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Abstract
The green turtle (Chelonia mydas) is known to present an herbivorous diet as an adult; however, juveniles may have an omnivore
habit, and these changes in food preference may affect the uptake and accumulation of pollutants, such as mercury (Hg). In order
to better understand the influence of this ontogenetic shift on Hg accumulation, this study evaluates the concentrations of total
mercury (THg), methyl mercury (MeHg), and stable isotopes of carbon and nitrogen (δ13C and δ15N) in a group of juveniles of
the green turtle. Tissue samples (liver, kidney, muscle, and scutes) were sampled from 47 turtles stranded dead on the coast of
Bahia, NE, Brazil, between 2009 and 2013. The turtles analyzed showed a size range of 24.9–62.0 cm and an average of 36.4 ±
7.2 cm of curved carapace length. The scutes showed to be a viable method for Hg monitoring in the green turtles. The
concentrations of THg and MeHg decreased with increasing size. The isotope values of δ15N and δ13C did not show a clear
relationship with the size, suggesting that the green turtles used in our work would be occupying similar trophic levels, and
foraging habitat.
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Introduction

Pollution from anthropogenic activities exerts a strong pres-
sure on the marine ecosystems, negatively affecting the health

of the species inhabiting contaminated areas (Hamann et al.
2010). In addition to illegal fishing, and degradation of breed-
ing and feeding habitats, pollution is another major factor
affecting the stability of sea turtle populations worldwide
(Miguel and de Deus Santos 2019). Adverse effects of pollu-
tion can include compromised physiology, chronic stress, im-
paired immune function, and an increase in disease suscepti-
bility, like fibropapillomatosis (Miguel and de Deus Santos
2019).

With millions of years of existence, sea turtles can be
regarded as sentinel species of the oceans (Aguirre and Lutz
2004) due to their characteristic long lifespan, feeding at dif-
ferent trophic levels and wide distribution, which make them
excellent monitors of contamination by toxic metals, such as
mercury (Hg) (Barbieri 2009). This metal occurs naturally in
the environment, but anthropogenic activities such as
goldmining, coal, and solid waste burning have increased
Hg mobilization in the environment, raising its emissions to
the atmosphere, soils, rivers, and oceans (Driscoll et al. 2013;
UNEP 2013).

The abundance of Hg chemical species varies among the
different environmental compartments: more than 95% of the
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Hg found in the atmosphere is in elementary form.Most of the
Hg in the water, soils, and sediments is in the inorganic form
(Hg2+), while the (mono) methyl mercury (MeHg) is domi-
nant in the animals (Beckers and Rinklebe 2017). MeHg has
the capacity to accumulate in organisms (bioaccumulation)
and biomagnify along the food chain (Nica et al. 2017), pre-
senting lower concentrations in herbivores and higher in car-
nivores (Jakimska et al. 2011). Because MeHg is lipid soluble
while inorganic Hg is not, their concentration ratios in animal
tissues can vary with trophic status, tissue, animal size, and
metabolic ability to convert MeHg into inorganic forms
(Storelli et al. 1998).

The physiological functions performed by the liver, kidney,
muscle, and the carapace in the metabolism of non-essential
metals exert influences on Hg content stored in them. The
kidney and liver are the main organs involved in the metabo-
lism of trace metals, acting in the detoxification process, and
presenting higher concentrations of Hg, mostly in its inorganic
form (Chételat et al. 2020). The THg concentrations in the
muscle are relatively lower, but as muscle comprises more
biomass than the other tissues, it can have the largest contri-
bution to internal mercury burden. Most of the mercury in
muscle tissue is MeHg, making it a useful indicator of both
MeHg exposure to the organism itself as well as potential
consumers (Lescord et al. 2018; Chételat et al. 2020).
Whereas scutes, also metabolically inactive, store Hg strongly
bound to constituents of the carapace, keratin in particular,
rendering low mobility and toxicity (Schneider et al. 2013;
Chételat et al. 2020). Thus, this element may be used as a
marker of diet type and help to distinguish between trophic
positions and feeding preferences of organisms when
employed in combination with stable isotope analysis (SIA)
(Di Beneditto et al. 2013).

