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Urban Water Demand Modeling Using Machine Learning
Techniques: Case Study of Fortaleza, Brazil
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Abstract: Despite recent efforts to apply machine learning (ML) for water demand modeling, overcoming the black-box nature of these
techniques to extract practical information remains a challenge, especially in developing countries. This study integrated random forest (RF),
self-organizing map (SOM), and artificial neural network (ANN) techniques to assess water demand patterns and to develop a predictive
model for the city of Fortaleza, Brazil. We performed the analysis at two spatial scales, with different level of information: census tracts (CTs)
at the fine scale, and census blocks (CBs) at the coarse scale. At the CB scale, demand was modeled with socioeconomic, demographic, and
household characteristics. The RF technique was applied to rank these variables, and the most relevant were used to cluster census blocks with
SOMs. RFs and ANNs were used in an iterative approach to define the input variables for the predictive model with minimum redundancy. At
the CT scale, demand was modeled using HDI and per capita income. Variables which assess the education level and economic aspects of
households demonstrated a direct relationship with water demand. The analysis at the coarse scale provided more insight into the relationship
between the variables; however, the predictive model performed better at the fine scale. This study demonstrates how data-driven models can
be helpful for water management, especially in environments with strong socioeconomic inequalities, where urban planning decisions should
be integrated and inclusive. DOI: 10.1061/(ASCE)WR.1943-5452.0001310. © 2020 American Society of Civil Engineers.

Introduction

The management of water resources systems in rapidly urbanized
cities is challenging, especially in regions with high climate vari-
ability. Domestic water use is expected to grow significantly over
the next two decades in nearly all regions of the world, except in
some cities in developed countries (UNESCO 2018; Sauri
forthcoming). Freshwater availability will remain constant or de-
crease (UNESCO 2018), increasing the competition for water
and the vulnerability of water supply systems. The risk of water
scarcity requires strategies of water conservation or capacity expan-
sion, with the inclusion of alternative water sources. Accurate pre-
diction of water demand is crucial for effective long-term planning.
However, water demand is driven by complex, nonlinear interac-
tions between human and ecological systems that are not fully
understood (House-Peters and Chang 2011). Previous studies
showed that socioeconomic aspects influence domestic water
use (Matos et al. 2014; Nawaz et al. 2019), but this relationship
is distinct in each region.

Fortaleza, Brazil has a history of multiyear droughts and water
supply crisis. The city is supplied by multiple surface water reser-
voirs, which also are used for irrigation and industrial purposes.
Annual precipitation is low and highly variable; hence, water

availability is subject to climate conditions. To expand the supply
system’s capacity and to reduce its climate dependence, local man-
agers plan to install a desalination and wastewater reuse plants. The
capacity expansion plan consists of scheduled decisions about
when and which source to use in the next 30 years. Research is
needed to better understand how the complex interactions between
socioeconomic changes and water demand may develop over the
coming decades. Currently, managers predict water demand based
only on estimated population growth and the average income of
the neighborhoods. However, this approach neglects social hetero-
geneity in the neighborhoods and other aspects that might influence
water use (e.g., education and household composition). This study
provides a framework for water demand modeling using machine
learning techniques and explored the influence of socioeconomic
variables on the average daily consumption across Fortaleza.

There is a lack of studies that assess domestic water demand
in developing countries, where research is needed to develop
social-aware water allocation strategies (UNESCO-WWAP 2019).
Domestic water consumption in Brazil was explored in a few pre-
vious studies (Brentan et al. 2017; Dias et al. 2018; Sant’Ana and
Mazzega 2018; Garcia et al. 2019). However, they were limited to
the midwest and southern regions, which have a very different
climate and social context from Northeast Brazil.

Outside Brazil, different approaches have been used for water
demand modeling, such as regression-type methods, e.g., indepen-
dent component regression (Haque et al. 2017), multiple linear and
evolutionary polynomial regression (Hussien et al. 2016), ordinary
least-squares regression (Nawaz et al. 2019), Bayesian linear re-
gression (Rasifaghihi et al. 2020), linear mixed-effects (Romano
et al. 2014), autoregressive moving average (Gharabaghi et al.
2019), and agent-based (Xiao et al. 2018) models. Machine learn-
ing (ML) techniques have received increasing attention as research-
ers have come to understand that these algorithms effectively can
learn information from water demand data and capture nonlinear
relationships between water demand and relevant variables.
Lee and Derrible (2020) and Bolorinos et al. (2020) showed that
ML models outperform linear methods for prediction of
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residential water demand. Duerr et al. (2018) showed that ML can
be useful to quantify long-term uncertainty in water demand pre-
dictions. Data mining techniques also have been applied to cus-
tomer segmentation, i.e., to characterize groups of water users,
using smart meter data (Cardell-Oliver et al. 2016; Cominola
et al. 2018, 2019; Bolorinos et al. 2020).

The most popular machine learning methods in water demand
studies are artificial neural networks (ANNs), which long have
been used because of their excellent predictive ability (Vijai and
Sivakumar 2018). Prior research explored ANN models for predict-
ing 15-min (Guo et al. 2018), weekly (Bata et al. 2020; Adamowski
and Karapataki 2010), and monthly water demand (Firat et al.
2008; Altunkaynak and Nigussie 2017); residential water end use
(Bennett et al. 2013); and irrigation demand (Pulido-Calvo et al.
2007). Other studies combined ANNs with different methods to
improve water demand prediction, such as seasonal autoregressive
integrated moving average (Bata et al. 2020) and discrete wavelet
transform (Altunkaynak and Nigussie 2017).

Alternative ML techniques used to model water demand are sup-
port vector machines (Msiza et al. 2007; Brentan et al. 2017); genetic
programming (Liu et al. 2015; Yousefi et al. 2017); and tree-based
methods, such as regression trees and random forests (RFs) (Villarin
and Rodriguez-Galiano 2019; Bolorinos et al. 2020).

