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Abstract
Climate variability highly influences water availability and demand in urban areas, but 
medium-term predictive models of residential water demand usually do not include climate 
variables. This study proposes a method to predict monthly residential water demand using 
temperature and precipitation, by combining a novel decomposition technique and gradient 
boost regression. The variational mode decomposition (VMD) was used to filter the water 
demand time series and remove the component associated with the socioeconomic charac-
teristics of households. VMD was also used to extract the relevant signal from precipitation 
and maximum temperature series which could explain water demand. The results indicate 
that by filtering the water demand and climate signals we can obtain accurate predictions 
at least four months in advance. These results suggest that the climate information can be 
used to explain and predict residential water demand.

Keywords  Water demand · Seasonal forecast · Gradient boosting · Variational mode 
decomposition

1  Introduction

A primary concern of climate change and variability is how they will affect water demand 
and availability in the next decade (Milly et al. 2008; Jiménez Cisneros et al. 2014). Spa-
tial and temporal variability of precipitation and temperature might cause changes in the 
intensity and frequency of extreme events (Orlowsky and Seneviratne 2012). In urban 
systems, there is also the additional challenge of increasing urbanization and water use. 
Water resources planning should address accurate prediction of water demand, whether the 
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objective is to expand the capacity of the supply system or to implement water conserva-
tion measures (Olmstead 2014).

Accurate forecasting of residential water demand is of special importance for the deci-
sion-making process, as researchers have shown it to be correlated with climate (Maidment  
and Miaou 1986; House-Peters and Chang 2011; Adamowski et  al. 2013; Chang et  al.  
2014). Specifically, it presents an inverse relationship with precipitation and a direct rela-
tionship with temperature (House-Peters and Chang 2011; Adamowski et al. 2013). Many 
other elements influence water demand patterns, such as demographic, social, and eco-
nomic aspects of households (Chang et al. 2017; Chu and Quentin Grafton 2019; Villarin  
and Rodriguez-Galiano 2019; Lee and Derrible 2020; Carvalho et  al. 2021). These vari-
ables are associated with water demand trends and are usually predicted with scenario- 
based simulations.

Past research has indicated that water demand is strongly dependent on past use (Duerr 
et al. 2018) and that it can be predicted only one month in advance. However, they also 
concluded that medium- and long-term forecasts could be improved by adding covariates. 
Short-term water demand forecasting, i.e. hourly to daily forecast, has been well explored. 
Lee and Derrible (2020) evaluated twelve statistical models for residential water demand 
prediction, including eight machine learning techniques; gradient boost regression outper-
formed all the models. In their study, two scenarios of data availability were compared, and 
the one with a higher number of socioeconomic and climate exogenous variables provided 
better predictions.

Several studies have explored climate influence on residential water demand (Adamowski  
et al. 2013; Parandvash and Chang 2016; Zubaidi et al. 2020; Rasifaghihi et al. 2020; 
Fiorillo et al. 2021). Parandvash and Chang (2016) used a structural time series regres-
sion model to assess the effect of climate change on per capita water consumption and 
projected an increase of up to 10% in the water demand of Portland, in the United States, 
for the 2035–2064 period. Adamowski et  al. (2013) and Zubaidi et  al. (2020) used  
decomposition techniques—wavelet transform and singular spectrum analysis, respec-
tively—to detect interactions between climate and water demand. They found that 
decomposing time series into different components is a useful approach for filtering 
relevant information from exogenous variables. Haque et  al. (2014) and Rasifaghihi 
et  al. (2020) provided long-term probabilistic forecasts of urban water demand, con-
sidering future climate projections. Some authors have investigated the joint influence 
of weather and socioeconomic aspects of households on water consumption (Fiorillo 
et al. 2021).

