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Abstract
Climate variability and change, associated with increasing water demands, can have significant implications for water avail-
ability. In the Brazilian semi-arid, eutrophication in reservoirs raises the risk of water scarcity. The reservoirs have also a 
high seasonal and annual variability of water level and volume, which can have important effects on chlorophyll-a concen-
tration (Chla). Assessing the influence of climate and hydrological variability on phytoplankton growth can be important 
to find strategies to achieve water security in tropical regions with similar problems. This study explores the potential of 
machine learning models to predict Chla in reservoirs and to understand their relationship with hydrological and climate 
variables. The model is based mainly on satellite data, which makes the methodology useful for data-scarce regions. Tree-
based ensemble methods had the best performances among six machine learning methods and one parametric model. This 
performance can be considered satisfactory as classical empirical relationships between Chla and phosphorus may not hold 
for tropical reservoirs. Water volume and the mix-layer depth are inversely related to Chla, while mean surface temperature, 
water level, and surface solar radiation have direct relationships with Chla. These findings provide insights on how seasonal 
climate prediction and reservoir operation might influence water quality in regions supplied by superficial reservoirs.
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Introduction

In most developing countries, the urbanization process is 
associated with an increase in water demand (UNESCO 
World Water Assessment Program 2018). At the same time, 
the availability of drinking water remains the same or even 
decreases (Veldkamp et al. 2017; Greve et al. 2018). Accel-
erated urbanization is also related to the intensification of 
human activity, resulting in increased nutrient loads and 
water quality degradation (Vörösmarty et al. 2010).

The situation is worse in regions with high climatic 
variability (temporal and spatial), in which the distribu-
tion of rainfall is irregular, and extreme events of droughts 

and floods are frequent (Easterling et al. 2000; Hirsch and 
Archfield 2015). This is the case in the Northeastern semi-
arid region of Brazil, where multi-annual drought events are 
common and have severe socioeconomic and environmental 
impacts (Campos 2015; Pontes Filho et al. 2020). One of 
the management strategies historically adopted in the region 
to deal with this scenario is the construction of reservoirs 
(Gutiérrez et al. 2014), which have the important role of 
transferring water both temporally and spatially. Most of 
these reservoirs serve multiple purposes, including drinking 
water supply, irrigation, and fish farming. The water volume 
in these reservoirs can vary significantly between the dry and 
wet seasons and reduce drastically during drought periods 
(Rocha and Lima Neto 2021a).

Eutrophication, caused by the excessive increase of phos-
phorus and nitrogen loads, is one of the main causes of the 
deterioration of water quality in reservoirs (Paerl and Otten 
2013). Eutrophication is associated with the proliferation 
of algae and cyanobacterial blooming (Yang et al. 2008), 
and sometimes, an increase in mortality of benthic animals 
and fish (Sperling 2005). Agriculture and livestock farming 
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contribute to this process since significant loads of phospho-
rus and nitrogen can be carried with surface water runoff 
into the reservoir (Wiegand et al. 2020; Rocha and Lima 
Neto 2021; Lima Neto et al., 2022).

A few studies have associated phytoplankton growth rates 
with the volume of water stored in the reservoir (Pacheco 
and Lima Neto 2017; da Rocha Junior et al. 2018), but most 
of them relied on field studies, which are usually unavailable 
for a long-term horizon (more than 10 years), especially in 
data-scarce regions. Other researchers have related chloro-
phyll-a concentrations (Chla) to hydrological and/or climate 
variables, such as wind speed, air temperature, solar radi-
ance, precipitation, mixing depth, and runoff (Blauw et al. 
2018; Stockwell et al. 2020; Stefanidis et al. 2021), but none 
of them analyzed this relationship in tropical reservoirs. Past 
research has also shown that climate variability and future 
changes in frequency and intensity of drought events can 
increase phosphorus concentrations in tropical reservoirs 
(Raulino et al. 2021; Rocha and Lima Neto 2021a), hence 
the importance of investigating the relationship between cli-
mate variables and Chla.

The mechanisms associated with Chla fluctuations are 
complex and have been extensively studied (Pacheco and 
Lima Neto 2017; Blauw et al. 2018; Dunstan et al. 2018; 
Li et al. 2021), and more recently, many researchers have 
applied machine learning techniques for water quality 
assessment and to predict Chla (Liu et al. 2019; Shen et al. 
2019; Najah Ahmed et al. 2019; Tong et al. 2019; Mamun 
et al. 2019; Nguyen et al. 2020; Yu et al. 2020). Data for 
most of these studies have been obtained from automated 
stations (Blauw et al. 2018) or long field campaigns (Liu 
et al. 2019; Najah Ahmed et al. 2019; Li et al. 2021), which 
can be expensive and time consuming. One strategy to deal 
with the lack of field data is using satellite data, which has 
been frequently used to monitor water quality and has proved 
to be reliable, but it has not been sufficiently explored for 
inland waters (Lopes et al. 2014; Gholizadeh et al. 2016; 
Wang and Yang 2019; Ross et al. 2019; Nguyen et al. 2020; 
Iiames et al. 2021).

Recent evidence suggests that reanalysis climate data can 
be effective in explaining the effects of climate on phyto-
plankton biomass (Stefanidis et al. 2021). However, to the 
authors’ knowledge, no study has explored the predictive 
capacity of non-parametric models based on reanalysis 
climate data for semiarid climates. In these regions, Chla 
modeling can be challenging, as water volume has a strong 
interannual variability and phosphorus concentration has a 
weak correlation with Chla. The state-of-the art models used 
to explore the mechanisms for Chla variability may not be 
suitable for them. Machine learning models can be informa-
tive in this case, but model comparison is required, as these 
algorithms are mainly driven by data and their predictive 
capacity can be site-specific.

