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a b s t r a c t 

The relative scarcity of water resources has encouraged cities to create mechanisms to control water demand and 

avoid water stress. In the decision-making process, water companies need to assess the price influence on water 

demand predictions to design better policies. The aim of this study is to estimate the medium-term effectiveness of 

the implementation of a contingent tariff and its consequences for water demand elasticity to price. A novel model 

that requires only secondary data is proposed, that can be useful for guiding the drought planning process. The 

methodology consists of a framework that provides monthly predictions of water demand at the household level, 

considering price, seasonality, and previous water use. The results indicated that the contingent tariff promoted 

a reduction of 11–17% in water demand, but at a higher cost for low income households. Also, reduction in water 

demand was found to be inelastic to price increase. Using google search hits as a proxy for public interest, we 

found that water cost has a higher influence on users’ decision to save water than drought awareness. 
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. Introduction 

The growing water demand associated with urbanization processes

as increased water stress and the risk of shortage in several regions

f the world ( McDonald et al., 2014 ). For some of them, the elevated

emporal and spatial variability in water availability offer an addi-

ional challenge to water supply management ( Orlowsky and Senevi-

atne, 2012 ; Pal et al., 2013 ; Campos et al., 2014 ). 

In this context, water companies and policymakers have been im-

lementing demand control measures, since increasing water supply

apacity is not always possible or effective ( Romano et al., 2014 ;

hittington and Nauges, 2020 ). A widely used approach is the adoption

f increasing block rates (IBR), which is expected to encourage rational

ater consumption ( Rietveld et al., 2000 ; Zhang et al., 2017 ). This kind

f policy is typical of regions affected by droughts and developing coun-

ries and has complex impacts on consumer behavior ( Rinaudo et al.,

012 ). Pricing strategies might also include tariffs that vary season-

lly with temperature and/or precipitation ( Pesic et al., 2012 ; Molinos-

enante, 2014 ) or adjusted with the level of water storage ( Chu and

rafton, 2019 ), and household size ( Arbués and Barberán, 2012 ). 

A less common strategy to reduce water use under drought condi-

ions is the implementation of penalty fees for those households with

n elevated consumption ( García-Rubio et al., 2015 ; Braga and Kel-

an, 2020 ). In Brazil, water utility companies have used this approach

o deal with water crisis ( Braga and Kelman, 2020 ). In Fortaleza, lo-
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ated in northeast Brazil, water pricing follows an IBR structure, and a

ontingent tariff, i.e., a penalty fee, was adopted three years after the

eginning of a severe drought that reduced reservoir storage by about

3% ( Pontes Filho et al., 2020 ). This tariff was influenced by the con-

umption quantity that exceeded a predefined threshold. 

Previous studies have reported that water scarcity impacts price

lasticity, but the consequences are adverse. While early research in-

icated that price elasticity is more significantly affected by pricing

tructure and season ( Espey et al., 1997 ), recent studies show that

onsumers response to price change is related to different exogenous

actors, such as climate ( Monteiro and Roseta-Palma, 2011 ), income

 Ma et al., 2014 ) and environmental attitude ( Garrone et al., 2019 ).

alhuisen et al. (2003) pointed out that income elasticities are rel-

tively inelastic under IBR pricing, and that water scarcity does not

eem to affect elasticity. Molinos-Senante and Donoso (2016) proposed

 tariff scheme that accounts for the scarcity value of water and that

an promote equity, based in a IBR structure and cross-subsidy. How-

ver, the measure might be difficult to implement due to lack of ade-

uate water metering. Another strategy aiming equity and sustainability

as presented by Ward and Pulido-Velázquez (2008) , that presented a

wo-tiered pricing setup. Debate continues about the effectiveness of

rice control policies for demand control, especially on IBR schemes

 Mansur and Olmstead, 2012 ; Zhang et al., 2017 ; Matikinca et al., 2020 ).

The research to date has extensively explored the price influence on

ater consumption ( Arbués et al., 2004 ; Olmstead et al., 2007 ; Ward and

ulido-Velázquez, 2008 ) – together with other socioeconomic and/or
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Table 1 

Water tariff in Fortaleza for each consumption category for the years of 2016 

and 2017. 

Monthly consumption (m 

3 ) 2016 (BRL) 2017 (BRL) 

0 to 10 2.79 3.48 

11 to 15 3.61 4.51 

16 to 20 3.92 4.88 

21 to 50 6.71 8.36 
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limatic variables – but only a few studies are able to address it over

ong time horizons ( Grafton et al., 2014 ). Most studies on water price

se survey (which can be expensive and time consuming), aggregate, or

ousehold level data to assess the empirical implications of economic

ariables on water demand ( Rujis, 2009 ). Although these analyses have

mproved the understanding of the scientific community and decision-

akers, they do not allow continuous learning as new data become

vailable. 