Random forest algorithms stand out in water science and hydro-
logical applications (Tyralis et al. 2019). They have been used
mainly for streamflow and water quality modeling (Yajima and
Derot 2017; Papacharalampous and Tyralis 2018). A few research-
ers applied this method to analyze variable importance for water
demand prediction (Villarin and Rodriguez-Galiano 2019; Brentan
et al. 2017) and short-term forecasting (Vijai and Sivakumar 2018;
Chen et al. 2017; Herrera et al. 2010).

ML techniques also are useful for pattern recognition. Self-
organizing maps (SOMs)—a type of neural network—have been
used in several water resources applications, such as ground
water–level forecasting modeling (Haselbeck et al. 2019), water
quality assessment (Li et al. 2018), and analysis of land-use changes
with satellite data (Qi et al. 2019). SOMs also were used to analyze
water consumption patterns (Brentan et al. 2017; Padulano and
Giudice 2018).

The modeling approach depends on the data available and the
planning horizon. ML methods are useful due to the lack of under-
standing of the underlying processes driving water demand
(Solomatine et al. 2009), but are sensitive to the data set size and
the choice of input variables. Lee and Derrible (2020) investigated
the role of data availability in water demand modeling; ML models
performed better when a larger number of explanatory variables were
considered. However, increasing the number of input variables means
increasing the number of model parameters, which could reduce the
accuracy of the model (Guo et al. 2018). Hence, variable selection is
an important step in the modeling process if the data set is extensive.

Long-term prediction usually is related to structural, social and
environmental variables, such as lot size, building density, educa-
tional level, and family size (Chang et al. 2010; Polebitski and
Palmer 2010). Social and structural dynamics might influence
changes in water-use behavior, as indicated by Gonzales and Ajami
(2017). Understanding these relationships is helpful for tailoring
demand-side management strategies and drought-related public mea-
sures (Hemati et al. 2016; Lindsay et al. 2017; Quesnel and Ajami
2017). However, this discussion has been limited mostly to the US
and Europe.

This study provides further insight into the application and in-
terpretation of machine learning methods for water demand mod-
eling, considering the implications of data availability and spatial
level aggregation on model performance. Previous studies focused

on evaluating the predictive power of ML models, and so far, there
has been little discussion of the individual effect of sociodemo-
graphic variables on water demand, especially in developing coun-
tries. We addressed this issue with the application the accumulated
local effects method (Apley and Zhu 2016) for interpreting black-
box models. Domestic water demand was analyzed with cross-
sectional data at two spatial levels, the census tract (CT) and the
census block (CB). Whereas at the census tract level (fine scale),
only 2 variables were available, at the census block level (coarse
scale), 18 explanatory variables were used. RFs were used to rank
the variables, and SOMs were used to cluster water demand based
on the sociodemographic variables. This approach allows the evalu-
ation of possible shifts in water consumption patterns based on
socioeconomic scenarios. A predictive model using an ANN was
built for both spatial levels. At the census block level, the iterative
input selection (IIS) method (Galelli and Castelletti 2013) was used
to select the input variables for the predictive model.

Study Area

The city of Fortaleza, capital of Ceará, is in the Northeast region
of Brazil. Fortaleza is part of the Metropolitan Region of Fortaleza,
which comprises 19 municipalities of Ceará. The territory is di-
vided into 119 neighborhoods, 3,043 census tracts, and 247 census
blocks [Fig. 1(b)]. The city is the fifth most populated in Brazil
and has the highest demographic density, with over 2.6 million
inhabitants distributed across 314.9 km2. There are 88 men per
100 women; 22.58% of the population is under 14 years old, and
6.58% of the population is over 65 years old. The population is
irregularly distributed: the number of inhabitants per neighborhood
ranges from 1,000 to 76,000; the most populous neighborhoods are
in the south, southeast, and northwest of Fortaleza.

The main river is Cocó, 50 km in length, which crosses the city
from north to south (changing to east-southwest) and drains about
60% of the water collected in the Metropolitan Region of Fortaleza
into the Atlantic Ocean. The Cocó watershed is the largest in the city
(485 km2) and has 18.7 km2 of vegetation, including mangroves,
dunes, and cerrado (Brazilian savanna). The coastline is 34 km long,
and the coastal plain has elevations of less than 200 m.

Fortaleza is characterized by a tropical wet and dry climate,
with an average monthly temperature between 24°C and 30.7°C
(IPLANFOR 2015). Interannual variability of annual precipitation
ranges between 500 and 2,800 mm, and 70% of the total precipi-
tation is concentrated in three months (February–April). The state
of Ceará has a long history of multiyear droughts, aggravated by
elevated evaporation rates and hydrogeological conditions unfavor-
able to groundwater storage. All these factors result in low water
availability and a vulnerable water supply system.

The local water company, Water and Wastewater Company of
Ceará (CAGECE), manages water supply and wastewater collec-
tion and treatment for the city. Fortaleza is supplied by eight storage
reservoirs, pump stations, and canals that transfer water from the
Jaguaribe River basin, through the Jaguaribe-Metropolitano hydro-
system [Fig. 1(a)]. Five of these reservoirs supply Fortaleza, cor-
responding to a capacity of 871 hm3, and the other three supply the
Jaguaribe basin, with a storage capacity of 10,241 hm3. Water use
in the Jaguaribe region is mainly for irrigation, which accounts for
71% of the system’s total demand.

The total water demand of the Jaguaribe-Metropolitano system
is estimated at 45.30 m3=s. The metropolitan basin main uses are
domestic, municipal, and industrial. The western part of Fortaleza
is the main industrial area of the region, with a water consumption
of 1.4 m3=s.
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Fortaleza had an uneven development process, especially because
the investments in urban household infrastructure and public facili-
ties did not follow the population growth. Whereas the wealthiest
areas received great improvements (e.g., pavement and electrical
lines) during the 1920s and the 1930s, the urban planners gave little
attention to the poorer areas of the city (IPLANFOR 2015).

In the past, recurrent and severe droughts induced human migra-
tion to Fortaleza. During the events of 1915, 1932, and 1942, the
federal government installed refugee camps in the suburban areas
to prevent migrants reaching the capital (Souza and Neves 2002). To-
day, these areas correspond to neighborhoods with high population
density and subnormal agglomerate concentration, such as Pirambú,
one of Latin America’s largest favela communities (Garmany 2011).