The use of the stable isotopes of nitrogen (δ15N) and car-
bon (δ13C) can provide important data on feeding ecology of
different organisms (Haywood et al. 2019). In the case of
δ13C, variations in value reflect changes of carbon source at
the base of food web, while δ15N is considered an indicator of
trophic levels (Peterson and Fry 1987). However, the stable
isotope composition of different tissues of the same organism
can differ due to factors such as differential fractionation dur-
ing assimilation and metabolic processing, macronutrient
routing, and the biochemical composition (Vander Zanden
et al. 2014). Several studies have reported tissue-specific dif-
ferences (e.g., internal organs and blood plasma tend to have
high rates of isotopic incorporation compared with muscle
tissue and blood cells) (Vander Zanden et al. 2015). Since
tissues integrate consumer diets at different time scales, exam-
ination of multiple tissues can potentially provide information
about the temporal dynamics of resource use (Vander Zanden
et al. 2015).

In sea turtles, the use of SIA has illuminated facets of sea
turtle ecology that are otherwise difficult to study, such as the

habitat used during cryptic juvenile life stages and foraging
area origin of nesting females (Vander Zanden et al. 2014).
The stable isotope values δ15N and δ13C in sea turtles show
that the green turtle (Chelonia mydas) occupies the lowest
trophic level, while other species, such as the loggerhead turtle
(Caretta caretta), occupies the highest trophic level
(Haywood et al. 2019). However, with complex life histories,
often with multiple ontogenetic changes in habitat, in diet, and
migrations of considerable distances between foraging and
nesting areas (Haywood et al. 2019), the green sea turtle can
present variations in trophic level, and therefore, also in the
Hg concentrations found in juvenile, subadult, and adult
individuals.

The green sea turtle has a cosmopolitan distribution, from
the tropics to the temperate zones, being the species of sea
turtle that presents more coastal habitats, including using es-
tuaries of rivers and lakes. In Brazil, the spawning occurs
mainly in the oceanic islands, Trindade Island (Espirito
Santo state), Rocas Atoll (Rio Grande do Norte state), and
Fernando de Noronha island (Pernambuco state) (Almeida
et al. 2011). Non-reproductive occurrences are recorded
throughout the coast of Brazil and also in the islands
(Almeida et al. 2011). Juvenile green turtles are frequently
found along the northern coast of Bahia, which is an important
feeding ground for this species (Jardim et al. 2016). In Brazil,
feeding habitat has been linked to Hg concentrations in juve-
nile green turtles, and considering that juvenile green turtles
are mainly omnivorous and that Hg tends to accumulate
through several food web levels, individuals at this life stage
can show higher risk of Hg exposure than adults (Bezerra et al.
2012; Bezerra et al. 2015).

Of the seven existing sea turtle species, the green turtle is
the only species known to present a significant shift in diet
from omnivore juveniles to predominantly herbivore adults
(Bolten 2003). This shift, according to Vélez-Rubio et al.
(2016) and Burgett et al. (2018), starts between 40 and
45 cm, where individuals under 40 cm are predominantly
carnivorous. Moreover, individuals larger than 40 cm present
higher consumption of macroalgae. This development pattern
results in different accumulation of metals such as Zn, Cu, Cd
(Sakai et al. 2000a), and Hg (Komoroske et al. 2011; Bezerra
et al. 2013), with juveniles often presenting higher concentra-
tions than adults. The objective of the present study is to
evaluate the influence of the size in juvenile green turtles on
the concentrations of total mercury (THg), methyl mercury
(MeHg), and the isotopic ratios of δ13C and δ15N in different
tissues and organs (kidney, liver, muscle, and carapace).

Materials and methods

All procedures and analyses were carried out within the cur-
rent norms of the Brazilian environmental legislation, under
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the authorization of the System of Authorization and
Information in Biodiversity - SISBIO, License No. 21693-9
(2016) from the Ministry of the Environment.

Forty-seven individuals of green turtles were sampled and
measured (e.g., curved carapace length (CCL) and curved
carapace width (CCW)). Sampled individuals were found
dead on the beach between 2009 and 2013 by the team of
the Brazilian Marine Turtle Conservation Program
(TAMAR) in three localities (Praia do Forte, Sauípe, and
Camaçari) in the northern coastal zone of Bahia State,
Northeastern Brazil. Analyzed tissues included the kidney,
liver, muscle, and scutes. Soft tissue samples weighted ap-
proximately 10 g, whereas scute fragments were collected
randomly in different areas of the carapace.

