyzed. After uploading, the web portal redirects users to the

second interface. This module presents a menu-driven interface with the users, which will be

capable of analyzing the pre-processed images by the image enhancement methods, as well as

the classification result. When clicking on the “Enhanced images” button in the menu, the users

will be redirected to the interface containing the specified image with the application of image

enhancement methods, as shown in Figure 28b.
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By clicking on “Classification results” in the menu, the users will be presented with

a message. If there is a nodule, a message will be displayed to consult a mastologist (as shown

in Figure 28c), if there is no nodule, the user will be informed that no nodule was found in the

image (as shown in Figure 28d).
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Figure 28 – Online web platform interfaces modules. (a) Main interface module (b) Module
with images enhancement (c) Classification module with nodules (d) Nodule-free
sorting module.

(a)

(b)

Cont.
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(c)

(d)

Source: Elaborated by the author (2022).
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5 CONCLUSIONS AND FUTURE WORK

This research proposed to compare and evaluate methods for enhancing breast

ultrasound images and classifying them as benign, malignant, and normal. For this purpose, a

database containing 437 benign images, 210 malignant images and 133 normal images were

used. Due to the small number of images, various data augmentation techniques were used. To

extract the characteristics of these images, Resnet50 was used. For these extracted data, the

SVM, kNN and MLP algorithms were used to perform the classification.

It was found through the experimental results that the application of appropriate

image enhancement methods can improve classification performance. In addition, the algorithms

that obtained better results in the metrics for achieving better image quality provided the best

results in the classification.

It is observed that the Bilateral enhancement method together with the SVM clas-

sification algorithm obtained the highest hit rate, both for global accuracy (96.69%) and for

accuracy in the detection of malignant tumors (95.11%). In addition, the TV method also

achieved satisfactory results, with a processing time lower than that of the Bilateral method and

similar performance results. Therefore, it is noted that the application of image enhancement

methods has significant relevance to the diagnosis of breast cancer.

In this context, the following future works are intended to open up better opportunities

for the researchers:

• Developing novel light image enhancement strategies specific for breast cancer, considering

the applied generic enhancement algorithms;

• Embedding such new enhancement approaches in specific hardware modules with the

possibility of interacting with the cloud;

• Building 3D reconstruction models to perform the volumetric quantification of the nodules;

• Building a web dashboard to analyze the experiments as well as the 3D reconstruction

with better visualizations.
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