Water companies have a huge amount of smart meter data available

hat could be useful to extract information on use patterns and consumer

ehavior ( Cominola et al., 2019 ). In this research, we present a method

hat benefits from this data to support managers on how to adjust the

ricing policy for a planning horizon of up to one year. The model can be

oupled with reservoir/supply systems operation or water distribution

odels to provide further insights on supply-demand balance strategies.

This study proposes a data-driven predictive model to assess the

edium-term effect of price-based water conservation policies at the

ousehold level. In addition, we calculate the elasticity of water demand

eduction to price and we assess how much water price and public in-

erest in the drought can affect consumption habits. The methodology

an be used by water companies to assess price-related strategies of wa-

er conservation and does not require additional variables that could be

ifficult to obtain in a refined scale. An advantage of this model is that

rediction can be performed at a disaggregated level, making it possible

o design policies tailored to socioeconomic or even structural charac-

eristics of the households. Although this study considers a block tariff

tructure, the framework can be adapted to any other price strategy, if

t is applied at the household level. 

. Materials and methods 

.1. Study area 

The city of Fortaleza, capital of Ceará, located in the Northeast re-

ion of Brazil, is the fifth most populated city of the country, with over

.6 million inhabitants distributed across 314.9 km 

2 . The population is

xpected to grow to 3.1 million people in 2040 ( Iplanfor, 2015 ). The

ity is part of the Metropolitan Region of Fortaleza, which comprises 19

unicipalities of Ceará. 

Fortaleza is supplied by the Jaguaribe-Metropolitano supply system

JMS), which consists of eight reservoirs which sum up to a storage ca-

acity of 11,112 hm 

3 . JMS transfers water from the Jaguaribe basin and

upplies 36 municipalities. Urban and industrial demand of Fortaleza is

.77 m 

3 /s, corresponding to 56.5% of the volume released by the supply

ystem. Past research has indicated that water demand in Fortaleza is

ighly heterogeneous and that socioeconomic factors play an important

ole on consumption habits ( Nunes Carvalho et al. 2021 ). 

.2. Water tariff structures 

During the period between 2012 and 2018, the northeast of Brazil

uffered from a historic drought that significantly impacted its econ-

my and water storage ( Pontes Filho et al., 2020 ). The main reservoirs

f Fortaleza’s supply system were affected by the 2012–2018 drought,

esulting in a significant reduction in water availability. To encourage

omestic water conservation, which accounts for more than 80% of For-

aleza’s water demand, the local water company implemented a contin-

ent tariff. 

The contingent tariff was implemented in December 2015 ( Fig. 1 )

nd defined a minimum reduction of 20% of the average consumption

etween October 2014 and September 2015. If a household did not meet

his reduction goal, an extra charge of 110% on the exceeded volume

ould be added to the bill, i.e., the contingent tariff is calculated on the

ifference between the volume consumed and the goal. This percentage

as updated to 120% in October 2016. Water price follows an increasing

lock tariff structure ( Table 1 ); thus, the contingent tariff also varies
2 
ith the consumption block of the household. Users with a monthly

onsumption of up to 10 m 

3 did not have to pay the contingent tariff. 

For example, for a household that had a mean consumption of 14 m 

3 

etween October 2014 and September 2015, the goal was to use up to

1 m 

3 , corresponding to a 20% reduction in the monthly consumption.

f in a certain month of 2017 the water demand of this household was 13

 

3 , in addition to the water tariff (13 ×4.51), they would have to pay the

ontingent tariff, which would be charged over the 2 m 

3 that exceeded

he consumption goal (1.2 × 2 ∗ 4.51). The base price here corresponds

o the second block of consumption (R$ 4.51 in 2017). 

Although we consider these specific conditions in the prediction

odel, the methodology could be replicated under different price-

ssociated water conservation measures.. 

.3. Predictive model 

The predictive model has three explanatory variables: previous wa-

er demand, monthly seasonality of water demand, and the cost of the

enalty fee, i.e., the contingent tariff cost per household. The model was

ested for multiple leading times, ranging from one to twelve months. 

The penalty fee was calculated as the cost of the volume of water con-

umed in the previous month that exceeded a threshold. This threshold

ets how much water should be saved and is a percentage of the aver-

ge monthly water consumption of the household for a baseline period.

ere, the baseline period goes from October 2014 to September 2015

nd the threshold is 20%. 