Furthermore, public services and employment opportunities are
concentrated in a few neighborhoods (central and eastern zones), re-
gions that have the highest per capita income rates of the capital.
Peripheral areas (western and south zones), on the other hand, lack
basic services, such as sewage and garbage collection, and job oppor-
tunities. The strong spatial concentration of income in Fortaleza aggra-
vates the urban violence rates and social tensions (IPLANFOR 2015).

Data

This research is a cross-sectional study that compares two spatial
levels of aggregation with different data availability: census tracts
(n ¼ 2,952), and census blocks (n ¼ 182). The data set of the CT
level included only 2 input variables [average per capita income,

and the Human Development Index (HDI)], whereas the data set
of the CB level included 18 variables (Table 1).

CAGECE provided a data set of monthly water consumption
over the year of 2010 for a total of 878,992 households. Data were
provided with a household identifier, and thus could be aggregated
spatially by census tracts and census blocks. The dependent vari-
able was average daily per capita consumption for 2010, because
explanatory variables were obtained for this year. We calculated
average daily per capita consumption by averaging monthly house-
hold water consumption in 2010 and dividing this by the population
in the census tracts and census blocks. Average daily per capita
water demand in the census tracts is presented in Fig. 2.

The explanatory variables were obtained from the 2010 census
conducted by the Brazilian Institute of Geography and Statistics
(IBGE 2010). The 2010 census collected extensive sociodemo-
graphic information of households—grouped into census tracts—
from more than 5,000 municipalities in Brazil.

At the census tract level, publicly available data are restricted to
household composition and per capita income. Household compo-
sition intentionally was excluded from the CT data set because this
model is meant to assess only socioeconomic aspects of the users.
Instead, we included the neighborhood HDI, calculated by the Eco-
nomic Development Secretariat of Fortaleza. The index is based on
the 2010 census and is the geometric mean of three indicators: aver-
age monthly income of population aged 10 years or older (income),
percentage of the literate population aged 10 years or older (edu-
cation), and percentage of the population over 64 years old living in
the neighborhood (longevity).

Fig. 1. (a) Jaguaribe-Metropolitano supply system; and (b) Fortaleza’s census tracts and census blocks.
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Detailed census data are released only on an aggregate level, for
geographic units containing at least 400 households. Census blocks
aggregate contiguous census tracts and are available for 23 Brazil-
ian metropolitan areas (PNUD, IPEA, and FJP 2014). More than
200 indexes are provided at this level, related to aspects of demog-
raphy, education, income, employment, housing, and vulnerability.
Most of the indexes are classified by sex and age; thus, to reduce
the number of variables, some of them were merged. The final data
set included the potentially relevant variables of each category,
reducing the indexes to 18 variables expected (Table 1). Variables
were chosen to assess socioeconomic inequalities and to explain
consumer behavior.

Demographic variables initially included 85 indexes, which
were narrowed to 5, assessing household composition; population
distribution across the city; and environmental health, represented
by life expectancy (Gulis 2000). The percentage of male residents
was excluded because it perfectly correlated with percentage of fe-
male residents (Pearson correlation coefficient ¼ 1) and would not
add information to the model.

Variables related to education assess different stages of formal
learning. The Brazilian education system is divided into two levels:
basic and higher education. Basic education includes three stages:
preschool (for children 0–5 years old), elementary school (for chil-
dren 6–14 years old), and high school or secondary education (for
children 15–17 years old). A high school diploma is mandatory for
admission to higher education.

The category of income included three variables. Those consid-
ered as living in poverty had a per capita household income equal to

or less than one-fourth the minimum wage, whereas those vulnerable
to poverty had a per capita household income of less than one-half
the minimum wage. These variables were included because average
per capita income alone could disguise information about the income
gap. Variables regarding basic services for adequate housing re-
flected the health condition of the inhabitants (Montgomery and
Elimelech 2007).

In the category of employment and vulnerability, the percentage of
the economically active population aged 18 or older accounted for
people in the job market or trying to join it. The Municipal HDI
(MHDI) reflected the three dimensions of the global HDI: longevity,
education, and income. HDI-longevity is measured by life expectancy
at birth. HDI-education is the geometric mean of two indicators: the
education of the adult population (Weight 1), and the school flow of
young population (Weight 2). HDI-income is the municipal per capita
income, including those who do not have any income.

Pearson’s parametric correlation coefficient was used to esti-
mate the association between per capita water consumption and
the independent variables and to further analyze the ranking pro-
vided by the RF (Fig. S1). Other than garbage collection service,
households with inadequate water supply and sanitation, and dem-
ographic density, all variables were associated strongly with water
consumption. Independent variables also correlated with each
other, such as per capita income, which was associated with life
expectancy at birth (r ¼ 0.74), percentage of college educated peo-
ple (r ¼ 0.94), and MHDI (r ¼ 0.81). Correlated variables usually
are avoided because they might contain redundant information, but
a high correlation does not mean a lack of variable complementarity

Table 1. Explanatory variables at CB level

ID Variable Unit Mean
Standard
deviation

Census tracts (n ¼ 2,952)
HDI Human development index N/D 0.362 0.194
Av. per capita income Average per capita income R$ 2,151.15 2,424.35

Census blocks (n ¼ 182)
Demographic variables

% female Female residents % 53.32 1.82
% 65þ 65 years old or older % 6.59 2.80
% 1–14 1–14 years old % 20.74 4.71
Dem. density Demographic density Hab=km2 14,451.05 8,617.47
Life expect. Life expectancy Years 75.25 3.53

Education
Exp. years of schooling Expected years of schooling Years 10.57 0.84
% 25þ w=elem. school 25 years or older who have completed elementary school % 62.65 15.61
% 25þ w=high school 25 years or older who have completed high school % 46.13 18.72
% 25þ w=college 25 years or older who have completed college % 12.95 13.27

Income
Av. per capita income Average per capita income R$ 830.70 728.35
% pop living in poverty Population living in poverty % 11.01 7.91
% pop vuln. poverty Population vulnerable to poverty % 30.54 16.90