This study evaluates the influence of hydrological and 
climate variables on Chla in reservoirs located in North-
eastern semi-arid Brazil. This analysis is important from the 
point of view of climate variability, which can significantly 
affect the hydrological processes of the reservoirs, and to 
understand the possible influence of water level and volume 
fluctuations on Chla. The predictive model proposed here 
combines climate reanalysis data, together with commonly 
available hydrological variables, and satellite-based predic-
tions of Chla. The main goals of this study are (i) to explore 
the relationships between hydrological and climate varia-
bles and the concentration of Chla in tropical reservoirs and 
(ii) to evaluate the performance of nonparametric machine 
learning models for predicting Chla using these variables.

Materials and methods

Study area

The reservoirs analyzed in this study are located in the 
Northeastern region of Brazil (Fig. 1), which has a semi-arid 
climate and is frequently affected by multi-annual droughts. 
These reservoirs are part of the Jaguaribe-Metropolitano 
water supply system, which transfers water to Fortaleza, the 
capital of the State of Ceará. Castanhão is the largest reser-
voir for multiple uses in the country, with a capacity of 6.7 
billion cubic meters. All three reservoirs are also used for 
irrigation. Banabuiú (capacity of 1.6 billion cubic meters) 
supplies the Irrigated Perimeter Morada Nova, while Orós 
(capacity of 2.1 billion cubic meters), the second-largest 
reservoir in the State of Ceará, also serves for hydroelectric 
use. The surface area of these reservoirs ranges between 116 
and 410 km2, and the mean water level from 90 to 192 m.

Data and variable selection

This research uses data from publicly available databases, 
obtained from satellite, reanalysis, and rain gauge stations. 
The historical series of monthly chlorophyll-a concentrations 
(Chla) from 2002 to 2019 were obtained from the Hidrosat 
portal (http://​hidro​sat.​ana.​gov.​br/). The dataset obtained 
from Hidrosat is the result of a partnership between the Bra-
zilian Water Agency (ANA) and the Research Institute for 
Development (Institut de Recherche pour le Développement, 
IRD). Water quality stations use data from the Terra (EOS 
AM) and Aqua (EOS PM) satellites.

The program MOD3R (MODIS Reflectance Retrieval 
over Rivers) is used to extract time series of reflectance 
from MODIS (sensor onboard the Terra and Aqua satel-
lites) images of water bodies. The algorithm identifies and 
groups the water pixels in the image and, from the extraction 
of reflectance values from the visible and infrared bands, 
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the water quality parameters are estimated. Mathematical 
models that relate reflectance data and water quality data 
were calibrated and validated with data collected in the field. 
This procedure is detailed in Lins et al. (2017).

For some months of the original series of Chla, more than 
one estimation was available. In these cases, the median of 
these values was used to represent monthly concentration. 
Months with missing values were filled in with the median 
of the historical concentration series for the corresponding 
month.

Hydrological and climate variables used in this research 
and their respective sources are described in Table 1. Pre-
cipitation data for the period between 2002 and 2019 were 
obtained from the spatial interpolation of the data provided 
by the Brazilian Water Agency, publicly available on the 
Hidroweb portal (http://​www.​snirh.​gov.​br/​hidro​web/). Daily 

precipitation measured in rain gauges was interpolated using 
the inverse distance weighting method with exponent two 
into grid points with 0.05° size. This procedure was per-
formed using the R package ipdw (Stachelek 2020). Then, 
the average monthly precipitation was calculated for each 
reservoir’s hydrographic basin.

Average monthly temperature data was extracted from 
version 4 of the University of East Anglia’s Climatic 
Research Unit (CRU) climate database (Harris et al. 2020). 
Data is publicly available in the NetCDF format, which 
stores multidimensional variables; for example, temperature 
has four dimensions: latitude, longitude, time, and tempera-
ture value. To estimate average monthly temperature over 
the reservoir, we extracted the pixels contained inside the 
limits of the reservoir and calculated its average value for 
each month in the time series (2002–2019).

Fig. 1   Study area location. 
Banabuiú, Castanhão, and 
Orós are the main reservoirs 
of the State of Ceará, Brazil 
(highlighted in the map). Their 
hydrographic basins are con-
toured by the blue line
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Except for water volume and level, all other variables 
were extracted from the ERA5 gridded (lat-lon grid of 0.25°) 
reanalysis database of the European Center for Medium-
Range Weather Forecasts (Hersbach et al., 2020). Data is 
also available online in the NetCDF format, in hourly or 
monthly scale, with a temporal coverage from 1979 to pre-
sent. Reanalysis uses observed data from weather stations 
across the world and climate models to estimate a global 
dataset containing atmospheric, land, and oceanic climate 
variables.

Average runoff was calculated by averaging the monthly 
runoff for all pixels contained in the region delimited by 
each reservoir’s hydrographic basin. For all other variables, 
the time series was extracted for the nearest pixel to the cen-
troid of the reservoir, which was identified using the nearest-
neighbor interpolation method. Water volume and level were 
obtained from the Water Resources Management Company 
of Ceará (COGERH), also available online on the Reservoir 
Monitoring System (https://​www.​ana.​gov.​br/​sar).

Further improvements can be made by validating reanaly-
sis data with field data and by incorporating more reservoirs 
into the analysis. However, this would require field cam-
paigns and/or the implementation of automatic monitoring 
systems.