For Hg quantifications, tissue subsamples (0.5 g d.w.) were
placed, in duplicate, in Teflon tubes containing 10 mL of
concentrated nitric acid (HNO3 65%) for 1 h pre-digestion.
Total sample digestion was carried out in a microwave furnace
for 30 min at 200 °C. After cooling, 1 mL of hydrogen per-
oxide (H2O2) was added. The final extract was transferred and
diluted in volumetric flasks to 100 mL. THg concentrations
were quantified by cold vapor atomic absorption spectropho-
tometer (CV-ASS), in a NIC RA-3 (NIPPON ®) spectropho-
tometer. The average detection limit (LOD) of the method was
0.08 ± 0.02 ng g−1. The validation of the methodology was
obtained by using certified reference material (mussel tissue
ERM-CE278K), with recovery of 84%.

For MeHg quantifications, approximately 200 mg of sam-
ples was weighed in PTFE tube, and 5.0 mL of 25% KOH
methanolic solution was used to extract MeHg in an oven at
70 °C for 6 h with gentle stirring every hour; the samples were
then kept in the dark to avoid possible degradation of MeHg.
Subsequently, the ethylation process was done with 300 μL of
2 mol L−1 acetate buffer (pH 4.5) followed by the addition of
30 μL of sample and 50 μL of tetra ethyl sodium borate (1%)
according to Taylor et al. (2011). The final volume was
brought to 40 mL with ultra-pure water (milli-Q, Millipore,
Cambridge, MA, USA) and analyzed on a gas chromatograph
coupled to atomic fluorescence spectrometer (GC-AFS -
MERX-TM automated methyl mercury system from Brooks
Rand Labs., Seattle, USA). Precision and accuracy of MeHg
determinations were ensured using duplicate analyses of sam-
ples and certified reference material (Tuna Fish - BCR-463),
run with each batch of samples, with a mean recovery of 96%.
Detection limits (LOD) and quantification limit (LOQ) for
MeHg dete rmina t ions were 0 .003 mg kg− 1 and
0.009 mg kg−1, respectively.

For stable isotope quantifications, dry subsamples of tis-
sues (~ 1 mg), weighed in tin capsules, were analyzed in a
Flash 2000 elemental analyzer coupled to a continuous flow
mass spectrometer (Isotope Ratio Mass Spectrometry –
IRMS, Delta V Advantage, Thermo Scientific, Germany) to
quantify the stable isotopes. All results are expressed as delta

value (δ), relative to Pee Dee Belemnite notation for δ13C in
parts per thousand (‰) and atmospheric N2 for δ

15N, accord-
ing to Peterson and Fry (1987).The analytical replicates
showed variations lower than 5%, and the accuracy was de-
termined from a certified standard of protein (B2155) with
average recovery of 97 ± 1%.

The Shapiro Wilk test was used to assess the normality of
the data. Non-parametric Spearman’s correlation was used to
evaluate the relationship between THg concentrations in
scutes with THg concentrations in the liver, muscle, and kid-
ney. The relationship between THg, MeHg, δ15N, and δ13C
concentration values and turtle size (curved carapace length,
CCL) was modeled using generalized additive models (GAM)
using the “mgcv” package in R 1.2.5033. This method is based
on the use of non-parametric smoothing functions that allow
flexible description about the effect of size, in the values of
δ15N and δ13C, and THg and MeHg concentrations in the
tissues (liver, kidney, muscle, and scutes) of the sea turtle
C. mydas. Kruskal-Wallis tests were used to evaluate potential
differences between THg and MeHg concentrations among
tissues. Mann-Whitney’s post hoc tests were performed to
identify the tissues in which Hg differed significantly. The
significance value used for the tests was 95% (p < 0.05).
Statistical tests and graphing were performed using RStudio
software (version 1.1.423 – © 2009–2018 RStudio, Inc.).

Results

THg concentrations

Size (CCL) of sampled individuals (n = 47) ranged from 24.9
to 62 cm (average of 36.4 ± 7.2 cm), and classified as juveniles
according to Almeida et al. (2011) and Jensen et al. (2016).