At each month, the predictions for the previous month are used to

etermine the tariff block of each household. Then, we calculate the vol-

me of consumed water that exceeded the threshold and how much it

ost for the user. For example, when calculating water consumption at

-months ahead, the predictions for the month n-1 are used to assess the

ater conservation measure ( Fig. 2 ). This strategy allowed us to avoid

he simultaneity issue associated with water consumption modeling un-

er block tariff policies. 

Previous studies have used different price variables in economet-

ic models of water demand, and there is not a generally accepted

pproach. Many authors find it more appropriate using the marginal

rice, i.e., the cost of increasing the water consumption at each time

tep ( Rinaudo et al., 2012 ), while others prefer the average price

 Zhang et al., 2017 ) or both ( Ma et al., 2014 ; Deyà-Tortella et al., 2016 ).

lthough some researchers argue that the users might be more influ-

nced by the average price ( Deyà-Tortella et al., 2016 ), in case of a con-

ingent tariff policy, they might pay special attention to the additional

harge expressed on the bill. 

In addition to the lagged water consumption and the price compo-

ent, a seasonal variable was included to account for seasonal behav-

or. This variable corresponded to the seasonal component extracted for

ach household with the Seasonal and Trend decomposition using Lo-

ally estimated scatterplot smoothing (STL) method. This approach cap-

ures different patterns of seasonal behavior and adds more information

o the model than the usual approach of using 11 dummy variables for

he months. We chose a machine learning regression model that has

een widely used for electricity and wind prediction, Gradient boost re-

ression. This algorithm also performs better than other linear and ma-

hine learning models in predicting residential water demand ( Lee and

errible 2020 ). 
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Fig. 1. Total domestic water demand (m 

3 ) in Fortaleza from 2009 to 2017. The baseline period was used by the local water company to calculate the reduction goal 

for each household. 

Fig. 2. The predictive model has an autoregressive component (previous month 

water demand) and the penalty fee as explanatory variables, in addition to the 

seasonality of the corresponding month. Starting from January, the water de- 

mand in December would be used to calculate the cost of the contingent tariff. 

For the next month, the penalty cost is calculated using the predicted water 

demand in January. 
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The predictive model can be summarized in the following steps: 

i) Select a dataset 𝜒 of monthly household water demand and set a

time horizon n (in months) for the predictive model. 

ii) Extract the seasonal component 𝑠 𝑖 of each household’s water demand

time series 𝑦 𝑖 using the STL method. 

ii) Set a consumption reduction goal or threshold and the penalty cost

policy 𝑝 ( . ) . The goal might be a percentage of the average consump-

tion over a certain period, named the baseline consumption 𝑏 𝑖 . 

v) Split the dataset into two subsets for training and validating the

model. Initialize the gradient boosting model at month t = 1, setting

the predictive variable 𝑦̂ to 𝑦 𝑖 
𝑡 
and the predictors to 𝑠 𝑖 , 𝑝 ( 𝑦 𝑖 

𝑡 −1 , 𝑏 
𝑖 ) , and

𝑦 𝑖 
𝑡 −1 . Choose arbitrary values for the main parameters of the model

i.e., the number of trees, the minimum number of observations in

each node and the learning rate (usually ranges from 0.001 to 0.1). 

v) Run the model again using the predicted water demand 𝑦̂ 𝑖 
𝑡 

to cal-

culate the penalty cost and estimate 𝑦̂ at month t + 1. If the water
3 
tariff follows an IBR structure, it might be necessary use a function

𝑓 ( ̂𝑦 𝑖 
𝑡 
) to set the tariff block to the household prior to calculating the

penalty cost. Repeat this procedure until t = p . 

i) Compute model’s performance 𝐷( ̂𝑦 , 𝑦 𝑖 
𝑡 
) on the training and testing

sets and compare the measures to adjust the parameters and avoid

overfitting the model. 

The tabular version of the algorithm is described below: 

Initialize: Set the variable 𝑦̂ equal to 𝑦 𝑖 
𝑡 
. 

­ Calculate the baseline consumption and the reduction goal 

­ Decompose the water demand time series using STL and extract its sea-

sonal component 𝑠 𝑖 

repeat 

­ Determine the tariff block of each household based on the consumption

of the previous month using a function 𝑓 ( 𝑦 𝑖 
𝑡 −1 ) . This step can be ignored

if the water tariff does not follow an IBR structure. 