Variables that had a Pearson’s correlation coefficient 
above 0.8 were removed from the dataset (temperature at 
2 m and runoff; refer to Fig. S1 in the supplementary mate-
rial for the correlation matrix). As the effect of hydrological 

variables can be site-specific, a dummy variable was 
included to indicate the corresponding reservoir of each 
observation. To account for the effect of drought on Chla, a 
binary variable was included to indicate if the observation 
was registered during a drought year, according to drought 
records of the area (Pontes Filho et al. 2020).

All explanatory variables were re-scaled to range between 
0 and 1 using the min–max normalization:

where x is the original value and x is the scaled value. The 
final dataset contained 679 samples from the three reservoirs 
analyzed in this study. All analyses were performed using R 
(version 4.0.5) software.

Regression models

Six nonparametric machine learning models were compared 
with standard linear regression and one semi-parametric 
algorithm to investigate the best-performing predictive 
model. Data were randomly split into training (80%) and 
testing (20%) datasets. The training dataset was used to tune 
model hyperparameters, and the testing dataset was used to 
evaluate model performance. Model tuning and performance 
evaluation are detailed in the “Model parameters and perfor-
mance evaluation” section.

x =
x − min(x)

max(x) − min(x)

Table 1   Explanatory variables of the regression models. Except for the variables extracted from the sources indicated with an asterisk “*” 
(which are available in tabular format), all other variables were obtained in NetCDF format

Variable Unit Description Source Mean Standard deviation

Mean precipitation mm Average monthly precipitation on the hydrographic basin 
of the reservoir, calculated from rain gauge measures

Hidroweb* 61.59 74.74

Mean temperature °C Mean surface temperature over the reservoir calculated 
from CRU grid

CRU (Har-
ris et al. 
2020)

27.78 1.23

Water volume m3 Total water volume in the reservoir COGERH* 1.42E + 09 1.56E + 09
Water level m Distance from the bottom of the reservoir to the water 

surface
COGERH* 137.18 43.99

Runoff m Monthly average of surface and subsurface runoff accu-
mulated over one day in the hydrographic basin

ERA5 1.75E-04 3.59E-04

2 m temperature K Air temperature at 2 m above the reservoir ERA5 300.90 1.29
Lake bottom temperature K Water temperature at the bottom of the reservoir ERA5 299.00 1.20
Lake mix-layer depth m Thickness of the uppermost layer of the reservoir that is 

well mixed and has a near constant temperature
ERA5 5.19 1.48

Surface net solar radiation Jm−2 Amount of solar radiation that reaches the water surface, 
assuming cloudless conditions

ERA5 1.78E + 07 2.42E + 06

10 m u-component of wind ms−1 Horizontal wind speed of air moving towards the east, at 
a height of 10 m above the reservoir surface

ERA5 -2.43 0.80

Reservoir Dummy Represents the reservoir correspondent to the observation - - -
Drought year Binary Indicates if the year of the observation was a drought 

year (1) or not (0)
- 0.37 0.48
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In the following topics, there is a brief explanation of the 
regression models used in this study. It is important to high-
light an essential property of the predictive models, which is 
the bias-variance tradeoff. When fitting regression models, 
the best outcome is obtaining a model that not only provides 
accurate predictions (low bias) but also generalizes well to 
new data (low variance). The bias error is associated with 
a poor learning process, in which the relationship between 
explanatory and response variables is not properly captured 
(underfitting). The variance error happens when the model 
is sensitive to small variations during training, i.e., fits too 
perfectly and ends up modeling random noise (overfitting). 
One wants to avoid models that are either too complex or too 
simple and get the one that presents similar performances 
during training and testing.

Linear regression model

Linear regression aims to explain the relationship between 
a set of independent variable vectors (x) and a dependent 
variable (y) based on the linear function described below:

where Xj is a vector for the jth independent variable, and βj 
and β0 are unknown parameters (coefficients and an inter-
cept, respectively). The algorithm calculates the parameters 
by minimizing the sum of the squares of the residuals (SSR), 
i.e., the difference between observed and predicted values.

Elastic‑net regularized generalized linear model

While in the ordinary least squares regression, the distri-
bution of errors is normal, in the generalized linear model 
(GLM), it may assume different distributions, such as bino-
mial, Poisson, and gamma. In GLMs, the variance of the 
response variable can be non-constant and a linking func-
tion can be used to connect the predictor and the mean of 
the distribution function (Nelder & Wedderburn, 1972). In 
this study, the error distribution was assumed to be normal.

Regularization is a useful technique for learning algo-
rithms: penalties can be added to the model to prevent over-
fitting issues and to deal with highly correlated explana-
tory variables. Ridge and Lasso regression are some of the 
simplest and widely used penalized models; they work by 
adding a penalty to the SSR. Lasso penalizes the sum of the 
absolute coefficients (ℓ1 penalty) and might lead to variable 
selection as it sets coefficients to zero if λ is sufficiently 
large. The parameter λ controls the regularization strength 
and might assume any positive value.

Ŷ = �0 +

p∑

j=1

�jXj

where yi is the observed value, ŷi is the predicted value, n 
is the number of samples, β is the coefficient vector, and p 
is the number of explanatory variables. Ridge regression 
penalizes the square of the magnitude of the coefficients (ℓ2 
penalty) and shrinks the coefficients proportionally, keeping 
all of the variables in the model:

The linear combination of both penalties is called elas-
tic net regularization, controlled by the parameter α, which 
ranges between 0 (ridge) and 1 (lasso).