THg concentrations were higher in the liver with amedian of
650.9 ± 90.3 ng g−1, and the lowest concentration was observed
in the muscle, with a median of 113.3 ± 24.8 ng g−1 (Table 1)
(Fig. 1). A strong positive correlation was found between THg
concentrations in scutes with liver (Spearman’s r = 0.78,
p < 0.05), kidney (Spearman’s r = 0.88, p < 0.05), and muscle
(Spearman’s r = 0.83, p < 0.05) (Fig. 2).

According to the generalized additive model (GAM), con-
centrations of THgwere inversely correlated with turtle size in
liver (p < 0.05), kidney (p < 0.05), muscle (p < 0.05), and
scutes (p < 0.05) (Fig. 3). However, the R-squared of this mod-
el was very low for each tissue, liver (R-squared = 0.21), kid-
ney (R-squared = 0.39), muscle (R-squared = 0.16), and scutes
(R-squared = 0.41).

MeHg concentrations

MeHg concentrations were higher in muscle with a median of
63.9 ± 28.4 ng g−1, and the lowest concentration was observed
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in the scutes, with a median of 16.7 ± 14.2 ng g−1 (Table 1).
There were no significant differences between MeHg concen-
trations in any tissue (Kruskal-Wallis H = 5.1; p > 0.05)
(Fig. 4).

Fig. 2 Relationship between THg concentrations in scutes and liver (a),
kidney (b), and muscle (c) from green turtlesTa
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Fig. 1 Concentrations of THg in tissue samples of green turtles
(C. mydas) from NE Brazil. Gray points represent outliers
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The relative contribution ofMeHg to the THg burden in the
organisms was also higher in the muscle (70.5%), followed by
the kidney (16.7%), liver (8.8%), and scutes (4.0%) (Kruskal-
Wallis H = 37.6; p < 0.05) (Table 1).

Similar to the results observed for THg using GAM, sig-
nificant inverse relationship of MeHg with size was observed
in the liver (p < 0.05), kidney (p < 0.05), muscle (p < 0.05),
and scutes (p < 0.05) (Fig. 5). In contrast, size was better in
explaining variation in MeHg compared with THg for all tis-
sues, liver (R-squared = 0.44), kidney (R-squared = 0.27),
muscle (R-squared = 0.54), and scutes (R-squared = 0.62).

Stable isotope values

No difference in stable nitrogen isotope values was observed
among green turtle tissues (Kruskal-Wallis H = 3.9; p > 0.05).
On the other hand, the carbon showed difference between the

liver, scutes, and muscle (Mann-Whitney’s U = 29; p < 0.05)
(Fig. 6). The kidney presented a median of 9.8‰, whereas the
liver presented a median of 9.6‰ and the muscle and scutes of
9.1‰ and 9.0‰, respectively (Fig. 6). Interesting to note is
that the highest δ15N values were observed in scutes (11.50‰)
and muscle (12.11‰) in the smallest individuals, with 26 cm
in size.

The results for δ13C showed difference between tissues
(Kruskal-Wallis H = 3.9; p < 0.05). The highest value in the
scutes with a median of − 17.1‰, kidney and liver showed
similar results (median − 17.5‰), whereas the liver showed
the lowest value, with a median of − 18.1‰ (Fig. 6). The
scutes (− 10‰) showed the highest value in one individual
with size of 47 cm. The liver showed significative difference
with muscle (Mann-Whitney’s U = 40; p < 0.05), and with the
scutes (Mann-Whitney’s U = 35; p < 0.05).

The GAM showed a significant relationship between size
and stable isotope values (δ15N and δ13C) for all tissues
(Figs. 7 and 8). However, considering R-squared coefficient,
size could only explain a very small portion of stable isotope
variation in green turtle tissues. δ15N in liver (p < 0.05; R-
squared = 0.04), kidney (p < 0.05; R-squared = 0.04), muscle
(p < 0.05; R-squared = 0.02), and scutes (p < 0.05; R-
squared = 0.07). δ13C in liver (p < 0.05; R-squared = 0.01),
kidney (p < 0.05; R-squared = 0.02), muscle (p < 0.05; R-
squared = 0.04), and scutes (p < 0.05; R-squared = 0.07).