Basic services for adequate housing
% pop w/bath. & runn. water Population living in households with bathrooms

and running water
% 95.35 2.83

% pop w/garbage coll. Population living in urban households with a
garbage collection service

% 98.60 1.96

% pop w=poor water & san. services People in households with inadequate
water supply and sanitation facilities

% 1.05 0.88

Employment and vulnerability
% 18+ econ. active Economically active population aged 18 or older % 49.02 4.53
% pop vuln. poverty + no elem.
education

People in households vulnerable to poverty in which
no one has completed elementary school

% 8.50 6.80

MHDI Municipal Human Development Index N/D 0.75 0.09

Note: Av. = average; Dem. = demographic; expect. = expectancy; Exp. = expected, elem. = elementary; vuln. = vulnerable; bath. = bathroom; runn. = running;
coll. = collection; san. = sanitation; econ. = economically; and Hab = Habitants.
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(Guyon and Elisseeff 2003). These variables were maintained be-
cause the initial intention of ranking the variables was to understand
the relationship between them and to find a reduced group
of variables that could explain water demand for clustering. In ad-
dition, the RF method is appropriate for dealing with correlation
(further explanation is provided subsequently). However, when se-
lecting the input variables for the predictive model, the IIS method
was used to avoid redundant information.

Methods

The methodology of this study was divided into three sections
(Fig. 3): (1) variable importance using a RF; (2) clustering and spa-
tial analysis of demand and sociodemographic characteristics with
a SOM; and (3) variable selection with the IIS method and predic-
tive model using ANN.

The first part of this study investigated which sociodemographic
characteristics drive consumer behavior and water consumption.
This analysis was performed at the census block level, which
had 18 explanatory variables. A RF was used to define variable
importance and to study the relationship between them. After de-
fining the most relevant sociodemographic variables driving water
demand, a SOM was used to cluster data and to visualize the spatial
patterns present in these variables. The census tract data also were
clustered, to compare spatial-level aggregation. The predictive
model was built using an ANN, and it was tested for both spatial

levels, CB and CT. The first considered the variables iteratively se-
lected with the RF and ANN models, whereas the last had only two
explanatory variables.

Algorithms and Model Specifications

Random Forest

A random forest (Breiman 2001) is a supervised learning algorithm
mainly used for regression and classification tasks. A RF is based
on the combination of many classification and regression tree mod-
els trained with bootstrapping aggregation. The combined result of
many decision trees is used for prediction. The general steps in con-
structing a random forest are (Hastie et al. 2009)
1. Draw a bootstrap sample of size an from the original data set.

These observations are used to build the tree.
2. Grow a tree (Tb) to the bootstrapped sample by recursively re-

peating the following steps for each terminal node of the tree
until the minimum node size (nodesize) is reached
a. Select a subset of variables at random among the original var-

iables. The number of variables to be drawn is denoted mtry.
b. Pick the best variable/split point among the selected variables.
c. Split the node into two daughter nodes.

3. Summarize over all trees. For classification trees, use the ma-
jority vote of the classes predicted by the trees. For regression
trees, use the average (Hastie et al. 2009)

Fig. 2. Average daily water consumption in 2010 in the census tracts of Fortaleza. (Data from CAGECE, unpublished data, 2010.)
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yðxiÞ ¼ f̂NRFðxiÞ ¼
1

N

XN
b¼1

TbðxiÞ ð1Þ

where xi = vector of independent variables; TbðxiÞ = single re-
gression tree grown by bootstrapped samples and a subset of
variables; and N = number of regression trees.
An important feature of random forests is the use of out-of-bag

samples (Hastie et al. 2009). The training set of each tree is selected
using a bootstrap, and the observations left out by the bootstrap
sampling are the out-of-bag sample. This sample is used for per-
formance evaluation, providing an unbiased estimate of the predic-
tion error (Genuer et al. 2010).

RFs are efficient and widely used for variable selection and pre-
diction. They are applicable to problems with nonlinear relation-
ships between the variables, and effectively can handle small
sample sizes (Biau and Scornet 2016). The tree-building process
of random forests implicitly allows for interaction and high corre-
lation between features (Ziegler and König 2014). Although vari-
able importance decreases when highly correlated variables are
added to a RF model, the relative position between the variables
is preserved (Genuer et al. 2010).

After growing each regression tree, the out-of-bag sample is
passed down the tree and the mean squared error (MSE) is com-
puted. To assess the importance of a specific predictor variable, its
values are permuted randomly for the out-of-bag sample, and the
MSE is computed again. The increase in the MSE (IncMSE) result-
ing from the permuting is averaged over all trees and is used to
measure the variable importance. Therefore, if a predictor is impor-
tant for the model, randomly assigning other values for that variable
should have a negative influence on prediction.

The IncMSE was used to rank the variables. Different criteria
were defined for variable selection: for clustering, 45% of the least
important variables were removed; for prediction, the IIS method
was performed.

The model was validated through leave-one-out cross-validation
to reduce bias in training data. In this approach, one data point is
used for validation, and the training set is composed of n − 1 sam-
ples, where n is the number of observations. The final error estimate
is based on the average of the results of all n tests (Witten and Frank
2016); for this study, the error estimate was based on the average
IncMSE for 182 tests. To obtain a stable solution and to assess the
variance of the measures, 100 runs of the model were performed,
and the median of the mean IncMSE was used to rank the variables.
Further details about the parameters of the RF model are presented
in Supplemental Materials Text S1.