Artificial neural network

An artificial neural network is composed of interconnected 
nodes (or neurons) arranged in layers (Hastie et al., 2009). 
The multilayer perceptron (MLP), a broadly used class of 
neural networks, consists of the input (which receives the 
independent vectors), output, and one or more hidden layers. 
These layers have weighted connections that are adjusted 
as training occurs and are fully connected, i.e., a neuron 
in one layer is connected to every neuron in the next layer. 
The number of neurons in the hidden layer is critical for the 
learning process, as they detect the characteristics present 
in the training data and apply a nonlinear transformation to 
the input data.

The training algorithm used in this study was the back-
propagation of the error, in which the gradient of the error 
concerning the weights is calculated layer by layer. Then, 
the error is calculated, and all weights are updated backward 
through the network. The optimization algorithm used to 
perform this method was gradient descent.

An MLP with a single hidden layer was selected and the 
number of hidden nodes was adjusted in the training process 
(see Table 2). The number of nodes in the input layer was set 
to 10 (the number of explanatory variables), and the learning 
rate was set to 0.1.

k‑nearest neighbors

The k-nearest neighbors (KNN) is a supervised algorithm 
(Altman, 1992) for classification and regression based on 
a similarity measure, such as distance functions. In this 
method, one finds the k observations in the training set clos-
est to x and (i) average their responses, for regression tasks 
or (ii) take the majority class among its k nearest neighbors, 
for classification tasks. The equation for the KNN fit for Y ̂ 
can be described as:

SSRlasso =

n∑

j=1

(yi − ŷi)
2
+ �

p∑

j=1

|||�j
|||

SSRridge =

n∑

j=1

(yi − ŷi)
2
+ �

p∑

j=1

�j
2

74971Environmental Science and Pollution Research (2022) 29:74967–74982



1 3

where Nk is the neighborhood of x defined by the k closest 
points xi in the training sample. The only parameter to be 
determined is the number of neighbors k.

Classification and regression tree

A decision tree provides a set of rules to express the rela-
tionship between explanatory and response variables, which 
are represented with a tree structure. The leaves represent 
class labels (classification) or estimations of the response 
variable (regression), and branches represent the values of 
the tested variable.

Regression trees predict using the average values of y 
within each subset, which is selected to minimize the mean 
square error, MSE =

∑
i(y − yi)

2
∕n . To determine whether 

splitting should continue to be done, one can use some 
combination of (i) a minimum number of points in a node, 
(ii) purity or error threshold of a node, or (iii) maximum 
depth of the tree (Krzywinski & Altman, 2017). Here, the 
minimum number of points per node was set to 20. The 
complexity parameter, which corresponds to the minimum 
improvement in the model needed at each node, was tuned 
using grid search (see Table 2).

Tree‑based ensemble models: random forest and gradient 
boosting regression

Decision trees alone can easily overfit, depending on the 
size of the training dataset. An ensemble of decision trees 
is an effective approach to build a robust model and prevent 

Ŷ(x) =
1

k

∑

xi∈Nk(x)

yi
overfitting. Random forests (RF) combine shallow trees 
using bagging, i.e., the prediction is the average (for regres-
sion) or the majority vote (classification) of the trees in the 
ensemble (Breiman, 2001). The trees are constructed from 
bootstrap samples and a random subset of predictors (mtry) 
is used at each split in a tree. Together with the number 
of trees, these are the main parameters of random forests, 
which was tuned in the training process (see Table 2). The 
minimum number of observations per node was set to 20.

Gradient boosting (GBM) uses a different ensemble tech-
nique called boosting, where decision trees are combined 
in a forward stage-wise procedure. While in RF each tree is 
independently built, in gradient boosting, each new tree is 
constructed on the residuals of the previous tree to minimize 
the mean squared error. The maximum depth of the trees 
(interaction depth) was tuned between 1 to 6, while the mini-
mum number of observations per node was set to 10. The 
values set for the other parameters of GBM are described 
in Table 2.

Support vector machine

Support vector machine (SVM) (Boser et  al., 1992), 
although widely used for classification problems, might also 
be applied for regression (SVR). In SVM, the main goal is 
to find a hyperplane that fits the training data by minimiz-
ing the Euclidean norm of the coefficient vector. This model 
uses a kernel function to map input data to higher-dimen-
sional spaces, where it can be linearly separable. In regres-
sion problems, a symmetrical “margin” is added around 
the estimated function, where the absolute errors should be 
equal or less than the maximum error ε (Awad & Khanna, 
2015). SVR is an optimization problem where the objective 

Table 2   Main parameters of the regression models used in this study. The values used to tune the models are indicated, and the chosen values 
are highlighted in bold

Model Main parameters Values

Linear regression model Intercept True or False
Regularized generalized linear 

model
Alpha
Lambda

0.10, 0.28, 0.46, 0.64, 0.82, and 1.00
0.0046, 0.0173, 0.0646, 0.2409, 0.8979, and 3.3469

Multilayer perceptron Number of nodes in the hidden layer
Decay

3, 5, 10, and 20
0.5, 0.1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, and 1e-7

k-nearest neighbors Number of neighbors (k) 5, 7, 9, 11, 13, and 15
Regression tree Complexity parameter (cp) 0.0274, 0.0342, 0.0390, 0.0773, 0.1400, and 0.2066
Random forest Number of variables for splitting (mtry)

Number of trees
2, 4, 6, 8, 10, and 12
50, 100, 250, 300

Gradient boosting Shrinkage
Interaction depth
Minimum observations in node
Number of trees

0.1
1, 2, 3, 4, 5, and 6
10
50, 100, 150, 200, 250, and 300

Support vector machine Cost parameter (C)
Sigma
Epsilon (ε)

0.25, 0.50, 1.00, 2.00, 4.00, and 8.00
0.0619
0.1
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function minimizes the Euclidean norm of the function coef-
ficients (w), while avoiding outliers:

Subject to:

where C is the cost parameter, which gives more weight to 
the function flatness and ξ is the slack variable and corre-
sponds to the tolerable distance of outliers from the margin.