Discussion

The present study showed a significant negative relationship
of THg and MeHg concentrations with size. This kind of

Fig. 3 Graphical representation
of a generalized additive model
(GAM) of the variation in THg
concentrations in green turtle
concerning curved carapace
length (CCL). Estimated smooth
functions (solid lines). (a) Liver,
(b) kidney, (c) muscle, and (d)
scutes

Fig. 4 Concentrations of MeHg in tissue samples of green turtles
(C. mydas) from NE Brazil. Gray points represent outliers
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relationship has already been reported for others green turtle
populations in Baja California (Kampalath et al. 2006), San
Diego Bay in the USA (Komoroske et al. 2011), and Ceará
coast in Brazil (Bezerra et al. 2012 and 2013). These patterns
of Hg distribution have been associated with the known shift
in feeding habitat, from omnivorous to predominantly herbiv-
orous occurring in green turtles (Vander Zanden et al. 2013).
Vélez-Rubio et al. (2016) detected this shift by analyzing the
esophagus and stomach content of 74 C. mydas ranging from
45 to 52 cm. These authors reported a gradual shift from a diet
mainly composed of gelatinous macrozooplankton in smaller
juveniles to predominantly macroalgae in larger juveniles.
Similar patterns were also reported by Cardona et al. (2010),
Di Beneditto et al. (2017), and Burgett et al. (2018) in popu-
lations from Mediterranean, Rio de Janeiro coast, in Brazil,
and Bermuda coast, respectively.

Our studied population presented a range of 24.9 to 62 cm
of CCL and were all classified as juveniles, according to
Almeida et al. (2011). Therefore, the decreasing trend in
THg and MeHg concentrations found in the present study
suggests the onset of ontogenetic shifts in diet and habitat.
The inverse relationship of Hg concentrations with size and
the larger variation of Hg concentrations in smaller individuals
indicate that these animals might be exposed to more varied
sources of Hg in the oceanic habitat compared with the neritic/
coastal feeding grounds. Changes in diet of green turtles have
been previously reported for other C. mydas populations
(González Carman et al. 2012; Morais et al. 2014; Vélez-
Rubio et al. 2016).

The diet is the main routes of Hg exposure in marine or-
ganisms (Gray 2002; Mackay and Fraser 2000). In herbivo-
rous animals, Hg is mostly present as inorganic species, which

Fig. 5 Graphical representation
of a generalized additive model
(GAM) of the variation in MeHg
concentrations in green turtle
concerning curved carapace
length (CCL). Estimated smooth
functions (solid lines). (a) Liver,
(b) kidney, (c) muscle, and (d)
scutes

Fig. 6 Boxplot of δ15N and δ13C concentrations in tissue samples of green turtle (C. mydas) from NE Brazil. Gray points represent outliers
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are the dominant Hg chemical species found in macroalgae,
whereas MeHg concentrations are generally very small (May
et al. 1987); thus, different diet would also change the relative
importance of THg and MeHg inC. mydas, as observed in the
present study.

In contrast, variation patterns of carbon and nitrogen iso-
topes were not as clear as expected. Although a significant
relationship between the size and the isotopic values of δ15N
and δ13C, the determination coefficient (R2) recorded with the
GAM was very low so that the model cannot explain the
observed values.

Distribution of δ13C in muscle of the studied C. mydas
population, although with small variability, suggests that the
major diet of the animals derives from marine algae (− 16.3 to
− 19.5‰), in agreement with previous results found by
Bezerra et al. (2015). There was no significant relationship
between the size and δ15N, as reported for this species in other
geographical areas (Cardona et al. 2009; Vélez-Rubio et al.
2016; Di Beneditto et al. 2017; Monzón-Argüello et al. 2018),
but the average δ15N of the smallest individuals (CCL of
26 cm to 31.8 cm) was the highest (12.11 to 11.59‰, respec-
tively), a result also suggesting omnivory more frequent in

Fig. 8 Relationship between
isotope values of δ13C and CCL
in tissues of juvenile green turtles
(C. mydas). Estimated smooth
functions (solid lines)