Accumulated Local Effect

To assess the main effects of the individual predictor variables, they
were visualized with accumulated local effect (ALE) plots (Apley
and Zhu 2016). ALE plots describe how variables influence the
prediction of a machine learning model on average, and are appro-
priate for highly correlated inputs (Molnar 2019). To estimate local
effects, the variable is divided into many intervals and the differ-
ences in the predictions are computed. The grid that defines the
intervals consists of the quantiles of the variable distribution, to
ensure that each interval contains the same number of observations.
The uncentered effect for each variable is estimated as follows
(Molnar 2019):

~̂fj;ALEðxÞ ¼
XkjðxÞ
k¼1

1

njðkÞ
X

i∶xðiÞj ∈ NjðkÞ
h
f
�
zk;j; x

ðiÞ
Jay

�

− f
�
zk−1;j; x

ðiÞ
Jay

�i
ð2Þ

where k = number of intervals of variable x; n = number of obser-
vations in interval k; N = neighborhood, i.e., observations within an
interval; z = grid value; x = variable of interest; and f = predictive
function. This effect is centered so that the mean effect is zero

Fig. 3. Methodological steps.
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f̂j;ALEðxÞ ¼ ~̂fj;ALEðxÞ − 1

n

Xn
i¼1

~̂fj;ALEðxðiÞj Þ ð3Þ

The value of the ALE represents how much the output of the
model deviates from the average prediction at a certain value of
the variable of interest.

Self-Organizing Map

A self-organizing map clusters high-dimensional data vectors and
reduces them to a one- or two-dimensional map (Kohonen 1982).
The lattice of the grid can be either hexagonal or rectangular, but
hexagonal is better for visualization (Vesanto and Alhoniemi 2000).
The typical structure of a SOM consists of an input layer and an
output layer. The input layer contains one neuron for each variable
in the data set. The neurons in the output layer are connected to the
input neurons through adjustable weights; each neuron i has a
weight vector w ¼ ðwi1;wi2; : : : ;widÞ, where d is the dimension
of the input space. These neurons relate to their neighbors accord-
ing to topological connections, i.e., the map is neighborhood
preserving. The general steps in the learning algorithm of the self-
organized map are (Chaudhary et al. 2014)
1. Initialize the weight vectors wis of the m × n neurons.
2. Randomly select an input vector xðtÞ, which represents the pat-

tern that is presented to the neurons in the output layer.
3. Find the winner neuron c or the best matching unit based on the

minimum distance Euclidean criterion

c ¼ argminjjwiðtÞ − xðtÞjj ð4Þ
where ||.|| = Euclidean distance measure; and xðtÞ and wiðtÞ =
input and weight vectors of neuron at iteration t, respectively.

4. Update the weight vector of the neurons using the following
equation:

wiðtþ 1Þ ¼ wiðtÞ þ hc;iðtÞ½xðtÞ − wiðtÞ� ð5Þ
where hc;iðtÞ = Gaussian neighborhood function

hc;iðtÞ ¼ αðtÞ × exp

�
− jjrc − rijj2

2σ2ðtÞ
�

ð6Þ

where r = coordinate position of neuron on map; αðtÞ = learning
rate; and σðtÞ = neighborhood radius. Both αðtÞ and σðtÞ de-
crease monotonically. For all the input data, repeat Steps 2–4.
The main parameters of the SOM are the grid size, the training

rate, and the neighborhood size. There is no theoretical justification
in the literature for choosing the optimal grid size of the output
layer. Previous studies used different criteria (Kalteh et al. 2008),
but the general recommendation is to define the size by trial-and-
error (Kohonen 2014). The map quality can be evaluated through
the resolution of the cluster structures and the node counts, i.e., how
many samples are mapped to each output neuron. An ideal map size
does not have areas with large values or many empty nodes. A 6 ×
6 network (CB level; coarse scale) and a 12 × 12 network (CT
level; fine scale) were considered the most suitable for the problem.
Larger maps resulted in many empty nodes and/or fewer than two
data points per node. Further details of the parameters of the model
are presented in the Supplemental Materials Text S2.

Cluster Validation

Two cluster validity measures were used to choose the best number
of clusters: the Dunn index, and the silhouette index. The Dunn
index (Dunn 1974) is the minimum distance between observations

in different clusters divided by the largest intracluster distance. A
higher Dunn index indicates better clustering and smaller cluster
sizes. It is computed as

DI ¼ min1≤i<≤mδðCi;CjÞ
max1≤k≤mdiamCk

ð7Þ

where m = number of clusters; δðCi;CjÞ = dissimilarity function
between clusters Ci and Cj; and diamCk = diameter of a cluster
Ck. The dissimilarity function is defined as

δðCi;CjÞ ¼ minx∈Ci;y∈Cj
dðx; yÞ ð8Þ

where d = Euclidean distance. The diameter of a cluster C is de-
fined as the Euclidean distance between the two farthest points in-
side the cluster.

The silhouette index (Rousseeuw 1987) is given by

Si ¼
bi − ai

maxfai; big
ð9Þ

where a = mean Euclidian distance between an observation and all
other data points in the same cluster; and b = mean Euclidian dis-
tance between an observation and all other points in the next
cluster.

The silhouette coefficient is the mean of all samples in the data
set, and it reveals the capability of clustering similar objects in a
group and minimizing interclass dissimilarity. The values range
from −1 to 1, where S ¼ 1 corresponds to a high quality of cluster-
ing, and S ¼ −1 corresponds to false clustering. The silhouette plot
shows how close each point in one cluster is to points in the neigh-
boring clusters.

The clusters also were identified through a graphical method
based on the unified distance matrix (U-matrix), which shows
the Euclidean distance between output nodes of neighboring
map units.

Artificial Neural Network

Artificial neural networks are statistical models built through an
iterative self-learning process. An ANN is a network of weighted
connections between neurons (nodes). The weights are defined dur-
ing the training process, and are updated according to the chosen
algorithm. A network is composed of at least two layers: input and
output. A multilayer perceptron (MLP) network has at least one
hidden layer in addition to the input and output layers, with a non-
linear activation function. The general equation for an MLP is
(Bishop 1995)

yk ¼ fouter

�XM
j¼1

wð2Þ
kj finner

�Xd
i¼1

wð1Þ
ji xi þ wð1Þ

j0

�
þ wð2Þ

k0

�
ð10Þ

where yk ¼ kth output; fouter = output layer transfer function;
finner = input layer transfer function; w = weights and biases;
and i ¼ ith layer.