A radial basis function kernel was applied here, defined 
as:

where x and x’ are samples in the input data and γ is a 
parameter related to the variance of the function. This 
parameter was set to the inverse of the training data size.

Model parameters and performance evaluation

The tuning process of the hyperparameters of regression 
models is fundamental to avoiding overfitting. One of the 
most traditional approaches to optimize hyperparameter 
selection is grid search. In grid search, the modeler defines 
a subset of hyperparameter values and a performance met-
ric to search for the best combination of parameters. Then, 
k-fold cross-validation or leave-one-out cross-validation can 
be used on the training set to perform the tuning process.

In this study, the RMSE was chosen to tune the model’s 
parameters. Tuning was performed with a fivefold cross-val-
idation. In this approach, the training dataset is split into five 
subsets: the predictive model is fitted for four of them and 
the performance metric (in this study, RMSE) is calculated 
for the remaining subset. This procedure is repeated five 
times, so that all data is used at least once to train/validate 
the model. Model performance is assessed by calculating 
the average RMSE obtained in each subset. fivefold cross-
validation was applied using the R package “caret.” Table 2 
summarizes the main parameters of the fitted models and 
their correspondent values. Validation was performed for 
each combination of the parameters and the model with the 
best performance (lower RMSE) was selected.

Performance metrics

Model performance in the testing dataset was evaluated 
using the root mean squared error (RMSE), mean absolute 
error (MAE), and the R squared (R2) measures:

min
1

2
‖w‖2 + C

n�

i=1

���i��

||yi − wixi
|| ≤ � + ||�i||

KRBF

�
x, x

′

�
= e−�‖x−x

′‖
2

where y is the observed Chla, ŷ is the predicted Chla, y is the 
mean observed Chla, and n is the number of observations in 
the testing dataset.

Partial dependence plots

Partial dependence plots (PDP) were introduced by Fried-
man (2001) to interpret complex machine learning algo-
rithms. The PDP represents the marginal effect of independ-
ent variables on the response of a machine learning model 
(Friedman 2001). The partial dependence of the response on 
a variable xl is represented by:

where xl is the independent variable analyzed in the partial 
dependence plot, xs is the subset of the other input variables 
of the regression model f̂  , and P(xs) is the marginal prob-
ability density of xs . The function shows the effect of the 
variable xl on the dependent variable by marginalizing over 
the other explanatory variables.

Results and discussion

This section presents and compares the performance 
obtained with the predictive models, the relative importance 
of the hydrological and climate variables, and their relation-
ships with Chla.

Performance of the regression models

Figure 2 presents the scatterplots of predicted and observed 
values for all the models tested in this study. From the plots, 
one can notice that linear regression, regularized GLM, and 
the regression tree underestimate Chla. These models have 
strong assumptions about error distribution: homoscedastic-
ity, normal distribution, and no autocorrelation. Although 
the variables with an elevated correlation have been 
removed, there was still some multi-collinearity between 
the predictors, which could be a problem for the prediction. 

RMSE =

√√√√
n∑

i=1

(̂yi − yi)
2

n

MAE =

∑n

i=1
��̂yi − yi

��
n

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − yi)

2

f̂xl

(
xl
)
= Exs

[
f̂
(
xl, xs

)]
= ∫ f̂

(
xl, xs

)
P(xs)dxs
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Predictors of water quality indicators will frequently be cor-
related (both temporally and spatially) since the mechanisms 
associated with their increase or decrease are interrelated 
(Su et al. 2012; Liu et al. 2019; Mesquita et al. 2020). It is 
important to keep in mind that highly correlated variables 
can present complementary information when combined 
(Guyon and Elisseeff 2003), which reinforces the need for 
integrating correlation analysis with model-based variable 
importance.

RF, GBM, and MLP provided the best predictions 
(Table 3). These models are designed to capture nonlinear 
relationships between variables, which is likely to be the 
case here. RF and GBM can reduce the variance of the pre-
dicted values by employing ensemble techniques (boosting 
and bagging, respectively), outperforming the regression 
tree (Hastie et al. 2009). The SVM model with a radial ker-
nel is also able to detect nonlinearity, as it transforms data 
to a dimensional space where they can be linearly separable 

Fig. 2   Scatterplots for the predictive models tested in this study. The diagonal line represents the perfect fit between observed and predicted val-
ues
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(Awad and Khanna 2015). However, SVM had a slightly 
worse performance than GBM, RF, and MLP.

As expected, the predictive models were able to explain 
only part of Chla, since the best performing model had an 
R2 of 0.52 (Table 3) This performance can be considered 
satisfactory for a watershed-scale model, as a reference value 
to evaluate phosphorus (P) prediction (which can be easier 
to predict than Chla) is an R2 > 0.5 (Moriasi et al. 2015).

This result also suggests that hydrological and climate 
factors alone are not enough to predict Chla and additional 
variables might be necessary, such as water quality indica-
tors (Rocha et al. 2020). However, it must be emphasized 
that the relationship between P and Chla in tropical lakes is 
not comparable to that in temperate ones, where empirically 
estimated relationships between P and Chla provide reli-
able models to calculate Chla levels (Sakamoto 1966; Dillon 
and Rigler 1974; Jones and Bachmann 1976). A correlation 
analysis between measured total phosphorus concentration, 
obtained from COGERH database (http://​www.​hidro.​ce.​gov.​
br/), and estimated Chla reveals that nutrient enrichment 
may not be the only influencing factor on eutrophication in 
tropical reservoirs (Fig. 3). Although correlation between 
nitrogen and Chla was not analyzed here (since limited 
data was available), this can also be a limiting nutrient for 
eutrophication in reservoirs (Wiegand et al. 2020; Qin et al. 
2020).

