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ABSTRACT. A number of studies show that climatic shocks have significant economic
impacts in several regions of the world, especially in, but not limited to, developing
economies. In this paper we focus on a drought-related indicator of well-being and
emergency spending in the Brazilian semi-arid zone – rainfed corn market – and estimate
aggregate behavioral and forecast models for this market conditional on local climate
determinants. We find encouraging evidence that our approach can help policy makers
buy time to help them prepare for drought mitigating actions. The analysis is applicable
to economies elsewhere in the world and climatic impacts other than those caused by
droughts.

1. Introduction
The rapid progress in the science of global climate variability initiated
in the 1980s enabled scientists to develop seasonal climate forecasts for
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various regions of the world. By climate forecasts we mean the prediction
of the probability distribution of future weather conditions several months
ahead. These forecasts have potential economic benefits to the extent that
the impacts of current decisions depend on future weather conditions.
The prospect that climate forecasts can be a valuable piece of information
for society spawned the recent creation of a number of national and
international institutions dedicated to linking climate science to socially
relevant applications (Mjelde et al., 1998). Reports of efforts to close the gap
between scientific climate knowledge and applications exist, but progress
seems to be slow, with the existing experiences showing limited success.1

How important though are climate oscillations to the economy in
general? Some scholars argue that the importance of climate goes far
beyond agricultural markets, with significant implications to the aggregate
economy, especially for (but not limited to) developing countries. Brunner
(2002) for example, establishes a significant connection between climate
variability and world primary commodity prices, world consumer price
inflation, and world economic activity. Datt and Hoogeveen (2003) find
that the impact of the Asian financial crisis of the late 1990s on poverty
and income inequality in the Philippines was in fact dwarfed by the impact
of the 1997/98 El Niño. At a more general level, Gallup and Sachs (2000)
suggest that climate forces are a key variable in explaining the development
gap in the tropics.

This paper uses climate information to forecast the yield of rainfed corn in
the semi-arid state of Ceará, a representative area of the Brazilian semi-arid
region predominantly located in the Brazilian Northeast. Current scientific
knowledge enables relatively successful predictions of climate variability
in this region. Furthermore, the rainfed corn market is closely associated
with climate variability and works as a barometer for socio-economic
impacts of droughts in the Brazilian semi-arid region. This market is also a
good indicator of the impact of climate variability on local drought-related
public finances. Hence, by focusing on the local corn market we effectively
gain insight into the broader consequences of droughts in the region. By
forecasting quantity and prices in this market, we hope to buy policymakers
time in the process of responding to a climate-induced crisis, thus possibly
improving the efficiency of drought-related public spending in the region.

That accurately forecasting climate impacts can have positive impacts
on public spending policies is clearly illustrated by the 1997/1998 El Niño.
The forecast of a strong El Niño by the scientific community prompted the
government of Peru to seek financial help from the World Bank to help the
country to prepare for the anticipated impacts. A loan of US$150 million
was made available to Peru and enabled the country to better respond to
the economic impacts of the El Niño. That same year, Kenya experienced
heavy rains that took a toll on life and property in the country. In contrast
to Peru, Kenya’s government did not initially pursue a pro-active plan to
tackle the possible consequences of an El Niño, but eventually appealed to
the World Bank. The Bank approved a loan to the country conditional on

1 See for example Mjelde et al. (1998) and Lemos et al. (2002).
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close scrutiny to address concerns involving governance and efficient use
of the resources meant to mitigate the effects of adverse climate (Glantz,
2001: 119–122).

Some important lessons emerge from the Peruvian and Kenyan
experiences. First, useful climate forecasts must be rooted in a well-
established link between climate determinants and local impacts. The fact
that Kenya did not adopt pro-active measures in 1997 in contrast to Peru
is probably rooted in a weaker and not so well-established connection
between the El Niño phenomenon and its consequences to the country. In
fact, the unusually warm sea surface temperature of the western Indian
Ocean towards the end of 1997 probably was a major determinant of
local rainfall. As in the case of Kenya, climate in the Brazilian Northeast
is influenced by other climate forces (Atlantic Ocean) in addition to the
El Niño phenomenon. Before proceeding with forecasting the impact of
climate in the region, we need to establish a quantitative link between local
climate determinants and their impacts. Second, governance problems may
undermine fund raising efforts and the use of climate forecasts to mitigate
the socio-economic impacts of extreme weather has to take governance
into account. Whereas past efforts to mitigate the effects of droughts in
the Brazilian semi-arid region have been severely crippled by corruption
and bureaucratic inefficiencies, recent governance improvements (Tendler,
1998) make it a good laboratory for the use of climate forecasts in the design
of innovative policies.

We estimate a set of econometric models to investigate the forecast
of the impacts of droughts in Ceará. In doing so, we use a continuous
measure of physical variables relevant to local climatic events.2 We use a
semi-parametric algorithm to study the impact of climate variability on the
rainfed corn market in the State. We implement our analysis in two steps.
First, we estimate a simultaneous equation model for the supply of and
demand for local rainfed corn conditional on climate. We thus establish the
link between local climate forces and their impacts, and identify the main
variables that determine yield of corn in the State. Second, we use those
variables identified in the first step to forecast severe droughts (defined as
large decreases in yield) and the probability of their occurrence conditional
on current climate determinants.

Although we frame our discussion here in terms of public spending, the
rationale of our analysis is applicable to any decision-making processes that
involve attention to future climate realizations. Furthermore, this type of
analysis can be applied to several areas of the globe, especially in the region
between the tropics, where many developing nations are located.3

2 Most studies on the economic impact of climatic shocks use categorical variables
such as whether an El Niño event has occurred, thus forcing a homogeneous
treatment of heterogeneous climatic shocks. A notable exception appears in
Brunner (2002).

3 Two early studies exploring the potential to forecast climate variability in different
parts of the globe are Ropelewski and Halpert (1987).
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This paper is organized in five sections. Section 2 briefly discusses the
nature of the impact of droughts in the Brazilian semi-arid region and the
efforts to reduce it. Section 3 reviews the main determinants of climate and
the corn market in the State and presents a preliminary graphical analysis of
the data. Section 4 estimates the link between local climate and its economic
impacts, and Section 5 concludes.

2. Droughts in the Brazilian semi-arid region
The Brazilian semi-arid region extends for over 900,000 km2 in the northeast
and for a small portion of the southeast regions of the country. With
19 million inhabitants, it houses 11.4 per cent of the Brazilian total
population (Brazilian Institute of Geography and Statistics, IBGE, 2000
Census). This part of the country is subject to recurrent droughts and
has challenged the ability of the local and national governments to design
effective and efficient policies to mitigate the effects of local climatic shocks.
Since the ‘very strong’ El Niño (Quinn, 1992: 122) of 1877–1879, when over
150,000 people died from starvation and the quick spreading of diseases in
overpopulated urban centers, the national government has sought actions
and policies to prevent and mitigate the effects of droughts in the region.

Policies and actions to combat the consequences of droughts in the
region can be classified as emergency intervention or actions to reduce
climate vulnerability in the long-run. Emergency spending typically
involves the supply of potable water, provision of medical services, and
distribution of food and medicines in dry years. Long-term spending
comprises investment in the local water supply infrastructure such as
the construction of reservoirs and canals. These actions have been funded
mainly by discretionary transfers from the federal government to affected
states and municipalities (Magalhães, 1991). However, these transfers have
been subject to inefficiencies stemming from the bureaucratic lethargy at
various levels of government, lack of planning of expenditures common to
situations of crises, and corruption.