­ Calculate the penalty cost using a function 𝑝 ( 𝑦 𝑖 
𝑡 −1 , 𝑏 

𝑖 ) 
­ Estimate a gradient boosting regression model that predicts y using 𝑠 𝑖 ,

𝑝 ( 𝑦 𝑖 
𝑡 −1 , 𝑏 

𝑖 ) , and 𝑦 𝑖 
𝑡 −1 as predictors 

­ Compute model’s performance using the selected measure(s) 𝐷( ̂𝑦 , 𝑦 𝑖 
𝑡 
) un-

til t = n 

­ Adjust model’s parameters based on the performance of the training and

testing subsets. 

The model was validated with a classical out-of-sample evaluation

nd was trained for the year of 2016 and tested for the year of 2017.

ig. 3 provides a general outline of the predictive model and the per-

ormed analysis. 

.3.1. Seasonality extraction 

The water demand time series was decomposed into trend, seasonal

nd remainder components using the STL method ( Cleveland and Cleve-

and 1990 ). This procedure was used to extract the seasonality of water

onsumption for each household. STL consists in sequential applications

f the local regression model and provides an additive decomposition of

he original signal (D) into three components: 

 ( 𝑡 ) = 𝑆 ( 𝑡 ) + 𝑇 ( 𝑡 ) + 𝑅 ( 𝑡 ) (1)

here S, T and R are the seasonal, trend and remainder components,

espectively. The algorithm work as follows: 
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Fig. 3. Predictive model outline. The contin- 

gent tariff cost is recalculated as new predic- 

tions become available. 
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The local regression smoothing estimates a function g(x) for the in-

ependent variable at any value of x rather than for the measurements

 i of the dependent variable. To calculate the regression curve g, an ini-

ial value for the parameter q is chosen; q values of x i that are closest to

 are selected and weighted on their distance from x . For q ≤ n , where n

s the number of observations in the data set, the neighborhood weight

or x i is calculated as follows: 

 𝑖 ( 𝑥 ) = 𝑊 

( ||𝑥 𝑖 − 𝑥 ||
𝜆𝑞 ( 𝑥 ) 

) 

(2)

here v i (x) is the neighborhood weight for x i , 𝜆q (x) is the distance be-

ween x and the most distant x i . For q > n, 𝜆q (x) is multiplied by q/n .

(u) is the tricube function, expressed as: 

 ( 𝑢 ) = { 
(
1 − 𝑢 3 

)3 
𝑖𝑓 0 ≤ 𝑢 < 1 

0 𝑖𝑓 𝑢 ≥ 1 
(3)

Next, a polynomial of degree d is fit to the weighted data at (x i ,

 i ). The value of d can be 0 (constant), 1 (locally linear) or 2 (locally

uadratic). In this paper, d = 1. The fitted function corresponds to g(x).

t is possible to add a robustness weight 𝜌i for each pair (x i , y i ) by mul-

iplying it by 𝜈i . 

STL consists of two nested loops ( Cleveland and Cleveland 1990 ). In

he outer loop, robustness weights are calculated for each time point.

nitially, the trend and remainder component are set to 0 and 𝜌i is set

o 1. In the next loops, the remainder component is found by removing

he trend and seasonal components calculated in the inner loop from the

riginal series. The robustness weight is then calculated as follows: 

𝑖 = 𝐵 ( |𝑅 |∕ ℎ ) (4)

 = 6 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛 ( |𝑅 |) (5)

here B is the bi-square weight function, given as: 

 ( 𝑢 ) = { 
(
1 − 𝑢 2 

)2 
𝑖𝑓 0 ≤ 𝑢 < 1 

0 𝑖𝑓 𝑢 > 1 
(6)

The outer loop is repeated n o times; if one does not wish to add ro-

ustness into STL, n o should be set to 0. In this paper, n o = 15. The inner

oop follows these steps: (i) Detrend the original signal; (ii) Estimate a

moothing function using Loess for each cycle-subseries, where q is the

ycle periodicity (e.g. for a monthly time series, q is set to 12) and d is

qual to 1; (iii) Apply a low pass filter to the smoothed cycle-subseries,

hich consists in sequential applications of a moving average; (iv) De-

rend the smoothed cycle-subseries; (v) Remove the seasonality from

he series; (vi) Smooth the deseasonalized series using Loess. The STL

ecomposition can be easily performed using the stl function from base

. 
4 
.3.2. Gradient boosting 

Gradient Boosting (GBM; Friedman 1999 ) is a learning method that

onverts weak learners, usually regression trees, into strong learners by

ombining them sequentially. The idea behind the method is that new

eak learners can learn from the residuals of the output from the pre-

ious model; this ensemble technique is called bagging. For regression

asks, we want to find the function that best fits the data points in a

et containing input variables x and a corresponding output variable y.

o do this, the algorithm minimizes a loss function between y and the

redicted values, in our case, the Mean Squared Error. 

