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animals requires the use of non-invasive sampling meth-
ods that allow the quantification of Hg without euthaniz-
ing the individuals of these endangered species (Bezerra et 
al. 2012; Rodriguez et al. 2019). Many authors worldwide 
(Sakai et al. 2000; Day et al. 2005; Bezerra et al. 2012, 
2013) have successfully used scutes to monitor Hg in these 
chelonians. For example, scutes were used to characterize 
bioaccumulation and patterns of temporal exposure to Hg 
and other trace metals in sea turtles (Schneider et al. 2015; 
Bezerra et al. 2015; Barraza et al. 2019; Villa et al. 2019) 
collected for two populations of C. mydas from a foraging 
ground within the Great Barrier Reef (Howick Island group) 
as well as from Shoalwater Bay in Australia and their results 
provided robust proxies of exposure conditions. Similarly, 
Hg concentrations in scutes reflected exposure levels in C. 
caretta from different nesting areas in northeastern Brazil 
(Barrios et al. 2019).

Sea turtle carapace scutes grow in a layered pattern and 
with multiple growth areas (Achrai and Wagner 2013), 
because of that, the accumulation of elements can vary 
across carapace areas (Day et al. 2005; Mattei et al. 2015). 
Structurally, the carapace is subdivided into four areas and 

Introduction

The ubiquitous presence of mercury (Hg) in the oceans trig-
gered many studies aimed to understand the impact gener-
ated by anthropogenic Hg on the marine biota. In this sense, 
the use of biological biomonitors has been a valuable tool to 
monitor and assess spatial and temporal trends of Hg con-
centrations but also because organisms respond to the bio-
logical available Hg fraction allowing a direct association 
with exposure risk and toxicity (Needham et al. 2008; Evers 
et al. 2018).

Widely distributed, long-live species, such as sea turtles, 
have a lifespan compatible with the residence time of Hg 
in the oceans, being especially interesting for biomonitor-
ing purposes (Evers et al. 2018). However, targeting these 
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Scutes present very complex morphologies with different growth rates at different areas of the carapace that can change 
the accumulation process of essential and non-essential metals. To infer the effects of morphology and growth on Hg 
concentrations in scutes, we mapped them in the carapace of one individual of four species of sea turtles sampled along 
the Brazilian coast. The results showed that Hg concentrations were higher in the vertebral scutes of Chelonia mydas and 
Eretmochelys imbricata suggesting variation in growth rates of different carapace areas since the vertebral area is the first 
to develop prior to costal areas. Caretta caretta and Lepidochelys olivacea did not show differences between carapace 
areas. The preliminary data from this pilot study indicate that vertebral scutes may be suitable for monitoring Hg in C. 
mydas and E. imbricata, since they reflect longer exposure period. A species-to-species comparison of Hg concentrations 
is not possible due to the small number of sampled individuals, nevertheless, E. imbricata showed remarkably lower Hg 
concentrations compared to the other three species. Further studies are required for all four species, with a larger number 
of individuals, preferentially of varying life stages, due to the unknown effects of different diets, Hg exposure, and migra-
tion histories.
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each with a specific number of scutes depending on the spe-
cies (Wyneken 2001). It also presents many submicron lay-
ers stacked to form sulfur-rich keratinous scutes that cover 
the dorsal bone. Some of the most essential components of 
scutes are amino acids such as cysteine, which provide stiff-
ness and strength to the scute structure (Achrai and Wagner 
2013). Cysteine, the only proteinogenic thiol-containing 
amino acid, and its side chain is the principal coordination 
site for Hg+ 2, as well as organic species like methylmercury. 
In addition, Hg ions can even be occluded within disulfide 
bridges connecting adjoining polypeptide chains. This high 
affinity of Hg to the thiol group helps the formation of che-
lating agents immobilizing Hg and eventually serving as a 
detoxification mechanism (Warner and Jalilehvand 2016 
and references therein), as well as potentially providing a 
record of the feeding-related Hg incorporation (Toni et al. 
2007; Schneider et al. 2015). The strong binding capacity of 
Hg+ 2 is in agreement with the relatively low (< 5%) propor-
tion of methyl-Hg previously reported in scutes of some of 
the studied species (Barrios et al. 2019).