The domestic water demand was projected with a multilayer
perceptron network and trained with a back-propagation algorithm
(Rumelhart et al. 1986). Back-propagation is a supervised learning
method that adjusts the weights by minimizing the error between
the model output and the observed values. Determining the number
of hidden layers is a difficult task, and there is no general rule for
doing so (Reed and Marksii 1999), but one or two hidden layers
usually are enough to solve any nonlinear problem (Lippmann
1987). A multilayer perceptron with one hidden layer was used
in this study. Adding more hidden layers would increase not only
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computational time, but also the number of parameters, and a larger
training data set would be necessary.

At the census block level, the input variables were defined using
the IIS method. At the CT level, a k-fold cross-validation analysis
was conducted. In this approach, the data set is divided into k sub-
sets: k − 1 subsets are used to train the model, and the remaining
subset is used for testing. This process is repeated until all k subsets
are used for testing; then the average and standard deviation perfor-
mance are computed. This study used k ¼ 5.Because variables were
in different scales and units, data were normalized by min-max scal-
ing. The parameters used for performance evaluation were mean ab-
solute error (MAE), RMS error (RMSE), and R-squared (R2).

Iterative Input Selection

The IIS method, proposed by Galelli and Castelletti (2013), is a
tree-based method for the selection of inputs with minimum redun-
dancy, while keeping the most significant variables for prediction.
This study adapted the IIS approach to incorporate the RF and the
ANN models.

The algorithm is divided in three steps (Galelli and Castelletti
2013): (1) the IIS algorithm runs an input ranking algorithm to sort

the variables with a nonlinear statistical measure of significance;
(2) the first p variables in the ranking are individually used as the
input to a model-building algorithm, so that p single-input–single-
output (SISO) models are constructed, and their performance is
evaluated with a suitable metric, and the best-performing model
is added to the final selection of input variables; and (3) the selected
variables are used as an input to the model-building algorithm [multi-
input–single-output (MISO) model], and the residuals are calculated.

The residuals are used as the output variable in the first two steps
to ensure that the next selected variable will not contain redundant
information. These steps are iterated until either a repeated variable
is selected in Step 2 or the performance of the SISO model does not
improve significantly. The minimum improvement in significance
is defined by the parameter ε.

At each step, both the SISO and MISO models are evaluated
with a k-fold cross-validation approach. In this study, the metric for
evaluating model performance was the R-squared. Although the
original IIS approach uses a model-free input ranking algorithm,
here, the RF model was chosen, with IncMSE as the significance
measure, to be consistent with the first step of the methodology.
The parameters for the RF were the same as those described in sec-
tion “Methods.” Although this strategy might slow the algorithm, it

Fig. 4.Variable importance according to RF. Boxplots represent the variation in the average %IncMSE for 100 runs of the model. Variables are ranked
according to the median value of the importance measure. Table 1 describes the explanatory variables.
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Fig. 5. Accumulated local effect plots for the RF model.
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still provides the desired ability to detect nonlinear relationships
and to handle variables with different dimensionality. The
model-building algorithm was the ANN, with the parameters pre-
viously mentioned. A sensitivity analysis was performed to choose
the IIS method parameters. The number of SISO models evaluated
at each iteration pwas set to 1, 5 and 10; the number k for the cross-
validation was 2, 5, and 10; and ε varied between 0 and 0.1, with an
incremental value of 10−2.

Results and Discussion

Variable Importance

The variables were ranked according to the median of the increase
in MSE for 100 runs of the RF model (Fig. 4). The interquartile
range was small (less than 0.1) for all the variables, indicating that
the importance measure was stable. The median importance ranged
from 2.58 to 2.31 between the second and the eighth variables,
meaning that the relative position among them was irrelevant for
model interpretation.

Variables that assess household composition (percentage of eld-
erly and women) and education (percentage of residents with col-
lege degree) were the most relevant to water demand prediction in
Fortaleza. Life expectancy, percentage of children, and average in-
come also were of high importance. Variables with low correlation
(r < 0.2) to water demand, such as garbage collection coverage,
had low importance scores. Some highly intercorrelated variables
(r > 0.7) were ranked at the top, e.g., percentage age 65þ and per-
centage of females, percentage age 1–14 and percentage age 25þ
with college education, and percentage age 25þ with college edu-
cation and life expectancy.

The significance of household composition for water demand
forecasting was corroborated by several studies (House-Peters et al.

2010; Bennett et al. 2013; Matos et al. 2014; Hussien et al. 2016;
Villarin and Rodriguez-Galiano 2019). Life expectancy and the
presence of indoor bathrooms and running water might be useful
to assess quality of life. Furthermore, the latter has a direct relation-
ship with water demand.

The accumulated local effect plots were helpful to interpret the
effect of the explanatory variables on the average prediction of
water demand (Fig. 5). The average per capita income had a strong
positive effect on the prediction. The influence of income in water
use has been explored extensively in other studies (House-Peters
et al. 2010; Shandas and Parandvash 2010; Liu et al. 2015; Villarin
and Rodriguez-Galiano 2019). Households with higher income are
more likely to install water-saving devices and water storage units,
e.g., cisterns and water tanks (Grande et al. 2016). Although it
would be expected that these mechanisms would reduce household
consumption, past studies led to divergent conclusions (Olmstead
and Stavins 2009). High-income households are less likely to be
concerned about saving water than are low- and medium-income
households, who tend to maintain a lower consumption to avoid
water shortage.

Percentages of children and elderly had opposite effects on water
demand. The average prediction increased with increasing percent-
age of elderly (when above 4%), but decreased with increasing per-
centage of children. An inverse relationship between households
with children and water demand also was found in previous studies
(Schleich and Hillenbrand 2009; Hussien et al. 2016). However, dif-
ferent consumption patterns were detected in Spain (Martinez-
Espiñeira 2002), Portugal (Matos et al. 2014), and Italy (Musolesi
and Nosvelli 2007), where water use tends to decrease with age. A
positive relationship between percentage of elderly and the predic-
tions could imply an increase in water demand in the next 20 years,
because a demographic trend of population aging is expected in For-
taleza (Barreto and Menezes 2014).