In this paper, we focus on the State of Ceará, not only because data
are readily available for the state, but also because it can be considered
representative of the Brazilian semi-arid region and a good laboratory for
innovative drought-related policy making. First and foremost, around 95
per cent of the Ceará territory (146,817 km2) is classified as semi-arid, and a
large portion of its population is highly vulnerable to the effects of droughts
(World Bank, 2000). This population consists mostly of families engaged in
subsistence farming, and is characterized by indices of human development
(based on education, health, and income variables) that are well below
the regional and national averages (IPECE, http://www.ipece.ce.gov.br/).4

Secondly, the State of Ceará has experienced significant governance
improvements in the last few decades (Tendler, 1998). Better governance

4 Vulnerability comes in the form of drastic reduction in water supply for human
and livestock consumption, losses of important subsistence crops, health problems
due to consumption of low quality water, and increased violence stemming from
looting and excess demographic concentration in larger cities due to rural–urban
migration.
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is an essential component for the successful use of climate information in
the implementation of welfare-improving policies.

The bulk of drought-related resources available to the State comes from
discretionary transfers following an already established crisis situation.
Hence, these transfers are subject to costly delays and there is often
little time to plan for an appropriate course of action. The assumption
underlying this study is that understanding the connection between climate,
its impacts, and their forecasting potential (conditional on current climate
information) can help policy makers buy time to design more efficient,
expeditious, and transparent drought-related policies. For example, a
committee involving stakeholders and representatives from the local and
federal governments could meet before the beginning of the rainy season
(February through May) and recommend a course of action based on current
climate information. Threshold levels of climate indicators could be used to
send warnings to funding agencies (as in the case of Peru discussed above)
and secure resources to be released in a pre-programmed fashion. This
process would help expedite the transfer of resources if they were needed.
Additionally, early involvement of stakeholders would add transparency
to the appropriation and allocation of resources.

For the aforementioned benefits to accrue to the region, two important
conditions must be met. First, a better quantitative link between droughts in
the region and their socio-economic impacts must be established. Second,
a reliable forecasting mechanism of these impacts must be in place. This
study contributes to the meeting of these two conditions by analyzing the
market for rainfed corn in Ceará, an indicator variable for the impacts of
droughts in the region.

3. Corn and climate in Ceará
In this study we focus on rainfed agriculture in Ceará as our indicator for
welfare impacts of local droughts. Although agriculture accounted for only
5.58 per cent of the State GDP in 2000, it employed 40 per cent of the State
labor force, mostly on small rainfed and subsistence farms that are highly
vulnerable to recurrent droughts.

Among the rainfed crops that are produced in the State, corn is likely
to be the most important to local farmers’ consumption and income.
Furthermore, rainfed corn production serves as a barometer for the
economic consequences of droughts in the region and for public spending
on the alleviation of these consequences. Figure 1 shows total transfers from
the federal government to the State of Ceará and local corn production. The
correlation between federal government transfers and corn production in
the State was −0.7.5 Although other indicators of social well-being for the
semi-arid region exist, they were first calculated only recently. Examples
are the human development index at the municipal level (1991, 2000),
index of municipal development (1998, 2000, 2002, and 2004), and the
very recent municipal warning index (2005). By contrast, data on corn

5 Total transfers do not discriminate the portion of federal resources that are actually
devoted to drought relief, but we are constrained to using the aggregate indicator
due to limited data availability.
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Figure 1. Corn production and total transfers (standardized and detrended values)
Source: Planning Secretariat, Ceará (SEPLAN/CE).

production, yield, and prices date back to the late 1940s. Finally, a typical
indicator would be local GDP, but because of the importance of industry and
services (especially tourism) in the region as well as high levels of income
concentration, local GDP seems fairly insensitive to droughts and is a poor
indicator of the effects of droughts on the large vulnerable population.
Hence, by studying and forecasting the rainfed corn market in the State we
actually seek to understand and forecast more than the direct information
contained in this market. In other words, by focusing on the corn market,
we effectively gain insight into the broader consequences of droughts in the
region.

To investigate the link between climate and corn production in Ceará,
we turn to the likely most important driving force of local climate, namely
sea surface temperatures (SSTs) of specific regions of the tropical Pacific
and Atlantic oceans (Moura and Shukla, 1981; Hastenrath, 1984). As SSTs
in the central and eastern portions of the tropical Pacific increase above
their climatological averages, this region of the globe experiences low
atmospheric pressure and increased rainfall. These changes tend to be
associated with increased atmospheric pressure and decreased rainfall in
the Brazilian Northeast (Ropelewski and Halpert, 1987). This is the so-
called El Niño effect, whereas the opposite phenomenon, with arguably
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symmetrical consequences for the Brazilian northeast, is known as the La
Niña effect.6

Another determinant of local climate is the position of the Inter Tropical
Convergence Zone (ITCZ) – an east to west wind current around the globe
that is associated with low pressure and rainfall. The position of the ITCZ
in the Atlantic is strongly influenced by the difference between average
southern and northern Atlantic SSTs, a gradient termed the ‘Atlantic
Dipole’. In general, a strong Atlantic Dipole – defined here as average
southern Atlantic SSTs minus average northern Atlantic SSTs – causes the
ITCZ to migrate south and towards the Brazilian northeast (Moura and
Shukla, 1981). Thus, the Atlantic Ocean can either reinforce or compensate
for the influence of the Pacific Ocean over climate in the Brazilian semi-arid
region.

In order to study the impacts of droughts in Ceará, we investigate the
link between climate and the corn market in the State as a basis for the
econometric analysis in section 4. We first explore the relationship between
precipitation, production, and price of rainfed corn in Ceará, followed by the
relationship between SSTs, production, and prices. But before we proceed,
some qualifications on the data are in order. First, prices and quantities
of corn are aggregated at the State level and include data from humid
regions as well as arid ones. This however is not a serious problem, since
most of the production of corn takes place in the semi-arid portion of
the territory. Second, precipitation data for the State are disaggregated by
geographic regions, which do not necessarily coincide with the regions
where only rainfed corn is produced. To tackle this problem, we use indices
of precipitation for the Sertão Central geographic region, a semi-arid region
of the State where rainfed agriculture prevails.

Figure 2 depicts the link between the corn market and precipitation
in Sertão Central. Also shown are the estimated curves depicting the
relationships between quantity, price, and precipitation.7 These curves were
obtained through a non-parametric algorithm – smoothing spline – based
on the local regression of the dependent variable (quantity and price) on the
explanatory variable (precipitation) and smoothed over the entire range of
the explanatory variable. The estimated curves characterize crop losses
due to droughts as well as excessive rains causing siltation, excessive
soil humidity, and floods. The pattern for precipitation and prices is the

6 In general, the SST oscillations in the tropical Pacific are known as the El Niño
Southern Oscillation or ENSO. Although Ropelewski and Halpert (1987) suggest
a symmetrical impact of El Niño and La Niña events in the Brazilian Northeast
region, Hoerling (2002) argues that the impact of one extreme ENSO event is
not the mirror image of the opposite extreme event. As will become clear in
our econometric results, we find evidence in support of Hoerling’s hypothesis in
Ceará.