Since its formation, the carapace shows quite complex 
aspects that may influence the accumulation of Hg as well 
as other essential and non-essential metals. The carapace of 
sea turtles, except for the leatherback (Dermochelys coria-
cea), not included in this study, is composed of vertebral 
scutes (V), right costal scutes (RCS), left costal scutes 
(LCS), left marginal scutes (LMS), and right marginal 
scutes (RMS). The number of scutes in each of these posi-
tions varies according to the species. Therefore, to under-
stand how much variation exists within a single individual, 
this paper maps the Hg concentrations across the vertebral, 
costal, and marginal areas of the carapace in four species of 
sea turtles, occurring along the Brazilian northeastern coast.

Materials and Methods

All procedures and analyzes were carried out within the cur-
rent norms of the Brazilian environmental legislation, under 
the authorization of the System of Authorization and Infor-
mation in Biodiversity - SISBIO, License No. 66,837 and 
66,088 (2022) from the Ministry of the Environment.

Sampled individuals were found dead on the beach 
between 2019 and 2020. Scutes samples were collected 
from the carapace of four sea turtles in the coastal region of 
Ceará (Praia do Futuro, 3°44’56” S, 38°26’48” W) (green 
turtle, Chelonia mydas and loggerhead turtle, Caretta 
caretta) and of Pernambuco (Porto de Galinhas, 8°29’45” 
S, 34°59’37” W) (hawksbill turtle, Eretmochelys imbricata 
and olive ridley sea turtle, Lepidochelys olivacea). All loca-
tions are in northeastern Brazil (Figure S1). The areas of 
Pernambuco and Ceará are important nesting and feeding 

sites for C. caretta and E. imbricata (Marcovaldi et al. 2010; 
Moura et al. 2012). In the case of C. mydas, although its pri-
ority spawning areas are located on oceanic islands (Bellini 
et al. 2013), the non-reproductive individuals, especially 
juveniles, use foraging grounds along the Brazilian coast 
(Proietti et al. 2009). The presence of dead individuals of 
L. olivacea, on beaches of Pernambuco, a species which 
occurs mostly on offshore areas, has been associated with 
incidental capture by the pelagic longline fishery (Sales et 
al. 2008). Environmental Hg levels reviewed by Marins et 
al. (2004) shows Pernambuco with higher degree of con-
tamination, based on geoaccumulation index, due to indus-
trial effluents, compared to Ceará coast, that shows lowest 
contamination index.

The individuals were classified as adult, subadult, 
and juvenile based on carapace size, suggesting a similar 
omnivorous diet (Bjorndal 1997; Vélez-Rubio et al. 2016). 
C. mydas is the only species to present an ontogenetic diet 
change during its growth, being omnivorous in the juvenile 
phase and herbivorous in the adult phase. Thus, according to 
studies that report an omnivorous diet in individuals smaller 
than 50 cm (Velez-Rubio et al. 2016), the individual used in 
this study probably also had an omnivorous behavior. Sex 
could not be determined. However, available studies on the 
Hg distribution between males and females in the four spe-
cies showed no significant differences in Hg concentrations 
(Bruno et al. 2021, and references therein). Therefore, we 
do not consider these variables to affect the observed Hg 
concentrations.

Curved carapace length (CCL) and curved carapace 
width (CCW) were recorded for each individual. Stranded 
animals were in different decomposition states, especially 
those from Pernambuco to a point to avoid sampling most 
scutes showing visual signs of structural alteration. Fortu-
nately, those from Ceará were of recently dead animals with 
the entire carapace intact. The rarity of stranded animals, 
abrasion, and scavengers hampered the sampling of a larger 
number of animals.

The scutes were collected by carefully scrapping only 
the keratinized layer, with a dissection knife, avoiding the 
skin and dermis tissues. Since the number of scutes in each 
of position of the carapace varies according to the species 
our sampling strategy reflected these differences (Fig.  1). 
Two samples were collected from each scute. In C. mydas, 
five vertebral scutes, four right costal scutes, four left costal 
scutes, one right and one left marginal scutes were collected 
(n = 30). In C. caretta, five vertebral scutes, five right and 
five left costal scutes were collected (n = 30). In E. imbri-
cata, three vertebral scutes, two right and two left costal 
scutes, one right and one left marginal scutes were collected 
(n = 14). In L. olivacea, four left costal scutes, three right, 
two left marginal scutes were collected (n = 18). In the case 
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of L. olivacea, E. imbricata, and C. caretta, it was not pos-
sible to collect all scutes from each area because of lim-
ited time and available personnel. Although E. imbricata 
and L. olivacea were fresh dead individuals, some vertebral 
and lateral scutes were missing. In the case of C. mydas, it 
was not possible to sample all the scutes from the marginal 
region due to the small size of the individual.