To the best of our knowledge, the current models in the literature are not able to 
address the influence of climate on the medium-term forecast of water demand in dry 
regions. Our objectives are to (i) remove low-frequency variability and noisy signals 
from temperature and precipitation time series, (ii) extract the seasonal component of 
water demand, and (iii) design a model able to predict residential water demand up to 
12 months in advance, considering the influence of precipitation and temperature vari-
ability. We do this by using an innovative approach that combines an intrinsic and adap-
tive decomposition method coupled with a regression machine learning model and use 
Fortaleza, Ceará – a region frequently affected by drought – as a case study. The vari-
ational mode decomposition (VMD) method used in this study was designed to concur-
rently estimate the components of a signal and properly deal with noise (Dragomiretskiy  
and Zosso 2014). VMD was applied to extract the seasonal component of water 
demand, removing the signals unrelated to climate variability, and relevant signals from 
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temperature and precipitation time series. Gradient boost regression was employed to 
capture the relationship between filtered signals of water demand and climate, which is 
long known to be nonlinear (Maidment and Miaou 1986).

The study offers some important insights into tactical decisions on urban water sup-
ply planning. The predictive model can be coupled with seasonal climate forecasts to 
assess future water demand and to guide the decision-making process.

2 � Study Area and Data

The city of Fortaleza was used as a case study for the proposed model. Fortaleza is 
in the Northeast region of Brazil and is the fifth most populated city of the country, 
with over 2.6 million inhabitants. The region suffers from high climate variability and 
recurrent droughts, directly affecting Fortaleza’s water supply. The most recent drought 
lasted seven years, starting from 2012 until 2018 (Pontes Filho et al. 2020). The rainy 
season occurs between February and May (Fig. 1) and the maximum temperature ranges 
from 30 to 33 °C during the year (Fig. 2).

Monthly residential water demand data from 2009 to 2017 was provided by the Water 
and Wastewater Company of Ceará. Data was provided at the household level, in cubic 
meters per month, and it was averaged over the number of consumers. Precipitation and 
maximum temperature time series were obtained from a conventional meteorological 
station maintained by the Brazilian National Meteorology Institute.

Fig. 1   Monthly average precipitation in Fortaleza for the period between 2009 and 2017
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3 � Methods

3.1 � Variational Mode Decomposition

Signal decomposition is a useful approach for filtering and capturing information from 
time series. The empirical mode decomposition (EMD) (Huang et al. 1998) is a famous 
time–frequency analysis used to process nonstationary and nonlinear series. Although this 
technique is simple and robust, there are a few limitations, such as the mode mixing prob-
lem, due to intermittent signals and noise, and the endpoint effect (Gao et al. 2008). In 
addition, EMD lacks an appropriate mathematical theory basis. Some methods have been 
developed to solve these problems, such as the ensemble EMD (EEMD) (Wu and Huang, 
2009), the complementary EEMD (Yeh et al. 2010), and the complete EEMD with adap-
tive noise (Torres et al. 2011). However, they were not able to address the mode mixing 
issue for all signals.

The variational mode decomposition is a non-recursive decomposition method devel-
oped by Dragomiretskiy and Zosso (2014) to properly address the sensitivity to noise and 
sampling of EMD. The VMD algorithm decomposes a signal into intrinsic mode func-
tions (IMF), which are amplitude-modulated frequency-modulated signals. Each mode 
is assumed to be compact around its center frequencies and they are concurrently esti-
mated. The constrained variational problem solved by VMD to decompose a time series 
is given by the following equation:

(1)min{uk},{�k}

�
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‖�t

��
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j
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Fig. 2   Monthly maximum temperature in Fortaleza for the period between 2009 and 2017
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where {uk} are the estimated modes, and {ωk} their center frequencies, k is the number of 
IMFs, δ is the Dirac function, t is the time, j2 = -1 and * denotes convolution. For a com-
plete description of the algorithm, see Dragomiretskiy and Zosso (2014).

VMD has three main parameters: the number k of IMFs, the quadratic penalty term α, 
and the convergence tolerance ε. To find the parameter k, we followed the approach sug-
gested by Zuo et al. (2020), which is based on the observation of the center frequency of 
the last IMF. After defining an initial value for k, we look at the amplitude spectrum; if 
this decomposition mode presents the aliasing phenomenon, k is reduced by one and the 
analysis is repeated. A sensitivity analysis was performed to choose the best values for the 
quadratic penalty and the tolerance.