Although past studies have obtained better predictive 
performances (Stefanidis et al. 2021), Chla can be harder 
to predict in the semiarid, due to the significant water level 
variability (which implies more complex mechanisms 
behind eutrophication) and the usually higher trophic levels 
(Wiegand et al. 2021). There are, however, other possible 
explanations. The Chla time series were derived from satel-
lite data, which has high estimation accuracy (Lins et al., 
2017), but might contain noise or components that cannot 
be explained with known variables. Also, past studies have 
indicated that the drivers of Chla can vary with the temporal 
resolution (Blauw et al. 2018; Liu et al. 2019). For example, 
on a monthly scale, water temperature is less important to 
predict Chla than nutrient loadings (Liu et al. 2019), which 

means that part of the explanatory variables could not be 
able to explain Chla in our model.

Variable importance

To measure the relative influence of the model’s explana-
tory variables, the importance measure attributed by each 
predictive model was extracted and scaled using min–max 
normalization (Fig. 4). This approach has been widely used 
to make machine learning models more interpretable (Hastie 
et al. 2009) and can be more accurate than looking only 
at the correlation between explanatory and dependent vari-
ables. Correlation criteria or the goodness of fitness of a lin-
ear model are simple and direct strategies to obtain informa-
tion about a set of variables, but it ignores multicollinearity 
and interactions between them. Although this study was not 
intended to perform variable selection, some of the models 
used here have built-in processes to select the most relevant 
predictions, such as RF and regularized GLM, the so-called 
embedded methods (Guyon and Elisseeff 2003).

Radial SVM and KNN models were excluded from this 
analysis since they do not have a direct importance measure. 
For RF, GBM, and the regression tree models, the impor-
tance corresponds to the reduction in predictive performance 
obtained by removing the variable from the model. In GLM 
and MLP, the importance is associated with the weights 
attributed to each variable.

The boxplots in Fig. 4 reveal that water volume was con-
sidered the most important predictive variable in all mod-
els. The models do not agree regarding the mix-layer depth 
and bottom temperature importance, as these presented a 
high variation among them. The dummy variables related 
to the spatial location of the reservoirs (Castanhão, Orós 

Table 3   Performance metrics for the fitted models

Model R2 RMSE MAE

RF 0.52 9.32 7.15
GBM 0.46 10.26 8.01
MLP 0.45 9.74 7.66
SVM 0.36 10.92 8.77
KNN 0.35 10.67 8.22
Regression tree 0.32 10.77 8.21
Linear regression 0.26 11.48 9.10
Regularized GLM 0.26 11.48 9.08

Fig. 3   Correlation between total phosphorus and Chla in the reser-
voirs analyzed in our study. The dark, bold line represents the fitted 
regression line, and the shadow area is the confidence interval. Phos-
phorus measurements are taken each three months and were available 
for a shorter period than Chla estimations (05/2008 to 11/2019)
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e Banabuiú) did not seem to significantly influence Chla, 
indicating that spatial variability could be less important 
than climate variability, or yet, that the relationships between 
explanatory variables and Chla are similar for all three 
reservoirs.

The relative influence of the variables depends on the 
interactions identified by each model and the procedure 
used to do it. For example, decision trees choose the opti-
mal variable in each split based on the information gained 
by adding it to the tree. The regression tree constructed to 
predict Chla had only the mix-layer depth and water vol-
ume as predictors (Supplementary material, Fig. S2). This 
means that these two variables provide enough information 
to give us an approximate estimation of Chla. The regres-
sion tree alone can be considered a weak predictor, as it is 
very sensitive to small changes in the dataset and can easily 
overfit. Since they assume all variables have some interac-
tion between them, it suits well our problem, but it fails to 
provide accurate estimations of Chla (here, it presented an 
R2 of only 0.32). However, it can still give us interesting 
information on variable importance.

GBM and RF, as explained in the “Methods” section, 
combine several regression trees to provide stronger pre-
dictive models. RF performs variable selection during its 
model building process, as the variables used to construct 

each tree in the ensemble are selected from a random sub-
set of the explanatory variables. The trees are fitted to 
bootstrap samples of the data, and the importance meas-
ure is calculated on the left-out observations (out-of-bag 
set). The advantage of RF’s strategy to calculate variable 
importance is that it considers both the individual effect 
and the interactions between the variables (Strobl et al. 
2007). GBM, on the other hand, calculates importance on 
the entire training set instead of using the out-of-bag sets.

To verify the effect of the season on the relationships 
between the explanatory variables and Chla, all the models 
were run again for the wet season (observations registered 
between February and May), and the dry season (observa-
tions from the remaining months). Variable importance 
was extracted for each model and normalized so one 
could visualize their relative influence on Chla prediction 
(Fig. 5).

Water volume and water level continue to be the most 
relevant indicators of Chla in both scenarios. However, mix-
layer depth and mean temperature seem to be more impor-
tant in the wet season. It is important to keep in mind that the 
dry season model has a smaller dataset than the wet season, 
as it corresponds to the observations of 4 months only. For 
this reason, the model can be biased, and more data could 
be necessary to provide reliable predictions.