After removal, scutes were carefully washed with dis-
tilled water, dried with clean tissue paper, and transported 
in iceboxes to the laboratory. Prior to analysis, scutes were 
rinsed with distilled water and scraped with a plastic scrub-
bing pad to remove any remaining particles, following the 
procedures detailed in Day et al. (2005). Scute samples were 
then soaked in 50 ml Milli-Q® water in a pre-cleaned glass 
vial and immersed in an ultrasound bath for 20 min. Finally, 
the samples were dried in an oven at 60  °C for 12  h for 
moisture removal.

For total Hg quantifications, samples (0.5 g d.w.) were 
placed in Teflon tubes containing 10 mL of concentrated 
nitric acid (HNO3 65%) for one-hour pre-digestion. Total 
sample digestion was carried out in a microwave furnace for 
30 min at 200 °C. After cooling, 1 mL of hydrogen peroxide 
(H2O2, 35%) was added. The final extract was transferred 
and diluted in volumetric flasks to 100 mL, with Milli-Q® 
water. All materials that came into contact with the samples 
were washed with acid and duplicate procedural blanks 
were included in each digestion bath. The total Hg fraction 
obtained with this method includes all inorganic and organic 
Hg species present in scutes. Quantification of total Hg 
was obtained by cold vapor generation atomic absorption 
spectrophotometry (CV-ASS) in a NIC RA-3 (NIPPON®) 
spectrophotometer. The average linearity coefficient of the 
calibration curves (R2) obtained was 0.9998 ± 0.0001. The 
mean limit of detection (LOD) of the method was 0.03 ± 0.01 
ng g− 1, calculated as three times the standard deviation of the 
reagent blanks divided by the slope of the calibration curve. 
The validation of the methodology was obtained by using 
certified reference material (fish muscle ERM-BB422), with 
a mean recovery of 92.1 ± 5.6% (n = 10).

Statistical analyses were performed using R 4.1.2 (R 
Development Core Team 2021). Data normality was tested 

using the Shapiro-Wilk test. To test for differences in Hg 
concentrations between carapace areas (e.g., Vertebral, 
Costal, Marginal), parametric ANOVA tests and non-para-
metric Kruskal-Wallis tests were conducted according to 
conformity to normality assumptions. When differences 
were found to be significant, post hoc tests (Tukey’s and 
Mann-Whitney’s tests) were conducted to identify where Hg 
concentrations differ among carapace areas. All tests were 
conducted assuming a significance level of 99% (p < 0.01). 
All Hg levels are reported as ng g− 1 on a dry weight basis. 
For the statistical analyses were used the Hg concentrations 
for the two samples were collected from each scute.

Results

Biometric data of the sampled individuals vary according 
to species: C. mydas presented CCL of 38  cm and CCW 
of 35 cm, classified as a juvenile according to Jensen et al. 
(2016); C. caretta presented CCL of 80  cm and CCW of 
76  cm, a sub-adult, according to Dood (1988); E. imbri-
cata presented CCL of 88.5 cm and CCW of 79.5 cm, an 
adult, according to Ferreira et al. (2018); finally, L. olivacea 
presented CCL of 74.5 and CCW of 72.7 cm also an adult, 
according to Márquez (1990).

Detailed results of Hg concentrations in the scutes of the 
four species can be found in Table S1. Preliminary inspection 
of the data indicated that Hg concentrations were not differ-
ent between left and right sides of costal and marginal scutes 
for all species, therefore we pooled the data for these areas. 
In summary, Hg concentrations found in C. mydas scutes 
varied from 317 to 485.6 ng g− 1 (n = 30) with an average of 
380.4 ± 63.2 ng g− 1 (Fig. 2). Hg concentrations were signifi-
cantly different among carapace areas in C. mydas (Kruskal-
Wallis, chi-squared = 21.1, df = 2, p < 0.01) but were higher 
in vertebral scutes (Mann Whitney post hoc test, p < 0.01) 
followed by marginal and costal areas between which no 
difference in Hg concentrations was observed (Mann Whit-
ney post hoc test, p > 0.01). Similarly, in E. imbricata, Hg 
concentrations varied from 5.7 to 17.5 ng g− 1 (n = 18) with 
an average of 10.8 ± 3.4 ng g− 1 (Fig. 2). Hg concentrations 