7 Corn yield better reflects the impact of droughts on the corn market and we use
this variable in our formal analysis. However, the qualitative results are identical
when quantity produced and yield are analyzed. We thus appeal to the standard
intuition from a competitive equilibrium model and use quantities and prices in
the graphs in section 3.
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Precipitation in Sertão Central, Ceará (mm)
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Figure 2. Precipitation, quantities and prices of corn in Ceará (1964–1997).

opposite. In a small open economy where local prices fully responded to
external forces from a larger market, prices would be uncorrelated with local
climate.8 However, the graphs for prices suggest otherwise. The graphs in
figure 2 along with the fact that local corn production is carried out by
small price-taking farmers suggest that a competitive partial equilibrium
model has some explanatory power over the determination of prices and
quantities of corn in the State. This, in turn, justifies the instrumental
variables regression models we estimate in section 4.

Next we turn to the relationship between the main determinants of local
climate and the corn market. In particular, we calculate simple and rank
correlations between average SSTs for the rainy season in the State (February
through May) and quantities and prices of corn, followed by correlations
between lagged SSTs and quantities and prices of corn. By doing that we
hope to gain insight into the potential to forecast rainfed agriculture in
Ceará given information on SSTs. When calculating correlations between
SSTs and rainfed agriculture indicators, we expect the tropical Pacific Ocean
SSTs to be negatively correlated with production and positively correlated
with prices (El Niño effect). The North Atlantic SSTs are expected to be
negatively correlated with production and positively correlated with prices,

8 This would not be true if local climate were correlated with the climate of other
producing regions of the country and the world, but that does not seem to be the
case here.
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whereas the opposite is expected for South Atlantic SSTs (Atlantic Dipole
effect).

3.1. Trends in the local corn market
Before proceeding, we need to remove the effect of a myriad of forces that
affect prices, quantities, and yield to be able to isolate the effect of climate on
these variables. These include the institutional and technological forces that
play a role in different periods of our data sample. Notable examples are
the new hybrid corn types introduced in the late 1980s in Brazil, the ‘Hora
de Plantar’ seed distribution plan implemented by the Ceará government
in 1987 (Santana et al., 1999), and recent barriers to the importation of
transgenic corn in Brazil. At the international level, King (2001) identifies
the Asian financial crises of the late 1990s, US, Chinese, and Argentine
policies since the 1970s, and differentiated treatment of corn and soybeans
(a substitute for corn) during the GATT and WTO negotiations as important
forces affecting the world market for corn.

The national, state, and international institutional and technological
factors that prevailed in different periods in our data set (1953 through
1997) resulted in potentially non-linear trends for quantities and prices.
Furthermore, planted area has changed during the period covered by
our sample. In addition, the data-generating process for these variables
is possibly non-stationary. To tackle these problems, we first use corn
yield (metric tons of corn output per hectare of planted area) in place of
simple quantities produced. Second, we purge long-term and transitory
trends in yield and prices from these variables. To do this, it is necessary
to estimate predicted yield and prices as functions of time through local
regressions capable of capturing the interplay of different economic forces
at different time periods within the data set. Furthermore the span for
the local regressor should be flexible enough to optimally vary for each
data point. Friedman’s supersmoothing non-parametric local regression
does precisely that (Friedman, 1984). For each date xt of the time series
{xt , yt}tn

t1 , the smoother symmetrically chooses the k-nearest neighbors xi and
implements a linear least squares procedure to estimate yt. Three values of
k are used initially (n/2, n/5 and n/20, where n is the length of the time
series) and the optimal k for each xt is chosen through cross-validation and
interpolation between the three initial values. The result is a smooth non-
parametric local regression function representing the time trends present in
the different time periods within our sample. We then proceed by using the
detrended data or the residuals from the non-parametric local regression of
yield (quantity for graphing purposes) and price on time. These residuals
are not autocorrelated, a feature that is not present in the original yield and
price data, and that simplifies our subsequent econometric analysis.9

3.2. Climate determinants and the Ceará corn market
Figure 3 plots the linear correlation between the Pacific and Atlantic
Oceans SST anomalies (standardized difference between observations

9 We fail to reject the white noise null hypothesis based on Portmanteau and
Bartlett’s periodogram test statistics for detrended yield and price.
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Figure 3. Linear correlation between corn production and SSTAs averaged over the
Feb–May period.

and climatologic averages – SSTA) during the rainy season in Ceará
and detrended state corn production.10 The figure depicts the expected
correlation patterns within the inter-tropical band of the oceans. On the one
hand, the warming up of the tropical Pacific SSTs contributes to reduced
rainfall and crop losses in Ceará (El Niño effect). On the other hand,
however, warming up of the South Atlantic SSTs tends to promote the
opposite effect, whereas colder than average SSTs in the North Atlantic can
reinforce the El Niño effect. More precisely, the correlation pattern in the
Atlantic suggests the role played by the Atlantic Dipole in determining local
precipitation and corn production.

Figure 4 shows the correlations between the SSTAs and detrended prices.
The observed pattern is opposed to that of figure 3, consistent with a
competitive partial equilibrium model, where climatic shocks shift the
supply, but not the demand curve. It is clear that the climatic signal is
weaker for prices than for quantities produced in the State. Nevertheless,
several regions of the oceans have correlation coefficients that are significant
at the 2.5, 5, and 10 per cent significance levels, and a few have correlation
coefficients that are significant at the 1 per cent level. A likely explanation

10 Critical values for statistical significance of the correlations plotted in figures 3
and 4 at the 1, 2.5, 5, and 10 per cent significance levels are 0.375, 0.307, 0.252,
and 0.193 respectively, with 47 degrees of freedom. Correlations rejected at the
10 per cent significance level are ‘masked out’ and appear as white areas in the
oceans. Rank correlation graphs show the same pattern and similar magnitudes
when compared to the linear correlation graphs. This fact suggests that extreme
values are not spuriously influencing the results, as well as the absence of strong
non-linearities in the relationship between quantity and price of corn with SSTs.
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Figure 4. Linear correlation between corn prices and SSTAs averaged over the Feb–May
period.

for the weaker relationship between climate and prices is that corn markets
in other regions may influence local prices to some extent.

Figures 3 and 4 help us to establish the link between SSTAs during the
rainy season and the corn market in Ceará. Next, we investigate whether
the climate signal can be observed before the rainy season. This is relevant
as we pursue corn yield forecasts based on lagged climate signals. Current
understanding of climate points at SSTAs, especially in the Pacific Ocean,
as the main variable containing signals of future climate. Along these lines,
we investigate the linear correlation between average SSTAs for October
through December with data on production and prices of corn for the
following year.11 Forecasting the effect of a drought in the beginning of the
calendar year, several months before crop harvesting,12 can contribute to
the preparation of drought contingency plans and to more efficient drought
relief expenditures.

The correlation maps for lagged SSTAs and quantity and prices of corn
in Ceará (not shown here for space considerations) show strong evidence
of the El Niño effect. As we could expect, the correlation pattern for the
tropical Pacific lagged SSTAs is not as strong as in the case of concurrent
SSTAs. Nevertheless, the signs of the correlations are as expected. This is
the case because the configuration of the Pacific Ocean SSTs takes place
relatively slowly, already indicating by the end of the calendar year the

11 The use of average values for the last trimester of the year instead of the most recent
information (December only) avoids random oscillations of the SSTAs which do
not significantly affect future climate.