Fig. 4   The relative importance 
of explanatory variables consid-
ering the importance measures 
of each predictive model, 
ordered by the median value. 
Relative importance was scaled 
between 0 and 1

Fig. 5   Relative importance of 
explanatory variables consider-
ing separated models for the wet 
season and dry season
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Relative influence of hydrological and climate 
variables on Chla

The PDPs in Fig. 6 illustrate the relationships between 
hydrological and climate variables and Chla. The RF model 
was selected for this analysis, as it presented the best perfor-
mance according to all the metrics evaluated. These plots, 
however, should be interpreted with caution, as they may not 
display all interactions of the explanatory variables.

Confirming the findings of previous studies, Chla tends 
to increase as water volume reduces (da Rocha Junior et al. 
2018; Wiegand et al. 2021). The decrease in water volume 
due to evaporation loss, water withdrawals, and extended 
drought periods are usually associated with higher phospho-
rus loads in tropical reservoirs (Raulino et al. 2021; Rocha 

and Lima Neto 2021a). During the dry period, sediment 
release and nutrient resuspension are important mechanisms 
associated with Chla in these reservoirs. Although the effect 
of internal loading has been pointed as more significant in 
shallow reservoirs, in the semiarid, precipitation levels come 
close to zero and inflow decreases drastically during the dry 
season, so that deep reservoirs reach very low volumes and 
almost no external loads are carried to them (Delmiro Rocha 
and Lima Neto 2021; Lima Neto et al., 2022).

Wind speed did not seem to play an important role in 
Chla levels, which might be due to reservoirs’ morphology 
and the temporal scale considered here. In deep reservoirs, 
wind speed is indeed unimportant to Chla, as it is not a rel-
evant driver of water column mixing. Shallow reservoirs, on 
the other hand, present a significant correlation with nutrient 

Fig. 6   PDPs for predictors of the RF model. The blue smooth line was produced using LOESS (locally weighted smoothing) to better visualize 
the relationship between the explanatory and response variables
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resuspension (Araújo et al. 2019; Mesquita et al. 2020). Past 
research has indicated that although wind speed affects the 
dynamics of algal growth and eutrophication, there is a loss 
of information on wind dynamics on a monthly scale (Ste-
fanidis et al. 2021).

Mix-layer depth has an inverse relationship with Chla, 
which is consistent with previous findings (Stockwell et al. 
2020; Stefanidis et al. 2021). There are several factors to 
consider when interpreting this relationship, such as water 
temperature, reservoir morphology, and the ratio between 
the mix-layer depth and thermocline depth. In deep reser-
voirs, stratification is more likely to occur and lake stability 
tends to increase, with a higher possibility of solute accu-
mulation in the hypolimnion, dissolved oxygen depletion, 
and phosphorus release from sediments (Butcher et al. 2015; 
Kraemer et al. 2015; Moura et al. 2020a). But an increase 
in mix-layer depth also results in a reduction of the light 
available to phytoplankton (Stockwell et al. 2020) and in 
lower water temperatures, which could inhibit Chla growth 
(Zhao et al. 2020).

Bottom temperature, mean temperature, solar radiation, 
and water level have direct relationships with Chla. The first 
three variables are directly related to each other, and their 
increase usually enhances phytoplankton productivity (Liu 
et al. 2019). The direct influence of water level on Chla is 
surprising, as previous studies have reported the opposite 
relationship (Medeiros et al. 2015; Wiegand et al. 2020; 
Braga and Becker 2020). These studies, however, were per-
formed for small reservoirs, where the relationship between 
P and Chla is stronger than that for larger reservoirs, i.e., the 
mechanisms associated with Chla growth are less complex.

The effect of increasing water levels on Chla depends 
on the quality of the inflow, whether it is related or not to a 
reduction in the outflow (Bakker and Hilt 2015), the depth, 
and the trophic state of the reservoir (Costa et al. 2015). 
When precipitation occurs (and water levels start to rise), 
external loads from rivers and surface runoff add up to 
internal loads due to thermal stratification and phosphorus 
release from sediment, which is highly correlated with Chla 
growth (Moura et al. 2020a). Agriculture and cattle rais-
ing are important activities in all reservoirs analyzed here 
and are the main cause of nonpoint source pollution that 
increases external total phosphorus loading (Rocha and 
Lima Neto 2021; Lima Neto et al., 2022).

Although volume and water level are directly related, they 
have a nonlinear relationship, which can be approximated 
as a logarithmic curve. Hence, for a certain range, water 
level fluctuations have little effect on water volume. In this 
case, Chla growth could be related to some of the factors 
mentioned above (e.g., the quality of external loads). Reser-
voir’s morphology should also be considered, as the storage 
depends on the water height-area relationship. Hence, the 
effect of water level on Chla might depend on how much 

water is already stored in the reservoir (i.e., at which position 
in the water height-area-volume curve the reservoir is), the 
reservoir’s morphology, and the quality of external loads.

The PDPs for the dry and wet season models were also 
examined. Except for mean precipitation and wind speed, 
all variables maintained the patterns observed in the gen-
eral model. Figure 7 presents the variables with opposing 
behaviors. While precipitation has a positive effect in the 
dry season, it presents a negative and almost insignificant 
effect during the wet season.

One explanation for this behavior is that water volumes 
tend to be reduced over the dry season. Hence, precipita-
tion can increase nutrient loadings (Jeppesen et al. 2015; da 
Rocha Junior et al. 2018) but not have a significant effect on 
water volume. During the wet season, increased precipita-
tion might induce greater flushing and lower Chla (Reich-
waldt and Ghadouani 2012). Because the reservoirs have 
higher water volumes during this season, as the precipitation 
volume increases, water volume grows exponentially with 
respect to water level, and Chla might decrease because of 
mixing and flushing. This effect, however, seems to be not 
very relevant as produces a little variation on Chla.