Fig. 1  Sampling map of carapace 
scutes in the four species of sea 
turtles. V: Vertebral, RCS: Right 
Costal Scutes, LCS: Left Costal 
Scutes, RMS: Right Marginal 
Scutes, LMS: Left Marginal 
Scutes. For every scute sampled, 
two samples were collected from 
different areas of the scute
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scutes that need to be assessed to establish an adequate sam-
pling methodology. Among these, a possible variation of Hg 
concentrations across carapace areas (scutes from vertebral, 
costal, and marginal areas), is of utmost importance. Mattei 
et al. (2015), for example, show the first mapping of the 
concentrations of eleven metals (Pb, Ca, U, Zn, Mn, Mg, Sb, 
Cr, Cu, Cd, and V) in the carapace of a juvenile individual 
of C. caretta sampled in the Mediterranean, and they also 
observed spatial differences. However, these authors did not 
report Hg concentrations, and unlike our work where we 
collected the keratinized layer, the samples were collected 
using core drill and probably also include different layers 
such as dermis and bone.

Our results showed that there is indeed a variation in Hg 
concentrations, with higher concentrations observed in ver-
tebral scutes when compared to other areas of the carapace 
in at least two of the studied species. The causes for this 
variation can be associated with the growth and ossification 
processes of marine turtle’s carapace, as was found by Mat-
tei et al. (2015).

The thickness of the scutes varies depending on their 
location in the carapace, whether in the vertebral, costal, 
or marginal areas (López-Castro et al. 2014). In C. mydas 
and C. caretta, the vertebral area is the thickest and con-
sequently shows a longer historical record of environmen-
tal changes detectable through biochemical markers, stable 
isotopes, and trace metal concentrations (López-Castro et 
al. 2014). Thus, keratin layers sampled at different depths 

were significantly different among carapace areas of E. 
imbricata (ANOVA: F2,16 = 6.8, p < 0.01) and higher in the 
vertebral area (Tukey post hoc test, P < 0.01) followed by 
marginal and costal scutes between which no significant dif-
ferences were observed (Tukey post hoc test, p = 0.08). In C. 
caretta, Hg concentrations varied from 86.0 to 407.8 ng g− 1 
(n = 30) with an average of 262.1 ± 87.5 ng g− 1 (Fig. 2). No 
significant differences in Hg concentrations between ver-
tebral and costal carapace areas were found for C. caretta 
(ANOVA: F1,28 = 4.1, p > 0.01) (Fig. 2). Lastly, Concentra-
tions of Hg in L. olivacea varied between 311.0 and 559.2 
ng g− 1 (n = 18) with an average of 434.8 ± 82.3 ng g− 1. No 
significant differences in Hg concentrations between verte-
bral and marginal carapace areas were found for L. olivacea 
(ANOVA: F1,16 =0.2, p = 0.67). Unfortunately, due to the 
small number of sampled individuals, a species-to-species 
comparison of the Hg content is not possible. Still, E. imbri-
cata showed remarkable lower Hg concentrations compared 
to the other three species, which will be briefly discussed in 
the following section.

Discussion

Scutes reflect internal Hg burdens by the good correlation 
of Hg levels between scutes and internal organs (Sakai et al. 
2000; Bezerra et al. 2013; Schneider et al. 2015; Villa et al. 
2019). However, there are still some aspects about the use of 

Fig. 2  Comparative boxplot of 
Hg concentrations in vertebral 
(VS), costal (CS), and marginal 
scutes (MS) of C. mydas (A), C. 
caretta (B), E. imbricata (C), 
and L. olivacea (D). The boxplot 
for C. caretta shows the outliers 
because it did not interfere with 
the statistical analyses
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bioaccumulation in sea turtles is slow and may turn eventual 
concentration differences negligible, the use of standardized 
sampling methodologies is still recommended (Day et al. 
2005). Thus, the area of the carapace that will be sampled 
has to be chosen depending on the objective of the study 
and target species to properly use scutes as a tool to monitor 
environmental changes on Hg concentrations and even the 
effects of ontogenetic changes and different diets on the Hg 
content and exposure of the different species of sea turtles.