12 According to the Planning Secretariat of Ceará about 80 per cent of the State corn
is harvested and commercialized in July and August.
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SST Anomalies (Niño 3)
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Figure 5. Corn production and prices in Ceará and Niño 3 and Atlantic Dipole SST
anomalies.

predominant pattern for the first semester of the following year. This is due
to the peculiar characteristics of the Pacific Basin, which is deeper and much
larger than that of the Atlantic. The configuration of the Atlantic Ocean SSTs
for the rainy season becomes clear only later on, during the first semester
of the calendar year. Hence, the correlations between the Atlantic lagged
SSTAs and quantities produced and prices differ more markedly from those
in figures 3 and 4.

Finally, figure 5 captures the likely functional forms for the relationships
between SSTAs, production and prices through non-parametric smoothing
spline regressions. In constructing these figures, we turn to the climate
literature to select the SSTAs from specific regions of the Pacific and Atlantic
Oceans. SSTAs from the Niño 3 region of the tropical Pacific capture the El
Niño effect, and the Atlantic Dipole, defined as the anomalies of the South
Atlantic SSTAs minus the North Atlantic SSTAs, characterize the effect
of the Atlantic Ocean during the rainy season. The tropical Pacific seems
to have an approximately linear impact on the production and prices of
corn. This general pattern holds true even if we eliminate the large SST
outliers from the sample. On the other hand, the Atlantic Dipole influences
production and prices in a non-monotonic fashion. There is a range of values
for the Atlantic Dipole that contributes to the highest levels of production
and lowest levels of prices for corn. Departures from this range in either
direction contribute to crop losses and price increases.

Figure 5 suggests an interesting interpretation of the effect of the oceans
on rainfed agriculture in Ceará. Crop losses and price increases due
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to excessive rains are most likely due to large positive Atlantic Dipole
anomalies. Ropelewski and Halpert (1987) show that colder than average
SSTs in the tropical Pacific (La Niña) tend to result in increased precipitation
in the Brazilian Northeast. However, our results suggest that, holding
everything else constant, this effect does not seem to be strong enough
to cause crop losses in Ceará. This observation corroborates the hypothesis
that the impacts of extreme ENSO events are not symmetrical (Hoerling,
2002).

The preceding results help us to establish benchmark relationships for our
analysis based on single-equation models for the relationships of interest. In
the next section, we relax this assumption and estimate such relationships
using a simultaneous equation model to better quantify and forecast the
effect of the Oceans on the corn market in Ceará.

4. Results
In this section we estimate the impact of climate determinants on current
and future equilibrium outcomes in the corn market. Our goal is to explore
whether climatic information and the corn market contain early information
that may expedite the process of transfers of resources, and buy time
in the planning process for how these resources should be used. As in
the successful Peruvian experience during the 1997/1998 El Niño, this
information may help local policy makers seek resources before a situation of
emergency is established. It may also help the federal government plan its
discretionary transfers as a response to an imminent drought. We implement
our objective in two steps. First, in order to provide theoretical guidance to
our forecast model, we estimate a simultaneous equation model to describe
the supply of and demand for corn in Ceará conditional on concurrent
climate determinants. Second we forecast future equilibrium price and corn
yield conditional on climate predictors.

Our second step is similar to the approach in Souza-Filho and Lall
(2003). They use a k-NN algorithm (described in section 4.3) to forecast
streamflow into local reservoirs conditional on current climate information.
In contrast to their work, the object of study of our paper requires us
to address a more complex behavioral system connecting climate and a
socio-economic institution, namely the local corn market. We first need to
identify market responses to variations in seasonal weather to pin down
a theoretical benchmark for our forecasting model. We thus extend their
technical analysis by including step 1. We also extend their forecasting
exercise by calculating the probability of future extreme events conditional
on current climate information.

We use the detrended data (residuals from the supersmoothing
regression) on corn yield and prices to jointly estimate the following supply
and demand equations:

Step 1:

ys = γ10 + pγ11 + [X1
...X2] · [γ ′

12

...γ ′
13] + ε1,

yd = γ20 + pγ21 + X3 · γ22 + ε2,
ys = yd.
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where ys and yd stand for corn yield (metric tons per hectare of planted
area) in the supply and demand equations, respectively. Vector p contains
corn prices, X1 and X3 are matrices with economic variables, and X2 is a
matrix with climate determinants. The model coefficients are represented
by the scalars γ ij and the column vectors γ ij, and εi are the error terms.
The estimation procedure also includes a matrix of exogenous instrumental
variables Z.

Step 2:
Based on model selection from step 1, we estimate the implied reduced form
model with lagged variables for the prediction of the equilibrium yield and
price of corn. We do so by estimating the following set of equations through
a seemingly unrelated regression estimator13

y = [X1l
...X2l

...X3l] · π1 + µ1,

p = [X1l
...X2l

...X3l] · π2 + µ2.

where the vectors y and p are the equilibrium yield and price of corn, X1l,
X2l and X3l are the economic and climatic predictors known at time t – 1,
π i < T B : break/ >< T B : hspacespace = "8pt"/ > are parameter vectors
and µi are the error terms.

Step 2 estimates a reduced model instead of a structural model for future
supply and demand of corn for two reasons. First and most importantly,
our focus is on the forecast of equilibrium corn yield. This is the indicator
variable for the impacts of droughts in the state which is correlated with
the spending of resources on drought mitigation. Second, whereas the
estimated coefficients for our climate variables of the reduced model are
statistically significant and have the expected signs, forecasting supply
and demand proved to be a more difficult exercise. This suggests possible
complexities in the forecasting of the structural model that are beyond the
scope of this study.

4.1. Data
Data for production of corn refer to annual production in the State of Ceará,
measured in tons and covering the period from 1947 to 2000. Corn prices
are given in R$ per Kg at the July 2001 price level, according to the IGP-DI
price index from Fundação Getúlio Vargas. Data for SSTs were calculated
from the Extended Kaplan data set for sea surface temperature anomalies
for selected areas of the Pacific and Atlantic Oceans. Data for income were
not directly available. Since most corn production is consumed in the rural
areas, we used total revenues with the most important rainfed agricultural
outputs (beans, cassava, cattle, chicken, and corn) with 0- to 5-year lags as
proxies for our income variable. Additional economic variables (described
below) were used as instruments in our regressions in step 1. Prices of

13 Since this is a system of equations with identical regressors, GLS is equivalent to
individual equation OLS estimation. Although our main focus is on corn yield,
we also report the results for prices for completeness.
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Table 1. Regression summary – climate and corn supply and demand