Fig. 6. Dunn index and silhouette index for different number of clusters at the (a) census block level; and (b) census tract level. The chosen number of
clusters for each model are circled.
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Some of the variables had a very significant effect on prediction
after reaching a threshold, such as percentage of females, life expect-
ancy, MHDI, and percentage of adults who completed college and
elementary school. The effect of the presence of bathrooms and run-
ning water in the households on average water demand was more
significant when the percentage ranged between 88% and 93%.

The variables which decreased in the RF ranking had little effect
on the prediction. An increase in garbage collection coverage from
96% to 98%, for example, reduced average per capita water

demand by only one unit. Some of these predictors had a complex
relationship with the outcome and were difficult to interpret, such
as years of schooling, percentage of population vulnerable to pov-
erty + no elementary education, and demographic density.

Spatial Analysis of Water Demand

After removing 45% of the least important variables from the rank-
ing provided by the RF, the 10 remaining sociodemographic var-
iables at the CB level were used to cluster water demand using the

Table 2. Characteristics of SOM clusters defined using 10 most important explanatory variables at census block level

Variables

Cluster

A-CB (n ¼ 6) B-CB (n ¼ 30) C-CB (n ¼ 55) D-CB (n ¼ 46) E-CB (n ¼ 45)

Total area (km2) 16,655,727 46,821,907 72,779,209 60,424,798 101,088,280
Total population 127,415 298,058 637,127 496,293 767,285
Average water demand (L=day) 204.76 135.25 126.52 107.43 105.00
PELD (%) 9.89 9.84 7.18 5.70 4.18
COLL (%) 51.95 31.44 14.00 5.20 2.05
PFEM (%) 55.82 55.72 53.73 52.63 51.57
LIFEXP (years) 80.89 79.67 77.02 73.85 70.79
P1T14 (%) 14.29 14.57 18.62 22.60 26.38
APCI (R$) 3,622.77 1,593.81 803.31 479.12 342.57
P18EAP (%) 54.93 53.76 51.25 47.90 43.48
MHDI 0.925 0.860 0.786 0.708 0.643
BTHRW (%) 98.23 96.37 96.97 95.11 92.56
ELSCH (%) 89.67 82.08 70.32 55.73 43.81

Note: Except for area and population, variables are represented by mean value for all census blocks in each cluster. PELD = 65 years old or older; COLL = 25
years or older who have completed college; PFEM = female residents; LIFEXP = life expectancy; P1T14 = 1–14 years old; ACPI = average per capita income;
P18EAP = economically active population aged 18 or older; BTHRW = population living in households with bathrooms and running water; and ELSCH = 25
years or older who have completed elementary school.

Fig. 7. Clusters silhouette plot for (a) census blocks; and (b) census tracts aggregation. For each census block or census tract, a straight horizontal line
denotes the silhouette coefficient. Each object is shaded according to the correspondent cluster, and the dashed line represents the average silhouette width.
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SOM. The variables at the CT level (HDI and per capita income)
also were used to create clusters.

At the CB level, the Dunn index indicated that five or six clus-
ters were the best choice, but a larger silhouette coefficient was
obtained for five clusters [Fig. 6(a)]. Although two and three clus-
ters had larger silhouette coefficients, five clusters were preferred
because this was more convenient for the analysis of Fortaleza’s
heterogeneities. CB data presented rather low silhouette widths
(ranging between 0.2 and 0.5) [Fig. 7(a)], but the clusters were sub-
stantially different from each other, especially in percentage of fe-
males, percentage of college graduates, and average per capita

income (Table 2). For example, the average per capita income
in Cluster E-CB was less than 10% that of Cluster A-CB.

The SOMmap for CB data and its clusters are represented in the
U-matrix (Fig. 8). The heat maps in Fig. 8 shows the distribution of
the explanatory variables across the SOM. They reveal a direct re-
lationship between average per capita income, education level (per-
centage 25þ years of age with elementary school education and
percentage 25þ years of age with college education), MDHI,
and percentage of economically active population. These had an
inverse relationship with percentage of children. Percentage of fe-
males and elderly also had a direct connection.

Fig. 8. SOM heat maps for explanatory variables at census block level. The gradient represents the Euclidean distance between each node and its
neighbors: lighter shading indicates large distances and darker shading indicates small distances. Table 1 describes the explanatory variables.
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The CB cluster’s spatial distribution is represented in Fig. 9, and
their characteristics are listed in Table 2. Neighborhoods with high
HDI and elevated per capita income were clustered together (A-CB
and B-CB). These also were the areas with the highest water con-
sumption rates. Further comments on the cluster divisions are pro-
vided in the Supplemental Materials.

At the CT level, the silhouette coefficient indicated that two clus-
ters would be the best choice, but three, four, or five also were accept-
able [Fig. 6(b)]. The largest Dunn index was obtained for five
clusters, but four clusters was considered the most suitable for further
analysis. The four clusters at the CT level had moderate silhouette
values, with an average width of 0.39 and some misclassified CTs
(negative Si), especially in Cluster D-CT [Fig. 7(b)]. Overall, the CT
data set presented relatively good clustering.

The heat maps of the CT level SOM show a direct relationship
between HDI and average per capita income (Fig. 10). The clusters
were less representative than those of the CB level (Fig. 11), prob-
ably because only two variables were used to create them. Areas
with elevated average per capita income and HDI were assigned to
Clusters A-CT and B-CT, which also had elevated water consump-
tion (Table 3). Census tracts with medium water consumption were
clustered in C-CT. Cluster D-CT, which had almost 90% of the
population, incorporated census tracts with low per capita income
and water use.

To verify that clusters were a good representation of water de-
mand patterns, the water demand in each census tract and census
block was compared with the average water demand of their cor-
responding clusters and the relative error was calculated. The mean
relative error for each cluster is presented in Table 4. CT-level clus-
tering (finer scale) resulted in better separated clusters than did CB-
level clustering (coarser scale), but was worse for water demand
assessment (higher relative errors).

Although clustering could be used to improve prediction, this
would have decreased the ANN performance because some clusters
had very few data points (A-CB, for example, contained only six
census blocks). Sociodemographic-based clustering allows the in-
corporation of spatial heterogeneities in economic development
when projecting long-term water demand. Clustering at a fine scale
with fewer variables provided better separated clusters, but the
coarse scale was more convenient for urban planning and water
demand estimation.