3.2 � Gradient Boosting Regression

Gradient Boosting is a statistical model for function estimation based on a sequential 
ensemble of weak learners (Friedman 2001). In this method, the weak learner – usually 
a decision tree – is first used to predict an output variable y with a set of explanatory 
variables x. Then, the weak learner (gn) is used to predict the residuals of the initial 
model, and this procedure is repeated until the loss reaches a threshold or a maximum 
number of models is built (N). Predictions are multiplied by a learning rate or shrinkage 
parameter ν to slow down the procedure and to increase the number of weak learners in 
the model:

The learning rate can vary between 0 and 1 but usually ranges from 0.1 to 0.3 (or less). 
The predicted value is added to the output of the previous model:

Loss is minimized following a functional gradient descent algorithm. For regression 
tasks, the usual loss function is the mean squared error:

The gradient descent algorithm is used to optimize the parameters of the predictive 
model by finding the local minimum of the loss function:

The main parameters of the gradient boosting model are: (i) the number of trees, which 
defines the number of iterations; (ii) the tree depth, which influences the complexity of 
the tree; (iii) the learning rate, and (iv) the minimum number of observations in a node to 
result in splitting. In this study, we set the learning rate to 0.1 and the number of observa-
tions per node to 10. We tested different combinations of the tree depth (1, 2, and 3) and 
the number of trees (50, 100, and 150). The model parameters were tuned using fivefold 
cross-validation: the combination of parameters that provide the best performance across 
the cross-validation results is chosen.

(2)fn(x) = � ∗ gn(x)

Fn(x) = Fn−1(x) + fn(x)

(3)L(f ) =
1

2
(y − F(x))2

(4)fn(x) = −
�L(f )

�F
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3.3 � Hybrid VMD‑GBR Model

To check the stationarity of the signals, the Augmented Dickey-Fuller (ADF) test was per-
formed. This test assumes a unit root for the univariate time series, i.e., it tests the null 
hypothesis that α = 1 in the following equation:

The inputs for the predictive model were selected using the mutual information (MI) 
between the signals of the weather variables and the filtered water demand and the partial 
autocorrelation function (PACF) plots of each decomposed signal of water demand. The 
PACF approach is commonly used for streamflow forecasting (Ali et al. 2020; Feng 2020). 
The confidence interval for the PACF corresponds to [− 1.96√

n
,
1.96√

n
] , where n is the length of 

the training set; the significant lags are the ones that fall out of this interval.
The MI metric accounts for the interactions between two random variables without 

assuming linearity or continuity. Basically, the larger the value of MI, the closest the rela-
tionship between the variables and the amount of information that one contains about the 
other. MI is based on the concept of Shannon entropy, which measures the uncertainty of a 
variable. The MI between two variables X and Y is expressed as:

The methodology of the VMD-GBR model can be summarized as follows:

Step 1:    Decompose the water demand, precipitation, and maximum temperature time 
series into additive intrinsic mode functions using VMD. The parameter k is defined by 
observing the power spectrum of the last IMF of each decomposed signal, which should 
not present a center frequency alias (Zuo et al. 2020). The quadratic penalty term α and the 
convergence tolerance ε are chosen with sensitivity analysis on model performance.

Step 2:    Estimate the deterministic component of the signals of water demand using 
the Augmented Dickey-Fuller (ADF) test and reconstruct the time series using only the 
remaining signals.

Step 3:   Detect the most relevant IMFs of the weather variables by calculating the mutual 
information between each of them and the reconstructed signal of water demand. These 
will be inputs for the predictive model.

Step 4:   In addition to the IMFs selected in the previous step, choose the lagged inputs for 
the predictive model by observing the partial autocorrelation function of the water demand 
IMFs. The IMF corresponding to the trend component is not included in this analysis.

Step 5:   Normalize all data using the min–max normalization:

Step 6:    Split the dataset into training and testing (here, we used 80% for model train-
ing and 20% for testing). The input variables are the lagged IMFs of water demand and 

(5)ΔYt = c + �t + �yt−1 + �1ΔYt−1 + �2ΔYt−2 +⋯ + �pΔYt−p + et

(6)I(Y;X) =
∑

x�X

∑
y�Y

(x, y)log log

(
p(x, y)

p(x)p(y)

)

(7)xnorm =
x − min(x)

(x) − min(x)
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the most relevant IMFs of weather variables. In this study, different combinations of the 
model parameters were tested, namely, the number of trees, the tree depth, shrinkage, and 
the number of observations in the terminal nodes. The parameters are tuned using fivefold 
cross-validation in the training dataset and the model performance is evaluated using the 
testing dataset.