Variables OLS IV- 1 IV -2 IV -3

Supply
lPrice −0.8428 (0.001) 0.3266 (0.746) 0.3711 (0.713) −0.1195 (0.894)
lSoy Price lag −0.0130 (0.459) −0.0078 (0.754) −0.0026 (0.902)
lIncd1 −0.1256 (0.11)
Nino 3 −0.1299 (0.006) −0.1843 (0.035) −0.1946 (0.030) −0.1522 (0.054)
Dipole 0.1089 (0.007) 0.1562 (0.015) 0.1528 (0.022) 0.1301 (0.024)
Dipole2 −0.0936 (0.002) −0.1558 (0.018) −0.1599 (0.016) −0.1313 (0.023)
Constant 0.0738 (0.138) 0.1641 (0.064) 0.1584 (0.087) 0.1345 (0.091)
R2 0.7090 0.5203 0.5101 0.6710
MSE 0.0500 0.0714 0.0729 0.0489
F(5,39) 19.00 (0.000)
X2 35.96 (0.000) 36.40 (0.000) 51.57 (0.000)
N 45 45 45 45
Demand
lPrice −1.0778 (0.000) −1.1892 (0.000) −1.1822 (0.000) −1.1989 (0.000)
lSoy Price 0.0013 (0.912) 0.0008 (0.939) 0.0008 (0.942)
lIncome 0.3552 (0.000) 0.3302 (0.000) 0.3310 (0.000) 0.3138 (0.000)
lIncd 0.2093 (0.001) 0.1941 (0.000) 0.1954 (0.000) 0.2015 (0.000)
ICattle Price −0.2224 (0.016) −0.1967 (0.027) −0.1976 (0.027) −0.1885 (0.034)
Constant −3.2072 (0.000) −3.0452 (0.000) −3.0480 (0.000) −2.8832 (0.000)
R2 0.8482 0.8452 0.8456 0.8444
MSE 0.0261 0.0230 0.0230 0.0231
F(5,39) 43.57 (0.000)
X2 203.66 (0.000) 204.15 (0.000) 202.39 (0.000)
N 45 45 45 45
Hausman
X2 (1)

7.01 (0.008) 6.97 (0.008) 4.85 (0.028)

p-values in parentheses.

soybeans at the national level were also collected to reflect the possible
influence of this substitute crop on the corn market. The sources of the
data for production and prices were the Anuário Estatı́stico do Brasil, from
Instituto Brasileiro de Geografia e Estatı́stica (IBGE), and data manipulated
by Instituto de Pesquisa e Estratégia Econômica do Ceará (IPECE). The
time series lengths vary for different variables, thus affecting the sample
size according to the estimated model.

4.2. Climate and corn
In this section we report the estimation results for the first step of our
strategy. Table 1 summarizes the results. We use the natural logarithm of
the economic variables, and estimate the corresponding elasticities. The
same is not true for SSTAs, since the variable for the Atlantic Dipole can
take either positive or negative values. The variables used in the regressions
are:
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Climate variables
Nino 3: sea surface temperatures of the Nino 3 region of the central portion

of the equatorial Pacific Ocean.14 Data refer to average sea surface
temperatures during the raining season in Ceará (February through May)
at year t.

Dipole: difference between average sea surface temperatures from the
south and north Atlantic Oceans (south–north). Data refer to average
sea surface temperatures during the raining season in Ceará (February
through May) at year t.

Dipole2: squared Atlantic Dipole. Data refer to average sea surface
temperatures during the raining season in Ceará (February through May)
at year t.

Economic variables
lYield: detrended logarithm of corn yield (tons per hectare) at time t.
lPrice: detrended logarithm of prices of corn (R$ per Kg of July of 2001) at

time t.
lIncome: proxy for logarithm of income at time t.
lIncd: proxy for differential of logarithm of income time t (lIncd = lIncomet –

lIncomet–1).
lIncd1: proxy for differential of logarithm of income at time t – 1 (lIncd1 =

lIncomet–1 – lIncomet–2).
lSoy Price: logarithm of price of soybeans, a substitute for corn, at time t.
lSoy Price lag: logarithm of price of soybeans at time t – 1.
lCattle Price: logarithm price of ton of bovine cattle at time t.

Exogenous instruments
iv1: logarithm of price of corn at time t – 1.
iv2: logarithm of bovine cattle stock at time t.
iv3: logarithm of poultry stock at time t.
iv4: logarithm of price of ton of bovine cattle at time t – 1.
iv5: logarithm of price of poultry a time t – 1.
iv6: proxy for differential of logarithm of income at time t–2 (lIncomet – 2 –

lIncomet–3).
iv7: proxy for differential of logarithm of income at time t – 3 (lIncomet–3 –

lIncomet–4).

Unfortunately, data for fertilizer costs are not available. However, we
do not expect this to introduce serious problems to our results, since local

14 A commonly used summary indicator for the ENSO phenomenon is the Southern
Oscillation Index, based on differences in pressure in Tahiti and the city of Darwin,
Australia. Estimation with the Nino 3 SSTs produced superior results. We attribute
this result to the fact that SOI is a summary statistic for ENSO phenomenon,
whereas the Nino 3 region might contain more specific information relevant to the
tele-connections between the Pacific Ocean and climate in Ceará. Souza-Filho and
Lall (2003) find a similar result in an application to streamflows into local water
reservoirs.
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experts indicated that the use of fertilizers by small farmers on rainfed corn
crops in Ceará is negligible.15

The second column of table 1 shows single equation OLS estimates for
the supply and demand equations, whereas the subsequent columns show
the estimated results for three instrumental variables models. An important
feature of the reported estimates is the robustness of the qualitative results
for the coefficients of the climate predictors. Even the naive single-equation
OLS estimator produces the expected signs for the climate predictors: The
El Niño effect negatively influences yield, and the Atlantic Dipole affects
yield in an expected non-monotonic way (see figure 5).

In the columns labeled IV-1 through IV-3 we report the results of the
simultaneous estimation of the system under different assumptions. Model
IV-1 is a parsimonious formulation, where supply depends on the price of
corn and climate determinants and demand is a function of price, income,
incremental income, and the price of cattle.

The rationale for the inclusion of incremental income at time t (lIncomet –
lIncomet–1) is that income shocks at time t relative to time t – 1 may influence
the demand for corn at time t. This is due to the smooth consumption
and permanent income hypotheses.16 Several studies addressed whether
rural households in less developed countries actually smooth consumption
and to what degree, and found evidence of some smoothing but to a
lesser degree than predicted by Pareto optimality.17 Testing whether small
farmers in Ceará smooth consumption over time is beyond the scope
of this study, nor do we have the necessary data to do so. We do not
pursue the estimation of the farmers’ behavioral equations to perform such
tests. We should thus be careful when interpreting the incremental income
coefficients. They suggest a statistically significant relationship between
income shocks and the demand for corn, but not much can be said about
how income shocks affect consumption or income in the long run. This is
because corn can be demanded for current or future consumption (savings
through increase in the stock of grains), and because we do not estimate
a set of behavioral equations consistent with a theoretical foundation for
consumption smoothing.

Models IV-1 through IV-3 also include the variable ‘lCattle Price’ in
the demand equation. Much of the local corn production is used to feed
livestock (cattle stock is correlated with poultry and goat stocks, two
other important livestock forms raised in the region). If the price of cattle
increases, farmers have more of an incentive to sell their livestock and thus
reduce their demand for corn. This effect seemed to be captured by the
regression results. All variables in model IV-1 except for the logarithm of
price in the supply equation are statistically significant at least at the 4 per
cent significance level.

In model IV-2 we augment model IV-1 by including the logarithm of
price of soybeans, a typical substitute for corn, in the supply and demand
equations. We use price of soybeans at time t – 1 in the supply equation

15 Personal communication.
16 See for example Deaton (1992b).
17 See for example Fafchamps and Lund, 2003 and Deaton, 1992a.
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to capture the possible effect of this variable in the production decisions
of the farmer at the time of planting. These variables are not statistically
significant. This result is not surprising given the negligible importance
of soybeans production in Ceará. Perhaps more importantly, the estimated
coefficients and standard deviations for the price of soybeans help reinforce
the assumption that the market for rainfed corn in Ceará is mostly locally
based, with only limited external influence. This finding endorses the
treatment of the market for rainfed corn in the State as relatively competitive
and the estimation of the associated supply and demand model. It is pretty
clear that the inclusion of the variables for price of soybeans in model
IV-2 does not add to the results in model IV-1 and a more parsimonious
formulation should be favored here.