Predictive Model

The input variables for the ANN model at the census block level
(ANN-CB) were chosen with the IIS method. The sensitivity analy-
sis (Table S1) indicated that the best performing selected models
were those with 5 SISO models and k ¼ 10 in the cross-validation.

Fig. 9. Clusters on the CB level defined by the SOM using the 10 most important explanatory variables for water consumption, defined by the RF.
Central areas of Fortaleza are highlighted.
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The performance was similar for a tolerance ε ranging between 0
and 0.03, all providing the same number of variable inputs. In the
final selection, ε was set to 0.01. The variables selected with these
parameters and the model performance obtained with the inclusion
of each variable are presented in Fig. 12. The first two variables
selected with IIS (average per capita income and percentage age
1–14) were at the top of the RF ranking, whereas the third (percent-
age of population living in poverty) had a rather low score. These
three variables can describe water demand in Fortaleza, with the
average per capita income functioning as a proxy for socioeconomic
aspects of the households, percentage age 1–14 describing demo-
graphic aspects, and percentage of population living in poverty add-
ing information related to the vulnerability of the population.

The performance of ANN models at the CT (fine scale) and CB
(coarse scale) levels is presented in Table 5. The results show that
the CT model had a slightly better performance than the CB model
in terms of R2. One explanation is that the larger number of obser-
vations in the CT data set benefitted the training process of the
MLP, which, as previously pointed out, requires large data sets. The
ANN-CB model had only 182 observations, whereas the ANN-CT
model had 2,952 and 2 independent variables.

Water-use patterns can differ depending on the aggregation
level, because households with very different consumptions could
end up in the same group. Bolorinos et al. (2020) also found that
ML models perform better at a finer spatial scale. They showed that
random forests not only outperformed linear models, but also had
superior accuracy when predicting water consumption at the indi-
vidual level. This finding differs from the results of other studies
that assessed water consumption at multiple spatial levels (Ouyang
et al. 2013). However, this study applied a linear model (linear

mixed-effects and ordinary least-squares regression), which has
better performance when more spatial homogeneous data are used.
For machine learning methods, the amount of data is determinant to
model performance, so aggregating information might reduce the
learning power of the model. The influence of data set size and the
number of variables for ANN models also was pointed out by Lee
and Derrible (2020), who showed that fewer explanatory variables
are preferred when considering the same data set size.

In terms of R2, both predictive models were able to explain only
part of the residential water demand. Even at the CB scale, at which
many variables were available, the best performing model had an
R2 of 0.34. This result suggests that socioeconomic factors alone
are not enough to predict water demand, and additional exogenous
variables might be necessary. However, there are other possible ex-
planations. The original time series might contain noise or a com-
ponent that cannot be explained with known variables. Applying a
filtering technique before calculating average daily water demand,
such as singular spectrum analysis, could solve this problem. In
addition, the predictive model could be improved by testing addi-
tional statistical learning techniques or by using an ensemble
method. Further investigation is recommended to address these
issues.

Conclusion

In this study, three ML techniques were used to assess urban water
demand in Fortaleza, Brazil: random forests, self-organizing maps,
and artificial neural networks. Two spatial levels were addressed:
census blocks at the coarse scale, and census tracts at the fine scale.

Fig. 10. SOM heat maps for explanatory variables at the CT level. Table 1 describes the explanatory variables.
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The first had 18 sociodemographic explanatory variables, whereas
the second had only 2. A RF model was used to define the most
influential variables at the CB level, and this ranking was used for
clustering. The IIS method, which was built using a RF and an
ANN, was used to choose the best input variables for predicting
water demand.

The features with the highest importance included those re-
lated to household composition (percentage age 65þ, percentage
of females, and percentage age 1–14), percent of college gradu-
ated inhabitants and life expectancy. The clustering analysis with
self-organizing maps provided some interesting insights into the
socioeconomic heterogeneity of Fortaleza. There is a distinct spa-
tial gradient across the city in terms of sociodemographic

characteristics and water demand: central and eastern zones, with
high water demand, have better education and health conditions,
whereas southern and western regions, with reduced water de-
mand, have low per capita income and HDI. Nonetheless, hetero-
geneities in water demand are present in the central areas, and
these must be taken into consideration in urban and water resour-
ces planning. The input variables selected for the ANN-CB
model, with reduced redundancy and maximized information, in-
dicated that average per capita income, percentage age 1–14, and
percentage of population vulnerable to poverty provide a fair ex-
planation of water demand in Fortaleza.

The aspects influencing water consumption still are not com-
pletely understood, and machine learning (ML) methods are useful

Fig. 11. Clusters defined by the SOM using the explanatory variables of the CT level model (HDI and per capita income).

Table 3. Characteristics of SOM clusters defined using explanatory variables at census tract level

Variables

Cluster

A-CT (n ¼ 24) B-CT (n ¼ 204) C-CT (n ¼ 128) D-CT (n ¼ 2,596)

Total area (km2) 2,640,250 14,700,981 27,919,873 248,262,919
Total population 16,522 134,297 98,534 2,170,488
Average water demand (L=day) 197.94 182.07 136.80 94.03
MHDI 0.829 0.815 0.362 0.322
APCI (R$) 15,122.85 8,145.50 4,647.49 1,437.09

Note: Except for area and population, variables are represented by mean value for all census tracts in each cluster.
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for identifying behavior patterns. Data availability has a strong in-
fluence on the best approach for the modeling. If the data set con-
sists of high-dimensional data (in terms of the number of variables),
a variable selection method should be considered. The number of
observations can influence model performance; hence, spatially ag-
gregated data might reduce prediction accuracy. However, a coarse
scale might provide better insight into spatial analysis of water de-
mand patterns. Features such as the accumulated local effect plots
can be useful for interpreting black box models.

This study provided a better understanding of the influence of
socioeconomic variables on the water demand of Fortaleza. The
results are important not only for prediction, but also for designing
targeted water conservation or pricing policies. Further studies
could address temporal changes of water demand and scenarios
of economic development to support utilities in their long-term
planning.
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