3.3.1 � Performance Assessment

Model performance was evaluated with three measures: R-squared, Mean Absolute Error 
(MAE), and Root Mean Squared Error (RMSE).

where yi is the observed water demand at month i, ŷi is the predicted water demand at 
month j, and n is the number of months in the prediction horizon.

4 � Results and Discussion

The residential water demand time series was decomposed into four signals to avoid the 
aliasing effect observed in the last IMF when k was set to five (Figs. 3 and 4). Follow-
ing the same approach, the precipitation and maximum temperature time series were 
decomposed into three IMFs each (Figs. 5 and 6).

The MI metric indicated that the second IMF of both maximum temperature and pre-
cipitation were the ones to contain the most information on the water demand series 
(Table  1). The autocorrelation functions of these signals present a seasonal pattern 

(8)R2 =

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi −

−
y
i)
2

(9)MAE =

∑n

i=1
��̂yi − yi

��
n

(10)RMSE =

√
∑n

i=1

(̂yi − yi)
2

n

Fig. 3   Power spectrum of IMFs 4 (left) and 5 (right) of water demand time series. The aliasing effect can be 
observed in the IMF5, where the center frequency overlap
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where the peaks and the troughs are six months apart, while the third IMF does not 
seem to have a seasonal pattern. This might indicate that the last IMF of each series 
contains noise and thus could not directly influence demand patterns, while the second 
corresponds to a periodic signal.

The second IMF of water demand decomposition corresponds to the trend compo-
nent. The decreasing trend in residential water demand after 2015 could be associated 

Fig. 4   Original and decomposed signals of water demand time series
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with conservation attitudes. After the 2012–2018 drought, the local water company 
implemented a contingency tariff to encourage a reduction of at least 20% in consump-
tion. Socioeconomic factors, such as income, water price, and household composition 
could also be associated with changes in water demand trends, as pointed out in previ-
ous studies (Parandvash and Chang 2016; Zubaidi et al. 2020). Demand-side measures 
and even mass media coverage of extreme events can also affect the behavior of this 

Fig. 5   Original and decomposed signals of mean precipitation time series
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particular signal of water demand (Bolorinos et al. 2020). Modeling this component was 
beyond the scope of this study.

The additional relevant inputs were defined based on the PACF of the decomposed 
signals of water demand (Fig. 7). Previous water demand has a great influence on future 
consumption and climate variables alone would not be able to provide accurate predic-
tions. The final dataset had 12 input variables.

Fig. 6   Original and decomposed signals of maximum temperature time series
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A sensitivity analysis on the performance of the VMD-GBR model for 1-month ahead 
predictions indicated the most suitable values for the quadratic penalty term and the con-
vergence tolerance, set to 10 and 10–5, respectively. Table  2 indicates the R2 values for 
different combinations of both parameters. After defining these parameters, the model was 
tested for predictions with leading times varying between one and twelve months.

Figure 8 presents the scatter plots of the testing set for each leading time. As it would be 
expected, the performance is worse as the leading time increases, but the model presents 
accurate predictions for 1, 2, 3, and 4-months ahead of water demand. Table 3 shows the 
R2, RMSE, and MSE for each leading time. The VMD-GBR model successfully addresses 
climate variability in water demand prediction and reassures previous findings that resi-
dential consumption is driven by precipitation and temperature patterns (Adamowski et al. 
2013; Parandvash and Chang 2016; Zubaidi et al. 2020).