Lastly, in model IV-3, we include the proxy for income shock ‘lIncd1’
at time t – 1 in the supply equation. This variable tries to capture the
effect of income shocks at the time farmers make their planting decisions.
Because corn is important for the local farmers’ incomes and is also used
for subsistence, shocks in income may affect the decision to plant, consume,
or change the stock of grains to be consumed later. That is, ‘lIncd1’ tries to
capture the effect of consumption and income smoothing on production
and supply of corn. The coefficient for this variable is only statistically
significant at the 11 per cent confidence level. Although its introduction does
not change the qualitative results from the previous models with respect to
the climate variables, the coefficient for price in the supply equation now
has the wrong sign. As in the case of the effect of income shocks on demand,
the significance of the estimated coefficient does not constitute a test of the
consumption smoothing or permanent income hypotheses.

The estimated coefficients for price in the simultaneous equation models
suggest that demand for corn is responsive to the price of this crop, whereas
supply is relatively insensitive to price variation in the corn market. Other
formulations – not shown here for space considerations – containing lagged
prices of corn in the supply equation were estimated to capture the effect of
this variable on production decisions during the planting season. However,
the results reinforce the finding that price variation does not play an
important role in the production decisions by the farmer. This result is not
surprising. The perception of local experts is that, everything else constant,
poor farmers have little to gain and a lot to lose if they refrain from planting
their small stock of grains in response to forecasted corn prices. Lagged
prices of corn are instead included in the matrix of exogenous instruments
in order to capture the possible albeit limited influence of past prices at the
national level on current prices.

Exogenous instruments included in the estimation of model IV-1 are
iv1 through iv7, lSoy Price, lSoy Price lag, and lIncd1. Model IV-2 was
estimated using iv1 through iv7 and lIncd1 as exogenous instruments,
whereas iv1 through iv7 appear as exogenous instruments in model IV-3.
Table 1 reports the Hausman specification test statistics contrasting
the instrumental variables coefficient estimates with OLS. Under the
null hypothesis that the residuals of the data generating process are
asymptotically independent of the matrix X of explanatory variables, both
OLS and the IV estimator produce consistent estimates, whereas if this
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assumption is not true the OLS estimator will be inconsistent and the IV
estimator will be consistent. The test statistics for models IV-1 through IV-3
suggest rejection of the null hypothesis at least at the 3 per cent confidence
level, thus lending strong support to our IV approach as opposed to OLS
regression.

The estimation of our simple model lends strong support to a sizable
link between global climate forces – represented by the Pacific and Atlantic
Oceans SSTAs – and the local market for rainfed corn. More specifically,
we estimate a linear relationship between tropical Pacific SSTAs and the
logarithm of corn yield in Ceará. Everything else constant, a one standard
deviation (approximately 0.60◦C or 1.08◦F) increase in the average sea
surface temperature of the Niño 3 region during the rainy season contributes
to an average decrease of 18 per cent of corn yield.18 The Atlantic Dipole
by contrast, affects corn yield in a quadratic form. For an important range
of the Atlantic Dipole, increases in this variable contribute to increased
production and lower prices. However, a strong Atlantic Dipole favorable
to precipitation in Ceará tends to cause crop losses and higher prices in the
State. This result is consistent with the smoothing spline curves depicted in
figure 5.

In summary, we took initial steps to establish the quantitative connection
between climate determinants and the rainfed corn market in Ceará. This
was the first step of our analysis. As we pointed out in the Peruvian
experience during the 1997/1998 El Niño, establishing the link between
climate variability and its impacts is crucial in justifying an action plan based
on climate forecasting. The next question we pose is whether currently
observed SSTs have any predictive power over future variations in corn
yield and prices. Given the relationship between rainfed corn production
and government expenditures on drought relief (section 3), this piece
of information could contribute to more efficient and expeditious public
policies to minimize the effect of droughts in Ceará. We turn to this question
next making use of the insights we obtained from the results in table 1.

4.3. Future corn yield and prices
The results from the previous section establish the link between climate and
the corn market in Ceará, thus allowing us to identify the main variables that
determine corn yield and price. We can now use the information on these
variables available at a given point in time to forecast corn yield and price
in Ceará. We use lagged economic variables combined with Pacific and
Atlantic Ocean SSTAs averaged during the November–January (NDJ) and
October–December (OND) trimesters prior to the harvesting season (July
and August). Simple and rank correlations of lagged STTAs and the corn
market (available from the authors upon request) indicate that the signal
from the Pacific Ocean seems to be stronger than that of the Atlantic Ocean
during these times of the year.

18 The average sea surface temperature for the Niño 3 region is 26.9◦C during the
February–May period. The strongest El Niño in our sample occurred in 1983 with
an increase of 3.06 standard deviations in the average sea surface temperature of
the Niño 3 region.
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Table 2. Regression summary – forecasting models

Variables I (NDJ) I (OND) II (NDJ) II (OND)

Log Yield
ISoy Price

lag
0.0048 (0.840) 0.0141 (0.542)

lInc1 0.0943 (0.441) −0.0053 (0.967) 0.0137 (0.924) −0.1383 (0.356)
lIncd1 −0.2544 (0.016) −0.2493 (0.021) −0.2095 (0.061) −0.1852 (0.099)
ICtl.pr.lag −0.1520 (0.314) −0.0118 (0.942) −0.0321 (0.846) 0.1727 (0.321)
Nino 3 −0.2284 (0.000) −0.2234 (0.000) −0.2182 (0.000) −0.2176 (0.000)
Dipole 0.1065 (0.017) 0.0918 (0.048) 0.1023 (0.04) 0.1026 (0.040)
Dipole2 −0.0943 (0.014) −0.1138 (0.010) −0.0899 (0.035) −0.1254 (0.007)
Constant −0.1690 (0.885) 0.2775 (0.816) 0.1198 (0.933) 0.8778 (0.547)
R2 0.4093 0.3888 0.347 0.3524
MSE 0.0946 0.0978 0.0971 0.0963
X2 36.02 (0.000) 33.09 (0.000) 23.91 (0.001) 24.49 (0.001)
N 52 52 45 45
Log Price
ISoy Price

lag
−0.0049 (0.685) −0.0077 (0.515)

lInc1 −0.0423 (0.545) −0.0211 (0.767) 0.0538 (0.462) 0.0945 (0.220)
lIncd1 0.0265 (0.660) 0.0276 (0.651) −0.0253 (0.658) −0.0303 (0.600)
lCtl.pr.lag 0.0571 (0.508) 0.0288 (0.751) 0.0103 (0.903) −0.0454 (0.612)
Nino 3 0.0682 (0.006) 0.0663 (0.010) 0.0750 (0.010) 0.0740 (0.014)
Dipole −0.0355 (0.165) −0.0297 (0.258) −0.0266 (0.296) −0.0266 (0.301)
Dipole2 0.0255 (0.246) 0.0211 (0.396) 0.0275 (0.206) 0.0335 (0.159)
Constant 0.1716 (0.796) 0.0753 (0.911) −0.7907 (0.274) −0.9842 (0.189)
R2 0.1489 0.1358 0.1835 0.1764
MSE 0.0309 0.0313 0.0252 0.0255
X2 9.10 (0.168) 8.17 (0.226) 10.12 (0.182) 9.64 (0.210)
N 52 52 45 45

p-values in parentheses.