 ( 𝑦, 𝑦̂ ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

(
𝑦 𝑖 − 𝑦̂ 𝑖 

)2 
(7)

The gradient boosting method consists in a combination of weak

earners that are added together. The individual models f m 

are added

ne after the other to improve model performance. 

̂ 𝑖 = 

𝑀 ∑
𝑚 =1 
𝑓 𝑚 ( 𝑥 ) (8) 

The weak learners, in this case, regression trees, are fitted on the

esiduals of the previous model. The general representation of GBM is

xpressed as follows: 

 𝑚 ( 𝑥 ) = 𝐹 𝑚 −1 ( 𝑥 ) + 𝜈𝑓 𝑚 ( 𝑥 ) , (9)

eaning that the model f m 

does not change the previously fitted model

 (m-1) . The term 𝜈 is a regularization parameter or the learning rate,

hich determines the number of iterations. Small values of the learning

ate ( 𝜈 < 0.1) reduce the chances of overfitting. 

Gradient boosting applies a functional gradient descent method to

inimize the loss function, where each new weak model is equivalent

o the negative gradient of the MSE. The negative gradient is given as:

 𝑔 𝑚 
(
𝑥 𝑖 
)
= − 

[ 

𝜕𝐿 ( 𝑦 𝑖 , 𝐹 
(
𝑥 𝑖 
)

𝜕𝐹 
(
𝑥 𝑖 
) ] 

𝐹 ( 𝑥 ) = 𝐹 𝑚 −1 ( 𝑥 ) 

(10)

The algorithm stops when the loss reaches a threshold, or the maxi-

um number of trees is built. An important element to consider when

tting machine learning models (or any predictive model) is the bias-

ariance tradeoff and the chance of overfitting the model. If the algo-

ithm misses important connections between the predictors and the re-

ponse variable, the model will have a high bias, i.e., an elevated differ-

nce between predictions and the observed data. However, if during the

odel fits too perfectly to the training data, resulting in a high variance,

t will not generalize well (overfit). 

The best scenario when developing a model is to accurately capture

he relationships between the variables during training but also make

ood predictions during training. In machine learning models, one can
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Table 2 

Socioeconomic classes and number of households in each of them. The total 

number of household analyzed here is 37,689. 

Class Number of 

minimum 

wages 

Number of 

households 

Percentage of the 

total number of 

households 

A 20 or more 53 0.14% 

B 10 < N < 20 969 2.57% 

C 4 < N < 10 5186 13.76% 

D 2 < N < 4 17,554 46.58% 

E N < 2 13,927 36.95% 
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d  
ontrol the bias-variance tradeoff by controlling model parameters. The

ain parameters of GBM are the number of trees, which should not be

oo high to avoid overfitting; the minimum number of observations in

ach node, which defines how depth the tree might become; the learning

ate or shrinkage, which relates to the size of the incremental steps,

sually ranging from 0.01 to 0.1, and the distribution of the response

ariable, which in our case, was Gaussian. 

In our framework, parameter tuning was performed in a trial and er-

or manner, i.e., we defined arbitrary values for them, compared model

erformance for the train and test datasets and chose those parameters

hat resulted in comparable performances for both and could not be im-

roved anymore. The number of trees was set to 300, the learning rate

o 0.1, and the number of observations per node to 10. All analyses were

erformed using R programming language. The gradient boosting model

as implemented with the package gbm ( Greenwell et al., 2019 ). 

.3.3. Performance assessment 

Model performance was evaluated for the entire prediction horizon,

.e., for twelve months of the testing period. Two measures were used:

oot Mean Squared Error (RMSE) and R squared (R 

2 ). 

𝑀𝑆 𝐸 𝑗 = 

√ √ √ √ 

𝑛 ∑
𝑖 =1 

(
𝑦̂ 𝑖,𝑗 − 𝑦 𝑖,𝑗 

)2 
𝑛 

(11)

 

2 
𝑗 
= 

∑𝑛 
𝑖 =1 

(
𝑦 𝑖,𝑗 − 𝑦̂ 𝑖,𝑗 

)2 ∑𝑛 
𝑖 =1 

(
𝑦 𝑖,𝑗 − 𝑦̄ 𝑗 

)2 (12)

here 𝑦 𝑖,𝑗 is the observed water demand in household i at month j ,

̂ 𝑖,𝑗 is the predicted water demand in household i at month j , 𝑦̄ 𝑖,𝑗 is

he mean observed water demand at month j , and n is the number of

ouseholds. 