The extent of precipitation influence on Chla is difficult 
to generalize, as it depends on the intensity and frequency 
of rainfall events (Reichwaldt and Ghadouani 2012; Ho and 
Michalak 2020) and the initial conditions of the reservoir 
(water volume, trophic state, etc.). The reduced stratification 
during the wet season (Lima Neto 2019) can also explain the 
reduction in Chla during this season, while stronger winds 
during the dry season can lead to higher Chla concentra-
tions. Hence, precipitation alone is not the only factor to 
explain Chla fluctuations in both seasons, as its mechanisms 
are complex.

During the wet season, stronger winds seem to result in 
a slight decrease of Chla (up to 3 µg/L), while in the dry 
season, it has the opposing effect. The influence of wind 
speed on Chla can differ according to the water depth, and 
the sign of this relationship needs further investigation. Pre-
vious studies have indicated that increased wind speed can 
result in greater mixing of the upper layer, thus reducing 
Chla (Stockwell et al. 2020); however, under oligotrophic 
conditions, stronger winds can carry nutrients to the bottom 
layer and increase Chla (Kahru et al. 2010; Kim et al. 2014). 
This mechanism also depends on the reservoirs’ morphology 
and water level, hence for shallow reservoirs (or for reduced 
water levels in the dry season), stronger winds can induce 
resuspension and increase internal nutrient loads (Araújo 
et al. 2019; Rocha and Lima Neto 2022). In the wet season, 
wind-induced resuspension is less significant, as external 
sources of nutrients play a more important role in Chla fluc-
tuations (Rocha and Lima Neto 2021b).

The relationship between wind speed and internal phos-
phorus loading has been explored for artificial reservoirs 
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in Ceará, including the ones analyzed here (Rocha and 
Lima Neto 2022). In this study, the authors found that P 
release increases with stronger winds (with a threshold 
value of 3.5 m/s) and the trophic state of the reservoir. As 
internal loading can increase the risk of eutrophication, 
wind speed is very likely to be related to Chla in the dry 
season, when reservoirs become shallower.

PDPs can also be plotted for two variables at the same 
time (Supplementary material, Fig. S3). Again, one must 
be careful when interpreting these plots, as they can show 
correlations between variables rather than a causal rela-
tionship. When considering higher values of solar radia-
tion, wind speed presents an inverse relationship with 
Chla. Whether the mix-layer is shallow or deep, when 
solar radiation is higher, Chla tends to increase, a relation-
ship that is confirmed by previous research (Berger et al. 
2006). One can also notice that mix-layer depth seems to 
have a stronger effect on Chla only up to a certain point.

Wind speed had little effect on Chla when the water 
volume was constant. Again, this might be related to the 
size of the reservoirs analyzed here and does not necessar-
ily mean that wind speed does not influence Chla. Previous 
studies have indicated that wind speed can be an important 
driver of internal phosphorus loadings in the dry period 
(Rocha and Lima Neto 2022), thus, this variable should 
not be neglected.

Precipitation can have distinct effects on nutrient con-
centrations (Ho and Michalak 2020). Our analysis indicates 
that when the water volume is high, increased precipitation 
levels mean higher Chla (Wiegand et al. 2020), while for low 
water volumes, increased precipitation levels mean lower 
Chla. This, again, can be related to the climate season, as 
previously discussed. Although there might have been some 
information loss due to the temporal resolution of the analy-
sis presented here, the results are consistent with the findings 
of other studies performed for the semiarid region (Moura 
et al. 2020b; Mesquita et al. 2020; Rocha and Lima Neto 
2021a, 2022). Rather than providing accurate predictions 
of Chla, the predictive models explored in this study can 
indicate the magnitude and the overall direction of the rela-
tionship between hydro-climatic variables and Chla.

Conclusions

In the semiarid region, complex mechanisms regulate phy-
toplankton growth, so that estimates of P may not result 
in reliable predictions of Chla. This study revealed that a 
combination of hydrological and climate factors can provide 
insightful information on Chla fluctuations on a monthly 
scale. To do that, RF and GBM are the most suitable models, 
with satisfactory predictive performance.

Fig. 7   PDPs for precipitation 
and wind speed for two separate 
models, one considering the 
months in the dry season, and 
the other, the months in the wet 
season
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Looking at the interaction between variables, increasing 
solar radiation and reducing wind speed result in higher 
Chla, while for a deeper mix-layer, the increase of solar 
radiation has a positive effect on Chla. Another interest-
ing finding was that precipitation and wind speed pre-
sent opposing effects on Chla depending on the season. 
Water level and volume have opposite relationships with 
Chla: the underlying mechanism associated with Chla is 
reverted after the dry season (when the internal load is 
more significant).

These results suggest that climate and hydrological vari-
ables have nonlinear relationships with Chla, with an explor-
atory potential that should not be ignored. Machine learning 
models can provide important insight on the mechanisms 
related to Chla increase or decrease in reservoirs, especially 
when using interpretation methods such as PDPs. By under-
standing some of the mechanisms associated with hydro-
logical and climatic variability and Chla, policymakers can 
design more specific strategies to mitigate eutrophication.

There are, however, a few drawbacks of this study, 
such as the temporal-spatial resolution of the time series, 
which can hide some of the mechanisms associated with 
Chla fluctuations. However, extensive field data collec-
tion would be needed to overcome this limitation. An 
interesting approach to be investigated in future studies 
is the combination of mechanistic water quality modeling 
and machine learning methods (the so-called scientific 
machine learning) to assess eutrophication mechanisms. 
Within this framework, physical and chemical relation-
ships can be incorporated into machine learning modeling, 
facilitating uncertainty quantification and interpretability.
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