Attempting to forecast demand and supply proved to be a rather difficult
exercise – one that is unlikely to be successfully carried out without more
detailed spatial information and better knowledge of climate prediction
than is currently available. However, the climate signature on future corn
yield and prices is evident months before the harvesting season. Because
of that, we pursue the estimation of the reduced model for the future corn
market conditional on climate information rather than the forecasting of
the structural equations corresponding to those explored in section 4.2.

Table 2 summarizes the estimated coefficients of the reduced models
implied by the simultaneous equation models estimated in section 4.2.
Models I (NDJ) and I (OND) are derived from the parsimonious model
IV-1 and use average SSTAs for the November through January (NDJ) and
October through December (OND) periods, respectively. Because models
IV-2 and IV-3 imply the same set of lagged explanatory variables, they share
a common reduced model. Thus, models II (NDJ) and II (OND) are implied
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by IV-2 and IV-3 for SSTAs from the NDJ and OND periods, respectively.
Since models I (NDJ) and I (OND) do not rely on data on the price of
soybeans, we were able to expand the data set to include 52 observations
(from 1949 to 2000).

In addition to the lagged SSTAs for the Pacific and Atlantic Oceans, we
used log income at year t – 1 (‘lInc1’) and log income difference at t – 1
(‘lIncd1’) as proxies for lagged information on farmers’ income. We also use
log price of soybeans (models IV-1 and IV-2) at t – 1 (‘lSoy Price lag’) to
capture the possible influence of the price of this substitute on the farmers’
decisions. These pieces of information are available at the time of planting,
months before actual yield and prices are realized.

The results from table 2 suggest that there is little difference between the
two sets of models (I and II) in terms of significance of the coefficients.
Furthermore, the more parsimonious formulations (models I(NDJ) and
I(OND)) rely on a longer time series. We thus focus on the parsimonious
models. The coefficients for the climate variables in the yield equation are
significant at the 2 per cent level or lower when we use SSTAs for the NDJ
trimester. A one standard deviation increase in the average Niño 3 SSTAs
during the NDJ trimester (approximately 0.9◦C or 1.62◦F) contributes to a 23
per cent drop in yield in the following harvesting season. The El Niño effect
is already noticeable during the OND trimester, around 6 months before the
harvesting season. The influence of the Atlantic Dipole is also clear early
on. A one standard deviation increase in the average Atlantic Dipole for
the NDJ period contributes to a 11 per cent increase in corn yield in Ceará
(impact evaluated at the average value for the NDJ Atlantic Dipole). The
contribution of the quadratic term for the Atlantic Dipole to corn yield is
already noticeable in the OND trimester. Finally, although our main interest
is in predicting corn production we include the results for the estimated
equation for prices for completeness. In fact, combined information on the
impact of climate on corn yield and prices offers additional insight into
the vulnerability of small corn producers to severe climate. A one standard
deviation increase in the Niño 3 SSTAs contributes to only a small expected
increase in the price of corn (7 per cent) compared to a large expected
decrease in yield (23 per cent).19 The signs of the coefficients for the climate
variables in the price and yield equations are consistent with a competitive
equilibrium model, where the supply function shifts due to a movement
in the climate variables. We note however, that only the El Niño effect
appears as statistically significant at conventional levels in the NDJ and
OND periods.

To obtain further insight into the forecasting potential of our analysis,
we use a semi-parametric forecasting algorithm to predict corn yield
conditional on current climate information. The estimation algorithm is
as follows:

(i) We estimate 52 regressions corresponding to model I(NDJ). Each
regression omits the information for a different year t in the sample
ranging from 1949 to 2000.

19 Average SSTs in the Niño 3 region during the NDJ trimester is 25.2◦C.
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(ii) We estimate the conditional mean and quantiles of the distribution
of log corn yield using the k-nearest neighbors (k-NN) resampling
algorithm.

(iii) We assess the ability of the model to forecast corn yield for each year
of the sample, with special emphasis on years of severe droughts.

For each year t in the sample, the algorithm consists of identifying its k
nearest neighbors as the k years with the closest values for the explanatory
variables of the model (lInc1, lIncd1, lCtl.pr.lag, Niño 3, Dipole and Dipole2)
during the NDJ trimester. These neighbors are calculated from the distances
dit from year i to year t, whose corn yield we want to predict. Distance dit is
defined as

dit =
√

{(xt − xi)�}{(xt − xi)�}′

where xt is the (1 × p) vector of predictors for the year omitted from the
parametric regression, xi is a (1 × p) vector of predictors for the ith year from
the sample, and � is a (p × p) diagonal matrix whose elements in the main
diagonal are the estimated coefficients for the log yield equation estimated
in step (i), and the off-diagonal elements are zero. That is, we calculate the
weighted Euclidean distance between the predictor vectors for the years in
the sample and the omitted year, where the weights are the yield regression
parameters from step (i). Next, we use the distances dit to rank the set of k
nearest neighbors for each year of the sample. We then calculate the average
and quantiles of the log yield distribution based on the selected k nearest
neighbors and compare them to the actual log yield for the corresponding
year.

Figures 6 and 7 summarize the results. Figure 6(a) plots the mean squared
errors (MSE) for different values of k conditional on climate information
(solid line) and contrasts them to the unconditional MSE (dashed line). The
MSE for each value of k is computed based on the difference between the
predicted average log yield for each year and the actual log yield for
the corresponding year. Since the choice of k will determine the conditional
average log yield, we calculate a different MSE for each k. The unconditional
MSE is based on the difference between the historical average log yield and
the realizations for each year. All choices of k shown in the picture result in a
lower MSE relative to the unconditional MSE. The values of k corresponding
to the lowest MSE are 16 and 18. Between these two values, k = 18 produces
the highest correlation between the actual series and the predicted mean.20

Figure 6(b) plots Theil’s U coefficient of inequality. Theil’s U ranges from 0
to 1, with 0 indicating perfect forecast and 1 just the opposite. The calculated
Theil’s U coefficients for different choices of k range from 0.1369 to 0.1478
highlighting the good performance of our forecasting algorithm.

20 The correlation between the actual series and the predicted mean is 0.43 for the
entire sample and 0.58 for the period from 1980 to 2000, when the empirical
probability of severe droughts increased to 0.29, in contrast to 0.13 in the first 31
years of our sample. The correlation between the series and the predicted lowest
10 percentile for the last 21 years of the series is 0.69.
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Figure 6. Mean squared error and Theil’s U Coefficient for selected k.
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Figure 7. Observed and forecasted corn yield.
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Table 3. Ordered probit (Y = 1 (low), 2 (medium) and 3 (high corn yield levels))

Variables Coefficients dy/dx (1) dy/dx (2) dy/dx (3)

IInc1 0.4456 (0.293) −0.0956 (0.306) −0.0033 (0.924) 0.0989 (0.299)
IIncd1 −0.9644 (0.081) 0.2069 (0.082) 0.0071 (0.923) −0.2139 (0.054)
ICtl.pr.lag −0.5466 (0.285) 0.1172 (0.291) 0.0040 (0.923) −0.1212 (0.281)
Nino 3 (NDJ) −0.6335 (0.001) 0.1359 (0.004) 0.0046 (0.923) −0.1405 (0.000)
Dipole (NDJ) 0.3334 (0.043) −0.0715 (0.065) −0.0024 (0.923) 0.0740 (0.028)
Dipole2

(NDJ)
−0.3159 (0.009) 0.0678 (0.026) 0.0023 (0.924) −0.0701 (0.043)

Pseudo R2 0.187
Wald X2(6) 19.08 (0.004)
N 52

p-values in parentheses.