.4. Elasticity of water demand reduction to price 

Different scenarios of price increase were considered, based on the

ariff for the previous year (2015 for the training and 2016 for the val-

dation period): no increase, 5, 10, 15 and 25%. To calculate the elas-

icity of water demand reduction to price, we used the predictions for
5 
he year of 2016 obtained with the model. The reduction is related to

he average consumption during the baseline period (October 2014 to

eptember 2015). 

 = 

Δ𝑅 ∕ 𝑅 
Δ𝑃 ∕ 𝑃 

(13)

here R is the monthly average reduction in water demand and P is the

verage water block tariff. 

Water demand elasticity was assessed for different socioeconomic

lasses, as users’ response to water conservation policies tend be hetero-

eneous. These classes were based on the criteria used by the Brazilian

nstitute of Geography and Statistics (IBGE), which is based on per capita

amily income. IBGE uses the minimum wage to classify the families in

ve classes ( Table 2 ). The monthly per capita income of a household

s divided by the minimum wage to find the correspondent socioeco-

omic class (i.e., Income = N 

∗ minimum wage). We also compared the

redicted monthly reduction with the actual reduction aggregated water

emand. 

.5. Public interest and media coverage 

In this study, water demand reduction is associated with the imple-

entation of a price control measure, which was expected to change

ublic behavior. However, demand control policies may include other

trategies, such as promotional events, water conservation education

rograms and mass media advertising campaigns ( Sharma and Vairava-

oorthy 2009 ). In Fortaleza, the water company created an app to en-

ourage users to report leaks and frauds and promoted educational cam-

aigns in schools, public buildings, and social media. 

Google Trends data has been proven a useful tool for characteriz-

ng public response to certain matters and has been successfully applied

o analyze private consumption (Vosen and Schmidt 2011) and to as-

ess drought awareness ( Quesnel and Ajami 2017 ; Kam et al., 2019 ).

he idea here was to use the frequency of Google searches for the key

ords “contingent tariff” and “drought ” to address people’s interest

n these matters and their awareness about the implementation of the

ariff. 

We acknowledge that mass media plays an important role on so-

ial systems ( Luhmann 2000 ), hence media coverage on the contingent

ariff might have influenced public response. For reference, we plot-

ed the number of articles related to the contingent tariff published

etween 2012 and 2017, which were collected from the websites of

he three main local newspapers (Tribuna do Ceará, OPovo and Diário

o Nordeste). These sources have a strong online presence and usually

hare the news on social media such as Instagram and Twitter. Data

as collected with web scraping using Python and the BeautifulSoup 4

ibrary. 

To assess the marginal response and the relative influence of pub-

ic interest in drought and the contingent tariff on water demand,

 regression analysis was performed using both as explanatory vari-

bles ( Fig. 4 ). Water demand was predicted as a function of water

emand in the previous month, public interest, and the contingent
Fig. 4. Regression analysis outline. 
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Fig. 5. Model performance. 

Fig. 6. Real and predicted monthly reduction in aggregated water demand for the year of 2017 for each socioeconomic class. 
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ariff cost for the previous month. Google search hits between 2012

nd 2017 for the term “contingent tariff” and “drought ” by users lo-

ated in Fortaleza were used as a proxy for public interest in water

carcity, from which the trend component was extracted using the STL

ethod. 

The GBM algorithm was used to perform the regression. For this anal-

sis, we used data from 2012 (beginning of the drought) to 2017. Note

hat here we fit the model using only observed data, i.e., the contingent

ost is not iteratively calculated, since our intention was not to build a

orecast but rather to assess the importance of the explanatory variables.

or the same reason, seasonal water demand was not added as a predic-

or. The dataset was randomly split into 80% train and 20% test. After

btaining the regression model, we extracted the marginal response of

ach variable using partial dependence plots and their relative influ-

nce. The relative influence is measured with the reduction of squared
6 
rror associated with each variable, i.e., how much worse the model’s

erformance would be without that variable. 