Fig. 7 Relationship between
isotope values of δ15N and CCL
in tissues of juvenile green turtles
(C. mydas). Estimated smooth
functions (solid lines)
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smaller animals. This result may indicate high level of indi-
vidual variability in the consumption of animal prey or be an
artifact caused by the wide variability in the δ15N of primary
producers (Cardona et al. 2009). However, other factors rather
than diet may affect δ15N and δ13C in tissues of C. mydas.
According to Haywood et al. (2019), intra-species variations
between ocean basins are due to differences in local and ocean
basin nutrient cycling regimes that influence isotope ratios at
the base of the food web, which in turn influence the ratios in
higher trophic level consumers. It is essential that when com-
paring isotope values frommultiple regions, researchers quan-
tify the local isotope ratios or obtain a proxy for the baseline
ratios.

Studies in different geographical areas show this variation.
The observed average of δ15N content in the studied popula-
tion (9.0 ± 0.8‰) is higher than those found in African and
mid-ocean populations by Cardona et al. (2009), 8.6 ± 1.9‰
and Burgett et al. (2018), 7.3 ± 1.6‰, respectively, but lower
than those reported for other green turtle populations in the
Atlantic:10.8 ± 2.3‰ (Arthur et al. 2008); 10.2 ± 0.25‰
(Bezerra et al. 2015); and 9.9 ± 1.8‰ (Di Beneditto et al.
2017). Lemons et al. (2011) reported one of the highest iso-
topes δ15N value for C. mydas (17.1 ± 1.33‰), from San
Diego Bay, USA, and associated it to the large anthropogenic
load of nitrogen in this bay.

Omnivorous individuals with a more diversified diet
showed a greater variability in isotope values of δ15N and
δ13C, produced by different ecological reasons (Arthur et al.
2008). It is possible that the different incorporation of δ13C
and δ15N in pelagic juvenile green turtles can be result from a
transitional stage during which they complement their diet
with a higher proportion of macroalgae, showed a relatively
large variability in their isotope contents (Arthur et al. 2008).
Vander Zanden et al. (2013) quantified δ13C and δ15N in three
life stages of C. mydas: oceanic juveniles, neritic juveniles,
and adults, and showed large variation in isotopes contents in
neritic juveniles, because of adaptation to a new environment
and feeding strategy. In addition, the existence of large indi-
vidual variability in the consumption of animal preys and the
high variability in δ15N found in primary producers (Cardona
et al. 2009) may also contribute to a weak or non-existent
relationship between size and δ15N.

The level of anthropogenic development in addition to af-
fecting nitrogen concentrations as observed by Lemnons et al.
(2011) could also influence Hg concentrations found in a re-
gion. The north coast of Bahia state has higher industrial de-
velopment, with harbors, pigment industries, and a petro-
chemical pole contributing to relatively high Hg background
levels (Bezerra et al. 2015; Marins et al. 2004). Bezerra et al.
(2015) showed that the level of exposure to environmental
contamination of C. mydas is an important factor to be evalu-
ated in areas impacted by anthropogenic activities, such as the
Bahia coast. In this coast, although algae may be the main

food resource for juvenile green turtles, Hg concentrations
can be elevated due to environmental contamination relative
to other sectors of the NE Brazilian coast, thus excluding a
difference in concentration of Hg due to distinct trophic levels.
In the present study, there was no reason to expect differences
in Hg contamination background among specimens as all tur-
tles came from the same site in Bahia coast, and thus, they are
likely exposed to similar environmental Hg levels. We hy-
pothesize that differences in Hg concentrations with size are,
due to a more generalist diet in smaller juveniles, consuming
both plant and animal items, whereas larger juvenile feeds
more on macroalgae.

On the other hand, our study showed that the liver was the
tissue that presented the highest concentrations of THg, sim-
ilar to results obtained for other species in different studies
(Table 2), confirming the metabolic role of this organ, while
scutes proved to be a reliable non-invasive method for moni-
toring the internal Hg concentrations in green turtles such as
Bezerra et al. (2013) and Sakai et al. (2000b).

Concentration of MeHg was found higher in the muscle as
expected, a result also observed in other species, such as
C. caretta, Chelonia mydas agassizii, and Lepidochelys
olivacea (Storelli et al. 1998; Kampalath et al. 2006).