Finally, it is well known that diet is the main source of Hg 
incorporation in marine organisms (Gray 2002). We found 
the Hg levels were in a similar range for all studied species, 
except in E. imbricata which presented very low concentra-
tions. Although our results for this single individual cannot 
be extrapolated to the species level, similarly low Hg lev-
els have been previously reported in scutes of E. imbricata 
(Escobedo-Mondragón et al. 2021, 2023). E. imbricata for-
age on a low trophic level, mainly on sponges, but also on 
other reef-encrusting organisms (Bjorndal 1997) which may 
or may not contain low Hg concentrations (e.g., Orani et al. 
2020 for sponges, and Rizzini et al. 2016). Therefore, it is 
necessary to further investigate the diet of the E. imbricata 
population from the present study to better understand these 
low Hg levels.

The mapping of Hg carried out in this work allowed us 
to understand the distribution of Hg in the vertebral, cos-
tal, and marginal areas. Future monitoring studies should 
consider the different growing areas of the carapace and 
choose the area of collection based on the specific study 
goals. Future studies should also prioritize the collection of 
samples, keeping the detailed clean protocols and sample 
handling, and whenever possible always in the same areas 
and depth of the carapace, avoiding inner tissues such as 
dermis and bone. This will facilitate comparisons across 
studies and considering the form of growth of the cara-
pace. Unfortunately, our results are based on the analysis on 
only one individual of each species, therefore, this limiting 
aspect shall be considered whenever monitoring strategies 
are planned.

In the case of C. mydas, the use of vertebral scutes is 
recommended for long-term studies as they show an older 
record of accumulated Hg. For C. caretta and L. olivacea, 
the results did not show significant differences between the 
costal and marginal areas of the carapace, as for C. mydas 
and E. imbricata. The lack of data for the vertebral area did 
not allow for a clearer idea of the Hg distribution pattern. It 
is recommended that future studies to carry out a more com-
plete initiative to determine whether there is the same Hg 
distribution pattern found in C. mydas and E. imbricata. In 
studies involving a large number of individuals, it is highly 
recommended that the sampling always be carried out in the 
same area of the carapace. Our results were based on two 

and locations may reflect different periods of deposition and 
accumulation of trace metals such as Hg (Day et al. 2005). 
Furthermore, the origin of the carapace is a very interesting 
factor that needs to be assessed. This structure is derived 
from its endoskeleton, where the vertebral area is ossified 
first, and then from this, the ribs originate (Hirasawa et al. 
2013; Mattei et al. 2015). Thus, the process of carapace for-
mation apparently may have a direct relationship with the 
magnitude of trace metal concentrations, as suggested by 
the different distribution of Hg concentrations observed in 
this present study.

Mapping of metal concentrations in the carapace is 
essential to understand its distribution and improve sam-
pling methodologies in these reptiles. Differences in metal 
accumulation across carapace areas can be explained by 
the progressive ossification of the carapace during growth, 
where the central part ossifies first, accumulating metals 
for longer periods and, therefore, showing higher concen-
tration (Mattei et al. 2015). While the coastal areas reflect 
the low concentrations that result from a relatively more 
recent exposure compared to the vertebral area (Mattei et 
al. 2015). According to these authors, the highest concentra-
tions of metals in vertebral scutes strongly correlated with 
the longer exposure time, relative to scutes in other areas of 
the carapace, 0.8 years in juveniles and 6.5 years in adults 
(Vander Zanden et al. 2013).

The distribution of Hg concentrations in the sub-adult 
individual of C. caretta from the present study did not dif-
fer across carapace area as observed by Mattei et al. (2015) 
for other metals. Scutes are continuously produced over the 
entire surface of the carapace; hence, as the animal grows 
and the bony shell increases in area, scutes become thicker 
over the older areas (e.g., vertebral area) while areas of 
recent growth expansion are covered only by thin, younger 
scute tissues (e.g., costal, and marginal areas). Scutes tissues 
are inert and, although are susceptible to wear and shedding, 
they retain a record of diet and feeding habitat, (Alibardi 
2005; Reich et al. 2007). Thus, individuals in different life 
stages may show a more recent keratin layer which in turn 
can generate differences in the pattern of metal concentra-
tion in the carapace and contribute to the difference between 
vertebral scutes and those from other areas.

It is widely known that sea turtles are endangered spe-
cies, which is why it is essential to find non-invasive and 
reliable methodologies that allow the use of these organ-
isms as monitors of Hg in oceans and coastal areas (Faust 
et al. 2014; López-Castro et al. 2014; Barraza et al. 2019). 
Our results showed spatial variation in Hg concentrations 
related to the form of carapace growth. Depending on the 
area where the scutes will be collected, a pattern of Hg con-
centration can be found that will be linked to older or more 
recent deposition, and therefore exposure, periods. Although 
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