Figures 7(a) and (b) illustrate the performance of the forecasting
algorithm when k = 18. Figure 7(a) plots the actual log yield series
against the conditional (heavy dashed line) and marginal averages (solid
horizontal line). If we define a severe drought to involve a log yield
decrease of about 1 standard deviation or more from the expected mean,
then the model predicts 8 out of 10 droughts in the series.21 Figure 7(b)
shows the actual series and the conditional (heavy dashed lines) and
unconditional (horizontal dashed lines) 0.1 and 0.9 quantiles, thus depicting
the conditional and unconditional 80 per cent confidence intervals. A
notable feature of this graph is that the correlation between the lowest
conditional quantile and the actual series starting in 1980, when droughts
seem to have become more frequent, is 0.69.

Lastly, we highlight the probabilistic nature of any forecasting exercise
and consider information that might be directly valuable to policy makers.
To do that we estimate an ordered probit version of the yield equation
from model I(NDJ) with the dependent variable, de-trended log corn yield,
ordered in three categories: smallest 20 per cent values (10 smallest yields
or severe droughts as previously defined), middle 60 per cent values (32
‘typical yields’), and largest 20 per cent values (10 largest yields). The results
appear in table 3. The second column of the table shows the estimated
coefficients and their corresponding p-values. The lagged climate variables
are all statistically significant at conventional levels. Columns 3 to 5 list the
marginal effects for each category of the dependent variable. For example,
from the third column, a 1 standard deviation increase in the average Niño
3 SSTs during the November through January trimester (0.9◦C) increases
the probability of a severe drought by 14 per cent. The marginal effects for
the climate variables are statistically significant for extreme outcomes, that
is severe decreases in yield as well as large increases in yield, but not for

21 The 10 years of drought as defined above and the corresponding standard
deviations below the mean are 1958 (3.20), 1983 (2.31), 1997 (1.96), 1993 (1.81),
1998 (1.72), 1951 (1.64), 1981 (1.28), 1953 (1.00), 1992 (0.94), and 1987 (0.93).
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typical yields. In other words, our model suggests that lagged SSTs contain
significant information for extreme corn yield outcomes in the subsequent
cropping season.

Finally we reinforce the warning that climate forecasts (or any
probabilistic forecasts) should not be oversold to the public and policy
makers. ‘Scientists should label their forecasts as experimental and should
include warnings about the potential misuses of a probability based El Niño
forecast’ (Glantz, 2001: 117, 118). Often times, due to poor communication
between the scientific community and/or biased perception of probabilistic
information, decision makers interpret a probabilistic forecast as a
categorical statement that a climatic outcome will materialize (Glantz, 2001).
This may lead to an uninformed decision process at the policy making level,
and the loss of credibility of potentially valuable scientific forecasts in the
long run.

5. Concluding remarks
In this paper, we have explored the connection between climate prediction
and corn yield in the state of Ceará, Brazil. Corn is a key indicator of socio-
economic stress brought about by droughts in the State and in the Brazilian
semi-arid region. Because corn production is correlated with inter and
intra-government drought-related transfers, and because these transfers are
discretionary and usually take place after a drought-driven socio-economic
crisis is verified, reliable forecasts of local corn production provide an early
foundation for more efficient allocation of drought-relief resources. More
specifically, reliable early warnings on the increased probability of crop
losses may buy local governments more time to plan and negotiate the
appropriation of drought-relief resources, and to help them plan out the
distribution of these resources.

We forecast corn yield conditional on climate information (sea surface
temperatures of selected regions of the Pacific and Atlantic Oceans) in
two steps. We first investigate the link between climate determinants and
the local corn market. We then use this information to implement a semi-
parametric approach to forecast the expected variation in corn yield and
the probability of occurrence of extreme events conditional on climate
predictors.

Our results first establish the link between climate and the corn market
in Ceará. The importance of the Pacific Ocean many miles away from
the Brazilian semi-arid region is remarkable. A 0.6◦C (1.08◦F) increase in
the average SST of the Niño 3 region during the rainy season in Ceará
contributes to a 18 per cent decrease in corn yield. The Atlantic Ocean may
exert a counterbalancing or reinforcing influence on the local corn market
given the Pacific Ocean SSTs.

Our second set of results indicates that we successfully forecast extreme
variation in corn yield. More directly relevant to this study, our model
predicts 8 out of 10 severe droughts in the period from 1949 to 2000.
By classifying yield into three categories (low, medium, and high levels)
we verify the good performance of the forecast model in both extreme
categories. This not only indicates the ability of the model to predict extreme
droughts, but also suggests that an extension to this research could focus on
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the economic impact of extreme precipitation, especially in the large cities
on the coast of the Brazilian Northeast region. These localities could benefit
from an early warning system and the ability to prepare for severe storm
events.

Using the Southern Oscillation Index (SOI), another measure of the ENSO
effect, produces inferior results relative to those relying on Niño 3 SSTs.
The choice of a specific measure to explain the teleconnection between
the ENSO effect and corn yield increases the chance that we produce a
spurious result to be unveiled as a longer time series becomes available in
the future. However, there are two important reasons why we do not expect
this to be the case. First, the model exhibits good out-of-sample properties
as discussed in section 4.3. Second, different El Niños may involve different
ocean dynamics and different warming of different regions of the tropical
Pacific Ocean.22 These specificities might be relevant to the teleconnection
between climate and corn in Northeast Brazil, but might be left out if we
focus on a summary measure of the ENSO effect such as the SOI.

In summary, we find encouraging evidence that information on SSTs
can effectively be used for prediction of socio-economic impacts of severe
climate, provided the nature of the forecasts are properly used by policy
makers and communicated to stakeholders. The nature of a probabilistic,
as opposed to a categorical (dry vs. normal vs. wet) forecast, should
be explicitly recognized and well communicated to end users. As other
commentators have observed, poor communication between the scientific
community and end users has caused costly misunderstandings and
undermined the use of potentially valuable climate forecasts. The notion of
risk is familiar to most decision-makers and communication of the forecasts
presented in this paper should take advantage of this fact by exploring how
often the algorithm correctly/incorrectly predicts droughts.

Our analysis for the state of Ceará can be extended to the rest of the
Brazilian semi-arid region. It can also be extended beyond droughts and
agricultural production. The impacts of climate oscillations around the
globe are varied, including, in the case of ENSO, droughts in southeastern
Africa, Australia, and Southeast Asia; increased temperatures in India,
Northeast and Northwest North America; typhoons in Southeast Asia;
and the outbreak of tropical diseases such as malaria. These may result
in thin insurance markets in the presence of correlated risks for large areas,
increased energy consumption, large expenditures on the mitigation of
the effect of catastrophic climatic events, and pressures on national and
world prices and economic activity. To the extent that these impacts can be
forecasted, defensive actions can be better planned and implemented. This
paper demonstrates how these forecasting models could be estimated.
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