Unlike the muscle, the scutes showed the lowest MeHg
concentrations, only 4%, of the THg concentration, showing
to be a structure with small capacity to store Hg in organic
form. Metabolically, inter-keratinaceous tissues, like scutes,
offer a less invasive sampling matrix than internal tissues,
and form an inert complex with MeHg during growth, pre-
serving an index of MeHg bioaccumulation over discrete pe-
riods. However, the seeming simplicity associated with using
keratinaceous tissues to asses MeHg bioaccumulation can re-
sult in misleading interpretations, making these tissues inap-
propriate for some uses (Chételat et al. 2020).

One of the few studies evaluating the concentrations of
MeHg in the carapace was performed by Ng et al. (2018),
for large individuals of C. mydas with sizes from 67 to
84 cm in southern China. The authors found MeHg concen-
trations in scutes from 10 to 570 ng g−1 and with a median of
60 ng g−1, significantly exceeding our median of 16.7 ng g−1

and concentrations ranging from 0.05 to 226.8 ng g−1.
Rodriguez et al. (2019) reported much lower MeHg concen-
trations in the carapace of 15 adult individuals of C. caretta
(0.2 to 55.2 ng g−1, with a median of 6.64 ng g−1) compared
with C. mydas, notwithstanding the more carnivorous diet of
this species. There is a lack of studies evaluating MeHg con-
centrations in scutes of sea turtles, which is why we were
unable to make a comparison with studies using individuals
in the same size ranges, and of the same species. However, it is
important to mention that although the studies shown are on
individuals of different size and of different species, there are
two factors controlling these variations in the MeHg concen-
trations. The ecological factors such as trophic position,
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ontogenetic changes in diet, migration and type of diet, and
physiological processes, include elimination of MeHg, inter-
nal circulation of MeHg, excretion, maternal transfer, among
others (Chételat et al. 2020).

Stable isotopes and Hg concentrations were not able to
show differences in the trophic position of the individuals
considered to be omnivorous and herbivorous in our study.
Di Benedito et al. (2013) mentions that the ability of δ13C
and δ15N tracers to reflect diet depends on the characteristics
of the environment, the characteristics of each species, and the
complementation with other types of proxies. Cardona et al.
(2010) points out that although the use of stable isotopes as
diet markers is a powerful technique, interpreting the results is
not always simple, because the method is reliable only when
there are large differences between the isotopic value of the
sources considered and when the isotopic value varies consis-
tently between the habitats and trophic levels. In the case of
the green turtle, the availability of food can change the om-
nivorous (juvenile) and herbivorous (adult) behavior
(Nagaoka et al. 2012). Studies using SIA show that herbivory
behavior in adults can be optional and does not happen strictly
(Hatase et al. 2006; Reich et al. 2007; González Carman et al.
2012; Velez-Rubio et al., 2016; Di Beneditto et al. 2017).
Thus, as a direct result of this factor, the relationship between
Hg and the stable isotopes of δ15N and δ13C with juvenile and
adult food preferences in C. mydas could be altered, whereby
the ontogenetic change as such would not be able to be deter-
mined by variables previously exposed, being important the
integration of this type of study with stomach contents.

Conclusions

The progressive and gradual change in the diet experienced
by green turtles during growth can be considered as one of
the main factors responsible for the variations in the concen-
trations of THg and MeHg. Our results showed a decrease

of THg and MeHg concentrations, during the growth of the
green turtle. This variation is possibly related to a response
of a more diverse diet in small individuals, and a diet com-
posed of a higher proportion of algae in larger individuals.
The relationship between Hg concentrations in the scutes
with the other tissues proved that the scutes can be a reliable
non-invasive method for monitoring the internal Hg concen-
trations in green turtles. However, the low concentrations of
MeHg in the scutes showed that this type of tissue may be
inappropriate for the evaluation of MeHg in the green turtle.
The isotope values of δ15N and δ13C did not show a clear
relationship with the size, suggesting that the green turtles
used in our work occupied similar trophic levels, and/or
foraging habitats. It is important that individuals in the fu-
ture studies be sampled in different life stages (juvenile, sub-
adult, and adult), and analyze the influence of this factor in
the Hg, MeHg, and stable isotopes (δ15N and δ13C)
concentrations.
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