Table 1   Mutual information 
between each decomposed signal 
and filtered water demand time 
series

Max Temperature Precipitation

IMF1 IMF2 IMF3 IMF1 IMF2 IMF3

0.07 0.22 0.06 0.07 0.11 0.05

Fig. 7   Partial autocorrelation plots of water demand IMFs

Table 2   R2 for different 
combinations of VMD 
parameters

α ε

10–5 10–6 10–7 10–8 10–12 10–15 0

10 0.719 0.714 0.705 0.705 0.705 0.705 0.705
20 0.680 0.697 0.697 0.697 0.697 0.697 0.697
50 0.711 0.700 0.700 0.700 0.700 0.711 0.700
100 0.675 0.675 0.675 0.675 0.675 0.675 0.675
200 0.710 0.710 0.710 0.710 0.710 0.710 0.717
500 0.323 0.323 0.323 0.323 0.323 0.323 0.323
600 0.307 0.307 0.307 0.307 0.307 0.307 0.307
700 0.276 0.276 0.276 0.276 0.276 0.276 0.276
800 0.282 0.283 0.283 0.283 0.283 0.283 0.283
900 0.273 0.273 0.273 0.273 0.273 0.273 0.273
1000 0.272 0.266 0.266 0.266 0.266 0.266 0.266
2000 0.192 0.185 0.185 0.185 0.185 0.185 0.185
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The importance measure of the input variables provides insight into the influence of 
climate variables in the prediction (Fig. 9). Although there is a large variance in the mean 
average MSE of the IMFs of temperature (tmpIMF2) and precipitation (precIMF2), they 
are amongst the top-ranked variables. This result confirms the hypothesis that residential 
water demand is driven by climate patterns.

Different from the application area of other researches mentioned here (Parandvash and 
Chang 2016; Rasifaghihi et al. 2020; Fiorillo et al. 2021), Ceará has a significant interannual 

Fig. 8   Scatter plots of the normalized fitted values of the VMD-GBR model and normalized observed data 
for the testing period for each leading time

Table 3   Performance metrics 
for the VMD-GBR model 
predictions during the testing 
period for different leading times

Lead time (months) R2 RMSE MAE

1 0.719 0.197 0.158
2 0.549 0.222 0.188
3 0.463 0.226 0.199
4 0.519 0.213 0.173
5 0.388 0.230 0.192
6 0.295 0.258 0.226
7 0.354 0.258 0.230
8 0.110 0.312 0.278
9 0.233 0.277 0.233
10 0.290 0.319 0.271
11 0.337 0.324 0.271
12 0.324 0.375 0.313
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variability of both precipitation and temperature, mainly due to the El Niño South Oscil-
lation and the Interhemispheric Tropical Atlantic Gradient (Hastenrath and Heller 1977). 
The region also presents intraseasonal variations related to the Madden–Julian Oscillation 
(Vasconcelos Junior et al. 2018). Although widely studied, these phenomena have complex 
interactions with precipitation that are still not completely understood by the scientific com-
munity. Hence, forecasting models that can properly detect seasonal variability of climate 
variables and their relationship with water demand can be of great value for operational 
management decisions and the adjustment of demand-side strategies.

5 � Conclusion

This study set out to design a predictive model of monthly residential water demand 
including climate variability. To do that, we applied a decomposition technique to remove 
the water demand component associated with socioeconomic and policy characteristics 
and a machine learning technique to create an autoregressive model. The methodology is 
applied in Fortaleza, Brazil, a region with an elevated interannual and intraseasonal climate 
variability.

The results show that applying VMD to filter the water demand signal is an effective 
approach for removing components that are not directly associated with climate variabil-
ity. Although the trend component could be associated with a response to drought, that is 
somehow dependent on climate, the effective implementation of water conservation poli-
cies and the change of habits in the households are more related to socioeconomic factors. 
The VMD-GBR model is suitable for regions affected by extreme events or complex cli-
mate variability.

Maximum temperature and precipitation were significant predictors of water demand 
and including their seasonal components as exogenous variables of the model improved 

Fig. 9   Boxplot of the increase in MSE obtained when each of the input variables was removed from the 
dataset, ranked according to the median value of its relative importance
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accuracy. The model is appropriated for at least 4 months-ahead predictions, with an aver-
age RMSE of 0.193. The methods used in this study may be applied to medium-term plan-
ning of water supply systems and to guide operational and tactical decisions of water com-
panies. The VMD-GBR approach can yet be coupled to seasonal climate forecast models 
and scenario-based predictions of the trend component of water demand. The findings are 
also useful to assess climate change impacts on future water demand, which could provide 
insight into policy design.
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