.5.1. Partial dependence plot 

The partial dependence plot (PDP) represents the marginal effect

f independent variables on the response of a machine learning model

 Friedman 1999 ). The partial dependence of the response on a variable

 l is represented by: 

 ̂𝑥 𝑙 

(
𝑥 𝑙 
)
= 𝐸 𝑥 𝑠 

[
𝑓 
(
𝑥 𝑙 , 𝑥 𝑠 

)]
= ∫ 𝑓 

(
𝑥 𝑙 , 𝑥 𝑠 

)
𝑃 
(
𝑥 𝑠 
)
𝑑 𝑥 𝑠 (14)

Where x l is the independent variable analyzed in the partial depen-

ence plot, x s is the subset of the other input variables of the regression

odel 𝑓 and P(x s ) is the marginal probability density of x s . The func-

ion shows the effect of the variable x l on the dependent variable by

arginalizing over the other explanatory variables. 
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Fig. 7. Elasticity of water demand reduction to price for each socioeconomic class. 

Table 3 

Reduction in water demand elasticity to price increase and characteristics of the socioeconomic classes. 

Socioeconomic class A B C D E 

Elasticity of water demand reduction to price 0.515 0.212 0.426 0.314 0.295 

Number of households 53 969 5186 17,554 13,927 

Percentage of the average per capita income related to the water tariff (%) 0.46 0.89 2.00 3.77 22.97 

Average daily per capita consumption (L/hab/day) for the baseline period 102.25 123.36 105.19 96.78 94.96 

Average daily per capita consumption (L/hab/day) after the restriction measures 90.06 104.99 92.37 84.60 83.69 
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. Data 

Monthly water demand data for the period between 2009 and 2017

rom 45,141 households were provided by the Water and Wastewater

ompany of Ceará (CAGECE). This analysis focused on households with

onsumption up to 50 m 

3 /month. Households with monthly water con-

umption inferior to 1 m 

3 per month or the ones in which the total

ater consumption between 2009 and 2017 was less than 5 m 

3 were ex-

luded from the dataset. The data cleaning process reduced the dataset

o 37,689 observations. 

Socioeconomic data from the 2010 Census were used to classify the

ouseholds. Average per capita income is available at the census tract

evel, territorial units containing a maximum number of households that

llow a survey to be carried out by a single person (IBGE). Fortaleza

s divided into 3043 census tracts, and 2586 of them are attended by

AGECE’s water supply. 

. Results and discussion 

Model performance was evaluated for each month of the testing pe-

iod ( Fig. 5 ). The model presented reliable predictions in terms of RMSE

nd R 

2 for a short-term horizon (1 to 6 months ahead), and satisfactory

esults for a medium-term horizon (7 to 12 months ahead). The autore-

ressive component was the most important, i.e., removing it from the

odel would mean a significant increase in the loss function. This sug-

ests that water demand is strongly dependent on past use. 
7 
A comparison between the predicted and observed mean percent re-

uction in residential water demand shows that the model provided ac-

urate predictions ( Fig. 6 ). For this analysis, households were grouped

ccording to their socioeconomic class, to assess variation in model per-

ormance and mean percent reduction in water demand. Classes D and

 presented a rather regular behavior during the year, with an average

eduction of 14.73% and 13.99%, respectively. Households in class B

ad the largest reduction in water demand: 17.58% over the year. Class

, with the smallest reduction (11.22% on average), presented a peak

n January but almost no change in March. 

The reduction in water demand was revealed inelastic to tariff varia-

ion ( Fig. 7 ). These results suggest that the contingent tariff itself would

e enough to encourage a reduction in water consumption in all so-

ioeconomic classes. However, the policy has adverse effects on each

ype of consumer. While the water tariff represents less than 1% of the

verage per capita income of classes A and B, it is about 23% of the in-

ome of class E, which represents 37% of the households ( Table 3 ). The

ower income classes had the lowest per capita consumptions during the

aseline period, but still managed to reduce their demand after the im-

lementation of the contingent tariff. Except for households in class B,

one of the classes would reach the 20% reduction goal. Class B also

ad the highest average daily per capita consumption ( Table 3 ) during

he baseline period. 

These findings agree with other studies that also found wa-

er demand is inelastic to price variation ( Rinaudo et al., 2012 ;

eyà-Tortella et al., 2016 ). Also, Zhang et al. (2017) showed that

ncreasing block policies are not effective to encourage a reduc-
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Fig. 8. Public interest and media coverage on 

the contingent tariff policy. 
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Table 4 

Relative importance of the explanatory variables of the regression model 

between water demand, past water demand, public interest, and contin- 

gent tariff. 

Class A B C D E 

Past water demand 85.87 95.78 98.31 98.67 98.55 

Contingent tariff cost 10.17 3.90 1.59 1.29 1.42 

Seasonal public interest 3.96 0.32 0.10 0.03 0.02 

R 2 0.69 0.69 0.75 0.74 0.73 

RMSE 4.37 4.08 3.26 3.01 3.05 
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f  
ion in water consumption. Ma et al. (2014) indicated that the

ighest income group is not sensitive to price changes, while res-

dents from the lower income group respond to marginal price

nd might even compare the tariff for different blocks to opti-

ize their benefit. De Maria André and Carvalho (2014) found sim-

lar values of water demand elasticity to price in Fortaleza using

urvey collected data. The advantage here is that we used only

econdary data to calculate elasticity for different socioeconomic

lasses. 

Overall, the results indicate that the restriction policy might be un-

air with the lower income classes, for which the tariff represents a sig-

ificant percentage of their income and still enforced a reduction in its

lready low daily per capita demand. As stated by Bernoulli (1954) ,

enefit perception depends on the individual perception of cost. Hence,

 small increase in water cost has a more significant effect on the eco-

omic value attributed to water for lower income classes. 

In a scenario where the customers must pay an additional charge for

heir excess consumption, price increase does not seem to affect con-

umer behavior. This result can be explained by the fact that the cus-

omers might be at the kink point of the block rate schedule or their

illingness to pay for water rises under drought conditions, since it rep-

esents only a small percentage of their income. The first is the most

easonable explanation for classes D and E, while the second is con-

istent with higher income classes. Another aspect to be considered is

he reservation capacity of households (water tanks or cisterns, private

orehole drilling), which is higher for wealthy customers ( Grande et al.,

016 ), who might be able to maintain their standards and still reduce

he water volume from public supply. 

It is important to bear in mind that the consumers are not necessarily

ware of the pricing policy structure. Although the contingent tariff is

learly expressed on the water bill, increasing block tariff scheme is not

etailed for households. 

A clear increasing trend in public interest is observed after 2012

when the drought started), while the number of news related to the
 h

8 
estriction measure peaked in 2016 ( Fig. 8 ). While this could imply that

he public was well informed about pricing policy, the finding cannot

e extrapolated to all customers, since not all households have access to

nternet. 

A regression analysis between water demand, public interest, the

ontingent tariff, and past water demand was performed for each

ocioeconomic class ( Table 4 ). The relative importance values im-

ly that an increase in the cost associated with the contingent tar-

ff has a higher influence on consumer behavior than information

n drought. Also, it seems that residents with higher income have

 more significant response to both the contingent tariff and in-

ormation on drought compared to residents in classes with lower

ncome. 

PDPs were plotted for each regression model ( Fig. 9 ). The results in-

icate that water cost has an inverse relationship with water demand

or all households, while an increase in the interest in the drought has

ittle effect on consumer habits. It is worth mentioning that class A

s the only one to present a direct relationship between public inter-

st in the drought and water demand. However, we should be care-

ul when interpreting these results since class A has a low number of

ouseholds. 
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Fig. 9. Partial dependence plots for public interest and the contingent tariff

cost. A regression model was built for each socioeconomic class. Public interest 

is dimensionless. 
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onclusions 

The main objective of this research was to address the influence of

 contingent tariff on a predictive model of water demand in Fortaleza,

razil. The model contained an autoregressive component and variables

ssessing seasonality and the cost associated with the contingent tariff.

his study has found that the contingent tariff was effective and resulted

n a 11–17% reduction in residential water demand. Also, reduction in

onsumption was inelastic to price increase in all socioeconomic classes.

The evidence from this study suggests that a price policy that as-

ociates IBT with a contingent tariff could be unfair to lower income

ouseholds, for which the tariff represents a large percentage of house-
9 
old income. Hence, although the strategy warrants a high revenue for

he water company (that can be allocated to water security projects),

ts equity is questionable. Managers should be careful when implement-

ng pricing policies to ensure the affordability of water services to all

onsumers. 

The findings of this study imply that price-related water demand

ontrol policies are effective, while drought awareness is less likely to

ncourage consumers to save water. The increase in public interest in the

rought does not necessarily indicate that consumers are well informed

bout the risks associated with it. It is crucial that the users are aware

f the water resources management strategies and the implications of

heir habits rather than having a limited perception of drought. This can

nly be accomplished if social dynamics aspects are considered when

esigning drought plans and policies. 

The framework proposed here is flexible and can be useful for water

ompanies planning to implement price-related measures to encourage

ater demand reduction. The predictions at the household level can be

seful to design policies for different classes of consumers. The predic-

ive model can be used to verify at what extent the changes in the price

olicy could influence water demand. 
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